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Abstract:

In this dissertation, we focus on a mechanical aspect of a human body and face
modeling. We leverage existing physics-based models of elasticity and use them as
building blocks to create an animatable virtual human. We model different types
of hard and soft tissues to enable our model to contract muscles, interact with an
environment or realistically deform when subjected to external forces. In the first
part of the work, we present a method to create personalized anatomical models
of human body ready for physics-based animation, using only a set of 3D surface
scans. We start by building a template anatomical model of an average male
which supports deformations due to both 1) subject-specific variations: shapes
and sizes of bones, muscles, and adipose tissues and 2) skeletal poses. Next, we
capture a set of 3D scans of an actor in various poses. Our key contribution is
formulating and solving a large-scale optimization problem where we compute both
subject-specific and pose-dependent parameters such that our resulting anatomical
model explains the captured 3D scans as closely as possible. Compared to data-
driven body modeling techniques that focus only on the surface, our approach
has the advantage of creating physics-based models, which provide realistic 3D
geometry of the bones and muscles, and naturally supports effects such as inertia,
gravity, and collisions according to Newtonian dynamics. The second part of the
thesis focuses on the inverse facial modeling. The human face is an anatomical
system exhibiting heterogenous and anisotropic mechanical behavior. This leads
to complex deformations even in a neutral facial expression due to external forces
such as gravity. To obtain data on facial deformations we capture and register
3D scans of the face with different gravity directions and with various facial
expressions. We show two approaches of model building either from an anatomical
template or leveraging data from magnetic resonance imaging for more accurate
modeling. Our main contribution consists in formulating and solving an inverse
physics problem where we learn mechanical properties of the face and match
expressions by novel muscle activation models while taking into account collisions.
We demonstrate that our model generates predictions of facial deformations more
accurately than recent related physics-based techniques.
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1. Introduction
Computational models play a key role in many aspects of our lives. We utilize
them to understand and predict behavior of complex systems and they enable us
to experiment with scenarios that might not be feasible in the real world. One such
vastly complex system is the human body. To create an ultimate virtual human,
we would ideally model all anatomical details, functioning of each human cell and
dynamics of all its molecules as a single system. Unfortunately, this is still beyond
our processing capabilities despite the exponential growth of computational power
in last decades.

In this work, we focus on a mechanical aspect of a human body modeling. We
leverage existing physics-based models of elasticity and use them as building blocks
to create an animatable virtual human. We model different types of hard and soft
tissues to enable our model to contract muscles, interact with an environment or
realistically deform when subjected to external forces.

There are many interesting applications of virtual human models. They are
especially useful in scenarios that are not practical for real world experiments or
that would require laborious prototyping, e.g., a virtual surgery training, crash
tests for a safe vehicle design, ergonomy evaluation, injury analysis or prosthetic
design. More recently, virtual humans are used as digital doubles in a movie
industry for visual effects, computer games and in a virtual or augmented reality
to reconstruct a realistic appearance of a person in a virtual environment.

The aim of this dissertation is to explore methods for an automated personal-
ized virtual human reconstruction of both human body and face models mainly
intended for applications in computer graphics and animation. The output of
these methods consists of animatable digital characters represented as volumetric
meshes augmented with anatomically-based tissue and physics-based material
properties ready for a simulation.

1.1 Modeling a Virtual Human
One notable difference of models presented in this thesis to some existing biome-
chanical models is that we are not concerned about accuracy of predicted forces to
the degree required for, e.g., analytic applications. The important factor is, rather,
a visual plausibility of model’s behavior. In our case, this represents believability
of deformations and dynamics on a surface of a body or face. This allows us to
simplify some aspects of the modeling and simulate complexities of large scale (i.e.
complete body and face) models as shown in this work. Nevertheless, creating
believable body and face model of a person is still a daunting task. Let us describe
an example process of creating a digital double by technical artists.

The process starts with a single high quality 3D surface scan of a full body
represented by a 3D point cloud (e.g., captured using a photogrammetric setup
of multiple digital cameras [Mikhail et al., 2001]). The point cloud is manually
cleaned and turned into a polygonal surface mesh at a desired resolution onto
which a texture is mapped [Fabio et al., 2003]. An artist proceeds with a fitting of
a skeletal rig and mapping skinning weights of each joint that affect deformation
of the body surface due to body pose changes [Kavan et al., 2007]. At this point, a
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skilled artist manually estimates the best location of each body joint to minimize
deformation artifacts. Additional surface details can be added by auxiliary mesh
warping tools, sometimes referred to as deformers. An example of a deformer is a
bulging of a muscle during its contraction. Artists can employ muscle modeling
systems that can help with creating such deformers. These systems, however, still
require a lot of manual work and skill to produce faithful results. Automating
this process for each individual is a significant challenge and the large amount
of work is needed for every single personalized model. Technical artists often
spend thousands of hours on a digital double appearing in a film just for a few
seconds [Dunlop, 2014].

Special attention is given to the modeling of a face. Humans are particularly
sensitive to facial expressions since they act as a mean of communication. For
this reason, the process of a facial model reconstruction requires more input data.
A capture session typically includes tens or even hundreds of different expressions.
An example set of expressions can be found in a system of facial expression
classification FACS (facial action coding system), which was inspired by facial
muscle group movements [Ekman and Rosenberg, 1997]. This set of expressions is
then used to create complex blendshapes that together with a manually rigged
temporomandibular joint drive the deformation of a face model. More advanced
effects such as muscle contractions, dynamics or deformation due to external forces
is rarely modeled due to the additional difficulty [Cong et al., 2015, 2016].

1.2 Physics-based inverse problems
Motivated by these difficulties, we attempt to address the issue of creating per-
sonalized physics-based virtual humans by formulating the modeling task as an
optimization problem given a sparse set of observations. We employ models of
elasticity and anatomical priors to help us control many ambiguities arising from
using only sparse input data.

Our approach to animation of virtual humans is based on a combination of
standard computer animation techniques and physics-based anatomical models.
Specifically, the skeleton of a virtual human is controlled by the user or existing
animation data but the soft tissue connected to the skeleton and its deformation
is fully simulated. We refer to this method as the physics-based skinning or the
forward problem. An input of the forward problem consists of a personalized virtual
human model and animation data (e.g., joint angles and muscle activations). The
output of the simulation is an animated virtual human which can be represented
as a mesh per animation frame.

The inverse problem, which is the core of this work, attempts to find a
personalized virtual human model given a sparse set of surface meshes of a person
in different poses or making different facial expressions. The method works
by adapting a general anatomical template defining a structure of the skeleton,
muscles and fat such that the adapted template best explains all input frames,
e.g., surface scans of a person in different poses. The adaptation is inspired by
anatomical models of growth and existing statistical data and is formulated as a
large constrained optimization problem described in detail in this thesis.
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2. Simulation of soft tissues

2.1 Introduction
The main concept of our approach to simulating soft tissues is based on continuum
mechanics. In this branch of physics, objects of different materials are modeled as
a continuous mass rather than nanoscale particles that form complex bindings.
This approximation of a material might be too crude for some applications, e.g.
in molecular dynamics. In our case, modeling every molecule in a human body
would not only be impractical from the perspective of a mechanical modeling but
also computationally infeasible when simulating large parts of a body.

In continuum mechanics, a deformation of soft tissues due to applied forces can
be formulated as a relation between variables representing a change of positions
of infinitesimal material points within a tissue continuum (strain) and a physical
quantity representing internal tissue forces (stress). The stress-strain relation,
also called a constitutive equation, typically forms a system of partial differential
equations. These equations are usually too complex to be solved analytically and
various numerical approaches are used. The most popular method, which we also
rely on, is the finite element method (FEM) that involves spatial discretization of
a continuum into finite elements.

The rest of this chapter covers a brief background of a FEM-based simulation
and introduces specific materials and naming conventions used in this dissertation.
Please refer to practical course notes [Sifakis and Barbic, 2012] for a more com-
prehensive overview or [Bonet and Wood, 1997, Müller et al., 2008, Maas et al.,
2012] to learn more details.

2.2 Finite Element Method

2.2.1 Deformation of linear tetrahedral elements
Our soft tissue models are discretized into tetrahedral elements (see Figure 2.1).
We generate a tetrahedral mesh from a triangular surface mesh and optional
internal constraints by invoking a constrained Delaunay tetrahedralization with
predefined Steiner points implemented by TetGen [Si, 2015]. Material points of
the continuum are then approximated by an interpolation of nodal values within
each tetrahedron. In our case, nodes correspond to vertices of a tetrahedral mesh
and material point values within each element are interpolated linearly.

Mathematically, we can describe a deformation as a map from an undeformed
configuration to a deformed one. For a material point X⃗ in an undeformed
configuration, we define a material point in a deformed state as x⃗ = ϕ(X⃗). In our
case, the deformation map ϕ of the continuum in a tetrahedron i is defined as a
following linear map:

x⃗ = ϕi(X⃗) = AiX⃗ + bi⃗ (2.1)

where Ai ∈ R3×3 is a linear transformation and bi⃗ ∈ R3×1 a translation vector
specific to an element i. The full continuum deformation map that covers all
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Figure 2.1: An example of a sliced tetrahedral mesh of a human head.

material points within the deformable object is a piecewise linear function over
all non-overlapping tetrahedral elements.

The Jacobian of this map, which is constant in the linear case, is referred to
as a deformation gradient:

Fi = ∂ϕi(X⃗)
∂X⃗

= Ai ∈ R3×3 (2.2)

We use the deformation gradient as a quantity parameterizing constitutive models
of different elastic materials in Section 2.2.2. The equation above also gives
us a good intuition that a deformation gradient in this case is simply a linear
transformation of a tetrahedral element in an undeformed configuration and equals
identity in the case of no deformation.

For purposes of this thesis, it is convenient to express the deformation gradient
as a function of both deformed and undeformed configurations of tetrahedron
vertices. We first define a shape matrix function as:

D(p) =
[︂
p1⃗ − p4⃗ p2⃗ − p4⃗ p3⃗ − p4⃗

]︂
∈ R3×3 (2.3)

where pj⃗ is the jth vertex of a tetrahedron. The deformation gradient can now be
expressed as

Fi = D(x)D(X)−1 (2.4)
where x ∈ R3×3 contains vertices of a tetrahedron i in a deformed configuration and
X ∈ R3×3 in an undeformed one (see [Sifakis and Barbic, 2012] for a derivation).

2.2.2 Elastic materials
Capturing various material behavior is a long-standing open problem in physics
and materials science [Beatty, 1987, Ogden et al., 2004, Maas et al., 2012]. Various
types of tissues and even the same tissue material under distinct conditions
exhibit different mechanical properties. These conditions, for example, include
temperature or hydration of a tissue [Shahmirzadi et al., 2013]. The stress-strain
relationship, which is often non-linear, can also depend on factors such as an
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orientation, creating a group of anisotropic materials. For example, a fibrous
tissue material made of collagens, such as connective tissue which represents
most of the mechanical behavior of soft tissues [Chagnon et al., 2015], exhibits
different behavior depending on a direction of an applied stress [Ogden, 2003].
Another example is a muscle tissue which is often modeled as a transversely-
isotropic material with one axis of symmtery depending on an orientation of
muscle fibers [Blemker and Delp, 2005].

In this thesis, we define stress-strain relationships via strain energy formulations
parametrized by a deformation gradient (Eq. 2.2). We are mostly focused on
hyperelastic materials that can recover even from large deformations, i.e., we do
not model deformations causing tissue damage and injuries. The basic principle
of a strain energy formulation is to find a differentiable function that can best
capture diverse modes of deformation of a class of objects while keeping a value
of the function due to rigid transformation ideally zero. Since the strain energy
in our case is a function of a deformation gradient, it is already invariant to
translations. Rotation invariance is handled in various ways depending on the
indended performance and behavior.

Many constitutive models are also parameterized by material-specific coeffi-
cients within a modeled class of objects (e.g. a soft vs. hard rubber). For example,
Young’s modulus E typically expressed in the physical unit of gigapascals corre-
sponds to a material stiffness and Poisson’s ratio ν with no physical unit measures
how does an object deform in a direction perpendicular to the applied force. An
object with a Poisson’s ratio ν = 0.5 is perfectly incompressible, whereas an object
with ν = 0 does not show the Poisson effect. Since these coefficients are often
estimated from a series of experiments [Ogden et al., 2004], they can vary between
different constitutive models. The estimation becomes even more challenging for
soft tissues where various approaches to measure the stress-strain relationship
(e.g. in-vivo and in-vitro) provide different results [Lapeer et al., 2011].

2.2.3 Linear elasticity
Linear elasticity, as the name suggests, has a linear stress-strain relationship.
The main benefit of linear elasticity model is its computational performance.
The complete quasi-static system can be solved in only one iteration as we show
later in Section 2.3. The downside of the linearization is that large rotations
are penalized as deformations. However, this might not be a significant problem
in some cases, such as deformations of facial expressions, making this material
practical for initial experiments and prototyping where performance can be an
issue.

The definition of linear elasticity in terms of a strain energy of all tetrahedral
elements is following:

ELinear(F) =
∑︂
i=1

wiµi∥
1
2(Fi + FT

i ) − I∥2
F +

∑︂
i=1

wi
λi

2 tr(1
2(Fi + FT

i ) − I)2 (2.5)

where I ∈ R3×3 is identity, Fi is a deformation gradient and wi = 1
6 | det D(X)| ∈ R

is a volume of a tetrahedral element i and ∥.∥F denotes Frobenius norm. Scalar
quantities µi and λi are material-dependent quantities known as Lamé coefficients
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that are related to Young’s modulus E and Poisson’s ratio ν as follows:

µ = E
2(1 + ν) (2.6)

λ = Eν

(1 + ν)(1 − 2ν) (2.7)

Note that the linear elasticity formulation is usually simplified by introducing
a small strain tensor ϵ = 1

2(Fi + FT
i ) − I. Please refer to [Sifakis and Barbic, 2012]

for more details.

2.2.4 Corotational linear elasticity
One of the more widely adopted constitutive model especially in computer graphics
is Corotational linear elasticity [Etzmuß et al., 2003, Müller and Gross, 2004,
McAdams et al., 2011b]. The idea of this model is to factor-out a rotation
R ∈ SO(3) from the deformation gradient F computed for each element to achieve
the rotation invariance:

ECorot(F) =
∑︂
i=1

wiµi∥Fi − Ri∥2
F +

∑︂
i=1

wi
λi

2 tr(RT
i Fi − I)2 (2.8)

We obtain the rotation matrix R by applying the singular value decomposition
on the deformation gradient [McAdams et al., 2011a] and making sure that matrix
R is orthonormal with positive determinant [Twigg and Kacic-Alesic, 2010]. A
variant of this energy for triangular meshes using the first term of Eq. 2.8 is also
referred to as ”as-rigid-as-possible” [Sorkine and Alexa, 2007] (or ARAP).

2.2.5 Rubber-like materials
Biological tissues, such as adipose tissue, exhibit a non-linear behavior under large
loads that the previous constitutive models do not capture [Famaey and Sloten,
2008, Mihai et al., 2015]. In applications where such deformations are important,
a more sophisticated class of polynomial models can be used. A large class of
models was formulated to capture rubber-like materials as they represent highly
non-linear properties that can be easily observed and measured. These models
include Ogden’s [Ogden, 1972, Ogden and Holzapfel, 2006] material model or a
Mooney-Rivlin model [Mooney, 1940] and have various complexity depending
on the number of parameters used. The Mooney-Rivlin model, for example, can
be parameterized by up to nine coefficients, making the model fitting rather
complicated. Both these models can be reduced to a less complicated constitutive
model named Neo-Hookean [Bonet and Wood, 1997] widely used in many fields
including computer animation for its flesh-like deformation properties. A variant
of this material called stable Neo-Hookean model that was proposed to overcome
specific numerical challenges in a flesh simulation [Smith et al., 2018] is formulated
as follows:

ENeo(F) =
∑︂
i=1

wi
µi

2 (Ii
C − 3) +

∑︂
i=1

wi
λi

2 (det(Fi) − α)2 −
∑︂
i=1

wi
µi

2 log(I i
C + 1) (2.9)

where IC = tr(FT F), α = 1 + µ/λ − (µ/4)λ and i is the element number.
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2.2.6 Muscle activation model
Variety of constitutive models for both active and passive response of muscle
tissue exist [Weiss et al., 1996, Teran et al., 2003]. Most of these models assume
that a fiber direction for each element and a specific muscle is known. The
fiber direction can be obtained from existing artist-made models, diffusion tensor
imaging (DTI) [Damon et al., 2017] using data from a magnetic resonance imaging
(MRI) device, ultrasonographic measurements and a cadaver analysis [Martin
et al., 2001]. For the purporse of this thesis, we describe here a muscle contraction
model based on the corotational linear elasticity in the spirit of [Saito et al., 2015].

For a given muscle activation level α ≥ 1 ∈ R, we define a matrix S as follows:

S(α) =

⎛⎜⎝α−1 0 0
0 1 0
0 0 1

⎞⎟⎠ (2.10)

This matrix is used as a linear muscle activation transformation of every element
rotated in a way that aligns the x-axis with a fiber direction. A muscle activation
transformation of each element reflecting the activation level in a global frame
becomes:

A(α) = B(b⃗)S(α)B(b⃗)T (2.11)
where B ∈ SO(3) denotes a rotation matrix that aligns an element with its fiber
direction b⃗. To integrate this transformation into a constitutive model, we define
a new muscle activation deformation gradient as follows:

Fa(α) = D(x)(A(α)D(X))−1 = D(x)D(X)−1A(α)−1 = FA(α)−1 (2.12)

Here we transform the shape matrix (Eq. 2.4) of an undeformed configuration
of an element to reflect the muscle activation. This approach is usually used to
model plastic deformations. In our case, the transformation is a function of the
activation level α. Finally, the corotational muscle activation model is defined as:

Emuscle(F, α) =
∑︂
i=1

wiµi∥Fa(α) − Ri ∥2
F +

∑︂
i=1

wi
λi

2 tr(RT
i Fi − I)2 (2.13)

Please note that we only apply the activation transformation in the first term of
the corotated elasticity. The second term which penalizes resistance to a volume
change is not affected by the muscle activation transformation as it reflects the
incompressibility of a muscle tissue, i.e., a muscle tissue volume should not change
due to a muscle contraction and it is up to a solver to find a solution that satisfies
both constraints to a given degree.

2.3 Simulation methods
In this section, we describe how to compute a motion of a deformable object given
initial conditions and external forces acting on the object for a specified time
period.

In a classical mechanics, a dynamical system like this can be derived from
Newton’s laws of motion. More specifically, Newton’s second law defines an
important relationship between force, mass and acceleration which we use to
derive equations of motion for our elastic bodies representing soft tissues.
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2.3.1 Explicit integration scheme
Given a total force and information about an object’s mass distribution, we can
compute an acceleration that can be further integrated over time to obtain change
of positions (velocities) and hence a motion of an object for one time-step. This
approach is called an explicit integration or forward Euler method. The missing
part to assemble such system is evaluation of forces.

Previous sections (e.g. Section 2.2.3) described strain energies over tetrahe-
dralized continuum of a body as functions of a deformation gradient E(F). We
can compute force of a jth vertex of a tetrahedral element i as follows:

f⃗ i,j = −∂E(F)
∂Fi

∂Fi

∂xj⃗

(2.14)

In the case of linear elasticity (Section 2.2.3), the partial derivative of the
strain energy with respect to the deformation gradient becomes:

P(F) = ∂E(F)
∂Fi

= wiµi(Fi + FT
i − 2I) + wiλtr(Fi − I)I (2.15)

This gives all necessary components for the simulator. Unfortunately, the
explicit integration can easily become unstable for complex systems like ones we
work with in this thesis. The solution of this problem is to use an implicit method
(backward Euler) described in the next section.

2.3.2 Backward Euler method as an optimization problem
In this dissertation, we leverage a formulation of backward Euler casted as a
minimization problem [Gast et al., 2015]. The main idea of this approach is to
define an optimization problem such that its solution satisfies a general system of
non-linear equations g(x) = 0. In our case, g(x) = 0 is a dynamical system we are
trying to solve. If we constrain ourselves to using local optimization methods (for
performance reasons), we can assume that we can always find just a local optimum.
However, we can use the fact that a local optimum of an objective function we
would like to optimize is at a point where its gradient is zero. Thus, we are looking
for an objective function definition G(x) of our optimization problem such that
g(x) = ∂G(x)

∂x
= 0, i.e., we are simply looking for an integral of a function g(x). For

well-posed problems, this gives us an efficient and well-studied framework where
we can always find a solution to our complex physics-based systems up to limits
of numerical accuracy.

Quasi-static system optimization

Let us first look at a quasi-static system optimization example where we assume
small enough velocities so that they can be ignored. In such system, all internal
forces are in equlibrium with external forces, i.e., fint + fext = 0, where internal
forces can be elastic forces and external forces can include gravity or soft constrains
of a system. In Eq. 2.14, we showed that a force is a negative derivative of a strain
energy function. This leads us to an elegant formulation where we can directly
use a strain energy function as a term in the objective function.
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An example quasi-static elastic system can be formulated as an optimization
problem as follows:

x = arg min
x

∑︂
i=1

ELinear(Fi(x, X)) + EGravity(x) + EConstr(x) (2.16)

where x are deformed tetrahedra vertices, X are undeformed (constant) tetrahedra
vertices, Fi is a deformation gradient of ith tetrahedron, EGravity(x) is a gravity
potential energy function and EConstr(x) is a spring potential energy function
following Hooke’s law.

Dynamic system optimization

Adding dynamics into a system requires nothing more than an additional term
in the objective sometimes referred to as a momentum potential [Bouaziz et al.,
2014] which we describe now.

A dynamic state of our system at a timestamp t is given by vertices xt and
velocities vt of a tetrahedral mesh. Following Newton’s second law and Backward
Euler integration scheme we get:

M
vt − vt−1

h
= fint(xt) + fext(xt)

vt = xt − xt−1

h

where h is a time-step size and M is a mass matrix. We can further modify the
equation by eliminating vt:

1
h2 M(xt − xt−1 − hvt−1) − (fint(xt) + fext(xt)) = 0 (2.17)

Finally, casting this equation to an optimization problem yields:

min
x

1
h2 ∥M

1
2 (xt − xt−1 − hvt−1)∥2

F + Eint(xt) + Eext(xt) (2.18)

Comparing this to the quasi-static example (Eq. 2.16), we simply added an
additional term we denote as EDynamic to the rest of the optimization problem:

EDynamic = 1
h2 ∥M

1
2 (xt − xt−1 − hvt−1)∥2

F (2.19)

This makes the simulation framework versatile as it is very easy to switch between
quasi-static and dynamic system optimization simply by adding or removing the
EDynamic term.

2.3.3 Optimization solvers
In this section, we briefly describe methods for solving non-linear continuous
optimization problems such as ones we formulated in Section 2.3.2 where only a
local solution is required. Without loss of generality, we are only interested in
minimization problems. We recommend reffering to [Nocedal and Wright, 2006]
for a comprehensive description of optimization algorithms.
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Gradient descent

The basic principle of iterative methods such as Gradient descent is to find a
descent direction pi of a given differentiable function f(x) at point xi and search
along the descent direction a new point xi+1 such that

f(xi) > f(xi+1) = f(xi + αipi) (2.20)

where αi is a step size that can be determined by a line search method (see [No-
cedal and Wright, 2006]) and pi = −∇f(xi) in case of Gradient descent. The
process typically continues until some termination condition is met. Termina-
tion conditions can include a number of iterations i < N , norm of the gradient
|∇f(xi)| < ϵ or a value of an objective f(xi) < A.

The performance of optimization algorithms can vary greatly depending on
a specific problem. At every iteration the method requires one evaluation of
the gradient and a number of objective evaluations for the line search. For
elastic terms, this means evaluating forces and a strain energy which we showed
in the previous section. While this is a relatively small computational cost per
iteration, second-order methods such as Newton’s method have typically a superior
asymptotic rate of convergence and better amortized computation time for a class
of problems we discuss in this thesis despite requiring additional evaluation of a
Hessian [Wang and Yang, 2016, Liu et al., 2017].

Newton’s method

Newton’s method can typically make larger steps than Gradient descent because
it is leveraging a second-order Taylor expansion of an objective function. For
Newton’s method, a descent direction is defined as:

pi = − ∇f(xi)
∇2f(xi)

(2.21)

In practice, we do not evaluate an inverse of a Hessian, but solve for pi in the
following linear system:

∇2f(xi)pi = −∇f(xi) (2.22)
For well-posed problems, a Hessian ∇2f(xi) is a symmetric positive definite matrix
and we can use a Cholesky decomposition [Guennebaud et al., 2010] to solve
for the descent direction. In some cases, such as linear elasticity (Section 2.2.3),
the approximation by second-order Taylor expansion is a perfect approximation
and the solution is found in just one iteration. The Hessian matrix is constant
in this case and we can precompute the matrix factorization step to speed up a
simulation.

In some situations, we can not guarantee positive definiteness of a Hessian.
For example, this can happen when there are not enough constraints or when
some tetrahedra are inverted. In case we can not fix such issue locally for each
tetrahedron, we can progressively apply Tikhonov regularization on a full Hessian
matrix until it is positive definite.
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Constrained optimization

Many of the problems we solve in this work are formulated as constrained opti-
mization problems. For equality constraints c(x) = 0, we can leverage a method of
Lagrange multipliers and solve a new problem defined by the Lagrangian function
that contains additional parameters depending on the number of constraints.
When converged successfuly, constraints are satisfied with high accuracy.

Another way for solving equality constraints is called a penalty-based method.
In this approach, constraints are added as an additional term in an objective as a
weighted penalty:

min
x

f(x) + βc(x)2 (2.23)

The weight β is initially set to a small number and the problem is solved in the
same way as an unconstrained one. β is then progressively increased in each
solver iteration until constraints or other solver termination criteria are met. The
number of iterations, initial weight and the penalty factor increment can differ
widely depending on the problem.

2.3.4 Hessian approximation
The main disadvantages of second-order methods are the descent direction solve
and a performance of the Hessian matrix evaluation. For most forward problems,
Hessian is typically a sparse matrix ∇2f(xi) ∈ RN×N , where N is a number of
optimization parameters. In case where no additional constraints are dynamically
added to the system, a sparsity pattern is determined by a mesh configuration
and remains constant which can be leveraged for a performance boost in some
solvers. In general, both direct and iterative sparse linear solvers can be used
to evaluate the descent direction depending on the size of a problem and other
factors [Guennebaud et al., 2010].

Some constraints especially ones introduced in inverse problems discussed in
the next chapter have large dense blocks in the Hessian matrix. Solving a large
and a dense system is usually the biggest bottleneck of the overall problem. For
this reason, there exist methods that try to iteratively approximate Hessian to
avoid computationally intensive evaluation (L-BFGS), and some methods propose
suitable constant Hessian which allows pre-factoring the matrix only once in a
preprocessing stage [Liu et al., 2017]. This approach is referred to as a Quasi-
Newton method [Nocedal and Wright, 2006]. The descent direction evaluation is
straighforward in this case:

pi = −∇f(xi)
A

(2.24)

where A ≈ ∇2f(xi). A popular method based on this idea in Computer Graphics
for animating deformable objects is called Projective Dynamics [Bouaziz et al.,
2014, Liu et al., 2017]. We used this method in forward simulation problems where
we achieved real-time performance.
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3. Solving inverse problems

3.1 Introduction
A general inverse problem can be defined as an inference of mathematical model
parameters based on observations [Vogel, 2002]. In this dissertation, these obser-
vations consist of human body and face captures of a person, e.g. surface meshes,
under various conditions. In order to fit large variety of data, our models should
ideally generalize well enough such that we can explain both variations in each
person’s shape but also their pose or facial expression. We are therefore interested
in two sets of parameters: person-specific parameters that are shared between
observations and parameters specific to an observation, such as a skeletal pose,
muscle activation or facial expression. Shared parameters for multiple observations
are especially important to reduce ambiguity for ill-posed problems that we are
working with in this thesis.

Another important factor reducing ambiguity is our anatomical prior that
we refer to as a template anatomical model. The template model corresponds to
an average human body and head shape and includes surface data of a skeleton,
skeletal muscles and a skin. In next chapters, we show how we use this prior for
a formulation of various growth or fitting models that are able to match diverse
characters but we also use the prior as an important regularization of a skeletal
system and soft tissues that are not part of surface observations.

Once we determine all parameters of our models, we can run a forward
simulation and generate a novel animation with unseen poses or expressions
that will hopefully match reality or test dataset not used for model parameter
inference for evaluation purposes. We can also change person-specific parameters
and for example easily create a more muscular character as shown in [Saito
et al., 2015]. Such process of a manual parameter control can be understood as
forward anatomical modeling. In contrast, we refer to an automated inferrence
of person-specific parameters from data such as bone lengths, muscle shape or a
fat distribution as inverse anatomical modeling which is the main subject of this
thesis.

3.2 Optimization formulation of inverse prob-
lems

As a toycase example, consider a simulation of a deformable object modeled with
an elastic material parameterized by a homogeneous stiffness E and a given mass
distribution. Some part of this object can be positionally constrained in space.
The rest is moving freely and we are observing effects of gravity force affecting
the shape of the object. Changing the stiffness parameter E and running the
simulation that outputs new tetrahedral mesh vertices x is a typical example of a
forward problem:

x = f(X, E) (3.1)
where X are undeformed mesh vertices of a simulated object and f is a simulation
function derived from methods described in Chapter 2 of this thesis (see Eq. 2.16
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for example).
In an inverse problem, the target observation data Xtgt can consist of all mesh

vertices or just surface vertices representing a deformed object due to gravity with
unkown stiffness. The goal is to find a stiffness parameter E such that a forward
problem model best matches the input Xtgt. Turning this into an optimization
problem gives:

min
E

∥f(X, E) − Xtgt∥ (3.2)

Solving this problem can be very challening since an evaluation of the simulation
function f requires solving another optimization problem (Eq. 2.16). We call
such problems inverse physics problems. The following sections cover some of the
existing approaches to solving such problems.

3.3 Inverse kinematics
Before we discuss optimization of inverse physics problems, we first describe
an inverse problem that illustrates a similar, perhaps more familiar, concept.
Inverse kinematics (IK) is very well known in the field of computer animation and
robotics [Aristidou et al., 2018] and is also a subproblem in this thesis.

We use kinematics to describe a motion of a skeleton that we define as a chain
of transformations. These include translations of joint offsets from parents TT ransl

(typically constant) and rotational joints parameterized by Euler angles TRot. Let
us define a transformation from a root to a joint j as follows:

T0→j(θ) = TT ransl
j TRot

j (θj) · · · TT ransl
0 TRot

0 (θ0) (3.3)

And a forward kinematics (FK) process as:

x⃗j = FKj(θ, X⃗j) = T0→j(θ)T−1
0→j(0)X⃗j (3.4)

where X⃗j is a position of a point in world-space coordinates attached to a joint j
in a neutral pose, x⃗j is a position of a point in a pose defined by θ in world-space
coordinates. The inverse transformation term in a neutral pose T−1

0→j(0) can be
precomputed for each joint and allows us to work directly in world-space coordi-
nates. Both affine transformations and points can be represented in homogeneous
coordinates to turn the function FKj into simple matrix multiplications.

The goal of inverse kinematics is to determine a pose θ given a position of
a point attached to a joint x⃗j. For small enough skeletal systems, IK can be
solved analyically [Aristidou et al., 2018]. However, for more complex systems
where more solutions exist or for systems with joint limits, we can cast inverse
kinematics as an optimization problem:

θ = IKj(x⃗j, X⃗j) = arg min
θ

∥FKj(θ, X⃗j) − x⃗j∥ (3.5)

and solve using methods presented in Section 2.3.3. The system can be trivially
extended to solve for multiple points simultaneously to reduce ambiguity.

Note that the forward problem function FKj is defined explicitly as the
transformation chain and its gradient ∇θFKj and potentially even Hessian required
for the inverse problem optimization can be derived analytically.
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3.4 Adjoint method
In this section, we show how to solve an inverse problem in case where a forward
problem can not be expressed explicitly, such as a simulation of a deformable
object, and it is therefore more complicated to express derivatives necessary for
numerical solvers as opposed to the example in the previous section.

Let us continue with a toycase example described in Section 3.2 where the
inverse problem is to find stiffness parameters E ∈ Rm for a given observation Xtgt
and a set of constraints. To make the formulation concise, we define a forward
function as a following quasi-static problem:

χ(E) = arg min
x

Q(x, E) (3.6)

Q(x, E) =
∑︂
i=1

EElastic(Fi(x, X), E) + EGravity(x) + EConstr(x) (3.7)

where X ∈ R3n are given constant undeformed mesh vertices, x ∈ R3n are de-
formed vertices, EElastic is arbitrary elastic energy parameterized by a deformation
gradient Fi and stiffness E.

An inverse problem G we wish to solve is then defined as:

min
E

G(E) = 1
2∥χ(E) − Xtgt∥2, (3.8)

i.e., we are trying to find E that would best explain observations Xtgt. The
gradient required for a numerical solver is:

∇EG = ∇χG∇E
χ = (χ(E) − Xtgt)T ∇E

χ ∈ R1×m, (3.9)

the challenging term being ∇E
χ ∈ R3n×m.

The solution to the forward problem χ defined above is at a quasi-static
equlibrium where sum of forces q ∈ R1×3n are zero:

q(x, E) = ∇xQ(x, E) = 0 (3.10)

which implies:
q(χ(E), E) = ∇χQ(χ(E), E) = 0 (3.11)

Next, in order to express ∇E
χ, we differentiate the last equation by E and obtain:

∇Eq(χ(E), E) = 0 (3.12)

∇χq∇E
χ + ∇Eq = 0 (3.13)

∇χχQ∇E
χ + ∇χEQ = 0 (3.14)

∇E
χ = −(∇χχQ)−1∇χEQ (3.15)

This gives us a linear system with variables ∇E
χ.
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We can increase performance by directly evaluating ∇EG. We multiply Eq. 3.15
by ∇χG from the left:

∇χG∇E
χ = −∇χG(∇χχQ)−1∇χEQ (3.16)

and let
λ = −∇χG(∇χχQ)−1 (3.17)

This gives a new linear system where λ ∈ R1×3n. The gradient of the inverse
problem G becomes:

∇EG = λT ∇χEQ (3.18)
This method is referred to as the adjoint method and λ is called the vector of

adjoint variables. Please refer to Kriz and Pultr [2013], Bradley [2013], Sifakis
et al. [2005] for additional details and background in mathematical analysis.

3.5 Equilibrium constraint method
A different approach to solving an inverse physics problem is to reformulate
the optimization problem by introducing variables representing the quasi-static
solution that are coupled with the forward quasi-static function by a constraint.

We are following the same example inverse problem as in Section 3.4. Formally,
we reformulate the inverse problem G as follows:

min
ξ={x,E}

G(ξ) = 1
2∥x − Xtgt∥2

subject to ∇xQ(x, E) = 0
(3.19)

where Q is a total energy of the quasi-static system defined in Eq. 3.7 and
∇xQ(x, E) ∈ R1×3n.

The main difference to the formulation described in Section 3.4 is that Eq. 3.19
does not contain implicitly defined functions that require solving another opti-
mization problem. This makes expressing derivatives of the inverse problem more
straighforward.

One might be naively tempted to change the constraint in Eq. 3.19 to Q(x, E) =
0 in order to avoid 3rd-order derivatives of the scalar-valued energy function.
However, such formulation is incorrect and does not solve our inverse problem
since we are not interested in zero-energy solution, but rather a quasi-static
equlibrium where sum of all forces are zero, i.e., ∇xQ(x, E) = 0. Depending on
the specific problem, the solution can have an arbitrary energy Q(x, E) > 0.

3.5.1 Hessian approximation of the constraint
We can formulate the Eq. 3.19 as an unconstrained problem by using the penalty-
based method described in Section 2.3.3:

min
ξ={x,E}

G(ξ) = 1
2∥x − Xtgt∥2 + β

2 ∥∇xQ(x, E)∥2 (3.20)

where β is a penalty weight. Solving this problem by the Newton method requires
evaluation of both gradient ∇ξG and Hessian ∇2

ξG.
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The first derivative of the penalty term with respect to parameters ξ is:

∂ β
2 ∥∇xQ(x, E)∥2

∂ξ
= β

∂Q
∂x∂ξ

T ∂Q
∂x

∈ R|ξ|×1 (3.21)

where |ξ| = 3n + m.
The second derivative of the penalty term is then:

∂(β ∂Q
∂xξ

T ∂Q
∂x )

∂ξ
= β

∂Q
∂x∂ξ

T ∂Q
∂x∂ξ

+ β
∂Q

∂x∂ξ∂ξ

T ∂Q
∂x

(3.22)

As indicated before, the term in the Hessian matrix ∂Q
∂x∂ξ∂ξ

∈ R3n×|ξ|×|ξ| contains
third-order derivatives of energy functions of Q defined in Eq. 3.7 with respect to
x. In practice, these derivatives are often negligible and are typicaly ignored Bickel
et al. [2012].
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4. Inverse Human Body
Modeling

Figure 4.1: We present a full-body reconstruction and animation system that can
simulate physics-based volumetric effects such as self-collision and inertial effects.
Our method uses a set of 3D surface scans to adapt an anatomically-inspired
volumetric model to the user.

This chapter is based on the publication Kadlecek et al. [2016]. The first
authorship for this paper has been shared with Alexandru Eugen Ichim with
whom the author collaborated closely. They both implemented roughly half of
the code required for this project. The author mainly contributed by experiments
and implementation of the following:

• forward skeleton kinematic model

• inverse skeleton adaptation and bone growth models

• forward physics-based skinning model

• rest-pose optimization terms of the inverse problem

• body model registration pipeline

• symmetric as-rigid-as-possible energy formulation important for convergence
of the inverse problem

4.1 Introduction
The importance of human anatomy in visual arts was appreciated already by
Renaissance masters such as Leonardo da Vinci. More recently, 3D anatomical
models combined with physics-based simulation have been used to deliver un-
precedented visual realism in modern computer generated movies. Unfortunately,
the design of anatomically realistic characters is a labor intensive process even
for experienced digital artists using professional modeling and simulation tools,
such as those developed at Weta Digital and the ILM. Therefore, high-fidelity
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Figure 4.2: Workflow of our method: We take as input a set of 3D scans of the
same actor in different poses. Our method aims at reconstructing a complete
volumetric, rigged, and physics-ready body model of the actor, by starting from
an anatomical template model of an average male. This consists of extracting its
exterior and interior shapes, as well as skeleton bone lengths. Finally, our models
are ready to be animated using external skeletal and muscle activation data.

anatomical models are typically only affordable in high-budget production, e.g., in
movies such as Avatar or The Lord of The Rings trilogy. Even though modeling of
imaginary creatures such as dragons inherently relies on creativity of digital artists,
when it comes to modeling humans, we believe we can substantially improve upon
the state of the art.

In this chapter, we present an automatic method to create an anatomical,
physics-based model of the body of a given human subject, e.g., an actor (see Fig-
ure 4.1). We achieve this by capturing a set of full-body 3D scans in various
poses and combining it with a template anatomical model. This template model
represents the anatomy of an average human body, similar to traditional med-
ical atlases. However, actual human bodies exhibit large variations in height,
muscularity, adiposity, proportions of the limbs, etc. Our goal is to reshape and
rescale the template anatomical model in order to fit the target scans as closely as
possible, while accounting for shape changes due to both subject-specific variations
(bone lengths, muscularity, adiposity, ...) as well as due to posing (changes of
joint angles). The first type of deformations (subject-specific) are caused by
long-term biological growth processes, while the pose-based deformations are
induced by short-term voluntary muscle contractions and consequent joint motion.
Our approach is summarized in Figure 4.2.

Data-driven modeling of animated human bodies has been a long standing
topic in computer graphics. Systems such as SCAPE Anguelov et al. [2005] or
the more recent BlendSCAPE Hirshberg et al. [2012] construct an articulated
human body model from a set of input 3D scans. Similarly to artist-directed
systems such as Pose Space Deformation Lewis et al. [2000], these methods build
a data-driven model which predicts skin deformations based on the skeletal pose
(i.e., joint rotations). However, these methods focus exclusively on the skin, i.e.,
outer boundary of the body. The skeleton is modeled as connected line segments,
disregarding the volumetric nature of bones or muscles. While surface-based data-
driven methods are effective at interpolating the input scans, they are oblivious
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to the fact that biological soft tissues are elastic solids subject to Newton’s laws
of motion. A notable exception is DYNA Pons-Moll et al. [2015], which we will
discuss in Related Work. To our knowledge, our method is the first to reconstruct a
fully physics-based subject-specific anatomical model, naturally supporting effects
such as inertia, collisions, and gravity. We found that already volumetric modeling
of organs and their corresponding stiffness has interesting visual implications; e.g.,
the rigidity of the rib cage is clearly visible when animating upper trunk rotations,
such as in Figure 4.8.

The problem of reconstructing anatomical models only from surface 3D scans
is inherently ill-posed. Ground truth measurements of organs could be obtained
using MRI or CT scans; however, these are expensive medical-grade devices
designed to diagnose fine-scale pathologies such as bone fractures or tumors. Aside
from the high costs, MRI or CT scanners are not suitable for computer animation
purposes because they offer only a very limited workspace, i.e., the motion of the
imaged human subject is highly constrained; furthermore, MRI machines require
long scanning times and CT scanners expose the person to ionizing radiation.
Fortunately, for computer graphics purposes we do not need high-fidelity medical
imaging, because a rough estimate of the scale and shape of the bones, muscles,
and subcutaneous adipose tissues is sufficient to produce high quality animations.
Our anatomical model is designed for full-body animations and contains only the
most visually significant muscles; we do not model the delicate muscles of the face,
hands, and feet, as these body parts are often animated by specialized techniques.
Our anatomical template also does not contain the nervous or circulatory systems
or models of internal organs. However, our results can readily be combined with
other computer graphics techniques such as displacement mapping in order to
model, e.g., prominent veins or fine scale wrinkles.

By measuring only the 3D geometry of the skin, it seems impossible to deter-
mine what are the shapes and sizes of the underlying bones, muscles, and adipose
tissues. However, bones and muscles do not grow arbitrarily in healthy human
subjects (we do not consider pathologies in this work), because the musculoskele-
tal apparatus must be a functional mechanical system to allow locomotion. To
quantify which shapes are more likely than others, we employ biomechanics-based
growth models similar to Computational Bodybuilding Saito et al. [2015]. While
Computational Bodybuilding presented methods for the forward simulation of
growth of bones, muscles, and adipose tissues, in this work, we study the inverse
problem, i.e., we formulate an optimization to recover the fitting parameters which
best explain our input 3D scans. This problem is quite challenging because we have
to account for 1) the fact that each 3D scan is in a different pose and 2) the organs
do not grow independently, but influence each other due to internal action-reaction
forces (when one bone/muscle grows, it pushes the adjacent organs).

4.1.1 Contributions
To our knowledge, the problem of reconstructing physics-based anatomical models
from input 3D scans has not been tackled in previous work. Our main contribution
is inverse body modeling (Section 4.5), i.e., formulating and solving a large
optimization problem to find a subject-specific anatomical model which explains
the input 3D scans as closely as possible. Some parts of our forward skinning
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model (Section 4.4) are derived from previous work; however, we devise a new
elastic potential (which we call “symmetric as-rigid-as-possible” energy) in order
to perform the subsequent inverse modeling, since classical as-rigid-as-possible
models Sorkine and Alexa [2007] do not work, as we discuss in Section 4.4. We
hope that our approach will help to lower the costs of creating anatomical models
of humans and make high-quality physics-based animation accessible not only to
well-known VFX studios, but to a larger body of researchers and artists.

4.2 Related work
Data-driven techniques. The most common approaches for modeling complex
anatomical variation is by leveraging large amounts of data, usually in the form
of 3D body scans or performance capture data. Anguelov et al. [Anguelov et al.,
2005] learn a statistical model for body shape variations as a function of body
pose changes, which is applied on top of a statistical model of neutral-pose body
shapes. As such, the same deformation model is used for all the people, while
we have the advantage of constructing person-specific internal components which
will behave differently in animations. This data-driven approach was extended
and applied to sparse motion-capture animation by Loper et al. [Loper et al.,
2014], in order to obtain better quality motion reconstructions as compared to
traditional skeleton-driven skinning approaches. Zuffi et al. [Zuffi and Black, 2015]
propose a part-based model where each body component is a mesh associated to a
statistical space, and connected together by pairwise stitching energies. Recently,
Pons-Moll et al. [Pons-Moll et al., 2015] introduced a data-driven technique that
additionally encodes shape changes due to skin and limb velocity and acceleration,
producing animations with compelling inertial effects without the need for a
physics simulation. While these techniques are powerful interpolation tools, they
are limited in their extrapolation capabilities, fixable only by collecting more and
more data. In contrast, our method produces fully physics-based models, naturally
supporting not only inertial effects, but also effects due to gravity, volumetric
bones, and collisions.

For the particular task of breathing simulation, Tsoli et al. [Tsoli et al., 2014]
introduce a data-driven approach in which pose and shape variation is extracted
from a set of registered 3D scans of people captured while breathing in different
scripted ways. These priors are then used to generate varying types of respiration
motions in novel characters. In our method we do not explain shape variations
due to breathing, even though this would be an interesting direction for future
work.

Anatomical models and physics. The motion of humans and interactions
between the various anatomical elements have long been an important focus point
for the biomechanics community. OpenSim Delp et al. [2007] is an example of
an open-source software framework for biomechanical modeling, simulation and
analysis, extensively used in biomechanics and motor control science. However,
OpenSIM does not support physics-based volumetric modeling of muscles or
adipose tissues. There are also other specialized medically oriented frameworks,
such as Sofa Allard et al. [2007] or ArtiSynth Lloyd et al. [2012].
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The survey of Lee et al. [Lee et al., 2010] offers a thorough overview of how the
biomechanics and computer graphics communities model and simulate muscles,
with most work being focused on skeletal muscles. Muscles are very complex
structures that are not completely understood by modern medicine, and, as a
result, various approximations have been proposed for making muscle simulation
tractable for various medical or entertainment applications. Out of those, the
physics-based and data-driven approaches are the ones of most interest for our
work. Teran et al. [Teran et al., 2003, 2005b,a] introduced some of the first
comprehensive approaches for biomechanical human body simulation in computer
graphics. They construct a complete volumetric human body and a compatible
FEM simulation by using solely data from the Visible Human Dataset.

Saito et al. [Saito et al., 2015] propose a novel system for performing bodybuild-
ing or weight loss simulations on human models. They model the muscles using
synthetically computed muscle fibers. The growth of the muscles is discretized
into the anisotropic stretch of individual muscle tetrahedra in the direction of the
fibers, and computed efficiently using the projective dynamics solver Bouaziz et al.
[2014]. The key difference from our method is that Saito et al. [Saito et al., 2015]
require the bone/muscle/fat fitting parameters to be provided by the user.

Fan et al. [Fan et al., 2014] propose a framework for simulating a dynamic
volumetric musculoskeletal system using an Eulerian-on-Lagrangian discretization
that can handle sliding elements in close contact, volume preservation and large
deformations.

Anatomy Transfer Dicko et al. [2013] is a method for transferring and editing
the internal structure of human bodies. It uses a template human body model
containing the skeleton and internal organs and registers it to a single surface-mesh
humanoid model. The internal volume is adapted using harmonic deformation,
driven by the registration of the exterior surface. The amount of fat tissue is
controlled manually and the growth of the bones is constrained for more plausible
results. In a similar vein, Zhu et al. [2015] adapts the bone structure of upper
and lower limbs given an RGB-D sequence of moving limbs. Comparisons and
other differences are discussed in Section 4.8.

While a lot of research has gone into tackling the general problem of human
body motion, there has been work targeting specific aspects. For example, Si et
al. [Si et al., 2014] use an anatomical body model with muscle actuations in a
complex fluid simulation in order to build a control system to simulate different
styles of swimming. Similarly, Lee et al. [Lee and Terzopoulos, 2006] focus on the
biomechanical modeling and neuromuscular control of the neck region.

Combining simulation and data. A technique for modeling non-linear ma-
terial deformations from a set of captured examples is introduced by Bickel et
al. [Bickel et al., 2009]. They used a scattered data interpolation technique in
strain-space to simulate novel deformations of objects composed of the observed
materials. Similarly, Wang et al. [Wang et al., 2015] use off-the-shelf 3D sensors
to track and model deformations of soft objects using physics-based probabilistic
priors. Chen et al. [Chen et al., 2014] propose a performant approach to recon-
struct the zero-gravity rest pose shape of an object given multiple observations
under various external forces such as gravity.
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Figure 4.3: Components of our anatomically-inspired volumetric template model.
From left to right: skin and underlying generic soft tissue, muscles and tendons,
skeleton.

4.3 Template Body Model
The template model defines the topology of the fitted actors, and acts as a
regularizer in the reconstruction process (see Fig. 4.3). It consists of a set of n
vertices Xtmpl ∈ R3n, connected in a tetrahedral mesh. We build the template
similar in spirit to Saito et al. [Saito et al., 2015] by starting from the commercially
available Zygote anatomical model Zygote [2016] with 111 muscles and 204 bones
represented as meshes. The skin, muscles, and bones are uniformly remeshed
with the Instant Meshes algorithm Jakob et al. [2015] and then the surfaces are
tetrahedralized using the approach of Jacobson et al. [Jacobson et al., 2013].

In our work, we differentiate between four main types of materials: bones,
tendons, muscles, and generic soft tissue. Each bone, tendon, and muscle is
embedded into the template tetrahedral mesh in a non-conforming way; i.e., each
tetrahedron might contain one or all of the materials in certain percentages. These
percentages are computed as a pre-processing stage using a Monte Carlo sampling

Figure 4.4: Left: a close-up on the fibers on the right biceps muscle. Right:
Visualization of the embedded muscle fibers in the template model.
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Figure 4.5: The distribution of the material types inside the body. From left to
right: bones, generic soft tissue, muscle.

approach to estimate the amount of overlap of each muscle/tendon/bone with
each tetrahedron. For modeling the muscle atrophy and hypertrophy during
subject-specific body fitting, as well as muscle activations during the animation
stage (Section 4.7), the muscle fiber directions are required (see Figure 4.4). We
compute the fiber directions in a similar way as Saito et al. [Saito et al., 2015].
First, the tendon regions are selected manually and associated with Dirichlet
boundary conditions. The non-tendon muscle boundaries are associated with
Neumann boundary conditions. Next, we solve a Poisson equation for a scalar
field using these boundary conditions. The resulting muscle fiber directions are
aligned with gradients of this scalar field.

Our template anatomical model corresponds to a lean male. To be able to
realistically model subjects with larger amounts of subcutaneous fat, we enhance
our discretized volumetric template with a “muscle envelope,” Saito et al. [2015],
i.e., a triangle mesh which wraps all of the muscles and separates them from the
subcutaneous tissues. See Figure 4.5 for a visualization of the material distribution
in the template model.

In addition to modeling soft tissue, we also use a realistic skeletal rig to
parameterize the allowed motion of the bones. We built our rig using kinematic
models established in biomechanics Wu et al. [2002]. The final rig is sufficiently
expressive to allow even for complex poses, as shown in Figure 4.6. Also, our rig
describes not only pose-dependent variations (via the joint rotation angles θθθ), but
also subject-specific variations (via scaling parameters πππ). The scaling parameters
πππ allow us to model different lengths and sizes of the bones between individuals.
We shall denote Rig(θθθi,πππ) as the function that describes the motion of the bones
as a function of rig parameters. Specifically, the function Rig(θθθi,πππ) returns posed
(skinned) vertex samples, illustrated in Figure 4.9, in the current pose and scaling
of the skeletal rig. These vertex samples will be used as boundary conditions for
minimizing the elastic energies of the soft tissues, as described below.
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Figure 4.6: Complex skeleton rig fitting on Faust dataset.

4.4 Forward Skinning Model
Before diving into the inverse problem of body reconstruction, we first describe
our forward physics-based character model. Our model is built by extending recent
works, in particular Saito et al. [Saito et al., 2015] and Zhu et al. [Zhu et al., 2015].
Saito et al. simulated growth only in the rest pose, without the use of a skeletal
rig. Zhu et al. did create a skeletal rig, but only for the extremities (the arm and
the leg) and the deformation model was based on direct skinning models.

In this work, the body shape is implicitly defined as minimizer of a deformation
energy (corresponding to elasticity of soft biological tissues) subject to Dirichlet
boundary conditions (corresponding to the bones which are fixed in a given position
in space). This process is known as quasi-statics McAdams et al. [2011b]: the
bones are kinematically controlled, e.g., by an animator, and for each configuration
of the bones, we compute a quasi-static equilibrium where the forces due to bone
contacts cancel forces due to internal elasticity of the flesh (we use the term “flesh”
as a shorthand for soft biological tissues). These two interpretations are equivalent
because forces are negative derivatives of the elastic potential and therefore must
be zero in a minimizer.

In equations, we can define the quasi-static solution as function:

Skin(Xsrc, θθθi,πππ) = arg min
X

Eskin(Xsrc, X, θθθi,πππ), (4.1)

where Eskin(Xsrc, X, θθθi,πππ) is equal to the following sum:

BoneFlesh(X, θθθi,πππ) + Edef(Xsrc, X) + Egrav(X) + Ecol(X). (4.2)

Here θθθ and πππ are joint orientations and bone scaling parameters as discussed in
Section 4.3. The vector Xsrc describes positions of mesh vertices in a reference rest
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Figure 4.7: Complex pronation-supination motion is handled well by our physics
skinning.

pose, while X corresponds to the deformed pose. The BoneFlesh function describes
the connection between the deformable mesh representing the flesh and the fixed
bones. Edef(Xsrc, X) is an elastic potential function which measures the amount
of deformation between configurations Xsrc and X (both of which correspond
to meshes with the same connectivity). Egrav(X) is the gravity potential, i.e., a
linear function which corresponds to the familiar mgh product (mass, gravity
constant, height). The gravity potential allows us to simulate the interplay between
inertial and gravity forces in a physically realistic way, which is important, e.g.,
in animating a fat man jumping. Finally, Ecol(X) is energy potential penalizing
collisions, i.e., self-intersections of the mesh. The necessary condition for X being
in quasi-static equilibrium is ∇XEskin = 0, i.e., sum of forces is zero. More details
on the above mentioned terms follow.

BoneFlesh. The BoneFlesh term models coupling between kinematically con-
trolled bones and physically simulated flesh. Anatomically, this term can be
related to connective tissues which hold the musculoskeletal system together.
Mathematically, we define:

BoneFlesh(X, θθθi,πππ) = wbone

⃦⃦⃦
SboneX − Rig(θθθi,πππ)

⃦⃦⃦2
, (4.3)

where Sbone is a binary selector matrix which extracts vertices corresponding to
the bone vertices kinematically controlled by the Rig function, see Figure 4.9.
These vertices are chosen to approximately uniformly sample the surface of the
bones and are explicitly present in the tet-mesh associated with X (conforming
embedding). In theory, barycentric (non-conforming) embedding of bone vertices
should be sufficient; however, we observed occasional numerical stability issues
when nearly co-linear or co-planar vertex samples shared the same tetrahedron.
Switching to conforming embedding of bone-samples successfully prevents these
issues. For that we use TetGen with a switch to insert additional points Si [2015].
The weighting wbone controls the stiffness of the bone-flesh attachments and is
chosen sufficiently high to avoid excessive sliding of the flesh (we note that some
sliding is natural because biological connective tissues are compliant). This model
is sufficient even for large deformations of the flesh such as pronation/supination
(Figure 4.7) or upper trunk rotation (Figure 4.8).
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Figure 4.8: Anatomically correct bones produce more realistic body shapes e.g.
during upper trunk rotation, where the rib cage retains its shape.

Rig. Our kinematic skeleton is modeled by the function Rig(θθθ,πππ), which takes
joint angle orientations θθθ and bone scaling parameters πππ as input, and produces
world-space coordinates of vertices sampling the surfaces of the bones, as shown in
Figure 4.9. The Rig function performs two main tasks: 1) it geometrically deforms
the bones according to the scaling parameters, allowing us to model individuals
with various lengths and shapes of the bones; 2) it implements standard forward
kinematics, i.e., hierarchical composition of rotations of individual joints. We
currently support only rotational joints, but more complicated joint types (e.g.
spline joints Lee and Terzopoulos [2008]) could be added to improve the accuracy
of the kinematic modeling.

When changing the lengths and shapes of the bones, it is important not to
distort the shape of the bone heads, because adjacent bone heads are often in
close sliding contact. We achieve this in a similar way as Zhu et al. [Zhu et al.,
2015]. Specifically, each bone is deformed using linear blend skinning with bounded
biharmonic weights Jacobson et al. [2011] with handles located in the center of each
of the bone heads, see Figure 4.10 for an example of a long bone elongation. The
handles of adjacent bones (i.e., forming a joint) are constrained to be transformed
by the same matrix which contains only translation and uniform scale. This
guarantees that the structure of the joint will be preserved. Bones with more
complex shapes, such as the ribcage and spine, are treated in a similar fashion.

28



Figure 4.9: Sampled bone vertices corresponding to the selector matrix Sbone used
in BoneFlesh function.

We allow uniform scaling and elongation in the direction of the spinal cord to
preserve vertebrae connections. Similarly, we allow elongation of the Scapula in
the direction from the Sternum to the Humerus. For every bone, we choose an
elongation direction, precompute weight for each sampled bone vertex and set
bounds of the parameterization based on anatomical limits. We found that this
parameterization was expressive enough to fit all tested scans well. Formally, we
can express this deformation using the BoneFit(πππ) function which depends only on
the fitting parameters πππ and produces the modified rest pose bone vertex samples
as a weighted linear combination of scaling and elongation transformations Telng:

BoneFit(πππ) = πscaleSboneXsrc + πππelngWBBWTelngSboneXsrc (4.4)

where WBBW are precomputed weights, πscale is a global scale parameter and πππelng

represents rest of the fit parameters.
The next step is standard forward kinematics, i.e., hierarchical composition of

transformations which correspond to the rotations of individual joints (appearing
as components of θθθ) and coordinate transformations between the individual joints.
This is analogous to traditional forward kinematics models used in robotics Murray
et al. [1994], with the only difference that in our model, the lengths of the bones can
change according to the πππ parameters. If we denote the resulting transformation
from the rest pose to the world space as FK(θθθ,πππ), the entire rig function can be
written as composition:

Rig(θθθ,πππ) = FK(θθθ,πππ)BoneFit(πππ), (4.5)

where we assume the FK function returns a stack of homogeneous matrices which
are applied to each of the rescaled rest pose bone samples returned by BoneFit.

Elastic potential Edef. Elastic models of biological soft tissues have received
considerable attention both in the biomechanics Weiss et al. [1996], Fung [2013]
as well as computer graphics communities Teran et al. [2005a,b], Sifakis et al.
[2005], Lee et al. [2009], Sifakis and Barbic [2012]. Neohookean hyper-elastic
materials have been found to function well in recent work Bickel et al. [2012],
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Figure 4.10: Example of the humerus bone elongation preserving shape of bone
heads using two deformation handles and precomputed bounded biharmonic
weights.

Skouras et al. [2014]. Their advantage is realistic modeling of large compression –
when an element degenerates, the Neohookean energy approaches infinity, as such
configuration is not physically realistic. However, for applications in computer
graphics, this behavior can be problematic, because as shown by Irving et al. [Irving
et al., 2004], inverted tetrahedra may be necessary to capture large deformations
without resorting to remeshing. Increasing the mesh resolution can avoid these
problems, but the resolution required to avoid all inversions would be prohibitively
high; consider, e.g., the narrow space between cartilages of two bones connected
by a joint. One possible solution is the popular corotated elastic model, which
penalizes inverted elements by finite energies, i.e., allowing elements to invert if
they are forced to do so. In the core of corotated elasticity is the following term:
∥DSD−1

M − R∥2
F , where DM and DS are edge direction matrices in the material

(i.e., reference) space and the deformed space (this notation is consistent with the
tutorial of Sifakis and Barbic [Sifakis and Barbic, 2012]). The matrix R ∈ SO(3)
is found by projecting DSD−1

M onto the closest rotation.
Even though the classical corotated model is robust enough for use in a

production environment McAdams et al. [2011b], it has a significant problem for
our inverse problem, where we are optimizing also over the rest pose; i.e., in our
setting, the matrices DM are no longer constant. Unfortunately, we found that
the inversion of the DM matrices poses serious numerical problems when rest pose
tetrahedra become close to degenerate; i.e., the DM matrices become close to
singular. This is problematic even if there is just a single degenerate tetrahedron
present in the entire optimization.

To avoid these numerical difficulties, we use the following energy:

Edef(Xsrc, X) =
∑︂

i

ki∥DS,i − RiDM,i∥2
F , (4.6)

where the index i goes over all tets and ki ≥ 0 is stiffness of the i-th tet. Note
that DM,i depends linearly on Xsrc

i , DS,i depends linearly on Xi and Ri are
rotation matrices minimizing the value of Edef(Xsrc, X). This optimal Ri can be
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computed by forming the signed SVD of DS,iDT
M,i and replacing the matrix of

singular values with an identity matrix. We call this energy “symmetric as-rigid-
as-possible” because ∥DS,i − RiDM,i∥F = ∥RT

i DS,i − DM,i∥F , i.e., the rest pose
and the deformed pose can be interchanged without changing the value of the
energy. Perhaps more importantly, there is no need to invert the rest pose edge
matrices DM,i, avoiding the numerical difficulties of the classical corotated model.
Another advantage to the corotated model is that we do not need any volume
weighting term such as 1

6 |det(DM,i)| Sifakis and Barbic [2012], because our units
do not cancel as in the DSD−1

M term; i.e., larger tets automatically contribute
more to the total energy than smaller ones. See the appendix for more details.

The stiffness ki of each tetrahedron is computed as a weighted average of
materials overlapping this tetrahedron. Note that even though our tet-mesh
conforms to bone sample vertices, it does not conform to the full polygonal
boundaries of the bones or muscles (which would require prohibitively high-
resolution tet-meshes). Similarly to Lee et al. [Lee et al., 2009], we define the
stiffness of each tetrahedron as (∑︁

t Vtkt)/(∑︁
t Vt), where t indexes individual

material types (bones, tendons, muscles, generic soft tissues), kt > 0 represents
stiffness of each of the materials and Vt is the volume of a tetrahedron occupied
by each component (bone, tendon, muscle, and generic soft tissues account for the
remaining volume). We estimate Vt using Monte Carlo sampling (high accuracy
is not necessary). See Section 4.9 for more details.

Handling Collisions We treat collisions in a fashion similar to McAdams et
al. [McAdams et al., 2011b]. We detect tet-tet collisions using a fast bounding
box sequence intersection algorithm Zomorodian and Edelsbrunner [2000]. For
efficiency reasons, only selected regions near the joints are considered for collision
processing, as these are the most common places where self-intersections occur. For
example, our system does not try to detect or resolve pose-induced collisions such
as hand touching the belly. The detected collisions are handled by instantiating
temporary anisotropic springs that project the colliding vertices X out of the
collision, to the surface of the tetrahedral mesh:

Ecol(X) =
(︂
nΠ(X)

T(X − Π(X))
)︂2

, (4.7)

where Π(X) is the projection of X onto the surface of the tetrahedral mesh,
encoded by the barycenters of the closest surface triangle, and nΠ(X) is the normal
at the projected surface triangle. This anisotropy is helpful by allowing for sliding
along the tangent plane at the projected surface point McAdams et al. [2011b].
The Ecol energy potential is removed once the corresponding vertices are no longer
in contact.

Muscle growth. Our symmetric as-rigid-as-possible (ARAP) elastic model can
be extended to account for muscle growth Saito et al. [2015]. We accomplish this
by replacing Edef with the following energy for the tetrahedra containing muscles:

Emuscle(Xsrc, X,ααα) =
∑︂

i

∥DS,i − RiBiS(αi)BT
i DM,i∥2

F , (4.8)

which differs from the symmetric ARAP model by the term BiS(αi)BT
i account-

ing for muscle growth. Specifically, the orthonormal matrix Bi is a change of
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coordinates which transforms the x-axis to align with the fiber directions of the ith

tetrahedron (Figure 4.4). The matrix S(αi) is a scaling matrix in the y and z-axes,
which allows for simulating muscle shape changes due to atrophy or hypertrophy:

S(αi) =

⎛⎜⎝1 0 0
0 αi 0
0 0 αi

⎞⎟⎠. (4.9)

4.5 Inverse Problem
The input of our algorithm is a set of scans corresponding to various poses of a
given human subject (see Figure 4.2). First, the input scans are registered against
the skin surface mesh of our template body model Xtmpl, i.e., deforming Xtmpl

until it is in close correspondence with the target scans. We use a non-rigid ICP
procedure Rusinkiewicz and Levoy [2001], explained in more detail in Section 4.5.1.
We denote the resulting registered meshes as Tk, where k = 1 . . . numScans. The
goal of inverse body modeling is to recover the subject-specific body shape in the
rest pose Xpers. Note that this configuration is devoid of the effects of gravity
(as if in zero-gravity environment), because the gravity forces are added during
the quasi-static solve in the forward skinning process (Eq. 4.1). In addition to
determining Xpers, we also have to solve for the bone fitting parameters πππ and
joint angles θθθk, where k indexes individual poses, k = 1 . . . numScans. The fitting
parameters πππ are fixed for a given human being, but the joint angles θθθk vary
from pose to pose. We need to find the values of Xpers, πππ, and θθθk such that the
forward skinning function Skin(Xpers, θθθk,πππ) produces shapes as close as possible
to Tk. Because Skin is a complicated implicitly defined non-linear function, we
introduce auxiliary variables Xarti

k for the personalized and articulated (posed)
body shapes. When the inverse body modeling process is complete, we will have
Xarti

k = Skin(Xpers, θθθk,πππ); however, this equality does not have to hold in the
intermediate steps of our optimization pipeline.

Targeting term. We formalize the requirement of Xarti
k aligning as closely as

possible with Tk using the following “targeting term”, which is the main objective
of our optimization:

Etarg(Xarti
k ) =

∑︂
k

∥NT
k (SskinXarti

k − Scorsp
k Tk)∥2, (4.10)

where Nk is a matrix of stacked scan normals, Sskin is a binary selector matrix of
surface vertices, and Scorsp

k is a matrix of barycentric coordinates that allows us
to depart from the initial registration in order to account for imperfections in the
initial correspondences. This is also why we use this “point-to-plane” objective
which allows for sliding of the skin vertices of Xarti

k along their corresponding
tangent planes at Tk. The matrix Scorsp

k is initialized to the identity (i.e., trusting
the initial registration as described in Section 4.5.1) and after each iteration of the
optimization process, we search for new correspondences. Specifically, for every
skin vertex of Xarti

k , we search for closest point of Tk, rejecting pairs further than
5 cm away or with normals differing by more than 30 degrees Rusinkiewicz and
Levoy [2001].
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Reconstruction. Inverse body modeling can be formulated as the following
optimization problem:

min
Xpers,Xarti

k
,πππ,θθθk

Etarg(Xarti
k ) + Ereg(Xpers,πππ)

subject to ∇Xarti
k

Eskin(Xpers, Xarti
k , θθθk,πππ) = 0

(4.11)

where k = 1 . . . numScans as before. The equality constraints require the posed
shapes Xarti

k to be exactly in quasi-static equilibrium; however, these constraints
will be relaxed during our numerical solution procedure described below.

But first, let us explain the regularization term Ereg(Xpers,πππ). Reconstructing
anatomical models from surface scans only is an ill-posed problem, because we
lack direct measurements from the inside of the human body. Instead, we rely on
anatomical priors to rule out unlikely or even unnatural anatomies. We use

Ereg(Xpers,πππ) = BoneFlesh(Xpers, θθθ0,πππ) + Edef(Xtmpl, Xpers)
+ wmuscleEmuscle(Xtmpl, Xpers).

(4.12)

Even though the sum of the BoneFlesh and Edef terms is reminiscent of the
forward skinning function, here these terms have a somewhat different function:
they serve to explain deformations between individual human subjects, as opposed
to poses of a single individual. The θθθ0 vector of joint angles corresponds to the
rest pose and the term BoneFlesh(Xpers, θθθ0,πππ) requires the personalized rest pose
Xpers to align with the skeleton grown according to skeletal fitting parameters πππ.
The Edef(Xtmpl, Xpers) term states that the deformation between Xtmpl and Xpers

should be minimized. In other words, the personalized mesh needs to stretch or
shrink according to the resized skeleton, but the shape should not depart too
much from the initial template.

Finally, the Emuscle(Xtmpl, Xpers) term penalizes shape changes which cannot
be explained by muscle growth (the ααα parameters are free). Our approach tries
to explain as much shape variation as possible with biologically-inspired muscle
growth. After that, fat growth is applied in the subcutaneous layer to match
the surface shape of the target. The assumption is that muscle growth gives rise
to different shapes than fat growth. The parameter wmuscle ≥ 0 controls our
confidence in this assumption and can be tuned by the user or based on external
measurements; e.g., it could be obtained by the assessment of body fat percentage
done by measuring the skin fold thickness, or standard body mass index (BMI)
approximations. This worked well for both the overweight and muscular man
(Fig. 4.14 third and first row). The effect of constrained muscle growth is also
clearly visible in Fig. 4.19. When the muscle modeling can no longer explain target
shape variations, the thin subcutaneous fat layer of tetrahedra (called “muscle
envelope”) grows to match the target. Note that there is no gravitational potential
acting on Xpers; it only acts on the final articulated shapes Xarti

k . In other words,
our Xpers shape corresponds to the rest-pose body in a zero gravity environment
Chen et al. [2014].

Penalty method. Equation 4.11 represents a non-convex constrained optimiza-
tion problem that can be written in a general form as min f(x⃗) subject to c⃗(x⃗) = 0,
where f is the objective and c⃗ a vector function of constraints. We solve this

33



optimization problem by converting it into a sequence of unconstrained opti-
mization problems using the penalty method Nocedal and Wright [2006]. Each
unconstrained subproblem has the following form: min f(x⃗) + γ∥c⃗(x⃗)∥2, where γ
is the penalty weight. The γ parameter is progressively increased from 0 to γmax.

Each γ-subproblem is solved using Newton’s method with Hessian modification
(Algorithm 3.2 in Nocedal and Wright [2006]). In particular, evaluating the exact
Hessian matrix would be complicated because it contains third derivative terms
(note that the constraints c⃗ already contain first derivatives of the Eskin potential).
Similarly to Bickel et al. [Bickel et al., 2012], we drop these third derivative
terms. The approximate Hessian is further modified by adding scalar multiple
of the identity matrix to ensure positive definiteness. Having determined the
descent direction, we calculate appropriate step size using backtracking line search.
We note that alternative numerical solution procedures are possible, e.g., the
Augmented Lagrangian Method, however, we found that our quasi-Newton penalty
method converges rapidly in our experiments.

4.5.1 Registration
In this section we describe our method to obtain the initial registration between
our template model Xtmpl and the input scans T̃1, . . . , T̃numScans, which are un-
structured triangle meshes with noise, holes, or other imperfections. We use a
non-rigid ICP procedure which deforms Xtmpl into T1, . . . , TnumScans such that
each Tk is well aligned with its corresponding scan T̃k. We initialize the process
with approximately 15 landmark points, interactively selected by the user in our
GUI. We use the tet-mesh associated with Xtmpl to define a regularization energy
for non-rigid ICP. Specifically, we use our symmetric ARAP energy (Eq. 4.6) with
uniform stiffness ki for all tets. We do not even account for the rigidity of the
bones, i.e., we treat the entire template tet-mesh as a jellyfish. This approximation
is sufficient to establish good initial correspondences, which will be refined in
subsequent iterations of our optimization process.

4.5.2 Reconstruction pipeline
Since the inverse problem formulated in Equation 4.11 is highly non-linear and
the search space is large (e.g. up to 200k variables for our experiments), it can be
challenging to find a correct solution and avoid numerical difficulties. Therefore,
we split the optimization into several sub-problems to obtain well-defined initial
values that approximate the solution. We found this step important to speedup
the convergence and avoid local minima due to the non-linearity of some terms.

After registration, we start the reconstruction process by approximating skele-
ton parameters. We first optimize for global translation, rotation and scaling of
the skeleton for each scan. Next, we enable the articulation parameters θθθ to fit
scan poses. After that, we optimize the rest of the skeleton variables including πππ.
This concludes the initial skeleton fitting and we move onto a next phase, which
we call “forward initialization”. In this phase we disable minimization over the
Xpers variable in Eq. 4.11 to fit the scans without changing the original rest pose.
Finally, we optimize over all variables (including Xpers), taking advantage of good
initial estimates computed in the previous steps. Our symmetric ARAP energy is
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particularly important to avoid numerical difficulties in evaluating the Edef and
Emuscle terms.

4.6 Symmetric as-rigid-as-possible energy
Our reconstruction algorithm is formulated as an inverse problem which caused
many issues in our experiments in terms of stability and numerical accuracy. At
first, we implemented the optimization using standard ARAP elastic potential
which proved robust for the forward simulation. However, for the rest pose
optimization, we found that the inverse of the reference shape matrix DM (which
was no longer constant) caused problems during the reconstruction in cases of
degeneration or inversion of tetrahedra.

To illustrate the problem, we formulate a simple 1D ARAP-like deformation
energy:

Esdef (lP , lR) = k

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓ lPlR − 1

⃓⃓⃓⃓
⃓
⃓⃓⃓⃓
⃓
2

(4.13)

where k is the stiffness, lR is a rest-pose and lP is a deformed element length.

Figure 4.11: Illustration of the rest pose optimization instabilities of the ARAP-
like energy in 1D caused by inverted element. Newton’s method does not converge
to the correct solution of the minimization problem lR = −1 (red dot) when
initialized as lR = 1 (black dot).

The goal of the inverse problem is to find a rest-pose that minimizes the
deformation energy lR = arg minlR

Esdef(lP , lR). The problem appears when the
current configuration has element lP inverted (lP = −1) but undeformed in the
rest-pose (lR = 1). A correct solution is lR = −1; however, the singularity of
Esdef at lR = 0 causes Newton’s method to iterate towards wrong result as shown
in Fig. 4.11. Fig. 4.12 shows comparison of forward simulation of ARAP and
symmetric ARAP energies.
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(a) ARAP

(b) symmetric ARAP

cylinder twist 240 ° cylinder bendingcylinder twist 180 °

Figure 4.12: We compare results of the forward simulation of a cylinder deformation
using the ARAP (a) and our symmetric ARAP energy (b). Although the symmetric
ARAP energy converges to slightly less smooth results, it is much more robust in
inverse body modeling. Neither simulation includes a volume preservation term
which could be used to improve the visual quality of the results.

4.7 Animation
The resulting personalized body model (Xpers,πππ) is ready for physics-based ani-
mation. As input, we provide a time-varying sequence of joint angles θθθj, where
the index j samples discrete time intervals (corresponding, e.g., to a constant time
step such as 1/30s). The animated joint angles can come from various sources
such as keyframe animation or from retargeted motion capture data. This is par-
ticularly easy to achieve by using a subset of the functionality of our optimization
framework.

But first, let us explain how to introduce dynamic effects, such as flesh jiggling.
In our physics-based framework, this can be naturally achieved by switching from
quasi-statics to full dynamics simulation. Assuming the widely used Implicit Euler
time integration, this is as simple as adding an extra convex quadratic term to
the energy terms in the Eskin(Xsrc, X, θθθk,πππ) function (Eq. 4.2). This “inertial”
term introduces history dependence, i.e., accounts for Newton’s first law (which
is ignored in quasi-statics). Specifically, let us denote the animated body shape
as Xanim

j , where j again indexes discrete time steps. We assume that Xanim
0 and

Xanim
1 are provided as initial conditions (typically starting with zero velocities,

i.e., Xanim
0 = Xanim

1 ). The inertial term can be defined as:

Einert(X) = 1
2h2 ∥M1/2(X − 2Xanim

j + Xanim
j−1 )∥2 (4.14)

where M is a diagonal mass matrix and h is the time step. This term can be
derived from the Implicit Euler integration rules, which can be found e.g. in
Bouaziz et al. [2014].
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Figure 4.13: Our physics-based animation approach allows for animating pose-
specific muscle shape changes due to muscle contractions. The upper images show
the shape of the arm and muscles in a flexing pose, and the lower images show
the effect of contracting the biceps muscle in the same pose.

In addition to the inertial term, we also add the collision avoidance potential
Ecol discussed in Section 4.4. Gravity potential is also accounted for as described
already in Eq. 4.2.

The physics-based animation framework is quite versatile and in addition
to supporting the effects of inertia, collisions, and gravity, we can also add
muscle contraction forces. We assume that time-varying muscle activation signals
are provided by the user. These can be e.g., keyframed, which is common in
professional VFX animation systems WETA digital [2013], or calculated using
inverse dynamics models Lee et al. [2009]. Let us denote the muscle activation
signals as βββj , where j indexes discrete time steps as before. The muscle contraction
potential is similar to the muscle growth potential (Eq. 4.8), however, instead of
the rest-pose growth matrix S(αi) for each tetrahedron i (Eq. 4.9) we use the
following matrix:

S(βi,j) =

⎛⎜⎜⎝
β−1

i,j 0 0
0

√︂
βi,j 0

0 0
√︂

βi,j

⎞⎟⎟⎠ (4.15)

which accounts for the volume preserving nature of muscle contraction due to
high water content in soft biological tissues Weiss et al. [1996]. Mathematically,
this is modeled by the fact that the determinant of matrix S(βi,j) is one, resulting
in the characteristic bulging behavior of contracting muscles (see Figure 4.13 for
an example). Note that the muscle growth scaling matrix S(αi) (Eq. 4.9) does
not have determinant one because it accounts for growth, which is of course not
volume conserving.
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Figure 4.14: Registered 3D surface scans of our test subjects in two different poses
(a, c) and corresponding reconstructions using our anatomical physics-based model
(b, d). Note that the shapes are quite similar. We also show our optimized rest
pose Xpers (e) and a novel, unseen pose synthesized using our forward skinning
model (f).

4.8 Results
We performed our experiments on 3D surface scans with diverse quality and
resolution. Specifically, we tested our reconstructions on publicly available good
quality 3D surface scans obtained from the FAUST dataset Bogo et al. [2014]
and database of Hasler et al. [Hasler et al., 2009], and on high quality commer-
cially available scans TEN 24 [2016]. Additionally, we also experimented with
low resolution scans captured using the Microsoft Kinect with the Skanect Pro
registration software.

Reconstruction accuracy. We have successfully reconstructed targets with
various body types and skeletal variations including a muscular bodybuilder,
subjects with apparent subcutaneous fat, as well as a slim actor, see Figure 4.14.
We used between 2 to 5 scans for each subject depending on the quality of scans
and diversity of the poses. Although it would be possible to use only a single scan
in our method (similarly to Dicko et al. [Dicko et al., 2013]), this would mean
the underlying anatomical model would be less well determined. In particular,
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Figure 4.15: Evaluation experiment showing the effects of using different input
scans (rows 1 and 2), as well as varying the number of input scans (rows 3, 4, and
5) on the rest pose reconstruction process. The mean and maximum point-to-plane
distances between the input scans and our fits (columns 2, 3, 4, 5 marked with *),
as well as between our posed reconstr. and not-seen-before scans (columns 6 and
7) are shown.

we observed ambiguities when optimizing for subject specific variations in bone
lengths. For example, given one 3D surface scan with the actor with straight
limbs, it is very difficult to accurately determine the locations of the joints. Jointly
optimizing over scans of multiple poses, e.g. adding a scan with bent limbs, helps
to eliminate this uncertainty, as the optimization algorithm places the joint in
the most appropriate location. In Figure 4.14 we demonstrate the accuracy of
our approach in terms of matching the input 3D scans. Our results show that our
physics-based model can reproduce high quality body shapes with a close visual
similarity to the scans. Moreover, in Figure 4.15 we show how the fitting accuracy
improves when increasing the number of input scans.

Gravitational effects. Another advantage of using multiple scans is that it
greatly reduces the ambiguity due to gravitational effects and self-collisions of the
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Figure 4.16: Example of the effect of gravity on the rest pose reconstruction
process. The figure on the left shows the result of the reconstruction without
taking gravity into account. In the middle, gravity is taken into account and
eliminated from the rest pose – note that the belly “floating” as if the body was
submersed in water. This “zero gravity” rest pose matches the input scan (right)
closely because gravity is added during the forward simulation process.

skin. In Figure 4.16 we show the effect of taking gravity into consideration during
our inverse body modeling process. We aim to reconstruct the rest pose in zero
gravity, because gravity will be added in the forward simulation process. Note
that this is a challenging problem in its own right Chen et al. [2014].

Collisions. An example of collision handling during the forward animation
phase is shown in Figure 4.17. Equally important is collision handling during
inverse body modeling. When the input 3D scan contains body parts in contact,
it means the measured shape was influenced by action-reaction forces preventing
the flesh from inter-penetrating. Our Ecol term estimates these contact forces and
compensates for them during our inverse body modeling process. This results in
recovering more accurate rest poses, as shown in Figure 4.18.

Comparison to Anatomy Transfer. Our approach has several key advantages
over Anatomy Transfer Dicko et al. [2013] and its extensions Zhu et al. [2015].
First, our approach can take advantage of multiple scans in different poses, which
leads to high reconstruction accuracy, as discussed above and shown in Figure 4.15.
Second, Anatomy Transfer as well as its extensions Zhu et al. [2015] use only
an approximate deformation model of biological soft tissues. In our method, we
use more realistic growth models for the bones and muscles, which allows us to
estimate the underlying anatomy more accurately. Specifically, our material-
aware deformation can reconstruct subcutaneous fat and the shape of skeletal
muscles more realistically as shown in Figure 4.19. Furthermore, our reconstruction
process is fully automatic, without needing artistic input. This is particularly
important for animations including inertial effects and secondary motions of soft
tissues. Our method is also able to reconstruct the whole skeleton while preserving
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Figure 4.17: Forward simulation collision handling example.

Figure 4.18: Example of collision handling during inverse body modeling. In this
example, a single scan was used (shown in gray) in which the actor was pressing
his arms against his body. Notice that the rest pose reconstruction on the left has
the shape of the arm imprinted on the chest; the reconstruction on the right does
take the collision forces into account and reaches a more realistic rest shape.
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Figure 4.19: Example of material-aware deformations during inverse body model-
ing. In this comparison, muscle modeling is constrained by muscle fiber directions
(a). The yellow outline shows that muscles are modeled more accurately and do not
extend into regions that clearly should be fat in contrast to simple uniform flesh
deformation used in (b). Material modeling is important for realistic simulation
of inertial effects of soft tissues, such as subcutaneous fat.

realistic bone shapes, while Anatomy Transfer deforms skeleton using general
affine transformations which results in non-realistic bone deformations.

Please also refer to the accompanying video A.1 to see more detailed results.

4.9 Implementation details
The geometric search data structures and algorithms used for the scan registration
and collision detection are based on CGAL The CGAL Project [2016] and nanoflann
Muja and Lowe [2014]. Numerical linear algebra is implemented using Eigen
Guennebaud et al. [2010]. We benchmarked the performance on a consumer
laptop with a 3.1 GHz Intel Core i7 processor and 32GB of main memory. For a
complete rest pose optimization using 4 scans, we needed a total number of about
15 Newton iterations until convergence, with about 120s of computation time per
iteration. The template model used for the results presented in this work has
12977 vertices, out of which 4901 are surface vertices, and 64164 tetrahedra. The
skeleton used for rigging has 67 joints with a total of 52 articulation and 38 sizing
parameters. There are 111 muscles in the template model.

In order to compute the contribution of each material to each body tetrahedron,
we use a Monte Carlo sampling approach. For each muscle/tendon/bone tetrahe-
dron Tm, we generate one sample for each mm3 of the volume of Tm. Specifically,
we generate random samples using a uniform distribution around the centroid
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of Tm until the desired number of samples is reached. Using those locations,
we perform look-ups in the AABB tree of the body tetrahedrons Tb and count
the contributions of those samples inside the body. In the forward simulation
for the animation stage, we use a time step h = 1/30s, and we build the mass
matrix M assuming uniform density of the material in the body, meaning that
the per-vertex mass is proportional to the sum of the volumes of the tetrahedra in
which that vertex is present. Our approach proved robust, and excessive parameter
tuning was not needed. The material parameters we used to generate results are:
kbone = 10−1, kdef bone = 7 × 10−4, kdef tendon = 3 × 10−4, kdef muscle = 2 × 10−4,
kdef soft tissue = 10−4, kmuscle = 10−3. The penalty term γ was increased from 0 to
γmax = 107 by factors of 10. In our experiments, increasing γ further did not
produce any visible differences.

4.10 Limitations and future work
We focus on capturing the physics of large- and medium-scale anatomical details,
but we do not reconstruct hands or toes. We believe that these are research topics
on their own which require specialized approaches. However, such techniques
already exist and could be integrated in our body modeling framework.

In the visualizations of our experiments we noticed that the bones sometimes
protrude through the muscles, which is most visible in the chest region. This is
due to the soft non-conformal embedding of the bones in the tetrahedral mesh of
the body, as well as due to the multi-material property of each body tetrahedron.
These problems could be alleviated by increasing the resolution of the template
model, which may lead to the necessity of applying more memory-efficient and
performant optimization techniques. Another solution is to use hard constraints
for the BoneFlesh term which would require a different class of algorithms to solve
the constrained optimization problem, e.g. Augmented Lagrangian Method as
discussed in Section 4.5.

We do not consider muscle shape changes in the posed scans, assuming all
the muscles are in a relaxed stage or that they are not contracted significantly.
While this holds true for most of the scans we used in our experiment, one can
think of poses and situations in which correctly capturing the shape variation of
muscles due to contractions becomes important. For example, using a scan of the
bodybuilder flexing his arm muscles together with scans in which he was relaxed
created issues in our optimization. However, once reconstructed, our anatomical
models allow for simulating muscle contraction in the forward animation stage. A
venue of future research would be to automatically extract muscle activations given
the pose of the subject, and to normalize the shape changes due to contractions
in the rest pose reconstruction problem.

The scans used in our experiments are static poses, in which the actor was
in equilibrium. The reconstruction problem becomes much more complex when
dynamics is added to the scans, e.g., by capturing a continuous stream of point
clouds from an actor’s performance. Our algorithms do not make any male-
specific assumptions (we even removed the genitals) and should therefore work
for females. The only issue is preparation of a template female body which would
require non-trivial 3D modeling efforts. Stylized or imaginary characters such as
Incredible Hulk are beyond the scope of this project, because we cannot capture
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their ground truth scans and also, their musculoskeletal structure may differ from
human anatomy. This opens opportunities for another research project with
emphasis on user interaction and anatomical modeling.
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Figure 5.1: We build a static anatomical face model from the MRI and use
3D surface scans as training data to learn mechanical parameters that explain
deformations of the real face using physics-based simulation.

5. Inverse Human Face Modeling
This chapter is based on two publications: [Kadleček and Kavan, 2019, Ichim
et al., 2017]. In the first publication, all scientific contributions belong to the
author and his supervisor Ladislav Kavan. The work is covered in Section 5.4
Learning mechanical properties and muscle control. The author implemented most
of the code required for this project.

In the second co-authored publication, the author contributed by implementa-
tion of elastic models suited for both forward and inverse problems, skull and jaw
kinematics, dynamics, plasticity and some applications of the reconstructed model
including body mass index changes, inertial and wind simulations. This work is
covered in Section 5.3 Modeling and Animation with blendshape-type control.
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5.1 Introduction
Facial appearance plays an important role in many areas of life, including com-
munication and interpersonal relationships. The human face is a fascinating
mechanical system able to generate facial expressions by contractions of delicate
facial muscles. Forces due to contractions of these muscles are transmitted to
adjacent muscles, the bones and the skin via a network of connective tissues.
Despite decades of progress, accurate biomechanical face modeling remains a
challenge. Computer graphics typically employs direct deformation models such
as blendshapes Parke [1972] which capture only the surface (skin) shapes and do
not attempt to model the internal biomechanics or anatomy of the face.

Recent work [Ichim et al., 2016, Barrielle et al., 2016, Cong et al., 2016, Kozlov
et al., 2017, Bao et al., 2018] proposes to avoid these shortcomings by augmenting
the generative approach of blendshape animation with a simulation-based solution.
One of their advantages is the ability to add realistic physics-based effects such
as collisions or inertia. Physics-based simulation in computer graphics typically
involves tuning of geometric and material properties to achieve the desired visual
effect. This process is non-trivial and time consuming even for experienced
technical artists. Measurement-based approaches for determining mechanical
parameters of biological soft tissues have been developed in biomechanics, typically
involving mechanical loading experiments with excised samples of tissues [Lapeer
et al., 2011] or using a specifically designed aspiration device [Luboz et al., 2014].

One major difficulty in simulation-based approaches is to achieve the required
level of realism, which is particularly challenging for facial animation, due to
the heightened human sensitivity for facial motion perception [Bruce and Young,
1986]. Accurate simulation requires building a detailed volumetric face model that
faithfully represents the shape and dynamics of the captured subject.

In the first part of this chapter, we approach this problem by combining
easy-to-obtain facial surface scans with a template model that integrates rigid
bone structures, active muscle tissues and passive flesh, fat, and skin layers in a
fully volumetric simulation model of the human face (see Figure 5.4). Similarly
to the approach we took in Section 4 for body reconstruction, we obtain a
representation of the geometry and expression dynamics of the acquired person’s
face by scanning the subject in multiple facial poses. We then solve an inverse
problem to estimate the activation parameters of the registered template rest pose
in order to best reproduce the scanned expressions under activation. Subsequently,
we can create new animations driven by muscle activations using a forward physics
simulation that incorporates collision handling, volume preservation, inertia, and
external forces such as wind forces or gravity. Muscle activations can be computed
from a temporal sequence of blendshape weights, which enables straightforward
integration into existing animation environments.

In the second part of this chapter, we chose another approach and built our
own static model from MRI (see Figure 5.1 and Figure 5.13) which is typically very
time consuming and still can not guarantee that the shapes of different anatomical
structures are accurate due to low resolution and noise. In our case, we needed a
better guess than the deformed template model, but we also did not want to spend
too much time on processing MRI scans by segmenting separate muscles. For this
reason, we only segmented (mostly automatically) clearly visible structures and
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proceeded with rough segmentation of the rest, leaving the discovery of anatomical
details to our learning algorithm.

5.1.1 Contributions.
The main technical contributions of our work are:

• an inverse modeling adapting the anatomical face model to a series of 3D
surface scans of a specific person,

• a computation of mechanical parameters of soft tissues from in-vivo surface
measurements (3D scans),

• a flexible muscle activation model compatible with standard blendshape-
driven facial animation,

• a more restrictive subject-specific fiber-based muscle activation model forcing
more accurate passive tissue parameter estimation,

• a physics-based simulation method that retains realism even with significant
external forces or substantial modifications of the face geometry and tissue
material properties.

An important feature of physics-based approaches is that their parameters can
be controlled to achieve the desired effects. In our case, the parameters include the
stiffness of simulation elements, their rest shape volume, the static bone structure,
or the muscle activation parameters. This detailed control facilitates numerous
new applications that are difficult to achieve with existing methods. Examples we
show in this chapter include

• slimming and fattening of the face by adapting the volume of soft tissue,

• simulation of corrective facial surgery, such as orthognathic surgery to correct
for jaw malformations,

• dynamic interaction with external forces (e.g. wind) and objects (e.g. VR
headsets),

• artistic editing of facial expression dynamics by modifying tissue stiffness or
muscle behavior.

5.2 Related work
Facial animation dates back to the pioneering work Terzopoulos and Waters [1990],
Blanz and Vetter [1999]. More recently, high-fidelity capture setups of actor’s
faces have become important in the film and game industries, such as Medusa
system Beeler et al. [2010, 2011], Beeler and Bradley [2014] or other Alexander
et al. [2010], von der Pahlen et al. [2014], Smith et al. [2017]. Method for accurate
registration and stabilization have been explored, including kinematics models of
a jaw Beeler and Bradley [2014], Yang et al. [2018], Zoss et al. [2018]. Industrial
pipelines typically involve data-driven blendshape-type models which continue
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to be an important topic of research Lewis et al. [2014], Ichim et al. [2015], Zell
et al. [2017], Li et al. [2017], Yoon et al. [2017]. In general, the chief advantage of
blendshape-type approaches is direct control of skin deformations which translates
into high visual fidelity. Achieving high quality with biomechanical facial modeling
is harder, because facial muscles influence the shape of the skin indirectly and
are sensitive to the precise geometric and material modeling of anatomical shapes
Sifakis et al. [2005], Cong et al. [2015, 2016]. Despite these challenges, the quest
for high-fidelity anatomical face models continues both in the academia and the
industry Lan et al. [2017].

Physics-based anatomical models have been explored in computer graphics
especially in the context of full-body animation Teran et al. [2003, 2005a,b], Lee
et al. [2009]. Recent methods explore new numerical simulation strategies such as
Eulerian-on-Lagrangian simulation Fan et al. [2013, 2014], Projective Dynamics
Saito et al. [2015], Kadlecek et al. [2016], or a combination of data-driven and
physics-based animation Kim et al. [2017]. While sharing the same biological
underpinnings, the shape and function of facial muscles are quite different from
large skeletal muscles such as the biceps Blemker et al. [2005]. In particular, facial
muscles are very thin and are attached via connective tissues to each other and
the skin; the primary function of facial muscles is generation of facial expressions
Ekman and Friesen [1977].

Building upon seminal work Terzopoulos and Waters [1990], in recent years
there has been a resurgence of interest in physics-based facial animation in
computer graphics. Blendshape animation has been enriched with dynamics
effects using mass-spring systems Ma et al. [2012], “Projective Dynamics”-based
surface simulation Barrielle et al. [2016], or finite element simulation of an outer
volumetric layer attached to an inner blendshape model Kozlov et al. [2017]
(a hybrid approach effective also for full-body animation Kim et al. [2017]).
Anatomical modeling is a non-trivial task which can be facilitated using automatic
methods Stavness et al. [2014], which is especially challenging for facial modeling
of stylized characters such as Yoda Cong et al. [2015].

Accurate control of facial expressions via simulated facial muscles is a hard
problem. Cong and colleagues introduced “art-directed muscles” that allowed
artists to sculpt facial muscle activations Cong et al. [2016]. This was further
improved with careful modeling of facial anatomy Lan et al. [2017]. A different
approach was explored by Ichim et al. [2016], who proposed “volumetric blend-
shapes”, allowing all tetrahderons in a finite element simulation to activate and
thus achieve desired shapes while enjoying the benefits of physics-based simulation.
A blendshape-driven muscle control approach was also successfuly applied for
fitting monocular RGB images with a fully differentiable pipeline Bao et al. [2018].
Recently, Ichim et al. [2017] fit a generalized muscle model to training data (3D
scans of an actor in different facial expressions). While related to our approach,
the muscle model of Ichim et al. [2017] can produce biologically unrealistic acti-
vations which compensate for the simplifying assumptions in material modeling.
Specifically, the elasticity model used in Ichim et al. [2017] relies on a homogenous
isotropic material with zero prestrain, which is only a crude approximation of the
real mechanical behavior of facial soft tissues. In this work, we propose methods
to learn heterogeneous, anisotropic materials with prestrain from data, allowing
our model to predict realistic mechanical effects, such as changing directions of
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gravity.
Methods for learning material parameters from data have a long history in

graphics Pai et al. [2001]. Bickel et al. [2009] captured non-linear heterogenous soft
tissues by probing a deformable object and measuring its elastic response using
computer vision techniques. Even though their results include a face example, the
face model is passive (not actuated) and does not model muscles or prestrains.
Robotic actuation has been applied to create animatronic facial replicas with the
aid of 3D printing Bickel et al. [2012]. Despite some similarities, the mechanics
of man-made robotic systems is quite different from living tissues. 3D printing
of deformable objects that assume the desired shapes under gravity motivated
development of novel numerical methods Chen et al. [2014], later extended with
data-driven modeling of dynamics Wang et al. [2015].

Mechanical modeling of biological soft tissues has been extensively studied
in biomechanics Weiss et al. [1996] and remains an active area of research aided
with simulation platforms such as the open source ArtiSynth Lloyd et al. [2012],
SOFA Faure et al. [2012], and FEBio Maas et al. [2012] or the commercial Abaqus
Hibbitt et al. [2001]. In-vivo material parameter identification of the breast
was studied from gravity loading data and plate compression Han et al. [2011].
Synthetic experiments showed that three gravity loading orientations were required
to identify heterogeneous parameters of a silicon gel beam Gamage et al. [2011].
Barbarino et al. [2009] modeled elasticity of the face using an advanced Rubin-
Bodner material Rubin and Bodner [2002], but did not consider muscle activations
or formation of facial expressions. In a similar vein as Sifakis et al. [2005], an
MRI-based biomechanical face model was constructed by Wu [Wu, 2013]. In
contrast to this work, Wu [2013] finds muscle activations for target expressions
manually and relies on accurate muscle segmentations from the MRI and material
(Mooney-Rivlin) parameters from the literature Tran et al. [2007], Nazari et al.
[2010].
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Figure 5.2: Physics-based simulation facilitates a number of advanced effects for
facial animation, such as applying wind forces, fattening and slimming of the face,
wearing a VR headset, and even turning into a zombie.

5.3 Modeling and Animation with blendshape-
type control

In this section, we leverage a face template model that combines volumetric and
surface elements as shown in Figure 5.4. Physics-based optimization is performed
on a tetrahedralized volumetric model composed of rigid bones and deformable
tissue. The latter is further separated into active muscles, and passive flesh and
skin. Muscles actively deform to drive the dynamic motion of the face model.
In order to control the animation, we augment the volumetric template with a
surface blendshape basis that represents the facial expression space. This also
provides an interface to the surface scans used to build actor-specific simulation
models.

The core algorithmic components of our method are the inverse and forward
physics simulation modules. Inverse physics is used in a model building stage
to create a simulation-ready anatomical face model of a specific person. As
input to this preprocessing stage, we assume a set of surface scans that are first
transformed to a user-specific blendshape model. An anatomy transfer step warps
the volumetric template towards the neutral expression of the blendshape model.
Subsequently, our inverse physics solver computes suitable muscle activations of
the simulation model to best approximate each expression blendshape.

Given the person-specific simulation model and corresponding muscle activation
patterns, we can apply forward physics simulation to compute dynamic face
articulations. This animation stage takes as input a temporal series of blendshape
weights that are mapped to per-frame muscle activations. External effects such
as gravity or object collisions can be incorporated in the simulation to support a
wide range of dynamic effects (see Figure 5.2).

Figure 5.3 provides a visual summary of our physics-based face modeling and
animation approach.

5.3.1 Template Face Model
Our approach starts from a generic face model – an anatomical face template
corresponding to an average human subject (see Figure 5.4). We created this
model from a commercially available anatomical data set Zygote [2016] that
contains polygonal representations of the bones (the skull, the jaw, including
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Figure 5.3: Schematic workflow of our method.

teeth), skin (including a realistic model of the oral cavity), and 33 facial muscles.
Using the winding-number method of Jacobson et al. [Jacobson et al., 2013]
we generate a tetrahedral mesh discretizing the soft tissue of the face. Our
tet-mesh conforms to the skin and the bones, but not to the muscles, because
a conforming discretization of the numerous thin facial muscles would require
prohibitively many elements. Instead, we use non-conforming discretization where
every tetrahedron can represent multiple types of soft tissues. We distinguish
between two types of soft tissues: active corresponds to muscles, while passive
corresponds to subcutaneous fat, connective tissue and the skin, i.e., tissue that is
not voluntarily activated by neural signals (Figure 5.4-b).

Up to the accuracy of the discretization, the active layer corresponds to the
union of all facial muscles, while the passive layer forms the region between the
active layer and the skin and fills in areas between the bones. Even though this
model is not as accurate as modeling every muscle individually, it captures the
key fact that the shape of the skin is affected by facial muscles only indirectly,
i.e., the contracted muscles deform passive soft tissue, which consequently induces
skin deformations.
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Figure 5.4: Our template model consists of a volumetric representation of the tissue
and bones (a), and a surface blendshape basis to represent the expression space
(d). Muscles are embedded into a non-conforming tetrahedral mesh discretization
(b). We explicitly model jaw kinematics with a 5 DoF joint (c) and utilize low-
resolution geometry proxies for faster collision detection for the teeth region (e).
Dynamic skin sliding is supported by introducing both sliding (green) and fixed
(red) constraints for bone-tissue connections (f).

Jaw kinematics. The relative motion of the jaw with respect to the skull
contributes significantly to the final articulation of the face. The kinematics of
the temporomandibular joint is non-trivial, consisting of both rotational and
translational motion. In our model (see Figure 5.4-c), we define the major rotation
axis (x-axis, corresponding to mouth opening) as the axis passing through the
centers of the mandibular condyles. Halfway through the condyles, we define
a perpendicular axis (y-axis) corresponding to vertical jaw rotation. The jaw
does not normally rotate about the third orthogonal axis (z-axis), but it can
translate (slightly) in all three directions. This amounts to 5 DoFs for the jaw
motion, expressed with respect to the skull, which is treated as a free rigid body
(our model does not include the craniocervical junction). We concatenate the
kinematic parameters of the jaw bone into a vector b⃗ ∈ R5.

Template blendshapes. Given an anatomical model of the face, a natural
control interface would be activation signals for all motor units. While biologically
meaningful, such controls would not be user-friendly, because many motor units
can affect a surface point in a complex, non-linear way. Instead, we augment our
template model with a set of 48 blendshapes inspired by FACS Ekman and Friesen
[1977] that have been sculpted by an artist on our generic face model. These
blendshapes are only defined on the skin as a basis for parametrizing the space of
facial expressions. They provide no information about the internal deformations,
which are handled by physics-based simulation (Section 5.3.2 and Section 5.3.3).
This combination of surface blendshape basis and volumetric simulation model
allows us to retain compatibility with commonly used blendshape controls, while
offering the benefits of advanced physics-based simulation effects.
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5.3.2 Forward skinning model
The goal of the forward physics algorithm is to compute the deformed soft tissue
and resulting skin surface given bone kinematics and muscle activation parameters.
We model the latter with a vector a⃗ (see “Active tissue” below) that represents
the amount of activation (contraction) of all facial muscles. Even though in reality
the jaw motion is controlled by muscle activations (in particular the masseter
muscle) our model assumes the bones are directly controlled kinematically and
the muscle activations are used only to create the facial expressions.

At the heart of our method is a physics-based model of soft tissue elasticity
including muscle activation. We define this model using linear finite elements
on our tet-mesh adapted for a given subject. Let x⃗ denote a vector stacking all
degrees of freedom of the soft tissue, i.e., the 3D coordinates of all nodes.

Passive tissue. For passive tissue we define deformation energy

Epass(x⃗) =
∑︂

i

min
Ri∈SO(3)

W pass
i µ∥Fi(x⃗) − Ri∥2

F +

W pass
i λ(det(Fi(x⃗)) − 1)2, (5.1)

where the index i goes over all tets and W pass
i ≥ 0 denotes the volume of the i-th

tetrahedron that is occupied by passive tissue, pre-computed during template
construction with Monte-Carlo sampling. The first term in Eq. 5.1 corresponds to
the commonly used co-rotated elasticity (measure of deviation from rigid motion),
while the second term models the resistance to changes of volume. Fi(x⃗) denotes
the deformation gradient, and Ri is an auxiliary rotation matrix used in the
co-rotated model Sifakis and Barbic [2012]. µ and λ are material parameters that
we set by default to µ = 1 and λ = 3. We can change these parameters to achieve
specific effects as discussed in Section 5.3.6.

Active tissue. For tets corresponding to the active layer (muscles), we propose a
novel activation model. Previous muscle models typically assume a given direction
of muscle fibers along which the muscle contracts Teran et al. [2005a], Lee et al.
[2009]. While this corresponds to the biological structure of muscles, the problem
is that the exact muscle fiber directions are in general not known. Medical imaging
techniques such as diffusion tensor imaging are prohibitively expensive and time
consuming, and the signal quality is limited.

Previous work in graphics Saito et al. [2015] applied ad-hoc muscle fiber
approximations which worked well for major skeletal muscles (such as the biceps),
but are not sufficiently accurate for the delicate facial muscles. Along with the exact
location of muscle insertion points, tuning of these parameters to obtain realistic
facial expressions is possible, but tedious Sifakis et al. [2005]. To circumvent
these issues, we propose a different muscle activation model that does not require
explicit knowledge of fiber directions, but relies on the elementary bio-mechanical
fact that muscles can generate only internal forces. In other words, an isolated
muscle is not capable of translating or rotating by itself (even though the muscle
can of course be translated or rotated due to contact with the surrounding tissues).

The property that the muscle cannot translate itself is already guaranteed by
the translation invariance of the deformation gradient operator Fi(x⃗). Since a
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Figure 5.5: Visualization of the capabilities of our 6-DoF activation model by
squishing a cube, corresponding to a small sample of muscle tissue.

muscle tet should also not rotate itself, we require the activation to be a symmetric
3 × 3 matrix. Every symmetric matrix in R3×3 has an eigendecomposition of
the form QΛQT, where Q ∈ SO(3) and Λ ∈ R3×3 is diagonal. Therefore,
the symmetric activation matrix corresponds to non-uniform scaling (Λ) in an
arbitrary orthonormal coordinate system (Q). In other words, the symmetric
matrix represents pure distortion without any change of orientation Shoemake
and Duff [1992] (see Figure 5.5).

For each active tet, we define an activation vector a⃗i ∈ R6 and use a linear
operator S : R6 → R3×3 to generate the corresponding symmetric matrix S(a⃗i) ∈
R3×3. Muscles, like most biological soft tissue, are approximately incompressible,
which means that det(S(a⃗i)) = det(QΛQT) = det(Λ) should be close to 1.
However, to compensate for discretization errors, we do not enforce det(S(a⃗i)) = 1
strictly, but only as a soft constraint, as discussed in Section 5.3.3.

We use this activation model to define the deformation energy Eact(x⃗, a⃗) of
active tissue, where a⃗ is a vector stacking the 6-dimensional activation parameters
for all active tets. Specifically, we define:

Eact(x⃗, a⃗) =
∑︂

i

min
Ri∈SO(3)

W act
i µ∥Fi(x⃗) − RiS(a⃗i)∥2

F +

W act
i λ(det(Fi(x⃗)) − det(S(a⃗i)))2, (5.2)

where the index i goes over all tets and W act
i ≥ 0 represents the volume of the

i-th tet that corresponds to active tissue. Here the co-rotated term aims to find
the rotation Ri that best aligns the deformation gradient Fi(x⃗) with S(a⃗i). The
second term encourages the volume ratio of the deformed tet (i.e., det(Fi(x⃗))) to
align with the volume ratio of the activation matrix det(S(a⃗i)), which should be
close to 1, i.e., volume conserving.

Bone attachments. Muscles are connected to the bones using a complex
network of connective tissue, whose exact function is a matter of active research
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Figure 5.6: An eyebrow raise expression uses the skin sliding feature of our model.
The blue arrows show the displacement of the contact vertices between the cranium
and the flesh.

Schleip et al. [2013]. In animation, the visual importance of skin sliding is well
recognized Li et al. [2013]. To distinguish areas where soft tissue is directly
attached to the bones from areas where soft tissue slides over the bones, we create
two types of constraints: 1) pin constraints and 2) sliding constraints. The pin
constraints are straightforward to implement using Dirichlet boundary conditions.
The sliding constraints are modeled as point-on-plane constraints on the tangent
planes of the bone surfaces. We found this approximation to be sufficient even for
curved regions, since the amount of sliding displacement is generally small.

Formally, we express both pin and sliding constraints using a function c⃗(x⃗, b⃗)
that depends also on the kinematic parameters b⃗ ∈ R5 of the jaw bone. All of the
constraints are satisfied if and only if c⃗(x⃗, b⃗) = 0. We have manually distributed
the pin and sliding constraint as shown in Figure 5.4-f. The constraint types
were chosen to achieve realistic deformations. For example, for an eyebrow raise
expression, the skin slides over the skull as illustrated in Figure 5.6.

Quasi-static solution. In this section we discuss how to compute the quasi-
static solution of the forward physics simulation, deferring the discussion of
dynamics to Section 5.3.4. Quasi-statics means calculating a steady state where
all dynamic motion has settled. The quasi-static regime is useful in generating
static expressions and is particularly important when solving for muscle activations
from observed shapes, as discussed in Section 5.3.3. Finding the steady state can
be formulated as the following optimization problem:

minimize
x⃗

Epass(x⃗) + Eact(x⃗, a⃗) + Egrav(x⃗)

subject to c⃗(x⃗, b⃗) = 0, p⃗(x⃗) ≥ 0,
(5.3)

where Egrav(x⃗) represents a linear gravitational potential (i.e., the familiar mgh).
The inequality constraints p⃗(x⃗) are used to resolve penetrations (collision re-
sponse) as follows. When collision detection finds a surface vertex penetrating
the volumetric face model (see below for more details), an inequality constraint is
appended to p⃗. For each offending vertex we find its projection onto the surface
and create a tangent plane at this point. The inequality constraint requires the
vertex to be at the half-space opposite the volume.
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We solve Eq. 5.3 by alternating between an interior point solver used to
minimize Eq. 5.3 for fixed collision constraints p⃗, and collision detection to update
p⃗. We have initially implemented a “homebrew” augmented Lagrangian solver,
but ultimately decided to use the IPOPT package Wächter and Biegler [2006],
which has proven to be more robust and usually needs fewer iterations to converge.

5.3.3 Inverse problem
The previous section explains how to compute face articulations for given bone
positions and muscle activations. In this section we discuss the inverse problem.
For a given target shape of the skin, we want to compute the corresponding
bone parameters b⃗ and muscle activations a⃗, which, when used in the forward
simulation (Eq. 5.3), will produce a skin surface close to the input shape.

Optimization formulation. Let t⃗ denote the target vertex positions of the
skin. The inverse modeling problem can be written as

min.
x⃗,a⃗,b⃗

∥Sx⃗ − t⃗⊤∥2

subj. to c⃗(x⃗, b⃗) = 0, p⃗(x⃗) ≥ 0
∇x⃗Epass(x⃗) + ∇x⃗Eact(x⃗, a⃗) + ∇x⃗Egrav(x⃗) = 0

(5.4)

The objective term ∥Sx⃗ − Tt⃗∥2 measures how close state x⃗ is to the target t⃗.
The matrix S selects the simulation nodes corresponding to the skin surface.
In addition S and T encode both position (point-to-point) and point-to-plane
distance terms Rusinkiewicz and Levoy [2001]. The point-to-plane terms enable
some amount of sliding (tangential motion) which is useful if we do not completely
trust the correspondences represented by t⃗. The last vector equality constraint
describes the condition of quasi-static equilibrium, i.e., the sum of all forces
(gradients with respect to x⃗) is zero. Even though x⃗ is also an optimization
variable, the desired output are the optimal values of muscle activations a⃗ and
bone parameters b⃗.

Numerical solution. As in Section 5.3.2, we use an interior-point method to
solve the constrained optimization problem in Eq. 5.4. We alternate the interior
point solverWächter and Biegler [2006] with collision detection that determines
the non-penetration constraints p⃗ as in Section 5.3.2.

Figure 5.7 shows an example of an inverse physics solve for two blendshapes
of a user-specific blendshape model, visualizing separately the effect of the jaw
motion and the effect of muscle activations.

5.3.4 Template-based Modeling and Animation
In this section we explain how we integrate the optimization algorithms presented
above into a complete system for creating and animating subject-specific face
simulation models.
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Figure 5.7: Inverse physics finds jaw transformation and muscle activations that
accurately reproduce the target blendshapes.

Model Building. We start by 3D scanning the face of our subject in neutral
expression and about 5-10 additional premeditated facial expressions using a
multi-view stereo setup as described in Ichim et al. [2016]. Each of the scans is
approximately aligned with the skin of our template model (Section 5.3.1) using
rigid registration (plus uniform scale). Then we apply non-rigid ICP Rusinkiewicz
and Levoy [2001] to find dense correspondences between the template skin and
the target scan, guided with a few manually chosen markers as shown in the inset.
We denote the registered skin surfaces as s⃗neut for the neutral and s⃗k for k-th
expression.

Next, we deform our volumetric template model such that its boundary (skin)
aligns with s⃗neut. This is accomplished with Anatomy Transfer Dicko et al. [2013],
Ichim et al. [2016]. Note that during this process the generic face model can
deform freely, i.e., the shape and/or volume of all cells can change, including the
bones (in contrast to the deformation model considered in Section 5.3.2). We
then use Example-Based Facial Rigging Li et al. [2010] to convert the registered
expressions s⃗k to subject-specific blendshapes c⃗j, j = 1, . . . , 48.

The processing steps so far essentially rely on existing methods to align the
volumetric template to the neutral expression and to create the subject-specific
blendshape model. We refer to the above cited papers for implementation details on
these algorithms. After this geometric preprocessing, we now solve for activations
a⃗j and jaw bone parameters b⃗j that correspond to each of the blendshapes c⃗j

using the Inverse Physics optimization of Section 5.3.3.

Animation. To animate the created face model, we need to feed appropriate
muscle activations and jaw bone parameters to the Forward Physics optimization
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of Section 5.3.2 for each animation frame. Given per-frame blendshape weights
w⃗ = {w1, . . . , w48}, we compute muscle activations as a⃗ = a⃗neut+

∑︁
j wj(a⃗j −a⃗neut),

where a⃗neut corresponds to neutral activations, i.e., each activation S(a⃗j,i) = I ∈
R3×3. Linear blending of the activation parameters is justified because there is no
rotational component in symmetric matrices Shoemake and Duff [1992]. Similarly,
we compute the blended jaw kinematics parameters b⃗ = ∑︁

j wjb⃗j . While blending
of rotation angles is in general not recommended, we found that for the limited
range of rotations of the jaw this simple scheme does not produce any visible
artifacts.

Dynamics. Adding inertia corresponds to a minor change of Eq. 5.3 as was
discussed in Section 5.3.2. We use the popular backward Euler integration, which
in its optimization form Liu et al. [2013] corresponds to augmenting the objective
of Eq. 5.3 with the term: 1

2∥x⃗ − (x⃗n + hv⃗n)∥2
M, where x⃗n and v⃗n are positions and

velocities in the previous frame, h > 0 is the time step, and M is the mass matrix.
We use a diagonal matrix M (mass lumping) with a soft tissue density of 1g/cm3.
The minimizer x⃗ of Eq. 5.3 then becomes the new state x⃗n+1 and the new velocity
is v⃗n+1 = (x⃗n+1 − x⃗n)/h. The main difference from the quasi-static solution is
that the dynamic solution depends on the previous state (x⃗n, v⃗n), i.e., we need to
execute the time steps in sequence. To add non-conservative external forces, such
as wind, we proceed as in Projective Dynamics Bouaziz et al. [2014] and change
the additional term to 1

2∥x⃗ − (x⃗n + hv⃗n + h2M−1f⃗ ext)∥2
M. Here f⃗ ext ∈ R3 is the

external force vector, e.g., a wind force is a function of triangle normal, area, and
wind direction.

Plasticity. To support effects such as fattening or slimming, we use a stan-
dard model of plastic deformations. Specifically, each total deformation gradient
Ftotal(x⃗) is assumed to be composed of an elastic deformation component and
plastic deformation component, i.e., Ftotal(x⃗) = Felast(x⃗)Fplast or, equivalently,
Felast(x⃗) = Ftotal(x⃗)F−1

plast. Note that Fplast does not depend on the current de-
formed state x⃗. The deformation gradient Fi(x⃗) used in Eq. 5.1 and Eq. 5.2
corresponds to the elastic deformation component, because plasticity is a sepa-
rate process, e.g., tissue growth, which is decoupled from elastic deformations.
Therefore, the only modification we need to make to account for plasticity is to
replace the Fi(x⃗) in Eq. 5.1 and Eq. 5.2 by Fi(x⃗)F−1

plast,i, where Fplast,i describes
the plastic deformation of the i-th tet. In our system, we use only uniform scaling,
i.e., Fplast,i = siI, where si > 0 is a scaling coefficient (corresponding to growth
for si > 1 and shrinking for 0 < si < 1). The settings of the si parameters for
each tet depend on the effect we wish to achieve as discussed in Section 5.3.6.
Plasticity, as well as inertia and external forces are applied in forward physics
only.

5.3.5 Evaluation
Before showing application results of our method in Section 5.3.6, we evaluate
the behavior of our optimization algorithms and provide comparisons to previous
work.
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Figure 5.8: Our 6-DoF muscle activation model (rigt) leads to more accurate
reconstruction of the target expression (left) than previous 1-DoF fiber-aligned
activations models (middle).

Muscle activation model. As mentioned in Section 5.3.2, previous methods
constrain the deformation along muscle fibre directions Teran et al. [2005a], Sifakis
et al. [2005], Lee et al. [2009], Saito et al. [2015]. In our experiments we found
that muscle fiber directions can be unreliable and lack the flexibility to accurately
reproduce all facial expressions. This insight triggered the design of our more
general activation model. In Figure 5.8 we compare the results of inverse physics
with our method and the previous fiber-restricted model, where fiber directions
are computed from our geometric muscle models using the method of Choi et
al. [Choi and Blemker, 2013]. The active tetrahedra of the 1-DOF muscle model
act based on the following constraint energy:
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Figure 5.9: A boxing punch to the nose results in artifacts with an elastic model
lacking rotation invariance as in Ichim et al. [Ichim et al., 2016] (left). More
realistic deformations are obtained with our rotation-invariant model (right).

Eact 1DOF (x⃗, a⃗) = W act
i µ∥Fi(x⃗) − RiQT S1DOF (a⃗i)Q∥2

F +
W act

i λ(det(Fi(x⃗)) − det(S(a⃗i)))2,

where Q encodes the muscle fiber orientations and
S1DOF (a⃗i) = diag(a⃗i, 1, 1) . As Figure 5.8 illustrates, muscle activations con-
strained to the fiber directions fail to closely match the desired target shape, while
our activation model leads to a much more accurate reconstruction of the target
expression.

Comparison to volumetric blendshapes. Defining a deformation model
that is invariant under rigid motions is essential for correct tissue behavior.
The volumetric blendshape approach of Ichim et al. [Ichim et al., 2016] lacks
rotation invariance, which can lead to artifacts, e.g., when large rotation of the
soft tissues are induced by external forces, such as the boxing punch shown in
Figure 5.9. We propose rotation-invariant models for both passive and active soft
tissue, leading to more realistic results. While we distinguish between passive
and active tissue, previous work Ichim et al. [2016] assumes that all soft tissue
can activate. In addition, our approach includes a kinematic model for the jaw,
whereas Ichim et al. [Ichim et al., 2016] only approximated the jaw by using a
more stiff (but not exactly rigid) material. Finally, our method also allows for
skin sliding, facilitating more realistic flesh deformations especially in areas such
as the forehead (Figure 5.6).

Model adaptations. Our approach supports animating a character after signifi-
cant modifications of the neutral pose (e.g. slimming/fattening, bone modifications,
see Section 5.3.6) using the same muscle activation patterns. One might argue
that the same effects could be obtained by using deformation transfer Sumner
and Popović [2004] on traditional linear animation models. For example, similar
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Figure 5.10: Model adaptations such as increased lip volume are handled accurately
in our approach, while deformation transfer Sumner and Popović [2004] leads to
self-intersections.

modifications as the ones we propose could be applied on the surface mesh of the
neutral blendshape. Deformation transfer on all expression blendshapes will then
yield new face rig that incorporates the desired changes. However, this approach
has the significant drawback that the new blendshapes are not necessarily con-
sistent with the same blendshape weights, e.g., self-intersections easily occur as
shown in Figure 5.10.

In addition, direct transfer of modifications to the neutral pose cannot account
for the complex force interactions in the elastic tissue. For example, when
increasing the volume of the lips, the expression dynamics will change as a
consequence of the changed stress distribution. Our indirect approach, that solves
for the facial pose given muscle activations, can accommodate such scenarios and
leads to more natural expressions.

Statistics. The interior point solver of the forward physics optimization requires
on average 8 iterations per frame to converge. This takes approx. 22 seconds
including the collision detection update on a consumer laptop with a 3.1 GHz
Intel Core i7 processor and 16GB of main memory. The inverse problem needs
approx. 15 iterations to compute the jaw transformation and muscle activations,
averaging at about 3 minutes per target shape. The volumetric face template
model of the passive flesh and active muscles used for the results presented in this
project has 8098 vertices and 35626 tetrahedra. The active muscle layer covers
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Figure 5.11: Application Demos I: a) Body mass index changes and their impact
on expressions. The original avatar is highlighted with dashed lines. More intense
red in the fat map means more volume change of the corresponding face region.

approx. 27% of the entire flesh. The surface mesh model of the entire skin has
6393 vertices and 12644 faces.

5.3.6 Application Demos
We present a series of application demos to highlight the versatility of our approach.
A key benefit of our physics-based simulation is that we can modify the static and
dynamic parameters of the model to achieve a number of advanced animation
effects that would be difficult to obtain with purely generative geometric methods.
Please also refer to the accompanying video A.2 to better appreciate the dynamics
of the animations.

All animation examples were driven by a temporal sequence of blendshape
weights obtained from the performance capture system of Weise et al. [2011].
The tracking software also provides a rigid body transformation T ∈ SE(3)
corresponding to the global rotation and translation of the head, as well as pitch
and yaw for each of the eyeballs, which are parented to the head transformation
T.

Body mass index changes. Figure 5.11-a illustrates how an animated avatar
can be modified to slim or fatten the person’s face by adapting the plasticity
scale for the soft tissue tets. As this adaptation alters the face geometry, simply
re-animating the blendshape model would lead to unnatural expressions and
visual artifacts caused by self-intersections. Our simulation approach avoids self-
collisions and balances the stress distribution in the facial tissue while preserving
the actuation forces, which leads to more plausible expressions and natural
dynamics.

To create the scaling parameters si > 0, we start from a surface “fat map”
painted by the user that specifies which areas of the face are more prone to fat
accumulation. The values of the fat map are propagated into the volumetric
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Figure 5.12: a) Simulating inertia under sudden motion changes (e.g., jumping). b)
Dynamic deformations in a wind force field. c) Simulating Bell’s Palsy affecting half
of the face of an actor. d) VR headset obstructing the full motion of expressions
on the face. e) Artistic editing to create a zombie character by adapting the mass
and stiffness distribution as indicated in the color-coded maps.

tet-mesh by a diffusion process, similar to standard polygon-mesh diffusion flow
(Botsch et al. [2010], Chapter 4.2), but using the volumetric Laplacian instead
of the surface Laplace-Beltrami. We apply forward Euler integration with time
step and number of steps adjusted by the user in an interactive graphical tool
to achieve the desired volumetric propagation effect. We used the same fat map
for both characters in Figure 5.11-a, uniformly scaled to achieve slimming or
fattening. To account for the increased fat content in the soft tissue, we lower the
stiffness µ to 0.8, 0.5, 0.3 for the three levels of fattening shown in Figure 5.11-a.
For slimming, we keep the default stiffness µ = 1.

Inertia. Figure 5.12-a shows how our method incorporates inertial deformations
in the dynamic simulation. Such secondary motion becomes particularly important
in animations with strong accelerations, such as jumping, head shaking, or boxing.

Interaction with external forces and objects. Figure 5.12-b shows how an
animation can be augmented with complex external force interactions produced by
a dynamic wind field. Figure 5.12-d illustrates how a speech animation is affected
when the subject is wearing a VR headset. Our contact resolution method adapts
the face deformations to account for the collisions with the headset, creating
non-linear bulging and wrinkling effects due to volume preservation of the facial
tissue.
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Simulation of muscle paralysis. In Figure 5.12-c, we show how muscle ac-
tivations can be modified to simulate Bell’s palsy syndrome, where the affected
person is unable to activate certain facial muscles. In this example, we marked
the active muscles of the left half of the face to behave like passive tissue, which
simulates the effect of partial facial paralysis.

Extreme face modifications. To push the limits of facial modifications, we
created a virtual zombie character in Figure 5.12-e. We designed two texture maps
to modulate the mass and stiffness (see Figure 5.12-e) and extrapolated their
values into the volume using our diffusion tool. The idea was to increase the mass
of the cheeks to create a flesh sagging effect, while increasing stiffness around the
lips and the eyes to avoid excessive pulling of the flesh. The final µ values vary
between 0.7 − 5.7 and the density varies between 1 − 3g/cm3, achieving artistic
“undead” effects.

5.3.7 Limitations and Future Work
In our approach we rely solely on a generic volumetric template and a set of
surface scans of the modeled person to derive the interior facial structure. This
inherently limits the accuracy of our approach in terms of the true facial dynamics
of the scanned actor. Getting access to the internal structure through volumetric
scanning devices would allow building more faithful simulation models, but incurs
a high acquisition cost. We follow this path in the Section 5.4.

Another approach for future work is to build a statistical model of the bone
and tissue structures from a sufficiently large set of volumetric scans, similar
to the morphable face models that have been successfully applied for the skin
surface Blanz and Vetter [1999].

Detailed physical simulation is computationally involved and our method is
currently not suitable for realtime animation. While computational efficiency
was not the main focus of our work, we believe that significant speedups can
be achieved, in particular by more explicitly exploiting spatial and temporal
coherence. In the context of realtime animation, our approach could potentially
be used to automatically create corrective shapes for a given blendshape basis in
an offline process. How to select an optimal set of such correctives based on a
given simulation is an interesting avenue for future research.

Our tet-mesh discretization is currently too coarse to correctly model small-
scale effects such as skin wrinkles. However, increasing the resolution to the
appropriate scale would lead to prohibitive computation times. Therefore, in
future work, we want to explore ways to combine our simulation model with
procedural or data-driven methods for wrinkle generation to further increase the
visual realism of the animations.

Other avenues for future work include modeling and simulating hair, adding
person-specific teeth models and a simulation of the tongue.

64



Figure 5.13: We build a static anatomical face model from the MRI and use
3D surface scans as training data to learn mechanical parameters that explain
deformations of the real face using physics-based simulation.

5.4 Learning mechanical properties and muscle
control

One of the difficulties in simulating a realistic facial animation is modeling of
underlying anatomy. The recent previous work Cong et al. [2015], Ichim et al.
[2016], Lan et al. [2017] and the work presented in the Section 5.3 adapted a
template model by deforming template rigid bone structure to fit a personalized
neutral surface mesh Dicko et al. [2013]. This step, however, possibly introduces
a large error in the anatomy which might be a crucial roadblock in the following
steps of fitting delicate facial expressions. Large variability in muscle shapes and
locations are found in cadaveric studies [Pessa et al., 1998], many people might
even be lacking some muscles or they might be present only on left/right side,
e.g. Risorius muscle or Nasalis muscle [Waller et al., 2008]. The whole internal
anatomical structure including connective tissues (i.e. fascia, ligaments, tendons)
differ largely within subjects. All those factors influence the resulting shape of
the face.

In this section, we propose a new approach to creating realistic physics-based
face models, aiming to bridge the gap between graphics and biomechanics. First,
we designed a simple synthetic experiment shown in Figure 5.14 to determine
whether we can learn complex material properties of a cylinder affected by known
external forces and observations of its surface deformations. The results showed
(Figure 5.14 c) that even a single observation can be used for a non-trivial material
parameter fitting. This sparked the idea of using various observations of facial soft
tissue to discover its complex structure. We start by building a static face model
in a neutral expression from an MRI scan. Note that MRI is not essential for our
method and any template model adapted Dicko et al. [2013] to the neutral scan
can be used with some loss of accuracy depending on the distance of the adapted
template model from the subject-specific skull geometry as shown in Section 5.4.5.
We generate our segmentations and tet-meshes using existing tools Fedorov et al.
[2012] and claim no contributions in this part. Our main contribution consists of
automated learning of mechanical properties of our subject’s face from data (3D
scans of facial deformations).
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Figure 5.14: Synthetic experiment for learning material parameters. a) Tetmesh
in a rest pose with color coded varying stiffness not affected by gravity. b) The
mesh in quasi-static equilibrium fixed on sides with applied gravity force c) Our
prediction of stiffness parameters given the rest pose and surface of the tetmesh
in b)

An interesting fact attributable to the high elasticity of the face is that
changing the direction of the gravity leads to surprisingly large deformations
Ozsoy et al. [2015]. By varying the direction of the gravity (by posing the
subject’s head in various orientations) and by observing various facial expressions
created by voluntary muscle activations, we can deduce the composition and
mechanical properties of facial soft tissues. To be able to explain our captured facial
deformations, we found that in addition to realistic muscle activation models, it is
important to use heterogeneous elastic properties including prestrain. Prestrain
refers to a biomechanical model of rest-pose stresses of biological tissues Gee
et al. [2010], analogous to the tension in the strings of a guitar. Adding prestrain
introduces anisotropic trainable parameters which improves the explanatory power
of our model while being well motivated biologically. Our method does not require
any manual segmentation of individual muscles, nor any prior knowledge of muscle
fiber directions of a template model.

5.4.1 Static Anatomical Model
Building a geometric model of facial anatomical structures is non-trivial even if we
consider only a static neutral facial expression and do not require segmentation
of indvidual facial muscles. To avoid the laborious anatomical modeling process,
some recent work starts from high-quality commercial anatomical models, such as
Zygote Body Ichim et al. [2016, 2017]. A drawback is Zygote’s licensing policy,
which restricts re-distribution of any derived 3D models (re-distribution of images
and videos is not restricted). In this project, we choose to build a brand new
anatomical model of the face directly from MRI scans.

MRI data processing

We started by capturing four MRI scans of a neutral expression of one subject de-
rived from two sequences (MP2RAGE INV1/INV2/UNI and T2, see Figure 5.15)
and processed them using 3D Slicer Fedorov et al. [2012]. Specifically, we applied
Bias Field Correction to eliminate intensity variations and then denoised the data
using Gradient Anisotropic Diffusion filters. We proceeded with segmentation of
soft and hard tissues using thresholding and region growing. Note that segmenta-
tion of the skull and the mandible from MRI is a challenging task because bone
tissue does not produce much signal and it is therefore easy to confuse with air,
which can be problematic in areas such as the sinuses.
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Figure 5.15: Examples of slices from our MRI sequences used to build our model.

To address these challenges we tried modern MRI sequences better suited
for solids, specifically, ultrashort echo time (UTE) Robson and Bydder [2006].
The signal strength on bone tissue improved, but the images were very blurry.
Therefore, we instead applied a “pseudo-CT” approach Torrado-Carvajal et al.
[2016] which is a data-driven technique to convert MR images into CT-like images
(we note that segmenting bones from CT scans is easy and highly accurate,
however, we avoided direct CT scanning because it would expose the subject to
radiation). Our resulting segmentations of the bones and skin can be seen in
Figure 5.16. When finished with 3D image processing, we used the marching cubes
algorithm Lorensen and Cline [1987] to create triangle meshes corresponding to
the outer surface of the head (the skin) and the outer surfaces of the bones (the
skull and the mandible). The triangle meshes were re-meshed using Meshmixer
Schmidt and Singh [2010] to improve mesh quality and used as constraints in
TetGen Si [2015] which produced our final tet-meshes, see Figure 5.17.

Figure 5.16: Segmentation of soft tissues and the bones from our MRI scans.
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Figure 5.17: Our tet-meshes with varying resolution.

Surface 3D scans

Even though modern MRI scanners are very powerful and provide good resolution
volumetric scans of the human body without any radiation, they have limitations.
In addition to the high cost (around $500/hour), long scanning times and limited
availability of MRI machines, an important limitation is that the subject must
remain motionless inside the MRI scanner for several minutes (depending on the
sequence). This means that MRI scanning of most facial expressions is practically
impossible because muscle fatigue would prevent the subject from staying still for
minutes. Important advances in Real-time MRI have been made in recent years
Zhang et al. [2014], however, the methods are generally limited to either 1) very
low-resolution volumetric imaging or 2) high-resolution single-slice images; neither
is adequate for our purposes.

Instead, we captured geometry of deformed facial shapes using a structured
light scanner (Artec Spider), producing detailed 3D scans of the skin. Specifically,
in our deformed facial shapes we vary gravity directions (by changing the subject’s
head orientation) and facial expressions (by asking the subject to smile, frown,
etc., see Figure 5.18). The face is quite supple and varying gravity directions
results in surprisingly large skin displacements, see Figure 5.23.

Composition. A necessary pre-requisite for subsequent automatic parameter
fitting (Section 5.4.3) is registration: finding correspondences between the captured
3D scans. To do this, we first register the tet-mesh we built from the MRI scan
with a 3D scan of a neutral expression in the supine pose, i.e., similar setup as
in the MRI scanner where the subject is reclining on a motorized patient table.
The two shapes (MRI and 3D scan) are close, but not identical due to geometric
distortions of MR images. Geometric distortion is a well-studied problem Baldwin
et al. [2007] and its corrections are standard, however, despite all efforts some
geometric distortion still remains. We deform our tet-mesh to match the 3D scan
using non-rigid Iterative Closest Points (ICP), enabling small deformations of the
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Figure 5.18: Example of facial expressions scanned using a portable structured
light scanner.

entire mesh including the bones to compensate for the geometric distortions of the
MRI. When finished, the surface of the tet-mesh is closely aligned with the 3D
scan, allowing us to transfer the albedo map from the 3D scan to the surface of our
tet-mesh. The albedo map with painted markers (see Figure 5.19) helps us to find
correspondences among our set of 3D scans of deformed facial shapes. Specifically,
we apply another non-rigid ICP process with normalized cross-correlation of image
patches as a data term Beeler et al. [2011] and volumetric deformation of the
tet-mesh as a regularization term Ichim et al. [2016], this time assuming the skull
and the jaw are rigid, because the shapes of the bones must be the same in all
physiologically deformed facial shapes. Finding the rigid transformation of the
skull in each of the shapes gives us a “rigid pre-stabilization”, i.e., an estimate
of compensation for global head motion Beeler and Bradley [2014]. This is only
an initial guess (hence the term “pre-stabilization”) which will be subsequently
refined when solving our inverse modeling problem (Section 5.4.3). The output
of this preparatory phase is a tet-mesh discretizing facial soft tissues which is
accurately registered with our 3D scans of facial deformations. These data will be
used to train our mechanical model of the face.

The main technical challenge we address is an inverse problem where we solve
for mechanical parameters of a model that will match acquired 3D scans of real
facial shapes under various external loads and muscle activations. Solving it leads
to a large optimization problem which can not be solved separately per expression.

5.4.2 Mechanical model
We start by discussing the key mechanical modeling concepts used in our method.
Building upon the finite element method Sifakis and Barbic [2012], we are opti-
mizing for a rest shape x⃗rest in a static equilibrium subject to no external forces
(including gravity). The rest shape can, however, be subject to internal forces rep-
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Figure 5.19: An example of registration of textured 3D scans.

resenting inherent residual biological strain which in addition to varying material
parameters µ, λ affect the behavior of soft tissue elastic deformation.

Modeling passive tissue. When excised from the body, biological soft tissues
retract, i.e., release stored elastic potential energy. This mechanical effect can
be modeled with prestrain and it plays an important role in the body, e.g., in
stabilizing joints Ellis et al. [2006]. We use linear finite elements and model
prestrain by introducing a material space-dependent function G ∈ R3×3 which
modulates the deformation gradient. The total internal elastic potential energy of
a prestrained deformable solid can be approximated as:

Eelast(x⃗) =
m∑︂

i=1
viΨ(Fi(x⃗, x⃗rest)Gi)

where vi > 0 is rest-pose volume of i-th tetrahedron, Ψ is a hyperelastic energy
density function, Fi ∈ R3×3 is deformation gradient (function of the current
deformed state x⃗ ∈ R3n and the rest pose x⃗rest ∈ R3n) and Gi ∈ R3×3 is the
prestrain for i-th tetrahedron (m is the number of tets and n the number of
vertices of our tet-mesh). With Gi = I, Eelast becomes equivalent to a standard
FEM setup Sifakis and Barbic [2012]. With general Gi, there can be non-zero
potential energy stored in the configuration x⃗rest, i.e., Eelast(x⃗rest) > 0, making
the naming convention less intuitive. Observing the object configuration x⃗rest
without prestrain or measuring the prestrain directly is difficult. One would have
to make infinitely small dissections corresponding to each material point of our
model Maas et al. [2016]. An observable rest pose x⃗restO affected by prestrain and
gravity is a solution to ∇Eelast(x⃗restO) + ∇Egrav(x⃗restO) = 0, subject to boundary
conditions (e.g., fixed skull vertices).

Modeling muscles. Facial expressions are created by contractions (activations)
of facial muscles. Muscle tissues have complicated anatomy, but the basic building
block are myocytes – long tubular cells which are able to contract and thus
generate tension.

Unfortunately, capturing the fiber direction of thin facial muscles is a difficult
task even with diffusion tensor imaging Levin et al. [2011]. The 3D surface of
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facial expressions are very sensitive to the directions of contractile muscle forces,
which has been identified to be a major obstacle in realistic facial modeling Cong
et al. [2016].

Recent work addressed this challenge with artist-directed muscle activations
Cong et al. [2016] or by flexible muscle activation models as in Section 5.3.
Specifically, the activation model in Section 5.3 assumes that in each facial
expression, each muscle tissue element (tetrahedron) can deform itself arbitrarily
in six dimensions (corresponding to a 3 × 3 symmetric matrix). Even though this
model correctly disregards translational and rotational motions, it is still overly
permissive, because it assumes that muscle activations can change arbitrarily
among different facial expressions, ignoring the existence of muscle fibers and their
contractile action. Muscle activations should not be controlled by six degrees of
freedom, but only one which corresponds to neural control signal.

To address these issues, we propose the following muscle-activation function:

A(αi, Di) = (1 − αi)I + αiDi (5.5)

where αi ∈ [0, 1] is time-dependent activation of i-th element (tet) and Di ∈ R3×3

is time-independent maximal deformation due to muscle contraction (and I ∈ R3×3

is the identity). An important difference from the muscle model used in Section 5.3
is the fact that only αi are allowed to vary between facial expressions; Di is a
subject-specific variable representing anatomy and thus is the same for all facial
expressions.

This leads to a computationally more complicated inverse problem, because all
facial expressions (smile, frown, . . . ) are now coupled in one large optimization
problem, whereas in Ichim et al. [2017] the problem was separable per expression.

To build as accurate of a model as possible, we need to clearly differentiate
between deformation due to internal passive, active and external forces. Compared
to the model described in Section 5.3, we achieve this by solving simultaneously
for both passive and active deformation properties. This is important even for
neutral expressions. Even though a subject can be relaxed, some muscles are
unconsciously activated (e.g. pushing lower teeth against upper teeth). A large
difference in neutral expression can be observed in persons affected by Bell’s palsy.

Elastic deformation. Our internal elastic potential uses corotated linear elas-
ticity Sifakis and Barbic [2012] augmented with prestrain and a muscle activation
model:

Eelast(x⃗, A, H) =
m∑︂

i=1
viµi∥Pi(x⃗, x⃗rest, Gi) − A(αi, Di)∥2

F

+ vi
λi

2 tr2(Pi(x⃗, x⃗rest, Gi) − I)
(5.6)

The vertex positions x⃗ ∈ R3n and muscle activations α ∈ Rm are time-varying
parameters (where n is the number of vertices, m the number of tets in our
mesh and A ∈ R3x3 is a symmetric matrix). The notation H = (x⃗rest, E, G, D)
collects all time-invariant, subject-specific parameters: the rest pose x⃗rest, Young’s
modulus E, prestrain G and maximal muscle deformations D. While constant
in time, these parameters vary spatially, as indicated by the tetrahedron index i.
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Figure 5.20: Given a static face model, we use 3D surface scans as training data
in our inverse modeling problem. The result is a physics-based mechanical model
with material parameters that explain deformations of the real face.

Lamé coefficients µ, λ are linear functions of Young’s modulus E and Poission’s
ratio set to constant ν = 0.45. The prestrained corotated term Pi(x⃗, x⃗rest, Gi) =
RiFi(x⃗, x⃗rest)Gi is obtained by factoring out rotational component of FiGi. The
first term is enforcing the shape of the tetrahedron to match the muscle activation,
the second term is minimizing relative volumetric change of the deformation.
Passive tissues can be modeled by setting Di to the 3 × 3 identity matrix. In
practice, our tets are relatively coarse and may thus contain a mix of passive and
active tissues, so Di can be seen as their blending. We note that many different
elasticity models could be used instead of corotated elasticity. Our choice was
motivated mainly by tractability of the resulting inverse problem, as discussed
later on.

Gravity. Accuracy of the gravity direction is one of the important factors in
our material parameter estimation. Some 3D scanning devices (e.g., handheld
scanners) do not provide information about a gravity vector and it is therefore
necessary to optimize for it. We initialize a gravity potential Egrav(x⃗, g⃗) with a
best guess of a gravity force vector g⃗ ∈ R3 corresponding to each of our surface
scan.

Constraints. We use Dirichlet boundary conditions corresponding to the bones
(the skull and the jaw), expressed as c⃗bone(x⃗, J) = 0, where J ∈ SE(3) is a
time-varying rigid transformation of the jaw relative to the skull. The c⃗bone(x⃗, J)
function fixes the vertices of the skull in place, while vertices of the jaw are rigidly
transformed by J.

Forward problem. With this model, quasi-static facial deformations can be
computed by minimizing Eelast(x⃗, α, H) + Egrav(x⃗, g⃗) subject to c⃗bone(x⃗, J) = 0.
The inverse problem, i.e., computing both H (expression-independent parameters)
as well as muscle activations α and jaw transformations J (expression-dependent
parameters) which best explain our training 3D scans of facial expressions is
explained in the following subsection.
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5.4.3 Inverse problem formulation
The input data to our inverse modeling module are registered 3D scans of facial
deformations and tetrahedral template mesh as shown in Figure 5.20.

We denote the vertices of the “target” 3D scans as t⃗k ∈ R3p, where k is the
target scan index and p the number of vertices in the triangle mesh representing
the skin (the same for all targets due to registration). Because our tet-mesh is
volumetric and x⃗ ∈ R3n thus includes internal vertices, we define a sparse selector
matrix S ∈ R3p×3n such that Sx⃗ “selects” the skin vertices corresponding to the
targets t⃗k. In the inverse optimization problem we will also solve for the rest pose
x⃗rest ∈ R3n, which is the configuration of vertices in static equilibrium subject to
prestrains and bone constraints, but not subject to gravity. In theory, x⃗rest ∈ R3n

would be directly observable, e.g. during freefall, but in practice, we solve for x⃗rest
along with the other trainable parameters of our model. Our “inverse physics”
can be formulated as the following optimization problem:

min.
x⃗rest,x⃗k,αk,Jk,g⃗k,H

∥Sx⃗k − Tkt⃗k∥2 + Ereg(αk, x⃗rest, µ, G, D)

subj. to ∇Eelast(x⃗rest, x⃗k, αk, H) + ∇Egrav(x⃗k, g⃗k) = 0
c⃗bone(x⃗rest, I) = 0, c⃗bone(x⃗k, Jk) = 0, c⃗col(x⃗k) ≥ 0

(5.7)

This problem simultaneously solves for multiple tet-mesh deformations x⃗k ∈ R3n,
where k indexes target 3D scans. In the objective function ∥Sx⃗k − Tkt⃗k∥2, the
Tk ∈ SE(3) is a rigid transformation applied to the target triangle mesh t⃗k

in order to compensate for global rigid motions of the skull (a process known
as “rigid stabilization” Beeler and Bradley [2014]). Ereg is a regularization term
discussed in the Section 5.4.4. The constraint c⃗bone(x⃗rest, I) = 0 means that the
jaw in the rest pose is closed (its rigid transformation is identity). In contrast, in
non-neutral expressions the jaw vertices are rigidly transformed by Jk ∈ SE(3).
The constraints c⃗col(x⃗k) ≥ 0 are used to resolve collisions: if we find a vertex in
x⃗k penetrating a tetrahedron, we find projection onto the closest surface triangle
and add a half-space constraint to c⃗col(x⃗k) ≥ 0 which pushes the vertex out of
the collision. Finally, the constraint ∇Eelast(x⃗rest, x⃗k, αk, H) + ∇Egrav(x⃗k, g⃗k) = 0
requests the deformed pose x⃗k to be in quasi-static equilibrium subject to gravity
and boundary conditions. Our target 3D scans intentionally contain different head
orientations, i.e., the gravity directions for each target can be different and are
represented by trainable parameter g⃗k ∈ R3.

5.4.4 Solving the inverse problem
Solving Eq. 5.7 numerically is challenging. Our optimization problem has many
variables because we are solving for deformed vertex positions x⃗1 ∈ R3n, x⃗2 ∈
R3n, . . . for all of our targets. Furthermore, the deformed vertex positions are
coupled through the rest pose x⃗rest and shared mechanical parameters E, G, D,
which makes the problem not separable per each target. To further complicate
matters, the problem is ill-posed, because our data t⃗k correspond only to skin
(surface) measurements, but we are solving for unknown volumetric properties.

Our optimization strategy is to use the idea of homotopy. In our case, we use
a progression from an initial state x⃗init which is in a quasi-static equilibrium, but
does not match target scans, to a state x⃗ fitting all target scans as close as possible
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in a sense of Eq. 5.7. Even though asymptotic numerical method Chen et al.
[2014] can provide better convergence than standard Newton-type optimization,
the implementation for a general deformation problem is challenging. We found
that a linear increase of the target term weight (from 0 to 1), iterative update of
regularization terms Ereg and block coordinate descent optimization proved to be
a good strategy for stable convergence and allowed us to prepare an automatic
procedure for the complete inverse optimization.

Gravity direction initialization. In the first phase, we fit a set of six scans
with neutral expression but with varying directions of gravity (see the top row
in Figure 5.23) by fitting a passive model, i.e., we set D = I and α = 0. We
compute an initial guess of the gravity-free rest pose x⃗init

rest by averaging all of our
3D scans of the neutral expression under different directions of gravity. This is a
good initial guess because for each gravity direction d⃗, our dataset also contains
the opposite direction −d⃗, e.g., for a supine head orientation (facing upwards),
we also have a prone orientation (facing downwards). We also use the x⃗init

rest as a
regularization term for x⃗rest.

Block coordinate descent. Next, we set G = I and optimize for the het-
erogenous material properties E. We assume constant density of soft tissues. In
the case of quasi-statics, variation of densities and stiffness results in ambiguous
fitting. If an MRI scanner is available, some sequences may provide a better
initialization of densities. Optimizing for spatially varying material parameters
has been recognized as a challenge in previous work Wang et al. [2015], Kim et al.
[2017], which proposed to simplify the problem by sampling material properties
only in a sparse set of points (such as 130 points). This reduces the number of
variables, but also reduces expressivity and relies on well-chosen locations of these
sample points, which is non-trivial in the face. Instead, we solve for a separate
E for each tet by progressive refinement. The process starts by optimizing a
single E for all tets (homogenous material), which theoretically corresponds to an
infinitely strong Laplacian regularization term. Specifically, we use the standard
umbrella operator penalizing ∥Ea − Eb∥2 summed over all pairs (a, b) of adjacent
tets, as in Bickel et al. [2009]. Next, we use the homogeneous E as an initial guess
and progressively reduce the weight of the Laplacian regularization term. This
way, we find heterogeneous stiffness parameters E but so far only with isotropic
material. Next, we allow the optimizer to optimize for prestrains G (along with E
and x⃗rest), introducing anisotropy into our model. Finally, we enable optimization
of muscle parameters: the time-independent maximal muscle deformations D and
the corresponding time-dependent activations α.

Regularization. We applied additional regularization on E and G with a
closeness term to an initial guess which we update in each iteration k: ∥Gk

i −
Gk−1

i ∥2
F (regularization plasticity). Finally, we enable optimization of the muscle

parameters D, α. We use an order of magnitude stronger weight for the muscle
activation regularization ∥A(αi, Di) − I∥2

F to enforce principle of least action
(Section 5.4.2).
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Figure 5.21: Visualization of heterogenous stiffness of our model and prestrain at
each tetrahedron.

Jaw kinematics and stabilization. Additional free variables of our optimiza-
tion process include kinematic parameters of the jaw (Jk). We allow arbitrary rigid
transformation, parameterized with three DoFs for translation and three Euler
angles for rotation. We did not encounter any singularities with the Euler angles
because the set of physiological rotations of the jaw is limited. We used the same
parametrization for global head transformation (rigid stabilization) Tk, taking
advantage of our “pre-stabilization” to ensure that changes of global orientation at
solver time will be small. Similarly, we parameterize gravity directions with two
angles (polar and azimuthal angle, the magnitude is fixed to ∥g⃗k∥ = 9.81m/s2).

Implementation details. We solve our optimization problems using an open
source interior point solver IPOPT Wächter and Biegler [2006] with PARDISO
Schenk and Gärtner [2004] as the underlying linear solver. Our mechanical
model is twice differentiable. In most cases, we provide the solver with exact
gradient and Hessian. In the inverse problem, the quasi-static constraint Hessian
is approximated. An exact Hessian contains third derivative of the mechanical
model resulting from the chain rule which we ignore Bickel et al. [2012]. Our
problem converges in total of 25 iterations (5 iterations per each phase) and takes
approximately 20 minutes for the highest resolution tetmesh (21k tetrahedra) and
13 targets scans on a desktop CPU.

5.4.5 Results
Stiffness. We visualize our resulting stiffness parameter in Figure 5.21. The
computed Young’s modulus values are in range of E ∈ [14.5, 89.3] with an average
of E = 68.2kPa. These values are aligned with in-vivo stiffness measurements
Luboz et al. [2014], Shinohara et al. [2010]. However, material properties reported
in the literature must be interpreted judiciously, e.g., Lapeer et al. [Lapeer et al.,
2011] surveyed literature on skin stiffness measurements and found large differences
between the reported values (attributed to differences between in-vivo/in-vitro
measurements, nonlinearity of the skin and differences in elastic models). In
Figure 5.21 we can see that the stiffness is lowest in areas such as the cheeks which
contain the thickest layers of adipose tissues. Note that stiffness in the lips region
seem to be too large. We observed that in case of large noise in the data (e.g.,
lip motion fitted by muscle deformation apparent in Figure 5.23), our isotropic
stiffness fitting failed to capture this deformation as passive. This was not the case
for experiments using only selected scans with minimal lip motion. Fortunately,
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Figure 5.22: Visualization of principal muscle fiber directions (color coding: red
= x, green = y, blue = z).

the anisotropic prestrain model is more flexible and is able to generalize better as
shown in Figure 5.23.

Prestrain. Prestrain models the fact that soft tissues retract when excised from
the body. This means that each tet in our mesh has a relaxed configuration with
zero prestrain. Visualization of such configuration becomes more complicated
because tet vertices corresponding to neighboring tets might not be aligned.
Nevertheless, we can visualize prestrains by disconnecting our tet-mesh into
isolated tets, scaling them down by a factor of 0.8, and transforming them by
G, see Figure 5.21. The color corresponds to prestrain magnitude computed as
∥G − I∥2

F ∈ [0, 3.7].

Muscle activations. Recall that our D matrices specify the maximal deforma-
tion of each tet due to muscle contractions. The D matrices are the same for all
facial expressions, only the activation parameters α are allowed to vary from one
expression to another. To visualize our resulting D matrices, we first apply polar
decomposition and find the rotational parts are almost exactly identities. This is
because rotations are already present in prestrain. Because D are very close to
symmetric matrices, we can visualize their principal eigenvectors, which can be
interpreted as muscle fiber directions (directions of maximal muscle contraction).
In Figure 5.22, we visualize these principal eigenvectors as small line segments
with the usual RGB color coding of directions (red = x, green = y, blue = z).
We note that the resolution of our finest tet-mesh is still coarse relative to the
shape of thin facial muscles and therefore these directions should be interpreted
as weighted averages over all facial muscles intersecting a given tet.

Evaluation of passive model. Validation of the passive model is challenging
due to residual muscle activation which is present in all facial expressions of
healthy human beings. While measuring EMG signal is technically possible, each
sensor measures electrical activity integrated over multiple muscles at the surface
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Figure 5.23: Comparison of elastic models – distances from 3D scans in various
gravity directions (individually excluded from training data) shown in the first row
(reference measurements). Second row: simulation with homogeneous material;
Third row: heterogenous material without prestrain; last row: heterogeneous
material with anisotropic prestrain (our method).

and the electrode placement affects the deformation. Ideal validation data would
contain surface scans of a completely paralyzed face under different external loads.

In Figure 5.23 we analyze how well our model predicts 3D scans under varying
gravity directions. The largest difference of 14mm is observed with prone head
orientation (facing downwards), where the soft tissues sag the most under gravity.
In the first row, we compare against simulated homogeneous material (single µ
for all tets), which is the elasticity model used in Section 5.3. Methods using
elastic model with homogeneous material (e.g.,Mollemans et al. [2007], Ichim et al.
[2017]) either can not fit similar scans properly or need to compensate by artificial
muscle deformation. We can see that homogeneous elasticity does not accurately
predict deformations of the face due to gravity. In the second row, we show the
result of our method without prestrain, i.e., setting G = I. In the third row is the
final result of our method with prestrain enabled, achieving the most accurate
prediction of the 3D scans.

Validation of a complete mechanical model. The parameters of our model
were computed from a total of 13 3D scans constituting our training dataset.
An important question is how closely can our model predict unseen validation
3D scans. To quantify this, we captured and registered three new 3D scans
with different facial expressions, two of them in the supine orientation and one
sitting. To fit these new expressions with our model, we fixed the human-specific
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parameters H which are time invariant and allowed our optimizer to modify only
the time-varying muscle activations α and the rigid jaw transformation J, which
correspond to properties the human subject can voluntarily control to achieve
different facial expressions. This worked quite well with our final model.

In Figure 5.24, we can see that the distances between predictions from our
model and the actual 3D scans are similar for both training and validation 3D
scans, i.e., overfitting is not an issue. We can also see that the effect of gravity
is correctly captured by passive elasticity, unlike previous face animation models
which explain all deformations by (overly) generalized muscle activations Ichim
et al. [2016, 2017] and Section 5.3.

We were also quite excited about the fact the time-varying muscle activations
α, shown in the second row of Figure 5.24, are localized even though we did not
introduce any regularization terms encouraging locality; even more importantly,
the activation signals seem to correspond to actual anatomical muscle groups
responsible for creating facial expressions such as raising one corner of the mouth
or pulling the lips forward (pucker). We can also notice that activations α
corresponding to a partial smile are not just an interpolation of a full smile; more
pronounced expressions are generated by engaging additional muscle groups.

Input data ambiguity. We test our method with different subsets of input
scans to show the effect of ambiguity. Figure 5.25 shows optimized stiffness
parameters for subsets a-e. The subset a uses only one scan. Since we’re also
optimizing for the rest-pose, the result mostly depends on regularization weights.
Subsets b and c use different subset of size two - showing different results depending
on how close input scans are with respect to gravity direction. Subset d with
three scans shows a result similar to a set using all six gravity directions.

Template skull adaptation. We tested our method on a less accurate skull
and mandible geometry adapted from a template model to assess the importance
of precise segmentation of bones from MRI data. We started by smoothing high-
frequency details on both template and target model. Next, we registered both
models with manually picked keypoints and prepared a tetrahedral mesh that
corresponds to the original surface mesh and the adapted skull. The result of our
inverse problem in Figure 5.26 shows that stiffness parameters near the surface
are similar and only small changes near areas of thin soft structures are present.
Please note that the template skull geometry after the adaptation is not very
different from the segmented skull (maximum distance is 16mm). Adapting skull
to different subjects with varying fat distribution is a challenging task Achenbach
et al. [2018].

Please refer to the accompanying video A.3 to see more detailed results.

5.4.6 Limitations and Future Work
Even though we believe our project is a significant step towards realistic facial
modeling, there are several limitations leading to opportunities for future work.

Input data. We tested our method with only one human subject. Our 3D
scanning process also needs to be improved, because our structured-light scanner
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Figure 5.24: Explaining various facial expressions with our model using a fixed
set of muscle deformations D visualized in Figure 5.22. Second row: visualization
of our time-varying muscle activation parameters α used to generate the corre-
sponding facial expressions with our method. Last row: testing the generalization
capability of our model by comparing fitting errors on training (left three columns)
and validation data (right three columns).

(Artec Spider) is not ideal for capturing facial expressions. One scan can take up
to several minutes which makes scanning challenging due to muscle fatigue.

Registration. Incorrect registration (e.g., around lips) and rigid stabilization
is causing some errors in the fitting. Ideally, our algorithm should run the inverse
problem together with corrections for inaccurate correspondences.

Mechanical model. Our current mechanical model also leaves room for im-
provement. We note that many different constitutive equations could be used
instead of corotated elasticity. Our choice was motivated mainly by tractability
of the resulting inverse problem. The additional prestrain can be understand as
a simple way to improve an arbitrary elastic model. Whether the anisotropic
behavior would generalize well under larger loads is subject to further testing.
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Figure 5.25: Stiffness parameters computed from limited scan data.

Figure 5.26: The first row shows our original skull segmented from MRI scan,
the adapted skull from a template model and color-coded distance. The second
row shows stiffness computed using the original model and the model with the
adapted skull.

Muscle control. We briefly experimented with a model without kinematic jaw
constraints where the motion of the jaw was driven purely by muscle activation.
The model was able to fit all of our scans with jaw open and we are planning to
experiment with purely muscle-driven control without kinematic constraints in
the future.

Surface scan ambiguity. The current parameter learning is limited by surface
scan observations. Simple synthetic experiments can show that multiple material
configurations can lead to almost identical surface deformation under various
conditions. Different ways of applying and measuring external loads should be
therefore studied. Note that aspiration device testing might not reveal deep
non-linearity without damaging the skin Luboz et al. [2014].

Dynamics. Our current physics-based modeling methodology assumes quasi-
static deformations corresponding to slowly moving faces. Even though we can of
course add ad-hoc dynamics effects, the proper approach would involve learning
viscoelastic properties from data – dynamic deformations of real faces, which
would require a dynamic (4D) capture studio, as was recently explored in the
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case of human bodies Kim et al. [2017]. In this project we focused on volumetric
modeling of facial soft tissues; production of realistic facial animations would
require adding accurate models of hair, teeth, tongue, eyes and eyelids.
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Conclusion

Summary
In this dissertation, we presented methods for automated reconstruction of ani-
matable virtual humans from sparse surface data. The theme of this work was
based on our belief that by leveraging existing knowledge in human anatomy
and physics, we can achieve better reconstruction with less data and provide
semantically meaningful control of our models.

Human body modeling. In chapter 4, we presented an automatic method to
reconstruct an anatomical, physics-based model of the body of a given human
subject. To our knowledge, our system is the first to reconstruct personalized fully
volumetric physics-based human body models, which are suitable for computer
animation including effects such as inertia, collisions, and gravity. We believe that
our method will serve as a tool for reducing the costs of person-specific modeling,
and may inspire applications even beyond the traditional realms of computer
graphics. Please refer to Section 4.10 for more detailed discussion on limitations.

Human face modeling. In chapter 5, we explored two models of the human
face. Section 5.3 describes a physics-based simulation approach to face animation
that complements existing generative methods such as blendshapes. These purely
geometric methods can produce artifacts such as self-intersections in facial poses
that were not specifically considered during the modeling of the blendshape
basis – ensuring consistency in all possible linear combinations quickly becomes
intractable. Even more challenging is the correct handling of dynamic effects
such as interactions with external objects or inertial deformations. Please refer
to Section 5.3.7 for more detailed discussion on limitations.

In Section 5.4, we explored more biomechanically accurate model. Passive soft
tissue deformation may initially seem less important than e.g. muscle activations.
However, apart from differences in blood flow, the change in shape of the face
can be quite surprising. The core idea presented in this section was to overcome
the challenging problem of capturing mechanical properties of biological tissues
in-vivo from limited data. We believe our approach is an interesting complement
to machine learning models that typically require very large training data sets.
Our method has been designed to minimize the amount of training data by taking
advantage of domain-specific priors, such as the principles of soft tissue elasticity.
These priors contain trainable parameters such as soft tissue material parameters,
which we estimated from training data. Please refer to Section 5.4.6 for more
detailed discussion on limitations.

We believe our work shows an interesting research path towards modeling and
reconstruction of virtual humans that crosses boundaries of computer graphics,
physics-based animation and biomechanics.
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Challenges
Model generalization. An important factor we needed to take into account
during our research was generalization of our models to a large variety of characters.
Applying strict anatomical models and elastic systems can easily make the space
of possible reconstructed characters too narrow which is usually considered a
significant disatvantage of physics-based models compared to purely data-driven
models in computer graphics. We tried to tackle this problem by exploring
flexibility and adjusting existing biomechanical models to find a balance between
overfitting and generalization, e.g., by adding additional degrees of freedom to
overly strict models and carefully regularize to keep plausibility at a level suitable
for computer animation.

Level of modeling detail. Another key decision was to choose an appropriate
level of modeling detail needed for reconstruction targeting computer animation
at the scale we can display on a monitor, TV or in VR. For example, humans are
very suspectible to small deformations of a face due to contraction of rather small
muscles in contrast to other skeletal muscles that we primarily use to move our
body in space. This means that we needed to choose a different level of detail of
modeling for a face and body and as was shown in our work, this does not simply
mean adjusting resolution of a mesh but it requires a different formulation of the
model. In general, our models can be considered large-scale compared to typical
models in biomechanics where researchers focus on a part of a human body at a
smaller scale (e.g., Tran et al. [2007]). In our work, we did not implement such
accurate models but rather focused on the overall visual plausibility.

Future work
We only focused on the most prominent parts of the human body. To achieve
realistic reconstruction, modeling additional parts of the body such as hair or
teeth is important.

Thoroughout all of presented models, we apply dynamics only in the forward
modeling and ignore inertial effects in input data. Integrating dynamics in the
inverse problem would not only reduce issues with input data, but would also give
us a possibility to optimize properties of the dynamical system such as damping.

Constitutive models we used were still rather a crude approximation of a
realistic behavior observed on soft tissues. Better passive and active models and
more complex layering of materials would definitely improve believability.

One of the biggest challenge when working with complex computational models
such as ours is performance. The resulting detail of the reconstructed mesh is
lower compared to state of the art in rendering. Improving performance of a
physics-based animation systems is still an open problem in computer animation.
In our case, the inverse problem also introduces specific computational challenges
in solving linear systems. Efficient formulation of the inverse problem also poses
intriguing research questions, while advances in numerical optimization could help
with solving the large and non-linear optimization problem.

Finally, if data availability would not be a concern, a combination of data-driven
and physics-based modeling could help tackle many challenges such as parame-
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terization and modeling of adipose tissue distribution or learning a constitutive
model [Wang et al., 2018] of soft tissue layers from data.
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A. Attachments

A.1 Video 1: Inverse Human Body Modeling
This attachment is an accompanying video to the Section 4 and is available in an
electronic form as a file:

• video1.mp4

Available online at http://kadl.cz/petr/phd/video1.mp4.

A.2 Video 2: Inverse Human Face Modeling
This attachment is an accompanying video to the Section 5.3 and is available in
an electronic form as a file:

• video2.mp4

Available online at http://kadl.cz/petr/phd/video2.mp4.

A.3 Video 3: Inverse Human Face Modeling
This attachment is an accompanying video to the Section 5.4 and is available in
an electronic form as a file:

• video3.mp4

Available online at http://kadl.cz/petr/phd/video3.mp4.
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