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Introduction
The study of random tessellations presents an important sub-field of stochastic
geometry and it finds many applications in natural and technical sciences. This
thesis focuses on both probabilistic and statistical modelling of datasets repre-
sented by 3D Laguerre tessellations, including such tools as stochastic simulation
and data reconstruction. We develop statistical methodology for analyzing the
datasets and illustrate our approaches on two particular examples of Laguerre
tessellations representing microstructure of polycrystalline materials.

Some background and motivation
Laguerre tessellations generalise the well-known Voronoi tessellations. While the
latter are generated by point patterns, Laguerre tessellations are generated by
marked point patterns; and besides spatial locations so-called radius marks also
play a role. They control the size and shape of the tessellation cells. In brief,
a 3D Laguerre tessellation (also called a power diagram or a generalised Voronoi
tessellation) is a flexible way of modelling a subdivision of 3D space In practice,
the tessellation is described by a data set (xn, rn) where xn = {x1, . . . , xn} ⊂ R3

is a finite point pattern and rn = (r1, . . . , rn) ∈ (0,∞)n is an associated vector
of positive numbers called marks, and we identify (xn, rn) with the marked point
pattern {(x1, r1), . . . , (xn, rn)} (see Sections 2.1 and 2.2.5 for the details). Viewing
the marked point pattern as a realization of a marked point process, statistical
analysis of random Laguerre tessellations can be reduced to statistical analysis
of marked point processes, and also modelling is simplified to modelling marked
point processes.

In materials science, discovering and quantifying relationships between mi-
crostructure and bulk properties of materials is one of the most important re-
search goals, see Grimvall [1999]. The traditional approach is to analyze samples
of real materials. Whereas this method arguably returns the most realistic re-
sults, it is time consuming and demanding to produce, image and investigate the
specimens. With the increase in readily available computing power, it is possible
to support such investigations today with in silico experiments, which drastically
reduce the time spent in the laboratory, see, e.g., Redenbach et al. [2012], Sten-
zel et al. [2016]. An effective approach for this is building parametric stochastic
models of the microstructure that provide realistic virtual samples whose physical
properties can be computed numerically. Based on these results, it is then pos-
sible to study relationships between geometrical characteristics and descriptors
of macroscopic physical properties, and, as a consequence, reduce the laboratory
experiments needed to validate these relationships. On the other hand, when
experimental datasets are available, one can generate further samples using the
ideas of statistical reconstruction, see Illian et al. [2008].

In particular, spatial (three-dimensional) Laguerre tessellations, cf. Chiu et al.
[2013], have become a valuable tool in the statistical analysis of polycrystalline
microstructures of present materials. Such analyses are an important modern
research topic in materials sciences, see Petrich et al. [2019], where the polycrys-
talline aspect is challenging. The use of Laguerre tessellations in this context is
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natural, since the members of a large class of spatial tessellations in the three-
dimensional space can be considered as Laguerre tessellations, see Lautensack
and Zuyev [2008].

Data sets of the form (xn, rn) appear in various contexts of material science.
For example, in 3D X-ray diffraction microscopy of polycrystalline materials the
volumes and centroids of grains are obtained, and representation of such measure-
ments by a 3D Laguerre tessellation can be produced by various mathematical
optimization methods, cf. Lyckegaard et al. [2011], Spettl et al. [2016], Quey
and Renversade [2018], Kuhn et al. [2020]. Development of stochastic models for
the tessellation follows, however, only a few papers including Spettl et al. [2015]
have been dealing with statistical methodology in the context of polycrystalline
materials.

Inference for statistical models of Laguerre tessellation data sets is a difficult
task unless (xn, rn) follows a simple model such as a (marked) Poisson process.
In this context the question arises whether the radius marks are independent or
spatially correlated. In the former case modelling would be greatly simplified.
Indeed, analytical calculations for Laguerre tessellations are rather complicated
and even the pioneers in the field, Lautensack and Zuyev [2008], limited them-
selves to the case of independent marks. Therefore little is known about the
influence of radius mark correlations in Laguerre tessellations. Often the points
in xn exhibit regularity and different marked point process models for (xn, rn)
have been suggested: simple random models for packings of hard balls, cf. Chiu
et al. [2013], obtained by iterative procedures such as random sequential adsorp-
tion in Lautensack [2008] (with applications to foam structures) or variants of
collective-rearrangement algorithms in Spettl et al. [2015] (with application to
a polycrystalline microstructure).

Our contribution
On examples of two polycrystalline microstructures represented by Laguerre tes-
sellations we develop various stochastic models and in detail discuss their proper-
ties. The datasets consist of marked point patterns, where points and marks are
obviously not independent, see Section 4.1 and Stoyan et al. [2021]. Therefore we
need to consider more complex models.

Inspired by the work of Dereudre and Lavancier [2011] on Gibbsian models for
2D Voronoi tessellations, we introduce in Seitl et al. [2021] Gibbsian models for
random 3D Laguerre tessellations. We prove the existence of particular infinite-
volume Gibbs-Laguerre tessellations in Jahn and Seitl [2020]. In the Gibbs setting
we can built a variety of models with prescribed geometrical properties. In partic-
ular, we suggest two ways of so called ‘reconstruction’ in order to produce samples
statistically similar to the data, see Section 3.4. We use the notion ‘reconstruc-
tion’ since the approach is up to some extent inspired by statistical reconstruction
introduced by Tscheschel and Stoyan [2006] in order to overcome the problem of
parameter estimation. These Gibbs models, which are described in Chapter 3 of
this thesis, were first thought to be tempting to use because they may incorpo-
rate various properties of the Laguerre tessellation and an interaction between its
cells. See Section 3.7 for extensive simulation studies and Attachment A.3 where
we compare Gibbs-Laguerre to Poisson-Laguerre tessellations in order to show
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that much more variability in terms of cell shapes can be obtained using Gibbs
models. However, the models are complicated to use for statistical inference and
they are time-consuming to simulate.

In order to come up with an simpler model, we explore in detail spatial-
mark dependencies within the marked point patterns of Laguerre generators. In
Stoyan et al. [2021] we show that radius mark correlations play an important role
in the context of random Laguerre tessellations; dispelling any hope that these
correlations can be ignored (and hence in practice a marked Poisson process is
rarely a reasonable assumption). We demonstrate this on both an empirical
data set, see Section 4.1 and our own simulations based on marked Gibbs point
processes, see Section 3.7.1. En passant, we show that the choice of bandwidths
for pair correlation function estimation in the three-dimensional space is more
complicated than described in the literature, for details see Section 4.1.2.

Finally, in Seitl et al. [2022] we introduce hierarchical statistical models con-
sisting of first a parametric Gibbs point process model for xn and second a parame-
tric model for rn conditioned on xn, see Section 4.2. Specifically, we use in the
first case a nested sequence of flexible pairwise interaction points processes called
multiscale processes Penttinen [1984] and in the second case various exponen-
tial family models where the canonical sufficient statistic is based on tessellation
characteristics such as surface area or volume of cells or absolute difference in
volumes of neighbouring cells. Apart from reducing the dimension from 4 (when
viewing (xn, rn) as a 4-dimensional point pattern) to 3 (when considering xn),
an advantage is that we specify two much simpler cases of models with param-
eters which do not depend on each other. Hence we can separate between how
to simulate and estimate unknown parameters for xn and rn | xn, respectively.
The parameters are simply estimated by maximum pseudolikelihood methods
and well-known MCMC algorithms are used for simulations. Thereby estimation
and simulation become much faster than in Seitl et al. [2021] when fitting specific
models given in Section 4.2 to the data from Section 1.3.1. A further advantage is
that the model construction makes it possible to develop a rather straightforward
model selection procedure, see Section 4.4: For xn, the procedure starts with
the simplest case of a Poisson process and continues with constructing more and
more complex multiscale processes until a satisfactory fit is obtained when con-
sidering global envelopes and tests from Myllymäki et al. [2017] based on various
functional summary statistics. For rn conditioned on xn, more and more com-
plex exponential models are developed, where we demonstrate how to compare
fitted models of the same parameter dimension by considering maximized log
pseudolikelihood functions. Further, we evaluate selected fitted models by com-
paring moment properties of tessellation characteristics under simulations from
the model with empirical moments, by considering plots of global envelopes, and
by evaluating values of global envelope tests. This comparison is not only done
by looking at those tessellation characteristics used for specifying the canonical
sufficient statistic of the exponential model but also for various other tessella-
tion characteristics. To the best of our knowledge, this is the first time that
such a model selection procedure has been used when analysing polycrystalline
materials, cf. Šedivý et al. [2018] and the references therein.

Besides the already existing software we implemented a code for pseudo-
likelihood estimation and the MCMC algorithms used for simulation of Gibbs-
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Laguerre models and hierarchical models. This code is available at https:
//github.com/VigoFierry/Lag_mod.

Outline
The main body of the thesis is organized in four chapters.

Chapter 1 in brief explains what is Laguerre tessellation and introduces two
datasets represented by Laguerre tessellation, which motivate a development of
stochastic models – the main goal of our work. It describes the process of data
acquisition in Section 1.2 and provides a detail statistical description of the two
datasets in Section 1.3.

Chapter 2 contains a theoretical background regarding: tessellations in Sec-
tion 2.1 – a general theory, Voronoi and Laguerrre models, Section 2.1.1 intro-
duces important geometric characteristics of tessellations, Section 2.1.2 presents
concept of periodic boundary, Section 2.1.3 deals with mutual positions of La-
guerre generators, Section 2.1.4 introduces a theoretical concept of hypergraphs
and hyperedge potentials; and (marked) point processes in Section 2.2 – a general
theory, Poisson point process is defined in Section 2.2.1, Gibbs point processes
are introduced in Section 2.2.2, Section 2.2.3 describes marked point processes in
detail, Section 2.2.4 states some important summary characteristics of (marked)
point processes, Section 2.2.5 deals with their estimation, Section 2.2.6 connects
(marked) point patterns with tessellation models. Simulation algorithms used
in this thesis are stated in Section 2.3. Section 2.4 describes three statistical
concepts, namely maximum pseudolikelihood estimation method is described in
Section 2.4.1, global envelopes are mentioned in Section 2.4.2 and permutation
test in Section 2.4.3.

Chapter 3 is named ‘Gibbs-Laguerre tessellations’ and focuses on simultane-
ous Gibbs model for generators of Laguerre tessellation (xn, rn). Section 3.1 is
devoted to the energy function of marked Gibbs point process – it shows a periodic
adjustment in Section 3.1.1 and several examples in Section 3.1.2. Section 3.2
deals with the existence of infinite-volume Gibbs models – the energy function
is rewritten in terms of hypergraphs in Section 3.2.1, general existence theorem
is formulated in Section 3.2.2 (the existence result relies on three key assump-
tions (R), (S) and (U) where details concerning the third assumption (U) are
available in Attachment A.1), two auxiliary lemmas are stated in Section 3.2.3,
Section 3.2.4 proves existence of two particular Gibbs-Laguerre tessellation mod-
els. Section 3.3 shows how parameters of Gibbs-Laguerre can be estimated in
two-step procedure – estimates of possible hard-core parameters defined in Sec-
tion 3.3.2 are plugged into equations obtained from maximizing the pseudolikeli-
hood function in Section 3.3.1. Section 3.4 presents simulations of Gibbs-Laguerre
tessellation whose goal is to resemble the data – a general modelling approach is
sketched in Section 3.4.1, two different methods are presented in Sections 3.4.2
and 3.4.3. Basic statistical reconstruction described in Section 3.5 is compared
to our Gibbs-Laguerre simulations in Section 3.6. Section 3.7 presents two more
non-data based simulation studies (they are not meant to produce samples re-
sembling the data).

Chapter 4 is called ‘Hierarchical model’ and aims at finding a more simpler
model than the Gibbs-Laguerre model from the previous chapter. Instead of si-
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multaneous modelling of (xn, rn), the idea is split the task to modelling of xn and
rn separately. Obviously, the data are too complex than xn and rn could be mod-
elled independently, dependencies between points and marks are in detail studied
in Section 4.1. Point process summary characteristics are studied in Section 4.1.1;
among them a prominent place takes the pair correlation function, whose anal-
ysis is presented in Section 4.1.2; correlations of marks and points are studied
in Section 4.1.3; a formal test of independence is performed in Section 4.1.4.
When the independent approach fails, a hierarchical model from Section 4.2 can
be adopted – first, we model the point pattern xn in Section 4.2.1, and second,
the marks/radii rn are modelled conditionally on xn in Section 4.2.2. Section 4.3
deals with parameter estimation in the hierarchical model. The simulations are
presented in Section 4.4 – a model for xn is selected in Section 4.4.1 and a suitable
joint model is chosen in Section 4.4.2.

The thesis is accompanied by several attachments, four of them supply an
additional information to the text of the thesis. The last fifth Attachment A.5
describes software, both already existing and self-implemented, used for the com-
putations.
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1. Motivation
A widely used mathematical model for capturing the microstructure of poly-
crystalline materials is the Laguerre tessellation. It is the most general model
for materials for which the assumption of convexity of their grains (structure ele-
ments) is reasonable. This chapter introduces the concept of Laguerre tessellation
in Section 1.1, while the proper definition is postponed into Section 2.1. Further,
in Section 1.2 we will look at how Laguerre tessellation samples can be obtained
from microscopical measurements of microstructures. Finally, in Section 1.3 we
introduce two data samples from materials science and focus on their elementary
statistical analyses. The aim of the thesis is to develop suitable statistical models
for such kind of data.

1.1 Laguerre tessellation and periodic condition
Consider x to be a finite or locally finite set of points (called a point pattern) in R3

and r a set of positive marks (called radii) attached to these points. The points
can be numbered, i.e., (x, r) = (xj, rj)j∈N. Then we can define 3D Laguerre
tessellation generated by (xj, rj)j∈N as the collection of nonempty sets (called
cells) given by

Ci = {z ∈ Rd : ||z − xi||2 − r2
i ≤ ||z − xj||2 − r2

j ∀(xj, rj) ∈ (x, r), i ̸= j},

(xi, ri) ∈ (x, r), where || · || is the Euclidean norm. We denote L(x, r) the La-
guerre tessellation generated by the marked point pattern (x, r). For the proper
definition and more details see Definition 9.

Note that Laguerre tessellation is defined as a division of the whole Euclidean
space. In applications, the set of points x together with their marks r is finite
and observed only on a finite observation window W . Then such finite marked
point pattern (x, r) can be extended to the whole space R3 by periodic repetition,
for details see Definition 11. Note that the periodic extension may cause skipping
some generators out of (x, r) as their cells may become empty and empty cells
are excluded by definition of Laguerre tessellation, for precise description of this
phenomenon see the paragraph below Definition 11.

1.2 Data acquisition
In materials science the microstructure (set of grains) of a polycrystalline material
is measured by some desctructive or undestructive microscopy technique. In
the following, we will meet with synchrotron X-ray tomographic imaging and
3D X-ray diffraction microscopy (3D-XRD). The measurement then needs to be
processed in order to obtain the experimental data (input data for our statistical
models). Whereas the first microscopy technique gives us a 3D image of the
microstructure (this still needs to be postprocessed by segmentation techniques),
using 3D-XRD microscopy only the volumes and centroids of grains are obtained.

Having such kind of measurements (3D image or centroids with volumes),
some optimization method is used to obtain an approximation of the microstruc-
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ture by a deterministic Laguerre tessellation, i.e., our experimental data. Fre-
quently used optimization methods are cross-entropy [Spettl et al., 2016], sim-
ulated annealing [Šedivý et al., 2016], gradient descent algorithms [Kuhn et al.,
2020], etc.

1.3 Introduction of datasets
This section introduces two Laguerre tessellation datasets coming from materials
research. The methods of acquisition of such datasets were briefly described in
Section 1.2, here we focus on visualization and elementary statistical description
of the two Laguerre tessellations. The visual inspection helps us to judge the
homogeneity of marked point patterns of generators. The statistical analysis of
the geometric tessellation characteristics gives us the first insight into microstruc-
tural properties of the materials. Some more advanced statistical properties of
the marked point patterns of generators will be investigated (not necessarily the
same ones in case of the both datasets) in Chapters 3 and 4 which are devoted
to building up statistical models for the Laguerre tessellations.

1.3.1 NiTi alloy
The first Laguerre tessellation data set comes from the study Sedmák et al. [2016]
of a polycrystalline microstructure of a nickel titanium alloy. We deal with a fi-
nite marked point pattern (x, r) extracted from a larger data set collected in
Petrich et al. [2019] by the so-called cross-entropy method applied to 3D-XRD
measurements. Specifically, x consists of the 2009 points which are contained in
a 3D rectangular observation window W of size 40× 40× 85 µm3. We visualize
the Laguerre tessellation data set by a series of 2D slices – Figure 1.1 shows four
equidistant slices perpendicular to the z axis.

Figure 1.1: Four slices in xy plane of the observed Laguerre tessellation. The
cells are coloured randomly.

To account for that W is a cut-off from the entire material specimen (causing
undesirable boundary effects) and for computational reasons (i.e., the use of soft-
ware Voro++, Rycroft [2009]), we choose to apply a periodic extension thereby
obtaining our Laguerre tessellation data set (xn, rn), see Definition 11 and no-
tation at the end of Section 2.2.5. Here n = 1965, so by applying the periodic
extension at most 44 cells are ‘lost’. From now, all NiTi tessellation-related cal-
culations are carried out in the periodic setup.

Figure 1.2 depicts xn together with W and its projections onto the xy, xz and
yz planes, respectively. None of these indicate spatial inhomogeneity of xn. So
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Figure 1.2: The spatial point pattern xn (upper
left) of the generators of the Laguerre tessel-
lation representing nickel-titanium alloy after
applying the periodic boundary condition to-
gether with its projections onto the xy, xz and
yz planes.

considering the periodic extension x∗
n (defined as in (2.5) but with (x, r) replaced

by (xn, rn)), we find it reasonable to assume that the distribution underlying x∗
n is

invariant under translations and rotations in 3D space. Equivalently, we assume
that the distribution underlying xn is invariant under shifts and rotations when
W is wrapped on a 3D torus.

The panel on the left in Figure 1.3 shows the balls defined by (xn, rn). This
indicates that the distribution underlying the radii rn conditioned on xn can
be assumed to be homogeneous. As a consequence we have invariance of this
conditional distribution when making shifts and rotations of xn on the torus.
The panel on the right shows: b) histogram of the radii; c) eight kernel density
estimates of the radii distributions corresponding to a subdivision of W into the
eight subsets obtained by dividing the three sides of the rectangular region W
into halves. For the number of points per subset, the mean is 232, the minimum
is 219 and the maximum is 270. The similarity of the eight density estimates is
in accordance with the assumption that the distribution of rn conditioned on xn

is homogeneous.
Figure 1.4 depicts histograms of some cell characteristics, cf. Section 2.1.1.

It shows that many cells are small, the distribution of number of faces is rather
symmetric and ranges from 4 (the smallest possible value) to 35, many cells are
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(a)

(b)

(c)

Figure 1.3: The radii rn of the generators of the Laguerre tessellation represent-
ing nickel-titanium alloy after applying the periodic boundary condition: a) the
balls defined by (xn, rn); b) histogram of the radii together with a kernel density
estimate (solid line) and a fitted density of a beta distribution (dashed line) ob-
tained by maximum likelihood estimation; c) eight kernel density estimates based
on the radii associated to the points in the eight sets for the subdivision of W
obtained by dividing its sides into halves.

rather spherical (i.e., with sphericity, see 2.3 for definition, close to 1) and many
pairs of neighbouring cells have a range of differences in cell sizes of the same
order as the cell size itself. Table 1.1 summarizes the data sample in terms of
means and standard deviations of the chosen cell characteristics – besides those
already considered in Figure 1.4, i.e., cell volume, surface area, number of faces,
sphericity and absolute difference in volume for two neighbouring cells, it adds
radius of the generator corresponding to the cell, number of vertices, total edge
length and neighbour-volume ratio.

The upper right triangle in Table 1.2 shows the sampling correlation coeffi-
cients for the cell characteristics volume, surface area, number of faces, sphericity
and total edge length. The lower left triangle in the table shows the empirical
correlations for absolute difference of volumes of two neighbouring cells and three
other face characteristics: face area, face perimeter and number of edges in a face.
We see that all correlations are high except for dvol which is nearly uncorrelated
to any other face characteristic. In particular volume, surface area and total
edge length are highly correlated, and face area and face perimeter are highly
correlated (correlations > 0.9).

Table 1.3 shows the empirical correlations of the cell characteristics with radii.
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.

Figure 1.4: Relative histograms of some geo-
metric characteristics of the Laguerre tessella-
tion representing nickel-titanium alloy. From
left to right, histograms of cell volume, surface
area, number of faces, sphericity and dvol (ab-
solute difference in volumes for neighbouring
cells).

Table 1.1: Laguerre tessellation characteristics for the nickel-titanium alloy data.
In the upper part of the table there are numbers of cells and faces per sample. In
the lower part of the table there are mean values and standard deviations (sd) of
cell characteristics evaluated from the data.

per sample:
number of cells 1965
number of faces 14721
per cell: mean sd
radius [µm] 2.5719 0.64686
nof 14.9832 4.9193
nov 25.9664 9.8387
vol [µm3] 69.2112 58.8862
surf [µm2] 92.4555 47.8593
tel [µm] 67.9204 27.3815
spher 0.78232 0.087038
dvol [µm3] 68.8902 65.0457
NVR 15.8262 862.9134

Table 1.2: Correlations of tessellation characteristics.

vol 0.971 0.938 0.841 0.680
farea surf 0.974 0.874 0.737
0.923 fper tel 0.941 0.793
0.751 0.751 fnoe nof 0.754
0.074 0.062 0.025 dvol spher

We see that among the cell characteristics surface area, volume and total edge
length have the highest correlations with radii (around 0.8).

In all tables and even sometimes in the text we abbreviate the names of cell
and face characteristics, for explanation of the shortcuts see Section 2.1.1 or List
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of Abbreviations.

Table 1.3: Correlations of tessellation characteristics with radii.

vol surf tel nof spher
radius 0.795 0.818 0.768 0.647 0.541

1.3.2 Aluminium alloy

a) b)

Figure 1.5: Aluminum alloy specimen measured by synchrotron X-ray tomogra-
phy (cf. Spettl et al. [2016]) : a) original voxelized image; b) approximation by
a Laguerre tessellation. The grains are coloured randomly.

The second Laguerre tessellation data sample, which belongs to a sample of
polycrystalline material, namely an aluminium alloy, is described in this section.
The image data, cf. Figure 1.5a, are obtained by synchrotron X-ray tomographic
imaging together with watershed segmentation and present a cutout of the poly-
crystalline microstructure of an Al-5 wt% Cu sample, which is described in Spettl
et al. [2016]. Figure 1.5b shows their approximation by a deterministic Laguerre
tessellation obtained by cross-entropy method.

The corresponding marked point pattern of generators (x, r) contains 1057
marked points in the parallelepipedal window W of size 486 × 529 × 685 µm3.
The generators create 1057 nonempty tessellation cells if we consider an empty
outside configuration, i.e., there are no further generators outside the window.
However, with periodic boundary conditions (periodic continuation outside the
window, Definition 11) these 1057 generators create only 1049 nonempty cells,
i.e., we obtain Laguerre tessellation data (xn, rn) with n = 1049, cf. the end of
Section 2.2.5. From now, all Al-5 wt% Cu tessellation-related calculations are
carried out in the periodic setup. The key assumption of homogeneity of xn and
rn conditioned on xn, which is necessary to justify the periodic boundary condi-
tions, is investigated in Figures 1.6 and 1.7. Figure 1.6 depicts xn together with
the observation window and the projections of xn onto xy, xz and yz planes. The
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figure indicates spatial homogeneity of xn. In Figure 1.7, the left panel shows
the balls defined by (xn, rn) and the right panel shows: b) histogram of the radii;
c) the radii distributions corresponding to a subdivision of W into eight sets of
equal size and shape. None of these contradict the assumption of homogeneity of
rn conditioned on xn.

.

Figure 1.6: The spatial point pattern xn (upper
left) of the generators of the Laguerre tessella-
tion representing aluminium alloy after apply-
ing the periodic boundary condition together
with its projections onto the xy, xz and yz
planes.

Figure 1.8 and Table 1.4 deal with chosen cells characteristics, cf. Sec-
tion 2.1.1. Namely, histograms of volume, surface area, number of faces, sphericity
and dvol are shown in Figure 1.8. Table 1.4 presents mean values and standard
deviations of the same characteristics and of radii, number of vertices, total edge
length and neighbour-volume ratio. When compared to Figure 1.4 and Table 1.1,
we see that again many cells are small. The distribution of number of faces is
more skewed to the left, its mean is 14.21 instead of 14.98. The cell are more
spherical: the mean icreased from 0.78 to 0.83 and standard deviation decreased
from 0.087 to 0.069. Histogram of dvol suggests that many pairs of neighbouring
cells have similar volumes. This is confirmed by NVR, where both the mean
value and standard deviation are very small. Comparing both dvol and NVR to
NiTi alloy, we conclude that the number of neighbours with a bigger difference in
volumes increased, on the other hand there are no extreme differences in volumes
of neighbouring cells as mean and standard deviation of NVR is much smaller.

Finally, the empirical correlations of the cell and face characteristics are very
similar as in the case of the first dataset, see Tables 1.2 and 1.3 – highly correlated
characteristics in case of NiTi alloy remain highly correlated in case of aluminium
alloy.
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(a)

(b)

(c)

Figure 1.7: The radii rn of the generators of the Laguerre tessellation represent-
ing aluminium alloy after applying the periodic boundary condition: a) the balls
defined by (xn, rn); b) histogram of the radii together with a kernel density esti-
mate (solid line) and a fitted density of a beta distribution (dashed line) obtained
by maximum pseudolikelihood estimation; c) eight kernel density estimates based
on the radii associated to the points in the eight sets for the subdivision of W
obtained by dividing its sides into half parts.

.

Figure 1.8: Relative histograms of some geo-
metric characteristics of the Laguerre tessella-
tion representing aluminium alloy. From left to
right and up to down, histograms of cell volume
(denoted as histexd

vol ), surface area, number of
faces (denoted as histexd

nof ), sphericity and dvol
(absolute difference in volumes for neighbour-
ing cells).
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Table 1.4: Laguerre tessellation characteristics for the aluminium alloy data. In
the upper part of the table there are numbers of cells and faces per sample. In
the lower part of the table there are mean values of characteristics per cell and
standard deviations (sd) for data.

per sample:
number of cells 1049
number of faces 7453
per cell: mean sd
radius [µm] 29.7693 18.9564
nof 14.21 4.84
nov 24.42 9.68
vol [µm3] 1.68·105 1.53·105

surf [µm2] 1.56·104 9.21·103

tel [µm] 8.59·102 3.84·102

spher 8.28·10−1 6.90·10−2

dvol [µm3] 1.885·105 1.57·105

NVR 1.6995 1.8754
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2. Theoretical background
In this chapter we introduce tessellations and point processes, some methods of
spatial statistics and stochastic simulation. Basic references are Chiu et al. [2013],
Schneider and Weil [2008], Møller and Waagepetersen [2003]. Throughout this
thesis, if not stated otherwise, we will work on a complete separable metric space
X equipped with metric ρ and Borel σ-field B(X) with reference measure γ. Bb(X)
is the system of bounded Borel sets on X. When speaking about randomness, we
will always consider a probability space (Ω,A,P). We start with some concepts
and notations mostly from measure theory.

Definition 1. For any subset A ⊂ X let diam A denote its diameter, that is

diam A = supx,y∈Aρ(x, y), diam ∅ = 0.

Let A ⊂ S and ϵ > 0. Define

Hd
ϵ (A) = inf

( ∞∑
i=1

(diam Ui)d :
∞⋃

i=1
Ui ⊇ A, diam Ui < ϵ ∀i

)
.

Then the d-dimensional Hausdorff measure of A is

Hd(A) = sup
ϵ>0

Hd
ϵ (A) = lim

ϵ→0
Hd

ϵ (A).

Finally we define the Hausdorff dimension of A by

dH(A) = inf{d ≥ 0 : Hd(A) = 0}.

Definition 2 (Locally finite measure). A measure µ on (X,B(X)) is locally finite
if µ(K) <∞ for every K compact on X.

Let M denote the space of all locally finite measures on X and N ⊂ M the
space of measures with values in N ∪ {0,∞}.

Definition 3. A point x ∈ X is an atom of a measure µ ∈ N if µ({x}) > 0.

From local finiteness it follows that each measure µ ∈ N has at most countably
many atoms. The following Lemma 1 says, that these atoms can be enumerated
in a measurable way.

Lemma 1. For µ ∈ N there exist measurable mappings ζi : N→ X such that

µ =
µ(X)∑
i=1

δζi(µ).

Proof. See Definition 9.1.XI and Lemma 9.1.XIII in Daley and Vere-Jones [2008].
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We identify any measure from N with a locally finite point configuration
(also called point pattern - the set of atoms of the measure) and thus we write
N = {x ⊂ X : card(x ∩ B) < ∞, B ∈ Bb(X)}. Then N = σ({x ∈ N :
card(x ∩ B) = m}, B ∈ B(X), m ∈ N ∪ {0}) is the appropriate σ-algebra.
Further, Nf is the family of all finite point configurations in X equipped with
the trace σ-algebra N f of N , i.e., N f = {Nf ∩ N : N ∈ N}. Thus we have
measurable spaces (N,N ) and (Nf ,N f ). Specially, Nf,k ⊂ Nf is the family of
configurations with exactly k points, and NW is the family of all finite point
configurations in W ∈ Bb(X).

Definition 4. A mark space M is a separable locally compact metric space with
Borel σ-algebra B(M). A pair (x, m), x ∈ X, m ∈ M is called a marked point.
Locally finite marked point configuration (x, m) is such that card(x∩B) <∞ for
all B ∈ Bb(X).

We will denote the measurable space of marked point configurations (equiv-
alently marked point patterns) by the same symbol (N,N ) as before. It will be
clear whether N stands for locally finite point patterns or locally finite marked
point patterns from the context. Analogously we will use the symbols Nf , NW ,
N , . . . in the marked case as well.

2.1 Tessellations
We will restrict ourselves to Euclidean spaces, i.e., consider X = Rd and ρ to be
Euclidean distance. We shorten Bd = B(Rd) and denote by p⊤q a scalar product
of two column vectors p, q ∈ Rd. A tessellation in Rd is a locally finite system of
space-filling closed sets, which are nonempty and have mutually disjoint interiors,
more precisely:

Definition 5 (Tessellation). A tessellation of Rd is a countable system of sets
T = {Ci : i ∈ N} such that

• int(Ci) ∩ int(Cj) = ∅, i ̸= j,

• ⋃i Ci = Rd,

• T is locally finite (i.e. card({Ci ∈ T : Ci ∩B ̸= ∅}) <∞ for all B ∈ Bd
b ).

The tessellation is convex if moreover holds that

• each Ci ∈ T , i ∈ N, is a compact convex set.

Sets Ci of a tessellation are commonly called cells or in engineering appli-
cations grains. More details about tessellation models in Rd can be found in
Møller [1989] and Okabe et al. [2000]. Before exploration of further aspects of
tessellations we define a supporting hyperplane of a convex set in Euclidean space.

Definition 6. A supporting hyperplane of a convex set B ∈ Rd is a (d − 1)-
dimensional hyperplane S(p, b) = {x ∈ Rd : p⊤x = b}, p ∈ Rd \ {0}, b ∈ R,
such that either B ⊆ {x ∈ Rd : p⊤x ≤ b} or B ⊆ {x ∈ Rd : p⊤x ≥ b}, and
∂B ∩ S(p, b) ̸= ∅.
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Figure 2.1: Violation of normality in 2D. Left: the tessellation is not face-to-face.
Right: the vertex (0-face) in the red circle is contained in the boundary of 4 cells
instead of 3.

Definition 7. Suppose T is a tessellation of Rd with nonempty compact convex
cells.

1. Given a cell C, C ∈ T , we consider the intersections of C with its supporting
hyperplanes. For s ∈ {0, . . . , d − 1} we call an intersection of Hausdorff
dimension s an s-face of C. We call the 0-faces the vertices, the 1-faces the
edges, and specially in R3 the 2-faces the faces. For convenience the cell C
is considered as a d-face.

2. Write ∆s(C) for the set of s-faces of a cell C. Further denote

F (y) =
⋂

C∈T : y∈C

C, y ∈ Rd

and Ss(T ) = {F (y) : dim F (y) = s, y ∈ Rd}, s ∈ {0, . . . , d}, the set of
s-faces of the tessellation T .

3. T is called face-to-face if the s-faces of the cells and the s-faces of the tes-
sellation coincide, i.e., if ∆s(T ) = Ss(T ) for s = 0, . . . , d.

4. T is called normal if it is face-to-face and every s-face of T is contained in
the boundary of exactly d− s + 1 cells for s = 0, . . . , d− 1.

In Figure 2.1 we present examples of tessellations in R2 that violate conditions
of being normal.

We will look at several deterministic tessellation models now, all of them being
determined by a locally finite (possibly marked) point pattern in sense that each
(marked) point determines a cell. We call generators the elements xi of such point
pattern x (or (xi, mi) elements of marked point pattern (x, m)). The tessellation
is then said to be generated by the (marked) point pattern. Since the definition
of a tessellation allows only nonempty cells, we assume that all generators of x
or (x, m) create nonempty cells. Otherwise, we consider only the subset of x
or (x, m) that generates nonempty cells, i.e., generators creating empty cells are
excluded. Definitions of the two most common tessellations follow.

Definition 8 (Voronoi tessellation). Let x be a locally finite system of points in
Rd. The Voronoi tessellation generated by the point pattern x is the collection of
cells given by

Ci = {z ∈ Rd : ||z − xi|| ≤ ||z − xj|| ∀xj ∈ x, i ̸= j}, xi ∈ x.

We denote V or(x) the Voronoi tessellation generated by the point pattern x.
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The Voronoi tessellation can be also interpreted as a result of a growth process.
The points xi of x play the role of nuclei, in which the growth begins at the same
instant. The speed of the growth is uniform in all directions. In this case no
empty cells can arise.

A generalization of Voronoi tessellation is Laguerre tessellation. It was first
introduced by Aurenhammer [1987].

Definition 9 (Laguerre tessellation). Let (x, m) = {(xi, mi)}, xi ∈ Rd, mi ∈
M = R, be a countable set such that min(x,m)∈(x,m)||x−y||2−m exists for each y ∈
Rd. The Laguerre tessellation generated by the marked point pattern {(xi, mi)}
(marks mi are called weights) is the collection of nonempty cells given by

Ci = {z ∈ Rd : ||z − xi||2 −mi ≤ ||z − xj||2 −mj ∀(xj, mj) ∈ (x, m), i ̸= j},

(xi, mi) ∈ (x, m). We denote L(x, m) the Laguerre tessellation generated by the
marked point pattern (x, m).

We will restrict only to positive weigths, i.e., mi > 0 and M = R+, set mi = r2
i

and call
ρ(y, b(x, r)) = ||x− y||2 − r2 (2.1)

the power distance of a point y ∈ Rd to a ball b(x, r), x ∈ Rd, r > 0. The
values {ri} are called radii of Laguerre tessellation. We will write (x, r) for the
corresponding marked point pattern and L(x, r) for the corresponding Laguerre
tessellation. In the similar manner, M will now denote the space of radii (instead
of weights) and we will consider M ⊆ R+.

The interpretation of the power distance is as follows: for each z ∈ Rd outside
the sphere b(x, r), the value ρ(z, b(x, r)) equals the squared length of the tangent
line segment from z to the sphere, cf. Fig. 2.2. The power distance ρ(z, b(x, r))
equals 0 if z lies on the boundary of the sphere, and it is smaller than 0 if z
is inside the sphere. If a further generator (y, q) ∈ x overlaps with (x, r) over
the center (i.e., y ∈ b(x, r)), it can happen that either the cell corresponding to
marked point (y, q) does not cover y or even that there is no cell at all (in this
case the generator can be omitted, it holds that L(x, r) = L(x \ {y}, r \ {q}) and
we say that (y, q) is redundant in (x, r).). Note that the Laguerre tessellations are
invariant under transformations of radii of the form r ↦→

√
r2 + t, where t ∈ R is

fixed such that all radii remain positive. More details about Laguerre tessellations
can be found in Lautensack [2007].

The Voronoi and Laguerre tessellations are two examples of tessellation models
generated by a (marked) point pattern. All these models have for a given set of
generators g the cells defined as

Ci = {z ∈ Rd : d(z, gi) ≤ d(z, gj) ∀gj ∈ g, i ̸= j}. (2.2)

by means of an appropriate distance d in Rd. The distance d is the Euclidean
distance in case of Voronoi tessellation and the power distance, (2.1), in case of
Laguerre tessellation.

Both Voronoi and Laguerre tessellations have planar cell boundaries and are
created by convex cells. However, Laguerre tessellation can produce tessellations
with much more variation in terms of both cell size and aspect ratio. In the
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Figure 2.2: Illustration of the power distance given in (2.1). All three points P,
Q, R have the same power distance with respect to circles with centers S, T and
radii s, t, respectively. ∆ is the square root of the power distance

case that all marks are equal, the Laguerre tessellation reduces to a Voronoi
tessellation.

A further generalization of Laguerre tessellation is possible if we instead of
Euclidean norm use an elliptic norm. This generalization is called generalized
balanced power diagram (GBPD). The non-convex GBPD is beyond the scope of
this thesis, as we restrict to convex tessellations only. More details about GBPD
can be found in Alpers et al. [2015].

Definition 10. We say that (x, r) ⊂ Rd × R+ fulfills regularity condition if

(R1) for every z ∈ Rd and every t ∈ R only finitely many elements (x, r) ∈ (x, r)
satisfy ||x− z||2 − r2 ≤ t, and

(R2) conv{x : (x, r) ∈ (x, r)} = Rd.

Further, we say that the points of (x, r) are in general position if the following
conditions hold:

(GP1) no k + 1 points x, (x, r) ∈ (x, r), are contained in a (k − 1)-dimensional
affine subspace of Rd for k = 2, . . . , d, and

(GP2) no d + 2 points have the equal power distance with respect to some point
in Rd.

If the set of radii is bounded, the first part of regularity condition implies the
local finiteness of the set of marked points {x : (x, r) ∈ (x, r)}.

Theorem 2. Let L(x, r) be the Laguerre tessellation generated by marked point
pattern (x, r). Let (x, r) satisfy regularity condition. Then

1. every cell of L(x, r) is compact;

2. the set of cells of L(x, r) is locally finite and space filling;

3. the L(x, r) is face-to-face;

4. moreover if (x, r) is in general position, then L(x, r) is normal.
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Proof. Proofs can be found in Lautensack [2007], Propositions 2.2.2, 2.2.4., 2.2.5
and Corollary 2.2.7.

Theorem 3. Every normal tessellation of Rd for d ≥ 3 is a Laguerre tessellation.

Proof. Proof can be found in Lautensack [2007], Theorem 2.4.3.

2.1.1 Tessellation characteristics
Given a tessellation T , we are interested how to quantify its properties. In Def-
inition 7 we have introduced so called s-faces of the cells, s = 0, . . . , d. In case
d = 3 we call the s-faces, s = 0, . . . , 3, vertices, edges, faces and cells, respec-
tively. These objects can be described by a pleiad of geometrical characteristics.
We restrict ourselves to the case d = 3 and provide a reader with a list of the
most common characteristics together with their abbreviations which are used
throughout all formulae and tables within this thesis.

Cell characteristics: volume (abbreviated as ‘vol’), surface area (‘surf’), total
edge length (‘tel’), number of faces (‘nof’), number of edges (‘noe’), number of
vertices (‘nov’), sphericity (‘spher’).

Sphericity is defined by

spher = π1/3(6 · vol)2/3

surf . (2.3)

Note that 0 < spher ≤ 1 with the value 1 corresponding to a sphere. Further, in
3D it holds that the minimal number of faces is 4 and

nov = nof + noe - 2.

Further geometrical characteristics can be invented for groups of cells in or-
der to describe cell interactions. We call the characteristics describing a pairwise
interaction of two neighbouring cells as face characteristics.

Face characteristics: face area (‘farea’), face perimeter (‘fper’), number of edges
per face (‘fnoe’), number of vertices per face (‘fnov’).

Another examples of such characteristics are absolute difference in volumes of
two neighbouring cells (‘dvol’) and neighbour-volume ratio (‘NVR’) defined by

NVR(C1, C2) =

⎧⎨⎩
(

max {|C1|,|C2|}
min {|C1|,|C2|} − 1

)1/2
if C1 ∼ C2,

0 otherwise,
(2.4)

where∼ stands for a neighbourhood relation. We say that two cells are neighbours
if they share a common face. In general, for k ≥ 2, if the k-tuple C1, . . . , Ck can
be arranged such that Ci1 ∼ Ci2 ∼ . . . ∼ Cik

, we write C1, . . . , Ck ∼k and call
it a k-neighbourhood relation. Specially for k = 3 and 4 we define a proper
neighbourhood relation if the 3-tuple and 4-tuple of cells have a common edge
and vertex (we can speak about edge and vertex characteristics), respectively.
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For all above mentioned geometrical characteristics means and standard de-
viations over the tessellation are usually of interest. Alternatively to the moment
properties the whole distribution can be examined, e.g., by means of histogram.
Let us consider some geometrical characteristic taking values in an interval [a, b].
For some integer J , let D = {ti}J

i=0 with ti < ti+1 for all i be a decomposition
of the interval [a, b] into J subintervals such that t0 = a and tJ = b (D does
not need to be equidistant). Each histogram H can then be represented by some
numbers h1, . . . , hJ interpreted as frequencies of the classes 1, . . . , J (i.e., hi is the
number of facets for which the value of the considered geometrical characteristic
belongs to the interval [ti−1, ti)). Except of the histogram, one could deal with
the cumulative histogram or empirical distribution function.

2.1.2 Periodic boundary conditions
Estimation of tessellation characteristics requires a special treatment of cells
touching the boundary of the observation window W . These cells, cutted by
the boundary, are often assumed to be not complete. Due to homogeneity, a con-
venient way how to deal with this undesirable effect is introduction of so called
periodic boundary condition. Because of applications, the periodic boundary con-
dition is formulated in case d = 3. We give a formal definition in case of a marked
point pattern (x, r). Equivalently, application of the periodic boundary condition
can be viewed as wrapping the observation window W on a torus.

Definition 11 (Periodic conditions). Let W = [0, a]×[0, b]×[0, c] be a rectangular
parallelepiped and (x, r) a finite marked point pattern such that x ⊂ W . Define
a periodic extension of (x, r) which is in accordance to W , i.e., the infinite marked
point pattern

(x∗, r∗) =
⋃

((x,y,z),r)∈(x,r)

⋃
(i,j,k)∈Z3

{((ia + x, jb + y, kc + z), r)} (2.5)

where Z3 is the 3D integer lattice. Note that x = x∗ ∩W .

Application of the periodic boundary condition to a marked point pattern
(x, r) of generators of Laguerre tessellation may cause that some generators of
nonempty cells in L(x, r) might generate empty cells in L(x∗, r∗). Then we keep
only those Laguerre cells C(x, r | x∗, r∗) which are non-empty and have x ∈ x.
Let n be the number of such cells and (xn, rn) ⊆ (x, r) be the marked point
pattern specifying the generators of these cells. Note that L(x∗, r∗) = L(x∗

n, r∗
n).

In the thesis, all simulations are carried out in the periodic setting and pa-
rameter estimation in Chapter 4 relies on the periodic treatment of boundary
effects as well.

2.1.3 Point positions in Laguerre geometry
In this and the following section we deal with arrangement of marked points in
the space R3 ×M, where M ⊆ R+. Recall that we use the notation (x, r) for
a marked point pattern and write (x, r) ∈ (x, r) when considering a single point
of the point pattern. We use the symbols x and r separately when reffering to
points in R3 and radii in M, respectively. By η we will always denote a finite
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subset of (x, r), i.e., η = {(xj, rj)}j∈J for some J finite subset of N. Then ηx

and ηr will denote the points and radii of η, respectively, i.e., ηx = {xj}j∈J and
ηr = {rj}j∈J . Recall that (x, r)W denotes a restriction of (x, r) to W ∈ B3

b . The
mutual arrangement of marked points is described in terms of power distance
(2.1) (this is what we call a Laguerre geometry in the section title).

Definition 12. Let (x, r) be a marked point pattern in R3×M and ρ(z, (x, r)) =
||z−x||2−r2 denote the power distance of z ∈ R3 to a marked point (x, r) ∈ (x, r).

1. We say that two marked points (x, r), (y, s) are orthogonal if ρ(x, (y, s)) =
r2.

2. We define the characteristic point of η ⊂ (x, r) as a marked point (xη, rη) ∈
R3 × R+ which is orthogonal to every (y, s) ∈ η.

3. η ⊂ (x, r) is said to be Laguerre-cospherical, if there exists its characteristic
point (xη, rη).

4. We say that η ⊂ (x, r) is regular in (x, r) if ρ(xη, (y, s)) ≥ r2
η for all (y, s) ∈

(x, r).

It follows, that for arbitrary η ⊂ (x, r) the characteristic point of η needs
not to exist or it may be non-unique. The statement η ⊂ (x, r) is Laguerre-
cospherical can be paraphrased as ‘for η there exists a point xη ∈ R3 possesing
the same power distance ρ to all points (y, s) ∈ η.

Using the terminology introduced in this section and Definition 12, the general
position of (x, r) stated in Definition 10 can be reformulated in R3 as follows:

(GP1) η ⊂ (x, r), 3 ≤ card(η) ≤ 4 ⇒ ηx is an affinely independent set of points
in R3,

(GP2) η ⊂ (x, r), card(η) > 4⇒ η is not Laguerre cospherical.

Note that the points x0, . . . , xk ∈ R3, k ≤ 3, are affinely independent if the
vectors x1 − x0, . . . , xk − x0 are linearly independent. Let Ngp denote the set of
all locally finite marked point configurations (x, r) being in general position.

Definition 13. For (x, r) ∈ Ngp we define

LD(x, r) := {η ⊂ (x, r) : η is regular},

LDk(x, r) = {η ∈ LD(x, r) : card(ηx) = k}, for k = 1, . . . , 4.

Claim 4. Let (x, r) ∈ Ngp. It holds that characteristic point (xη, rη) exists for all
η ⊂ (x, r) with card (η) ≤ 4 and moreover (xη, rη) is unique whenever card (η) =
4.

Proof. Assume η = {(x1, r1), . . . , (x4, r4)} ⊂ (x, r) ∈ Ngp to be arbitrary. The
characteristic point has to satisfy ||xη−xi||2−ri

2 = r2
η for all i = 1, . . . , 4. Denote

coordinates of xi as ai, bi, ci and analogically coordinates of xη as aη, bη, cη. Then
the system of equations becomes

a2
η + b2

η + c2
η − r2

η − 2aiaη − 2bibη − 2cicη = ri
2 − a2

i − b2
i − c2

i , i = 1, . . . , 4.
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It is linear with respect to (αη, aη, bη, cη), where αη = a2
η + b2

η + c2
η− r2

η. The space
locations x1, . . . , x4 are affinely independent, since η ∈ Ngp, and hence the matrix
formulation of the system is of the full rank. Therefore, the system has a unique
solution. In case of card η < 4, the system is underdetermined and of the full row
rank as η ∈ Ngp. That implies there are infinitely many solutions.
Definition 14 (Delaunay tessellation). Let (x, r) ∈ Ngp. Let The Delaunay
tessellation determined by (x, r) is the collection of cells given by

Dη = {z ∈ R3 : z ∈ conv(ηx)}, η regular in (x, r), card(η) = 4.

We denote D(x, r) the Delaunay tessellation determined by the marked point pat-
tern (x, r).

In words, the Delaunay tessellation D(x, r) in R3 is a collection of tetrahedrons
whose set of vertices is regular, i.e., collection of cells

{Dη}η∈LD4(x) = {conv(ηx)}η∈LD4(x).

The Delaunay tessellations of R3 are often called Delaunay tetrahedrizations,
since their cells form tetrahedra.

As both Laguerre and Delaunay tessellations are determined by a marked
point pattern (x, r), it is a question whether there is a relationship between them.
Indeed, the Laguerre and Delaunay tessellations are dual, i.e., we can construct
one if we know the other. Let C(x, r) be a Laguerre cell corresponding to the
generator (x, r) and F0(C(x, r)) denote the set of vertices of a nonempty cell
C(x, r), (x, r) ∈ (x, r). Then

D̃v = conv{x : (x, r) ∈ (x, r), v ∈ F0(C(x, r))}

is a tetrahedron corresponding to the vertex v (each vertex is an intersection
of exactly four Laguerre cells). Let F0,(x,r) = ∪(x,r)∈(x,r)F0(C(x, r)) denote the
set of all vertices of the tessellation L(x, r). The Delaunay tessellation D(x, r)
can then be alternatively defined as a collection of cells D̃v, v ∈ F0,(x,r). For
(x1, r1), (x2, r2), (x3, r3), (x4, r4) ∈ (x, r) the set D̃v = conv{x1, x2, x3, x4} is a De-
launay cell if and only if C(x1, r1)∩C(x2, r2)∩C(x3, r3)∩C(x4, r4) ̸= ∅. It holds
that Dη = D̃v if η = {(x, r) ∈ (x, r) : v ∈ F0(C(x, r))}.

All terms defined in Definition 12 for marked point pattern (x, r) using power
distance have their analogies for unmarked point pattern x using Euclidean dis-
tance. The characteristic point becomes a circumball circumscribed to a given
subset of points of x, Laguerre-cosphericity becomes cosphericity with respect
to Euclidean distance and regularity becames so called empty sphere property,
i.e., the property meaning that the circumball circumscribed to a given subset of
points of x contains no other points of x. The Delaunay tessellation in R3 given
by x is a collection of sets

{conv(ηx) : card(ηx) = 4, ηx satisfies empty sphere property in x}.

Sometimes, we use term Delaunay tessellation only when reffering to an un-
marked point pattern and instead the term Laguerre Delaunay tessellation when
reffereing to a marked point pattern. Recall, that in the case that all marks are
equal, the Laguerre tessellation reduces to a Voronoi tessellation and in the same
maner we say that Laguerre Delaunay tessellation reduces to Delaunay tessella-
tion.
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2.1.4 Hypergraphs
In this section, we follow the usage of hypergraphs from Dereudre et al. [2012].
The concept of hypergraph is mainly the theoretical tool how to effectively de-
scribe the tessellation geometry.

Comment on notation: To keep the formulations concise we will write g in-
stead of both unmarked locally finite point pattern x and marked locally finite
point pattern (x, r). By η ⊂ g we always mention a finite (marked) point config-
uration. Writing η ∈ Nf and g ∈ N is correct as we use symbols N, Nf , etc. in
both unmarked and marked case.

Definition 15 (Hypergraph). A hypergraph structure is a measurable subset E
of (Nf ×N,N f ⊗N ) such that η ⊂ g for all (η, g) ∈ E. We call η a hyperedge
of g and write η ∈ E(g), where E(g) = {η : (η, g) ∈ E}. For a given g ∈ N, the
pair (g, E(g)) is called a hypergraph.

Notice that we have already seen five hypergraph structures. Indeed, for
g = (x, r) ∈ N, the pairs ((x, r),LD(x, r)) and ((x, r),LDk(x, r)), k = 1, . . . , 4,
are hypergraphs.

The finite point configuration η, card(η) = k, is said to be connected in
LD(x, r) if for any two points (x, r), (y, s) ∈ η there exists a path between (x, r)
and (y, s) in the graph LD2(x, r), that is, there exists m ∈ {1, . . . , k − 1} and
a sequence (x0, r0), . . . , (xm, rm) ∈ η such that (x, r) = (x0, r0), (y, s) = (xm, rm)
and

{(xi, ri), (xi+1, ri+1)} ∈ LD2(x, r)
for all i ∈ {0, . . . , m− 1}. We define the graph of connected k-tuples

CGk = {(η, (x, r)) : η ⊂ (x, r), card(η) = k, η is connected in LD(x, r)}

and
CGk,b = {(η, (x, r)) ∈ CGk : ∀(x, r) ∈ η : C(x, r) is bounded}.

Both CGk and CGk,b are hypergraph structures.

Definition 16 (Sublinearity). A hypergraph E is sublinear if there exists a con-
stant cs <∞ such that for all (x, r) ∈ Nf we have card(E(x, r)) ≤ cs card(x).

Definition 17 (Hyperedge potential). A hyperedge potential is a measurable
function φ : E → R ∪ {+∞}. The hyperedge potential is said to be hereditary if
φ(η, g) <∞ for some (η, g) ∈ E implies that φ(η, g̃) <∞ for all g̃ ⊂ g such that
η ∈ E(g̃).

For notational convenience, we set φ = 0 on Ec. The function φ introduces
interactions on hyperedges that need not be hereditary since φ is allowed to take
the value ∞ (hard-core case).

Definition 18. Let φ be a hyperedge potential for a hypergraph structure E. Then
φ is

(i) shift-invariant if

(ϑtη, ϑtg) ∈ E and φ(ϑtη, ϑtg) = φ(η, g) for all (η, g) ∈ E and t ∈ R.
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(ii) unary if there exists a measurable function φ̂ : N→ R ∪ {+∞} such that

φ(η, g) = φ̂(η) for η ∈ E(g).

If g = (x, r), then ϑt(x, r) = {(x − t, r) : (x, r) ∈ (x, r)} is the translation of
the positional part of the configurations by the vector −t ∈ R3. All hyperedge
potentials mentioned in this thesis are assumed to be shift-invariant.

Definition 19 (Finite horizon). A set ∆ ∈ B3
b is a finite horizon for the pair

(η, (x, r))) ∈ E and the hyperedge potential φ if for all (x̃, r̃) ∈ N, (x̃, r̃) = (x, r)
on ∆×M

(η, (x̃, r̃)) ∈ E and φ(η, (x̃, r̃)) = φ(η, (x, r)).

Claim 5 (Finite horizon in case of LD and unary potential). Let M = [0, Rmax]
for some Rmax > 0. Then the set ∆ = b(xη,

√
r2

η + R2
max) is a finite horizon for

(η, (x, r)) ∈ LD and arbitrary unary potential φ(η, (x, r)) = φ̂(η). Moreover the
finite horizon ∆ can be decomposed on a spherical shell with a bounded thickness
and a ball containing no points of x.

Proof. Let η ∈ LD(x, r) and (xη, rη) be its characteristic point. Taking an
arbitrary point (y, s) ∈ (x, r) we obtain from regularity of η in (x, r) that
r2

η ≤ ρ(xη, (y, s)) = ||xη − y||2 − s2 ≤ ||xη − y||2. It follows that the ball
b(xη, rη) does not contain the points of x. The goal is to construct a finite
horizon for a given pair (η, (x, r)) ∈ LD and a given unary potential. Notice
that the finite horizon does not depend on the unary potential, since for ar-
bitraty (x̃, r̃) such that η ⊂ (x̃, r̃) we have φ(η, (x̃, r̃)) = φ̂(η) = φ(η, (x, r)),
where φ̂ is from the definition of the unary potential. Therefore, all we need
to fulfill is that (η, (x̃, r̃)) ∈ E for every (x̃, r̃) ∈ N : (x̃, r̃) = (x, r) on ∆ ×M.
To do that we use the fact that the mark space is bounded, M = [0, Rmax].
Then ∆ = b(xη,

√
r2

η + R2
max) is sufficient as a horizon, since any point (y, s) ∈

(R3 \ ∆) ×M satisfies ∥xη − y∥ ≥
√

r2
η + R2

max and therefore cannot violate the
regularity of η. Indeed, since s ≤ Rmax, ∥xη − y∥ ≥

√
r2

η + s2, what means
that η is regular in arbitrary (x̃, r̃) ∈ N : (x̃, r̃) = (x, r) on ∆ × M. More-
over, all points of ηx are contained in the set ∆, since for every (y, s) ∈ η we
have ∥xη − y∥ =

√
r2

η + s2 ≤
√

r2
η + R2

max. The set ∆ \ b(xη, rη) is a spher-
ical shell (a generalization of an annulus to three dimensions) with thickness√

r2
η + R2

max − rη = R2
max√

r2
η+R2

max+rη
≤ Rmax. Although the number of points in the

spherical shell is not bounded, we have the bound on its thickness.

Definition 20 (Range confinement). Let W ∈ B3
b . Define the set

EW (x, r) := {η ∈ E(x, r) : φ(η, ζ ∪ (x, r)W c) ̸= φ(η, (x, r)) for some ζ ∈ NW}.

We say a configuration (x, r) ∈ N confines the range of φ from W if there exists
a set ∂W (x, r) ∈ B3

b such that φ(η, ζ ∪ (x̃, r̃)W c) = φ(η, ζ ∪ (x, r)W c) whenever
(x̃, r̃) = (x, r) on ∂W (x, r) × M, ζ ∈ NW and η ∈ EW (ζ ∪ (x, r)W c). In this
case we write (x, r) ∈ NW

cr . We denote rW,(x,r) the smallest possible r such that
(W +b(0, r))\W satisfies the definition of ∂W (x, r). We will use the abbreviation
∂W (x, r) = (x, r)∂W ((x,r)).
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2.2 Point processes and marked point processes
The theory regarding the point processes can be found for example in Daley and
Vere-Jones [2003], Daley and Vere-Jones [2008] and Møller and Waagepetersen
[2003].

Definition 21 (Point process). A point process on X is a measurable mapping
Φ : (Ω,A,P) → (N,N ). The distribution of the point process Φ is a probability
measure Q on (N,N ) given by Q(·) = P({ω ∈ Ω : Φ(ω) ∈ ·}). The measure on X
defined by Λ(B) = E Φ(B), B ∈ B(X) is called the intensity measure of the point
process Φ. We say that the point process Φ is simple if P(Φ({x}) ≤ 1,∀x ∈ X) = 1
and it is finite if P(Φ(X) <∞) = 1.

In the rest of the thesis we will consider only simple point processes.

Definition 22 (Intensity function). Let Λ be the intensity measure of a point
process Φ on X satisfying for some non-negative measurable function λ

Λ(B) =
∫

B
λ(x)dx, B ∈ B(X),

then λ is called the intensity function of point process Φ.

Theorem 6. Let Φ be a point process on X with distribution Q and intensity
measure Λ ∈M. Then exists a Markov kernel P from (X,B(X)) to (M,M) such
that ∫

M

∫
X

f(x, ν)ν(dx)Q(dν) =
∫
X

∫
M

f(x, ν)P (x, dν)Λ(dx)

for arbitrary measurable function f on X×M. If there is different Markov kernel
P ′ with this property, then Λ({x ∈ X : P (x, ·) ̸= P ′(x, ·)}) = 0.

Proof. Theorem 4.2 in Chiu et al. [2013].

Definition 23 (Palm distribution). Let P be a markov kernel from Theorem 6,
the distribution Px(·) = P (x, ·) is called a Palm distribution of the point process
Φ in point x ∈ X.

Throughout the thesis we will be interested in point processes on Euclidean
space, i.e., we set X = Rd, d ∈ N. Remind that we shorten B(Rd) = Bd.

Definition 24 (Stationary point process). For each z ∈ Rd we denote ϑz the
translation operator on N given by ϑzµ(B) = µ(B − z), µ ∈ N, B ∈ Bd. A point
process Φ on Rd is said to be stationary if ϑzΦ ∼d Φ for all z ∈ Rd, i.e., the
distribution of the point process is invariant with respect to translations.

Note that, the intensity function of a stationary point process is constant (in
this case we speak just about intensity). A point process with constant intensity
is usually called to be homogeneous.

Except of invariance with respect to translations, another important property
of point processes on Rd is invariance with respect to rotations. By symbol SO(d),
d ∈ N, we denote a d-dimensional rotation group. For details about the group and
about various possible representations of rotations see Morawiec [2003]. Here we
just write O for a rotation and we avoid to specify any particular representation
of O.
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Definition 25 (Isotropic point process). Let O ∈ SO(d) we denote RO the
operator of rotation on N given by ROµ(B) = µ(OB), µ ∈ N, B ∈ Bd. A point
process Φ on Rd is said to be isotropic if ROΦ ∼d Φ for all rotations O, i.e.,
the distribution of the point process is invariant with respect to rotations around
origin.

2.2.1 Poisson point process
Definition 26 (Poisson point process). Let Λ be a locally finite measure on X.
A point process Φ such that

i. Φ(B) has Poisson distribution with parameter Λ(B), B ∈ Bb(X),

ii. Φ(B1), . . . , Φ(Bn), n ∈ N, are independent for B1, . . . , Bn ∈ Bb(X) pairwise
disjoint,

is called Poisson point process (PPP) with intensity measure Λ.

Let πΛ
W denote the distribution of the restriction of a Poisson point process

with intensity measure Λ on W ∈ Bd
b . In homogeneous case we write πz

W , where
z is the intensity. If z = 1, then we write πW = π1

W for short.

Definition 27 (Point process with density with respect to Poisson point process).
Let p : Nf → R+ be a measurable function such that

∫
Nf p(ν)πΛ

W (dν) = 1. Then
a point process Φ on W with distribution

P(Φ ∈ A) =
∫

A
p(ν)πΛ

W (dν), A ∈ N f

is said be the (finite) point process with density p with respect to Poisson point
process with distribution πΛ

W .

To have a density with respect to Poisson point process with intensity measure
Λ on W means to have a density w.r.t. Poisson measure given by

πΛ
W (F ) = e−Λ(W )

[
I{F =∅} +

∞∑
n=1

1
n!

∫
. . .
∫
I{F ={x1,...,xn}}Λ(dx1) . . . Λ(dxn)

]
, (2.6)

where F ∈ N f .

Definition 28 (Papangelou conditional intensity). For a point process Φ with
a density p we define Papangelou conditional intensity by

λ∗(x, ν) = p(ν + δx)
p(ν) , x ∈ Rd, ν ∈ Nf ,

where we set c/0 = 0, c ∈ R+.

We can interpret the Papangelou conditional intensity of the point process
Φ as the conditional probability that in an infinitesimal neighbourhood of some
fixed point x ∈ X, there will be a point of Φ, given we know the location of all
points of Φ outside this neighbourhood.
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2.2.2 Gibbs point process
A Gibbs point process (GPP) is a point process with a special form of the density
with respect to finite Poisson point process. It allows to introduce interactions
between the points. The interaction is described by an energy function on the
space of configurations. In this section we will define Gibbs point process in two
steps. In the first step we will state the finite volume case, i.e., the theory of Gibbs
point processes on a bounded set W ∈ Bd

b . Then the theory will be generalized
to the whole space W = Rd and we will talk about infinite volume Gibbs point
processes. Details regarding the theory of GPP can be found in Dereudre [2019].

Finite volume Gibbs point processes

Definition 29. An energy function is a measurable function E : Nf → R∪{∞}.
The support of the energy function is {x ∈ Nf : E(x) < ∞}. For a set W ∈ Bd

b

we define
EW (x) = E(x)− E(xW c), xW = x ∩W, x ∈ Nf ,

with the convention ∞−∞ = 0.

Roughly speaking the quantity EW (x) gives the energetic contribution of
points xW in the computation of the energy of x.

Definition 30. An energy function E is called

(i) non-degenerate if E(∅) <∞,

(ii) hereditary if

∀x ∈ Nf ∀y ∈ Rd : E(x) =∞⇒ E(x + δy) =∞,

(iii) stable if there exists a constant K such that for every x ∈ Nf it holds
E(x) ≥ Kcard(x),

(iv) stationary if for any y ∈ Rd and x ∈ Nf we have E(τyx) = E(x).

Definition 31. An energy function E has a finite range R > 0 if for every
W ∈ Bd

b and any x ∈ Nf it holds

EW (x) = E(xW ⊕B(0,R))− E(xW ⊕B(0,R)\W ).

From now when talking about the energy function, we will assume that it is
non-degenerate and stable. If E is nonnegative, it is stable with K = 0.

In many practical cases we assume only a bounded observation window W ∈
Bd

b . Therefore we define Gibbs point process in the finite volume case. Moreover
we will consider only the stationary reference Poisson point process πz

W , z > 0.
Recall that we write πW = π1

W .

Definition 32 (Gibbs point process). Let W be in Bd
b . The finite volume Gibbs

point process on W with activity z > 0 and the energy function E is a finite point
process Φ with density with respect to πW of the form

pW (x) = 1
ZW

zcard(xW ) exp (−E(x)), x ∈ Nf , (2.7)
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where
ZW =

∫
zcard(xW ) exp (−E(x))πW (dx)

is a normalizing constant. Distribution PW of Φ is called a (finite volume) Gibbs
measure.

Note that the Definition 32 is correct - thanks to the non-degeneracy and
stability of the energy function E the distribution PW is well defined since the
normalizing constant is positive and finite.

The local conditional distributions of Gibbs point process in any bounded win-
dow ∆ given the configuration outside ∆ can be described by DLR (Dobrushin,
Lanford and Ruelle) equations:

Theorem 7. For W, ∆ ∈ Bd
b , ∆ ⊂ W , L(∆) > 0 we have for PW -a.a. x∆c

PW (dx∆|x∆c) = 1
Z∆(x∆c)zcard(x∆) exp (−E∆(x))π∆(dx∆),

where
Z∆(x∆c) =

∫
zcard(x∆) exp (−E∆(x))π∆(dx∆)

is a normalizing constant.

Proof. Proof can be found in [Dereudre, 2019], Proposition 3.

A simple example of a Gibbs point process is the so called Strauss point
process which is given by a density

p(x) ∝ βcard(x)γSδ(x), x ∈ Nf ,

where β > 0, 0 ≤ γ ≤ 1, δ > 0 are parameters and Sδ(x) = ∑
j<k I[||xj−xk||≤δ]. The

limit case with γ = 1 reduces to Poisson point process with intensity measure
βΛ. The case γ = 0 results in so called hard-core point process, where no two
points of the process are closer than δ.

Strauss point process is a special case of a class of Gibbs point processes called
multiscale point process [Penttinen, 1984]:

Definition 33 (Multiscale point process). Multiscale point process Mq, q ∈ N

p(x) ∝ βcard(x)Πq−1
i=1 γ

∑
j<k

I[δi−1<∥xj −xk∥≤δi]
i , x ∈ Nf , (2.8)

where β > 0, 0 ≤ γ1 ≤ 1, . . ., 0 ≤ γq−1 ≤ 1 and 0 < δ1 < . . . < δq−1 are unknown
parameters and we set δ0 = 0 and 00 = 1.

If q = 1 we interpret the right hand side in (2.8) as βcard(x). Note that M1 is
just a Poisson point process with intensity measure βΛ andM2 is just a Strauss
point process.

The multiscale point process can be viewed as a special case of a class of
pairwise interaction point processes. These processes constitute a flexible class of
models for regularity. A point process Φ is called to be a pairwise interaction point
process with homogeneous interaction functions ϕ (a function which is invariant
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with respect to shifts and rotations) if its distribution is given by a density with
respect to Poisson point process, where the density is of the form

p(x) ∝ βcard(x) ∏
i<j

ϕ(∥yi − yj∥), x ∈ Nf ,

where β > 0 is a parameter and ϕ ≥ 0. In order to obtain a well-defined density,
a further condition on the interaction function is needed; it suffices to assume
that 0 ≤ ϕ ≤ 1 in which case normalizing constant is positive and finite.

Infinite volume Gibbs point processes

Under additional assumptions we can define an infinite volume Gibbs point pro-
cess on the whole space Rd.

Definition 34. Let E be a stationary energy function. An infinite volume Gibbs
point process with activity z > 0 and energy function E is a point process with
(stationary) distribution P such that for any W ∈ Bd

b with L(W ) > 0 and for
P -a.a. xW c

P (dxW |xW c) = 1
ZW (xW c)zcard(xW ) exp (−EW (x))πW (dxW ), (2.9)

where
ZW (xW c) =

∫
zcard(xW ) exp (−EW (x))πW (dxW )

is a normalizing constant. P is called a Gibbs measure.

The definition is correct if we can extend the definition of EW from Nf to N.
This can be done for example when E has a finite range R, since then we obtain
EW (x) = EW (xW ⊕B(0,R)) = E(xW ⊕B(0,R))− E(xW ⊕B(0,R)\W ), x ∈ N.

Definition 34 gives us the local conditional distributions of Gibbs point process
in any bounded set W . The equations (2.9) are known as DLR equations. In
terms of conditional densities p(xW |xW c) with respect to the Poisson point process
πW the equations (2.9) are expressed as

p(xW |xW c) = 1
ZW (xW c)zcard(xW ) exp (−EW (x)). (2.10)

Gibbs point process is a point process with Gibbs measure as its distribution.
Gibbs measure is generally defined as a solution of DLR equations, which can be
described as (2.9), but the existence and uniqueness of a such solution are non
trivial questions.

The following theorem ensures the existence of infinite volume Gibbs measure.

Theorem 8. Let E be a stationary energy function which is non-degenerate,
hereditary, stable and having a finite range (see Definitions 30 and 31). Let
z > 0. Then there exists infinite volume Gibbs measure with intensity z.

Proof. Proof can be found in [Dereudre, 2019], Theorem 1.

Some results about uniqueness and non-uniqueness of Gibbs measures can be
found in [Dereudre, 2019], Sections 2.7 and 2.8.

34



Georgii-Nguyen-Zessin equation for GPP

In the previous section we defined infinite volume Gibbs point process using
Dobrushin-Landford-Ruelle (DLR) equations, which describe complete condi-
tional properties of the Gibbs measure. Alternatively, infinite volume Gibbs point
process can be defined using Georgii-Nguyen-Zessin (GNZ) equations. The main
advantage of GNZ equations is that they do not contain the normalizing constant
which is in many cases difficult to evaluate. Further we interpret EW (x), W ∈ Bd

b ,
x ∈ N, as the energy of x inside W given the configuration xW c outside W .

We say that energy function contains a hardcore part if EW (x) =∞ for some
x ∈ N and some W ∈ Bd

b . We denote by N∞ the set of admissible configurations:

N∞ = {x ∈ N : ∀W ∈ Bd
b : EW (x) <∞}. (2.11)

Definition 35 (Local energy). Let x ∈ N, y ∈ Rd, W ∈ Bd
b containing y such

that EW (x) <∞. Then the local energy of y in x is defined by

h(y, x) = EW (x ∪ {y})− EW (x). (2.12)

The definition of local energy of a point in a point pattern does not depend
on the choice of W . The local energy function for Gibbs point process is the
logarithm of the reciprocal conditional intensity λ∗,

1
λ∗ = pW (xW |xW c)

pW (xW ∪ {y}|xW c) = exp (−EW (x))
exp (−EW (x ∪ {y})) = exp (h(y, x)).

We will distinguish the hereditary and the non-hereditary case.

Hereditary case Assume now that we have energy function E fulfilling as-
sumptions (i)-(iii) from definition 30, specially that it is hereditary.

Theorem 9. Let P be a probability measure on N. Let E be a finite range energy
function and z > 0. Then P is an infinite volume Gibbs measure with energy
function E and activity z if and only if for any positive measurable function
g : Rd ×N→ R holds∫

N

∑
y∈x

g(y, x \ {y})P (dx) = z
∫

N

∫
Rd

g(y, x)e−h(y,x)L(dy)P (dx) (2.13)

Proof. Proof can be found in [Dereudre, 2019], Theorem 2.

Non-hereditary case The formulation of Georgii-Nguyen-Zessin equation in
Theorem 9 is unfortunately not valid in general for a non-hereditary Gibbs point
processes (i.e., for GPP with non-hereditary energy function involving some hard-
core part). Let us now explore the non-hereditary case and state a generalization
of Theorem 9.

The main problem, in non-hereditary case, is that the energy of a point y in
a configuration x is not always defined. Indeed, the energy of x − δy may be
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locally infinite, even if the energy of x is locally finite. In this case, the energy
of y in x would be minus infinity, which makes no sense. Therefore the concept
of removable points is introduced.

Definition 36. Let x ∈ N and y be a point of x. We say, that y is removable
from x if

∃W ∈ Bd
b such that y ∈ W and EW (x− δy) <∞. (2.14)

We denote the set of removable points in x by R(x).

Theorem 10. If x is in N∞ and y is a point of x, then y is removable from x
if and only if x− δy is in N∞.

Proof. Proof can be found in [Dereudre and Lavancier, 2009], Proposition 1.

Now, the definition of the local energy should be adjusted for removable points.

Definition 37. Let y be a removable point in a configuration x ∈ N. The local
energy of y in x− δy is defined as

h(y, x− δy) = EW (x)− EW (x− δy),

where W is a bounded set containing y such that EW (x− δy) is finite.

Note that, the definition of local energy of removable point does not depend
on the choice of W .

Finally, the GNZ equation can be generalized to non-hereditary Gibbs point
processes.

Theorem 11. Let P be a Gibbs measure with intensity z > 0. Then for every
bounded non-negative measurable function g : Rd ×N→ R it holds∫

N

∑
y∈R(x)

g(y, x \ {y})P (dx) = z
∫

N

∫
Rd

g(y, x)e−h(y,x)L(dy)P (dx). (2.15)

Proof. Proof can be found in [Dereudre and Lavancier, 2009], Proposition 2.

The converse implication is not true, i.e., (2.15) does not characterize the mea-
sure P . Consider, for example, x P -almost surely not containing any removable
points, then (2.15) becomes the trivial equation 0 = 0. The equation is interesting
only in case that x contains, P -almost surely, some removable points. Equation
(2.15) in the hereditary case becomes the classical Georgii-Nguyen-Zessin equa-
tion (2.13).

2.2.3 Marked point processes
Since generators of Laguerre tessellations are marked point patterns we would
like to add the concept of marks into the theory of point processes.

36



Definition 38 (Marked point process). Let M be a mark space. A marked point
process is a simple point process Φm on space X×M such that its intensity mea-
sure Λm fulfills Λm(B ×M) < ∞ for every B ∈ Bb(X). For every marked point
process we consider unmarked point process Φ given by Φ(B) = Φm(B × M),
B ∈ B(X).

Definition 39. A marked point process Φm on Rd with mark space M is sta-
tionary if its distribution is invariant under translations ϑy(µm) = µm − y :=
{(x − y, m) : (x, m) ∈ µm}, µm ∈ N, y ∈ Rd, and isotropic if its distribution is
invariant under rotations around origin (ROµm)(B×L) = µm(OB×L), µm ∈ N,
B ∈ Bd, L ∈ B(M).

Using Lemma 1, a marked point process can be expressed as a countable
sum of Dirac measures where the atoms are numbered in a measurable way - for
µm ∈ N there exist measurable mappings ζi : N → X ×M, µm ↦→ (xi, mi) such
that

µm =
µ(X)∑
i=1

δ(xi,mi).

Theorem 12. Let Φm be a stationary marked point process with a finite intensity
λ > 0. Then there exists a unique probability measure Q on M such that the
intensity measure of Φm is of the form

Λm(B × L) = λL(B)Q(L), B ∈ Bd, L ∈ B(M).

Proof. See Section 4.2.2 in Chiu et al. [2013].

Definition 40 (Mark distribution). A probability measure Q from Theorem 12
is called mark distribution.

Definition 41. We say that the intensity measure Λ of a point process Φ is
diffuse, if Λ({y}) = 0 holds for any y ∈ X.

Definition 42 (Poisson marked point process). Let Φm be Poisson point process
on X×M with diffuse (non-atomic) intensity measure Λm such that Λm(B×M) <
∞ for every B ∈ Bb(X). Then Φm is called Poisson marked point process with
intensity measure Λm.

Definition 43 (Independent marking). A marked point process Φm is called in-
dependently marked if the random marks {mi} are independent, identically dis-
tributed and independent of the unmarked point process Φ.

Let us consider a marked point process Φm which is independently marked
and let the appropriate unmarked point process Φ be a Poisson point process.
Then Φm is a Poisson marked point process.

Definition 44 (Geostatistical marking). Let Φ be a simple point process on Rd

and {Z(x) : x ∈ Rd} be a random field with values in the space of marks M
independent of Φ. Then Φm = ∑

x∈suppΦ δx,Z(x) is geostatistically marked point
process.
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Geostatistical marking is one of possible approaches admitting dependences
between marks, but it still assumes independence of marks and locations.

In the rest of the thesis, we will consider only marked point processes with
simple unmarked counterparts on Euclidean space, i.e., X = Rd, d ∈ N, and real
marks, i.e., M ⊂ R. We introduce a formal definition of finite marked Gibbs point
process in a similar way to Definition 32. Further definitions and statements of
Section 2.2.2 can be extended to the marked case analogically.

Definition 45. Let W ∈ Bd
b . Let πΛm

W be distribution of the marked Poisson point
process with intensity measure Λm(B × L) = zL(B)Q(L), B ∈ Bd, L ∈ B(M),
which is restricted on W . The finite volume marked Gibbs point process on W
with activity z > 0, the energy function E and mark distribution Q is a finite
point process Φ with density with respect to πW (distribution of marked PPP with
intensity 1) of the form

pW (x, m) = 1
ZW

zcard(xW ) exp (−E(x, m)), (x, m) ∈ Nf , (2.16)

where
ZW =

∫
zcard(xW ) exp (−E(x, m))πW (d(x, m))

is a normalizing constant.

Proceeding to an infinite volume marked Gibbs measure P , the GNZ equation
(2.13) becomes∫

N

∑
(y,m)∈(x,m)

g((y, m), (x, m) \ {(y, m)})P (d(x, m)) =

= z
∫

N

∫
Rd×M

g((y, m), (x, m))e−h((y,m),(x,m))L(dy)Q(dm)P (d(x, m)).
(2.17)

2.2.4 Summary characteristics
In this part we focus on various summary characteristics of (marked) homoge-
neous point processes on Rd. For a broader overview of point process and mark
characteristics see [Baddeley et al., 2015] and [Illian et al., 2008].

Point process characteristics

First, consider unmarked point process Φ on Rd. If Φ is a homogeneous point
process, Palm distributions Px(·), x ∈ Rd, from Definition 23 are determined by
Palm distribution at origin o and by relation Px(·) = Po(ϑ−1

x (·)). To describe
mutual positions of the points of Φ the following summary characteristics can be
used.

Definition 46 (F function). Let Do be distance from the origin o to the nearest
point of Φ. Spherical contact distribution function (F function) is given by

F (t) = P(Φ(b(o, t)) > 0) = P(Do ≤ t), t > 0.
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Definition 47 (G function). Nearest-neighbour distance distribution function
(G function) is given by

G(t) = Po({ν ∈ N : ν(b(o, t)) > 1}), t > 0.

Definition 48 (K function). Let 0 < λ < ∞. Reduced second-order moment
function (Ripley’s K function) is given by

λK(t) = E !
o Φ(b(o, t)) =

∫
N

ν(b(o, t) \ {o})Po(dν), t > 0.

L function is a tranformation of K function given by

L(t) =
(

K(t)
ωd

)1/d

, t > 0,

where ωd = πd/2

Γ(1+d/2) is volume of the d-dimensional unit sphere in Rd.

Definition 49 (Pair correlation function). Pair correlation function is given by

g(t) = K ′(t)
σdtd−1 for t > 0,

where K ′ is the derivative of the K function and σd = dωd = 2πd/2

Γ(d/2) is surface of
the (d− 1)-dimensional unit sphere in Rd.
Theorem 13. In case of homogeneous Poisson point process with intensity λ we
obtain F (t) = G(t) = 1− exp(−λωdtd), L(t) = t and g(t) = 1 for all t > 0.
Proof. See Section 2.3 in Chiu et al. [2013].

Mark characteristics

Given a marked point process Φm, we are now interested in a mutual relation
between points and marks.
Definition 50 (Mark correlation function). Mark correlation function is given
by

kmm(t) = E o,t[m(o)m(t)]
E [m(o)] E [m(t)] , t > 0,

where m(o), m(t) are marks of the points o, t ∈ Rd, ||o − t|| = t and E o,t is
the conditional expectation, where we condition on the presence of points of the
marked point process at o and t.

The mark correlation function kmm(t) characterizes aspects of the correlation
of marks at distance t. Values of kmm(t) larger than 1 indicate that the product
of marks of point pairs of a distance t tends to be larger than the squared mean
mark.
Definition 51 (Mark variogram). Mark variogram is given by

γm(t) = 1
2 varo,t[m(o)−m(t)] = 1

2 E o,t[m(o)−m(t)]2, t > 0,

where E o,t and varo,t are the conditional expectation and variance, where we
condition on the presence of points of the marked point process at o and t, ||o−
t|| = t, o, t ∈ Rd.
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The mark variogram γm(t) tends for large t towards the mark variance σ2
µ.

Small values for small t indicate similarity of marks of generators close together,
but not that the marks are small.

The simplest form of marking a point process is independent marking, where
the points get their marks by independent sampling from a mark distribution. In
the case of independent marking it is kmm(t) ≡ 1 and γm(t) ≡ σ2

µ. A marking
a bit more complicated is geostatistical marking. There are two independent
objects, the non-marked starting point process and a stationary and isotropic
random field {Z(x)}. The mark of point xi is then Z(xi). In geostatistically
marked point processes the marks of points close together can be similar, but
a joint tendency that the marks of points close together are similar and small is
impossible. The corresponding mark correlation function and the mark variogram
satisfy the equation

kmm(t) = 1 +
σ2

µ

µ2 −
γm(t)

µ2 , (2.18)

where µ and σ2
µ are mean and variance of the mark distribution.

2.2.5 Estimation of summary characteristics and bound-
ary effects

When estimating the summary characteristics of (marked) point patterns and
tessellations, it is neccessary to treat so called edge or boundary effects. These
effects arise as we observe the marked point pattern/tessellation (x, r) only in
a window W ∈ Bd

b , whereas we do not know what is outside. Here, we show how
to estimate the summary characteristics mentioned in previous sections together
with the most frequent ways how to overcome the undesired boundary effects, for
details see for example Baddeley et al. [2015] and Illian et al. [2008].

Estimate of F function with Kaplan-Meier correction is

F̂ (t) = 1−
∏
s≤t

(
1− card{x ∈ Ia ∩W : d(x) = s, d(x) ≤ c(x)}

card{x ∈ Ia ∩W : d(x) ≥ s, c(x) ≥ s}

)
,

where Ia = y + aZd = {(y1 + a1z1, . . . , yd + adzd) ∈ Rd : zi ∈ Z}, y ∈ Rd, a ∈ Rd
+,

i.e., ai > 0 for i = 1, . . . , d, is a regular lattice in Rd. Further d(x) = d(x, x) is
a distance of x to its nearest point in x and c(x) = d(x, ∂W ) is a distance of x
to boundary of the window W .

Estimate of G function with Kaplan-Meier correction is

Ĝ(t) = 1−
∏
s≤t

(
1− card{x ∈ x ∩W : e(x) = s, e(x) ≤ c(x)}

card{x ∈ x ∩W : e(x) ≥ s, c(x) ≥ s}

)
,

where e(x) = d(x, x \ {x}) is a distance of x to its nearest neighbour in x and
c(x) = d(x, ∂W ) is a distance of x to boundary of the window W .

Estimate of K function with isotropic correction is obtained from

λ̂2K(t) =
̸=∑

x,y∈x∩W

I[||x−y||≤t]

|W |
|∂b(x, ||x− y||)|

|∂b(x, ||x− y||) ∩W |
,
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as K̂(t) = λ̂2K(t)
λ̂2

, where the estimate of λ2 is

λ̂2 = x(W )(x(W )− 1)
|W |2

,

with x(W ) = card(xW ) being the number of points of x in W .
Estimate of pair correlation function with isotropic correction is obtained in

a similar way,

ĝ(t) = 1
λ̂2

̸=∑
x,y∈x∩W

kb(t− ||x− y||)
σdtd−1|W |

|∂b(x, ||x− y||)|
|∂b(x, ||x− y||) ∩W |

, (2.19)

where kb(·) is a kernel function with bandwidth b.
Note that Kaplan-Meier estimates are not unbiased. The estimate of K func-

tion with isotropic correction is ratio-unbiased for t < t0 = inf{u > 0 : |W (u)| <
|W |}, where W (t) = {x ∈ W : ∂b(x, t) ∩W ̸= ∅}, since λ̂2 is unbiased estimate
of λ2 and λ̂2K(t) is unbiased estimate of λ2K(t) for t < t0. The estimate of pair
correlation function is not unbiased, the choice of bandwidth influences the bias
and variability of the estimate – for excessively small bandwidth, the estimates
ĝ(t) will have a high variance.

When estimating mark correlation function and mark variogram with isotropic
correction one first computes

λ̂
(2)
f (t) =

̸=∑
x,y∈x∩W

f(m(x), m(y))kb(t− ||x− y||)
σdtd−1|W |

|∂b(x, ||x− y||)|
|∂b(x, ||x− y||) ∩W |

and

λ̂(2)(t) =
̸=∑

x,y∈x∩W

kb(t− ||x− y||)
σdtd−1|W |

|∂b(x, ||x− y||)|
|∂b(x, ||x− y||) ∩W |

.

Estimate of mark correlation function is then

k̂mm(t) =
λ̂

(2)
f (t)(

1
x(W )

∑
x∈x∩W m(x)

)2
λ̂(2)(t)

with f(m1, m2) = m1m2.
Estimate of mark variogram is

γ̂m(t) =
λ̂

(2)
f (t)

λ̂(2)(t)

with f(m1, m2) = 1
2(m1 −m2)2.

The estimates of mark correlation function and mark variogram are not un-
biased, again the choice of bandwidth influences the bias and variability of the
estimate.
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2.2.6 Connection to tessellations
In Section 2.1 we have introduced several deterministic tessellation models, all of
them being determined by a locally finite (possibly marked) point pattern in sense
that each (marked) point determines a cell. Now, we define a random tessellation
and show how it can be identified with a (marked) point process.

Definition 52. Let us denote T the set of all tessellations in Rd and equip it with
σ-algebra T = σ({A ⊂ T : ∂A ∩K ̸= ∅} : K ∈ K), where ∂A means the union
of the boundaries of the cells C ∈ A A random tessellation in Rd is a random
variable on (Ω,A,P) with values in (T, T ). It is called normal or face-to-face if
its realizations are almost surely normal or face-to-face.

Note that detailed introduction of σ-algebra T on T can be found in [Møller,
1989].

According to this definition a random tessellation is a random variable with
value in the measurable space of all tessellations (T, T ). Considering that a tes-
sellation is generated by a locally finite (marked) point pattern, then its random
counterpart can be viewed as a random variable with value in measurable space
of locally finite (marked) point patterns, i.e., as a marked point process. E.g.,
combining stationary Poisson point processes with Voronoi tessellation we ob-
tain Poisson-Voronoi tessellations. In this simple case, closed analytical formulas
are available for the moments of geometrical characteristics of cells, see Sec-
tion (2.2.4), such as volume, number of faces, surface area, etc., cf. Okabe et al.
[2000].

Theorem 14. Let Φ be a stationary marked Poisson process on Rd with intensity
λ > 0 and mark distribution Q. Suppose R is a random variable with distribution
Q. Then the following statements are equivalent:

(i) The Laguerre tessellation of Φ exists, i.e., min(x,r)∈Φ||x − z||2 − r2 almost
surely exists for all z ∈ Rd.

(ii) We have E [Rd] <∞.

Proof. The proof can be found in Lautensack [2007], Proposition 3.1.4.

The random tessellation from Theorem 14 is reffered to as Poisson-Laguerre
tessellation, more details about this class of models can be found in Lautensack
[2007] and Lautensack and Zuyev [2008]. Similarly one can obtain Gibbs-Laguerre
tessellations, but the existence is not so straightforward anymore, since on top of
mark distribution we have to care about existence of the underlying Gibbs point
process itself. In Dereudre et al. [2012] they deal with the existence of Gibbs mea-
sures with energy functions based on a tessellation geometry. In particular, the
Gibbs-Voronoi tessellations in R2 are studied in Dereudre and Lavancier [2011].

2.3 Simulation algorithms
In this section we describe three algorithms which will be used for simulation of
Laguerre tessellations later.
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2.3.1 Metropolis-Hastings birth-death-move algorithm
Metropolis-Hastings birth-death-move algorithm can be used to simulate real-
izations of (marked) point processes with density with respect to Poisson point
process. As we focus on Laguerre tessellations and Gibbs models in this thesis,
we formulate the algorithm in the context of marked point patterns (x, r) with
x ∈ NW , W ∈ B3

b , and density p(x, r) ∝ zcard(x) exp(−E(x, r)). Except La-
guerre generators (x, r), the algorithm will be used for simulation of unmarked
point patterns x, the adaption of the algorithm to the unmarked point pattern
x is straightforward. The general form of the MCMC Metropolis-Hastings birth-
death-move algorithm is described in Møller and Waagepetersen [2003] and also
in Geyer and Møller [1994].

Recall that admissibility, Definition 58, of a finite point configuration (x, r)
means that its energy E(x, r) is finite. Let p be defined as in equation (3.9). The
evolution step of the MHBDM algorithm for an admissible (x0, r0) ∈ W ×M with
n = card(x0) can be written as follows.

Algorithm 1 (evolution step of MHBDM).
do one of the following (with probability 1

3 each):

(a) “birth”: generate a point y uniformly in W (i.e., y ∼ Unif(W )) and a radius
s ∼ Unif(M) and set

(x1, r1) =

⎧⎨⎩(x0, r0) ∪ {(y, s)} with probability min
(
1, p((x0,r0)∪{(y,s)})

(n+1)p(x0,r0)

)
,

(x0, r0) otherwise;

(b) “death”: choose a point (x, r) from x0 at random and set

(x1, r1) =

⎧⎨⎩(x0, r0) \ {(x, r)} with probability min
(
1, np((x0,r0)\{(x,r)})

p(x0,r0)

)
,

(x0, r0) otherwise;

(c) “move”: choose a point (x, r) from x0 at random and generate y ∼ N3(x, Σ)
with the covariance matrix Σ, s ∼ NT (r, σ2

R) and set

(x1, r1) =

⎧⎪⎪⎨⎪⎪⎩
((x0, r0) \ {(x, r)}) ∪ {(y, s)} with probability

min
(
1, p(((x0,r0)\{(x,r)})∪{(y,s)})

p(x0,r0)

)
,

(x0, r0) otherwise.

Here,
Σ = diag{σ2, σ2, σ2}, σ > 0, (2.20)

Unif denotes the uniform distribution, N3 denotes the trivariate Gaussian dis-
tribution and NT is the truncated Gaussian distribution on M. All proposals
are sampled independently of each other. Using the Gaussian distribution for
the move proposal distribution is a common choice, cf. Dereudre and Lavancier
[2011]. The constants σ, σR > 0 of the proposal distributions need to be chosen
carefully. First, note that in “move” step of the algorithm, the point y can always
be considered to belong to W ; if y /∈ W then the periodic image of y in W is
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taken. The second observation is that the acceptance ratios Hk, k = “birth”,
“death”, “move”, in the steps 1(a),(b),(c), respectively, are of the form

Hk = ck exp(Eb − Ea), (2.21)

where Ea is the energy of the proposal (e.g., x0 ∪ {(y, s)} in step 1(a)), Eb is
the energy of x0 and the constant ck is equal to z

n+1 in step 1a, n
z

in step 1(b)
and 1 in step 1(c). Finally, note that the uniform and Gaussian distributions in
Algorithm 1 can be replaced by any other reasonable distribution.

The Metropolis-Hastings birth-death-move (MHBDM) algorithm is summa-
rized in Algorithm 2.

Algorithm 2 (MHBDM).

1. construct an admissible marked point configuration (x0, r0),

2. n← card(x0),

3. run the Algorithm 1 (taking (x0, r0) and yielding (x1, r1)),

4. (x0, r0)← (x1, r1),

5. repeat steps 2. to 4. (S − 1) times,

6. return (x0, r0).

Clearly, the number of iterations S depends on the considered model; more
complex models tend to require more iterations in Algorithm 2 to approach
the target distribution. The convergence of the basic MHBDM algorithm was
proved under mild conditions in Møller and Waagepetersen [2003], Section 7.3.
As claimed in Dereudre and Lavancier [2011], Section 3.2, for models with hard-
core potentials the convergence of Algorithm 2 is difficult to prove in cases when
the tessellation model becomes too rigid. Further discussion concerning the hard-
core case can be found in Dereudre and Lavancier [2011].

2.3.2 Metropolis within Gibbs algorithm
The Metropolis within Gibbs algorithm, a composition of Gibbs sampler and
Metropolis-Hastings algorithm, will be used for simulation of radii r from fully
conditional distributions Ri | r−i, where r−i = (r1, . . . , ri−1, ri+1, . . . , rn), i =
1, . . . . , n. The cardinality card(r) = n is fixed. For a detailed description of
both algorithms see Møller and Waagepetersen [2003]. The outer algorithm –
Gibbs sampler, assumes that we are able to simulate from all fully conditional
distributions.

Algorithm 3 (Gibbs sampler).

1. choose initial state r0 = (r0,1, . . . , r0,n), set t = 0,

2. simulate rt+1,n from conditional distribution Rn | rt,1, . . . , rt,n−1,
simulate rt+1,n−1 from conditional distribution Rn−1 | rt,1, . . . , rt,n−2, rt+1,n,
. . .
simulate rt+1,1 from conditional distribution R1 | rt+1,2, . . . , rt+1,n,
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3. if t + 1 < T then increase t and go to 2., else return rt.

Algorithm 3 describes the so called reversed order Gibbs sampler. In contrast
to sampling in increasing order, the reversed order sampling gives us a reversible
Markov chain.

If we are not able to simulate directly from fully conditional distributions in
Algorithm 3, we can use Metropolis-Hastings algorithm to do so. Such combi-
nation of both algorithms is known as Metropolis within Gibbs algorithm. A
description of the inner algorithm - Metropolis-Hastings, related to the case of
radii follows.

The distributions Ri | r−i, i = 1, . . . , n, are target distributions for Metropolis-
Hastings algorithm. For a given i, i = 1, . . . , n, we will show how to simulate
from the appropriate target distribution, which we assume to have a density
p with respect to some σ-finite reference measure ν on the measurable space
(M,B(M)) (in our case we can set ν = L). Let Q be a Markov kernel on M,
Q(r, ds) = q(r, s)ν(ds) for some q called a proposal density. It determines a pro-
posal probability of a transition from state r to s, where r, s ∈M. Set

α(r, s) =

⎧⎨⎩min
(

p(s)q(s,r)
p(r)q(r,s) , 1

)
for p(r)q(r, s) > 0,

1 otherwise.

For r, s ∈M, α(r, s) is the proposal acceptance probability of the transition from
r to s.

Algorithm 4 (Metropolis-Hastings algorithm).

1. choose r0, set t = 0,

2. generate s from Q(rt, ·) and set

rt+1 =

⎧⎨⎩s with probability α(rt, s),
rt otherwise;

3. if t + 1 < T then increase t and go to 2., else return rt.

If q(r, s) = q(s, r), i.e., symmetric proposal density, we do not need to evaluate
the proposal density and the algorithm is called shortly Metropolis algorithm. In
general, the proposal density needs to be carefully specified – first, we need to
be able to visit the whole space of radii, second, if the proposal density is poorly
chosen, either the acceptance rate is low, or the Markov chain moves throughout
the support of the invariant distribution too slow (even could be stuck around
one place). It is recommended to achieve roughly 30% acceptance rate.

2.4 Statistical methods

2.4.1 Maximum pseudolikelihood
Inaccessability of the normalizing constant, a common problem for models with
a complex density, causes difficulties in maximum likelihood estimation as the
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normalizing constant needs to be accurately estimated first. In case of Gibbs
point processes, this can be done using Monte Carlo methods. Unfortunately,
such approaches can be computationally very demanding. Therefore alternative
ways to avoid calculating the intractable normalizing constants were developed.
Among them the idea of maximum pseudolikelihood is considered in [Besag, 1974,
1977, Besag et al., 1982].

Definition 53 (Pseudolikelihood). Given random variables X1, . . . , Xn with the
distribution depending on an unknown parameter θ ∈ Θ ⊆ Rq, q ∈ N, the pseu-
dolikelihood of a realization x = {x1, . . . , xn} is

PL(θ; x) =
n∏

j=1
pθ(xj | x−j). (2.22)

Next, we introduce the psudolikelihood function in the context of unmarked
point processes (the marked case can be treated analogically).

Definition 54 (Pseudolikelihood for a point process). Consider a finite point
process on W ∈ Bd

b with Papangelou conditional intensity λ⋆
θ, where θ ∈ Θ ⊆ Rq

is the vector of unknown parameters. Then the pseudolikelihood function for
a point realization x ∈ NW is

PL(θ; x) = PLW (θ; x) = exp
(
|W | −

∫
W

λ⋆
θ(x, x) dx

) ∏
x∈x

λ⋆
θ(x, x \ {x}). (2.23)

The equation (2.23) is in accordance with the equation (2.22). This is easy to
see, when we realize that the point process density is a density with respect to
Poisson measure given by (2.6).

The maximum pseudolikelihood estimate (MPLE) is then found by maximiz-
ing the pseudolikelihood function PL in θ, i.e., if the parameter space Θ ⊆ Rq is
an open set, the MPLE is a solution to the pseudolikelihood estimating equation
∂
∂θ

logPL(θ; x) = 0. More details about the pseudolikehood and maximum pseu-
dolikelihood estimates in the context of point processes can be found in Møller
and Waagepetersen [2003] and Jensen and Møller [1991].

Note that (2.23) agrees with the maximum likelihood function in case of un-
marked Poisson point process, i.e., when λ∗

θ(x, x) depends only on x. So for point
processes with weak interaction, the MPLE and the MLE may be expected to be
close.

In practice the integrals arising in (2.22) and (2.23) are approximated by
numerical methods, e.g., in the context of unmarked point processes:

Suppose we partition W into a finite number of cells Ci, and let ci ∈ Ci denote
a given ‘centre point’. Let {uj; j = 1, . . . , m} denote a list of these centre points
and the points in xW . Then the integral in (2.23) is approximated by∫

W
λ∗

θ(x, x)dx ≈
m∑

j=1
λ∗

θ(uj, x \ {uj})wj,

where wj = |Ci|
(1+card(xCi

)) if uj ∈ Ci. Then

logPL(θ; x) ≈
m∑

j=1
(yj log λ∗

j − λ∗
j)wj,
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where yj = I{uj∈x}/wj and λ∗
j = λ∗

θ(uj, x \ {uj}).
Note that approximation involves a ‘discontinuity error’. Namely the cost of

the discretization using a grid of values is biasedness of the MPLE. The bias can
be removed in several ways

• using random ui instead of a grid of values,

• Richardson extrapolation.

For details see Baddeley and Turner [2014].

Exponential family models

The exponential family, Barndorff-Nielsen [2014], is an important class of proba-
bilistic densities. Most of densities of Gibbs point processes (3.9) belong to this
family.

Definition 55. A density pθ belongs to an exponential family, if it can be written
as

pθ(·) = 1
Z(θ)b(·) exp(θt(·)), θ ∈ Θ ⊆ Rq,

where b is nonnegative function and t is a function taking values in Rq.

The vector t(·) is called the canonical sufficient statistic. In case of point
processes, λ∗

θ(x, x) = b(x, x) exp(θt(x, x)), where b(x, x) = b(x∪{x})
b(x) and t(x, x) =

t(x∪{x})− t(x). A particular example of an exponential family model is Strauss
point process. Indeed, if we fix interaction range δ > 0 and exclude the hard-core
case γ = 0 we obtain an exponential family model with b = 1, θ = (θ1, θ2) =
(log β, log γ), t(x) = (card(x), sδ(x)) and Θ = R× (−∞, 0).

Theorem 15 (Pseudolikelihood of an exponential model). Let pθ belong to the
exponential family. Then PL(θ; x) is a log-concave function in θ.

Proof. Proposition 2.3 in Jensen and Møller [1991].

The same proposition gives a condition for strict concavity.
Provided a model with a density belonging to the exponential family, the

PL(θ; x) can be easily maximized using (multidimensional) Newton-Raphson
method, Magrenan and Argyros [2018].

Consistency and asymptotic normality of maximum pseudolikelihood esti-
mates are briefly discussed in Møller and Waagepetersen [2003], Section 9.2.3.

Takacs-Fiksel method

From the integral representation (2.13) – GNZ equation, we obtain for any Gibbs
point process that

∑
y∈x

g(y, x \ {y}) =
∫
Rd

g(y, x)λ∗
θ(y, x)dy, (2.24)

is an unbiased estimating equation for any real function g : Rd×N→ R (assuming
that the expectations exist). A Takacs-Fiksel estimate is a solution of (2.24) for
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a number k ≥ q of functions gi, i = 1, . . . , k, i.e., k unbiased estimating equations
are obtained, cf. Møller and Waagepetersen [2003].

The i-th component, i = 1, . . . , q, of the pseudolikelihood estimating equation
∂
∂θ

logPL(θ; x) = 0 emerges as the special case with g in (2.24) replaced by

gi(x, x) = I{x∈W }
d

dθi

log λ∗
θ(x, xW ),

provided λ∗
θ(x, x) only depends on x through xW , W ∈ Bd

b .
The extension to the marked case is rather straightforward; the analogy of

GNZ in the marked case is (2.17) and many details concerning the Takacs-Fiksel
estimating procedure can be found in Coeurjolly et al. [2012].

2.4.2 Global envelopes
Global envelopes present a useful tool in spatial statistics for the graphical in-
terpretation of results from tests based on functional or multivariate statistics,
for determining central regions of functional or multivariate data, and also for
determining confidence or prediction bands.

The word “global” means that the envelope is given with the prescribed cov-
erage 100(1−α)% simultaneously for all the elements of the multivariate or func-
tional statistic. The functional data first have to be discretized (the discretization
can be arbitrary, as long as it is the same for all functions). Then for d-dimensional
vectors T1, T2, . . . , Ts, Ti = (Ti,1, . . . , Ti,d), i = 1, . . . , s, a 100(1−α)% global enve-
lope is considered to be a band bounded by the vectors T α

low = (T α
low,1, . . . , T α

low,d)
and T α

upp = (T α
upp,1, . . . , T α

upp,d) such that the probability that Ti falls outside this
envelope in any of the d points is equal to α, for α ∈ (0, 1), i.e.,

P
(
Ti,j /∈ [T α

low,j, T α
upp,j] for any j ∈ {1, . . . , d}

)
= α.

When constructing the global envelope, the d-dimensional vectors Ti need to
be ordered from the most extreme to the least extreme. For this purpose, many
different measures exist. The R-package GET [Myllymäki and Mrkvička, 2019,
Myllymäki et al., 2017] focuses on such measures for which it is possible to con-
struct the global envelope with a practically interesting graphical interpretation.
A prominent place occupy completely non-parametric envelopes which are based
on some kind of ‘rank’ measure. In order to avoid possible ties special rank
measures such as extreme rank length, continuous and area ranks are used. For
definitions of mentioned rank measures see Myllymäki and Mrkvička [2019].

Among many other ranks, the envelopes based on area rank are the most ro-
bust according to recommendation in Myllymäki and Mrkvička [2020] and hence
used throughout this thesis.

2.4.3 Permutation tests
A permutation test, see, e.g., Edgington and Onghena [2007], is an exact non-
parametric statistical test that allows a hypothesis testing that assumes very
little about the distribution of the data. Instead of assuming a distribution for
the data sample and using it to derive the distribution of the test statistic, the
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permutation test works directly with the data. The idea is to permute (rearrange)
the data by shuffling their labels of treatments, and then calculate a test statistic
on each permutation. The collection of test statistics from the permuted data
constructs the distribution under the null hypothesis H0. The hypothesis H0
assumes that data are exchangeable, i.e., the joint distribution is independent
of positions (does not change when the positions are altered). In practise, the
amount of all possible permutations is huge and only a fixed number of random
permutations is used – so called Monte Carlo permutation test. The test statistic
computed from the data is compared to those computed from permutations. Its
extremity then determines the p-value.

In our setting, the permutation test can be used for testing the independence of
points xn and marks rn – the data sample is the vector of marks/radii rn and posi-
tions are given by point pattern xn. By permutation of the positions and keeping
the marks we mimic the independent setting, i.e., the independency of points and
marks. We can use a suitable functional characteristic of marked point processes
as our test statistic. The extremity of the functional statistic computed from
data among those computed from permutations can be then measured by rank
measures as extreme rank length, continuous rank and area rank, cf. Myllymäki
and Mrkvička [2019]. This leads to global envelope testing from Section 2.4.2.
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3. Gibbs-Laguerre tessellations
Throughout this chapter we will consider (xn, rn) to be a realization of a marked
Gibbs point process. When (xn, rn) are generators of a Laguerre tessellation, we
speak about Gibbs-Laguerre tessellation models. The majority of the results pre-
sented in this chapter was published in Seitl et al. [2021] – introduction of partic-
ular Gibbs-Laguerre tessellation models, maximum pseudolikelihood estimation
and reconstructions; and in Jahn and Seitl [2020] – existence of the particular
Gibbs-Laguerre tessellation models.

3.1 Energy function
Definition 56. A potential function V : Nf → R ∪ {∞} is a measurable sym-
metric function, where symmetry means that the value of the function remains
the same when we permute its arguments. In particular, Vk : Nf,k → R∪ {∞} is
a potential function of order k, where k = 1, 2, . . . , n.

The energy function E, given in Definition 29, can be built as a sum of po-
tential functions (shortly potentials), see Baddeley [2007], Def. 4.2. We dis-
tinguish two types of potential functions. We speak about soft-core potentials
if they are finite. On the other hand, hard-core potentials take on only one
of the values 0 or +∞. In the rest of the thesis, when writing arguments of
a potential function, we identify cells of tessellation with their generators, i.e.,
V (x, r) = V ({C(x, r) : (x, r) ∈ (x, r)}).

3.1.1 Periodic energy function
Because of the bounded sampling window we possibly need to resolve the bound-
ary effects. This requires knowledge of the process outside the window, either we
can observe (marked) points beyond the window or we add the outer (marked)
point configuration artificially. An elegant way how to circumvent this issue
is the employment of periodic boundary conditions, see Definition 11. In the
periodic setup a potential function of k-th order is summed over k-tuples of
k-neighbouring cells in the periodic domain C1, . . . , Ck ∼k (to recall the no-
tation see Section 2.1.1), C1, . . . , Ck ∈ L(x∗, r∗), such that each periodic k-
tuple makes a unique contribution. In other words, there is only one con-
tribution to the potential from the periodical extension (x∗

k, r∗
k) of the k-tuple

(xk, rk) = {(x1, r1), . . . , (xk, rk)} of generators of given cells C1, . . . , Ck ∼k.
In general, a periodic energy function Ẽ : Nf → R∪{∞} can combine different

potentials of different orders and can be written in a parametric form (the case
of different orders)

Ẽ(x, r) = Vhard + θ1
∑

C∈L(x∗,r∗)
bar(C)∈W

V1(C) + θ2
∑

C1,C2∈L(x∗,r∗);C1,C2∼2
unique contribution

V2(C1, C2) + . . .

+ θn−1
∑

C1,...,Cn−1∈L(x∗,r∗)
C1,...,Cn−1∼n−1

unique contribution

Vn−1(C1, C2, . . . , Cn−1) + θnVn(C1, C2, . . . , Cn),

(3.1)
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where all hard-core potentials are included in the term Vhard, θ1, . . . , θn are real-
valued parameters, bar(·) denotes the barycenter of a given set and ∼k is the
k-neighbourhood relation, see Section 2.1.1. Recall that for k = 2, neighbouring
cells are those which share a common face. For k = 3, 4 we distinguish the
general form of k-neighbourhood relation ∼k and its special form – the proper
neighbourhood relation, when the cells share an edge if k = 3 or a vertex if k = 4.
In this case, i.e., k = 3, 4, the potential determines whether we sum over cells
in the general k-neighbourhood or in the proper neighbourhood relation – e.g.,
V3(C1, C2, C3) = el(C1 ∩ C2 ∩ C3), where ‘el’ stands for the edge length, makes
sense only for C1, C2, C3 in proper neighbourhood relation because otherwise C1∩
C2 ∩ C3 = ∅. For k = n, the entire tessellation is considered to be neighbouring
in the sense that all cells can be arranged such that Ci1 ∼ Ci2 ∼ . . . ∼ Cin , where
{i1, . . . , in} is a permutation of {1, . . . , n}. It is important that each subset of
cells makes a unique contribution to the energy function. Note that there can
be several potentials of the same order. Furthermore, the potential Vhard can be
written as a sum of hard-core potentials, i.e., potentials that can either be equal
to zero or +∞, i.e.,

Vhard =
∑

C∈L(x∗,r∗)
bar(C)∈W

V1,hard(C) + . . . + Vn,hard(C1, C2, . . . , Cn).

Both energy function and periodic energy function are defined for (x, r) ∈ Nf

only. If E(x, r) < +∞ or Ẽ(x, r) < +∞ in the periodic setup, we say that the
configuration (x, r) is admissible.

3.1.2 Examples of potential functions
We will deal with the following choices of potential functions. First, we consider
the hard-core potential of first order forbidding empty Laguerre cells:

V1,hard(C) =

⎧⎨⎩+∞ if C is empty,

0 else.
(3.2)

Similarly as in the hierachical approach, we will avoid empty Laguerre cells in
our models. Therefore from now we assume, that the hard-core potential (3.2) is
part of all following Gibbs-Laguerre models.

Further, hard-core potentials may influence the shape and size of cells, e.g.,

V1,hard(C) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+∞ if hmin(C) ≤ α,

+∞ if hmax(C) ≥ β,

+∞ if h3
max(C) ≥ B|C|,

0 else,

(3.3)

where hmin(C), hmax(C) denotes the minimum, maximum distance between the
cell barycenter and a face of C, respectively, with 0 < α < β, B > 0. The
parameter α forces the cells to be not too small, while β forces them to be not
too large. The parameter B controls the shape of the cells—the smaller the value
of B, the more regular are the shapes of the cells.
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A soft-core potential of k-th order Vk(C1, . . . , Ck) is a symmetric function of
a k-tuple of k-neighbouring cells. In practice, these potentials are often assumed
to be nonnegative and bounded. In 2D these two properties ensure the stability
property, Definition 30(iii), of the energy function, cf. Dereudre et al. [2012]
(unfortunately, this implication does not seem to be generally preserved in higher
dimensions). In case there is no upper bound, an artificial bound K > 0 can be
used (K is some large constant depending on the particular potential). A pair
potential function studied later on is given by

V2,NVR(C1, C2) = NVR(C1, C2) ∧K, (3.4)

where NVR is defined in (2.4). The potential given in (3.4) may be multiplied
by a real parameter θ. In such case, the sign of θ is crucial. In the case when
θ > 0, the neighboring cells tend to have a similar volume; on the other hand
θ < 0 forces the neighboring cells to have substantially different volumes. The
choice of the power 1/2, in (3.4) and later in (3.5), is not compulsory, in general,
the power can be chosen arbitrarily.

To introduce higher order potentials, we set the following formal notation:
Let sG : Ck → Rl and sG(C1, . . . Ck) denote a sample of l values of the geometric
characteristic G assigned to a collection of cells C1, . . . Ck, k, l ∈ N. In particular,
snof(C1, . . . , Ck) and sdvol(C1, . . . , Ck) are samples of l = k values of number of
faces computed from k cells and l > k values of dvol computed from k cells, respec-
tively. In the latter case, l is the total number of faces among the cells C1, . . . , Ck.
Let T : Rl → R be a function defined on the sample sG(C1, . . . , Ck), namely
T (sG(C1, . . . , Ck)) = s̄G(C1, . . . , Ck) and T (sG(C1, . . . , Ck)) = S2

sG
stand for the

sample mean and sample variance computed over the sample sG(C1, . . . , Ck), re-
spectively. s0 ∈ R is the value we want T (sG(·)) to take. The meaning of the no-
tation is demonstrated on an example: T (snof(C1, . . . , Ck)) = s̄nof(C1, . . . , Ck) =
1
k

∑k
i=1 nof(Ci) = 12 means that the mean number of faces per cells C1, . . . , Ck is

12, i.e., G = nof, l = k.
The potential of n-th order has a very special meaning. Recall that n is the

cardinality of the observed marked point pattern (xn, rn) (i.e., total number of
cells) on the bounded sampling window W . During simulations/reconstructions
carried out in Section 3.4, this marked point pattern on W ×M is allowed to
change its cardinality; thus, n is not constant in time. An example of a potential
function of n-th order is

V G
n,T (C1, . . . , Cn) = (|T (sG(C1, . . . , Cn))− s0|)1/2 . (3.5)

Later on, potential functions of the form (3.5) will be referred to as reconstructing
potentials. A special case of this potential of n-th order is

V G
n,dsc(C1, . . . , Cn) =

(
dsc(HsG(C1,...,Cn), H ′

s)
)1/2

, (3.6)

where T (sG(C1, . . . , Cn)) = dsc(HsG(C1,...,Cn), H ′
sG

), s0 = 0, dsc is so called discrep-
ancy of histogram HsG(C1,...,Cn) of the chosen geometrical characteristic computed
from all cells and prescribed targetting histogram H ′

sG
of the geometrical charac-

teristic s that we want to approach (this can be typically obtained from data).
The discrepancy is defined in (3.7).
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Figure 3.1: For the two histograms coloured in this figure by red and black, their
discrepancy is a constant proportional to a sum of frequencies corresponding to
the regions shaded in gray.

Recall that the histogram H is viewed as a collection of frequencies h1, . . . , hJ

in J ∈ N bins covering a given interval, for details see Section 2.1.1. Using
the notation S = ∑J

i=1 hi, the discrepancy between a pair of histograms (H, H ′)
defined over the same interval and having the same bins (this implies the same
number of classes) can be written as

dsc(H, H ′) =
J∑

i=1

⏐⏐⏐⏐⏐hi

S
− h′

i

S ′

⏐⏐⏐⏐⏐ . (3.7)

An illustration of dsc can be seen in Fig. 3.1. The discrepancy measures the
difference between two histograms and it is minimized when they are identical up
to some positive multiplicative constant (i.e., there exists a constant M > 0 such
that hi = Mh′

i for every i = 1, . . . , J). If we omit the normalizations S, S ′ in the
definition of discrepancy, given in (3.7), then the discrepancy is minimized if the
two histograms are identical. Alternatively, we could deal with the cumulative
histogram or empirical distribution function instead of the histogram.

The potentials in (3.5) are called reconstructing potentials since they allow us
to control the distributional aspects of the cells generated by (x, r). E.g., we may
influence the moments (using T (sG(·)) = s̄(·) for the first moment) or the entire
distribution (using T (sG(·)) = dsc(HsG(·), H ′

sG
)) of some geometric characteristic

G.

3.2 Existence of Gibbs-Laguerre tessellations
In this section we present one of the main theoretical achievements of this thesis,
namely the existence of Gibbs-Laguerre tessellations in R3. The idea comes from
the existence theorem published in Dereudre et al. [2012], we describe in detail
its assumptions. As the theorem is formulated in the context of hypergraphs we
have to precise what is the energy function. But first, we start with two key
assumptions and their justification:

Assumption 1. Assume (x, r) ∈ Ngp.
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The assumption (x, r) ∈ Ngp is not restrictive, since Ngp is measurable and for
any W ∈ B3

b it holds that πW (N \Ngp) = 0, cf. Section 4 in Zessin [2008].

Assumption 2. M = [0, Rmax] for some Rmax > 0.

In practise we observe (x, r) in a bounded observation window W , hence (x, r) is
finite and we can choose an upper bound on radii marks.

3.2.1 Energy over hypergraph structure
Definition 29 says that energy function is a measurable function E : Nf −→ R ∪
{+∞}. In general, it can be expressed (resembling the definition of Hamiltonian
below) as a sum of values of the hyperedge potential φ over hyperedges of some
hypergraph structure E , i.e.,

E(x, r) =
∑

η∈E(x,r)
φ(η, (x, r)) for (x, r) ∈ Nf .

We assume that energy function is non-degenerate, as the non-degeneracy ensures
that it is not identically infinite.

Next, we would like to be able to say what is an energetic contribution of
(x, r)W , W ∈ B3

b , in the computation of the energy of (x, r), i.e., to precise what
is EW (x, r) from Definition 29, in the context of a hypergraph structure and
a hyperedge potential. We will do it now directly for (x, r) ∈ N with justification
of the extension from Nf to N provided later.

Definition 57. Considering (x, r) ∈ N and taking ξ ∈ NW we define the energy
(Hamiltonian) of ξ in W with boundary condition (x, r) by the formula

EW,(x,r)(ξ) =
∑

η∈EW (ξ∪(x,r)W c )
φ(η, ξ ∪ (x, r)W c), (3.8)

provided the sum is well-defined (i.e., the negative part is finite, E−
W,(x,r)(ξ) <∞).

In the case ξ = (x, r)W we write EW,(x,r)((x, r)W ) = EW (x, r) and speak about
the local energy of (x, r) in W .

Recall that according to Definition 34, the infinite-volume Gibbs point process
with activity z and energy function E is a point process with distribution P (called
Gibbs measure) having conditional densities with respect to πW of the form

pW ((x, r)W |(x, r)W c) = 1
ZW ((x, r)W c)zcard(xW ) exp (−EW (x, r)) (3.9)

for every W ∈ B3
b and for P − a.a. (x, r)W c , where

ZW ((x, r)W c) =
∫

zcard(xW ) exp (−EW (x, r))πW (d(x, r)W ),

is the normalizing constant called partition function and the argument indicates
its dependence on (x, r)W c .

Definition 58 (Admissibility). A configuration (x, r) ∈ N is called admissible
for a region W and an activity z > 0 if E−

W,(x,r)(ξ) < ∞ for πW -a.a. ξ ∈ NW

(i.e., EW,(x,r) is almost surely well-defined) and 0 < ZW ((x, r)W c) <∞.
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It is clear that a Gibbs measure is concentrated on the set of admissible
configurations for all W ∈ B3

b . The extension of the energy function from finite
point configurations to all locally finite configurations is required in (3.8) and
(3.9). This can be achieved if a configuration (x, r) confines the range of φ from
W , i.e., (x, r) ∈ NW

cr , Definition 20, then

EW,(x,r)(ξ) =
∑

η∈EW (ξ∪∂W (x,r))
φ(η, ξ ∪ (x, r)W c).

Even in the case when conditional densities are well-defined the existence of
Gibbs point process is not obvious and further conditions on the energy function
E need to be stated.

Examples of potential functions

All potentials mentioned in Section 3.1.2 can be reformulated in the context of
hypergraphs, for example:

1. Soft-core pair potential defined for two Laguerre cells having a common face

φ2,NVR(η, (x, r)) = NVR(C(x1, r1), C(x2, r2)) ∧K, (3.10)

with η = {(x1, r1), (x2, r2)} ∈ LD2(x, r) and K > 0.

2. Soft-core reconstructing potential

φG
k,T (η, (x, r)) = (|T (sG({C(x, r) : (x, r) ∈ η}))− s0|)1/2 ∧K, (3.11)

where η ∈ CGk,b(x, r), K > 0 and k ∈ N.

In order to satisfy the range condition (R), see Section 3.2.2, we need to
fix the number of cells entering the reconstructing potential (3.5). Therefore we
introduce V G

k,T , a k-th order version, k ∈ N, of the reconstructing potential V G
n,T .

The hypergraph counterpart of V G
k,T is the hyperedge potential φG

k,T from (3.11).
If k is close to the expected number of generators inside the observation window,
the V G

k,T is a good approximation of V G
n,T . Although we need a fixed number of cells

because of theoretical reasons, we keep the potential V G
n,T for simulations. If we

use V G
k,T for simulations, we need to consider all connected k-tuples of cells where

at least one cell was changed in order to evaluate the change of the energy in each
iteration of the MHBDM algorithm, Algorithm 2. The number of such k-tuples
can be enormous causing that the computational time becomes excessively long.
The potential V G

n,T leads to a significant improvement in computational time, since
the distributional characteristics (sample mean, sample variance or histogram) of
the entire tessellation can be computed only once for the initial configuration.
Then they are easily modified in each iteration since only a small number of cells
differ in the proposal. Moreover, the drawback that the range condition (R) no
longer holds in the case of (3.5) since it admits a variable number of cells in its
argument is irrelevant for finite volume Gibbs point processes.
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3.2.2 Assumptions and existence theorem
Firstly we state three assumptions from Dereudre et al. [2012] which are sufficient
for the existence of a Gibbs measure, cf. Theorem 16.

(R) The range condition. There exist constants ℓR, nR ∈ N and δR < ∞ such
that for all (η, (x, r)) ∈ E one can find a finite horizon ∆ satisfying: For
every x, y ∈ ∆ there exist ℓ open balls B1, . . . , Bℓ (with ℓ ≤ ℓR) such that

- the set ∪ℓ
i=1B̄i is connected and contains x and y, and

- for each i, either diam(Bi) ≤ δR or card(x ∩Bi) ≤ nR.

(S) Stability. The energy function E is called stable if there exists a constant
cS ≥ 0 such that

EW,(x,r)(ζ) ≥ −cS · card(ζ ∪ ∂W (x, r))

for all W ∈ B3
b , ζ ∈ NW and (x, r) ∈ NW

cr .

(U) Upper regularity. M and Γ, cf. Subsection (A.1.1), can be chosen so that
the following holds.

(U1) Uniform confinement: Γ̄ ⊂ NW
cr for all W ∈ B3

b and

rΓ := sup
W ∈B3

b

sup
x∈Γ̄

rW,(x,r) <∞, (3.12)

where rW,(x,r) was defined in Definition 20.
(U2) Uniform summability:

c+
Γ := sup

(x,r)∈Γ̄

∑
η∈E(x,r):ηx∩C ̸=∅

φ+(η, (x, r))
card(η̂) <∞,

where η̂ := {k ∈ Z3 : ηx ∩C(k) ̸= ∅} and φ+ is the positive part of φ.
(U3) Strong non-rigidity: ez|C|πz

C(Γ) > ecΓ , where cΓ is defined as in (U2)
with φ in place of φ+.

(Û) Alternative upper regularity. M and Γ can be chosen so that the following
holds.

(Û1) Lower density bound: There exist constants c, d > 0 such that

card(ζ) ≥ c|W | − d

whenever ζ ∈ Nf ∩NW is such that EW,(x,r)(ζ) <∞ for some W ∈ B3
b

and some (x, r) ∈ Γ̄.

(Û2) = (U2) Uniform summability.

(Û3) Weak non-rigidity: πz
C(Γ) > 0.
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Before stating the existence theorem, we describe the conditions (R), (S) and
(U) in more detail and put them into context with conditions from Definition 30.

The fact that the hypergraph structure possesses a type of locality property
is crucial for the existence of Gibbs measures. The first assumption (R) reflects
this requirement. It says that hyperedges with a large horizon require the exis-
tence of a large ball with only a few points. It implies that the energy function
EW,(x,r) depends only on the points of (x, r) in a bounded set ∂W (x, r), i.e., that
rW,(x,r) from Definition 20 is a finite range from Definition 30(v) for the given
marked point pattern (x, r). If in addition all horizon sets can be chosen to have
uniformly bounded diameters, the finite ranges rW,(x,r) do not depend on a par-
ticular choice of (x, r) and the range condition from Definition 30(v) is trivially
satisfied. Further, the assumption (R) justifies the restriction on NW

cr since any
translation-invariant locally finite counting measure is concentrated on the set
NW

cr , see Proposition 3.1. in Dereudre et al. [2012].
The stability assumption (S) resembles the stability condition from Defini-

tion 30(iii) and in the same way ensures the finiteness of all normalizing constants
ZW ((x, r)W c) in (3.9). Stability is trivially satisfied if φ is non-negative, then (S)
holds with cS = 0. In case that the hyperedge potential is bounded below, i.e.,
φ(η, (x, r)) ≥ −cφ for some cφ < ∞, stability is ensured if the hypergraph E is
sublinear, see Definition 16.

Finally, when verifying the upper regularity conditions (U), we can restrict
ourselves only on the so called pseudo-periodic configurations defined in Ap-
pendix A.1. The assumption (U1) states that the pseudo-periodic configurations
in Γ̄ confine the range of φ in a uniform way. Condition (U2) provides a uniform
upper bound for the local energy EW,· on Γ̄. The last condition (U3) is satisfied
for all z ≥ z0 for some z0 ≥ 0, provided that (U2) holds and πz

C(Γ) > 0. The
alteration (Û) can help us when it is difficult to satisfy (U3) for small values of
z.
Remark (Simplification of the upper regularity condition). Using the set ΓA, de-
fined in Subsection A.1.1, the conditions (U2) and (U3) can be simplified. In
(U2), card(η̂) = card(η) since each point of η is in a different set C(k). In (U3),
πz

C(Γ) can be directly calculated:

πz
C(ΓA) = πz

C({ξ ∈ NC : ξ = {p}, p ∈ A}) = e−z|A|z|A|e−z|C\A| = e−z|C|z|A|.

(U3) is then of the form z|A| > eCΓ . By taking A as in (A.1) one obtains

|A| = 4
3πρ3a3 ·

(
a

2(1− 2ρ)
)2

= 1
3πa5ρ3(1− 2ρ)2.

Theorem 16. For every hypergraph structure E, hyperedge potential φ and ac-
tivity z > 0 satisfying (S), (R) and (U) there exists at least one Gibbs measure.

Alternative version of the theorem is obtained by replacing the condition (U)
by (Û).

Theorem 17. A Gibbs measure exists also under the assumptions (S), (R) and
(Û).

The proof of both theorems can be found in Dereudre et al. [2012], see Theo-
rems 3.2 and 3.3 together with Remark 3.7.
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3.2.3 Auxiliary lemmas
The following two lemmas show two particular situations when either the range
condition or the uniform confinement condition is satisfied. Lemma 18 states
that the range condition is fulfilled in case of hypergraph structures LD and
LDk, k = 1, . . . , 4, and an arbitrary unary potential.

Lemma 18. For models with the hypergraph structure LD or LDk, k = 1, . . . , 4,
with a unary potential, the range condition (R) is satisfied with parameters ℓR =
3, nR = 0, δR = 2Rmax.

Proof. The lemma was published as Lemma 4.6 in Jahn and Seitl [2020]. Take
the horizon set ∆ = b(xη,

√
r2

η + R2
max). As described in Claim 5, ∆ can be

decomposed into the ball b(xη, rη) and ∆\b(xη, rη), a spherical shell with thickness√
r2

η + R2
max − rη = R2

max/
(√

r2
η + R2

max + rη

)
.

The ball b(xη, rη) determined by the characteristic point (xη, rη) cannot contain
any points of (x, r). Although the spherical shell ∆ \ b(xη, rη) does not have any
bound on the number of points, its thickness is bounded by Rmax. This means
that any x, y ∈ ∆ can be connected by the spheres b(x, Rmax), b(xη, rη), b(y, Rmax),
yielding the parameters ℓR = 3, nR = 0, δR = 2Rmax.

Lemma 19 states that uniformly bounded finite horizons imply uniform con-
finement (U1).

Lemma 19. Let Γ ⊂ N be a class of configurations. If there exists dmax > 0 such
that diam∆ < dmax for the horizon ∆ of any (η, (x, r)), η ∈ E(x, r), (x, r) ∈ Γ,
then

rΓ < dmax,

where rΓ is defined as in the condition (U1).

Proof. The lemma was published as Lemma 4.5 in Jahn and Seitl [2020]. Choose
W ∈ B3

b and x ∈ Γ. Let ζ ∈ NW , η ∈ EW (ζ ∪ (x, r)W c) and denote ∆ the finite
horizon of (η, (x, r)). Then ∆ ∩W ̸= ∅, since

η ∈ EW (ζ ∪ (x, r)W c)⇔ ∃ξ ∈ NW : φ(η, ζ ∪ (x, r)W c) ̸= φ(η, ξ ∪ (x, r)W c)

⇒ ∃ξ ∈ NW : ξx ∩∆ ̸= ∅ ⇒ W ∩∆ ̸= ∅.

Therefore ∆ ⊂ W + B(0, dmax). If we take (x̃, r̃) ∈ Γ such that (x̃, r̃) = (x, r)
on ∂W (x, r) then φ(η, ζ ∪ (x, r)W c) = φ(η, ζ ∪ (x̃, r̃)W c) since ζ ∪ (x, r)W c and
ζ ∪ (x̃, r̃)W c differ only on ∆c.

3.2.4 Existence of Gibbs-Laguerre models
Laguerre cell face interaction

In 3D we examine the Laguerre tessellation where every face contributes to the
energy function. Since the potential depends on pairs of neighbouring cells having
a common face, we talk about pair interaction.
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Theorem 20. There exists at least one Gibbs measure for the hypergraph struc-
ture LD2, hyperedge potential φ2,NV R and every activity z > 0.

Proof. The theorem was published as Proposition 4.12 in Jahn and Seitl [2020].

(R) Claim 5 tells us that ∆ = B(ξx,
√

ξ2
r + R2

max) is the finite horizon for
(ξ, (x, r)) ∈ LD and unary hyperedge potential. Moreover it shows that the
horizon can be decomposed to a ball with no interior points and a spherical shell
with thickness bounded by Rmax. Since the pair potential depends on two cells of
η = {(x1, r1), (x2, r2)} ⊂ (x, r). We define so-called Laguerre doubleflower, see
Fig. 3.2, LF2 := ⋃

ξ∈LD4,ξ∩η ̸=∅ b̄(ξx,
√

ξ2
r + R2

max). For y1, y2 ∈ LF2 one can find
ξ1, ξ2 ∈ LD4 such that y1 ∈ b̄(ξ1x,

√
ξ1

2
r + R2

max) and y2 ∈ b̄(ξ2x,
√

ξ2
2
r + R2

max).
Then either b̄(ξx,

√
ξ2

r + R2
max) ∩ b̄(ξ2x,

√
ξ2

2
r + R2

max) ̸= ∅ or b̄(ξx,
√

ξ2
r + R2

max) ∪
b̄(ζx,

√
ζ2

r + R2
max) ∪ b̄(ξ2x,

√
ξ2

2
r + R2

max), η ⊂ ζ ∈ LD4, is connected. Therefore
the range condition holds with lR = 7, nr = 0, δR = 2Rmax and Laguerre dou-
bleflower as the horizon for every (η, (x, r)) ∈ LD2 and the hyperedge potential
φ2,NV R.

(S) Stability is satisfied because φ is non-negative.

(U) We choose M and Γ as in Subsubsection A.1.1.

(U1) By Remark A.1.1 there exists R0 > 0 such that ηr ≤ R0 for all η ∈
LD4(x, r), (x, r) ∈ Γ̄A. For every (η, (x, r)) ∈ LD the diameter of the
set ∆ = b(ηx,

√
η2

r + R2
max) can be bounded, cf. Claim 5: diam ∆ =

2
√

η2
r + R2

max ≤ 2
√

R2
0 + R2

max. In the case of Laguerre doubleflower LF2

we obtain the bound for its radius 3
√

R2
0 + R2

max. Since LF2 is the horizon
for every (η, (x, r)) ∈ LD2 and the hyperedge potential φ2,NV R, we obtain
rΓ ≤ 6

√
R2

0 + R2
max using Lemma 19.

(U2) c+
A = sup(x,r)∈Γ̄A

∑
η∈LD2(x,r),ηx∩C ̸=∅

φ+
2,V NR(η,(x,r))

card(ηx) ≤ ∑
η∈LD2(x,r),ηx∩C ̸=∅

K
2 ,

where the right side is finite since the sum is finite. Indeed the num-
ber of incident tetrahedra to each vertex is at most 32, cf. Remark A.1.1.
Each incident tetrahedron contains 3 edges ending in the considered ver-
tex. Therefore the number of summands is for sure ≤ 96.

(U3) The lower bound on z is gained from the condition z|A| > eCΓ , cf. Remark
3.2.2. Since |A| = 1

3πa5ρ3(1 − 2ρ)2 the inequality results in z > C0
1
a5 eC1 ,

where C0, C1 > 0 are constants not depending on a. Minimizing the right
side over a > 0 we obtain z > 0 as a→∞.

Laguerre cell distribution interaction

The goal of the potential φG
k,T is to influence the distribution of a geometric

characteristic s computed from the sample of size k, k ∈ N. In the stationary
case the distribution on (x, r) is well approximated by the distribution on a finite
η possessing a sample of size k large enough.
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Figure 3.2: Laguerre 5-flower LF5 of grey generators. Black spheres depicture
generators. Grey and blue spheres are their characteristic points and finite hori-
zons, respectively.

Theorem 21. There exists at least one Gibbs measure for the hypergraph struc-
ture CGk,b, hyperedge potential φG

k,T , k ∈ N, and every activity z > 0.
Proof. The theorem was published as Proposition 4.13 in Jahn and Seitl [2020].

(R) Claim 5 tells us that ∆ = b(ξx,
√

ξ2
r + R2

max) is the finite horizon for
(ξ, (x, r)) ∈ LD and a unary hyperedge potential. Moreover it shows that
the horizon can be decomposed to the ball with no interior points and annu-
lus with width bounded by Rmax. The hyperedge η contains k points. Sim-
ilarly as in Theorem 20 we define Lagurre k-flower, see Fig. 3.2, LFk :=⋃

ξ∈LD4,ξ∩η ̸=∅ b̄(ξx,
√

ξ2
r + R2

max). Then for y1, y2 ∈ LFk one can find ξ1, ξ2 ∈ LD4

such that y1 ∈ b̄(ξ1x,
√

ξ1
2
r + R2

max) and y2 ∈ b̄(ξ2x,
√

ξ2
2
r + R2

max). These two
balls can be connected in the worst case by k − 1 balls b̄(ξx,

√
ξ2

r + R2
max),

where card(xξ ∩ xη) ≥ 2. The range condition (R) is then satisfied with
lR = 2k + 3, nr = 0, δR = 2Rmax and Laguerre k-flower as the horizon for
every (η, (x, r)) ∈ CGk,b and the hyperedge potential φG

k,T .

(S) Stability is satisfied since φ is non-negative.

(U) We choose M and Γ as in Subsubsection A.1.1.

(U1) Since the radius of the set ∆ of any (η, (x, r)), η ∈ LD4, (x, r) ∈ Γ̄A, can
be bounded uniformly by

√
R2

0 + R2
max the radius of the Laguerre k-flower

LFk is bounded by (k + 1)
√

R2
0 + R2

max. Further by Lemma 19 the bound
for rΓ can be taken as 2(k + 1)

√
R2

0 + R2
max.

(U2) c+
A = sup(x,r)∈Γ̄A

∑
η∈CGk,b(x,r),ηx∩C ̸=∅

φG
k,T (η,(x,r))
card(ηx) ≤ ∑

η∈CGk,b(x,r),ηx∩C ̸=∅
K
k

,

where the right hand side is finite since the sum is finite. Indeed the

61



number of incident edges (vertices) to each vertex is at most 96, cf. proof
of the previous Theorem 20. To each of these at most 96 vertices we can
take again all his incident vertices. Repeating this k − 2 times we obtain
k-neighbourhood which is finite and we have finitely many possibilities
how to choose k-tuple of vertices from it.

(U3) The lower bound on z is gained from the condition z|A| > ecΓ , cf. Remark
3.2.2. Since |A| = 1

3πa5ρ3(1 − 2ρ)2 the inequality results in z > C0
1
a5 eC1 ,

where C0, C1 > 0 are constants not depending on a. Minimizing the right
side over a > 0 we obtain z > 0 as a→∞.

Corollary. The statement of the Theorem 21 holds for T = dsc(H, H ′) and K =
∞.

Proof. Note that in the case of T = dsc(H, H ′), it holds that φG
k,T ≤ K ∧ 2.

Remark (On sublinearity in Delaunay tessellation). Note that, in 2D we have
sublinearity, see Definition 16, of the cardinalities of the Delaunay edges and
triangles thanks to the Euler’s formula. This would allow the parametrization
of hyperedge potentials in 2D analogues of Theorems 20 and 21 by a negative
parameter. Unfortunately, the similar statement in the higher dimensions is not
so obvious and no result about its validity is known.

3.3 Parameter estimation

Let W̃ ⊂ W ⊂ R3 be bounded Borel sets and assume that we have observed
a tessellation on the larger set (observation window) W . We consider a parametric
model for generators, cf. (3.1), where the energy function E(x, r) depends on
a parameter vector θ = (θ1, . . . , θn) and possibly on some hardcore parameters ε,
e.g., ε = (α, β, B), see (3.3). Thus we write E(x, r) = E((x, r); ε, θ) to emphasize
the dependency on parameters. The activity z > 0 is considered as an unknown
parameter, too. Methods for parameter estimation were suggested in Dereudre
and Lavancier [2011] for Gibbs-Voronoi tessellations in R2. They can be extended
straightforwardly to Gibbs-Laguerre tessellations in R3, at least when the values
of the parameters are in a certain range.

In order to estimate the parameters z and θ we need to distinguish whether
the energy function of Gibbs point process is hereditary, cf. Definition 30, or
not. In Gibbs-type tessellations the heredity is frequently violated because of
hard-core conditions. For example, when we delete a generator of an admissible
configuration, it may happen that one of the new cells is too big to satisfy the
hard-core condition given by the parameter β. Therefore, we introduce the no-
tion of removable points R(x, r) from the marked point configuration (x, r), cf.
Definition 36. To emphasize the dependency on hardcore parameters ε we write
Rε.
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3.3.1 Pseudolikelihood for Gibbs-Laguerre tessellations
First, focus on estimation of parameters z and θ provided that the hardcore
parameters are known or estimated in advance. The parameters z, θ are then
estimated by means of the maximum pseudolikelihood method, cf. Møller and
Waagepetersen [2003], where the (estimated) values of the hard-core parameters
are plugged-in.

A derivation of the log pseudolikelihood contrast function (recall Definition 54)

clPLW̃ := − logPLW̃

is in hereditary setting briefly described in Møller and Waagepetersen [2003].
A generalization of the maximum pseudolikelihood method to the non-hereditary
case is described in Dereudre and Lavancier [2009] – he presence of hardcore pa-
rameters means that the log pseudolikelihood contrast function clPLW̃ involves
summing up over the set of removable points only. We state the log pseudolikeli-
hood contrast function for a marked point realization (x, r) ∈ NW̄ , compare this
with Definition 54:

clPLW̃ (z, ε,θ; (x, r)) =
∫

W̃ ×M
z exp(−h((y, s), (x, r); ε, θ))d(y, s)

+
∑

(y,s)∈Rε(x,r)∩(W̃ ×M)

(h((y, s), (x, r) \ {(y, s)}; ε, θ)− ln(z)). (3.13)

The maximum pseudolikelihood estimates of θ and z are then obtained as (ẑ, θ̂) =
argminz,θ clPLW̃ (z, ε̂, θ; (x, r)). This optimization requires the computation of
the local energy h, cf. Definition 35, that requires the knowledge of the config-
uration outside W̃ . This can be solved by taking W̃ to be a strict subset of the
observation window W .

Differentiation of the log pseudolikelihood contrast function clPLW̃ in (3.13)
yields the representation of z given by

ẑ = card(Rε̂(x, r) ∩ (W̃ ×M))∫
W̃ ×M exp(−h((y, s), (x, r); ε̂, θ))d(y, s) , (3.14)

and the equations

z
∫

(W̃ ×M)′

∂h

∂θj

((y, s), (x, r); ε̂, θ) exp (−h((y, s), (x, r); ε̂, θ)) d(y, s) =

=
∑

Rε̂(x,r)∩(W̃ ×M)

∂h

∂θj

((y, s), (x, r) \ {(y, s)}; ε̂, θ), j = 1, . . . , q,
(3.15)

where (W̃ ×M)′ = {(y, s) ∈ W̃ ×M : (x, r)∪ {(y, s)} is admissible}. In practice,
we replace z in (3.15) by the right-hand side of (3.14) and obtain q equations
whose solution θ̂ gives an estimate of θ. Then we compute ẑ by plugging θ̂ into
(3.14). The integrals in (3.14) and (3.15) have to be evaluated numerically, using,
e.g., Monte Carlo techniques. The equations (3.14) and (3.15) are then solved
numerically by the Newton-Raphson method, Magrenan and Argyros [2018].
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3.3.2 Estimation of hardcore parameters
Let W̃ ⊂ W ⊂ R3 be bounded Borel sets and similarly as in (3.3) let hmin(C),
hmax(C) be the minimum, maximum distance between the barycenter of the
cell C and any of its faces, respectively. Assume that we observe the Laguerre
tessellation L(x, r) given by the generators (x, r) ∈ N on a window W ∈ B3

b

and that all cells intersecting W̃ are fully contained in W . The estimate of the
hardcore parameter ε = (α, β, B) is ε̂ = (α̂, β̂, B̂), where

α̂ = min
{
wmin(C) : C ∈ L(x, r) intersecting W̃

}
,

β̂ = max
{
wmax(C) : C ∈ L(x, r) intersecting W̃

}
,

B̂ = max
{

w3
max(C)
|C|

: C ∈ L(x, r) intersecting W̃

}
.

Their consistency w.r.t. an unboundedly expanding observation window W̃ can
be shown analogously to the proof given in Dereudre and Lavancier [2011].

3.4 Gibbs-Laguerre tessellations
The Gibbs-Laguerre tessellation model (3.5) introduced in Section 3.1.2 is used in
case of Laguerre tessellation data representing the Aluminium alloy microstruc-
ture from Section 1.3.2. Results of this section are published in Seitl et al. [2021].

3.4.1 Modelling and reconstruction
The aim is to create models of random tessellations whose realizations are similar
to the experimental data. The first approach to do so is to estimate the parameter
values of various Gibbs-Laguerre tessellations chosen a priori, using standard tech-
niques like the maximum pseudolikelihood method as described in Section 3.3.1.
We tested this approach first on simulated data, see Section 3.7.2, Table 3.8.
The results of pseudolikelihood method are not very accurate, especially for the
activity z. Some practical aspects regarding the problem of estimation by the
maximum pseudolikelihood method are mentioned in [Dereudre and Lavancier,
2011, Sections 4 and A.3].

An alternative approach inspired by the statistical reconstruction method
(Section 3.5) is preferred in this section. The key element of this approach is
so called reconstructing potential (3.5). We rely on distributional properties of
geometric characteristics of the grains within the microstructure and distinguish
two types of ‘reconstruction’. In Section 3.4.2 we focus on moments, especially
on the mean and variance. We demonstrate that we can simulate tessellations
with pre-specified moment properties on an example of two grain characteristics.
In Section 3.4.3 the aim is not only to ‘reconstruct’ moment properties of chosen
grain characteristics but their entire distribution.

In both cases, the reconstruction is done using the birth-death-move algo-
rithm, Algorithm 2, but instead of a priori fixed number of iterations S it uses
a ‘stopping criterion’. In brief, the recontruction stops when there is no change in
the energy value greater than δ for some time t. More details about the stopping
criterion can be found in Section 3.4.4.
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The models depend on two parameters z and θ. The activity parameter z is
fixed in advance such that its value corresponds approximately to the desired
number of Laguerre cells within simulated tessellations. Further, its importance
drops when either the first moment or whole distribution of the cell volume is
about to be reconstructed – this is because of constraint that cell volumes always
sum up to the volume of the observation window W . In this section, we set
z = 2000. The choice of the parameters θ is done heuristically: a sequence of
increasing parameter values is considered and the lowest values giving satisfactory
results are chosen in the final model; this will be demonstrated in Section 3.4.3.

Table 3.1: Means and standard deviations of various tessellation characteristics of
the aluminium alloy data, the third column, are normalized to the unit volume,
the fourth column. Normalization means that volume-based, area-based and
length-based characteristics are divided by the volume, the square root of the
volume and the cube root of the volume of the window W , respectively.

W 486× 529× 685 [0, 1]3

radius [µm] mean 29.77 5.31·10−2

sd 18.96 3.38·10−2

M [0,70] [0, 0.125]
vol [µm3] mean 1.68 · 105 9.6712 · 10−4

sd 1.53 · 105 1.0782 · 10−4

dvol [µm3] mean 1.89·105 1.07·10−3

sd 1.57·105 8.92·10−4

surf [µm2] mean 1.56·104 1.18
sd 9.21·103 6.94·10−1

tel [µm] mean 8.59·102 1.53
sd 3.84·102 6.85·10−1

The last comment concerns the observation window W . For the purposes
of the reconstructions, we normalize the window W to the unit window [0, 1]3.
This means that the volume based characteriristics, as vol and dvol, are divided
by the volume of the cuboidal domain of the experimental data, i.e., by |W |.
Further, areas and lengths are normalized by the square and cube root of the vol-
ume the cuboidal domain, respectively. Dimensionless characteristictics as nof,
spher, etc. remain unchanged. Those characteristics which value has changed
by normalization are in Table 3.1 - the new values are compared to the original
values from Table 1.4. Specially, the radii are divided by the cube root of |W |,
and thus we obtain that radii are smaller than 0.124 (which corresponds to 70,
cf. Fig. 1.8(b), before normalization). Hence, the space of marks M can be set
to interval [0, 0.125]. The symbols histexd

nof and histexd
vol denote the relative his-

togram of the number of faces and the relative histogram of the cell volume from
Figure 1.8, respectively. The upper index “exd” means that the histogram corre-
sponds to experimental data. We use the same notation even for their normalized
counterparts, which are assumed in the rest of this section.
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3.4.2 Moment reconstruction
First, our goal is to reconstruct the Laguerre tessellation data using moments.
We will show that realizations with prescribed empirical moments of various cell
characteristics can be sampled. In particular, we investigate the first and the
second moment together. We specify three models, where the first two consider
either solely the number of faces per cell, (3.16), or solely the cell volume, (3.17),
whereas in the third model both characteristics are involved, (3.18). The models
are based on the reconstructing potentials V G

n,T , (3.5). The energy function of the
first two Gibbs-Laguerre models combines two reconstructing potentials, namely
(together with the parameter specification)

G1 = nof, T1(sG1) = s̄G1 , s0,1 = 14.1608, θ1
n = 10 000,

G2 = nof, T2(sG2) = S2
sG2

, s0,2 = 23.5783, θ2
n = 1 000,

(3.16)

in the case of nof characteristic and
G1 = vol, T1(sG1) = s̄G1 , s0,1 = 9.6712 · 10−4[µm3], θ1

n = 100 000,
G2 = vol, T2(sG2) = S2

sG2
, s0,2 = 1.1626 · 10−8[µm3], θ2

n = 500 000,
(3.17)

in the case of vol characteristic. The symbol S2
sG

denotes the sample variance
1

n−1
∑

C(sG(C) − s̄G)2. The stopping criterion which we use in both cases is
(δ, t) = (0.002, 500 000).

Figures 3.3a) and 3.3b) show results of the reconstructions (3.16) and (3.17),
respectively. Both figures show histograms of the number of faces per cell and
histograms of the cell volume in columns A nad B, respectively. In row I, there
are histograms computed from one reconstructed tessellation. In row II, there
are gray histograms computed from the data together with kernel estimates of
the densities evaluated from ten reconstructions. Table 3.2 depicts the numeri-
cal values obtained. In case of reconstructions (3.16), we see (compare values in
Tables 3.2 and Table 1.4) that the mean and standard deviation of number of
faces are similar to those obtained from data. On the other hand, the mean and
standard deviation of volume do not match perfectly. In case of reconstructions
(3.17), we see conversely (as expected, the model is based on vol instead of nof)
that the mean and standard deviation of number of faces differ and the mean and
standard deviation of volume are very similar.

Table 3.2: Moment reconstruction - numerical values. Two parameter specifica-
tions (3.16) and (3.17) controlling the first two moments of nof and the first two
moments of vol, respectively, were used to obtain realizations described in this
table.

number of cells nof vol [µm3]
mean sd mean sd

spec. (3.16) 2810 14.1609 4.8557 3.5587 · 10−4 3.0310 · 10−4

spec. (3.17) 1033 14.6583 5.6277 9.6805 · 10−4 1.0782 · 10−4

Until now random tessellations considering either solely the number of faces
per cell or solely the cell volume were investigated. The next goal is to reconstruct
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A B

I

II

a) The reconstruction using the first two moments of nof with parameter specification
given in (3.16).

I

II

b) The reconstruction using the first two moments of vol with parameter specification
given in (3.17).

Figure 3.3: The columns A and B show number of faces and volume [µm3], respectively.
Relative histograms on row I are computed from a single realization. To show the
variability of the model row II shows kernel estimates of the densities computed from
ten realizations together with histograms coming from the experimental data—in gray.
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the first two moments of the number of faces per cell and the cell volume at
once. This means that the energy function of the third Gibbs-Laguerre model
consists of four potentials. The objective is met by random tessellation having
the specification:

G1 = nof, T1(sG1) = s̄G1 , s0,1 = 14.1608, θ1
n = 100 000,

G2 = nof, T2(sG2) = S2
sG2

, s0,2 = 23.5783, θ2
n = 500 000,

G3 = vol, T3(sG3) = s̄G3 , s0,3 = 9.6712 · 10−4[µm3], θ3
n = 10 000,

G4 = vol, T4(sG4) = S2
sG4

, s0,4 = 1.1626 · 10−8[µm3], θ4
n = 8 000 000.

(3.18)
The stopping criterion which we use is (δ, t) = (0.002, 500 000).

A B

I

II

Figure 3.4: The reconstruction using the first and the second moments of both, nof
and vol, model (3.18) – column A and B show relative histograms and densities
of number of faces and volume [µm3], respectively; the histograms of relative
frequencies in row I are computed for one realization; to illustrate the variability
of the random tessellation, row II shows densities computed for a bunch of ten
realizations together with histograms coming from the experimental data—in
gray.

Figure 3.4 shows relative histograms of both the numbers of faces per cells
and the cell volumes. Moreover, it contains densities of both characteristics per
ten realizations to illustrate the variability of the characteristics. The numerical
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Table 3.3: Moment reconstruction of the experimental data – model (3.18) (values
from the experimental data are given in brackets).

number of cells nof vol [µm3]
mean sd mean sd

1032 14.1609 4.8558 9.6899 · 10−4 1.0499 · 10−4

(1034) (14.1608) (4.8558) (9.6712 · 10−4) (1.0782 · 10−4)

values obtained are presented in Table 3.3. With an increasing number of po-
tentials combined in the energy function it is more difficult to get close to the
prescribed values, but even for the potential of the third model (3.18) the results
are satisfactory. We can compare the first two empirical moments of both, num-
ber of faces and volume, as reached in reconstructions with those obtained from
data, cf. Table 1.4, and conclude that they are quite similar.

3.4.3 Histogram reconstruction
A more sophisticated approach to the reconstruction of tessellations is to control
not only a few moments but the entire distribution of a geometrical characteris-
tic. The easiest way to accomplish this is to measure the discrepancy between
histograms, see Fig. 3.1. We will consider three different models. The first two
controls the distribution of a single cell characteristic. The energy function of
both is given by the reconstructing potential V G

n,T , (3.5), and we set

G = nof, T (sG) = dsc(HsG
, H ′

sG
), H ′

snof
= histexd

nof , θn, (3.19)

in the case of the first model, and

G = vol, T (sG) = dsc(HsG
, H ′

sG
), H ′

svol
= histexd

vol , θn, (3.20)

in the case of the second model. In both models, HsG
stands for the empirical

histogram of the characteristic G computed within simulations. In addition to
providing the results, we examine the choice of parameter θn. The stopping
criterion which we use here is (δ, t) = (0.002, 500 000).

Table 3.4 and Figure 3.5 show how the value of θn influences the distribution of
number of faces within the simulated realizations under model (3.19). The table
shows that with increasing θn the histogram discrepancy of the number of faces
per cell dsc(Hsnof , histexd

nof ) decreases. The reconstructing potential considers only
the number of faces per cell (nof); therefore, the discrepancy of the histograms of
cell volume dsc(Hsvol , histexd

vol ) is not controlled. In summary, a small value of θn

results in a large discrepancy dsc(Hsnof , histexd
nof ). On the other hand, increasing θn

beyond a certain level leads to no further improvement, because the probabilities
of acceptance in Algorithm 1 tend to zero. The figure compares empirical kernel
density estimates computed from simulations with histogram histexd

nof . We see,
that with increasing value of θn the curves of the density estimates resemble the
shape of histogram histexd

nof more and more. The variability of the realizations is
higher for small values of θn and it decreases when θn grows. The results should
be compared to the experimental data, see Figure 1.8.
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A B

Figure 3.5: Reconstruction of experimental data, controlling the distribution of
the numbers of faces per cell, model (3.19): from top to bottom the parameter θn

takes on the values 10, 100, 1 000 and 10 000; column A shows the histograms of
relative frequency computed from a single realization, and column B shows kernel
density estimates based on ten realizations together with the histogram histexd

nof
coming from the experimental data (cf. Figure 1.8)—in gray.

70



A B

Figure 3.6: Reconstruction of the data using the histogram of the cell volume,
model (3.20). The cell volume is expressed in µm3. From the top the value
of parameter θn increases, the values are 10, 100, 1000 and 10000. Column
A shows the evolution of the histogram of relative frequencies (computed from
one realization) and column B shows the densities of ten realizations together
with the targeting histogram histexd

vol , that comes from the experimental data, see
Figure 1.8. The corresponding discrepancies are stated in Table 3.5.
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Table 3.4: Dependence on θn of the discrepancy between histograms for the
number of faces per cell and histograms for the cell volumes in model (3.19).

θn discrepancy
nof vol

10 0.46822 0.70841
100 0.41481 0.68919

1 000 0.02964 0.45739
10 000 0.02529 1.32095
100 000 0.02356 1.28102

1 000 000 0.02102 1.32543

A similar behaviour can be observed in case of model (3.20). Table 3.5 demon-
strates what happens with the histogram discrepancy when the parameter θn is
increasing. Figure 3.6 shows how the value of parameter θn influences the empir-
ical density and variability of the cell volume within simulated realizations.

Table 3.5: Dependence on θn of the discrepancy between histograms for the
number of faces per cell and histograms for the cell volumes in model (3.20).

θn discrepancy
nof vol

10 0.49742 0.69294
100 0.46457 0.64480
1000 0.23373 0.03997
10000 0.20450 0.07205
100000 0.22514 0.08221
1000000 0.20899 0.06267

The third model combines the two previous models, i.e., it aims at recon-
structing both cell characteristics:

G1 = nof, T1(sG1) = dsc(HsG1
, H ′

sG1
), H ′

snof
= histexd

nof , θ1
n,

G2 = vol, T2(sG2) = dsc(HsG2
, H ′

sG2
), H ′

svol
= histexd

vol , θ2
n,

(3.21)

In addition to providing the results, we examine the choice of parameters θ1
n, θ2

n

in detail. Once again, the stopping criterion employed is (δ, t) = (0.002, 500 000).
The conclusions made based on models (3.19) and (3.20) remain valid even

for model (3.21), which combines two reconstructing potentials based on the
histogram discrepancy. Combining more than one potential causes some difficul-
ties. The values of both parameters have to be in a reasonable proportion as
described in Table 3.6. Moreover, it is easy to see that the value of the parameter
corresponding to the histogram of cell volumes must be the larger of the two.
Figure 3.7 shows the reconstruction results in case of θ1

n = 1 000 and θ2
n = 10 000.

The results should be compared to the experimental data, see Figure 1.8, in order
to verify the success of the reconstruction visually.
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Table 3.6: Dependence on the parameters θ1
n and θ2

n of the discrepancy of his-
tograms for the number of faces per cell and for the cell volume in model (3.21).

θ1
n\θ2

n 103 104 105 106

102 nof 0.28966 0.21418 0.20543 -vol 0.36386 0.06484 0.05571

103 nof 0.05294 0.07903 0.14432 0.13548
vol 1.21265 0.08136 0.06971 0.06634

104 nof - 0.01671 0.06802 0.09268
vol 1.14779 0.09701 0.06514

105 nof - - 0.01327 0.05756
vol 1.02774 0.09387

A B

Figure 3.7: Reconstruction of experimental data, controlling distributions of the
number of faces per cell and of the cell volume, model (3.21) with θ1

n = 1 000
and θ2

n = 10 000: column A shows the number of faces per cell, the histogram of
relative frequencies computed from one realization and kernel density estimates
based on ten realizations; column B shows the same plots for the cell volume.
The gray histograms are those of the experimental data, i.e., histexd

nof and histexd
vol ,

cf. Figure 1.8.

3.4.4 Summary of numerical results
In this section we have introduced two methods how to simulate Gibbs-Laguerre
tessellations statistically similar to the experimental data. Recall, that the meth-
ods are inspired by statistical reconstruction of (marked) point pattern as in-
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Figure 3.8: The comparison of the reconstruction stopped by stopping criterion
(δ, t) = (0.02, 100000) and the simulation performing 2 millions steps. Both are
based on model (3.19) with control parameter θn = 1000. Two subfigures show
the time evolution of the histogram discrepancy (energy) for 5 simulations. The
stopping criterion (δ, t) results in shorter runs - all 5 reconstructions (on the left)
were stopped after less than 320 thousands of iterations.

troduced in Tscheschel and Stoyan [2006] and described in Section 3.5. Both
reconstruction methods have proved to be successful in sense that Laguerre tessel-
lations similar to the experimetal data are simulated. The moment reconstruction
method, cf. Section 3.4.2, produced samples with the first two empirical central
moments of two cell characteristics being similar to the prescribed values (i.e.,
five-parameter model – activity and four control parameters). The number of
parameters increases not only with the number of tessellation characteristic but
with the number of considered moments as well. Therefore, the second method
wants to keep the number of control parameters to be equal to the number of tes-
sellation characteristics. The histogram reconstruction method, cf. Section 3.4.3,
produced samples with empirical distribution of two cell characteristics being
similar to the prescribed shape, i.e., only three-parameter model outperforming
the moment reconstruction (the whole distribution is mimicked instead of the
first two moments). It is clear that the first method cannot be so accurate as
the second method, which can be viewed as a ‘limiting’ case in sense that we
would need to consider all moments in the first method in order to obtain the
same effect as the second method has. On the other hand, for small number of
moments, the first method is usually less time demanding.

The time of reconstructions can be reduced in the other way – instead of
using a priori fixed number of iterations in Algorithm 2, a stopping criterion
(δ, t) can be used: the Algorithm 2 is terminated when the energy remains in
a band of the width δ for a time period t. A suitable choice of δ and t enables
to shorten the runtime of the reconstructions significantly. In Figure 3.8 the
shorter reconstruction terminated by the stopping criterion (δ, t) is compared
with a much more longer simulation. Although the decrease of energy (in this
case equivalent to a single discrepancy between histograms of the number of
faces per cell) continues even after the event when the stopping criterion could
be applied, it is very gradual. For these reasons, shorter and thus less time
demanding reconstructions ended by the stopping criterion are preferred.
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3.5 Statistical reconstruction
The concept of statistical reconstruction of (marked) point patterns was first
introduced in Tscheschel and Stoyan [2006] (see Illian et al. [2008] for a text-
book version). It uses no a priori stochastic model. The aim of the stochastic
reconstruction is to generate point patterns with a priori chosen distributional
characteristics close to those of a given point pattern (data). This is usually car-
ried out by choosing an admissible entry point configuration (note that there can
be some hard-core restrictions on the considered point configurations) and by run-
ning some iterative optimization method, e.g., greedy algorithm, Cormen et al.
[2009], Chapter 16, or simulated annealing, van Laarhoven and Aarts [1987]. De-
pending on the particular method, the number of points can be fixed. The goal is
to minimize the deviation of the distributional characteristics computed from the
point pattern created by the iterative method and the point pattern representing
the data. In each step of the optimization method the actual point configuration
is proposed to be modified. The proposal is accepted according to the rules of
the optimization method, e.g., in case of greedy algorithm only proposals leading
to a decrease of the deviation are accepted. The resulting point pattern is taken
as a reconstruction of the data pattern.

An example of the statistical reconstruction using greedy algorithm in case
of marked point pattern follows. Choose distributional characteristics of the
marked point pattern which we want to liken to the data (xn, rn) and decide
how to compute the deviation. We will denote the deviation of the distributional
characteristics computed from (x0, r0) and from the data (xn, rn) by E(x0, r0),
E : Nf → R+∪{∞} (we use the same symbol as for the energy function of Gibbs
point processes since the same functions can often be used in both cases). In the
case when the periodic boundary conditions are applied we will write Ẽ(x0, r0).
Set L ∈ N.

Algorithm 5 (Reconstruction via greedy algorithm).

1. construct an admissible marked point configuration (x0, r0) of n marked
points that generate only nonempty Laguerre cells,

2. choose a point (x, r) from (x0, r0) at random, generate (y, s) ∼ Q(x, r) and
set

(x1, r1) = (x0, r0) \ {(x, r)} ∪ {(y, s)},

3. (x0, r0)← (x1, r1) if Ẽ(x1, r1) < Ẽ(x0, r0),

4. if the point configuration (x0, r0) has not changed over the last L iterations,
then return (x0, r0), else goto 3.

The function Ẽ can be the periodic energy function of the form (3.1). The recon-
struction starts by fixing the total number n of nonempty cells in the sampling
window W . Then an admissible marked point pattern (x0, r0) of n generators
is sampled in W ×M such that it generates only nonempty Laguerre cells. In
each iteration of Algorithm 5 a random marked point (x, r) ∈ (x0, r0) is chosen
and proposed to be replaced by a new marked point (y, s). Here, the marked

75



point (y, s) is drawn from a probability distribution Q(x, r) possibly depend-
ing on (x, r), e.g., Q(x, r) = Unif(W ×M). The replacement is carried out if
the periodic energy of the proposal (x1, r1) is smaller than the periodic energy
of (x0, r0). The non-emptiness of Laguerre cells is preserved by the hard-core
potential (3.2). The reconstruction ends if there is no replacement in L ∈ N
consecutive iterations.

3.6 Comparison of reconstruction approaches

In this section, a short comparative study of reconstruction via MHBDM (Al-
gorithm 2 with stopping criterion (δ, t)) and the classical approach using the
greedy algorithm described in Cormen et al. [2009], Chapter 16, is presented.
The pseudocode briefly describing the greedy approach to statistical reconstruc-
tion is provided by Algorithm 5.

The reconstruction was carried out on the experimental data set introduced
in Section 1.3.2 and encompassing 1049 nonempty cells. An important decision
is which potentials will be incorporated in (3.1). We provide two comparisons,
both defined by a single soft-core potential based on the histogram discrepancy.

The first comparison concerns the volumes of cells. Both reconstruction ap-
proaches consider the discrepancy (3.7) between the histogram of cell volumes
of each generated tessellation and the corresponding histogram of the experi-
mental data histexd

vol shown in Figure 1.8. In both algorithms there are some
auxiliary parameters that need to be specified: namely, in Algorithm 2 we set
θn = 1000 and (δ, t) = (0.01, 100000), and in Algorithm 5 we set n = 1049,
Q(x, r) = Unif(W × M) and L = 50000. In Figure 3.9 we observe that the
discrepancy stops decreasing after 200 000 iterations in the case of the greedy
reconstruction and after 50 000 iterations in the case of the MHBDM reconstruc-
tion. The computational time to arrive at this point is roughly the same for both
approaches. The MHBDM reconstruction yields smaller discrepancies, as can be
seen in Figure 3.9.

On the other hand, when dealing with histograms of the number of faces per
cell (the second comparison), the results, cf. Figure 3.10, are better for the greedy
reconstruction.

In the literature, cf. e.g., Illian et al. [2008], statistical reconstruction of point
patterns is considered to be a non-parametric method. Our method interconnects
statistical reconstruction with the simulation of Gibbs point processes and uses
auxiliary parameters to control the precision of the fit. Altogether, there is a com-
mon step, Algorithm 1, that can be used in the simulation of marked Gibbs point
processes and the reconstruction of marked point patterns. Note that, in contrast
to the classical reconstruction as in Illian et al. [2008], the number of points in
the reconstructed pattern does not need to be fixed. In summary, the benefit
of the MHBDM reconstruction compared to the greedy algorithm introduced in
Cormen et al. [2009] is that the former allows more flexibility in how close the re-
constructed tessellation tracks the data. Moreover, since the MHBDM algorithm
is not prone to getting stuck in local minima, a better fit can be achieved.
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a) b)

Figure 3.9: Evolution of the discrepancy of histograms of cell volume for (a) the
greedy algorthm and (b) the MHBDM algorithm. The red line represents the
discrepancy y = 0.05

a) b) c)

Figure 3.10: Evolution of the discrepancy of histograms of number of faces per
cell for (a) the greedy algorithm, (b) the MHBDM algorithm with θn = 1 000
and (c) the MHBDM algorithm with θn = 10 000. The red line represents the
discrepancy y = 0.05
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3.7 Non-data based Gibbs-Laguerre tessellation
models

Until now in this chapter we developed statistical models of Laguerre tessellations
based on real datasets introduced in Section 1.3. In this section we introduce
several non-data based models and examine somehow ‘extreme’ parameter spec-
ifications. In particular, we examine models based on the following geometrical
characteristics: number of faces, NVR and sphericity. Section 3.7.1 shows that
tessellations with rather extreme mean of number of faces can be simulated, this
simulation study was published in Stoyan et al. [2021]. Section 3.7.2 examines
the so called regular and irregular model based on NVR, where tessellations with
similar and different volumes of neighbouring cells are obtained, respectively. Be-
sides simulations it considers parameter estimation using Takacs-Fiksel method,
the results were published in Seitl et al. [2021]. More simulation studies are pre-
sented within the attachments. Attachment A.2 shows histogram reconstruction
of sphericity and Attachment A.3 compares chosen Gibbs-Laguerre tessellations
to Poisson-Laguerre tessellations with the same intensity. If not stated otherwise,
the activity parameter z of Gibbs-Laguerre tessellation models is set to be 1000.

3.7.1 Number of faces per cell
In this section tessellations with rather extreme mean number of nof are simulated
in the observation window W = [0, 560.524]3, units in µm. The size of the
observation window is chosen to have the same volume as the observation window
in case of alluminium alloy dataset, cf. Section 1.3.2. The energy function E(x, r)
used here is of the form (3.1) and consists of three terms, which each aims to
produce special geometric effects. We adapt the energy function to periodic
boundary conditions, cf. Section 2.5, and write

Ẽ(x, r) = Vhard + θ1
∑

V1(C) + θnVn(C1, . . . , Cn).

The hardcore energy part Vhard, (3.2), is simply infinite if one or some marked
points of (x, r) create empty Laguerre cells. That means that we avoid generators
creating empty cells.

The repulsive potential V1(C) creates ‘soft’ distances between the generators.
It has the form

V1(C) =

⎧⎨⎩log(d/dmin(C)) if dmin(C) < d,

0 otherwise,

where dmin(C) is the Euclidean distance from the generator of C to the nearest
generator in L(x∗, r∗) \ {C} and d is a parameter, we used d = 22.42.

The last energy term Vn(C1, . . . , Cn) is a kind of reconstructing potential (3.5)
and helps to generate tessellations with a mean nof close to the prescribed value
s0. We set θ1 = 1 and θn = 1000. We stopped the simulations after 200, 000
iterations, the target value s0 was usually reached within 140, 000 iterations.

We present here results for two cases with the different parameters s0 = 12
and s0 = 18; we call the corresponding tessellations T12 and T18. These choices
of s0 aim to generate tessellations with mean values of nof 12 and 18, which so
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differ clearly in an important characteristic from the Poisson-Voronoi tessellation
(where the mean nof is 15.54, see Okabe et al. [2000]). Our choice is not the only
possible and similar results can be obtained for other cases.

Figure 3.11: Samples of simulated Laguerre tessellations T12, left, and T18,
right. The corresponding numbers of cells are 1040 and 1033, respectively. The
cells are coloured randomly.

The tessellations T12 and T18 differ greatly in their geometrical structure, see
Figure 3.11 for visual comparison, while the generating programs are identical up
to the target parameter s0. Our choice of the potential Vn and parameter θn

made the simulations to ‘brute force’ simulations that really hit the target values
s0 = 12 and 18, see Table 3.7. This table evaluates five independent realizations
of both T12 and T18 and moreover ten samples obtained by permutation of the
radius marks from the first simulated sample. It shows in the columns ‘data’ and
‘permuted’ a large mean variability of the tessellation within the samples (rows
II in Table 3.7), while the variability of the means of the characteristics for the
whole tessellations (row III) is much smaller. We conclude that the simulated
samples yield reasonably stable results for the mean characteristics of T12 and
T18.

The averaged pair correlation functions of the simulated samples shown in
Figure 3.12 are similar for both tessellations, but perhaps the range of correlation
of the T18 pattern is a bit larger than that of T12. Also the mark variograms show
only little difference in their course, see Figure 3.13, the corresponding ranges of
correlation nearly coincide. The mark variance of T18 is smaller than that of T12.
Both summary characteristics g(r) and γm(r) are similar to their counterparts
for the data in Section 1.3.2. However, for the radius-mark correlation functions
different results are obtained in case of T12 and T18. While Figure 3.14 shows
that the mark correlation functions for T12 have a form comparable with those
for the data introduced in Section 1.3.2 (point pairs close together tend to have
small mark products), it has for T18 a form quite different. This indicates that
in the patterns there is a tendency that generator pairs close together have mark
products that tend to be larger than the square of the mean mark, which imply
the values of kmm(r) larger than one. Probably, this is the price to pay for having
the large mean nof of 18.

According to the aim to investigate mark correllation structure we compared
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Table 3.7: Laguerre tessellation characteristics for samples T12 and T18. Five
independently simulated samples and ten permuted samples from the first simu-
lated sample are evaluated. In the upper part of the table there are the means
and below the standard deviations (sd) of numbers of cells and faces per sample.
In the lower part of the table there are for each characteristic three numbers.
Firstly, I, the mean over all cells in all five samples (columns ‘data’) or ten sam-
ples (columns ‘permuted’). Further, II, the square root of the mean of variances
within the samples and III, the square root of the variance of mean values within
the samples (again with respect to five samples in columns ‘data’ and to ten
samples in columns ‘permuted’).

per sample: T12 T18
data permuted data permuted

number of cells mean 1019.6 789.90 992.41 884.50
sd 32.01 16.36 30.96 5.244

number of faces mean 6146.4 5544.6 8724.6 6479.5
sd 580.3 100.9 320.6 64.45

per cell:
nof I 12.00 14.04 18.00 14.65

II 8.59 6.84 4.49 5.97
III 0 8.87·10−2 0 6.80·10−2

nov I 20.00 24.08 32.00 25.30
II 17.19 13.68 8.98 11.94
III 0 1.77·10−1 0 1.36·10−1

vol I 1.74·105 2.23·105 1.82·105 1.99·105

II 3.03·105 2.99·105 1.64·105 2.29·105

III 1.59·104 3.77·103 6.77·103 1.18·103

surf I 1.30·104 1.78·104 1.84·104 1.77·104

II 1.68·104 1.63·104 9.77·103 1.23·104

III 1.06·103 2.46·102 4.89·102 9.17·102

spher I 6.86·10−1 7.37·10−1 7.53·10−1 7.62·10−1

II 1.56·10−1 1.24·10−1 8.04·10−2 1.12·10−1

III 3.20·10−3 3.55·10−3 1.65·10−3 1.52·10−3
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Figure 3.12: The empirical pair correlation functions averaged for the five simu-
lated patterns. Solid line = T12, dashed line = T18.

Figure 3.13: The empirical mark variograms γm(r) averaged for the five simulated
patterns. Solid line = T12, dashed line = T18.

Figure 3.14: The mark correlation functions kmm(r) averaged for the five simu-
lated patterns. Solid line = T12, dashed line = T18.
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the values of mean nof for T12 and T18 with those for each ten tessellations with
permuted radius marks (obtained for the first simulation). As shown in Table
3.7, for the permuted tessellations, we got the values of 14.04 (instead of 12) and
14.65 (instead of 18). We conclude that spatially correlated radius marks enable
extreme values of mean nof such as 12 and 18, while independent marks with
the same mark distribution and the same generators lead to tessellations with
moderate values of number of faces, which may be seen as a form of ‘regression
to mediocrity’.

In order to understand the effect on the mark correlation function in the case
of T18, we studied the spatial distributions of radius marks and of face numbers.
We found for these geometrical characteristics a close correlation (large radius
marks tend to generate large cells with many faces) and observed that pairs of
generators close together with similarly large radius marks appear frequently, in
the whole simulation window. The face numbers of large cells turned out to be
so large that the small face numbers of their small neighbours were more than
compensated.

3.7.2 Neighbour-volume ratio
In this simulation study we consider unit observation window, i.e., W = [0, 1]3,
and the energy function of the form (3.1) consisting of two terms:

Ẽ(x, r) = Vhard + θ
∑

V2(C1, C2), (3.22)

where the hard-core potential Vhard combines (3.2) and (3.3), i.e., it forbids empty
Laguerre cells and impose some restrictions on cell sizes and shapes via three pa-
rameters α, β and B. The pair potential V2 is minimum of neighbour-volume ratio
(NVR) and a fixed constant K > 0, see (3.4). The constant K is important due
to theoretical results of existence, in practise it is neglected as it is set to a really
large positive number. Similar model is studied in Dereudre and Lavancier [2011]
in case of 2D Voronoi tessellations. Here, we will use two parameter specifications
differing in the value of θ, namely the regular model with θ = 1 and the irregular
model with θ = −1, the choice z = 2000 is common to both models. Whether
θ is positive or negative has a strong effect on the number of cells in W – in the
irregular case, there are often many more cells than in the regular case, given
a fixed value of z. Hardcore parameters in (3.3) can be used to reduce the range
for number of cells in W significantly (in particular by using the bounds α and
β). We set α = 0.02, β = 0.095 and B = ∞ (i.e., no restriction imposed by
parameter B).

Figure 3.15 compares the histogram of NVR characteristic for a realization
under irregular model and a realization under regular model. The sign of the
parameter θ, which influences the strength of interactions, is crucial: in case of
positive θ, the neighbouring cells tend to have similar volumes and hence all cells
tend to have similar volumes, whereas these volumes tend to be substantially
different if θ < 0.

Note that comparing Figures 1.4 and 1.8 with Figure 3.15, we observe that
the NVR of our datasets is closer to an irregular model rather than to a regular
one.
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a) b)

Figure 3.15: Histogram of relative frequencies of the NVR statistic for the simu-
lated tessellation based on (a) irregular model (4497 cells) and (b) regular model
(752 cells).

Table 3.8: Estimated parameters based on tessellations obtained from regular and
irregular model - the table shows estimates of hardcore parameters α, β, soft-core
parameter θ and activity z; the means and standard deviations of estimates are
obtained from 20 realizations.

irregular true value regular true value

α̂
mean 2 · 10−2

2 · 10−2 3.4 · 10−2
2 · 10−2

sd 3.58 · 10−6 6.22 · 10−4

β̂
mean 9.5 · 10−2

9.5 · 10−2 9.5 · 10−2
9.5 · 10−2

sd 8.73 · 10−7 1.59 · 10−6

θ̂
mean −9.13 · 10−1

-1 1.087 1sd 1.64 · 10−1 2.18 · 10−1

ẑ
mean 1787.21 2000 1911.66 2000sd 194.95 249.23

Parameter estimation in NVR model

The two-step estimation method described in Sections 3.3.1 and 3.3.2 is used for
parameter estimation in case of both regular and irregular model. Table 3.8 shows
estimates of the parameters α, β, θ and z computed from simulated tessellations.
The results of pseudolikelihood method are not very accurate, especially for pa-
rameter z in the irregular case. This can be caused by an insufficient number of
removable points, Definition 36. More details about practical aspects regarding
the estimation of the parameters can be found in Dereudre and Lavancier [2011],
Section 4.
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4. Hierarchical model
A hierarchical approach splitting a model for (xn, rn) into two steps, first the
point pattern xn is modelled and consequently the marks/radii rn are modelled
conditioned on xn, can make the modelling easier. Instead of one complex model
of dimensionality 4, in case of Gibbs-Laguerre tessellations in Section 3, we obtain
two simpler models of dimensionality 3, in the first step, and 1, in the second
step. Before building up a particular hierarchical model we focus on dependencies
between (unmarked) point process and marks/radii – by a permutation test we
show that these cannot be thougt to be independent. The results presented in
this chapter were published in Stoyan et al. [2021] – dependencies between point
process and marks, and Seitl et al. [2022] – the hierarchical modelling approach.

4.1 Independent modelling
The simplest model of a random marked point process is obtained by independent
marking. It can be realized in two steps. First, an unmarked point process is
generated and afterwards, the points are labeled with independent random marks
following some common distribution. Let Φ = ∑µ(X)

i=1 δxi
be an unmarked point

process and let {mi} be i.i.d. sequence that is independent of Φ. The correspond-
ing random marked point process Φm = ∑µ(X)

i=1 δ(xi,mi) is said to be independently
marked, cf. Definition 43. Another model where the point process and marks are
independent can be obtained by geostatistical marking, cf. Definition 44. In this
model, the marks are determined by some random field. In both cases we can
model separately an unmarked point process and a mark distribution. Otherwise,
we have to take into account interactions between the points and marks.

Possible spatial dependencies in a point process of spatial locations of gener-
ators and dependencies between point process and marks need to be explored in
detail, as we did in Stoyan et al. [2021], in order to suggest a reasonable statistical
model for the generators of Laguerre tessellations. We study dependencies within
a point process in Sections 4.1.1 and 4.1.2 and dependencies between point pro-
cess and marks in Section 4.1.3. Formally, to see if there is dependence between
point process and marks/radii, we consider the empirical mark correlation func-
tion computed from (xn, rn) (see Section 2.2.5 or Illian et al. [2008]) and perform
a permutation test, cf. Section 2.4.3, based on the global area rank envelopes,
permuting 1000 times the marks/radii rn when xn is fixed and calculating the
empirical mark correlation function each time, see Section 4.1.4.

4.1.1 Summary point process statistics
A first insight into an unmarked point pattern gives us a histogram of nearest
neighbour distance, cf. Figure 4.1 A broader overview of the geometry of an un-
marked point process of spatial locations gives us further summary characteristics
introduced in Section 2.2.4. For their empirical counterparts see Section 2.2.5.
Figures 4.2 and 4.3 show empirical F , G, K and L(r) − r functions for NiTi
alloy and alluminium alloy data samples, respectively. The estimates of F and
G functions use Kaplan-Meier correction, the estimates of K and L functions
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Figure 4.1: Nearest neighbour distance. Left: NiTi alloy, the minimal realized
distance is 0.3824µm. Right: alluminium alloy, the minimal realized distance is
7.737µm.

use isotropic correction. The empirical functions in black are compared to the
theoretical values under Poisson point process (model of complete spatial ran-
domness) in red. There are visible differences in case of F and G functions. The
difference at the lower end of K function curve can be clearly observed when the
function is transformed to the L(r)− r function.

Figure 4.2: Empirical F , G, K and L(r) − r functions for generators’ locations
of Laguerre tessellation representing NiTi alloy (in black) compared to the theo-
retical curves under Poisson point process (in red).

Figure 4.3: Empirical F , G, K and L(r) − r functions for generators’ locations
of Laguerre tessellation representing alluminium alloy (in black) compared to the
theoretical curves under Poisson point process (in red).

The last functional characteristic concerning the spatial arrangement of the
generators’ locations mentioned here is pair correlation function (shortly pcf).
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Figure 4.4 shows estimated pcf with isotropic correction for the generators’ loca-
tions of Laguerre tessellation representing NiTi alloy. Since its estimate is based
on some propability kernel, the bandwidth h needs to be specified. In the litera-
ture there is a lot of advices and rules how to choose it, but none of these cannot
be considered as a universal choice. Thanks to this and the fact that its misspec-
ification may have a significant impact on the result, a detailed pair correlation
function analysis is carried out in the next section in the case of aluminium alloy
data sample.

Figure 4.4: Empirical pair correlation function for generators’ locations of La-
guerre tessellation representing NiTi alloy, h = 1.4.

4.1.2 Pair correlation function analysis
In this section we deal with estimating the pair correlation function, Definition 49,
of the point process of generators with kernel estimators. The samples are large
enough for a reliable estimation of this function and due to homogeneity they
permit usage of the isotropic estimator based on Ripley’s edge correction, cf.
(2.19). To do so, the choice of the bandwidth h has to be made with care. To
demonstrate how to choose a reasonable bandwidth we proceed only with the
alluminium alloy dataset.

The recommendation in [Illian et al., 2008, p. 236] is

h = 0.05/λ1/3, (4.1)

where λ denotes the intensity. With the estimated intensity 5.96× 10−6 this led
to h = 2.76. This value turned out to be much too small and we obtained a curve
rather jagged. Therefore we changed to h = 5 and obtained the dashed curve
in Figure 4.5. It has two clear peaks, one at r = 10 and one at r = 55. We
considered the first peak as unusual and detected (only!) seven point pairs of an
inter-point distance smaller than 15 (compare with the right pannel of Figure 4.1)
that are responsible for the first peak.

In a second choice we followed R-package spatstat, cf. Baddeley et al. [2015],
with a bandwidth h = 14.34 as recommended there, using

h = 0.26/λ1/3. (4.2)
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We obtained a pair correlation function too smooth as is the solid curve in Figure
4.5 with only a soft shoulder at r = 20. Therefore, we decided to work with
h = 5, which corresponds to a numerator of 0.09 in (4.1) and (4.2).

The seven pairs of generator points mentioned above we consider as unusual
due to their small inter-point distances and very small radius-marks. Almost all
14 generators have small radius marks (only 3 of them have it bigger than 11 µm,
the maximum is 31.14 µm), and small cell volume as well (5 smaller than 5000
µm3, 6 between 5000 µm3 and 15000 µm3 and the volume of last 3 is 23153.3
µm3, 41460.9 µm3, 107717 µm3); compare these numbers with Figures 1.7(b) and
1.8. Interestingly, none of these generators leads to an empty cell.

Figure 4.5: Empirical pair correlation functions for the Laguerre tessellation data
representing alluminium alloy, all estimated with isotropic edge correction using
spatstat, Baddeley et al. [2015]. Solid line: all data, h = 14.34; dashed line: all
data, h = 5; dotted line: reduced data (without 7 close pairs), h = 5. For r > 20,
the dashed and dotted lines almost coincide.

When we omitted the corresponding 14 points, we obtained the dotted curve
in Figure 4.5, which has a form one may expect for a Gibbs point process with
soft interaction. The Laguerre tessellation corresponding to the reduced sample is
quite similar to the original tessellation. Table 4.1, column ‘subdata’, shows the
characteristics corresponding to the subsample. We concluded that the omitted
14 points could be ignored as unessential. By the way, alternatively only 7 points
(just one per pair) can be omitted. Both approaches lead to very similar results
with respect to the form of empirical pair correlation function and tessellation
statistics.

4.1.3 Mark correlation
Here we present the results of mark correlation statistics using mark correla-
tion function, Definition 50, and mark variogram, Definition 51. The empirical
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counterparts, see Section 2.2.5, requires similarly to the pair correlation function
a selection of the bandwidth h.

a) b)

Figure 4.6: Empirical mark correlation function, a), and mark variogram, b), for
the Laguerre tessellation data representing NiTi alloy, h = 1.4.

a) b)

Figure 4.7: Empirical mark correlation function, a), and mark variogram, b), for
the Laguerre tessellation data representing alluminium alloy, h = 5.

In Figures 4.6a) and 4.7a) there is the empirical mark correlation function for
the two Laguerre tessellation data samples. It has a form often observed for such
functions. The usual interpretation, which is applicable also here, is: point pairs
which want to be close together have to pay the price that the product of their
marks must be small, relative to the square of the mean mark. For the Laguerre
tessellation this means that point pairs located close together tend to have also
small radius marks, which means pairs of small tessellation cells.

In Figures 4.6b) and 4.7b) there is the empirical mark variogram for the two
Laguerre tessellation data samples. Also its form is a form often observed; it
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looks like a variogram that is typical in geostatistics, first increasing and then
constant. It says that points close together tend to have similar marks.

Both functions, kmm(r) and γm(r), present a clear message: points close to-
gether tend to have small and similar marks. This excludes that the marks of the
sample can be considered as coming from geostatistical marking. Equation (2.18)
does not hold for the functions represented by the solid curves in Figures 4.6 and
4.7. In order to assure the reader, in next section we consider also independent
marking, which we mimic by random permutation of the marks.

4.1.4 Independent marking
The case of independent marks, with the same mark distribution as the original
data, is mimicked by random permutations of the marks. Formally, to see if
there is dependence between point process and marks, we take the empirical mark
correlation function and perform a permutation test based on the global area rank
envelopes, cf. Section 2.4.2 and Myllymäki and Mrkvička [2019], permuting 1000
times the marks/radii rn when xn is fixed and calculating the empirical mark
correlation function each time.

Figure 4.8 shows the functions based on the data (solid lines): both of them
fall outside the 95%-global envelope (in case a) just on two small intervals, in
case b) on the majority of the plotted x-axis range). The corresponding p-values
obtained by the global area rank envelope test are 1.4% and < 0.01% for NiTi,
Section 1.3.1, and aluminium, Section 1.3.2, alloy samples, respectively. Therefore
we reject the null hypothesis of independence between point process and marks
in both cases.

On example of aluminium alloy data sample we can see how geometric char-
acteristics of the tessellation change when permuting the marks. The last column
of Table 4.1 shows mean values and standard deviations of chosen characteristics
resulting from 10 marked point patterns with permuted marks. We made these
calculations since we suspected that there is an influence of the marking type on
the tessellation properties. Indeed, the mean number of faces increased signif-
icantly in the permuted samples, a difference as that between 14.21 and 14.78
would matter in engineering applications. The standard deviation of the same
characteristic decreased from 4.84 to 4.43 in average. Note that, with randomly
permuted marks it happens that some generators create empty cells, but as you
can see in the last column of Table 4.1 – average decrease by 9.1 cells, this effect
is negligible.

To conclude, this section warns that modelling of three-dimensional tessella-
tions by Laguerre tessellations may significantly fail if the assumptions made on
distributional properties are too simple, e.g., in the case that correlations of the
marks are ignored. If the generator points are given, the marks play an impor-
tant role. Along with the mark distribution, the spatial correlation of the marks
also counts. We have shown that important tessellation characteristics differ for
correlated and independent marks in case of fixed mark distribution.

This fact makes modelling of Laguerre tessellations difficult, since it is not
sufficient to model only the point process of generators and to take indepen-
dent radius marks: points and marks should be modelled simultaneously. As
the simultaneous modelling of points and marks in a marked point process, see
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a) NiTi alloy

b) Alluminium alloy

Figure 4.8: The empirical mark correlation function (the solid line) and a 95%-
global envelope (the grey region) obtained by permuting the radii when fixing the
points. The dashed line is the average of the simulated mark correlation functions
and the red dots indicate when the empirical function is outside the envelope.

Chapter 2, may be too difficult task, one alternative is to adapt the approach in
Christoffersen et al. [2021], where locations of points in 3D are modelled hierar-
chically in two steps – first they model a point pattern in xy-plane by a suitable
two-dimensional point process model, and second the values along the z-axis con-
ditionally on the points in xy-plane by a Markov random field model. We propose
the hierarchical approach to model a marked point pattern representing genera-
tors of a 3D Laguerre tessellation – first the point pattern is modelled and then
conditionally on the pattern the marks.

Consequently, if the aim of modelling is only to obtain a basis for generating
samples of tessellations similar to an empirically given one, we recommend that
one does not use parametric models but instead generates samples by some kind
of reconstruction (either nonparametric or with parameters chosen heuristically),
see Sections 3.4 and 3.5.
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Table 4.1: Laguerre tessellation characteristics for the aluminium alloy data,
subdata without 14 generators with close neighbours and average values for ten
samples with randomly permuted radius marks. In the upper part of the table
there are numbers of cells and faces per sample, for permuted samples mean values
are given (with standard deviation in brackets). In the lower part of the table
there are mean values of characteristics per cell and standard deviation (below
the means) for data and subdata. For the permuted samples overall means and
square roots of the mean of variances within samples are given.

per sample: data subdata permuted
number of cells 1049 1035 1039.90 (3.11)
number of faces 7453 7369 7683.80 (50.40)
per cell:
nof 14.21 14.24 14.78

4.84 4.79 4.43
nov 24.42 24.48 25.56

9.68 9.59 8.86
vol 1.68·105 1.70·105 1.69·105

1.53·105 1.54·105 1.40·105

surf 1.56·104 1.58·104 1.63·104

9.21·103 9.17·103 8.52·103

spher 8.28·10−1 8.28·10−1 8.10·10−1

6.90·10−2 6.87·10−2 7.98·10−2

4.2 Hierarchical approach

In this section we introduce a hierarchical model for (xn, rn) consisting of first
a parametric Gibbs point process model for xn and second a parametric model
for rn conditioned on xn, Seitl et al. [2022]. Specifically, we use in the first step
a nested sequence of flexible pairwise interaction points processes called multiscale
processes, cf. Definition 33 and [Penttinen, 1984], and in the second step various
exponential family models, Definition 55, where the canonical sufficient statistic
is based on tessellation characteristics such as surface area or volume of cells or
absolute difference in volumes of neighbouring cells, see Section 2.1.1. Apart from
reducing the dimension from 4 (when viewing (xn, rn) as a 4-dimensional point
pattern) to 3 (when considering xn), an advantage is that we specify two much
simpler models with parameters which do not depend on each other. Hence we
can separate between how to simulate and estimate unknown parameters for xn

and rn | xn. The parameters are simply estimated by maximum pseudolikelihood
methods, Section 2.4.1, and well-known MCMC algorithms, Section 2.3, are used
for simulations.

A further advantage is that the model construction makes it possible to de-
velop a rather straightforward model selection procedure: For xn, the procedure
starts with the simplest case of a Poisson process and continues with constructing
more and more complex multiscale processes until a satisfactory fit is obtained
when considering global envelopes and tests [Myllymäki et al., 2017] based on
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various functional summary statistics. For rn conditioned on xn, more and more
complex exponential models are developed, where we demonstrate how to com-
pare fitted models of the same dimension by considering maximized log pseu-
dolikelihood functions. Further, we evaluate selected fitted models by compar-
ing moment properties of tessellation characteristics under simulations from the
model with empirical moments, by considering plots of global envelopes, and by
evaluating values of global envelope tests. This comparison is not only done by
looking at those tessellation characteristics used for specifying the canonical suf-
ficient statistic of the exponential model but also for various other tessellation
characteristics. Since both point process models for xn and exponential models
for rn | xn require estimation of parameters, we are dealing with the composite
hypotheses that both observed point pattern and radii conditioned on point pat-
tern derives from a parametric model with unknown parameters. The plugging-in
of the estimated parameter values can lead to conservative tests. Myllymäki et al.
[2017] in Section 7 suggest to solve this conservativeness problem by method de-
veloped by Dao and Genton [2014]. Unfortunately, this requires a large number
of additional simulations, hence not applicable in our case.

To avoid confusion, we reserve the notation (xn, rn) for the data and use
the notation (ym, tm) when we consider arguments of densities where ym =
{y1, . . . , ym} ⊂ W is a finite point configuration and tm = (t1, . . . , tm) ∈ Mm

are associated marks (if m = 0 then y0 is the empty point configuration and t0
can be ignored).

4.2.1 Point process models for the points

When modelling the point pattern data set xn as a realization of a spatial point
process Φ on W , we assume that the distribution of Φ is invariant under shifts and
rotations when wrapping W on a 3D torus, i.e., when applying periodic boundary
conditions, Definition 11. Further we rectrict ourselves only on models for Φ
exhibiting regularity. Pairwise interaction point processes constitute a flexible
class of models for regularity.

As a parametric approximation of such a pairwise interaction point process we
consider a multiscale process, Definition 33 and [Penttinen, 1984]: for q = 1, 2, . . .,
Mq denote the model class given by densities of the form

p(ym) ∝ βmΠq−1
i=1 γ

∑
j<k

I[δi−1<∥yj −yk∥W ≤δi]
i (4.3)

where β > 0, 0 ≤ γ1 ≤ 1, . . ., 0 ≤ γq−1 ≤ 1 and 0 < δ1 < . . . < δq−1 are unknown
parameters. Note that M1 is just a homogeneous Poisson process on W with
intensity β and M2 is just a Strauss process.

Simulation under the Poisson model M1 is well-known (see e.g. Møller and
Waagepetersen [2003]) and for simulation of the models Mq, q ≥ 2, we used the
birth-death-move Metropolis-Hastings algorithm, Algorithm 2 and [Geyer and
Møller, 1994, Møller and Waagepetersen, 2003]. The parameter estimation is
carried out by maximum pseudolikelihood method, Section 2.4.1.
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4.2.2 Exponential tessellation models for the radii given
the points

When modelling the observed radii rn as a realisation of an n-dimensional vector,
we condition on Φ = xn and consider a conditional probability density func-
tion (pdf) p(r1, . . . , rn | x1, . . . , xn) on (0,∞)n. More precisely we assume R is
a random vector (of random length) which conditioned on Φ = ym has a con-
ditional pdf p(tm | ym) which is zero whenever C(yj, tj | y∗

m, t∗
m) = ∅ for some

j ∈ {1, . . . , m} (here (y∗
m, t∗

m) is defined in a similar way as (x∗, r∗), i.e., in the
right hand side of (2.5) (x, r) is replaced by (ym, tm)). Furthermore, in order to
work with a well-defined conditional pdf in (4.4) below we assume a mark space
M = [0, Rmax] so that p(tm | ym) = 0 if tm ̸∈Mm.

We now give a general exponential family form of the conditional pdf where
s ∈ {1, 2, . . .} is the dimension, θ = (θ1, . . . , θs) denotes the canonical parameter
and H = (H1, . . . , Hs) the canonical sufficient statistic: for tm ∈Mm,

p(tm | ym) ∝ I[C(yj ,tj |y∗
m,t∗

m )̸=∅, j=1,...,m] exp
(

s∑
i=1

θiHi(ym, tm)
)

. (4.4)

The idea is to let each Hi(ym, tm) depend on either the radii, or tessellation char-
acteristics of the cells C(yj, tj | y∗

m, t∗
m) with j = 1, . . . , m or interactions between

these cells. Specifically, in Section 4.4.2 we consider the following cases (a)–(e),
using the abbreviations from Section 2.1.1, for short writing Hi for Hi(ym, tm)
and considering in (b)–(d) a sum over the cells C(yj, tj | y∗

m, t∗
m), j = 1, . . . , m,

and in (e) a sum over all unordered pairs of cells sharing a face:

(a) including both Hi = ∑m
j=1 log tj

6 and Hi′ = ∑m
j=1 log

(
1− tj

6

)
(with i ̸= i′)

somehow corresponds to a scaled beta distribution for the radii if no other
terms are included in (4.4) – ‘somehow’ because it is not exactly a beta
distribution since p(tm | ym) = 0 if C(yj, tj | y∗

m, t∗
m) = ∅ for some j ∈

{1, . . . , m};

(b) Hi = ∑ nof is twice the total number of faces;

(c) Hi = ∑ surf is twice the total surface area of faces;

(d) Hi = ∑ vol2 is the sum of squared volumes of cells;

(e) Hi = ∑ dvol is the sum of difference in volumes of two cells which share
a face.

For simulation under (4.4) we use a Metropolis within Gibbs algorithm, Sec-
tion 2.3.2, where we alternate between updating from the conditional densities

p(tj | tk, k ̸= j, y1, . . . , ym) ∝ p(t1, . . . , tm | y1, . . . , ym), j = 1, . . . , m, (4.5)

using a Metropolis algorithm with a normal proposal.
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4.2.3 Joint model
The next proposition summarizes the whole hierarchical model and justifies its
existence.

Claim 22. The model for (xn, rn) given by density

p(ym, tm) ∝

βmΠq−1
i=1 γ

∑
j<k

I[δi−1<∥yj −yk∥W ≤δi]
i I[C(yj ,tj |y∗

m,t∗
m )̸=∅, j=1,...,m] exp

(
s∑

i=1
θiHi(ym, tm)

)

with q, s ∈ N is well-defined for β > 0, 0 ≤ γ1 ≤ 1, . . ., 0 ≤ γq−1 ≤ 1, 0 < δ1 <
. . . < δq−1 and either θi > −1 and θi′ > −1 in case of (a) or all θ ∈ Rs in cases of
(b)-(e). Moreover, for fixed (δ1, . . . , δq−1) the joint model is an exponential family
model with canonical parameter (log β, log γ1, . . . , log γq−1, θ1, . . . , θs).

Proof. This follows from the definition of multiscale point process (Definition 33)
and from the fact that the mark space M is bounded.

4.3 Parameter estimation
In this chapter we have introduced several parametric models for generators of
Laguerre tessellations. Now, we will look at how to estimate the parameters of
these models.

4.3.1 Profile pseudolikelihood for the points
Consider a point process with a given realization ym in the observation window
W and modelled by a parametric density pθ (with respect to the unit rate Pois-
son process) where θ is an unknown real parameter vector. In particular, we
consider pθ to be a multiscale processMq, Definition 33, with q > 1. Then using
Definition 54 the log pseudolikelihood function becomes

logPL(β, γ; ym) =|W | −
∫

W
β

q−1∏
i=1

γ
tδi

(u,ym)−tδi−1 (u,ym)
i du

+ m log β + 2
q−1∑
i=1

(
Sδi

(ym)− Sδi−1(ym)
)

log γi,

where tδ(u, ym) = ∑
yj∈ym

I{0<∥u,yj∥≤δ} and Sδ(ym) = ∑
u∈ym

tδ(u, ym)/2, γ =
(γ1, . . . , γq−1) and δ = (δ1, . . . , δq−1). Please note, that the pseudolikelihood func-
tion depends only on parameters β and γ. The parameter δ (interaction radii)
is supressed here. Indeed, the maximum pseudolikehood method can be used
only for estimation of parameters β and γ when the parameter δ is fixed. Since
logPL(β, γ; ym) is concave function of log β and log γ = (log γ1, . . . , log γq−1),
cf. Claim 23, we can find MPLE of log β and log γ using the Newton-Raphson
algorithm. Since this MPLE depends on the parameter δ, we obtain a profile log
pseudolikelihood which is maximized with respect to (δ1, . . . , δq−1) defined over
a (q − 1)-dimensional grid, thereby providing the final MPLE. The integral ap-
pearing in PL(β, γ; ym) is estimated numerically using a grid of values as descibed
in Section 2.4.1.
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4.3.2 Pseudolikelihood for the radii given the points
Pseudolikelihood function for the radii tm given the points ym is defined by
the product of the conditional densities of each tj given the tk with k ̸= j, see
Definition 53,

PL(θ; tm) =
n∏

j=1
pθ(tj | yj, (yk, tk) with k ̸= j) =

n∏
j=1

pθ(tm | ym)∫
M pθ(tm | ym) dtj

,

where pθ(tm | ym) is of the form (4.4) and θ is an uknown real parameter vec-
tor. Assume that (ym, tm) is feasible, i.e., all Laguerre cells C(yj, tj | y∗

m, t∗
m) are

nonempty; we denote this property by (ym, tm) /∈ L(∅). Then the log pseudolike-
lihood function for the radii distribution given the points is

logPL(θ; tm) =n
s∑

i=1
θiHi(ym, tm)

−
m∑

j=1
log

∫
M
I{(ym,tj,u

m )/∈L(∅)} exp
(

s∑
i=1

θiHi(ym, tj,u
m )
)

du,

where tj,u
m = (t1, . . . , tj−1, u, tj+1, . . . , tm).

Since logPL(θ; tm) is concave function of θ, cf. Claim 23, Newton-Raphson
method can be used for finding the MPLE. Finally, we calculate various integrals
which appear in the pseudolikelihood by numerical methods.

4.3.3 Properties of MPLE
In the following proposition we state some non-trivial properties of the maximum
pseudolikelihood estimates from the previous two sections.
Claim 23.

1. PL(β, γ; ym) is log-concave function of (log β, log γ1, . . . , log γq−1)

2. PL(θ; tm) is log-concave function of θ

3. MPLEs of (β, γ) are consistent estimates of (β, γ)

4. MPLEs of (β, γ) are asymptotically normal (with respect to enlarging win-
dow)

Proof. 1.,2. Both (4.3) and (4.4) are exponential family models with canoni-
cal parameters (log β, log γ1, . . . , log γq−1) and θ, respectively. According to
Theorem 15 logPL(β, γ; ym) and logPL(θ; tm) are concave.

3. In case of point process, maximum pseudolikelihood estimates β̂ and γ̂
are (weakly) consistent since the potential of multiscale point process has
a finite range – δq−1, cf. Theorem 3.2 and Example 2 in Jensen and Møller
[1991]. Strong consistency can be proved as well, cf. Propositions 2 and 3
in Mase [1995].

4. Thanks to the finite range of the potential of multiscale point process, max-
imum pseudolikelihood estimates β̂ and γ̂ are asymptotically normal with
respect to enlarging observation window, cf. Theorem 1.1 in Jensen and
Künsch [1994].
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4.4 Hierarchical modelling
The hierarchical approach introduced in Section 4.2 is demonstrated here on
Laguerre tessellation data representing the NiTi alloy microstructure from Sec-
tion 1.3.1. The section details the model selection procedure briefly described in
Section 4.2 and which leads to our final joint model for xn and rn. The classical
goodness of fit procedures are based on measures given by maximizing likelihood
functions and accounting for model complexity by including a penalty in terms
of the number of parameters (e.g., AIC and BIC criteria). In Šedivý et al. [2018]
the Vapnik-Chervonenkis theory is used instead and a criterion based on residual
sum of squares is developed for partially ordered sets of deterministic tessellation
models. Since we deal with stochastic tessellation models but our likelihood func-
tions are intractable to maximize, we present another approach that corresponds
to modern trends in spatial statistics. It is based on how well geometrical tes-
sellation characteristics are described when comparing fitted models, where we
account for mutual correlations among the characteristics and we consider the
maximum of pseudolikelihood functions when comparing models with the same
number of parameters.

4.4.1 The fitted model for the points

The first model to be taken into account is a homogeneous Poisson point process
(with the intensity estimated by n divided by the volume of W ), i.e., the model of
complete spatial randomness. The way how functional summary statistics L, F
and G, see Definitions 48, 46 and 47, based on the data differ from those computed
from simulations under Poisson point process, see the envelope in Figure 4.9,
indicates regularity in the point pattern xn. This observation justifies the choice
of class of multiscale point processes, Defintion 33, for xn as these point processes
constitute a flexible class of models for regularity.

Then, for the point pattern xn and q = 1, 2, . . ., we select the first modelMq

which provides a satisfactory fit when considering global envelopes and global area
rank envelope test provided by R-package GET, see Section 2.4.2. The success of
fit is assessed using empirical L, F and G functional summary statistics which
are concatenated for the purposes of the test.

Figures 4.9, 4.10 and 4.11 show estimated/empirical functions L̂(t) − t, F̂ (t)
and Ĝ(t) of the point pattern xn together with concatenated 95%-global en-
velopes/confidence regions (the grey areas) obtained by simulations under the
multiscale point process modelsM1,M2 andM3, respectively. The modelsM2
and M3 are fitted by profile maximum pseudolikelihood (for details concerning
the estimation procedure see Section 4.3.1 and Attachment A.4). For definitions
and interpretations of the empirical functions using edge correction factors see
Section 2.2.4 or Baddeley et al. [2015] (for L̂ we used Ripley’s isotropic edge cor-
rection factor and for F̂ and Ĝ we used Kaplan-Meier edge correction factors).
The fact that the 95%-global envelopes are concatenated means that all three
empirical functions are expected to be within the envelope with probability 0.95
in order to not reject the null hypothesis of the validity of a particular model
Md, d = 1, 2, 3. The global envelopes were obtained using the R-package GET
[Myllymäki and Mrkvička, 2019] with 1999 simulations for each process (increas-
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Figure 4.9: From left to right, empirical functional summary statistics L̂(t) − t,
F̂ (t) and Ĝ(t) (solid lines) and simulated 95%-global envelope (grey regions)
obtained under a fitted homogeneous Poisson process. Dashed lines are averages
of the simulated functional summary statistics and the dots indicate when the
empirical functions are outside the envelope.

Figure 4.10: From left to right, empirical functional summary statistics L̂(t) −
t, F̂ (t) and Ĝ(t) (solid lines) and simulated 95%-global envelope (grey region)
obtained under a fitted Strauss process. Dashed lines are averages of the simulated
functional summary statistics and the dots indicate when the empirical functions
are outside the envelope.

ing this to 9999 simulations did not change the results). Note that because of
plugging-in of the estimated parameter values, the tests can be conservative.

Neither Poisson model M1 nor Strauss model M2 is providing a satisfactory
fit. Figures 4.9 and 4.10 show that the empirical functions are outside the enve-
lope, and the corresponding p-values obtained by the global area rank envelope
test are below 0.1% in case of M1 and 4.4% in case of M2.

The first model which is not significant at level 5% isM3: Figure 4.11 shows
that the empirical functional summary statistics are within the 95%-global enve-
lope. The corresponding p-value obtained by the global area rank envelope test
is 18.8%, and the maximum pseudolikelihood estimates, see Section 4.3.1, are
β̂ = 0.0168, γ̂1 = 0.5328, γ̂2 = 0.8432, δ̂1 = 1.25 and δ̂2 = 2.25.

98



Figure 4.11: From left to right, empirical functional summary statistics L̂(t)− t,
F̂ (t) and Ĝ(t) (solid lines) and simulated 95%-global envelope (grey regions)
obtained under a fitted multiscale process with d = 3. Dashed lines are averages
of the simulated functional summary statistics.

4.4.2 The fitted model for the radii conditioned on the
points

Now, having fitted the model M3 for xn it remains to obtain a model for rn

conditioned on xn where we use a model selection procedure as follows. We
consider a list of tessellation characteristics

L = {nof, vol, surf, tel, spher, dvol} (4.6)

when creating and evaluating more and more complex models as given by (4.4)
and (a)–(e) in Section 4.2.2. When comparing fitted models of the same dimension
q, we select the one with the highest value of the maximized log pseudolikelihood
function. The selected model is then evaluated by a global area rank envelope test,
see Section 2.4.2, based on kernel smoothed densities of the empirical distributions
for the six tessellation characteristics in L, using 499 simulations of the joint
model for xn and rn. Here we concatenate the six densities and use the R-
package GET [Myllymäki and Mrkvička, 2019], and we simulate from the joint
model rather than from the conditional model of rn given xn, since our aim
is to replace expensive laboratory experiments with simulations from the joint
model. Therefore, in Table 4.2, we also evaluate our fitted models by comparing
empirical (column ‘data’) and simulated means and standard deviations of the
tessellation characteristics in L, using 100 simulations of first ym and second
under the different fitted models of tm conditioned on ym. The table also shows
the (signed) difference between the empirical and the simulated values divided by
the empirical values (the values given in percentages) – we refer to such a value
as a deviation. Again note that the tests can be conservative.

First, we consider the empirical distribution of the radii: As the histogram in
Figure 1.3(b) looks like a beta distribution, we first propose in (4.4) only to include
the terms in (a) so that s = 2, H1 = ∑m

j=1 log tj

6 and H2 = ∑m
j=1 log

(
1− tj

6

)
– we

refer to this model as ‘beta’. The column ‘beta’ in Table 4.2 shows that except for
dvol the means match the data well, and the deviations of standard deviations

99



vary by 12 to 24 percent. However, the fitted ‘beta’ model was highly significant
when evaluated by the global area rank envelope test.

Table 4.2: Means and standard deviations of the tessellation characteristics given
in (4.6) and as obtained by simulations under various joint models and from the
data. Deviations are given in percentages. See the text for details.

models data
beta beta + dvol beta + nof + dvol

nof mean 14.82 14.87 14.95 14.98
-1% -1% <-1%

sd 5.58 5.38 5.20 4.92
+13% +9% +6%

vol mean 70.65 70.65 70.65 69.21
+2% +2% +2%

sd 65.65 63.42 62.01 58.89
+12% +8% +5%

surf mean 91.14 91.53 93.58 92.46
-1% -1% +1%

sd 57.26 54.07 51.50 47.86
+20% +13% +8%

tel mean 66.16 66.12 67.69 67.92
-3% -3% <-1%

sd 31.99 30.86 29.52 27.38
+17% +13% +8%

spher mean 0.76 0.76 0.77 0.78
-3% -3% -1%

sd 0.11 0.10 0.10 0.087
+24% +19% +16%

dvol mean 79.87 73.72 69.82 68.89
+16% +7% +1%

sd 72.75 68.57 62.78 65.04
+12% +5% -4%

Table 4.3: Maximized log pseudolikelihood functions for radii models conditioned
on the points. The value for the ‘beta’ model is given as a reference.

model logPL(θ̂)

beta -2532.45

beta + vol2 -2866.39
beta + nof -2594.72
beta + surf -2483.98
beta + dvol -2468.76

beta + vol2 + nof -2513.89
beta + vol2 + surf -2823.71
beta + vol2 + dvol -2714.10
beta + nof + surf -2498.58
beta + nof + dvol -2465.12
beta + surf + dvol -2477.63

Second, we expand the model by including one of the terms H3 = ∑ vol2,∑ nof, ∑ surf or ∑ dvol so that s = 3. Here, we do not include ∑ vol, since this
is a constant; or ∑ tel, since the correlation coefficient between surf and tel for
each cell is close to 1 (the highest in Table 1.2); or ∑ spher, since by definition
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spher is given by vol and surf for each cell. Table 4.3 shows that the model with
H3 = ∑ dvol has the largest maximized log pseudolikelihood function. For this
model, comparing the columns ‘beta’ and ‘beta+dvol’ in Table 4.2 we obtain now
better results for dvol. Moreover, all standard deviations are now reduced, and
the p-value based on global area rank envelope test is 9.8%.

Third, we investigate the effect of expanding the model ‘beta’ with any two
of the four terms ∑ vol2, ∑ nof, ∑ surf and ∑ dvol so that s = 4. Table 4.3
shows that ‘beta+nof+dvol’ provides the best fit according to the maximized log
pseudolikelihood function. For this model, the p-value based on global area rank
envelope test is 10.6% which is slightly larger than the p-value of 9.8% for the
model ‘beta+dvol’. Table 4.2 shows an improvement for both the mean values
and the standard deviations when comparing ‘beta+nof+dvol’ with ‘beta+dvol’.
Figure 4.12 shows empirical kernel estimates of the densities for the six charac-
teristics in L together with a 95%-global envelope obtained when concatenating
all six empirical densities. The empirical functions are completely covered by
the envelope. Moreover, the maximum pseudolikehood estimates are θ̂1 = 4.709,
θ̂2 = 5.982, θ̂3 = −2.376 × 10−1 and θ̂4 = 3.021 × 10−2. Thus under this fitted
model realizations become more likely as the total number of faces decreases or
the sum of differences in volumes between neighbouring cells increases (when all
other terms Hi in (4.4) are fixed).
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Figure 4.12: Estimated densities of tessellation characteristics, namely nof (a),
vol (b), surf (c), tel (d), spher (e) and dvol (f). The solid lines are the functions
based on the data (xn, rn) and the grey regions are 95%-global envelopes under
the fitted model ‘beta+nof+dvol’. Dashed lines are averages of the simulated
densities.
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Conclusion
The thesis is written on the base of results obtained by the author when being
a member of the team solving the international research project of the Czech
Science Foundation ‘Parametric representation and stochastic 3D modelling of
the grain microstructure of polycrystalline materials using the random marked
tessellations’. The aim of the thesis is to develop stochastic geometry models of
given complex spatial systems and corresponding methods of spatial statistics,
including their implementation an discussion of numerical results.

Laguerre tessellation presents a suitable geometrical object for the approxi-
mation of polycrystalline microstructures investigated in the thesis and it brings
a considerable compression of voxelized three-dimensional data since it is de-
termined by a marked point pattern with one-dimensional marks. Stochastic
modelling and statistical inference of Laguerre tessellations is developed in two
different ways.

First in Chapter 3 the Gibbs-Laguerre tessellation is introduced and thor-
oughly investigated. There are interesting theoretical problems such as the exis-
tence of an infinite-volume Gibbs measure (solved in Section 3.2). When dealing
with real data, statistical inference and reconstruction of Gibbs models (Sec-
tions 3.4- 3.6) can hardly be realized without intensive computing, supported by
Markov chain Monte Carlo simulations. Thank to this new class of random tessel-
lations we are able to simulate realizations with prescribed geometrical properties
and their variability, at the cost of computationally demanding algorithms.

On the contrary to an apriori probabilistic model in Chapter 3 we proceed by
a direct data-based modeling of a Laguerre tessellation as a marked point pro-
cess in Chapter 4. We carefully examine relationship of points and radii in the
datasets (Section 4.1) and proceed in a hierarchical way, as in the basic formula for
conditional probability density. Tayloring statistical methods (maximum pseudo-
likelihood, global envelopes) to the new environment yields a respectful approach
to model selection and leads to a good fit (Section 4.4) between a model and
data.

The results achieved in the thesis have a general validity and will be used in
the continuing research collaboration between mathematicians and physicists.
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David Dereudre, Rémy Drouilhet, and Hans-Otto Georgii. Existence of Gibbsian
point processes with geometry-dependent interactions. Probability Theory and
Related Fields, 153(3-4):643–670, 2012.

Eugene Edgington and Patrick Onghena. Randomization Tests. Chapman and
Hall/CRC, 2007.

Fropuff. The vertex configuration of a tetrahedral-octahedral hon-
eycomb, 2006. URL https://en.wikipedia.org/wiki/File:
TetraOctaHoneycomb-VertexConfig.svg.

Charles J. Geyer and Jesper Møller. Simulation procedures and likelihood infer-
ence for spatial point processes. Scandinavian Journal of Statistics, 21:359–373,
1994.
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A. Attachments

A.1 Pseudo-periodic configurations
When dealing with the existence problem of Gibbs models, we can restrict our-
selves to so-called pseudo-periodic configurations, a key concept in the verification
of the upper regularity condition (U), see Subsection 3.2.2 and Dereudre et al.
[2012].

Let M ∈ R3×3 be an invertible 3×3 matrix with column vectors (M1, M2, M3).
For each k ∈ Z3 define the cell

C(k) = {Mx ∈ R3 : x− k ∈ [−1/2, 1/2)3}.

These cells partition R3 into parallelepipeds, i.e., solids whose six faces are all
parallelograms in R2. We write C = C(0). Let Γ ⊂ NC be measurable and
non-empty. Then we define the pseudo-periodic configurations Γ̄ as

Γ̄ = {x ∈ N : ϑMkxC(k) ∈ Γ for all k ∈ Z3},

the set of all configurations whose restriction to C(k), when shifted back to C,
belongs to Γ. The prefix pseudo- refers to the fact that the configuration itself
does not need to be identical in all C(k), it merely needs to belong to the same
class of configurations.

A.1.1 Configuration for R3 tetrahedrization
Here we introduce and analyze the pseudo-periodic configuration used in the
proofs of existence of our tessellation models. Fix some A ⊂ C × M, where
M = [0, Rmax], Rmax > 0, and define

ΓA = {ζ ∈ NC : ζ = {p}, p ∈ A},

the set of configurations consisting of exactly one point in the set A. The
set of pseudo-periodic configurations Γ̄ thus contains only one point in each
C(k), k ∈ Z3.

Let M be such that |Mi| = a > 0 for i = 1, 2, 3 and ∠(Mi, Mj) = π/3 for
i ̸= j. We choose

A = B(0, ρa)×
[
0,
(

a

2(1− 2ρ)
)2
]

(A.1)

in order for balls to never overlap. Hence no problems with point redundancy
occur. We choose ρ < 1/4 in order for points to remain in a general position.
Remark (Nonredundancy of points). The interval for radii in (A.1) is too conser-
vative since we can admit balls to partially overlap and instead of

(
a
2(1− 2ρ)

)2

use (a(1− 2ρ))2 as an upper bound. Then the balls may overlap but not over its
centers. Therefore the nonredundancy of points is still preserved.

A useful mental model of how to think of the class Γ̄ is to start from a con-
figuration

x0 = {(Mak, 0) ∈ R3 ×M : k ∈ Z3} ∈ Γ̄,
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Figure A.1: An example of pseudo-periodic configuration for unmarked points in
2D.

Figure A.2: Nonredundancy of points in 2D. Spatial parts of sets A, i.e., B(0, ρa),
are gray. Black circles are marked points with the maximal radii represented by
bold interrupted line of the length a

2(1−2ρ) and a(1−2ρ) in the upper and lower
part of the picture, respectively. Those in the upper part do not overlap and
those in the lower part do not overlap over center.
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Figure A.3: Tetrahedral-octahedral honeycomb.

with points at the centers of the set A and then imagine any configuration x ∈
Γ̄ as a perturbed version of x0. In the following remark we describe how the
tetrahedrizations formed by x0 look like. The tetrahedrization of any x ∈ Γ̄ is
considered as a perturbed version of tetrahedrization of x0. When speaking about
these perturbed tetrahedrizations we will shortly say: ”up to a perturbation”.
Remark (Pseudo-periodic tessellation). While in the 2D case Dereudre et al.
[2012] the point configuration forms a tessellation out of equilateral triangles
(up to a perturbation), the three-dimensional case results into the so-called
tetrahedral-octahedral honeycomb (up to a perturbation), cf. Fig. A.3. This
tessellation, if tetrahedrized, contains two different types of tetrahedra : a regu-
lar tetrahedron with side length a and an irregular tetrahedron with side lengths
(a, a, a, a, a,

√
2a), again, up to a perturbation. We will refer to a tetrahedron

that is a perturbed version for the regular tetrahedron as T1 and similarly T2 for
the irregular tetrahedron. In the tetrahedron-octahedron tessellation, each vertex
is incident to eight regular tetrahedra and six regular octahedra, cf. Fig. A.4.
Since each octahedron contains four tetrahedra, we obtain the bound for nT , the
number of incident tetrahedra of each vertex, nT ≤ 8 + 6 · 4 = 32.

To show that the range of interactions is limited for the configurations in Γ̄
two quantities need to be shown to be uniformly bounded. The first one is the
circumdiameter of the tetrahedra described in Remark A.1.1.
Remark (Bounding the circumdiameter of tetrahedra). As noted in Remark A.1.1,
there are two types of tetrahedra in the tetrahedrization, T1 and T2. The following
argument describes how to obtain the bound for the regular tetrahedron (T1), but
the same procedure applies to T2 as well. The optimization problem to be solved
is

maximize
x1,x2,x3,x4∈R3

χ({x1, x2, x3, x4})

subject to ∥xi − ti∥ ≤ ρa, ti ∈ R3, i = 1, 2, 3, 4,

∥ti − tj∥ = a, i = 1, 2, 3, 4.

(A.2)

An essential finding is that the points x1, . . . , x4 which maximize the circumdi-
ameter χ form a sphere tangent1 to the spheres Si := ∂B(ti, ρa), i = 1, . . . , 4.
This reduces the number of possible solutions to 24 (even less because of symme-
try) and all that remains is to check the largest solution. If ti = (ti,1, ti,2, ti,3),

1Spheres are said to be tangent if they intersect at a point.
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Figure A.4: Fropuff [2006] Tetrahedral-octahedral honeycomb tessellate in 3D.
Each vertex is incident to eight regular tetrahedra (yellow) and six regular octa-
hedra (blue), which are shown in an exploded view.

i = 1, 2, 3, 4, then we are looking for a sphere S = ∂B(y, r), y = (y1, y2, y3) ∈ R3,
such that

(y1 − ti,1)2 + (y2 − ti,2)2 + (y3 − ti,3)2 = (r − eiρa)2, i = 1, 2, 3, 4,

where ei = ±1, creating the said 24 possible solutions. It is possible to linearize
these equations. Solving linear equations and choosing the solution yielding the
largest circumradius give the following bounds. For T1 tetrahedra, we obtained
the bound

χ1(ρ) := 2(
√

6/4 + ρ)

and the maximum in (A.2) is aχ1(ρ). For T2, we obtain the bound

χ2(ρ) := 22ρ +
√

2− 32ρ2 + 64ρ4

2− 32ρ2 ,

and the maximum is aχ2(ρ). Both cases are valid for ρ < 1/4.
The second quantity to be bounded is the weight of a characteristic point.

Remark (Bounding the weight of the characteristic point). Since the perturba-
tion happens on a bounded window and the points’ weights are bounded, this
amounts to proving that the points cannot come arbitrarily close to, or even at-
tain, a coplanar position. However, this is equivalent to the boundedness of the
circumdiameter of the tetrahedron, which we have already proven.
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A.2 Sphericity
In order to give a vivid description of a model based on reconstructing potential
(3.5), we would like to simulate Gibbs-Laguerre tessellation whose energy consists
of a single reconstructing potential φG

k,T multiplied by a real parameter θ:

Ẽ(x, r) = Vhard + θV G
n,T (C1, . . . , Cn),

where Vhard, (3.2), forbids the empty cells. The reconstructing potential is im-
portant in practice as it allows simulation of tessellations that are similar to real
data in terms of the distribution of a chosen geometric characteristic G.

In particular we set the functional T to be the histogram discrepancy, i.e.,
T (sG(·)) = dsc(HsG(·), H ′

sG
), and the cell characteristic G to be sphericity. The

constant s0 is set to be 0. The targetting histogram of sphericity H ′
sG

is plotted
in Figure A.5. The activity z is fixed to be 1000.

Figure A.5: Prescribed sphericity distribution for the simulations of Gibbs La-
guerre tessellation.

Table A.1: Dependency of numerical characteristics on the value of parameter θ.

θ total number of cells discrepancy
-10000 349 1.57805
-5000 374 1.578
-2000 468 1.441
-1500 805 1.076
-1000 846 0.9386

-1 950 0.573
1 1018 0.566

1000 1020 0.187
1500 985 0.0175
10000 1000 0.0169

The choice of the parameter θ determines the properties of the model. The
presented simulation study shows the influence of θ on the sphericity distribution,
the discrepancy, and the number of non-empty cells in Λ. Numerical results are
summarized in Table A.1 and Figures A.6 and A.7. Finally, Figure A.8 shows how
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a) b)

Figure A.6: Densities of the sphericity distribution in MCMC simulations
of Gibbs Laguerre tessellations. The dashed line represents the prescribed
sphericity distribution, cf. Figure A.5. Black and grey full lines are den-
sities coming from simulations. In diagram a) densities for θ equal to
−10000,−2000,−1000,−1, 1, 1000, 1500 have their peak magnitudes in the de-
scending order. In diagram b) the detail of diagram a) is present for θ equal to
−1, 1, 1000, 1500.

a) b)

Figure A.7: The 3D simulations of the sphericity model for θ = −10000, a), and
θ = 1500, b). The colouring is random.

the histogram discrepancy and number of non-empty Laguerre cells evolve during
MCMC simulation, Algorithm 2, in the case of different values of parameter θ.

With an increasing value of the parameter θ the discrepancy decreases, i.e.,
the sphericity distribution of simulated tessellations is getting closer to the pre-
scribed one. As θ decreases, the tessellations become quite different. Instead of
moving horizontally, corresponding to less spherical cells occurring, the peak of
the density curve increases, i.e., sphericities in the narrow range are favoured.
This causes a dramatic increase of discrepancy which suddenly stops below the
value 1.58. This behaviour is observable for θ = −5000 and smaller. Narrowness
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of the density means that all cells in the tessellation have very similar spheric-
ity and are in this sense rigid. The densities for values −1, 1 are quite similar.
For θ = 1500, the density is quite similar to the prescribed one and any fur-
ther increase of the parameter value has only a negligible effect on the decay of
the discrepancy. The discrepancies fluctuate more for smaller (in absolute value)
values of θ. The fluctuations are considerably smaller for values ≤ −5000 and
≥ 1500. The same phenomenon is observable for the number of cells. Moreover
the number of cells rapidly decreases with decreasing negative values of θ. 3D
visualizations of the simulated realizations for θ = −10000 and θ = 1500 are
available in Figure A.7 (note that the numbers of cells differ significantly).

A B
Figure A.8: Discrepancy between simulated and prescribed histogram (up) and
number of cells (down) for varying values of the parameter θ in MCMC simu-
lations of Gibbs Laguerre tessellations. In column A and B the negative and
positive values of parameter θ are involved, respectively. Namely in column A,
θ = −1 corresponds to black full line, θ = −1000 to grey full line, θ = −2000
to black dashed line and θ = −10000 to grey dashed line. In column B, θ = 1
corresponds to black full line, θ = 1000 to grey full line and θ = 1500 to black
dashed line. We draw each 105-th iteration.
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A.3 Comparison of Gibbs and Poisson Laguerre
tessellations

In contrast with Poisson type tessellations, the Gibbs point process allows for
quick modification of various geometrical characteristics of the cells using the
potentials introduced in Section 3.1. In the Poisson case, the theoretical values
(depending on the intensity) for the first two moments of various characteristics
can be determined, cf. Okabe et al. [2000] and Lautensack [2007]. A simula-
tion study demonstrating that Gibbs-Laguerre tessellations outperform Poisson-
Laguerre tessellations in terms of the variety of possible cell shapes and numerical
values of cell characteristics is presented in this section.

Using the potentials introduced in Section 3.1 one can easily modify various
geometric characteristics of the cells. Using Gibbs-type tessellations instead of
Poisson-type ones one can obtain different cell shapes preserving the intensity of
cells. This will be demonstrated on four Gibbs-Laguerre models:
a model based on a single reconstructing potential V G

n,T , (3.5), given by

G = nof, T (sG) = s̄G, s0 = 20, θn = 1 000; (A.3)

a model based on a combination of two reconstructing potentials given by

G1 = nof, T1(sG1) = s̄G1 , s0,1 = 16.5, θ1
n = 10 000,

G2 = nof, T2(sG2) = S2
sG2

, s0,2 = 25, θ2
n = 1 000;

(A.4)

and regular and irregular model from Section 3.7.2.
Figures A.9 and A.10 show how the realizations drawn from various Gibbs-

Laguerre tessellation models differ from those of the Poisson-Laguerre tessella-
tions (PLT) with the same intensity and distribution of radii (marked indepen-
dently). Instead of histograms, we are plotting kernel density estimates of tessel-
lation characteristics. The red line corresponds to the empirical density of one
particular realization of the Gibbs-Laguerre tessellation and the black lines cor-
respond to the empirical densities of PLTs. For every Gibbs-Laguerre tessellation
only a single realization is compared with a bunch of twenty appropriate PLTs
in order to show how it extends the PLT model. In Figure A.9 the tessellation
obtained from the model (A.3) and the model (3.22)-irregular are compared with
their Poisson-Laguerre counterparts. The model (A.3) results in tessellations
with an average number of faces per cell equal to 20, the variance of the same
characteristic is not controlled by the potential and is comparable with the value
obtained for PLT. Medium size cells are favored. The model (3.22)-irregular cre-
ates tessellations differing from the PLT significantly in both the distribution of
the number of faces per cell and the distribution of the cell volume. The differ-
ence is influenced by the presence of hardcore parameters, which in this case allow
a smaller range for the cell sizes. In Fig. A.10 the tessellations obtained from
the model (3.22)-regular and the model (A.4) are compared with their Poisson-
Laguerre counterparts. As for the irregular tessellation, significant differences are
visible even for the tessellations obtained from model (3.22)-regular. Here, the
range of cell sizes given by hardcore limits is even smaller since the model fa-
vors neighbouring cells to have similar volumes. The model (A.4), controlling the
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model (A.3) model (3.22)-irregular

Figure A.9: Comparison of Gibbs-Laguerre tessellations obtained from model
(A.3) and model (3.22)-irregular (red) with Poisson-Laguerre tessellations (black)
– estimated distributions of Laguerre radii, cell volumes, number of faces per cell
and NVR are presented.
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model (3.22)-regular model (A.4)

Figure A.10: Comparison of the Gibbs-Laguerre tessellations obtained from
model model (3.22)-regular and model (A.4) (red) with Poisson-Laguerre tessel-
lations (black) – estimated distributions of Laguerre radii, cell volumes, number
of faces per cell and NVR are presented.
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mean and variance of the number of faces per cell, performs similarly as PLT with
respect to the distribution of cell volumes, but the distribution of the number of
faces per cell has larger mean and variance than the PLT model.
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A.4 Profile maximum pseudolikelihood for mul-
tiscale point process

Consider the class of multiscale point processes, Definition 33. Then the parame-
ters β, γ and δ ofMd, d > 1, are estimated using profile maximum pseudolikehood
procedure sketched in Section 4.3.1. This method uses a grid of values of δ and
estimates β and γ at each grid point. These estimates are shown in Tables A.2
and A.3 for modelsM2 andM3, respectively. Moreover, the tables show for each
grid point the value clPL which is the shortcut for value of contrast log pseu-
dolikelihood function evaluated in (β̂, γ̂) and increased by observation window
volume, i.e., the value − logPL(β̂, γ̂)+ |W |. The grid point and appropriate esti-
mates corresponding to the largest value of contrast log pseudolikelihood function
is highlighted by red color and is taken as the final estimate of the triplet (β, γ, δ).

Table A.2: M2: Values of contrast log pseudolikelihood function increased by
observation window volume (additive constant) and the estimates of parameters
β and γ1 for the prescribed grid values of δ1.

δ1 clPL γ̂1 β̂

0.25 10310.3 9.94287·10−4 1.4499·10−2

0.5 10308.7 0.400712 1.45513·10−2

0.75 10304.9 0.51253 1.46677·10−2

1 10296.3 0.529527 1.49071·10−2

1.25 10282.8 0.539163 1.53054·10−2

1.5 10281.7 0.633133 1.56259·10−2

1.75 10288.3 0.734503 1.58022·10−2

2 10283.4 0.759278 1.62963·10−2

2.25 10281.9 0.790985 1.67555·10−2

2.5 10289.7 0.843616 1.68163·10−2

2.75 10298.9 0.894212 1.65644·10−2

3 10294.9 0.893557 1.72605·10−2

3.25 10299.2 0.917589 1.72107·10−2

3.5 10305.2 0.945237 1.67104·10−2

3.75 10305.7 0.95217 1.69583·10−2

4 10306.1 0.957812 1.70712·10−2

4.25 10306.9 0.963817 1.71511·10−2

4.5 10305.4 0.962259 1.78561·10−2

4.75 10305.1 0.964197 1.82936·10−2

5 10305.5 0.967718 1.85147·10−2

5.25 10304.7 0.968132 1.91756·10−2

5.5 10304.6 0.969892 1.96449·10−2

5.75 10304.9 0.972358 1.99401·10−2

6 10306.4 0.976875 1.96253·10−2

6.25 10310.3 0.987499 1.74356·10−2

6.5 10309.9 0.98706 1.79756·10−2
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Table A.3: M3: Values of contrast log pseudolikelihood function increased by
observation window volume (additive constant) and the estimates of parameters
β, γ1 and γ2 for the prescribed grid values of δ1 and δ2.

δ1 \
δ2

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75

0.5
10304.6

10296
10282.4

10280.9
10286.8

10281.7
10280

10287.4
10296.2

0.39923
0.396478

0.392742
0.391433

0.392011
0.39088

0.390715
0.392775

0.395129
0.560209

0.548518
0.549157

0.642366
0.74255

0.76498
0.795272

0.847105
0.897097

0.0146677
0.0149072

0.0153055
0.0156263

0.0158032
0.0162979

0.0167578
0.0168191

0.0165675

0.75
10304.9

10296.3
10282.7

10280.9
10286

10280.7
10278.7

10285.5
10293.7

0.509239
0.505074

0.503034
0.503111

0.501668
0.50155

0.503405
0.506126

0.544327
0.548545

0.651618
0.753983

0.7733
0.801791

0.8527
0.901913

0.0149071
0.0153055

0.0156266
0.0158044

0.0162998
0.0167605

0.0168233
0.0165725

1
10296.3

10282.7
10280

10283.3
10277.6

10275
10280.6

10287.6
0.525475

0.523171
0.522795

0.521038
0.520428

0.521966
0.524277

0.553512
0.679221

0.782457
0.792657

0.816343
0.864887

0.912222
0.0153054

0.0156271
0.0158064

0.0163033
0.0167659

0.0168305
0.016581

1.25
10282.8

10277.7
10277.8

10272.1
10268.7

10272.4
10277.5

0.536761
0.53596

0.533815
0.532765

0.533775
0.535529

0.765003
0.847201

0.830887
0.843202

0.886635
0.930246

0.0156276
0.0158087

0.0163079
0.0167731

0.0168404
0.0165928

1.5
10281.7

10280.7
10275.5

10271.9
10274.7

10278.6
0.631993

0.629527
0.628122

0.628764
0.630272

0.907179
0.852482

0.858111
0.901252

0.943848
0.0158074

0.0163068
0.016773

0.0168431
0.0165987

1.75
10288.3

10282.4
10279.1

10282.3
10285.9

0.732009
0.730418

0.73079
0.732105

0.813804
0.843722

0.901009
0.948844

0.0162994
0.0167648

0.0168372
0.0165966

2
10283.4

10279.7
10281.3

10283
0.757536

0.757525
0.758419

0.868466
0.931828

0.976758
legend:

0.0167624
0.0168378

0.0166023

2.25
clP

L
10281.9

γ̂
1

γ̂
2β̂

.
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A.5 Software
For the development of the models introduced in this thesis we use various soft-
ware either already existing or self implemented.

A.5.1 Overview of the existing software used for compu-
tations

Particular tasks are solved using already existing software, namely we use

• C++ library Voro++ [Rycroft, 2009] for computations of Laguerre tessella-
tions,

• R-package spatstat [Baddeley et al., 2015] for computations of point pro-
cess functional characteristics,

• R-package GET [Myllymäki and Mrkvička, 2019] to perform global envelope
tests.

In more detail, the C++ library Voro++, [Rycroft, 2009], is open source library
which enables effective computations of a single Laguerre cell. This is an advan-
tage for the estimation and MCMC simulation procedures we use, since we need
to recompute only a small number of cells in each iteration (not the whole tes-
sellation). The library computes the cell, its neighbours and its basic geometric
characteristics. In case that window W is rectangular parallelepiped, it allows
periodic boundary conditions.

For the calculation of estimates of functional summary statistics (specifically
F̂ (t), Ĝ(t), L̂(t) and ĝ(t)), we use the R-package spatstat [Baddeley et al., 2015].
This package was used for visualization of points as well.

Global envelopes and the corresponding p-values are computed using the R-
package GET, [Myllymäki and Mrkvička, 2019].

A.5.2 Library LagMod
Besides the functionality of above mentioned libraries we implemented all other
computations, most of them in C++.

LagMod is C++ library which encompasses the computations connected with
all models introduced in this thesis. In brief, we extended capabilities of Voro++
library and implemented a code for pseudolikelihood estimation and the MCMC
algorithms used for simulation of the (marked) point process models and the
models for the radii given the points.

Most of data analysis was carried out in R. Moreover, we implemeted empirical
mark correlation function and empirical mark variogram in R.

The code is available at https://github.com/VigoFierry/Lag_mod together
with several examples of usage.
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