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the combination of interconnected and often contradictory logical models, such
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Hence, a number of mature and verified approaches for various data manage-
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Keywords: Multi-Model Data, Conceptual Modelling, Logical Modelling, Schema
Inference, Data Migration, Evolution Management, Category Theory

v



vi



Contents

Preface 3

Commentary 5
0.1 Variety of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0.1.1 Basic Constructs and Their Unification . . . . . . . . . . . 8
0.1.2 Multi-Model Data . . . . . . . . . . . . . . . . . . . . . . . 8

0.2 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
0.2.1 Choice of Category Theory . . . . . . . . . . . . . . . . . . 10
0.2.2 Apparent Similarity to Graph Theory . . . . . . . . . . . . 10
0.2.3 Application of Category Theory in the Proposed Approach 11

0.3 Multi-Model Data Modelling . . . . . . . . . . . . . . . . . . . . . 12
0.3.1 Conceptual Layer . . . . . . . . . . . . . . . . . . . . . . . 12
0.3.2 Logical Layer . . . . . . . . . . . . . . . . . . . . . . . . . 18
0.3.3 Open Questions and Challenges in Data Modelling . . . . 33
0.3.4 Contribution: Framework MM-cat . . . . . . . . . . . . . . 36

0.4 Schema Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
0.4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 39
0.4.2 Closely Related Single-Model Approaches . . . . . . . . . . 42
0.4.3 Open Questions and Challenges in Schema Inference . . . 45
0.4.4 Contribution: Framework MM-infer . . . . . . . . . . . . . 48

0.5 Evolution Management . . . . . . . . . . . . . . . . . . . . . . . . 50
0.5.1 Closely Related Approaches . . . . . . . . . . . . . . . . . 50
0.5.2 Open Questions and Challenges in Evolution Management 58
0.5.3 Contribution: Framework MM-evocat . . . . . . . . . . . . 60

1 Categorical Management of Multi-Model Data 63

2 Categorical Modeling of Multi-Model Data: One Model to Rule
Them All 65

3 A Unified Representation and Transformation of Multi-Model
Data using Category Theory 67

4 A Universal Approach for Multi-Model Schema Inference 69

5 MM-evocat: A Tool for Modelling and Evolution Management
of Multi-Model Data 71

Conclusion 73

Bibliography 75

List of Figures 87

List of Tables 89

List of Abbreviations 91

1



List of Publications 93

A Category Theory 95
A.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3 Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . 101
A.4 Universal Constructions . . . . . . . . . . . . . . . . . . . . . . . 103

2



Preface
The proposed thesis presents selected results of the author’s research in the area of
modelling and management of multi-model data. The research has been carried
out at the Department of Software Engineering, Faculty of Mathematics and
Physics, Charles University in Prague in years 2019-2022. The author is a member
of Multi-Model Databases Research Group1 lead by doc. RNDr. Irena Holubová,
Ph.D.

The results are presented as a collection of five selected papers [1, 2, 3, 4, 5]
followed by a unifying commentary. Paper I is a vision of a categorical framework,
Paper II addresses conceptual modelling of multi-model data, Paper III proposes
unifying data structures together with universal schema and data transformation
algorithms, Paper IV deals with the inference of a unifying schema from already
existing data, and Paper V addresses the problem of schema evolution and its
backwards propagation. A complete list of 14 papers – namely, 2 Q1 academic
journal articles (2x Journal of Big Data), 3 CORE A conference papers (EDBT
2022, MODELS 2022, MODELS 2021), 5 CORE B conference papers (IDEAS
2022, SAC 2022, ENASE 2022, 2x IDEAS 2021), 1 CORE C conference paper
(MEDI 2021), 2 workshop papers (PhD@DASFAA 2021, CoMoNoS@ER 2020),
and 1 manuscript under review – is provided at the end of this thesis.

Prior to the summary of the papers, a commentary is provided for each ad-
dressed area, namely a motivation, a brief summary of the state-of-the-art, a list
of open questions and challenges, and a discussion of our contribution. For con-
venience, the references to the author’s original contribution are marked with a
pictogram ⋆(see on the right). Finally, we conclude and outline directions of our
current and future research.

The research included in the selected papers has been supported by several
grants, namely the GAČR project no. 20-22276S, and the project GA UK no.
16222 (principal researcher).

Želivec, July 2022

Pavel Koupil (Čontoš)

1https://www.ksi.mff.cuni.cz/area.html?id=multi-model-data
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Commentary
For decades, relational database management systems (RDBMS) based on the re-
lational model [6] were often the obvious candidate for data management. These
robust and time-verified systems were characterised by a schema-first, data-later
approach and handled structured data very well. However, nowadays, most of
the data consists of very large (volume) and varied (variety) (un)structured data,
which in addition are rapidly generated (velocity) and changed (variability).
Hence, relational databases do not necessarily meet the new data management
requirements.

Around the dawn of the second millennium, a new family, the so-called NoSQL
database systems [7], has emerged, pushing the boundaries of many approaches
to data processing. Compared to the RDBMSs, these systems work much bet-
ter with complex (un)structured data and respond to changes in data and user
requirements, e.g., due to the absence of an explicit schema (data first, schema
later/never approach). In addition, the NoSQL systems are often scalable, i.e.,
they allow us to respond flexibly to the volume of data being processed. Despite
all the advantages of NoSQL systems, they are not a replacement for RDBMS,
but the two families complement each other appropriately.

However, even the advent of NoSQL systems has not solved all the prob-
lems. Currently, one of the most difficult challenges is the variety of data, i.e.,
a large number of various data types and formats. For example, based on the
structure, data can be classified as structured, semi-structured, and unstructured,
and/or based on logical representation, there exists, e.g., relational, array, graph,
key/value, document, and columnar data. Besides, in real-world applications the
logical models are often combined, overlapped, and linked by references. Hence,
the applications deal with so-called multi-model data.

In general, approaches that store and process multi-model data can be divided
into two groups. The first group consists of (mainly) academia-driven systems,
the so-called polystores [8], which are based on the idea of polyglot persistence [7].
These are a combination of single-model database systems that are managed by
a so-called mediator, which allows for the use of a single interface. To name
just a few representatives, there is, e.g., BigDAWG [9] or Estocada [10]. Alter-
natively, there exist industry-driven so-called multi-model database management
systems [11], which support multiple logical models within a single system, where
all models are treated as first-class citizens [12]. Obviously, this provides a single
interface to work with the data. Currently, there are dozens of representatives of
multi-model databases,2 including originally single-model systems now support-
ing additional data models [13] or attempts to natively implement multiple data
models, such as, e.g., Octopus3 and ArangoDB.4

Although there exists a number of mature approaches for various data man-
agement tasks commonly used for single-model DBMSs, most of them cannot be
directly applied to multi-model DBMSs. The aspect of multi-model data intro-
duces a new dimension of complexity and new challenges not seen in single-model

2https://db-engines.com/en/ranking
3https://octopus.com/docs/administration/data/octopus-database
4https://www.arangodb.com
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systems. We need to address issues arising from the representation of data by a
single logical model, as well as from the combination of interconnected and often
contradictory models, e.g., (cross-model) references, full and partial (cross-model)
data redundancy, and (cross-model) integrity constraints. In general, we lack a
family of approaches that focus on:

• Grasping the contradictory features of different data models. Ideally, we
need a unified (abstract) conceptual representation of the data models that
hides the minor differences and puts the corresponding features of the log-
ical models on the same level, allowing us to work with them in a unified
way [14].

• Mutual mapping of conceptual and logical layers. Having a unified con-
ceptual layer, we need a way to transform this layer into a logical layer.
Currently, there exist approaches that transform the conceptual layer into,
e.g., a relational model [15]. However, in the case of a combination of mul-
tiple logical models, this approach is not straightforward at all, mainly due
to the different schema approaches (i.e., schema-full, schema-mixed, and
schema-less) and, again, the contradictory features of logical models.

• Inference of the multi-model schema. To handle schema-mixed and schema-
less data, there exist multiple approaches that infer the implicit schema
from already stored data [16]. However, to the best of our knowledge, none
of them is generally applicable to multi-model data, i.e., one cannot infer
features arising from the combination of multiple models.

• Unified query language. Currently, there are many, often non-standardised
query languages (not only) for multi-model systems [13], which create a
huge burden for the users. The ideal situation is the existence of a single
universal and natural language whose expressive power embraces commonly
used query constructs and which allows efficient querying over multiple
interconnected models.

• Evolution management and correct propagation of changes. As user require-
ments change, the data structures evolve. Hence, we need an approach that
is universally applicable to propagate changes to all affected parts of the
multi-model system correctly and completely. Moreover, changes in schema
and data representation can be exploited to increase the performance of,
e.g., querying and other data tasks.

Outline The rest of the thesis is structured as follows: In this Chapter we give
an introduction to the selected problems, an overview of open questions and we
provide a commentary on our proposed solutions. In Chapter 1 we discuss the
vision of a whole multi-model framework. In Chapter 2, we detail our proposed
approach to abstract modelling of multi-model data. In Chapter 3 we propose a
family of algorithms for data transformation that are independent of the logical
representation of the data. In Chapter 4 we describe the proposed algorithm for
inference of multi-model schemas. In Chapter 5 we present tools for multi-model
schema and data evolution. Finally, we conclude and outline future work.
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0.1 Variety of Data

Besides relational databases representing data as relations, NoSQL databases
allow us to represent and store data using other models, e.g., as a hierarchical
tree data (and structures) or pure graph data. We can classify data models as
aggregate-ignorant and aggregate-oriented.

The traditional representative of aggregate-ignorant models is the relational
model. This group also includes the array model, which allows to represent spa-
tial data, however with certain limitations (e.g. references between arrays are not
supported). An example of a system that implements the array model is, e.g.,
SciDB.5 Another aggregate-ignorant representative is the graph model, imple-
mented, e.g., in Neo4j,6 which allows to represent data in its natural form, i.e., as
a system of connected related real-world objects. These connections then allow
a completely different querying principle (e.g., graph traversal, neighbourhood
search etc.) compared to SQL and its derivatives. Similarly, the RDF model
corresponds to a directed graph composed of triple statements.

The simplest representative of aggregate-oriented models is the key/value
model implemented in, e.g., Redis7 and Riak8 systems. Here, the data is stored
as a pair (key, value), with key (identifier) referring to value, i.e., an object
stored in the database as a black box. The document model, implemented in,
e.g., MongoDB9 or MarkLogic,10 uses a similar principle, i.e., it is also based on
pairs (key, value), however, the pairs may form a hierarchical structure (i.e., nest-
ing of pairs is allowed). In particular we refer to the pairs as (unordered) fields
(JSON) or (ordered) elements (XML). Unlike the key/value model, querying and
referencing over nested data is allowed. Finally, the column model, implemented,
e.g., in Apache Cassandra11 and Apache HBase,12 also allows related data to
be stored together, but in the form of (optional and possibly structured) pairs
(name, value) (i.e., columns) forming rows of column families.

Example 0.1. Figure 0.1 illustrates examples of selected data models. The rela-
tional table Customer (purple) represents customers together with their contact
details, while the graph model (blue) represents the relationships between cus-
tomers, i.e., a social network. The key/value pairs (yellow) represent the shopping
carts of customers. The document model (green) represents the collection of or-
ders of each customer as a hierarchical document. Finally, the column family
Orders (red) represents a list of orders for each customer. Thus, at first sight, we
can see that data from a single domain can be suitably represented by different
logical models.

Note that comprehensive descriptions of the data models along with examples
are provided in ⋆Paper IV.

5https://www.paradigm4.com
6https://neo4j.com
7https://redis.io
8https://riak.com/products/riak-kv/index.html
9https://www.mongodb.com

10https://www.marklogic.com/product/marklogic-database-overview/
11https://cassandra.apache.org/_/index.html
12https://hbase.apache.org
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relational table Customer

id

1

3

name

Mary

Anne

surname

Smith

Maxwell

street

Letenská

Ke Karlovu

city

Prague

Prague

postalCode

110 00

110 00

4 John Newlin Technická Prague 162 00

6 Pablo Rodriguez Vratislavova Prague 128 00

column family Orders

1

customerId orders

[(1,1), (1,2), ...]

orders

3

customerId

[(3,1), (3,2)]

orders

4

customerId

[(4,1), (4,2), (4,3)]graph Social Network

name: Mary 
surname: Smith

name: Anne 
surname: Maxwell

name: John 
surname: Newlin

name: Pablo 
surname: Rodriguez

1 6

34

Customer

Friends

Customer

Customer Customer

Friends

Fr
ie

nd
s

Fr
ie

nd
s

key/value pairs Cart

"value"

"value"

"value"

1

2

3

JSON collection Order

  { 
    _id : { 
      customer : 1, 
      number : 2 
    }, 
    contact: { 
      cellphone : +420123456789, 
      email : mary@smith.cz }, 
    items: [ 
      {
        id: B1,
        name: Pyramids, 
        price: 200, 
        quantity: 2 
      }, 
      {
        id: A7,
        name: Sourcery, 
        price: 200, 
        quantity: 1 
      }
    ] 
  }

Figure 0.1: An example of variety of data

0.1.1 Basic Constructs and Their Unification
Since the terminology for the constructs of the data models varies greatly, in
the following text we will refer to the uniform terminology in Table 0.1. A kind
refers to a single collection of (possibly similar) instances, corresponding to, e.g., a
relational table, a node label, or a collection of documents. A record then denotes
a single instance of its kind, e.g., a tuple in a relational table, a particular node,
or a single document. A record further consists of properties such as:

• A simple property, e.g., a scalar value.

• A complex property, represented, e.g., by a homogeneous13 or heteroge-
neous14 array, or a structure that contains other properties (possibly both
simple and complex).

In addition, complex properties, such as nested documents, form a hierarchy
of properties. Hence, a record can be considered as a special kind of a complex
root property.

The domains correspond to the data types of the values of individual prop-
erties, while the active domain is a set of actively used values. An identifier
(further distinguished as simple, complex, and overlapping) then uniquely identi-
fies a specific record of a kind. Finally, a reference from one kind to an identifier
of another kind allows related data to be associated. Note that references are
only allowed for certain models.

0.1.2 Multi-Model Data
In general, multi-model data is represented by multiple logical models within a
single system. Multi-model data not only adopt the properties of single-model
data, but in addition:

13An array that contains elements of the same type.
14An array that contains elements of multiple types. This form of an array is allowed, e.g.,

in MongoDB document model.
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Table 0.1: Unification of terms in popular models

Unifying
term

Relational Array Graph RDF Key/Value Document Column

Kind Table Matrix Label Set of
triples

Bucket Collection Column
family

Record Tuple Cell Node /
edge

Triple Pair (key,
value)

Document Row

Property Attribute Attribute Property Predicate Value JSON Field
/ XML
element or
attribute

Column

Array – – Array – Array JSON array
/ repeating
XML
elements

Array

Structure – – – – Set / ZSet /
Hash

Nested
document

Super
column

Domain Data type Data type Data
type

IRI /
literal /
blank
node

– Data type Data
type

Value Value Value Value Object Value Value Value

Identifier Key Coordinates Identifier Subject Key JSON
identifier /
XML ID or
key

Row key

Reference Foreign key – – – – JSON
reference /
XML
keyref

–

• Analogous to possibly hierarchical models (e.g., the document model), we
can connect multi-model data by (1) inter-model references or (2) inter-
model embedding (e.g., a JSONB column in a PostgreSQL table embeds a
JSON document into a relational table).

• Similarly to the property labelled graph in Neo4j, we can express cross-
model redundancy. In this case, we represent the same parts of the data
using a combination of data models. We speak about partial redundancy if
only a subset of the data is represented by multiple models, or a complete
redundancy if the entire set of data is represented by two or more data
models.

The combination of data models within a larger unit (a polystore or a multi-
model database) allows us to use the right tool (data model) for the specific
tasks. For instance, we represent structured data with small differences in the
document model, data containing a large number of relationships between entities
with the need for efficient querying over the relationships between entities in the
graph model, or fast generated data without the need for complex querying in
the key/value model.
Example 0.2. Figure 0.1 also illustrates multi-model data. Compared to Exam-
ple 0.1, note that there are cross-model references in the data, e.g. from collection
Order (customerId) to table Customer (id). The data is also redundant, i.e., cus-
tomer information is stored in both the relational table and the graph.
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0.2 Category Theory
Category theory [17] is a branch of mathematics that provides a way to gener-
alise mathematical structures and the relationships between them. Hence, it is a
unifying theory that is useful for finding connections between different areas, not
only in mathematics and theoretical computer science.

In this section, we clarify the choice of category theory, indicate the (apparent)
similarity between category theory and graph theory, and explain how category
theory is applied in the proposed approaches to modelling and managing multi-
model data. Note that the basic definitions underlying our proposal, including
illustrative examples that are closely related to real-world applications in data
modelling approaches, are provided in the Appendix A.

0.2.1 Choice of Category Theory
We have chosen category theory for the unified representation of multi-model
data, because it allows for different levels of abstraction and unifies different
types of tasks at the abstract level in a natural way. Therefore it has been suc-
cessfully applied not only for single-model data modelling [18, 19, 20, 21], but
also in various (related) areas, such as programming language theory [22, 23],
data migration [20], or artificial intelligence (AI) [24, 25] among others. Thus, we
do not need to apply a variety of theories and approaches. Instead, combining
concepts such as category (see Definition 1), functor (see Definition 6), or nat-
ural transformation (see Definition 10) suitably, we are able to represent, e.g.,
the conceptual and logical schema, the relationship between these schemas, data
instances, querying based on pattern matching, data migration, and evolution
management.

0.2.2 Apparent Similarity to Graph Theory
At first sight, category theory is similar to graph theory. That is, both categories
and (directed) graphs are usually visualised using points and arrows. However,
this is where the similarity ends.

A category consists of a collection (class) of objects and a collection of mor-
phisms, where each morphism associates two objects. In addition, (1) morphisms
carry a particular meaning, e.g., they define relations or functions between ob-
jects, (2) each object is equipped with a so-called identity morphism, (3) mor-
phisms are composable using a composition operation for which the associative
and transitive laws hold, and (4) morphisms and their composition can be com-
pared with each other. Hence, one cannot arbitrarily orient morphisms in a
category, but must always respect the composition operation. Finally, categories
can, e.g., be mapped, transformed and translated to each other using the notion
of functor.

In contrast, a graph consists of a set of vertices (i.e. a special case of a
collection) and a set of edges, where each edge connects two vertices. Furthermore,
edges do not carry any additional meaning15 and no operations are defined to

15However, if edges carry meaning, e.g., a cost, then this is an extended definition of the
general graph and its application.
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allow edges to be composed or compared. We consider only the notion of a path
in the graph. In other words, a graph only describes a structure. Finally, graphs
can be compared with each other using the notion of graph homomorphisms.

However, note that each graph generates a category, referred to as a free cat-
egory (see Definition 5) also known as a path category, in which the vertices of
the graph form objects and the paths in the graph form morphisms (see Exam-
ple A.3). In addition, each free category is a small category (see Definition 3)
and each small category has an underlying graph.

0.2.3 Application of Category Theory in the Proposed
Approach

We applied category theory in our approach to multi-model schema and data
representation ⋆(see Paper II), data migration ⋆(see Paper III), and schema and
data evolution ⋆(see Paper V).

The main objective while proposing our approach was to make it user-friendly.
Thus, on the one hand, we utilise a complex unifying theory, but on the other
hand, we deliberately exploit the apparent similarities with graph theory. For
example, we represent the structure of data as a graph (i.e., vertices represent
classes of real-world objects, edges represent links between these classes) that
freely generates a schema category.

Moreover, to avoid unnecessarily burdening the reader with advanced category
theory constructs, e.g., natural transformation (see Definition 10) or universal
constructions (see Definitions 13, 14, 16, and 17), we consider these constructs
implicitly in our proposal. For example, instead of explicitly using the notions
product and coproduct in the case of the representation of an identifier (i.e., a
special case of a product) and a set of (overlapping) identifiers (i.e., a coproduct
of identifiers), we introduce an internal object (or graph vertex) representation
that consists of common notions of a superidentifier and a set of identifiers.

Hence we believe that the model we propose is simple enough that anyone
with a basic knowledge of category theory, i.e., the definition of a category (see
Definition 1), and functor (see Definition 6),16 will find our approach easy-to-use.

Although it may seem that we only apply graph theory, we still (implicitly)
exploit various levels of abstraction and advanced category theory constructs
on which we base the representation of instance data (e.g., functors or natural
transformations), data migration (e.g., functors, universal constructions, or nat-
ural transformations), schema modification (e.g., functors) and, as future work,
querying (e.g., universal constructions or natural transformations).

For the convenience of the reader, all the cases of application of category the-
ory in our approach are summarised in the commentary on data modelling (see
Subsection 0.3.4) and the commentary on schema evolution and data migration
(see Subsection 0.5.3). Finally, in the Appendix A we also outline in which ap-
proaches and for which purpose the above definitions are applied, i.e., we provide
additional examples.

16Or with a basic knowledge of graph theory, i.e., the definition of a graph and a graph
homomorphism.

11



0.3 Multi-Model Data Modelling
The objective of data modelling is a mapping of real-world objects and their
structures to data objects and relationships between them. The conceptual layer
captures a generally applicable and platform-independent model of a part of real-
ity. The logical layer is a platform-specific representation of logical data structures
in particular (database) systems. Finally, the physical layer organises data into
physical units and addresses, e.g., data access.

Currently, there exist a number of approaches for modelling at the conceptual
(see Subsection 0.3.1) and logical (see Subsection 0.3.2) layer. However, these
are approaches proposed with a relational or graph model in mind as we analyse
in⋆ [26]. Hence, their general applicability to multi-model data is limited, as the
approaches are often unable to capture new structural properties in the data,
such as, e.g., relations between properties (note that ER and UML only allow to
capture relationships between classes of objects).

In addition, the variety of data models at the logical layer allows to represent
data in different ways. However, due to contradictory features of data models, a
change in logical representation is not straightforward. Both schema and data loss
may occur during this process, e.g. when an order of structural elements carries
some information. There have been attempts to unify logical data models [19, 27,
28, 29, 30], but these are often suboptimal solutions that, moreover, cover only
a limited subset of existing data models. Although attempts in unification have
been made, usually model-specific constructs are inherited [30], thus a broader
applicability is still limited.

In the following subsections, we discuss selected existing approaches to mod-
elling at the conceptual and logical level and demonstrate how and if these ap-
proaches can be used to represent multi-model data. At the logical level, we
mainly focus on approaches that attempt to abstract data models. We compare
the selected solutions and based on their analysis we discuss a set of open ques-
tions and challenges. Finally, we present a novel multi-model data modelling
approach. (Note that in this section we only discuss a static model. Its changes
are addressed in a separate section 0.5.)

0.3.1 Conceptual Layer
The objective of conceptual modelling is to represent data without being bound
by the features of particular logical models, i.e., we speak about so-called platform
independent modelling (PIM).

To achieve such a unified abstraction, traditional conceptual modelling lan-
guages, e.g., the Entity-Relationship model (ER) [31] and the Unified Modelling
Language (UML) [32] (namely class diagram), suffice with the notions of en-
tity, relation, attribute, identifier, and multiplicity. Additionally, there also exist
approaches [18, 33] based on category theory, or currently less widely used ap-
proaches such as the Natural language Information Analysis Method (NIAM) [34],
representatives of the Fact-Oriented Modelling (FORM) [35, 36], or representa-
tives of the Formal Semantic Database Modelling [37], e.g., the Functional Data
Model (FDM) [38, 39], the Semantic Data Model (SDM) [40], and the IFO Model
(IFO) [41]. Last but not least, there also exists an approach [42] allowing to
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represent document and graph data at the conceptual layer.
Taking the best of their features, we have proposed a multi-model schema and

data abstraction approach [2] inspired by ER and UML and based on category
theory. Hence, in this subsection, we mainly discuss the first three mentioned
conceptual modelling approaches.

Entity-Relationship Model

The first representative that enables conceptual modelling of complex structures,
i.e., real-world entities including their attributes and mutual relationships, is the
ER language. The basic constructs are as follows:

• An entity type reflects a class of real-world objects. It must contain an
identifier and (optionally) includes also additional attributes.

• A relationship type represents a binary, n-ary, or reflexive connection be-
tween classes of objects. It is implicitly identified by the participants in the
relationship, and thus explicit identifier is not allowed. However, similarly
to the entity type, the relationship type may contain additional attributes.
Moreover, the ER language also allows to name individual roles in a rela-
tionship.

• The so-called weak entity type is (co-)identified by all other participants
of a selected relationship. Note that the ER language lacks the ability to
include only selected participants in the weak identifier.

• The ISA hierarchy is a possibility to express generalisation (ancestor) or
specialisation (descendant) of entity types.

• An attribute expresses a characteristic of a class of real-world objects or their
relationships in the form of a required, optional, multi-valued, or structured
attribute.

• An identifier is a special type of an attribute. As such it has identifica-
tion functionality within the same class of real-world objects. Moreover,
identifiers can be categorised based on two criteria:

– In terms of its structure, we distinguish between a simple identifier
(consisting of a single attribute), a composite identifier (consisting of
multiple attributes), and an overlapping identifier (i.e., there is at least
one attribute that is part of two different identifiers).

– In terms of entity type membership, a strong identifier (i.e., being
directly an attribute of the entity type), an inherited identifier (i.e., a
member of the ancestor entity within the ISA hierarchy), a weak mixed
identifier (i.e., the entity type is partially identified by an identifier of
another entity type with which it enters into a relationship), or a weak
external identifier (the entity type is fully identified by an identifier of
related entity type) can be distinguished.

• A structured attribute is another special type of a (hierarchical) attribute
that can have only trivial depth of 1 (i.e., no further nesting of attributes
is allowed).
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• A cardinality, described as a pair (min,max), min ∈ {0, 1}, max ∈ {1, ∗},
whereas min ≤ max, expresses multiplicities between an entity type and a
relationship type (within a relationship) or between an entity type and its
attribute.

The ER language exists in several distinct notations [43], e.g., Chen [31],
Reiner et al. [44], Teorey [45], Hoffer et al. [46], and IDEF1X [47], that mutually
differ not only visually but also in the constructs used. In other words, there is
no standardised format for this language.
Example 0.3. Figure 0.2 illustrates the ER diagram of multi-model data from
Figure 0.1. At first glance, the diagram looks complete, i.e., faithfully representing
all the features of the data at the conceptual level. For example, there is an entity
type Customer having two identifiers (id) and (name, surname), a weak entity
type Order having a mixed identifier (id, number), and the ISA hierarchy between
Product and its children Audiobook and Book. Unfortunately, the ER language
only allows us to model traditional structured attributes (e.g., Address), whereas
Contact which can be understood as a structured attribute composed of pairs
(name, value), can only be represented as a binary relationship between Order
and Type.

value

name

(1,*)

(0,*)

Address Customer

idname
surname

street postalCode
city

Friends
(0,*)

(0,*)

id

price

name
(0,*)(0,*)Product Items Order

Audiobook Book

length pages

quantity
OrdersCartquantity

number

(1,1)(0,*)

(0,*) (0,*)

Contact

Type

Figure 0.2: An example of ER schema

Unified Modeling Language

Alternatively, the standardised UML allows us to visually represent not only com-
plex structures, but also entire systems. Using the UML, a number of diagrams
can be created (i.e., so-called behavioural and structural diagrams), of which a
representative of structural diagrams, so-called class diagram, can be used to
model the conceptual schema.

The basic constructs of the class diagram are as follows:
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• A concept is a named set of attributes that represents a class of real-world
objects. It corresponds to an entity type in the ER language.

• An association is a named relationship (connection) between concepts. It
can be defined between two (binary) or more (n-ary) concepts, but also over
a single concept (reflexive). In addition, similarly to the ER language, an
association class can be used to represent the connection between concepts.

• An attribute is a logical and untyped data value of a concept or an associ-
ation. Note that a structured attribute is not an explicit part of the UML,
but it can be expressed as an additional concept attached by an association.

• Multiplicity expresses the number of instances of concept A associable with
an instance of concept B.

• Finally, inheritance allows the expression of generalisation (ancestor) or
specialisation (descendant) of concepts. Similarly to ER, also multiple in-
heritance is allowed.

The expressive power of the class diagram is limited and does not cover all
the important details of the conceptual schema, such as, e.g., identifiers or weak
entity types.
Example 0.4. Figure 0.3 illustrates the UML class diagram corresponding to
schema of the multi-model data from Figure 0.1. Since UML does not provide a
graphical distinction between identifiers and attributes, the identifiers identifying
the Customer concept cannot be visualised. Moreover, the concept Order is not
considered as a weak concept. Also note that the structured attribute Address
is represented as a separate concept that is linked to the parent concept by an
association. Furthermore, Contact is also represented by an association between
the concepts Order and Type, similarly to the ER model in Figure 0.2. The
class diagram also allows us to represent inheritance, specifically the concepts
Audiobook and Book are descendants of the concept Product.

Categorical Conceptual Model (Lippe and Ter Hofstede)

Last but not least, the approach [18] allow to model the conceptual schema and
data using an approach based on category theory. The foundation of the approach
is a directed multi-graph, so-called type graph, that freely generates a category C
(see Definition 5) representing the conceptual schema.

The type graph G = (V, E, L, lbl, pow) is a tuple consisting of:

• A set of vertices V , where each vertex v ∈ V represents a particular type
of real-world objects, a relationship type, or an attribute type.

• A set of edges E, where each edge e ∈ E is an (optionally labelled) directed
pair of vertices e : v1 → v2, v1, v2 ∈ V determining the way how the vertices
participate in various constructions.

• A set of labels L := {role, spec, gen, power role, elt role}, where role rep-
resents a connection between a relationship type and its participant type,
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Figure 0.3: An example of UML schema

spec represents a type specialisation, gen represents a type generalisation,
and power role and elt role representing participants in so-called power
type (i.e., a concept of a multi-valued property, e.g., set), the former one
representing a connection between a power type and a parent type and the
latter one representing the connection between a power type and an element
type.

• Function lbl : E → L associating an edge e ∈ E with a label l ∈ L.

• Function pow is a bijection from edges with label power role to edges with
label elt role, which says that an instance of a power type can be identified
if and only if its elements are identifiable.

• It must hold that no cycles in the graph are composed of edges with labels
spec or gen.

Moreover, in the conceptual schema C = {OC,MC, ◦, 1} the following holds:

• The uniqueness of an attribute is represented by monomorphism mono ∈
MC (see Definition 4), i.e., each element of cod(mono) determines at most
one element in dom(mono).

16



• A type of a complex identifier is expressed as a product with projections
(see Definition 13) to the components of the identifier (see Example 0.5).
Moreover, there is a single monomorphism mono : P → I between an
object P ∈ OC corresponding to type of real-world objects vp ∈ V and
object I ∈ OC corresponds to type of a complex identifier vi ∈ V .

• A type of a structured attribute is represented similarly to a type of a
complex identifier. The only difference is that there is an epimorphism (see
Definition 4) epi : P → A between an object P ∈ OC corresponding to
type vp ∈ V and an object A ∈ OC corresponds to type of the structured
attribute va ∈ V . In other words, each value of a structured attribute must
be a part of an instance of the parent type.

• The multiplicity of an attribute is expressed as the product P × E (i.e., a
power type), where an object P ∈ OC corresponding to the parent type vp ∈
V and an object E ∈ OC corresponds to element type ve ∈ V . Moreover,
it must hold that both projections π1 : P × E → P , π2 : P × E → E are
epimorphisms. Note that this approach can be applied to modelling of, e.g.,
sets, but it is not applicable to represent data collections in general, e.g.,
arrays (a collection of ordered and possibly duplicate elements), and maps
(a sets of pairs (name, value)) distinguishable by name).

• Inheritance is represented by a complementable monomorphism (see Def-
inition 15) corresponding to an edge with a spec label. In other words,
each instance of a child must correspond to a unique instance in each of
its ancestors. Also note that multiple inheritance is allowed. Moreover, the
subtype diagram commutes, i.e., the children have an access to attributes
of theirs ancestors.

• Generalisation of objects A, B ∈ OC is represented as pushout A + B (see
Definition 17).

Finally, the approach also allows to represent data instances conceptually. The
foundation for data representation is the so-called instance category, which can
be based on the categories of sets Set, finite sets FinSet, partial sets PartSet
(allowing to represent missing values, i.e., null), relations Rel, etc. [18].
Example 0.5. Figure 0.4 illustrates a conceptual categorical schema of the multi-
model data from Figure 0.1 represented using approach [18]. For the sake of
clarity, we do not show the identity morphisms and we divided the schema into
two parts: Figure 0.4 (a) depicts only types of real-world objects and their rela-
tionships. Figure 0.4 (b) depicts the attributes of type Customer.

Note that relationships (i.e., Friends, Items, Cart, Orders, and Contact) are
modelled as a product with role-labelled projections to the participants of the re-
lationship. On the other hand, inheritance is modelled as a co-product with spec-
labelled inclusions (i.e., the child is a specialisation of the parent). Figure 0.4 (b)
illustrates the representation of identifiers using monomorphisms (explicitly la-
belled with an existence quantifier). In other words, there is only a single mapping
between type Customer and its id. The complex identifier (name, surname) is
represented as a product with projections to attributes name and surname. There
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is once again a single mapping between Customer and the complex identifier. Fi-
nally, a structured attribute is represented as a product with projections, but in
this case Address : Customer → String × String × String is an epimorphism.
Also note that composition street ◦Address allows direct access from Customer
to String.

Customer
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role

Orders

Order

role

Contact

Type

ItemsProduct

Audiobook Book

Cart rolerole

role

rolerole

role

spec spec

rolerole

(a)

String

id

surname

Customer

name

Integer

String

String String

street
city

  postalCode

String Integer

String String Integer

String

Address

(b)

Figure 0.4: An example of a conceptual schema (Lippe and Ter Hofstede)

Comparative Summary

Table 0.2 summarises the expressive power of the three described approaches.
In addition, it involves also a comparison of our approach inspired by them and
described in detail in⋆ Paper II.

In principle, all the presented approaches allow for modelling of the traditional
concepts of real-world objects, relationships, and their attributes. They differ
mainly in their ability to model identifiers, where the UML class diagram does
not allow to specify an identifier17 and, therefore, it does not even work with
the principle of a weak entity type partially or completely identified by another
entity type. Note that in ER we can model an identifier as a special type of an
attribute and that in the categorical approach we use monomorphisms. Moreover,
the categorical approach considers an explicit identifier of a relationship type,
whereas in the ER language the relationship type is identified implicitly by the
participants of the relationship. Finally, the selected approaches differ in the
possibility of expressing a structured attribute. The categorical approach allows
expressing a structured attribute with unlimited depth and unrestricted structure,
while the ER language allows only structured attributes of trivial depth and
the UML class diagram expresses structured attributes using a concept and an
association.

0.3.2 Logical Layer
While at the conceptual level we view the data in a platform-independent way,
the objective of so-called platform-specific modelling (PSM) is to capture often

17UML allows us to textually express integrity constraints, including the identifier, using the
Object Constraint Language (OCL) [48].
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Table 0.2: Expressive power of approaches modelling conceptual layer

ER [31] Class diagram
(UML) [32]

Lippe and Ter
Hofstede [18]

MM-cat [3]

Object class Entity type Concept Object Object

Relationship
class

Relationship type Association (class) Product +
projections (role)

Product +
projections

Simple attribute
(property)

Attribute Attribute Epimorphism to
object

Epimorphism to
object

Map-like
property

No No No Product +
projections

Multiplicity Cardinality (Chen) Multiplicity Product +
projections
(power role,
elt role)

Product +
projections

Role Role Named association No No

Inheritance ISA hierarchy Inheritance Morphism (spec) Object +
monomorphism

Generalisation Multiple ISA
hierarchy

Multiple
inheritance

Injection (gen) Injection

Structured
attribute
(property)

Structured
attribute

Concept +
association

Product +
projections

Product +
projections

Reflexive
relationship
class

Reflexive
relationship type

Reflexive
association

Object +
morphisms (role)

Object +
morphisms

N-ary
relationship
class

N-ary relationship
type

N-ary association
(class)

Product +
morphisms (role)

Product +
projections

Weak object
class

Weak entity type No Object +
monomorphism

Object +
monomorphism

Identifier Identifier No Monomorphism Monomorphism

Complex
identifier

Complex identifier No Monomorphism to
product

Monomorphism to
product

Multiple
identifiers

Yes No Yes Coproduct of
products

Overlapping
identifier

Overlapping
identifier

No No Overlapping
products

Relationship
identifier

Implicit No Implicit Implicit / Explicit

Integrity
constraints

Identifier OCL Identifier Identifier,
Reference

non-transferable characteristics of particular database systems. For example, we
consider particular data structures, i.e. graphs, trees, and matrices implemented
by the actual DBMS representatives,18 as well as academic proposals (e.g., the
X-SEM model [49] for XML data).

In this subsection, we discuss selected existing approaches that address the
unification of different logical models, in particular category theory based ap-
proaches [19, 20, 21], the NoSQL abstract model (NoAM) [27], associative arrays
(AA) [28], the tensor data model (TDM) [29], and the U-Schema [30]. We also
verify if the approaches are generic enough to cover various characteristics of
popular data models and multi-model data in general.

18Various popular models based on data structures are discussed in detail in ⋆Paper IV.
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Categorical Graph-Oriented Object Data Model (CGOOD)

The approach [19], which is based on the Graph-Oriented Object Database Model
(GOOD) [50], enables us to work with object and relational data in a unified
way (i.e., it aims to abstract these two approaches at the logical level). Abstract
data instances are represented as typed graphs, with schema and data defined
solely in terms of categorical constructs. In addition, this approach allows graph
pattern matching, which further provides a basis for evolution management and
querying.

The core structure of the CGOOD model is the directed graph G = (V, E,
srt, tgt), which represents both the schema (i.e., so-called typegraph) and the data.
An object (from the object model), a corresponding tuple (from the relational
model), or an active domain of a property is represented by a vertex v ∈ V ,
whereas the property (i.e., the fact that a certain value is a property of a complex
object) is represented by an edge e ∈ E. Note that an edge also represents a
function between two types of objects, e.g., getter, isAncestor (isa), etc. Finally,
functions src, tgt : E → V assign the source and target vertices to the edge
accordingly.

Categorically speaking, a particular graph G is represented as a set-valued
functor from Example A.5. Moreover, a collection of such graphs forms a category
of all graphs G = (OG,MG, ◦, 1), which corresponds to the functor category from
Example A.8. The category G also provides a fundamental framework for the
definition of a data instance. A so-called typed instance is a morphism Inst : G→
T , where Inst ∈ MG, and G, T ∈ OG. Note that Inst corresponds to a graph
homomorphism between G and T , i.e., there exists a mapping InstV : VG → VT

specifying the type of the value, and a mapping InstE : EG → ET preserving the
structure of G.

Example 0.6. Figure 0.5 (a) illustrates a typegraph representing the logical schema
of the multi-model data from Figure 0.1. Figure 0.5 (b) depicts a part of the data.
For easier understanding, the vertices and edges of the typegraph are labelled by
strings, though this is not necessary from a categorical perspective (CGOOD
works with unlabelled graphs). In addition, we use colours to represent the
mapping of the data to the corresponding types, i.e., values 1, 3, 4, 6 are mapped
to Id, values Mary, Anne, John, Pablo are mapped to Name, etc. Note that the
mapping preserves the structure, i.e., if there exists an edge between two vertices
in the data, then there will be an edge between the corresponding vertices in the
typegraph. Finally, note that the data does not contain explicit identifiers.

To conclude, note that category theory in the context of relational and object-
relational models has also been addressed in the works [18, 51, 52, 53].

Categorical Logical Model (Spivak et al.)

The approach [20] represents the relational database schema as a small category
(see Definition 3) and corresponding data instance as a functor (see Definition 6).
The authors also propose a category of all schemas and allowed operations be-
tween the schemas. Hence, in combination with so-called data migration functors
built on top of the schema operations, the migration of data instances is allowed.
Moreover, these data migration functors form the basis of a categorical query lan-
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Figure 0.5: An example of CGOOD application to multi-model data

guage CQL [54]19 over relational data. Finally, this approach allows to convert
relational data to RDF triples [55] and vice versa.

However, in order to apply this approach, the authors presume that the
database (i.e., a set of named kinds) is in the so-called categorical normal form,
defined as follows:

• Each kind t contains a simple identifier idt.

• For each additional property c of kind t, c ̸= idt, there is a target kind t′

such that each record of kind t is mapped to exactly one record of type t′,
i.e., there is a mapping c : t→ t′.

• If two paths p : t → t′, q : t → t′, p ̸= q represent the same mapping of
records between two kinds, the equivalence p ≃ q must be included in the
schema.

In addition, the authors define the notion of a categorical path equivalence
relation (CPER) on the graph G = (V, E, src, tgt) denoted by ≃, which has the
following properties:

• If p,q are paths of the graph G and p ≃ q, then src(p) = src(q).

• If p,q are paths of the graph G and p ≃ q, then tgt(p) = tgt(q).

• Let p, q : b→ c be paths and m : a→ b be an edge in the graph G. If p ≃ q
holds, so does p ◦m ≃ q ◦m.

• Let p, q : a→ b be paths and n : b→ c be an edge in the graph G. If p ≃ q
holds, so does n ◦ p ≃ n ◦ q.

Finally, the schema of a database in categorical normal form is a pair (G,≃),
where G = (V, E, src, tgt) freely generates the category G = (OG,MG, ◦, 1) as
follows:

• OG correspond to the vertices in V .
19https://www.categoricaldata.net
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• MG correspond to the paths in the graph G composed of edges E.

• ◦ corresponds to the path concatenation operation.

• ≃ is a categorical path equivalence relation on G.

In other words, the kinds (i.e., tables) in the schema are determined by vertices
v ∈ V mapped to objects O ∈ OG, the properties (i.e., columns) are determined
by edges e ∈ E mapped to morphisms m ∈ MG, and the integrity constraints
are represented by a categorical path equivalence relation. A closer look allows
us to further divide the objects into (1) objects T ∈ OG, each corresponding to
a kind of a single property (i.e., a single one-column relational table) and (2)
objects D ∈ OG, each corresponding to a generic data type, e.g. String, Number,
Boolean, etc. As for morphisms, we can distinguish: (1) identity morphisms
idt : T → T , each modelling an identifier of a specific kind (i.e., relational table);
in the case where the kind has no identifier, idt is considered implicitly, (2) identity
morphisms idd : D → D, each modelling an identifier for a domain of a particular
data type, (3) morphisms r : T → T ′, each modelling a reference from T to T ′,
and (4) morphisms c : T → D, for each kind T and its property (distinct from the
identifier and reference) of data type D. Also note that the categorical normal
form does not support complex and overlapping identifiers.

The authors also introduce a set-valued functor InstG : G→ Set representing
a particular instance conforming to the schema G (see Example A.5).

Example 0.7. Figure 0.6 (a) illustrates the multi-model schema from Figure 0.1
represented by the approach [20]. Objects depicted using a solid line represent
particular tables (e.g., Customer), while objects depicted with a dashed line repre-
sent data types (e.g., String). Although the schema appears to faithfully capture
the logical schema of multi-model data, it is in fact expressed in terms of intercon-
nected single-column (non-aggregated) relational tables. Moreover, this approach
does not consider complex or overlapping identifiers, but only trivial one-column
identifiers. Also note that instead of an ISA hierarchy, the specialisation of a
child is represented by addition of the property Type to the kind Product, as the
approach [20] does not allow explicit modelling of the ISA hierarchy.

Finally, the part of the instance is illustrated in Figure 0.6 (b).

Papers [56, 57] extend this approach to support multiple logical models, i.e.,
not just the relational model. However, the proposal only considers separate
models (namely relational, graph, and document) over which the data can be
queried and migrated between using functors and natural transformations.

Algebraic Property Graph (APG)

Yet another approach [21] is based on type theory, algebra, and category theory,
i.e., it is closely related to algebraic databases [58], and aims to cover the area
of property graphs. The authors propose the so-called algebraic property graph
(APG) to represent a general property graph. In addition, a set of rules for trans-
forming selected data models (i.e., relational, RDF, key/value, XML and, JSON
document) into the APG representation is proposed. Also, the basic operations of
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Figure 0.6: An example of a logical categorical schema and data (Spivak et al.)

querying and migration between two APGs are proposed. The whole framework
is implemented as a part of an open-source tool CQL.20

Property graph G = (V, E, L, src, tgt, lblv, lble) is defined as follows:

• V is the set of vertices of the graph G.

• E is the set of edges of the graph G.

• Functions src, tgt realize the edge orientation.

• Unlike the ordinary graph, G also contains a set of labels L and functions
lblv : V → L, lble : E → L that assign labels l ∈ L to vertices v ∈ V and
edges e ∈ E accordingly.

Note that internally each vertex and edge contains a unique identifier and a set
of key/value pairs called properties.

The authors represent the property graph as a category A = (OA,MA, ◦, 1),
where OA = {LA, TA, EA, VA} and MA = {vA, τA, λA, ωA} such that:

• LA represents the set of labels to be assigned to each vertex of the graph.

• TA denotes the set of types that can be assigned to the vertices of the graph.
Each type t ∈ TA is a term of the grammar t := 1 | p | l | t1 + t2 | t1 × t2,
where 1 is a type of a trivial value, p ∈ P is a primitive type, l ∈ LA, t1 + t2
is a complex type (e.g., union type), and t1 × t2 is a type of an edge.

• The set of elements EA = V ∪ E represents the elements of the graph G,
i.e., the vertices and edges.

20https://www.categoricaldata.net
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• The set VA, where the elements vi : ti are terms of the typed grammar
v : t := () : 1 | inlt2(v : t1) : t1 + t2 | inrt1(v : t2) : t1 + t2 | (v1, v2) :
t1 × t2 | vp : p | e : λA(e), where t, t1, t2 ∈ TA, p ∈ TA is a primitive type,
and e ∈ EA.

• The function vA : EA → VA assigns a value to each element.

• The function τA : VA → TA associates a data type with each value.

• The function λA : EA → LA attaches a label to each element.

• The function ωA : LA → TA determines the (data) type of each label.

• The structure of the graph must correspond to its schema, i.e., τA ◦ vA =
ωA ◦ λA.

A particular algebraic property graph (i.e., an instance) is then a functor F :
A→ Set (see Example A.5).
Example 0.8. An example of l ∈ LA is, e.g., Customer attached to a vertex
representing a particular customer, and name attached to an edge that assigns a
name to a customer.

Examples of t ∈ TA include Customer (i.e., the type of vertex attached by
label Customer), String (i.e., the type of a vertex that represents an attribute),
Customer × String (i.e., the type of an edge that assigns a name of type String
to the Customer), and Product + Audiobook (i.e., the type of vertex that has
multiple labels attached).

An example of a typed value is, e.g., "Mary":String, ():1 (i.e., a trivial value
of an arbitrary vertex), (c1, "Mary"):Customer × String (i.e., an edge value,
where c1 is a reference to the vertex corresponding to the customer with id = 1).

Then the function λA(c1) = Customer assigns the label Customer to the ver-
tex c1. The function vA(n1) = (c1, ”Mary”) determines the value of the edge ref-
erenced by the reference n1, or vA(c1) = (). Examples of exploitation of the func-
tion to determine the label of a graph element are ωA(Customer) = Customer,
and ωA(name) = Customer × String. Finally, an example of determining the
type of a typed value is τA(”Mary”, String) = String.
Example 0.9. Figure 0.7 (a) illustrates the schema of the data from Figure 0.1
represented as APG. The green objects correspond to real-world objects, the black
and white objects represent property values, and the blue arrows, each crossing
a blue object, represent directed relationships between the objects. Note that
properties of objects or relationships are represented by the edge leading to the
black and white objects.

Figure 0.7 (b) illustrates a part of the multi-model data from Figure 0.1 that
corresponds to the schema in Figure 0.7 (a). Note that the approach allows us
to represent the ISA hierarchy by attaching multiple labels to a single vertex.
Moreover, vertices are identified only by a simple implicit identifier, i.e., complex
identifiers are not allowed. Finally, the structured attribute Address is inlined to
the Customer.

APG is also suitable for data and schema migration. As every instance of APG
corresponds to a functor F1,2 : A→ Set, the migration between two instances of
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Figure 0.7: An example of APG (a) corresponding to data (b)

APGs can be formally described as a natural transformation α : F1 → F2 (see
Definition 10).

Finally, the authors also propose a method for APG to represent the schema of
other data models (i.e., relational, RDF, key/value, XML and JSON document),
but do not cover all the properties of the models, e.g., uniqueness of values, order
of properties, structured and overlapping identifiers.

NoSQL Abstract Model

The approach [27] is a system-independent model of aggregate-oriented NoSQL
database systems, i.e., it covers key/value, document, and columnar models. In
addition, it is designed for performance, scalability and data consistency.

The basic constructs of the proposed abstract model are as follows:

• The NoAM database D = {C1, . . . , Cn} is a set of collections.

• Each collection C = (idC , B) is uniquely identified by the collection key idC

and contains the set of blocks B = {b1, . . . , bm}. Examples of collections
include bucket, document collection, and column family.

• Each block b = (idb, E) is uniquely identified by the block key idb and
contains a non empty set of entries E = {e1, . . . , ep}. Each block corre-
sponds to an aggregate, e.g., a single key/value pair, a document, or a row
of a column family. A block is also the largest data unit for which atomic
operations are considered.

• Entry e = (ek, ev), where ek uniquely identifies an entry within a block
and ev represents a primitive or complex value. An entry corresponds to a
document field and a table column.

NoAM employs two data representation strategies, i.e., input per each top-level
property (ETF) and input per each aggregated object (EAO).

When applying the ETF strategy, each block b represents a single record,
wherein the block key idb corresponds to the identifier of the record, and the set

25



of entries E contains one pair (ek, ev) for each property except for the property
having the identification feature. If the top-level property represents a complex
property, i.e., it is not an atomic property, this property is also represented as an
entry and not as a set of nested entries (e.g., a nested block).

Alternatively, when applying the EAO strategy, each record is represented by
its own block, where the block key idb corresponds to an identifier and the set of
entries is constituted by a single entry (ek, ev). Note that ek = ϵ and the value is
the aggregate corresponding to the record without the identifier ( as it is already
used as idb).
Example 0.10. Figure 0.8 (a) illustrates the application of the ETF strategy to
the kinds Order and Customer from Figure 0.1, while Figure 0.8 (b) illustrates
the application of the EAO strategy to the same data. A comparison of the two
strategies demonstrates that the block identifiers are the same and the blocks
differ only internally. While the block contains only a single complex entry iden-
tified by the (meta)value ϵ when using the ETF strategy, the block consists of a
set of uniquely recognisable entries when using the EAO strategy. However, even
if using the EAO strategy, the entries corresponding to a complex structure are
not split further into smaller units (e.g., see properties contact and items).

{
  contact : { 
    cellphone : +420123456789, 
    email : mary@smith.cz }, 
  items : [ 
    { id : B1, name : Pyramids, price : 200, quantity : 2}, 
    { id : A7, name : Sourcery, price : 200, quantity : 1 } 
  ]
}

{
  customer : 1,
  number : 2
}

collection Order

collection Customer

6 {
  name : Pablo, 
  surname : Rodriguez 
  street : Vratislavova, 
  city : Prague, 
  postalCode : 128 00, 
  friends : 3 
}

1 {
  name : Mary, 
  surname : Smith 
  street : Letenská, 
  city : Prague, 
  postalCode : 110 00, 
  friends : [ 4, 6 ] 
}

(a)

collection Order

{
  customer : 1,
  number : 2
}

contact
{
  cellphone : +420123456789, 
  email : mary@smith.cz 
}

items
[ 
  { id : B1, name : Pyramids, price : 200, quantity : 2 }, 
  { id : A7, name : Sourcery, price : 200, quantity : 1 } 
]

collection Customer

6 name

surname

friends

street

city

postalCode

Pablo

Rodriguez

3

Vratislavova

Prague

128 00

1 name

surname

friends

street

city

postalCode

Mary

Smith

[ 4, 6 ]

Letenská

Prague

110 00

(b)

Figure 0.8: An example of (a) ETF and (b) EAO strategies

In addition, the so-called access paths ap are considered, allowing to represent
the complex property p as a set of entries {(ap1, v1), . . . , (apn, vn)}. As such, each
nested property c is represented as an entry (apc, c), where the entry key apc is
the sequence of steps required to access property c from parent p, and the value
c is the accessed nested property.

In order to select an appropriate aggregate representation strategy, the au-
thors propose a set of rules for partitioning the data model. As the authors
suggest, the chosen strategy should reflect, e.g., data access patterns and support
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strong consistency and efficient execution of update operations. Unfortunately,
the approach does not consider general multi-model data, i.e., a combination of
possibly overlapping data models, but only aggregate-oriented data. Note also
that the approach only allows for so-called embedding of kinds (i.e., nested com-
plex properties representing an additional structure), but it does not consider
references between different kinds (i.e., across different data collections) at all.

Associative Arrays

The next approach [28] is a system-independent model that allows selected data
models to be represented uniformly at the logical and physical layers. As such,
it is based on a generic data structure, so-called associative arrays.

The core of the approach is the associative array A, i.e., a mapping of a
two-dimensional key to the value A : K1 ×K2 → V, where:

• Key K1 corresponds to an array row.

• Key K2 corresponds to an array column.

• A domain of a key can be an arbitrary set of ordered values, e.g., integers,
strings, etc.

• The values k ∈ Ki must be unique within the key Ki, i.e. there does not
exist ki, kj ∈ K : ki = kj, but there may exist two keys k1 ∈ K1, k2 ∈ K2
such that k1 = k2.

• There is no row or column that is completely empty, i.e., an associative
array does not allow us to represent an empty record or a property having
an empty active domain.

Associative arrays allow to represent both aggregate-ignorant and aggregate-
oriented models. In the former case, the models are represented as a matrix
where the row key corresponds to the recorder identifier and the column key cor-
responds to the property name, while in the latter case it is a sparse matrix that
additionally represents a hierarchical arrangement of data in the keys. For ex-
ample, the row key contains not only the document identifier, but additionally a
unique index for nested array elements to determine their order, and the column
key reflects the hierarchy between properties, i.e., top-level properties are repre-
sented by the property name, while further nested properties are represented by
the minimum sequence of steps required to access the property (similarly to the
access paths in NoAM). However, the approach does not model, e.g., references,
multiple (possible overlapping) identifiers, and the ISA hierarchy at all.
Example 0.11. Figure 0.9 illustrates the application of the approach [28] to the
multi-model data from Figure 0.1. As illustrated, the approach allows to repre-
sent heterogeneous models as a disjunctive set of associative fields. Note that the
approach allows to represent a complex identifier or complex and nested prop-
erties, including capturing the order of elements in the array, as illustrated by
associative array representing kind Order.

The proposed approach also provides querying and transformations. It uses
basic operations, e.g., element-wise addition, element-wise multiplication, and
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cart

1 product : T1, quantity : 2, product : B4, quantity : 1

3 product : H1, quantity : 1

6 product : B3, quantity : 2

01 02 03 ...

1 1,21,1 ... ...

3 3,23,1

4 4,24,1 4,3

(customer : 1, number : 2)

(customer : 1, number : 2)/001

(customer : 1, number : 2)/002

contact/ 
  cellphone

+420123456789

contact/
  email

mary@smith.cz

items/ 
  id

B1

A7

items/
  name

Pyramids

Sourcery

items/
  price

200

200

items/ 
  quantity

2

1

name surname street city postalCode

1 SmithMary Letenská Prague 110 00

3 MaxwellAnne Ke Karlovu Prague 110 00

4 NewlinJohn Technická Prague 162 00

6 RodriguezPablo Vratislavova Prague 128 00

name surname 1 3 4

1 SmithMary 0 0 1

3 MaxwellAnne 0 0 1

4 NewlinJohn 0 0 0

6 RodriguezPablo 0 1 0

6

1

0

0

0

Figure 0.9: An example of Associative Arrays

array multiplication, which correspond, e.g., to the database operations of table
union, intersection, and transformation.

Tensor Data Model (TDM)

Last but not least, the approach [29] allows us to represent multi-model data in
terms of tensors [59], i.e., the following matrix generalisation: 0th order tensor is
a scalar, 1st order tensor is a vector, 2nd order tensor is a matrix, and n-th order
tensor is so-called higher-order tensor.

In TDM, tensors are defined as the mapping T : K1 × · · · ×Kn → V, where:
n ∈ N is the order of the tensor, Ki is the dimension of the identifier K1×· · ·×Kn,
and V is a set of values. In addition, tensors are unambiguously named and typed.

Tensors are used in three possible ways in TDM:

1. Associative arrays, denoted by Ai for i = 1, . . . , n, model dimensions of a
tensor X. Such arrays have only one set of keys associated with integers
using bijective function Ai : Ki → N.

2. At a lower level, an associative array is used to represent the values of a
sparse n-order tensor by associating compound keys from dimensions to
values Avst : K1 × ...×Kn → V.

3. For tensors with non-numerical values, two associative arrays are used: (i)
to map keys dimensions to a set of integer keys (Avst) and (ii) to map the
integer keys to non-numeric domains values (one integer is associated with
each different value).

Operations with tensors are analogous to operations with matrices and vec-
tors, e.g. multiplication, transpose, unfolding (transformation of a tensor into a
matrix), factorisation (decomposition), etc.
Example 0.12. Figure 0.10 illustrates the application of the approach [29] to the
multi-model data from Figure 0.1. At first sight, the approach is identical to
associative arrays proposed in [28]; however, the document and column models are
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not considered. That is, a hierarchy between individual properties and complex
properties such as nested documents, arrays, etc. cannot be represented. On
the other hand, this approach allows us to apply higher-order tensors, e.g., to
represent n-ary relations. In this case, we could use a third-order tensor to
represent, e.g., graph data illustrating relationships between two customers.

cart

1 product : T1, quantity : 2, product : B4, quantity : 1

3 product : H1, quantity : 1

6 product : B3, quantity : 2

name surname street city postalCode

1 SmithMary Letenská Prague 110 00

3 MaxwellAnne Ke Karlovu Prague 110 00

4 NewlinJohn Technická Prague 162 00

6 RodriguezPablo Vratislavova Prague 128 00

name surname 1 3 4

1 SmithMary 0 0 1

3 MaxwellAnne 0 0 1

4 NewlinJohn 0 0 0

6 RodriguezPablo 0 1 0

6

1

0

0

0

Figure 0.10: An example of TDM

U-Schema

Recently, the approach [30] integrating schemas of distinct logical models, namely
relational, graph, key/value, document and columnar models, was proposed. The
proposal also includes a mapping between the respective logical model schema
and the integrating schema and vice versa.

The basic structural constructs of the proposed approach are as follows:

• Model U-Schema U = {s1, . . . , sn} ⊆ S , n ∈ N is a set of SchemaTypes
s ∈ S.

• The set of SchemaTypes S is the union of EntityTypes (E ⊆ S) representing
classes of real-world objects and RelationshipTypes (R ⊆ S) representing
relationships between them. Internally, EntityType e ∈ E is represented as
a tuple (ns, root, Vs) and RelationshipType r ∈ R is a tuple (ns, Vs), i.e.,
each SchemaType is assigned a name ns and contains a subset of Structural-
Variations Vs ⊆ V . In addition, EntityType e contains a Boolean feature
root indicating whether it is a standalone or nested entity type. Hence,
only the EntityType can form a hierarchical structure.

• Each StructuralVariation v ∈ V is represented as a tuple (id, Fv, count,
firstTS, lastTS) such that id is an integer identifier, Fv ⊆ F is a sub-
set of the properties, count is a feature capturing the number of existing
instances of a particular StructuralVariation, and the timestamps firstTS
and lastTS store the time of creation of the first and last instance of that
variation.

• The set of properties F is composed of LogicalFeatures (i.e., keys KEY ⊆ F
and references REF ⊆ F ) and StructuralFeatures (i.e., attributes ATT ⊆
F , and aggregates AGG ⊆ F ) such that:
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– The attribute att ∈ ATT can be primitive (e.g., Number, String,
Boolean, JSON,21 BLOB), collections (e.g., list, tuple, set, map), or
the special type Null. Each attribute att is modeled as a tuple (natt,
tatt, optatt, keyatt, REFatt, isatt) such that natt assigns a name to the
attribute, tatt is the data type of the attribute, optatt specifies the op-
tionality of the attribute, keyatt ∈ KEY is a reference to the (none or
only) key of which the attribute may be a part, REFatt ⊆ REF is a
subset of the references of which the attribute is a part, and the isatt

attribute models specific behaviour based on the attribute type.
– The key key ∈ KEY is modelled as a tuple (nkey, Akey) such that nkey

is the name of the key and Akey ⊆ ATT is a subset of attributes that
constitute the key.22

– The reference ref ∈ REF is modelled as a tuple (nref , Aref , refsTo,
lBound, uBound) such that nref is the name of the reference, Aref ⊆
ATT is a subset of the referencing attributes,23 refsTo ∈ E is the
referenced EntityType, and lBound, rBound are the lower and upper
cardinality bounds, respectively.

– The aggregation agg ∈ AGG is modeled as a tuple (nagg, optagg,
lBound, uBound, Vagg) such that nagg assigns a name to the aggre-
gation, optagg determines the optionality of the aggregation, lBound,
rBound are the lower and upper cardinality bounds, and Vagg ⊆ V is
the set of structural variations that are aggregated (nested).

Example 0.13. Figure 0.11 (a) illustrates the U-Schema of the graph data and
Figure 0.11 (b) the U-Schema of the document data from the Example 0.1. Note
that although edges are represented internally in the graph as a pair of proper-
ties from, to, U-Schema represents an edge as a RelationshipType without any
properties, and the connection between two customers (otherwise realised by an
edge) is represented by a reference at Customer. In the case of the U-Schema
document model, note that only the EntityType Order is root, reflecting the fact
that all other EntityTypes are nested.

U-Schema allows to define two variants of the model: (1) in the so-called
full variability all structural variations of all EntityTypes and RelationshipTypes
are stored, while (2) in the so-called union schema there is only one structural
variation for each SchemaType. Note that the conversion from the full variability
to the union schema version is a lossy conversion, hence the reverse conversion is
not possible.

Furthermore, the authors introduce so-called forwards mapping (i.e., a map-
ping of the logical model schema to the U-Schema) and reverse mapping (i.e., a
mapping in the opposite direction). In the former case, there is a natural cor-
respondence between each element of the logical schema and an element of the
U-Schema. However, in the latter case, the U-Schema may contain elements that

21Note that the authors consider the nested data model represented by JSON or JSONB type
in PostgreSQL as a black box and not as a structure.

22Note that U-Schema allows primitive attributes as part of the key, as well as collections
and the special type Null [30].

23Note that, similar to the key, references can be collections and the special value Null in
U-Schema.
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USchema
Neo4j

EntityType
name : "Customer"

root : "true"

RelationshipType
name : "Friends"

StructuralVariation
variationId : 1

count : 4

StructuralVariation
variationId : 1

count : 4

Attributes
"Name" : String

"Surname" : String
References

Friends : Customer

(a)

USchema
MongoDB

EntityType
name : "Order"

root : "true"

EntityType
name : "_id"
root : "false"

EntityType
name : "Contact"

root : "false"

EntityType
name : "Items"
root : "false"

StructuralVariation
variationId : 1

count : 1

StructuralVariation
variationId : 1

count : 1

StructuralVariation
variationId : 1

count : 1

StructuralVariation
variationId : 1

count : 2

Aggregates
_id : _id[1]

Contact : Contact[1]
Items : Items[1]

Attributes
"Cellphone" : String

"Email" : String

Attribute
"Customer" : Number
"Number" : Number

Attribute
"Id" : String

"Name" : String
"Price" : Number

"Quantity" : Number

(b)

Figure 0.11: An example of U-Schema for graph (a) and document model (b)

are not present in a particular logical model, e.g., the relational model does not
contain structural variations,24 the graph model does not support aggregates, and
conversely, most logical models do not contain the RelationshipType. Hence, the
unification of data models is limited, as model-specific constructs are introduced
into U-Schema, which also makes it difficult to extend the approach to support
other logical models if needed.

Finally, the authors proposed the language Athena [60], which allows the
definition of logical schemas as U-Schemas.

Comparative Summary

Table 0.3 summarises the features of selected abstract models at the logical layer.
All the observed approaches allow us to represent data, however, the schema is
approached in various ways. Most approaches can be considered schema-full,
however, NoAM approach lacks an explicit schema, thus representing a schema-
less approach. The abstraction of logical data models varies. Typically, if the
abstract model is based on the graph (or category), it allows to represent rela-
tional or graph data (i.e., aggregate-ignorant models). Conversely, if the model is
an array-like or aggregate-like, mostly aggregate-oriented models are supported.
However, multi-model data is only considered in the U-Schema approach, and

24Note that the U-Schema treats missing value differently. While in the relational model,
missing value leads to an optional property within one structural variation, in the graph model,
missing value leads to two different structural variations, and in the document model we further
distinguish a variation with the special type Null.
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Table 0.3: Comparison of logical layer modeling approaches

CGOOD [19] Spivak et
al. [20]

APG [21] NoAM [27] AA [28] TDM [29] U-Schema [30] MM-cat [3]

Data structure Typegraph Category Category Aggregate Matrix Tensor Graph Category

Schema Yes Yes Yes No Yes Yes Yes Yes

Data Yes Yes Yes Yes Yes Yes No Yes

Relational model Partial Partial Partial No Partial Partial Partial Yes

Array model No No No No No No No Yes

Graph model No No Yes No Yes Yes Yes Yes

RDF model No Yes No No No No No Yes

Key/value model No No No Yes Yes Yes Yes Yes

Document model No No No Yes Yes No Yes Yes

Columnar model No No No Yes Yes No Yes Yes

Multi-model data No No No No No No No Yes

Complex ID No No No Yes Yes No Yes Yes

Multiple IDs No No No No No No No Overlapping

References Implicit Intra Implicit No No No Yes Intra, Inter

Complex IC No ∼ ∼ No No No No No

Complex types Structure, Array No Array Structure, Array Implicit No Structure,
Array, Tuple,
Set, Map

Structure,
Array, Tuple,
Set, Map

Union type No No Yes Implicit No No Yes Yes

Ordering No No No Yes Yes No No Yes

Data redundancy No No No No No No No Yes

Querying Graph patterns CQL CQL No Matrix algebra Tensor algebra No No

Data Migration Intra Yes Yes No No Yes Yes Yes

Evolution
management

Yes Partial Partial No No Partial Yes Yes
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only in a limited way. The approach treats multi-model data as a set of disjunc-
tive models, i.e., it does not consider features arising from their connections, e.g.,
inter-model references, redundancy ⋆(see Paper III) and (in)consistency [61].

Nevertheless, even in the case of support for individual data models, ap-
proaches are often limited to a minimal set of constructs, e.g., simple identifiers,
simple properties and basic data structures (i.e., a subset of complex properties).
Only approaches NoAM and AA allow to model complex identifiers, while com-
pletely missing, e.g., the possibility to specify multiple identifiers and thus to
represent overlapping identifiers typical, e.g., for a relational model, hence multi-
model data. In the case of references, the approaches are limited to (implicit)
intra-model references only.

Finally, approaches often introduce minimal sets of operations that can be
composed to perform more complex operations that express, e.g., querying, data
migration and some evolution management operations.

0.3.3 Open Questions and Challenges in Data Modelling
Indeed, existing data modelling approaches seem promising for representation of
multi-model data at the conceptual and logical layers. However, none of these
approaches allows us to represent all the features of multi-model and underlying
data in their natural form. Hence, there remain open questions that need to be
addressed.

Conceptual Layer

Naturally, approaches that model the conceptual layer should support multi-
model data, as they intentionally hide the specific properties of platform-specific
(logical) representations. However, traditional approaches, such as ER and UML,
are primarily closely associated with the relational model (i.e., normalised data)
and do not necessarily reflect the properties of additional models (e.g., denor-
malised data). In other words, the translation of the conceptual schema is not
straightforward and is often ambiguous in the case of a combination of models.

The following challenges C1 – C9 need to be discussed accordingly in order
to design an extended approach that fully represents multi-model data at the
conceptual level:

C1: Elements of the conceptual layer. The question is whether we need to distin-
guish classes of objects from relationships and properties at the conceptual
level. In practice, conceptually equivalent constructs are often represented
differently at the logical level, and different conceptual constructs are rep-
resented in the same way. This is particularly obvious in aggregate-oriented
models where, e.g., a structured attribute is interchangeable with a combi-
nation of a class of parent object, a class of (nested) objects, and respective
relationships.

C2: Updated concept of a property. The traditional concept of a property can
be understood as a pair (name, value), where name is statically bound to
value (thus easily representable at the conceptual level). However, with
the advent of data models that allow data to be represented by a property
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of type map, the static binding is replaced by a dynamic one, i.e. name
becomes a part of the data. This trait, i.e., the dynamic naming of a
(nested) property, would also be useful to represent at the conceptual layer.

C3: Required explicit/implicit identifier. We believe that the motivation for the
introduction of a required and explicit identifier for classes of objects at the
conceptual level was, among other things, to enable the unambiguous con-
nection of different instances of classes, i.e., to realise relationships between
them, whereby a particular instance of a relationship is implicitly identified
just by the participants. Moreover, properties can be seen as trivial object
classes that contain only an identifier and thus explicitly identify them-
selves [20]. Hence, it is possible to identify all the elements of conceptual
model, which could allow a further level of unification.

C4: Ordering of properties. Currently, the conceptual level only allows to rep-
resent property names within a single class, but their relative order cannot
be captured.

C5: Structured property. Arguably, given the properties of the relational model,
a structured property, e.g., in ER, can only have trivial depth and allows
only trivial cardinality (i.e. one-to-one). However, in practice we also en-
counter unrestricted structured properties that have non-trivial depth and
where sub-properties are repeated. Traditionally, such a state can be rep-
resented by a combination of object classes and relations, but this goes
against the concept of conceptual modelling, as it is a structured property
and not a combination of classes and relationships.

C6: Multivalued identifier. Considering simple (single-property) identifiers, cur-
rently only properties with trivial cardinality (i.e., one-to-one) can be used
to identify an instance within an object class.

C7: Identifier of a weak class type. The identifier of the weak class type is
formed by the identifiers of all types involved in the relationship. In some
cases, it may be sufficient for the weak identifier to consist of only a subset
of the identifiers of the types participating in the relationship.

C8: Complex integrity constraints. Ideally, we need to capture integrity con-
straints (even complex ones) at the conceptual layer, as integrity constraints
are a natural and often overlooked part of the schema. In particular, ER
is limited to the representation of identifiers, whereas UML using OCL al-
lows the description of multiple types of integrity constraints including, e.g.,
business rules.

C9: Aliasing properties. Each element of the conceptual schema is assigned
only with a single name. However, in certain cases it is useful to introduce
synonyms, e.g., properties father and mother could be referred to as prop-
erty parent. Consequently, the special case of inheritance, though at the
property level, could, e.g., simplify (conceptual) querying.
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Logical Layer

Based on our findings, a fundamental construct of popular logical data models is
a property, i.e., the mapping p : N → V , where n ∈ N is the name and v ∈ V
is the value. Yet the models differ, e.g., in the way the properties are aggregated
into larger logical units (e.g., a flat table or a hierarchical tree structure), in
the enforcement of the order of properties (i.e., order-oriented/ignorant models),
the possibilities of identifying larger units, the support for references between
larger units, the way missing data is represented, or the attachment of structural
information to the data (i.e., structured, semi-structured, unstructured formats).
A common underlying construct (i.e., name-value pair) can be used to design a
unified (abstract, not necessarily logical) model. In designing such a model, the
following challenges L1 – L7 must be properly tackled:

L1: Unified logical model. A question is whether we need a unified layer of
multi-model data at the logical level in the sense of a single data model
(more or less painfully combining the properties of the models) or rather
an abstract model that merely overlays the existing logical models. In
the latter case, we could continue to take advantage of features of existing
approaches, e.g., representing data as a graph if we query primarily over
relationships, or aggregates if we repeatedly call queries aggregating data,
etc., while treating all models uniformly.

L2: Representation of model-specific constructs. The unifying layer should allow
for uniform capturing of semantically similar constructs across different
models (e.g., a nested JSON document as a map or a tuple as an array)
and also capture model-specific constructs (e.g., complex and overlapping
identifiers).

L3: Missing data. Logical models differ in the way they represent missing
data. For instance, the relational model represents missing data as a null
(meta)value, the graph model (e.g., property labelled graph implemented in
Neo4j) as non-existent properties, while the document model allows com-
bining both approaches. The question is whether it is possible to represent
missing data in a unified abstract way.

L4: Inter-model links and references. Logical models support various forms of
intra-model references (e.g., traditional references and embedding). How-
ever, references and embedding across different models are a natural feature
of multi-model data. For example, PostgreSQL allows embedding of XML
and JSON document data into a relational table by introducing a special
column type.25 Hence, we need an abstract model that considers both intra-
and inter-model references.

L5: Conceptual to logical layer mapping. Ideally, we need a unified algorithm
that allows mapping between conceptual and logical layers, regardless of
the specific properties of the logical layer.

25https://www.postgresql.org/docs/current/
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L6: Propagation of changes. The unified data model should be designed with
a perspective of a uniform way of propagating changes in different (under-
lying) logical models, but also across these models. The propagation of
schema and data changes should also be accompanied with the propagation
of query changes.

L7: Extensibility towards new data models that currently does not exists but
are based on similar idea, e.g., where the most general construct is a pair
(name, value).

0.3.4 Contribution: Framework MM-cat
So far, we have discussed existing approaches and challenges that need to be
addressed in order to appropriately represent multi-model data at the conceptual
and logical level. Now, we turn to a commentary of the actual solution and its
incremental extension to meet additional requirements, i.e., not just representing
multi-model data in a unified way, but enabling data migration, querying, and
evolution management. In this subsection, we mainly discuss data representation,
while migration and evolution management are addressed in separate Section 0.5
and querying forms our future work.

We have first analysed selected existing data representation solutions at the
conceptual level [31, 32, 18] and logical level [19, 20, 21, 27, 28, 29], as well as other
approaches [48, 62] describing, e.g., integrity constraints, and we have verified
their applicability to multi-model data [26], thereby also revealing drawbacks
and open questions. Being aware of the limitations of the solutions, we have
outlined the concept of a unified schema representation⋆ [63] and the vision of a
comprehensive framework built on top of solid formal foundations and allowing
the management of multi-model data in a unified yet natural way⋆ (see Paper I).

As mentioned above, the development of our approach has been gradual.
In the beginning, we mainly considered schema and data representation at the
conceptual level. The goal of developing an early concept was to test whether we
could apply category theory at all to the representation of multi-model data. In
the second stage, we added support for logical-level mappings and introduced the
notion of mapping between logical and conceptual levels. In addition, we used
this mapping in the design of algorithms implementing data migration. Finally,
we have extended the approach to naturally support complex schema and data
change operations, i.e., to enable evolution management.

Early / Original Concept

In the early stages of designing the unifying conceptual model, we tried to rep-
resent multi-model data as simply as possible, i.e., using only the elementary
constructs of category theory (e.g., categories, functors, and their composition).
The motivation for this decision was the desire to create a model that has the
potential for broad extension and application, and thus it is appropriate to avoid
complex constructs at this elementary level. Our inspiration came from the
works [18, 19, 20] modelling conceptual, object-relational, or relational schemas,
as well as vision [56], in which the authors outlined an extension of the [20]
approach towards supporting additional data models.
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Our approach ⋆(see Paper II) is based on definition of a schema category,
an instance category, and their mutual mapping. The schema category S =
(OS,MS, ◦S, 1) captures the data structure and describes the basic integrity con-
straints. Objects in OS represent the classes of real-world objects, relationships
between them, and properties of both object and relationships (challenge C1)
in a uniform way. Although the user may still distinguish between the three
object types (i.e., object, relationship, and property), this is not necessary from
the categorical point of view. Additionally, an object is internally represented
as a pair (superid, ids), with superid representing a concept of a superidentifier
and ids being a set of identifiers. Such representation allows us explicitly include
the identifier also for relationships and properties, if appropriate (challenge C3).
Morphisms inMS model the concept of object relations. Internally, a morphism
is represented as a pair (min, max), which allows us to model the traditional
concept of cardinalities, while at this stage we only consider trivial cardinalities
having min ∈ {0, 1}, max ∈ {1, ∗}, min ≤ max. The composition of morphisms
◦S also reflects the composition of cardinalities. For convenience, the user can
also still distinguish morphisms based on the type of linked objects into property,
relation, and ISA hierarchy morphisms, but from a categorical point of view this
is again not essential.

Instance category I = (OI,MI, ◦I, 1) represents data in a unified way. This
category structurally corresponds to the schema category, i.e., there is a functor
F : I → S that assigns a schema to the data (as inspired by the approach [19]).
Alternatively, we can represent the instance category as a category of sets and
functions, i.e., we can build it on top of category Set ⋆(this variant is described in
Paper II) or PartSet allowing to additionally represent missing data (as inspired
by the approach [20]). In contrast, if we were to represent schema and data
directly using graph theory or set theory instead of category theory, the choice
of instance representation would not be so straightforward.

Finally, we propose an algorithm to translate the ER schema into the corre-
sponding schema category. In other words, the expressive power of our approach
is at least comparable to the ER model. In fact, our approach even extends ER
as it represents properties of other logical models (i.e., not only relational, but
also array, graph, RDF, key/value, document, and column) at the conceptual
level (challenge C2, challenge C5).

Extension towards Data Migration

In the course of proposing the data migration algorithms, we decided to extend
the internal representation of objects and morphisms of the schema category
and added dual (not necessary inverse) morphisms to the so-called property mor-
phisms. The internal representation of schema category objects has been extended
to (key, label, superid, ids), where elements key and label have been added. The
former is represented as key ∈ N and allows unambiguous identification of the
object O ∈ OS. The latter allows the object to be assigned a name, which, unlike
the previous proposal, now need not be globally unique.

Morphisms are modelled internally as (signature, dom, cod, min, max). Com-
pared to the previous design, signature, dom and cod are added. The signature
assigns ϵ to identity morphisms, n ∈ N to base morphisms, and concatenation
of signatures of morphisms being composed separated by ‘.’ (dot) to compound
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morphisms. The pair dom, cod represents the domain and codomain of the mor-
phism. The new features allow morphism identification as follows: (1) an identity
morphism having signature := ϵ is determined by the pair dom, cod, since each
object can have just one identity morphism, and (2) a non-identity morphism is
identifiable only by signature, as this value is unique for non-identity morphisms.
Note that the ◦S is also modified to reflect the composition of signature, dom,
and cod.

The previous definition of the schema (and instance) category considered dual
morphisms only between pairs of objects O1, O2 ∈ OS corresponding to classes of
real-world objects and their relationships. The new definition of schema category
considers dual morphisms even when O1 or O2 correspond to a property object.
The reason for this change is to allow arbitrary (directed graph) traversal of
the schema category, which we exploit during data migration and it is also a
preparation for querying based on pattern matching.

In addition, we introduce a concept of mapping between logical and conceptual
layers, specified for each kind κ by Mκ := (D, nameκ, rootκ, morphκ, pkeyκ, refκ,
Pκ), where D denotes a particular database component, nameκ represents the
name of the kind κ, rootκ or morphκ refers to the root property of κ, pkeyκ

describes the structure of its identifier, refκ captures the references from κ to κ′

(challenge L4), and Pκ captures the hierarchical structure along with the model-
specific constructs of the logical representation of kind κ (challenge L2)⋆ (see Paper
III for more details). Hence, the mapping allows us to decompose the schema
category into logical units corresponding to each kind κ (challenge L5, challenge
L1). Note that by the addition of the mapping of the logical to the conceptual
layer, the approach is also ready to extend the support for additional data models
(challenge L7).

The mapping, together with the extended schema category, forms the foun-
dation of universal algorithms of data transformation from logical to categorical
representation and vice versa. Moreover, these algorithms allow data migration
from any input to any output combination of logical models, i.e. the multi-model
to multi-model migration. Finally, also a uniform approach to missing data,
even though they may be represented differently at the logical level, is supported
(challenge L3).

A complete solution is implemented as the open-source academic prototype
MM-cat⋆ [64]. This tool allows a multi-model schema to be represented by a
graph freely generating a schema category (see Definition 5). In addition, the
tool allows the schema to be automatically extracted from a conceptual model
(e.g., ER and UML). Naturally, the tool provides a unified approach to logical
models (including their specific properties) by mapping the logical model to a
schema category. Finally, MM-cat implements transformation algorithms imple-
menting data migration. For proof-of-concept purposes, the prototype supports
PostgreSQL (relational and document model, i.e., multi-model representative),
MongoDB (document model representative) and Neo4j (graph model represen-
tative). The specific properties of the database systems are implemented using
so-called wrappers⋆ (see Paper III for more details).
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0.4 Schema Inference
An attractive feature of a majority of NoSQL databases is the possibility of storing
data in kinds without a previously defined schema. From the user’s perspective,
this is a simple and flexible way of storing data. However, in various use cases
we still require the knowledge of an explicit schema, e.g., in the case of querying,
migration, and data evolution. In such cases, it is necessary to infer the non-
existing schema secondarily, from the already stored data.

Currently, there are a number of approaches for schema inference over a single
data model, mostly for aggregate-oriented database systems based on JSON and
XML document models. However, these approaches often suffer from various
drawbacks, e.g., the inferred entities contain too many (optional) properties (i.e.,
the schema is not very clear to users), the inferred schema does not respect the
order of the properties (e.g., approaches that infer the schema of JSON documents
rarely consider the order of the elements in a JSON array), or they infer integrity
constraints in a very limited way or not at all. Moreover, the inferred schemas
are often complicated also from the data modelling perspective. For example,
the UML [32] does not allow to model an inferred schema if it contains a union
type. Therefore, also new schema description formats have emerged, though often
non-standardised, tailored to a single particular system, or supported only by a
particular schema inference approach (e.g., Baazizi’s proprietary language [65]),
making it difficult to compare schemas inferred by different approaches or even
over different database systems. Hence, we aim to thoroughly analyse the problem
of schema inference over multi-model data and verify whether it is possible to
extend any of the existing approaches in order to infer a schema for multi-model
data, or if a completely new approach is necessary.

In this section, we first describe the state-of-the-art approaches to schema
inference over individual data models. We then elaborate on five recent JSON
schema inference approaches and compare them statically to answer the question
of whether any of the selected approaches can be used to infer a schema of multi-
model data. Based on the analysis of the selected schema inference approaches,
we discuss a set of open questions and issues in schema inference in the context
of multi-model data. Finally, we present our fully multi-model schema inference
approach.

0.4.1 State of the art
The research on inferring the implicit schema of data is not new. It includes
not only modern single-model NoSQL databases, but also older technologies such
as XML and RDF [66]. The principles of the different algorithms are similar,
differing only in the features supported by each format, e.g., capturing the order
of properties in case of XML. In addition, the approaches are often scalable and
support parallel processing of Big Data.

Graph and Linked Data Schema Inference There are several approaches
dealing with schema inference in the graph model and Linked Data. Lbath et
al. [67] focus on inferring simple and complex types in a property labelled graph,
including its hierarchy and cardinality of edges. Galinucci et al. [68] address

39



schema inference for RDF documents, where they identify aggregated hierarchies
and repeating patterns in Linked Open Data. Finally, Bouhamoun et al. [69]
tackle the horizontal scaling problem of processing large amounts of RDF data
and present a method based on pattern extraction in linked data.

Key/Value Schema Inference The problem of inferring schema in key/value
stores and then transforming the data into (flat) relational tables is studied by
DiScala and Abadi [70]. In this case, the authors work with systems that store
structured JSON documents in place of values, but treat them as black boxes at
the database system level.

XML Schema Inference There are several comprehensive papers dealing with
approaches to inferring schemas in XML documents [71]. A comparison of exist-
ing heuristically based approaches, including open problems, is provided in [72].
These are primarily older approaches, popular before the advent of a more popu-
lar format – JSON. A comparison of the grammar inferring approaches can then
be found in [73].

Heuristic approaches [74, 75, 76, 77, 78, 79] are based on generalising the
schemas of individual XML documents based on a set of predefined heuristic rules.
These methods can be further subdivided according to the chosen strategy: (1)
The approaches [75, 76, 78] gradually generalise the schema until they reach the
desired solution. (2) The approach [77] generates a large number of candidates
and selects the most suitable schema. (3) Algorithms called merging state [76, 78]
are based on searching a heuristically selected subspace of all possible schema
generalisations of a given XML document. They represent the schemas as states
of a prefix tree automaton and construct sub-optimal solutions by merging its
states.

Alternatively, there are methods based on grammar inference [80, 81, 82, 83,
84, 85, 86]. These methods consider an XML schema as a grammar and the XML
document corresponding to the schema is the word generated by the grammar.
Moreover, this problem can be reduced to the extraction of a set of regular ex-
pressions, where one regular expression describes one XML element. Moreover,
the approaches exploit additional information besides the XML documents, e.g.,
a predefined maximum number of nodes of the target automaton, since according
to Gold’s theorem [87], regular languages cannot be identified based on positive
examples alone.

The majority of the existing approaches represent the resulting schema using
the DTD language. Only the approaches [86, 78, 88] represent the schema using
the XML Schema language.

JSON Schema Inference Although the JSON and XML document formats
are very similar (i.e., both are semi-structured hierarchical data formats), schema
inference approaches for XML documents are often not applicable to large col-
lections of JSON documents⋆ [16], not only because of the differences between
these formats (e.g., XML is order-preserving and duplicate-allowing while JSON
is order-ignorant and duplicate-prohibiting), but also because the existing schema
inference approaches for XML documents do not assume large data collections
(i.e., Big Data) and their scalability and parallelisability are thus limited.

40



A comparison of the static properties of selected JSON schema inference ap-
proaches is addressed in works [89, 90]. At the same time, popular approaches
are also described in our work ⋆[16], where we additionally investigate the applica-
bility of selected approaches for schema inference over multi-model data. Finally,
the comparison of dynamic properties is addressed in our paper ⋆[91].

Sevilla Ruiz et al. [92] propose an approach of inferring versioned schemas
from document-based NoSQL databases. The foundation of the approach is
an abstract model based on the Model-Driven Engineering (MDE). This work
is followed up by Chillon et al. [93], who address the visualisation of NoSQL
database schemas and propose extensions needed to visualise aggregate-oriented
data. Most recently, Fernandez et al. extend the abstract model by adding the
support for relational and graph data [30].

Klettke et al. present a complex solution for managing NoSQL schemas [94],
including an approach for reconstructing schema evolution history in so-called
data lakes [95]. This research is followed by a tool jHound [96] that enables
profiling of JSON data, e.g., searching for structural outliers. Finally, the tool
Josch [97] allows schema extraction from JSON data, schema refactoring, and
subsequent validation against the original dataset.

Baazizi et al. [65] propose a horizontally scalable approach for parameterised
schema inference from large collections of JSON documents. They also introduce
a custom and compact language for describing the resulting JSON schema.

Izquierdo and Cabot [98] proposes an approach to infer schemas for web ser-
vices based on JSON documents. The authors also provide a web application
along with a visualisation tool [99].

An approach of inference of schema over collections of JSON documents is also
presented by Frozza et al. [89]. In contrast to previous works, the authors consider
inference of data types specified by the BSON standard.26 Unfortunately, their
approach has limited parallelisability.

Last but not least, Wang et al. [100] propose a schema inference method
over document repositories based on finding equivalent subtrees (i.e., frequently
repeated hierarchical structures).

The JSON Schema language is primarily used to describe the inferred schema
of JSON documents. The formal model of this language is discussed by Pezoa et
al. [101], while the general description of the JSON type system is discussed by
Baazizi et al. [102].

Columnar Schema Inference Frozza et al. have also proposed an approach
for schema inference over columnar NoSQL databases [103], specifically support-
ing the inference of implicit schema from the HBase.27

Summary There is a number of approaches aimed at inferring a schema over
a particular data model. Unfortunately, to the best of our knowledge, there is
currently no approach applicable to infer a schema over a combination of data
models, i.e., multi-model data. At first sight, it may seem that existing single-
model approaches can be also applied to infer a multi-model schema, but as we will
show in the next subsection, this idea is not feasible in practice, as the individual

26https://bsonspec.org
27http://hbase.apache.org
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data models often have contradictory features. Moreover, the combination of
models itself is a complication, as we must additionally consider references and
redundancy across models, not just within a single data model.

0.4.2 Closely Related Single-Model Approaches

The utilisation and extension of verified single-model approaches seems promising
for the inference of a multi-model schema. To validate this idea, we chose infer-
ence approaches over JSON documents because the JSON format is sufficiently
complex to cover a variety of data constructs, at least at first sight. Moreover,
these approaches are often horizontally scalable and thus covering also high vol-
umes of data.

In particular, we focus on five selected schema inference approaches, namely:

1. The approach proposed by Sevilla Ruiz et al. [92] working with the concept
of distinct versions of entities.

2. The approach of Klettke et al. [94] using a graph structure to represent a
schema and able to detect outliers.

3. The approach of Baazizi et al. [65] which introduces a comprehensive and
massively parallelisable method for inferring of schemas.

4. Izquierdo and Cabot [98] approach which can infer a schema from multiple
document collections.

5. The approach of Frozza et al. [89] which is able to infer schemas including
data types as introduced in BSON.

We compare the approaches statically, i.e., we focus mainly on their basic
principles and algorithm scalability, input and output parameters, possible sup-
port for structural components beyond the JSON format, distinguishing between
optional and required properties, support for inference of integrity constraints,
and detection of redundancy in the data. We also verify whether the selected
approaches are applicable to infer a multi-model schema. Table 0.4 summarises
the comparison of key characteristics of the selected approaches. (A comparison
with our approach is also included; however, our approach is not discussed in the
following paragraphs. It is introduced in⋆ Paper IV.)

Inference Process The majority of approaches generate a schema based on all
documents in the input collection. An exception is the approach of Izquierdo and
Cabot which retrieves documents from web services. Moreover, the approaches
of Sevilla Ruiz et al. and Frozza et al. minimise the input document collection
into a collection that contains only structurally distinct documents. A common
feature of all approaches is the replacement of property values by the names of
the supported primitive data types they encounter.
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Scalability Design Based on the theoretical design, most approaches are hor-
izontally scalable. Unfortunately, their implementations are usually not paral-
lelised. Sevilla Ruiz et al. use MapReduce in order to select structurally distinct
documents from the input collection. Unfortunately, in the worst case, where
all documents are structurally distinct, the scalability of this approach is limited
since the subsequent processing of the minimal collection of structurally distinct
documents (i.e., in this particular worst case, the entire input document collec-
tion) is not parallelised. In contrast, the approach of Baazizi et al. is fully hori-
zontally scalable because Apache Spark is used throughout the schema inference
process.

Implementation The approaches of Sevilla Ruiz et al. and Izquierdo and
Cabot are Java applications running in the platform-independent Eclipse envi-
ronment. Klettke et al. implement their approach as a Spring Boot application
(i.e., as a platform-independent application built in Java) and additionally allow
the approach to be deployed as a Docker container. Baazizi et al. implement the
approach using Scala as an Apache Spark job. Finally, Frozza et al. approach is
implemented as a javascript web application.

Input All approaches support schema inference from a collection of JSON doc-
uments. Frozza et al. approach also supports BSON data. In addition, the
approaches of Sevilla Ruiz et al. and Klettke et al. allow arbitrary aggregate-
oriented data to be converted to JSON data, and thus apply their approach for
schema inference over these models as well. However, by converting data from
other models to JSON documents, we may lose structural information, e.g., be-
cause JSON does not preserve the order of features and does not allow explicit
representation of complex data structures such as maps, sets, and tuples. Hence,
a schema inferred this way may not be accurate.

Moreover, only the approaches of Sevilla Ruiz et al. and Izquierdo and Cabot
allow the inference of a schema from the entire input database, i.e., from a set of
collections. The remaining algorithms infer schemas only over individual collec-
tions.

Output The approaches represent the inferred schema by means of textual or
graphical languages. Klettke et al. and Frozza et al. approaches use the JSON
Schema language to describe the schema, although they differ in the details of
use. Baazizi et al. represent the schema with their own compact but complex pro-
prietary language. Finally, Sevilla Ruiz et al. and Izquierdo and Cabot represent
the inferred schema as a UML class diagram.

Structural Components The selected approaches differ in the extent to which
they support the inference of different structural components of JSON documents.
Most approaches are only able to infer a basic set of primitive types (i.e., String,
Number, and Boolean) and some complex types (i.e., nested objects and arrays).
Whereas, of the approaches we observed, only Frozza et al. allows the inference of
the extended data types introduced in BSON. Unfortunately, the approaches do
not allow distinguishing other complex data structures, namely maps, sets, and
tuples, as even the JSON format does not distinguish these structures from nested
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structured objects (also representing, e.g., maps) and arrays (also representing,
e.g., sets and tuples).

Optional Properties The majority of approaches distinguish between required
and optional properties, differing only in the way they are detected. The ap-
proaches of Klettke et al. and Frozza et al. compute differences in the occurrence
of individual properties compared to the occurrence of parent properties. If the
parent property occurs more frequently, the child is marked as optional. Sevilla
Ruiz et al. are able to detect optional properties using set operations over entity
versions (intersection of properties of two or more entity versions returns required
properties, while union of entity versions minus their intersection returns a list of
optional properties). Baazizi et al. detect optional properties during the merging
of two document schemas. Finally, Izquierdo and Cabot is the only approach
unable to distinguish between optional and required properties. In this case, we
consider all properties as required.

Union Type The majority of the compared approaches work with the concept
of union type. The approaches of Klettke et al. and Frozza et al. use the
JSON schema keyword oneOf, while Baazizi et al. represent a union type as a
concatenation of types with the “+” character. Only the approaches of Sevilla
Ruiz et al. and Izquierdo and Cabot do not consider the concept of union types.
The former consider versions of entities where union types cannot naturally occur.
As for the latter, the type of a property is expressed only by the most general of
the identified types, e.g. as String.

Order Preserving All approaches treat JSON documents as a set of unordered
properties and therefore do not consider order detection. Unfortunately, the order
is not even considered in the case of array elements, where the order matters.

Integrity Constraints Integrity constraints are detected only to a limited ex-
tent or not at all. Identifiers (whether simple or complex) are not detected by
any of the approaches. References are only partially detected in Sevilla Ruiz et
al. approach, based on a naming convention. The inference of other (complex)
integrity constraints is not considered at all, e.g., ranges of values of individual
properties or mutual dependency between values of different properties.

Data Redundancy Although redundancy in data is a common feature of
NoSQL document stores, most of these approaches do not detect this feature.
Only the approach of Izquierdo and Cabot allows merging the schema of two
collections (i.e., considering them as redundant) if they have identically named
properties, but does not verify this fact at the data level.

Additional Features To conclude the comparison, let us also focus on a cou-
ple of specific features supported by just some of the covered approaches. In
particular, the approach by Sevilla Ruiz et al. allows for the visualisation of the
inferred schema [93], including the visualisation of entities and relationships using
UML. The approach by Klettke et al. allows us to analyse documents using a
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proprietary profiling tool jHound [96]. The approach also detects errors and out-
liers, i.e., additional or missing properties. To continue, the approach by Baazizi
et al. is suitable for inferring schemas over large JSON document collections due
to the massive parallelisation applied. Fusion properties, i.e., associativity and
commutativity, enable the evolution of an already inferred schema, making this
approach suitable for collections of documents that are rapidly evolving. The
approach by Izquierdo and Cabot is designed to generate schemas for sets of web
services producing JSON documents with similar features. With a global schema,
the user then gets an idea of which specific services to call to get the requested
information. A part of this approach is also a schema visualisation tool [99],
which produces a schema compliant to JSON Schema. Finally, the approach by
Frozza et al. is designed to work over the MongoDB database and supports the
extended BSON format.

As illustrated in Table 0.4, the approaches do not consider natural features of
multi-model data, e.g., variety of data types, complex structures, ordering of
properties and theirs duplicities, identifiers, inter- and intra- model references
and redundancy, and complex integrity constraints in general. Thus, despite
the complexity of JSON model, the strategy of converting multi-model data into
JSON data and inferring its schema is not sufficient as we lose critical schema
information.

0.4.3 Open Questions and Challenges in Schema Inference
We believe that in order to be able to infer schema even for multi-model data,
we need to address the limitations of existing approaches and extend them ap-
propriately. Therefore, we provide the following list of challenges I1 – I10 in
the area of schema inference for multi-model data.

I1: Integrity constraints. Generally, the schema not only describes the struc-
ture of the data, but it may include a list of integrity constraints, e.g.,
identifiers, references, ranges of property values, and rules describing com-
plex dependencies between properties. At first sight, this challenge goes
beyond the bounds of some data models and the languages describing their
schema. For instance, JSON and JSON Schema do not allow modelling
complex integrity constraints. However, this does not mean that we do not
have implicit integrity constraints in JSON data. In the case of multi-model
data, we could use, e.g., OCL [48] to describe integrity constraints if the
underlying data model does not explicitly support them.

I2: Values of properties. Most of the observed approaches infer the schema only
from the structure of the data, i.e., the names of the features and mutual
hierarchy. The values are only converted to their data types and further
processing of the values themselves is omitted. We believe that, e.g., a
statistical analysis of property values can refine the inferred schema, e.g.,
allowing the inference of identifiers, references, and some other integrity
constraints.

I3: Multiple data models. A multi-model schema is a union of schemas from
data represented by various logical models. Underlying data models may
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Table 0.4: Comparison of the selected schema inference approaches

Sevilla Ruiz et
al. [92]

Klettke et al. [94] Baazizi et al. [65] Izquierdo and
Cabot [98]

Frozza et al. [89] MM-infer [4]

Inference Process MapReduce + MDE Fold into graph Reduction in Apache
Spark

MDE Aggregation + fold
into graph

Aggregation in Apache
Spark

Scalable design Yes Yes Yes Yes No Yes

Scalable
implementation

Yes No Yes No No Yes

Implementation Eclipse bundle Spring Boot
application

Apache Spark
application in Scala

Eclipse bundle Node.js web
application

Apache Spark
application in Java

Input format Aggregate-oriented
NoSQL data

JSON JSON JSON web service
responses

Extended JSON Multi-model data

Input type Multiple kinds Single kind Single kind Multiple kinds Single kind Multiple databases

Output format NoSQL Schema model JSON Schema Custom textual type
language

Ecore model JSON Schema ER, UML, JSON
Schema, XML
Schema, Categorical
schema

Schema root Entity Record Record Entity Record Property

Extended JSON No No No No Yes Yes

Tuple No No No No No Yes

Set No No No No No Yes

Map No No No No No Yes

Optional Yes Yes Yes No Yes Yes

Union type No Yes Yes No Yes Yes

Order preserving No No No No No Yes

Identifiers No No No No No Yes

References Partial No No No No Yes

Complex IC No No No No No Partial

Data redundancy No No No No Partial Yes
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also arbitrarily overlap (intersect), i.e., some data are partially or com-
pletely redundant. Moreover, we combine models that often have con-
tradictory features and are based on different principles, e.g., aggregate-
ignorant/oriented, order-ignorant/preserving, or allow different types of
identifiers and references. Finally, we have to consider not only the features
of the particular models, but other features resulting from their combina-
tion, e.g., cross-model references and cross-model data redundancy. All this
brings a new dimension of complexity to the problem.

I4: Unification and abstraction of complex data types. At first sight, popular
data models seem to approach common data structures (i.e., tuple, list, set,
and map) in a uniform way. A closer look shows that this is not the case.
For example, the column model explicitly distinguishes between all these
structures, whereas the JSON document model explicitly considers only a
list and a nested object. The tuple and set are implicitly represented by
a list and the map as a nested object naturally containing mainly optional
properties. In order to be able to infer a multi-model schema, we need not
only the unification of the corresponding constructs across data models, but
also their appropriate and not too general abstraction.

I5: Scalability. The proposed approach should be able to handle large volumes
of multi-model data, but the inability to scale horizontally is a limitation
of many observed approaches. Moreover, the approaches work with a large
logical unit of data at a time. In particular, in one step the algorithms merge
two records. If the data contains a large number of optional properties,
the merged record is always more complex and an increasingly complex
schema is continuously propagated to the next stages. Conversely, if we
are working with a suitably small logical unit, e.g., merging schemas at the
level of individual properties, then the large number of optional properties
in the data has no effect on the structure of the merged single-property
schema. Hence, algorithms working with a smaller logical unit of data can
be significantly more efficient and scalable.

I6: Ordering of properties. The order of properties is a natural feature of several
popular data models. For example, we can consider the order of elements
in an XML document or the order of elements within a JSON array. Since
multi-model data combines the features of each data model, the schema in-
ference algorithm should be able to infer the order of features and elements.

I7: Data redundancy, i.e., the ability to represent the same data by various
logical models, is another feature typical for multi-model data. A poten-
tial redundancy inference could improve query performance, e.g., to enable
alternative query evaluation strategies.

From a more general point of view, the problem of inference of a multi-model
scheme also involves the following open questions:

I8: Fetching data. Currently, schema inference approaches are tightly bound
to a particular database system that implements a particular variant of the
data model. As a result, the approaches may not be directly applicable
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for schema inference in another system that supports the same data model.
In addition, existing approaches often access data in a specific way. An
optimal algorithm should be independent of the chosen database system
and should also allow for different ways of retrieving data.

I9: Universal processing. The foundation of an ideal algorithm should be
system-independent, e.g., exploiting unification of data model constructs.
However, this universal algorithm can be based on so-called wrappers that
implement the features of individual database systems and convert the in-
put of the algorithm, e.g., structural information of data, into a unified
form.

I10: Schema representation. Various graphical or textual languages are used to
represent the (inferred) schema – for example ER [31], UML [32], DTD [71],
XML Schema [104, 105], JSON Schema [106] and others. However, these
formats are insufficient for representing the schema of multi-model data
because they do not reflect all of its structural features.

0.4.4 Contribution: Framework MM-infer
So far, we have discussed the related work, the applicability of verified schema
inference approaches to multi-model data, and the resulting open questions. We
now turn to a commentary on our approach and explain the connection to the
rest of the project.

At first sight, the JSON format appeared to be comprehensive enough to cover
the structural features of multi-model data. At the same time, schema inference
approaches over the collections of JSON documents scale very well and are capable
of handling Big Data, and therefore seem like good candidates for extensions
towards multi-model schema inference. However, during our research of existing
approaches⋆ [16], we found out that a selected single-model approach will not only
need to be extended but also combined with features of other approaches.

In the thesis of Ivan Veinhardt Latták [107] (supervised by Pavel Koupil), we
tried to extend a chosen approach to support multi-model data. In particular, the
work resulted in the design of an algorithm based on the approaches of Baazizi et
al. [65] and Sevilla Ruiz et al. [92]. However, not even this algorithm is sufficient
for schema inference for multi-model data. Hence, based on the identification of
the drawbacks of the proposed approach, an extended list of requirements that an
optimal schema inference algorithm should satisfy was created⋆ [91]. In addition,
the paper also experimentally compares the dynamic features of the approaches
from Table 0.4.

The core drawback of the proposed algorithms is the lack of coverage of all
structural features of different popular data models. Therefore, we performed a
thorough analysis of selected popular data models and introduced a unification
of semantically similar features (challenge I4). We found out that the basis of the
unified model is the name/value pair. We refer to this pair as a property. Based
on the type of the value part, we divide properties into simple and complex. A
simple property has a scalar value, while the value of a complex property can be
a (homogeneous or heterogeneous) array, a set, or a map. Note that we only need
to consider these three examples if we consider tuples as a special case of arrays
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and nested structures as a special case of maps ⋆(see Paper IV). The unification of
the constructs allows us to better grasp the general features of multi-model data,
and we are able to introduce universal data structures to describe the schema and
data, as well as a general horizontally scalable algorithm that considers the varied
features of data models from the very beginning and infer the true multi-model
schema (challenge I3).

The foundation of our approach consists of two data structures – the Record
Schema Description (RSD) and the Property Domain Footprint (PDF) ⋆(see Paper
IV). The RSD describes the structure of a single property (or a record as a special
case of a root property) including the name of the property, the frequency of
occurrence, the relationship to other properties within the same record (i.e., the
parent/child hierarchy), the order of the children properties (challenge I6), and
other features. The second data structure, PDF, allows us to describe all values
of a given property in a compact way, including, e.g., uniqueness, multiplicity,
occurrence of a particular value etc. This allows us to efficiently compare the
active domains of two properties (challenge I2).

Altogether, we proposed three universal algorithms for inferring a structure
or integrity constraints in multi-model data (challenge I9):

• The Record-Based Algorithm (RBA) infers a schema by gradually merging
RSDs that describe the schema of a record.

• The Property-Based Algorithm (PBA) was designed to test the hypothesis
that processing smaller logical units of data allows for a more scalable ap-
proach. We validated our hypothesis using experiments ⋆(see Paper IV) and
we confirmed that PBA is much more suitable for dealing with larger vol-
umes of highly structured data (challenge I5), while RBA is more suitable
for small volumes of flat data (i.e., aggregate-ignorant systems).

• The Candidate Miner extracts candidates for basic integrity constraints,
e.g., identifiers, references, ranges of values (challenge I1), and in addition
allows us to detect redundancy in the data (challenge I7). Note that we only
retrieve candidates, because we describe the active domain using, among
other things, Bloom filters, which with certain probability return a false
positive result [108]. The user can then validate the selected candidates or
the candidates are verified by an algorithm.

All listed algorithms are implemented using the Apache Spark framework and are
therefore horizontally scalable.

Finally, the algorithms were verified using the prototype implementation MM-
infer [109],28 which currently supports schema inference for data stored in Post-
greSQL (a representative of a multi-model schema-mixed database), MongoDB (a
representative of a document schema-free database), and Neo4j (a representative
of a graph schema-free database). Access to each database and retrieval of the
data from which the schema is subsequently inferred is done via system-specific
wrappers (challenge I8). And the tool also allows the selection of the format for
representing the resulting inferred schema (challenge I10).

28https://www.ksi.mff.cuni.cz/˜koupil/mm-infer/index.html
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0.5 Evolution Management
Despite the correctness of the database schema design, sooner or later user re-
quirements may change. A process that reflects the change of user requirements
into the schema, data and related queries, integrity constraints, and data stor-
age strategy while maintaining the integrity of the overall system is referred to
as evolution management. Currently, this represents one of the most complex
challenges [110].

Evolution management involves three main tasks: (1) managing structural
changes of data, either explicitly applying schema modification operations (SMOs)
or implicitly by reverse engineering, (2) propagating structural changes to data,
i.e., data migration strategies, and (3) propagating such changes to queries. More-
over, there are, e.g., benchmarks that evaluate the effectiveness of data migra-
tion [111] and querying operations [112, 113].

Currently, there is a number of evolution management approaches for rela-
tional DBMS [20, 114, 115] or NoSQL systems [110, 116, 117, 118, 119] and the
first approaches proposed for multi-model DBMS [120, 121] are emerging. How-
ever, the existing solutions have various limitations, targeting only a small fraction
of data models [122], and partially or completely ignoring integrity constraints
and features arising from the combination of multiple data models [117].

In this section, we elaborate on five selected promising approaches to evolution
management. Based on the analysis of the selected approaches, we discuss a set
of open questions and challenges in evolution management of multi-model data.
Finally, we present our evolution management approach.

0.5.1 Closely Related Approaches
We first review two approaches [19, 20] that build an evolution management ap-
proach on an abstract data model. Next, we discuss approaches applicable to
NoSQL database systems [110, 120, 116] that, in addition to schema changes and
their propagation to the data, also consider other aspects of evolution manage-
ment. Finally, we mutually compare the selected approaches.

Evolution Management in CGODD

The idea of utilising category theory in evolution management is not new. The be-
ginnings can be found, e.g., in the academic approach [19] (see Subsection 0.3.2).
Let us recall that (1) the approach is based on the notion of a typegraph, repre-
senting a schema and corresponding to an object T of a functor category G (see
Lemma 1), (2) the data is represented by a graph corresponding to an object G
of a functor category G, and (3) a data instance is a morphism Inst : G → T
associating data with the schema.

In this approach, schema changes are implemented using a basic set of (SMOs)
based on graph pattern matching as follows:

• The single addition operation, denoted ADD S, retrieves a single part of the
data G corresponding to the pattern PT and extends it according to the
pattern QT . Categorically speaking, this corresponds to a pushout (see
Definition 17) from QT

f←− PT
m−→ G, where m : PT → G is a graph pattern
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matching and morphism f : PT → QT represents the intended modification.
Note that the pattern QT may describe a more complex extension, not just
an addition of a single property.

• The full addition operation, denoted ADD F, finds all occurrences of the
pattern PT in the data G and extends them according to the pattern QT .
Categorically speaking, this is the construction of a limit [19, 123].

• The single deletion operation, denoted DEL S, finds a single part of the
data G corresponding to the pattern QT and preserves only the subpart
corresponding to the pattern PT .

• The full deletion operation, denoted DEL F, finds all occurrences of the
pattern QT in the data G, and preserves only the data corresponding to the
pattern PT . Categorically speaking, this is again a construction of a limit.

Example 0.14. Figure 0.12 illustrates an example of an extension of a particular
address in data G by the vertex named “Czechia”, i.e., a single addition operation.
The intended modification of the data is represented by the morphism f : PT →
QT , i.e., we join edgewise the vertex named “Czechia” to the pattern PT (indicated
in green). Graph pattern matching is represented by the morphism m : PT → G
(indicated in blue). Note that in this particular case there are two morphisms
m, m′ : PT → G, each mapping the graph pattern PT to a different part of the data
G (note that only the morphism m is illustrated). Finally, the data extension is
categorically implemented as a pushout from QT

f←− PT
m−→ G (indicated in red),

i.e., we extend the data from G corresponding to the pattern PT by QT , thus
obtaining the modified data G′.
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Ke Karlovu
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Figure 0.12: An example of a single addition (i.e., a pushout)

The schema changes are immediately propagated to the data (i.e., a strategy
commonly known as an eager data migration). Note that the SMOs can be com-
bined and concatenated, resulting in complex operations expressing, e.g., union
and intersection. Finally, the concatenation of operations can also represent pro-
jection, join, and difference, hence the same idea is also applicable to querying
based on graph pattern matching.
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Evolution Management of Relational Data (Spivak et al.)

Yet another academic approach [20], this time relying on the logical model intro-
duced in Subsection 0.3.2, allows relational data migration according to schema
changes. Moreover, the approach enables a change of data representation at the
logical layer.

Let us recall that the schema is represented as a free category C (see Defi-
nition 5) and the corresponding data instance is given by the set-valued functor
InstC : C→ Set. In addition, there is a category of all instances corresponding
to the schema C, i.e., the functor category SetC (see Lemma 1 and Example A.8).

In this approach, an SMO translating the schema C into D categorically
corresponds to the functor F : C→ D. These functors can be used to represent
operations, e.g., rename, delete, copy, intersection, and union for both kinds and
properties. Note that the approach does not implement the operation addition,
but it only introduces SMOs over existing data.

The schema changes, represented by the functor F : C→ D, are then propa-
gated to the data utilising the so-called data migration functors:

• The functor ∆F : SetD → SetC propagates operations rename, delete, and
copy to the data at the level of a kind or a property. Note that although
the functor F : C → D transforms C into D, the functor ∆F propagates
changes in the opposite direction (i.e., pointing “backwards”). Categori-
cally, this is the principle described as “pulling back along functor F” and
functor ∆F is referred to as a pullback [20].29

• The functor ΠF : SetC → SetD propagates operations of intersection and
(again) renaming of both a kind or a property. Categorically speaking, the
functor ΠF corresponds to the right adjunct [20, 123] of the pullback functor
∆F and is referred to as the right pushforward.

• The functor ΣF : SetC → SetD propagates operations of union and (once
again) renaming of both a kind or a property. Categorically, the functor
ΣF corresponds to the left adjunct [123] of the pullback functor ∆F and is
referred to as the left pushforward.

Example 0.15. Figure 0.13 illustrates an example of a schema change represented
by the functor F : C → D (see Figure 0.13 (a)), i.e. merging kinds Audiobook
and Book into a single kind Product.

Pullback functor ∆F (see Figure 0.13 (b)) performs copy, delete and rename
operations, i.e., the data from kind Product is first copied into two new kinds,
the kinds are renamed to Audiobook and Book, and finally a property Pages is
removed from Audiobook and a property Length is removed from Book.

Right pushforward ΠF (see Figure 0.13 (c)) implements the intersection and
rename operations. First, a new kind is created by the intersection of Audiobook
and Book,30 and subsequently the newly created kind is renamed to Product.

The left pushforward ΣF (see Figure 0.13 (d)) implements the union and
rename operations. First, a new kind is created by merging Audiobook and

29Note that the pullback is an overloaded notion in category theory. It denotes not only the
pullback introduced in the Definition 16, but also other constructs [123].

30Note that the identifiers of the corresponding records are merged.
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Book, and then the new kind is renamed to Product. Note that left pushforward
performs a so-called skolemization [124], which can be roughly understood as
utilisation of null meta-values.
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Figure 0.13: An example of schema mapping functor (a) inducing pullback (b),
right pushforward (c) and left pushforward (d), i.e., data migration functors

The approach also allows to change the logical representation of data, in
particular from relational model to RDF data and vice versa. Categorically, the
data transformation is based on the application of the category of elements (also
known as Grothendieck construction) [20, 123].

Recently, the authors of the paper [57] proposed an extension of the ap-
proach [20] to support multi-model data. In particular, the extension allows the
representation and migration of data logically represented as JSON documents
or graphs. However, as far as we know, this is only a theoretical extension and it
is not implemented in CQL.
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Darwin

Among the many academic prototypes, Darwin [110, 125] represents a family
of approaches targeting schema management and data migrations. Basic fea-
tures include semi-automatic declaration of schema changes [126], propagation
of changes to data [127], inference of versioned schema including the historical
sequence of versions [95], and various optimisation proposals [122, 128, 129, 111].

The authors propose a general programming language, the Schema Evolu-
tion Language (SEL), which allows declaring the following platform-independent
SMOs:

• The add operation appends a property to every (selected) record of the
particular kind or adds a new kind.

• The delete operation removes the property from each (selected) record of
the particular kind or performs the removal of the kind.

• The rename operation changes the name of the property in all (selected)
records of the particular kind or renames the kind.

• The move operation moves the property from each (selected) record of the
input kind to the particular records of the destination kind.

• Similarly, the copy operation makes a copy of each (selected) record in
a particular kind and inserts the copy into the particular record of the
destination kind.

In addition, the operations can be assigned specific values (e.g., an added value
in the case of the operation add) or filtering conditions specifying the selection
of a subset of records of a particular kind. Also note that SEL expressions are
subsequently translated into a domain specific language.

As for the propagation of SMOs to the data, the approach allows for multiple
data migration strategies:

• Eager strategy: The changes are propagated immediately after the SMO is
executed.

• Lazy strategy: The migration to a new version is delayed until a new version
is required to perform a data management task.

• Incremental strategy: A hybrid strategy that completely migrates data, e.g.,
after a predetermined number of SMOs have been performed. Otherwise,
the data is migrated lazily.

• Predictive strategy: A hybrid strategy that tracks the number of accesses
to data. Frequently accessed data is migrated immediately after SMO exe-
cution, while the remaining data is migrated lazily.

The complete solution also includes a set of so-called composition rules [130],
which allow to compose SMOs. Since typically composed SMOs are executed
repeatedly, caching is utilised, which significantly improves the performance of
data migration of different versions [131]. In addition, the authors propose a
utilisation of composition rules for query rewriting [132].
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Finally, the family of approaches includes MigCast [122] and EvoBench [111].
The former tool allows comparing different data migration strategies, e.g. in terms
of operational costs, and the latter is a benchmark for schema evolution. The
complete set of tools is then available as a docker container,31 currently support-
ing a number of NoSQL database systems such as, e.g., MongoDB, Couchbase,
Cassandra and ArangoDB.

MM-evolver

The first approach targeting evolution management of multi-model data is the
academic prototype MM-evolver [120]. This tool allows propagating of SMOs to
data represented by different and interconnected models and additionally consid-
ers (in a limited way) cross-model references and redundancy.

The approach implements the set of platform-independent SMOs supported by
Darwin, and in addition introduces a special operation to add/delete a reference.
Note that internally, the operation differs from the Darwin system in propagation
to multiple data models as well as propagation to references. For example, if a
property is removed, all references (including intra- and inter-model) are removed
as well.

Similar to the Darwin approach, the authors propose a general programming
language for declaring platform-independent SMOs, the Multi-Model Schema
Evolution Language (MMSEL). As in the previous case, MMSEL expressions
are subsequently translated into a domain specific languages.

Finally, schema changes are immediately propagated to the data, i.e., only
the eager strategy is applied.

Orion

Recently, the family of academic approaches for representation [30] and manage-
ment [92, 93] of data in NoSQL systems has been extended with the language
Orion [116], which allows declaring SMOs over the U-Schema logical model (see
also Subsection 0.3.2).

From a logical unit perspective, schema modification operations (SMOs) de-
clared by Orion can be classified as kind-level, version-level, and property-level.
Kind-level operations include common operations such as add, delete, rename,
extract (i.e., copy), and in addition:

• The split operation splits the set of properties of one kind to create two
new kinds, the original kind being removed.

• The merge operation merges the properties of two kinds to create a new
kind, replacing the original kinds.

Version-level operations, performed at the level of record version, include:

• The delvar operation removes a specific record version from the schema, and
the change is propagated to the data by deleting all records corresponding
to the deleted version.

31https://sites.google.com/view/evolving-nosql/tools/darwin
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• The adapt operation also removes the record version from the schema,
but the corresponding records are converted (adapted) to another, selected
record version.

• The union operation merges two versions of the records into one of them.

Finally, property-level operations are implemented over simple and complex
properties (including references as a special kind of a property), and allow for the
common operations such as add, delete, rename, extract, and move. They also
include:

• The nest operation allows nesting properties, i.e., moving the selected prop-
erty to the nested complex property.

• The unnest operation, which is inverse to nest.

• The cast operation allowing to change the data type of a simple property
or a reference.

• The promote operation implementing the addition of an attribute to the
key.

• The demote operation, on the other hand, allows the attribute to be re-
moved from the key.

• The mult operation implementing a cardinality change on a reference or a
complex property (e.g., an array).

• The morph operation allows to replace a reference with a nested complex
property (aggregate) and vice versa.

As in the previous cases, the Orion language allows the usage of filter condi-
tions to specify the subset of records over which the SMO is performed. Once
again, SMOs are platform-independent and translated into domain-specific lan-
guages, and the schema changes are propagated eagerly.

Currently, the supported systems include MongoDB, Cassandra, and Neo4j,
i.e., representatives of document, column, and graph databases. However, the
the U-Schema model allows the extension towards the support of key/value and
(a partial support of) relational DBMSs.

Although the authors attempt to create a database-independent language for
describing schema changes, the language is burdened by the integration, (but) not
the unification of data models in U-Schema. As a consequence, the language is
complex as it has to take into account all model-specific constructs and properties
of underlying data models. Hence, the extensibility of the approach is limited.

Comparative Summary

Table 0.5 illustrates a comparison of the described evolution management ap-
proaches. It also includes a comparison with our proposed approach (MM-
evocat), but it is addressed in a separate chapter (see Subsection 0.5.3 and⋆ Paper
V). All the compared approaches implement a set of SMOs, yet they differ in the
choice of the particular supported operations (see Table 0.6).
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Table 0.5: A comparison of features in the selected evolution management approaches

CGOOD [19] Spivak et al. [20] Darwin [110] MM-evolver [120] Orion [116] MM-evocat [5]

Schema modification Yes Yes Yes Yes Yes Yes

Data migration Eager Eager Eager, lazy, hybrid Eager Eager Eager

Version jumps No No Yes No No No

Propagation to IC No No No Partial Partial Yes

Schema inference No No Tracked, untracked No Untracked No

Query rewriting No No Yes No No No

Benchmarking No No Yes No No No

Self-adaptation No No No No No No

Data models Relational, object,
object-relational

Relational, RDF Graph, key/value,
document, columnar

Relational, graph,
key/value, document,
columnar

Relational, graph,
key/value, document,
columnar

Relational, array,
graph, RDF, key/value,
document, columnar

Multi-model No No No Yes No Yes

Table 0.6: A comparison and classification of supported SMOs in the selected evolution management approaches

CGOOD [19] Spivak et al. [20] Darwin [110] MM-evolver [120] Orion [116] MM-evocat [5]

Model-level - - - - - add, delete, move, copy

Kind-level add, delete delete, rename, copy,
intersection, union

add, delete, rename add, delete, rename add, delete, extract
(copy), rename, split,
merge

add, delete, rename,
copy, move, group,
ungroup

Property-level add, delete delete, rename, copy,
intersection, union

add, delete, move, copy,
rename

add, delete, move, copy,
rename

add, delete, move,
extract, rename, cast,
nest, unnest

add, delete, rename,
copy, move, group,
ungroup, union, split

Identifier-level - - - - promote, demote addId, dropId

Reference-level - - - reference morph addRef, dropRef

Cardinality-level - - - - mult changeCardinality

Version-level - - - - delvar, adapt, union -
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As we can see, the vast majority of approaches only allow for propagating
of changes to the data immediately. The exception is Darwin, which allows
for other data migration strategies, namely lazy and hybrid. The support for
different strategies is reflected in the optimisation capabilities, where once again
only Darwin considers optimising data migration by composing SMOs, caching
the composed SMOs, and performing lazy data migration efficiently.

The propagation of SMOs to integrity constraints is addressed marginally,
with only MM-evolver and Orion addressing references or identifiers in a limited
way. Similarly, propagation of SMOs to queries and benchmarking of SMOs are
less common features.

Next, only Darwin and Orion allow for inference of versioned schema as an al-
ternative to otherwise explicit schema evolution specified using SMOs. Moreover,
in the case of Darwin, the historical sequence of schema versions can be inferred.

Finally, the selected approaches also differ in the extent and support of data
models. While the categorical approaches are mainly bounded with aggregate-
ignorant models (especially the relational model), aggregate-oriented models are
commonly supported in the remaining approaches. However, only the MM-
evolver approach considers a set of linked or overlapping data models, i.e., multi-
model data. In the other cases, a disjunctive set of models is considered.

0.5.2 Open Questions and Challenges in Evolution Man-
agement

We believe that in order to be able to process evolution management for multi-
model data, we need to address the limitations of existing approaches and extend
them appropriately towards the full support of multi-model data. Therefore,
we provide the following list of challenges E1 – E11 in the area of evolution
management of multi-model data.

E1: Multi-model data. The aspect of multi-model data brings new dimension
of complexity to evolution management approaches. In addition to the
model-specific features of (otherwise disjunctive) logical models, we must
consider features arising from the combination of the models, such as cross-
model references, cross-model embedding, cross-model integrity constraints,
redundancy, and inconsistency in data. Moreover, we have to deal with of-
ten contradictory features of the models, e.g., aggregate-oriented/-ignorant,
schema-full/-less/-mixed, and order-preserving/-ignorant.

E2: Unification (abstraction) of data models. Currently, there is a number of
approaches that struggle with insufficient unification of underlying logical
models. Hence the proposed schema modification language is complicated.
It is important to unify, for example, the different approaches to the oth-
erwise corresponding data structures (e.g., JSON object and a map), and
to work uniformly with different forms of identifiers (i.e., simple, complex,
multiple, and overlapping) and links between objects (e.g., embedding or
references).

E3: Propagation of SMOs to queries. The propagation of schema changes to the
data is only one of many efforts to adapt to changing user requirements.
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Naturally, as the schema (i.e., a data structure) changes, the queries must
be updated to remain syntactically and semantically correct [132].

E4: Integrity constraints evolution management. Currently, there are several
approaches to modify the data structure in particular. A schema, however,
also includes integrity constraints describing identifiers, references, and, e.g.,
complex business rules. As far as we know, only several approaches tar-
geting relational DBMSs introduce so-called integrity constraints modifica-
tion operations (ICMO) [114], which allow modification of complex business
rules. For non-relational DBMSs, only changes to identifiers or references
are supported to a limited extent [120, 116]. In addition, a new dimension
of difficulty not observed in relational systems is the implicit management
of integrity constraint changes in schema-free data, where integrity con-
straints must first be inferred and the historical sequence of changes in
these constraints must be tracked.

E5: Propagation of changes to the storage strategy. Not only a new data struc-
ture, but also new queries may reflect the change in user requirements. In
multi-model systems, we can respond to this change by adapting the logi-
cal representation of the data to maintain/improve the efficiency of query
evaluation. However, a minimal number of approaches currently exist that
deal with the change in logical data representation [130, 120].

E6: Extraction of changes. There is a number of possible methods for retrieving
information about changes in user requirements. Most often, these are user-
specified changes in the form of SMOs. This approach is particularly useful
when dealing with schema-full data. In NoSQL systems, approaches that
infer implicit versioned and chronologically ordered schema of data exists.
Finally, changes in user requirements and data can be inferred by observing
changes in queries. However, none of the solutions is trivial, especially in
the case of multi-model data.

E7: Integration of new data models and data formats. A significant part of exist-
ing evolution management approaches assumes that the logical representa-
tion of data is time-invariant. Hence, in practice, we encounter approaches
that support only a single data model or a limited set of disjunctive models.
If additional data formats are needed, then (1) we need to represent this
format by means of supported data formats and models, even if at the cost
of relaxing the requirements for efficient data processing, or (2) allow the
integration of new data models and formats.

E8: Benchmarking. In order to evaluate the effectiveness of the data migration
process and to query the successfully migrated data, we need to be able
to put a price on each operation and compare them with respect to each
other. Currently, there are first drafts of a benchmark for multi-model
querying [112, 113] and tools to determine the cost of data migration in
polystores and multi-model DBMSs [111].

E9: Intuitive naming of SMOs. The contradictory features of underlying logical
models in multi-model DBMSs can result in seemingly unexpected propa-
gation patterns into (redundant) data. For example, the ungroup operation
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changes the logical structure of data represented by aggregate-oriented ap-
proaches compared to the representation of aggregate-ignorant approaches
in exactly the opposite way, i.e., in the former case there may be an inlining
into the parent property within one kind and in the latter case there will
be merging of two kinds⋆ (see Paper V). Although the naming of the un-
group operation accurately reflects what happens in the aggregate-oriented
approach, in the case of the aggregate-ignorant approach the naming is
completely non-intuitive.

E10: Data migration overhead. Currently, there are several strategies to prop-
agate schema changes to the data. Eager migration propagates schema
changes to data immediately, regardless of the current DBMS workload.
The lazy strategy propagates changes only when the current schema ver-
sion is needed, introducing an overhead during (critical) data management
tasks, similarly to the hybrid strategies, which combine features of eager
and lazy strategies. However, the burden of data migration is still on the
datastore regardless of the chosen strategy. The question is whether we
must necessarily propagate all changes to the data at the physical level,
i.e., stress the database system, or whether changes can only be propagated
“virtually”.

E11: Involvement of artificial intelligence. When a change in user requirements
occurs, the user initiates the change in the data structure, e.g., by exe-
cuting an SMO or by inferring the schema from the new data. However,
the choice of the SMO may not always be optimal and reflect all user re-
quirements. We believe that by engaging artificial intelligence to be trained
based on user input (e.g., data writes, queries, typical system usage time
etc.), we can (1) optimise the choice of the logical representation and the
data schema with respect to the data management tasks to be performed,
and (2) appropriately plan and select a data migration strategy, e.g., based
on the DBMS workload at a specific time.

0.5.3 Contribution: Framework MM-evocat
So far, we have discussed the related work, the applicability of established ap-
proaches to evolution management towards multi-model data, and the resulting
open questions. We now move on to comment on our approach and explain the
connections with the rest of the thesis.

First, we analysed selected existing evolution management solutions introduc-
ing a platform-independent layer for dealing with multiple data models [19, 20,
110, 120, 116] and verified their applicability to multi-model data, identifying
drawbacks of the selected solutions and outlining open questions.

Being inspired by existing solutions, our schema evolution approach is based
on an appropriate abstraction of data models32 (challenge E1) allowing extension
towards the support of additional models (challenge E7), and we define a basic set
of SMOs on top of this model. In addition, we addressed the question of whether
it is more user-friendly (1) to take a minimalist approach, i.e., to define only basic

32Let us recall that this refers to the categorical model (first introduced in⋆ Paper II and
commented in Subsection 0.3.4) and its mapping to the underlying logical layer⋆ (see Paper III).
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operations from which the user composes complex operations (e.g., see [19]), or
(2) to add complex but frequently called operations to the basic set of SMOs (e.g.,
see [116]). We have opted for a combination of approaches, whereas SMOs33 can
be classified into three tiers:

1. Basic operations. Arbitrary modification of the unifying conceptual model
can be achieved by any of the six basic operations, i.e., addObject, deleteOb-
ject, addMorphism, deleteMorphism, addId, dropId, or their combination.
Nevertheless, although these are expressive operations, they are not very
user friendly.

2. Complex operations. To enhance user experience, we introduce a set of
complex operations, i.e., addRelationship, addList, addSet, addMap, ad-
dHierarchy, addStructure, addProperty, addRef, renameProperty, deleteRe-
lationship, deleteList, deleteSet, deleteMap, deleteHierarchy, deleteStruc-
ture, deleteProperty, and dropRef. These operations internally combine
basic operations (and implement this composition efficiently) and allow for
modifications to the conceptual model in a user-friendly way.

3. Frequently called operations. Based on typical user requirements, we in-
troduce a group of frequently called operations, i.e., copy, move, group,
ungroup, union, split, and changeCardinality. These operations are inter-
nally composed of basic and/or complex operations.

We provide the most user-friendly SMOs in the Table 0.6. Note that our
approach is the only one that allows SMOs in the (logical) model-level (challenge
E5), i.e., we explicitly consider cross-model redundancy. Moreover, as a result of
the unification of the underlying model constructs, the SMOs we propose are not
platform dependent, i.e., there is no need to distinguish between, e.g., embedding
or referencing – that is a logical layer detail (challenge E2).

The proposed SMOs are declared in the platform-independent Multi-Model
Schema Evolution Language (MMSEL) ⋆(see Paper V). An obvious part of the
language is the ability to select a subset of records of a given kind over which
to execute SMOs (i.e., a selection). Analogous to existing solutions, MMSEL
expressions are translated into domain specific language (DSL) utilising so-called
wrappers. Note that we also exploit a mapping between the conceptual and
logical layers for translation into DSL. Compared to existing solutions for NoSQL
and multi-model systems, our approach also propagates SMO to identifiers and
references (challenge E4).

SMOs are propagated into the data using the following data transformation
algorithms:

• The Model-to-Category transformation ⋆(see Paper III) is applicable for data
translation between logical and categorical layers. The algorithm first reads
the input data from the logical model and inserts the records into a unifying
data structure that structurally corresponds to the schema category (i.e.,
the unifying data structure).

33These operations are discussed in more detail in the journal article ”A Unified Evolution
Management of Multi-Model Data Using Category Theory”, which is currently unfinished, hence
unpublished. The expected completion is Q3 2022.
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• The Category-to-Model transformation⋆ (see Paper III) converts the data
from a categorical to a logical representation in three steps:

1. The DDL algorithm allows the translation of a unified schema into
a platform-specific schema (i.e., it creates, e.g., statements CREATE
KIND, ALTER KIND).

2. The DML algorithm creates a list of DML statements to store the data
in the logical layer (e.g., INSERT INTO KIND).

3. Finally, the IC algorithm ensures specification of identifiers and refer-
ences at the logical layer (e.g., ALTER KIND).

The main contribution of the algorithms is their universality for migration
or changing the logical representation of data. Moreover, the input and output
of data migration algorithms may be the data represented by a combination of
logical models. Hence, we have multi-model to multi-model data migration (for
more details⋆ see Paper III). SMOs are propagated into the data by the eager
strategy. Extending the support to other data migration strategies, e.g., lazy and
hybrid strategies [110], forms our current and future work. In addition, we add
the possibility of scheduling data migration with respect to the usual database
system workload, i.e., data will be migrated not only when needed (i.e., lazy
migration), but also proactively during lower workloads.

Furthermore, SMOs are classified into heavy and light operations. Heavy
operations are based on the traditional concept, i.e., they are propagated to the
data and to the mapping between the conceptual and logical layers, thereby
increasing the workload on the side of the database system. The examples of
heavy operations include delete, move, union, and split. On the contrary, light
operations propagate changes only to the mapping, i.e., no immediate propagation
to the logical representation of the data is required (challenge E10). Examples
of light operations includes add, rename, and group. Note that some heavy
operations can be light under certain conditions and vice versa⋆ (see Paper V).

Categorically speaking, schema modification operations (SMOs) correspond
to functors, i.e., structure preserving mappings between two (schema) categories
(inspired by the approach [20]). Regarding data migration, we propagate SMOs
that add new schema elements using pushouts (inspired by the approach [19])
and changes that only duplicate or add no new elements are propagated using a
pullback functor and its right and left adjuncts (inspired by the approach [20]).

Finally, the proposed approach was verified in the academic prototype MM-
evocat [5],34 which currently supports evolution management and backwards prop-
agation for data stored in PostgreSQL (a representative of a multi-model DBMS),
MongoDB (a representative of a document DBMS), and Neo4j (a representative
of a graph DBMS). The advanced evolution management tasks, e.g., propagating
schema changes to queries (challenge E3), extracting changes from schema-less
data and from queries (challenge E6), proposing an approach for cost estimation
of data migration operations (challenge E8), and involving artificial intelligence
in the schema and data evolution process (challenge E11), constitute our current
and near-future work.

34https://www.ksi.mff.cuni.cz/˜koupil/mm-evocat/index.html
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Abstract
In this vision paper, we introduce an idea of a framework that would enable
us to model, represent, and manage multi-model data in a unified and abstract
way. Its core idea exploits constructs provided by category theory, which is
sufficiently general but still simple enough to cover any of the logical data models
used in contemporary databases. Focusing on promising features and taking
into account mature and verified principles, we overview the key parts of the
framework and outline open questions and research directions that need to be
further investigated. The ultimate objective is to pursue the idea of a self-tuning
system that would permit us to collapse the traditionally understood conceptual
and logical layers into just a single model allowing for unified handling of schemas,
data instances, as well as queries.
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Abstract
Following the Gartner predictions, most of the DBMSs, both relational and
NoSQL, have become multi-model. However, this functionality brought plenty
of related issues. The core problem is how to design a multi-model application.
The step from the conceptual layer to a set of distinct interlinked logical models
is not straightforward.

In this paper, we propose an approach based on category theory, which pro-
vides a unified view of the data and a strong mathematical basis for their manage-
ment. We propose a schema and instance categories covering popular models and
we show how an ER model can be transformed to such a categorical layer. We
also introduce the whole framework based on the categorical model and discuss
open research issues.
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• Multi-model data • Category theory • Conceptual modelling
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Abstract
The support for multi-model data has become a standard for most of the existing
DBMSs. However, the step from a conceptual (e.g., ER or UML) schema to a
logical multi-model schema of a particular DBMS is not straightforward.

In this paper, we extend our previous proposal of multi-model data repre-
sentation using category theory for transformations between models. We intro-
duce a mapping between multi-model data and the categorical representation
and algorithms for mutual transformations between them. We also show how the
algorithms can be implemented using the idea of wrappers with the interface pub-
lished but specific internal details concealed. Finally, we discuss the applicability
of the approach to various data management tasks, such as conceptual querying.

Keywords
• Multi-model data • Category theory • Model transformations
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Abstract
The variety feature of Big Data, represented by multi-model data, has brought
a new dimension of complexity to all aspects of data management. The need to
process a set of distinct but interlinked data models is a challenging task.

In this paper, we focus on the problem of inference of a schema, i.e., the
description of the structure of data. While several verified approaches exist in the
single-model world, their application for multi-model data is not straightforward.
We introduce an approach that ensures inference of a common schema of multi-
model data capturing their specifics. It can infer local integrity constraints as well
as intra- and inter-model references. Following the standard features of Big Data,
it can cope with overlapping models, i.e., data redundancy, and it is designed to
process efficiently significant amounts of data.

To the best of our knowledge, ours is the first approach addressing schema
inference in the world of multi-model databases.

Keywords
• Multi-model data • Schema inference • Cross-model references • Data re-
dundancy
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Abstract
The arrival of so-called multi-model data has brought many challenging problems.
The contradictory features of the combined models and lack of standardisation
of their combination make the solution of the data management specifics highly
complex.

In this paper, we focus on the problem of evolution management of multi-
model data. With the changing user requirements, the schema and the data need
to be adapted to preserve the expected functionality of a multi-model application.
We introduce a tool MM-evocat based on utilising the category theory. We will
show that the core of the tool, i.e., the categorical representation of multi-model
data, enables us to grasp all the specifics of the individual models and their
possible combinations. Its simple but powerful formal basis enables unique and
robust support for evolution management.

Keywords
• Multi-Model Data • Evolution Management • Category Theory
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Conclusion
This thesis introduces a general framework for modelling and management of
multi-model data. Unlike the existing solutions, the framework is based on a
mature formal background of a theory general enough to grasp the variety of all
popular data models and to support different data management tasks, such as,
e.g., data modelling, schema inference, data migration, and evolution manage-
ment, in a unified way.

The main contributions are summarised as follows:

• Unification of data models. First, an extensive analysis of popular database
systems and underlying data models was performed. Based on the results,
we proposed a unification of related constructs occurring in various data
models and brought them to the same (abstract) level. Hence, contrary to
the existing solutions, we do not introduce any constructs tied only to a
particular model.

• Multi-model data modelling. The proposed data modelling approach is gen-
eral enough to allow a unified representation of popular data models and
their combination at the conceptual level. To verify the completeness of
the proposal, an algorithm for translating the ER schema into the proposed
categorical representation was proposed. Finally, we provided a unified data
representation that serves as a mediator for various data management tasks.

• The bridge between the conceptual and logical layer. We have proposed an
approach that allows for mapping of the unified categorical schema to any
(combination of) popular models supported in existing DBMSs, while the
specific features of the logical layer are hidden from the user. Along with
the mapping, we introduced data transformation algorithms that, among
others, allow to realise data migration between different (combinations of)
logical representations. The core idea was implemented in the academic
prototype MM-cat.

• Inference of the multi-model schema. To the best of our knowledge, we
have proposed the first approach dealing with the inference of a multi-model
schema. In addition, the approach allows to infer a number of integrity con-
straints, e.g., (simple) identifiers, references (both intra- and inter-model),
and to reveal partial and complete redundancy in the data (once again,
both intra- and inter-model). Last but not least, exploiting the statisti-
cal analysis of the source data, the approach enables the detection and
backward correction of errors in the data. The main idea of the proposal
was implemented as the academic prototype MM-infer and experimentally
verified.

• Evolution management and correct propagation of changes. Having the
unified conceptual layer, schema modifications within and across multiple
logical models are reduced to modifications of the unified representation
and its mapping to the logical layer. For this purpose, we proposed a
several sets of SMOs, together with the respective propagation of changes
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via transformation algorithms between the logical and unified layers. The
main idea was implemented in the academic prototype MM-evocat.

Finally, let us note that the unification of models allows the framework to
be applicable to multi-model data represented both polystores and multi-model
systems, as well as to single-model systems. Even in the latter case of single-model
data the proposed approaches also bring innovations and extensions thanks to the
unified and general view of the respective data management tasks.

Current and Future Research
Besides extensions to existing components of the framework (see⋆ Paper III and

⋆ Paper IV) we are currently working on additional features:

• Conceptual query language. The level of abstraction of the categorical ap-
proach allows us to define a conceptual query language. Utilising the ideas
of decomposition and mapping, any conceptual expression can be decom-
posed and further translated into particular query expressions at the logical
level. Moreover, since a category can be seen as a special type of a multi-
graph, the categorical query language can be inspired by graph pattern
matching, as known from existing graph languages such as, e.g., Cypher,
and SPARQL.

• Conceptual query evaluation plan. The knowledge of a unifying schema
and its decomposition allows the construction of multiple query evaluation
strategies. Similar to single-model systems, there is an opportunity for
creating multiple query execution plans and selecting the optimal query
evaluation strategy. Moreover, we can exploit the natural properties of
multi-model data, e.g., cross-model redundancy in the data, which allows
for higher variability in query evaluation strategies.

• Self-Adapting Evolution Management. The combination of the variety of
data formats and the continuous changes in the data bring a huge challenge
for administrators of (not only multi-model) database systems. Our future
goal is first to extend the existing evolution management proposal with
the propagation of changes to queries and then to focus on the area of
autonomous management of rapidly changing multi-model Big Data, as
envisioned in our paper [133].
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cardo Jiménez-Peris, and José Orlando Pereira. Benchmarking Polystores:
The CloudMdSQL Experience. In 2016 IEEE International Conference on
Big Data (Big Data), pages 2574–2579, New York, NY, USA, 2016. IEEE.

[9] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda Balazin-
ska, Bill Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson,
and Stan Zdonik. The bigdawg polystore system. ACM Sigmod Record,
44(2):11–16, 2015.

[10] Rana Alotaibi, Bogdan Cautis, Alin Deutsch, Moustafa Latrache, Ioana
Manolescu, and Yifei Yang. ESTOCADA: towards scalable polystore sys-
tems. Proceedings of the VLDB Endowment, 13(12):2949–2952, 2020.
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A. Category Theory
Category theory [17] is a branch of mathematics that provides a way to gener-
alise mathematical structures and the relationships between them. Hence, it is a
unifying theory that is useful for finding connections between different areas, not
only in mathematics and theoretical computer science. We assume that by ap-
plying category theory we will achieve a reasonable level of abstraction of various
data models and their combinations that will allow us to perform data migration,
querying, and evolution management of multi-model data in a unified way.

In this section, we provide the basic definitions underlying our approach of
multi-model schema and data representation ⋆(see Paper II), data migration ⋆(see
Paper III), and schema and data evolution ⋆(see Paper V), as well as the ap-
proaches we have been inspired by [18, 19, 20, 21]. Note that our aim is to
propose an intuitive and user-friendly approach. Therefore, we ex-
plicitly use only the most basic constructs of category theory, i.e.,
primarily categories (see Definition 1) and functors (see Definition 6). As
for the other constructs, i.e., natural transformations (see Definition 10) and uni-
versal constructions (see Definitions 13, 14, 16, and 17), these are considered only
implicitly, i.e., we do not require the user to have active knowledge of these def-
initions. On the contrary, these complex constructs are explicitly utilised in the
approaches we are inspired by.

In addition, we also provide illustrative examples that are closely related to
real-world applications in data modelling approaches at the conceptual and logical
level. Finally, for the convenience of the reader, at the end of each subsection
we outline in which approaches and for which purpose the above definitions are
applied, i.e., we provide additional examples.

For more details we refer an interested reader to [134, 124, 123, 135, 17],
which are ordered by difficulty, while for computer science we recommend partic-
ularly [134].

A.1 Basic Definitions
In this subsection, we introduce the basic definitions and concepts which form
the foundation of category theory. Specifically, we introduce the notion of a
category as a collection of objects and morphisms (sometimes called arrows), and
we introduce different classes of morphisms based on their properties, as well as a
way to create a category from an arbitrary graph. We conclude with illustrative
examples of categories.

Definition 1. The category C is a quadruple (OC,MC, ◦, 1) such that:

• OC is a collection of objects.

• MC is a collection of morphisms where each f ∈ MC is represented as
an arrow f : A→ B (also denoted A

f−→ B), where A, B ∈ OC, such that A
is the domain of f , denoted by dom(f) = A, and B is the codomain of f ,
denoted by cod(f) = B.
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• Given f, g ∈MC and cod(f) = dom(g), there exists g ◦ f ∈MC, which we
refer to as the composition of f and g. Moreover, the composition must
be associative, i.e., for any f, g, h ∈ MC such that cod(f) = dom(g) and
cod(g) = dom(h), the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f holds.

• For each object A ∈ OC, there is exactly one identity morphism 1A : A→
A such that f ◦ 1A = f = 1B ◦ f holds for any f : A→ B, f ∈MC.

Definition 2. Let C be a category and A, B ∈ OC. Then we define the hom-
class homC(A, B) ⊂MC as the collection of all morphisms f : A→ B.

Definition 3. We call the category C a small category if both OC and MC
are sets. Otherwise, we call the category C a large category. We say that
C is locally small category if for any two objects A, B ∈ OC it holds that
homC(A, B) forms a set.

Definition 4. Let C be a category, A, B, X ∈ OC and f, g, g′, g′′ ∈MC.
A morphism f : A → B is an isomorphism if and only if there exists a

morphism g : B → A such that the composition of f and g yields identities, i.e.,
g ◦ f = 1A and f ◦ g = 1B. Moreover, the morphism g is uniquely determined.
That is, if there exist g′, g′′ : B → A such that g′ ◦ f = 1A and f ◦ g′′ = 1B, then
it must hold that g′ = g′ ◦ 1B = g′ ◦ f ◦ g′′ = 1A ◦ g′′ = g′′. We will denote the
morphism g by f−1 and call it the inverse morphism of f .

If there is a pair of isomorphisms f : A → B, g : B → A, then also A is
isomorphic to B, which we denote by A ∼= B. Note also that identity morphisms
are trivial isomorphisms.

A morphism f : A → B is a mono(morphism),1 if for any object X and
arbitrary two morphisms g, g′ : X → A the following implication holds: f ◦ g =
f ◦ g′ =⇒ g = g′.

A morphism f : B → A is an epi(morphism),2 if for any object X and
arbitrary pair of morphisms g, g′ : A→ X the following implication holds: g◦f =
g′ ◦ f =⇒ g = g′.

1A special case of a monomorphism is an injective morphism, but not every morphism is an
injective morphism. Monomorphism is a more general notion than injection.

2A special case of epimorphism is a surjective morphism, but not every epimorphism is a
surjective morphism. An epimorphism is a more general notion than surjection.
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Definition 5. Let G = (V, E, src, tgt) be a graph such that V is the set of vertices,
E is the set of edges, and src : E → V , tgt : E → V are functions assigning the
source vertex and the target vertex to an edge.

The category Free(G) = {OFree(G),MFree(G), ◦, 1}, referred to as the free
category on G, is the category with OFree(G) equal to V , homFree(G)(A, B), equal
to all paths from va to vb in G, such that A, B ∈ OFree(G) and va, vb ∈ V ,
composition is determined by the concatenation of paths, and identity morphisms
1A : A→ A, 1A ∈MFree(G) on an object is the trivial path at va ∈ V .
Example A.1. The category Set is a category in which objects are sets and mor-
phisms are functions between the sets. The composition of morphisms is given by
the composition of functions, and the identity morphism is the identity function.
Note also that the category Set has both initial and terminal objects.
Example A.2. Figure A.1 illustrates a category G = (OG,MG, ◦G, 1G), where
E, V ∈ OG and 1E, 1V , src, tgt ∈ MG. The category G is indeed a category
as the identity morphisms over all vertices are defined, i.e., 1E and 1V , and the
associativity law for morphism composition holds.

Also note that the category G corresponds to the schema of an arbitrary
directed graph G = (VG, EG, srcG, tgtG), i.e., the objects V and E correspond to
the elements of the graph VG and EG and the morphisms src and tgt represent
the functions srcG and tgtG. We will show a particular graph in Example A.5
after we define the notion of a functor between categories.

Figure A.1: An example of a category

Example A.3. Although a category is a special type of directed multi-graph, not
every directed (multi-)graph is a category. Let the graph G = (V, E, src, tgt)
consist of vertices A, B, C ∈ V and edges f, g ∈ E (see Figure A.2 (a)). In this
instance, it is not a category, e.g., because the graph does not contain a reflexive
edge at any vertex that would correspond to an identity morphism.

Figure A.2 (b) illustrates the graph G′, where E ′ = E ∪ {1A, 1B, 1C}. Again,
this is not a category, as the path formed by the composition of the paths of the
graph G′, e.g., g ◦ f , is not included in the graph.

Finally, Figure A.2 (c) illustrates the graph G′′, where E ′′ = E ′∪{h}, h = g◦f ,
which corresponds to the category. In other words, the graph G freely generates
the category Free(G) (see Definition 5).

Finally, Table A.1 summarises the application of categories in approaches
representing data at the conceptual or logical level.
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(a) (b) (c)

Figure A.2: An example of (not) a category

Table A.1: Application of basic definitions

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Category
(Definition 1)

Conceptual
schema

Abstraction of
schema

Schema Abstraction of
property
labelled graph

Schema and
instance
category
(early
approach)

Small category
(Definition 3)

- - Schema - Schema and
instance
category

Monomorphism
(Definition 4)

Uniqueness - - - Uniqueness,
inheritance

Epimorphism
(Definition 4)

Simple and
structured
attributes

- - - Simple and
structured
attributes

Free category
(Definition 5)

- - Schema - Schema
category

A.2 Functors
So far we have defined the elementary constructs of category theory. In this sub-
section, we add functors, i.e., structure-preserving mappings between categories
that (not coincidentally) resemble morphisms between objects. Once again, we
conclude with illustrative examples.

Definition 6. Let C = {OC,MC, ◦, 1} and D = {OD,MD, ◦, 1} be categories.
A functor F : C→ D, also denoted C F−→ D, is a structure-preserving mapping
between categories that assigns objects OC to objects in OD and morphisms in
MC to morphisms in MD. For the functor F , the following holds:

• dom(F (f)) = F (dom(f)) and cod(F (f)) = F (cod(f)) for each morphism
f ∈MC.

• Preserving of composition F (g ◦ f) = F (g) ◦ F (f) for every pair of mor-
phisms f, g ∈MC such that dom(g) = cod(f).

• Preserving of identity F (1A) = 1F (A) for each object A ∈ OC.

Definition 7. Let C and D be categories and F : C → D and G : D → E be
functors. The composition of the functors F and G is a functor G ◦ F :
C→ E such that:
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• For every object A ∈ OC it holds that G ◦ F (A) = G(F (A)).

• For every morphism f : A→ B, f ∈MC it holds that G◦F (f) = G(F (f)).

Definition 8. Let C and J be categories. The diagram of the form J in the
category C is a functor D : J → C. We refer to J as the index category of the
diagram D.

Definition 9. We say that a diagram commutes if every two paths p =
fm ◦ ...◦f1 and q = gn ◦ ...◦g1, where m, n ∈ N, f1, . . . , fm, g1, . . . , gm, p, q ∈MC,
dom(p) = dom(q), and cod(p) = cod(q), determine the same morphism via com-
position, i.e., p = q.

Example A.4. Figure A.3 illustrates examples of functors F : C→ D (depicted in
blue). Figure A.3 (a) corresponds to usual expectation of how functor F : C→ D
should map objects between two categories. Figure A.3 (b) illustrates functor F
mapping objects A, B to B′ and the morphism f to the identity morphism 1B′ .
Figure A.3 (c) maps object A to A′ and B to C ′ with morphism f being mapped
to the composition of morphisms g′ ◦ f ′. In contrast, Figure A.3 (d) does not
represent a functor because (1) object A is mapped to more than one object and
(2) object B is not mapped at all. Figure A.3 (e) does not illustrate the functor
either, since the structure of the category C is not preserved, i.e., the morphism
f cannot be mapped.

(a) (b) (c)

(d) (e)

Figure A.3: An example of a functor
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Example A.5. An example of a functor is the set-valued functor Inst : G→ Set,
where G is the category from Example A.2 and Set is the category of all sets from
Example A.1. It maps each object of category G to an object of category Set,
i.e., it assigns the object E to the set (of edges) Inst(E) = ESet and the object V
to the set (of vertices) Inst(V ) = VSet (see Figure A.4 (a)). The corresponding
graph, represented by the (one of many) functor Inst : G → Set, is depicted in
Figure A.4 (b). (Note that for clarity only, we do not depict identity morphisms
in the figure.)

 

 

A, B, C, D, Ea, b, c, d

(a)

a
A B

C D E

b c d

(b)

Figure A.4: An example of a set-valued functor (a) and a corresponding graph (b)

Example A.6. The commutativity of the diagram depicted in Figure A.5 (a) im-
plies that g ◦ f = h, i.e., dom(g ◦ f) = dom(h) and cod(g ◦ f) = cod(h) and
both g ◦ f and h lead to the same result. Note that this commutative diagram is
referred to as a commutative triangle.

Similarly, the commutativity of the diagram depicted in Figure A.5 (b) implies
that g ◦ f = f ′ ◦ g′, where dom(g ◦ f) = dom(f ′ ◦ g′) and cod(g ◦ f) = cod(f ′ ◦ g′).
The commutative diagram is referred to as a commutative square.

(a) (b)

Figure A.5: An example of commutative triangle (a) and square (b)

To conclude, Table A.2 summarises the application of functors in approaches
representing data at the conceptual or logical level and in approaches performing
data migration.
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Table A.2: Application of functors

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Functor
(Definition 6)

- Particular
schema, data,
and data
instance

Particular
data instance;
SMOs; data
migration

Particular
property
labelled graph

Particular
data instance
(evolution
approach);
SMOs; data
migration

A.3 Natural Transformations
In this subsection, we define natural transformations that allow us to have mul-
tiple views of the same concept using different levels of abstraction. In addition,
we define vertical composition of natural transformations, natural isomorphism,
and functor category, where the objects of this category are functors and the
morphisms are natural transformations. We conclude with illustrative examples
of universal transformations and a functor category.

Definition 10. Let C and D be categories and let F : C → D and G : C → D
be functors.

The natural transformation α from F to G, denoted α : F → G, is a
collection of components (i.e., morphisms) αA, A ∈ OC, that satisfy the commu-
tative square law, as follows:

• For each object A ∈ OC there is a morphism αA : F (A)→ G(A), αA ∈MD,
called the A-component of the natural transformation α.

• For each morphism f : A→ B, f ∈MC, A, B ∈ OC, the following square,
called naturality square, commutes, i.e., αB ◦ F (f) = G(f) ◦ αA.

Definition 11. Let C and D be categories, let F, G, H : C→ D be functors, and
let α : F → G and β : G→ H be natural transformations.
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Vertical composition of natural transformations β ◦ α is a composition in
which for each object c ∈ OC there exists a morphism (β ◦ α)c ∈ MD for which
(β ◦ α)c = βc ◦ αc (i.e., it commutes).

Definition 12. Let C and D be categories and let F : C → D and G : C → D
be functors. A natural transformation α : F → G is said to be a natural
isomorphism if every component of αA : F (A)→ G(A) is an isomorphism. In
that case, the functors F and G are called naturally isomorphic.

Lemma 1. Let C and D be categories, F, G, H : C → D functors, α : F → G
and α′ : G→ H natural transformations, and 1F : F → F a natural isomorphism.

There exists a functor category3, denoted DC, such that:

• ODC is a collection of functors F : C→ D.

• MDC is a collection of natural transformations α : F → G.

• The composition α′ ◦α is a vertical composition of natural transformations.

• The identity 1F on the object F is a natural isomorphism.

Proof. See [123].
Example A.7. Let G be the category from Example A.2, Set be the category
from Example A.1 and let Inst, Inst′ : G→ Set be functors from Example A.5.

The natural transformation α : Inst → Inst′ involves two components, αE :
Inst(E) → Inst′(E) and αV : Inst(V ) → Inst′(V ) and two naturality squares,
αV ◦ Inst(src) = Inst′(src) ◦ αE (see Figure A.6 (a)) and αV ◦ Inst(tgt) =
Inst′(tgt) ◦ αE (see Figure A.6 (b)).

(a) (b)

Figure A.6: Naturality squares for src (a) and tgt (b)

In other words, the natural transformation α : Inst → Inst′ (see Figure A.7
(a)) is the same as the graph homomorphism [124] (see Figure A.7 (b)).

Example A.8. Let G be the category from Example A.2, Set be the category
of all sets from Example A.1, let Inst, Inst′, Inst′′ : G → Set be functors from

3Note that there exists also horizontal composition of natural transformations and a category,
where the objects are categories and the morphisms are horizontal natural transformations of
functors [123].
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a', b', c', d', e',

f', g', h'
A', B', C', D',

E', F'

A, B, C, D, Ea, b, c, d

(a)

a

e'

g'

h'C' D'

A' B'

E'

a'

b' c' d'

F'
f'

A B

C D E

b c d

(b)

Figure A.7: An example of a natural transformation (a) and the corresponding
graph homomorphism (b)

Example A.5 (i.e., particular graphs) and let α : Inst→ Inst′ a β : Inst′ → Inst′′

be natural transformations from Example A.7 (i.e., graph homomorphisms).
The category of all graphs is the functor category SetG such that the objects

of this category are all graphs and the morphisms are graph homomorphisms.
Finally, Table A.3 summarises the application of natural transformation in

approaches representing data at the conceptual or logical level and in approaches
performing data migration.

Table A.3: Application of natural transformation

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Natural
transformation
(Definition 10)

- Allowed
operations
between
schemas

Allowed
operations
between data
instances
conforming to
the same
schema

Allowed
operations
between
property
labelled
graphs

Allowed
operations
between data
instances
conforming to
the same
schema
(evolution
approach)

Functor
category
(Lemma 1)

- Category of
all schemas

Category of
all instances
conforming to
the same
schema

Category of
all property
labelled
graphs

Category of
all instances
conforming to
the same
schema
(evolution
approach)

A.4 Universal Constructions
In this subsection, we define so-called universal constructions that may resem-
ble notions from set theory, such as, e.g., Cartesian product, disjunctive union,
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intersection, and union. We then conclude with examples to show that this sim-
ilarity is not coincidental, but the categorical constructions are abstractions of
(not only) these concepts.

Definition 13. Let C be a category and A, B ∈ OC be objects. The product
of two objects A and B consists of an object P and morphisms π1 : P → A,
π2 : P → B such that for any object W ∈ OC with morphisms f : W → A,
g : W → B, f, g ∈ MC. Moreover, there exists a unique morphism u : W → P ,
u ∈ MC such that the diagram commutes, that is, such that f = π1 ◦ u and
g = π2 ◦ u.

The object P is usually denoted by A × B and the morphisms π1 and π2 are
referred to as projections.

Definition 14. Let C be a category and A, B ∈ OC be objects. The coproduct of
two objects A a B consists of an object Q and morphisms i1 : A→ Q, i2 : B → Q
such that for any object Z ∈ OC with morphisms f : A → Z, g : A → Z,
f, g ∈MC. Moreover, there exists a unique morphism u : Q→ Z, u ∈MC such
that the diagram commutes, that is, such that f = u ◦ i1 and g = u ◦ i2.

The object Q is usually denoted by A + B and the morphisms i1 and i2 are
referred to as injections, even though they do not need to be injective.

Remark: In the literature, coproduct is also referred to as a sum [124].

Definition 15. A morphism f : A→ Z is complementable if and only if there
exists a morphism g : B → Z such that Z ∼= A + B, where f and g are injection
morphisms. We refer to the morphism g as the complement of f and the object
B is often denoted as Z − A.

Definition 16. Let C be a category, let A, B, C ∈ OC be objects, and let f : A→
C and g : B → C, f, g ∈MC be morphisms.

The pullback of A
f−→ C

g←− B is A
π1←− P

π2−→ B such that f ◦π1 = g ◦π2, i.e.,
such that the square commutes.
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Moreover, it must hold that for any object Z ∈ OC and two morphisms z1 :
Z → A and z2 : Z → B, z1, z2 ∈ MC such that f ◦ z1 = g ◦ z2, there exists a
unique morphism u : Z → P such that z1 = π1 ◦ u and z2 = π2 ◦ u.

The object P is usually denoted by A×C B.

Definition 17. Let C be a category, let A, B, C ∈ OC be objects, and let f : C →
A, g : C → B, f, g ∈MC be morphisms.

The pushout of A
f←− C

g−→ B is A
i1−→ Q

i2←− B such that i1 ◦ f = i2 ◦ g, that
is, such that the square commutes.

Moreover, it must hold that for any object Z ∈ OC and two morphisms z1 :
A → Z and z2 : A → Z, z1, z2 ∈ MC such that z1 ◦ f = z2 ◦ g, there exists a
unique morphism u : Q→ Z such that z1 = u ◦ i1 and z2 = u ◦ i2.

The object Q is usually denoted by A +C B.
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Note that universal constructs are characterised by the existence of a unique
morphism u. This feature is referred to as the universal property UP or the
universal mapping property UMP. Finally, as universal constructs are given by a
universal property, they are unique up to the unique isomorphism [123].

Example A.9. Let C = {a, b, c} and R = {1, 2} be sets. Figure A.8 illustrates
an example of the product of sets C and R, i.e., the Cartesian product C ×
R = {(c, r)|c ∈ C, r ∈ R} together with the projections π1 : C × R → C (red
morphism) a π2 : C × R → R (green morphism). Moreover, if there is another
candidate product (not necessarily a Cartesian product), e.g., W = {k} with
projections f : W → R (yellow morphism) and g : W → C (blue morphism),
then there exists a universal mapping h : W → R × C (purple morphism) such
that the diagram commutes.

At first sight, the universal property of products may not be intuitive. As an
example, let us give a real-world meaning to the sets C, R and W . Imagine that
we have a set of game pieces W that we want to place on a board with assigned
coordinates Column = C and Row = R, i.e., each field can be identified as a
pair (c, r) ∈ Column× Row, where π1 : Column× Row → Column returns the
column coordinate and π2 : Column× Row → Row returns the row coordinate.
Placing the game pieces at the coordinates c ∈ Column and 1 ∈ Row, i.e., an
application of the functions f : W → Column and g : W → Row corresponds to
applying function h : W → Column×Row, i.e., selecting the board field (c1).

a2 b2 c2

a1 b1 c1

a b c

2

1

(board) (row)

(game pieces)(column)

Figure A.8: An example of a product corresponding to Cartesian product of sets

Another example of a product of sets C and R is the Cartesian product
R × C = {(r, c)|r ∈ R, c ∈ C}. It is easy to prove that due to the universal
product property, both products are isomorphic, i.e., R× C ∼= C ×R.

Finally, there also exists products of more than just two sets (i.e., objects).
For example, let A, B, and C be sets. Then, e.g., A × B × C = {(a, b, c)|a ∈
A, b ∈ B, c ∈ C} is the product of these sets.

Example A.10. Let B = {1, 2, 3, 4} and W = {1, 2} be sets. Figure A.9 illustrates
an example of the coproduct of sets B and W , i.e., disjunctive union B + W =
(B × {■} ∪ (W × {□}), where {■,□} denotes the origin of the element (i.e.,
■ is assigned to each b ∈ B and □ is assigned to each w ∈ W ), together with
the inclusions i1 : B + W → B (red arrows) a i2 : B + W → W (green arrows).
Moreover, if there is another candidate coproduct (not necessarily a disjunctive
union), e.g., Z = {r, n, b, k, q} with inclusions f : B → Z (yellow arrows) and
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g : W → Z (blue arrows), then it holds that there exits a universal mapping
h : B + W → Z (purple arrows) such that the diagram commutes.

Let us again illustrate the coproduct using a real example. Suppose the set
B represents the (sub)set of black chess pieces and the set W represents the
(sub)set of white chess pieces. The set of all pieces is their disjunctive union
B + W , i.e., the (sub)set of chess pieces. A candidate coproduct may be the set
Z = {rock, knight, bishop, king, queen}, together with morphisms f : A → Z
and g : B → Z, which determine the type of the pieces, i.e., r is a rock, n is a
knight, b is a bishop, k is a king, and q is a queen. Then there exists a unique
morphism h : B+W → Z which states that the type of a piece can be determined
for all chess pieces, i.e., the diagram commutes.

Moreover, similar to Example A.9, there can be multiple coproducts that are
isomorphic to each other. It is also possible to construct a coproduct for more
than two sets (i.e., objects).

bishoprock knight king queen

(type)

(1, ■)(2, ■)(4, ■) (3, ■) (1, □) (2, □)

(all pieces)

1 2 43 12

(black pieces) (white pieces)

Figure A.9: An example of a coproduct corresponding to disjoint union of sets

Example A.11. Let A = {1, 2, 3, 4} and B = {3, 4, 5, 6} be sets and let C =
{1, 2, 3, 4, 5, 6} be their union, i.e., there exist inclusive mappings f : A→ C and
g : B → C.

The pullback of A
f←− C

g−→ B is, e.g., A
π1−→ P

π2←− B, where P consists of
elements p such that f(a) = g(b) = p, i.e., P = {3, 4} = A ∩ B, and π1, π2 are
the projections (see Figure A.10 (a)). It is easy to verify that the diagram A.10
(b) commutes.

Moreover, if there exists another pullback candidate, e.g., A
z1−→ Z

z2←− B,
where, e.g., Z = {3} such that f(3) = g(3), then there exists a universal (injec-
tive) mapping h : Z → A ∩B such that the diagram commutes.
Example A.12. Let A = {1, 2, 3, 4} and B = {3, 4, 5, 6} be sets and let C =
{1, 2, 3, 4, 5, 6} be their intersection, i.e., there exist projections f : C → A and
g : C → B.

The pushout of A
f−→ C

g←− B is, e.g., A
i1←− Q

i2−→ B, where Q consists of
elements q such that q ∈ A + B, A + B being a disjoint union of A and B and
a ∈ A are identical to b ∈ B if there exists c ∈ C such that f(c) = a and g(c) = b,
hence we obtain a union A∪B (see Figure A.11 (a)). It is easy to verify that the
diagram in Figure A.11 (b) commutes.

Finally, Table A.4 summarises the application of natural transformation in
approaches representing data at the conceptual or logical level and in approaches
performing data migration.
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Figure A.10: An example of a pullback corresponding to an intersection of sets

1
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(a) (b)

Figure A.11: An example of a pushout corresponding to union of sets

Table A.4: Application of universal constructions

Lippe and
Ter
Hofstede [18]

CGOOD [19] Spivak et
al. [20]

APG [21] MM-
(evo)cat [3, 5]

Product
(Definition 13)

Complex
identifier; Set

- Querying (not
discussed)

Querying (not
discussed)

Complex
identifier

Coproduct
(Definition 14)

- - Querying (not
discussed)

Querying (not
discussed)

Multiple
identifiers

Complemetable
morphism
(Definition 15)

Inheritance - - - -

Pullback
(Definition 16)

- - Querying (not
discussed)

Querying (not
discussed)

Joining of
data

Pushout
(Definition 17)

Generalisation Addition of
data

Querying (not
discussed)

Querying (not
discussed)

Addition of
data
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