
MASTER THESIS

Marek Behún

Graph neural networks and their
application to social network analysis

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: doc. RNDr. Iveta Mrázová, CSc.

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

ii

I would like to express my sincere gratitude to the supervisor of this thesis, doc.

RNDr. Iveta Mrázová, CSc., who provided kind support and lots of advice, and

whose encouragement has been invaluable to me. I am so grateful for the time

and effort she has invested in helping me succeed.

iii

iv

Title: Graph neural networks and their application to social network analysis

Author: Marek Behún

Department: Department of Theoretical Computer Science and Mathematical

Logic

Supervisor: doc. RNDr. Iveta Mrázová, CSc., Department of Theoretical Computer

Science and Mathematical Logic

Abstract: Recently, the research on Graph Neural Networks (GNNs) made it

possible to apply deep learning techniques to graph-structured data. In this thesis,

we explore the application of GNNs to Social Network Analysis (SNA). We build

and compare deep learning models for the prediction of hotel review ratings,

hotel classes, and hotel scores on data scraped from the Tripadvisor website. We

consider the resulting models precise enough to be used by recommender systems.

A non-trivial part of this thesis is also the description of the theory behind GNNs

and visualization techniques for high-dimensional data. We also provide software

suitable for further experimentation on this topic.

Keywords: deep neural networks, graph neural networks, social network analysis,

community detection, link prediction, knowledge representation, visualization of

the extracted knowledge

v

vi

Contents

Introduction 5

1 Preliminaries 9
1.1 Notation . 9

1.2 Basic definitions . 10

2 Social Network Analysis 13
2.1 Actor centrality . 16

2.1.1 Degree centrality . 16

2.1.2 Eigenvector centrality 16

2.1.3 Katz centrality . 16

2.1.4 Betweenness centrality 17

2.1.5 Generalizations for weighted graphs 17

2.2 Community detection . 17

2.2.1 Girvan-Newman method 18

2.2.2 Kernighan-Lin bisection method 19

2.2.3 Louvain method . 20

2.2.4 Discussion . 21

3 Recurrent Graph Neural Networks (RecGNNs) 23
3.1 Graph Neural Network* (GNN*) 23

3.2 Gated Graph Neural Networks (GGNNs) 27

4 Convolutional Graph Neural Networks (ConvGNNs) 31
4.1 Spectral ConvGNNs . 31

4.1.1 Spectral CNN . 34

4.1.2 ChebNet . 35

4.1.3 Graph Convolutional Network (GCN) 36

4.2 Spatial ConvGNNs . 37

4.2.1 Message Passing Neural Network (MPNN) 38

4.2.2 GraphSAGE . 39

1

4.2.3 Graph Attention Network (GAT) 40

5 Graph Autoencoders 43
5.1 Graph Autoencoder* (GAE*) . 43

5.2 Variational Graph Autoencoder (VGAE) 44

5.3 Discussion . 45

6 Spatial-temporal Graph Neural Networks (STGNNs) 47
6.1 GCRN-LSTM . 47

6.2 GCRN-GRU . 49

7 Visualisation methods 51
7.1 Spectral Embedding . 51

7.2 t-distributed Stochastic Neighbor Embedding (t-SNE) 53

7.3 Uniform Manifold Approximation and Projection (UMAP) . . . 55

7.4 Discussion . 57

8 Dataset 59
8.1 Data source . 59

8.2 Data acquisition . 59

8.3 Scraped data format . 61

8.4 Scraped data basic information 64

8.5 Initial data preprocessing . 67

8.6 Graph construction . 67

8.7 Community detection . 74

8.8 Discussion . 74

9 Experiments 79
9.1 Review Rating Prediction . 79

9.1.1 Data preprocessing . 79

9.1.2 Methodology . 80

9.1.3 Models . 81

9.1.4 Evaluation . 84

9.2 Hotel Class Prediction . 84

9.2.1 Data preprocessing . 89

9.2.2 Methodology . 89

9.2.3 Models . 89

9.2.4 Evaluation . 90

9.3 Hotel Score Prediction . 90

9.3.1 Data preprocessing . 95

9.3.2 Methodology . 95

2

9.3.3 Models . 96

9.3.4 Evaluation . 96

10 Software 101
10.1 scraper.py . 102

10.2 preprocess.py . 102

10.3 projection.py . 103

10.4 temporal_projection.py . 103

10.5 community_detection.py . 104

10.6 centrality.py . 105

10.7 review_counts.py . 105

10.8 create_torch_data.py . 106

10.9 experiment_review_rating.py 107

10.10 experiment_hotel_class.py 108

10.11 experiment_hotel_score.py 109

10.12 visualization.py . 109

Conclusion 111
Further work . 112

Bibliography 113

Attachments 119

3

4

Introduction

Social Network Analysis (SNA) is a field in which, by examining the structure

and dynamics of social networks, we aim to uncover underlying patterns and

hidden relations to gain a greater understanding of how people or groups interact

and influence each other.

In recent years, the AI community bore witness to a small experimental

revolution in deep learning methods. Problems from the domains of computer

vision, speech recognition, game playing, and many more, previously unfeasible,

are now, in fact, feasible on machines affordable by individuals.

Among others, SNA is one of the disciplines that can reap the fruits of this

revolution. This is because one of the more recent developments in the deep

learning methods gaining practical usage is deep learning on graph-structured

data. Fromfindingmolecules with desired antibiotic properties to better prediction

of estimated arrival time in navigation, the so-called Graph Neural Networks

(GNNs) have proven to yield state-of-the-art results.

Some examples of popular online social networks include Facebook, Twitter,

and Instagram, while more obscure networks might include online gaming forums,

niche discussion groups, or professional networking platforms.

Another example of a social network is the Tripadvisor platform [1]. On this

platform, users can share their travel experiences and exchange information—they

are provided with the ability to rate and review hotels, restaurants, and attractions,

thus creating a network of interactions between users and accommodations. From

the perspective of SNA, Tripadvisor offers several interesting problems that can

be examined (e.g., hotel classification, prediction of user rating). See Figure 1 for

an example of a Tripadvisor hotel offering and two of its reviews.

In this thesis, we aim to give an overview and comparison of the various GNN-

based techniques used to address problems of learning on graph-structured data,

and to apply these methods on social network data scraped from the Tripadvisor

website.

5

Layout of this thesis
In Chapter 1, we describe the notation and define of several concepts used through-

out this thesis. Chapter 2 describes some techniques used in SNA, including com-

munity detection methods. We begin with the overview of GNNs in Chapter 3,

where we describe two models belonging to the category of Recurrent GNNs.

We continue with several models of Convolutional GNNs in Chapter 4, Graph

Autoencoders in Chapter 5, and Spatial-Temporal GNNs in Chapter 6. Chapter 7

reviews several dimensionality reduction methods suited for the visualization

of high-dimensional data. In Chapter 8, we present the dataset for our experi-

ments. Chapter 9 describes the experiments we have performed and presents our

findings. Finally, Chapter 10 contains a brief description of the software used for

the experiments. The Conclusion gives an overview of accomplished results and

some ideas for future work.

6

Figure 1 Merged screenshots of the hotel title, hotel “About” section and two reviews
of the Tripadvisor page for the Days Inn by Wyndham Memphis hotel [2].

7

8

Chapter 1

Preliminaries

In order to fully understand the content of this thesis, a basic understanding

of artificial neural networks, as covered by introductory courses, is necessary.

It is also recommended to have some ideas about what Convolutional Neural

Networks (CNNs) are and how the backpropagation through time algorithm

works.

1.1 Notation
Let us first begin with a few notational conventions we will use in this thesis.

• Vectors are represented by lowercase boldface letters, like x, yn, or xe
.

• Matrices are represented by uppercase boldface letters: X, W. Symbols

from greek alphabet can also be used: Θu,v, Λ.

• The n-th power of matrix W is represented by Wn
. The usage of the

superscript has the following exceptions:

– if the superscript is the letter T , as in WT
, we mean the transposition

of the matrix,

– if the superscript is the bold letter e, as in Xe
, we simply mean another

matrix,

– if the superscript is inside parentheses, for example H(t)
, we yet again

mean another matrix (that is H(t1)
and H(t2)

are two matrices that

may be completely unrelated). This notation is also used for scalars

and vectors, such as d(t)
or h(t)

.

9

• The i-th element of vector x is denoted by (x)i. Usually, i ∈ N, but a
different indexing set may sometimes make sense. For example, if x is a

vector of graph node features, the element corresponding to the node v is

denoted by (x)v (not to confuse with xv , which is a whole vector that may

somehow correspond to the node v).

• Similarly, (X)i,j is the element at the i-th row and j-th column of the matrix

X, and (X)u,v is the matrix element that corresponds to the pair of nodes

u, v (may be used for graph adjacency matrices).

• By (X)i,: and (X):,j we mean the i-th row and j-th column of matrix X,

respectively.

• By x ∈ X we mean that the vector x is a column in the matrix X.

• If set is a set of indexes, Xset is the submatrix of X containing only columns

with indexes from the set set.

• If V is a set and n ∈ N, the symbol

(︂
V
n

)︂
represents the set of all subsets of

V that are of cardinality n, that is
(︂

V
n

)︂
= {V ′ ⊆ V | |V ′| = n}. Note that⃓⃓⃓(︂

V
n

)︂⃓⃓⃓
=
(︂

|V |
n

)︂
.

1.2 Basic definitions
Definition 1 (Graph). An (undirected) graph G is the tuple G = (V, E), where
V is a finite nonempty set of graph nodes, and E ⊆

(︂
V
2

)︂
is the set of edges. We

will use notation vi for nodes (vi ∈ V) and eij for edges (eij = {vi, vj}). The set
ne(v) = {u ∈ V | {u, v} ∈ E} is the set of neighbors of node v, while the set
co(v) = {e ∈ E | ∃u ∈ V : e = {u, v}} is the set of edges ending in v. The degree
of node v is deg(v) = |ne(v)|.

Often it makes sense for the edges of a graph to have a direction.

Definition 2 (Directed Graph). A directed graph G is the tuple G = (V, E), where
V is a finite nonempty set of graph nodes and E ⊆ V × V is the set of directed

edges. The same notation as in undirected graphs is used for nodes and edges, with

the exception that eij = (vi, vj).

Definition 3 (Weighted Graph). A weigthed graph is a triplet G = (V, E, W),
where W ∈ R|V |×|V |

is the weigthed adjacency matrix, a non-negative symmetric

matrix encoding weights of the edges. The diagonal degree matrix D of a weighted

graph is defined as (D)i,i = deg(vi) = ∑︁
j (W)i,j .

10

The weights of a weighted graph can be interpreted in multiple ways, for

example:

• as distances—the greater the weight of an edge, the closer its nodes are to

each other,

• as probabilities—the weight of an edge is proportional to the probability of

going through this edge in a random walk.

Since in most cases we also want the graph to carry additional information

attached to its nodes and (or) edges, we also need to define the so-called graph

feature matrices.

Definition 4 (Graph Feature Matrices). Let G = (V, E) be a graph, and let

dV , dE ∈ N be node and edge features dimensions, respectively.

The matrixX ⊂ RdV ×|V |
is the node feature matrix of graphG, with the column

vector xv ∈ X representing the feature vector of node v.
The matrix Xe ⊂ RdE×|E|

is the edge feature matrix of graph G, with the

column vector xe
u,v ∈ Xe

representing the feature vector of edge (u, v).
We denote by Xne(v) the submatrix of X containing only features of neighbors of

node v, and by Xe
co(v) the submatrix of Xe

containing only features of edges ending

in node v.

11

12

Chapter 2

Social Network Analysis

Social Network Analysis (SNA) is a field of study that focuses on the connections

and relationships between individuals or groups within a social system and on

finding and extracting patterns in these connections.

It is worth mentioning that SNA was performed even before the advent of

computers [3]. At that time, it was typically done through the use of manually

collected data and qualitative methods such as interviews and observations. These

allowed researchers to gain insight into the patterns and structures of social

relationships, as well as the influence and dynamics within social groups.

With computers and the development of sophisticated software tools, SNA

has become increasingly quantitative and data-driven. This has led to a greater

understanding of the role that social networks play in various social, economic,

political and even biological systems.

The main focus of SNA is a social network, which is a graph of actors (nodes)

and relationships between the actors (edges). Both actors and their relationships

may carry various additional information. The relationships, for example, can

be directed
1
or undirected

2
, they may carry weight or distance, which usually

represents how strong the relationship is.

Although most social networks evolve in time (dynamic social networks), a

researcher may be focused only on a snapshot of the social network. In this case,

the social network is called a static social network.

Definition 5 (Static Social Network). A (static) social network is a tuple

(V, E, aV , aE), where

• (V, E) is a graph of actors and relationships between them (directed or undi-

rected),

1
Such as the “follow” relation on various social websites (Twitter, ...).

2
Such as the “friendship” relation on various social websites (Facebook, ...).

13

• aV : V → AV is a function assigning attributes to actors from the set of actor

attributes AV , and

• aE : E → AE is a function assigning attributes to edges from the set of edge

attributes AE .

If the only relevant attribute is edge weight (AV = {∅}, AE = R+
), the network

can also be represented by a weighted graph (V, E, W).

Definition 6 (Dynamic Social Network). A dynamic social network on the set of

actors V is a finite sequence of static social networks {(Vi, Ei, aV,i, aE,i)}t
i=1, with

Vi ⊆ V for all i ∈ {1, . . . , t}.

Some social networks may only allow relationships between certain actors. A

bipartite social network, for example, has two types of actors, and relationships

may only exist between the different actor types.

Definition 7 (Bipartite Social Network). A bipartite social network is a social

network where the set of actors V is a union of two disjoint sets V1 and V2 such

that for all edges {u, v} ∈ E (or (u, v) ∈ E in case of a directed network), we have

u ∈ Vi and v ∈ Vj , with i ̸= j.
Formally, it is a tuple (V1, V2, E, aV1 , aV2 , aE), where

• V1 and V2 are the disjoint sets of actors,

• (V1 ∪ V2, E) is a bipartite graph (directed or undirected) with partitions V1
and V2,

• aV1 : V1 → AV1 and aV2 : V2 → AV2 are the actor attribute assigning

functions, and

• aE : E → AE is the edge attribute assigning function.

In this thesis, we will work with a bipartite social network. Because several of

the data extraction experiments we will be doing are impossible for such networks,

we will employ the technique of bipartite network projection [4], which transforms

a bipartite network into a monopartite network by discarding one type of actors

and collapsing pairs of edges with a common discarded actor together. The

attributes from the collapsing pair of edges and the discarded actor are combined

together through an attribute-combining function, which must be specified. Since

there may be multiple such pairs of edges that collapse onto the same edge in the

monopartite projection, the combined attributes need to be aggregated together

via an attribute-aggregating function, which we must also specify beforehand.

14

e

d

c

b

a

4

3

2

1
a

b

cd

e

1

3

3

4

2,3

Figure 2.1 An illustration of bipartite network projection. Left: an undirected bipartite
social network. Edge colors represent edge attributes. Right: projection onto the pink set
of actors. Notice how the edge attributes are combined into multi-color edges of different
thicknesses, with labels from the discarded actors—this illustrates the combination and
aggregation of the discarded node and contracted edge attributes.

Definition 8 (Bipartite Network Projection). Let G = (V1, V2, E, aV1 , aV2 , aE) be
an undirected bipartite social network, and let ne(u) be the set of neighbors of actor
u with respect to edges E.

Furthermore, let p : V2×E×E → Aambient be an attribute-combining function

that combines attributes of actors from V2 with a pair of edge attributes to some

ambient space Aambient, and let f : P (Aambient) → AE′ be an ambient attribute-

aggregating function.

The bipartite network projection of G to the set of actors V1 with respect to

aggregating function f is the network (V1, E ′, aV1 , aE′), where

• for each u, v ∈ V1 we have {u, v} ∈ E ′
if and only if ne(u) ∩ ne(v) ̸= ∅,

• aE′ : E ′ → AE′ is edge attribute function of the projection, with

aE′

(︃
{u, v}

)︃
= f

⎛⎝{︄p
(︃

w, {u, w} , {v, w}
)︃ ⃓⃓⃓⃓

w ∈ ne(u) ∩ ne(v)
}︄⎞⎠.

The above definition is general and therefore may seem a little complicated,

so we give an illustration of bipartite network projection in Figure 2.1. In our

experiments, we will use a simple bipartite network projection, with the edge

attributes in the projection simply counting the number of times the common

relationship is repeated (AE′ = N, p(u, e1, e2) = u and f(U) = |U |).
In the experimental part of this thesis we will be using several measures and

algorithms from the domain of SNA. We give their description in the rest of this

chapter.

15

2.1 Actor centrality
The centrality of an actor measures how “central” it is to the network, or how

influential it is to its neighbors or the network as a whole. For example, individuals

with degrees on the high end of the degree spectrum in a friendship network may

wield significant power, as their opinions and actions are likely to be seen by a

large number of people [5]. Centrality measures are properties of static social

networks.

2.1.1 Degree centrality
The degree centrality [3] of an actor in an undirected social network is defined as

the number of its neighbors divided by maximum number of its neighbors:

CD(u) = deg(u)
|V | − 1 .

Although we will not use them, the related terms for directed networks are degree

prestige, which counts incoming edges, and degree gregariousness, which counts

outgoing edges.

2.1.2 Eigenvector centrality
In many cases, the importance of an actor is directly related to the importance of

its neighbors. This property is captured by the eigenvector centrality [6], which

sums the importance of the neighbors of an actor with a damping factor:

CE(v) = λ−1 ∑︂
u∈ne(v)

CE(u).

The name comes from the fact that the equation can be rewritten into eigenvector

equation Ax = λx, where A is the adjacency matrix of the network.

2.1.3 Katz centrality
Eigenvector centrality can be generalized into Katz centrality, which takes into

consideration also the importance of more distant nodes [7]. It leverages the fact

that the k-th power of the adjacency matrix contains information about the total

number of paths of length k between nodes in a graph and is defined as

CK(v) =
∞∑︂

k=1

∑︂
u∈V

αk
(︂
Ak
)︂

u,v
,

with the restriction α < λ−1
max for the damping factor, where λmax is the largest

eigenvalue of A.

16

2.1.4 Betweenness centrality

Another important centrality measure is the betweenness centrality [3], which

measures how much a node is “between” other nodes. Consider nodes u and

w, and let σu,w be the total number of shortest paths between u and w. Some

of these paths go through the node v, let their number be σv
u,w. Then the ratio

σv
u,w

σu,w
measures how much is v between u and w in the network. The betweenness

centrality of a node v is the sum of these ratios for all node pairs:

CB(v) =
∑︂
u,w

σv
u,w

σu,w

.

The betweenness centrality can also be defined for an edge e, by letting σe
u,w

denote the number of shortest paths between u and w going through the edge e.

2.1.5 Generalizations for weighted graphs

Note that the centralities we have described also make sense for weighted

graphs [8], except for degree centrality, which needs to be redefined to CD(u) =
deg(u), and for betweenness centrality, where instead of weights, we need to

use distances since we are measuring shortest paths. (The distances can be

constructed from weights by taking their reciprocals, among other ways.)

2.2 Community detection
Community detection refers to the process of identifying clusters of actors within

a network which are more closely connected to one another than they are to

the rest of the network (see Figure 2.2). Communities are often characterized

by shared properties (in a network of people, these could be interests, values, or

activities), and their members tend to interact with one another more frequently

than with individuals outside of the community.

Community detection can be accomplished through various techniques, such

as identifying dense clusters of connections within the network or analyzing the

patterns of communication between individuals. The goal of community detection

is to better understand the structure of the network and how information flows

within it, as well as to identify potential influencers or leaders within the different

communities.

In order to quantify the quality of a partitioning provided by a community

detection algorithm, the notion of network modularity [9]

17

Figure 2.2 Illustration of different communities in a network. Edited figure originally
from Data mining: the textbook [5].

2.2.1 Girvan-Newman method
The Girvan-Newman community detection algorithm [10] is based on the idea

of iteratively dividing the network by removing the edge with the highest be-

tweenness centrality as defined in Section 2.1.4. This leverages the assumption

that such an edge lies on many shortest paths between communities. Since the

algorithm truly ends only after all edges are removed, a heuristic that tells when

to stop the algorithm is needed.

One such heuristic is to return the partitioning with the highest network

modularity [9].

Definition 9 (Network Modularity). Let G = (V, E, W) be a weighted graph and

c : V → N be a community assigning function. The network modularity QG,c of

the graph G with communities given by c is defined as

QG,c = 1
2|E|

∑︂
u,v∈V

(︄
(W)u,v −

deg(u) · deg(v)
2|E|

)︄
δc(u),c(v),

where δ is the Kronecker delta symbol (δx,y = 1 if x = y, otherwise δx,y = 0).

The idea behind network modularity is to measure the concentration of edges

within communities as compared to the expected concentration of edges regardless

of communities, by assuming that edges were distributed randomly with given

node degrees. Nonzero values of modularity mean deviation from this expected

randomness. According to Clauset et al. [11], „a value above 0.3 is a good indicator

of significant community structure.”

The Girvan-Newman algorithm can be summarized in these steps:

18

1. Calculate the betweenness centrality for all edges.

2. Remove the edge with the highest betweenness.

3. Recalculate the betweenness centrality for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.

The algorithm has a rather large computational cost O (|E|2|V |) and so may

only be practical in some cases.

2.2.2 Kernighan-Lin bisection method
The Kernighan-Lin algorithm [12] works by first bisecting the graph into two

partitions and then heuristically/greedily swapping batches of pairs of nodes in

an attempt to minimize the sum T of the weights of edges that cross between the

two partitions.

Definition 10 (Kernighan-Lin costs). Let G = (V, E, W) be a weighted graph

and let (A, B) be a balanced partitioning of V , that is A ⊂ V with |A| =
⌊︂

|V |
2

⌋︂
and

B = V \A. For every v ∈ V , let int(v) denote the partition to which v belongs, and

let ext(v) denote the other partition (so int(v) = A and ext(v) = B if v ∈ A, and

vice versa).

For each node v ∈ V , the internal cost Iv of node v is the sum of the weights

of edges between v and its neighbors from int(v), the external cost Ev of node v is

the sum of the weights of edges between v and its neighbors from ext(v), and the
difference Dv is the difference between these costs:

Iv =
∑︂

u∈ne(v)∩int(v)
(W)u,v

Ev =
∑︂

u∈ne(v)∩ext(v)
(W)u,v

Dv = Ev − Iv.

The principal observation is that given a partitioning (A, B) of graph nodes,

the exchange of node a ∈ A with node b ∈ B reduces the sum T by

Told − Tnew = Da + Db − 2(W)a,b.

See Algorithm 1 for the pseudocode of the Kernighan-Lin method.

Since the algorithm partitions the network into two partitions, in order to

detect more communities, it needs to be run iteratively on the detected subparti-

tions. Because this algorithm is heuristic, it may lead to suboptimal partitions,

but nonetheless, it typically produces good results in a relatively short time (the

time complexity of each run is O (|V |2 log |V |)).

19

Algorithm 1 Kernighan-Lin bisection

function Kernighan-Lin(G = (V, E, W))
A, B ← random balanced partitioning of V
repeat

A1, B1 ← A, B
for n← 1 to ⌊|V |/2⌋ do

compute Dv values with An, Bn

find a ∈ An, b ∈ Bn such that gn ← Da + Db−2(W)a,b is maximal

an, bn ← a, b
An+1 ← An \ {a}
Bn+1 ← Bn \ {b}

end for
choose k to maximize gmax = ∑︁k

i=1 gi

if gmax > 0 then
move a1, . . . , ak to B
move b1, . . . , bk to A

end if
until gmax ≤ 0

end function

2.2.3 Louvain method
The Louvain method [13] is another heuristic method for community detection,

also based on the network modularity measure.

The algorithm at first assigns each node to its own community, and then for

each node and each of its neighbors, it calculates how the modularity would

change if the community of the node was changed to that of the neighbor. Af-

terwards, each node’s community is changed to that which mostly increases the

modularity. The nodes of the same community are then contracted into one, and

the algorithm is repeated on the contracted network. This is done until no more

modularity increase is possible.

In steps:

1. Assign each node its own community.

2. For each node, change its community greedily to the community of one of

its neighbors such that the network modularity increase is maximized.

3. Repeat step 2 until no further modularity increase is possible.

4. Contract nodes that are in the same community, thus creating a new graph.

20

5. Repeat steps 1-4 until maximum network modularity is reached.

The Louvain method has been empirically observed to run in O (|V | log |V |),
which is a very good performance, particularly for large graphs.

2.2.4 Discussion
Out of the three community detection methods we have described, we have

chosen to use the Louvain method in our experiments. This is because:

• the Kernighan-Lin method bisects the nodes, and even if we ran it recur-

sively, it still would not be able to find communities of different sizes in a

satisfactory way,

• the Girvan-Newman method is far too slow for the graphs we need it to

work with.

In Figure 2.3, we compare the running times of the Louvain method, one run

of Kernighan-Lin bisection and one partition extraction by the Girvan-Newman

method.

21

0.1

1

10

100

1,000

10,000

100,000

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0.1

1

10

100

1,000

#
of

no
de
s
/e

dg
es

ti
m
e
in

se
co
nd

s

year

Louvain
Kernighan-Lin one bisection

Girvan-Newman first partition
of nodes
of edges

Figure 2.3 Comparison of the running times of the community detection methods as
run on bipartite network projection to hotels of yearly snapshots of our dataset. The
running times are relevant for a Intel Core i7-1185G7 running at 3.00GHz frequency,
with 32 GiB of RAM.

22

Chapter 3

Recurrent Graph Neural Networks
(RecGNNs)

Throughout this thesis, we will be using the taxonomy introduced by Wu et al. in

their comprehensive survey of GNNs [14].

The first category of GNNs we will discuss is the category of Recurrent Graph

Neural Networks (RecGNNs), which extend the ideas of Recurrent Neural Networks

(RNNs) to graphs.

Below, we describe two RecGNN models in more detail, namely GNNs* and

GGNNs. Further variants of RecGNNs include the Graph Echo State Networks

(GraphESNs) [15], Gated Graph Neural Networks (GGNNs) [16] and Stochastic

Steady-state Embeddings (SSEs) [17].

3.1 Graph Neural Network* (GNN*)
In 2005, Gori et al. [18] defined a new neural model (later extended by Scarselli et

al. [19]) for learning on graphs, which they simply called Graph Neural Network.

To avoid confusion with the generic term, Wu et al. [14] refer to them as GNN*,

and in this thesis, we shall do the same. GNN* pioneered graph neural networks

for generic graphs—previous recurrent models were able to handle only some

specific graph classes (e.g., acyclic).

The main idea behind the GNN* model is to compute the next hidden state

of a node from its neighborhood using a learnable contractive local transition

function fw. The contractive property ensures convergence of the hidden state to

a limiting point (by the Banach fixed-point theorem), which, when passed via a

local output function gw, produces output for the node (see Figure 3.1). The node

states thus exchange information recurrently from their neighborhoods until a

stable equilibrium has been found.

23

Figure 3.1 An illustration of how theGNN*model transforms the graph into a recurrent
network, by Scarselli et al. [19]. fw and gw are implemented with Feedforward Neural
Networks.

Let h(t)
v denote the hidden state of node v at time step t, H(t)

the matrix of

all hidden states in time step t and H(t)
ne(v) the submatrix of H(t)

containing only

hidden states of the neighbors of v. GNN* defines a generic way to compute the

next hidden state h(t)
v and output ov of node v, with

h(t)
v = fw(xv, Xe

co(v), Xne(v), H(t−1)
ne(v)) (3.1)

ov = gw(h(t)
v , xv), (3.2)

(We will see from Theorem 1 that the initial hidden states h(0)
v are irrelevant.)

In this most generic form, the hidden state of node v depends on its features,

the features of its neighbors, the features of its edges, and on the previous hidden

states of its neighbors. The generic form of the local transition function also

makes it possible to differentiate the order of the neighbors of a node (the order of

columns in the submatrices). If the order of neighbors is not important, the local

transition function can be implemented as a sum over the neighbors, making it

independent on the order and number of neighbors (i.e., to be of the so-called

nonpositional form):

h(t)
v = fw(xv, Xe

co(v), Xne(v), H(t−1)
ne(v)) (3.3)

=
∑︂

u∈ne(v)
kw(xv, xe

v,u, xu, h(t−1)
u),

where kw is a function implementing message transition from one neighbor.

24

Figure 3.2 An illustration of the unrolled version of the GNN* network from Figure 3.1,
by Scarselli et al. [19].

Given parameters w, a graph G and its node v, the network computes the

output φw(G, v) = gw(h(T)
v , xv), where T is large enough that h(T)

v can be

considered the limit of h(t)
v . The learning set is a set of triplets of the form

(Gi, vi,j, ti,j), where Gi is a graph, vi,j is one of its nodes (multiple nodes can be

trained for one graph), and ti,j is the output to be learned. The learning consists

of minimizing the loss function

ew =
∑︂
i,j

(ti,j − φw(Gi, vi,j))2
(3.4)

by the gradient-descent strategy of the unrolled version of the network (see

Figure 3.2). This can be done due to the GNN* backpropagation theorem, for

which Scarselli et al. also gave proof [19]. The theorem considers the so-called

global transition and global output functions Fw and Gw, respectively, and a

function o, which are just stacked versions (one instance for each graph node) of

the functions fw, gw, and ov, respectively.

Theorem 1 (GNN* backpropagation). Let Fw(H, X, Xe) and Gw(H, X) be the
global transition and global output functions of a GNN*, continuously differentiable

with respect to H and w. Define z(t)(H) as

z(t)(H) = z(t+1)(H) · ∂Fw

∂H
(H, X, Xe) + ∂ew

∂o
· ∂Gw

∂H
(H, X). (3.5)

Then, the limit z(H) = limt→−∞ z(t)(H) converges exponentially and indepen-

dently of initial z(T)(H). Moreover, if H is the fixed point of the hidden state of the

25

GNN*, the following holds for the gradient of the error function

∂ew

∂w
= ∂ew

∂o
· ∂Gw

∂w
(H, X) + z(H) · ∂Fw

∂w
(H, X, Xe). (3.6)

The learning algorithm—which is actually the Almeida-Pineda algorithm [20,

21]—utitlizes these facts in the following steps:

• the forward step: the hidden states H(t)
are recursively updated until they

approach the fixed point H at time step T (the iteration is stopped when the

difference between two consecutive states is less than a threshold, which is

a predefined hyperparameter),

• the backward step: the gradient ∂e(T)
w /∂w is computed utilizing the Equa-

tions (3.5) and (3.6) from Theorem 1 (the recursion in z(t)(H) computation

is stopped the same way like in the forward step),

• the weights w are updated according to the gradient, with a predefined

learning rate, adaptive learning rate, or another common gradient-descent

strategy.

Finally, the local transition and output functions fw and gw need to be im-

plemented. Since the output function gw does not have any restrictions, any

learnable function can be used. The transition function, on the other hand needs,

to be a contraction with respect to hv . Gori et al. proposed two implementations,

both implementing the function kw of the nonpositional form from Equation (3.3):

1. Linear GNN*, with

kw(xv, xe
v,u, xu, hu) = Av,u · hu + bv,

where the matrix Av,u ∈ Rs×s
and vector bv ∈ Rs

are computed by feeding

the attributes x and xe
to two feedforward neural networks (FNNs) ϕw

and ρw. The vector bv is computed directly as the output of ρw, while the

matrix Av,u is computed by arranging the output of the ϕw network into a

matrix and multiplying it by the constant
µ

s|ne(v)| , with µ ∈ (0, 1). Assuming

∥ϕw∥1 ≤ s (which can be ensured by using a bounded activation function,

such as the hyperbolic tangent), we have ∥Av,u∥1 ≤ µ
|ne(v)| , from which it

follows that⃦⃦⃦⃦
⃦ ∂fw

∂Hne(v)

⃦⃦⃦⃦
⃦

1
=

∑︂
u∈ne(v)

⃦⃦⃦⃦
⃦∂kw

∂hu

⃦⃦⃦⃦
⃦

1
=

∑︂
u∈ne(v)

∥Av,u∥1 ≤
∑︂

u∈ne(v)

µ

|ne(v)| = µ,

meaning that fw = ∑︁kw is a contraction in the 1-norm.

26

2. Nonlinear GNN*, where the function kw is implemented by a multilayered

FNN, and the contractive property is forced by adding a penalty term

βL
(︂⃦⃦⃦

∂Fw
∂H

⃦⃦⃦)︂
to the error function in Equation (3.4), with µ ∈ (0, 1) and

L(y) =

⎧⎨⎩y − µ2, if y > µ

0, otherwise.

Note that a positional form can be constructed similarly by implementing fw
as a FNN and adding a penalty term to the error function.

To conclude, we mention that

• the whole scheme defined above can be extended to directed graphs by

adding a binary parameter to the local transition function, describing the

orientation of the given edge,

• it is also possible to have multiple types of edges by adding another cate-

gorical parameter to the local transition function,

• if it is desired to have one output for the whole graph, it can be done by

adding a dummy “super-node”, connected to all the other nodes by a special

type of edge.

3.2 Gated Graph Neural Networks (GGNNs)
There are two disadvantages to the GNN* model:

• the number of iterations in the computation of hidden states is non-fixed,

• the learned parameters w need be constrained by the contraction property.

In 2014, Li et al. [16] came up with a model they called Gated Graph Neural

Network, in which they managed to remove these disadvantages at the cost

of requiring more memory in the learning algorithm. The main idea is to use

Gated Recurrent Units (GRUs) as activation functions to compute the next hidden

states of nodes, unrolling the network into a fixed number of steps and use the

Backpropagation Through Time algorithm for learning instead of the Almeida-

Pineda algorithm.

In order to understand GGNN, we first need to explain GRU, which was

introduced by Cho et. al [22] in 2014 as a simplification of the Long Short Term

Memory (LSTM) unit (which we define later in Definition 26). The idea behind

GRU is that it can adaptively remember and forget. It contains

27

Figure 3.3 An illustration of the GRU unit by Li et al. [22]

• a reset gate r, which, when close to 0, makes the hidden state ignore the

previous hidden state and instead reset with the current input, and thus

can drop information that is found to be irrelevant,

• an update gate z, which controls how much information from the previous

hidden state will go to the current hidden state.

An illustration is included; see Figure 3.3.

Definition 11 (GRU). A Gated Recurrent Unit with input x, previous state h and

learnable parameters w = (Wz, Wr, W, Uz, Ur, U) computes output

GRUw(h, x) = (1− z)⊙ h + z⊙ h̃,

where

z = σ (Wzx + Uzh) ,

r = σ (Wrx + Urh) ,

h̃ = tanh (Wx + U (r⊙ h)) ,

with σ(x) = 1
1+e−x being the logistic sigmoid function, tanh(x) = ex−e−x

ex+e−x the

hyperbolic tangent (these functions are applied element-wise), and ⊙ being the

element-wise (Hadamard) multiplication.

In the Gated Graph Neural Network model, the hidden state of each graph

node v is updated by

h(t)
v = GRU

(︂
h(t−1)

v , AT
ne(v)H(t−1)

)︂
,

where A is a matrix determining how graph nodes communicate with each other,

and Av: a submatrix of A containing only columns relevant for node v. In the

28

most simple case, it can be the graph adjacency matrix, resulting in

h(t)
v = GRU

⎛⎝h(t−1)
v ,

∑︂
u∈ne(v)

h(t−1)
u

⎞⎠ ,

but in general, it can encode more information, for example, different types of

edges. In the beginning, the hidden state of a node is initialized with the node

attribute xv, padded with zeros, i.e. h(0)
v = (xv, 0).

Regarding the output of the network, we have several options:

• We can produce multi-dimensional outputs ov = g
(︂
h(T)

v , xv

)︂
for each node

v (node classification tasks),

• We can apply a softmax function over node “scores” for node selection

tasks, with the scores computed as one-dimensional outputs ov.

• We can produce a representation vector for the whole graph using a neural

network that takes H(T)
and X as inputs.

29

30

Chapter 4

Convolutional Graph Neural
Networks (ConvGNNs)

The success of Convolutional Neural Networks (CNNs) in various tasks naturally

led to the question whether the ideas could be generalized to graphs. The shift

or translational invariance of convolutional filters makes them able to recognize

learned features regardless of their location, which is a property that can be useful

also on graphs, but a generalization of CNNs to graphs that are not regular grids

is not entirely straightforward.

There are two approaches: spectral and spatial. We shall first discuss the

spectral approach, as described, for example, in Bruna et al. [23] or Defferrard

et al. [24], exploiting the results from Spectral Graph Theory and Graph Signal

Processing via which it is possible to design localized convolutional filters on

graphs.

4.1 Spectral ConvGNNs
In the spectral approach, it is not possible to encode arbitrarily dimensional edge

attributes, but it is possible to work with weighted graphs.

In signal processing, the Convolution Theorem
1
says that the convolution in

the spatial domain corresponds to the point-wise multiplication in the spectral

domain (and vice-versa), with the transition to the spectral domain being done by

the Fourier Transform. Thus the convolution of a spatial signal with a given kernel

can be done by transforming them both, point-wise multiplying the transforms,

and then transforming the result back to the spatial domain.

To make this work for graphs, a generalization of the Fourier Transform, the

Graph Fourier Transform, needs to be defined. The idea is to first generalize the

1https://en.wikipedia.org/wiki/Convolution_theorem

31

https://en.wikipedia.org/wiki/Convolution_theorem

Laplace operator ∆ = d2

dx2 (an operator on L2 (R)), which, when decomposed,

yields the Fourier transform (−∆ = F−1Mf2F , whereF is the Fourier transform

operator and Mf2 is the multiplication by f 2
operator, which is basically a

generalization of a diagonal matrix in the L2 (R) space), since its eigenvectors and
eigenvalues are the Fourier modes and squares of associated Fourier frequencies.

In the continuous setting, the Laplace operator can be defined by the relationship

∆ = ∇2
, with ∇ the gradient operator, and by mimicking this relationship, it is

possible to transfer it to the discrete domain. [25, 26] In fact, Hein et al. [27] give

formal proofs for these intuitions.

Definition 12 (Graph Laplacian). Let G = (V, E, W) be a weighted graph, D its

degree matrix, and x ∈ R|V |
a graph signal (a real function with domain V). The

gradient of the signal x is defined as

(∇x)i,j =
√︂

(W)i,j ((x)j − (x)i) .

The graph Laplacian is defined by ∆ = ∇T∇. The following holds:

(∆x)i =
∑︂
i∼j

(W)i,j ((x)j − (x)i) ,

∆ = D−W.

Because diagonalizing the graph Laplacian ∆ would lead to a possibly non-

orthogonal transform operator, we need to normalize the graph Laplacian.

Definition 13 (Normalized Graph Laplacian). The normalized graph Laplacian

matrix L of a weighted graph G = (V, E, W) is defined as

(L)i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i = j and deg(vi) ̸= 0,

− 1√
deg(vi)·deg(vj)

if i ̸= j and (vi, vj) ∈ E,

0 otherwise.

In other words,

L = D− 1
2 ∆D− 1

2 = In −D− 1
2 WD− 1

2 . (4.1)

The normalized Laplacian matrix is a real symmetric positive semidefinite

matrix, and as such, it has a complete set of orthonormal eigenvectors, the graph

Fourier modes, and associated non-negative eigenvalues, the frequencies of the

graph.

Theorem 2 (Normalized Laplacian Diagonalization). The normalized graph Lapla-

cian matrix L can be diagonalized into

L = UΛUT ,

32

where U ∈ R|V |×|V |
is the matrix of eigenvectors (by convention ordered by corre-

sponding values in increasing order), and Λ is the diagonal matrix of corresponding

real eigenvalues. The eigenvectors in matrix U form an orthonormal basis, called

the Fourier basis, and so UT U = In.

The proof of this theorem can be found, for example, in the article by von

Luxburg [28].

Finally, we can define the graph Fourier transform, which is principal in the

construction of a graph convolution using the spectral approach, as explained

above.

Definition 14 (Graph Fourier Transform). Let x ∈ R|V |
be a graph signal (a vector

of graph node attributes), and let U be the Fourier basis from Theorem 2. The graph

Fourier transform x̂ of signal x is defined as

x̂ = F(x) = UT x,

and its inverse as

x = F−1(x̂) = Ux̂.

While the elements of the signalx are indexed by graph nodes (which represent spatial

location), the elements of the transformed signal x̂ are indexed by the eigenvalues of

the Laplacian L (since they are associated with frequency).

Note that similar to how Fourier coefficients encode the smoothness of a

function, the graph Fourier coefficients x̂ encode the smoothness of the graph

signal x.

Definition 15 (Graph Convolutional Operator). Let G be a weighted graph and

U its Fourier basis. The graph convolution ∗G of an input signal x ∈ R|V |
with a

filter g ∈ R|V |
is defined as

x ∗G g = F−1 (F(x)⊙F(g))
= U

[︂(︂
UT x

)︂
⊙
(︂
UT g

)︂]︂
.

Setting gθ = diag
(︂
UT g

)︂
as the diagonal matrix representation of the vector g in

the spectral domain makes away with the Hadamard multiplication (we can use gθ

as the argument for the ∗G operator without causing confusion)

x ∗G gθ = UgθUT x.

We shall use the notation gθ(Λ) to express that the filter is a function with spectral

domain (since it is already transformed).

33

Spectral convolutional graph neural networks all follow this definition to

construct the convolutional layers.

We give one more definition, that of K-localization of a spectral graph filter.

Definition 16 (K-localization). Let gθ be a spectral graph filter, K ∈ N. We say

that the filter gθ is K-localized if for any two graph signals which values differ only

for one node v, the application of the filter gθ to these two signals produces new

signals that have different values only for nodes, which are at most K edges away

from v.
In other words, gθ does not propagate any information from node v to nodes that

are more than K edges away.

4.1.1 Spectral CNN
Bruna et al. [23] define their Spectral CNN by simply assuming that the filters gθ

are sets of learnable parameters.

The graph convolution operator can be applied only to one-channel node

features (x ∈ R|V |
), but in general the node feature matrix may describe multiple

feature channels per node (X ∈ R|V |×f
, where f is the number of node feature

channels). Spectral methods solve this by interpreting the multiple channels as

different graph signals, and they learn one convolutional filter per each input-

output feature channel pair. The convolution itself is computed by summing these

convolutions together.

Definition 17 (Spectral CNN). Let G = (V, E, W) be a weighted graph with

Fourier basis U. Let T be the number of hidden layers, ft the number of node feature

channels at layer t, X ∈ R|V |×f0
the input node feature matrix, and let there be one

convolutional filter Θ(t)
i,j ∈ R|V |

per each layer t ∈ {1, . . . , T}, layer input feature
channel i ∈ {1, . . . , ft−1} and output feature channel j ∈ {1, . . . , ft}.

The Spectral CNN output for the j-th output feature of the t-th hidden layer is

defined as

(︂
H(t)

)︂
j,:

= h

⎛⎝ft−1∑︂
i=1

(︂
H(t−1)

)︂
i,:
∗G Θ(t)

i,j

⎞⎠
= h

⎛⎝ft−1∑︂
i=1

UΘ(t)
i,j UT

(︂
H(t−1)

)︂
i,:

⎞⎠ ,

with H(0) = X and h a nonlinear activation function (i.e. the logistic sigmoid σ,
ReLU, ...).

This general definition suffers from the fact that the number of learnable

parameters is far too large, and the learned parameters are completely dependent

34

on the graph structure. In fact, each filter requires |V | parameters for the convo-

lution, making the convolution global on the whole graph, whereas the classical

Convolutional Neural Networks usually use convolution filters far smaller (and

of constant size) than the input, since the idea is to learn local features.

To reduce the number of parameters, Bruna et al. propose to use only the first

d eigenvectors of the Laplacian, which correspond to the lower frequencies and

thus carry only the smoother geometry. This is done by replacing the basis U in

the above formula by its first d columns, Ud. The parameter d is determined by a

cutoff frequency hyperparameter—only those eigenvectors shall be used which

correspond to eigenvalues lower than the cutoff frequency. This still leaves the

number of parameters depend on the size of the input graph, though.

To make the number of parameters constant, Bruna et al. further propose to

restrict the spectral multipliers Θ(t)
i,j to smooth functions with a constant number

of parameters (for example, cubic splines with qk coefficients). The idea behind

the reason to use smooth multipliers comes from the fact that on Euclidean grid,

the smoothness of a function in the spectral domain translates into locality/decay

of the function in the spatial domain, thus further making this approach similar

to conventional CNNs with local filters.

4.1.2 ChebNet

Even with a constant number of learnable parameters, the Spectral CNN model

still suffers from the fact that the learned filters cannot be used on a graph with a

different structure. This is because the filters do not depend on the graph structure;

their parameters are learned for one static graph. A method how to overcome

this issue was given by Defferrard et al. [24] with their Chebyshev Spectral CNN

(ChebNet) model.

ChebNet begins by making the filter depend polynomially on the actual graph

structure, represented by Λ, with

gθ(Λ) =
K∑︂

k=0
θkΛk,

where θk are learnable parameters and K is a hyperparameter. This definition

also makes the filter K-localized, as proven by Hammond et al. [29]. Because

the convolution operation x ∗G gθ = UgθUT x has computational cost O (|V |2),
ChebNet further speeds it up by allowing to compute it recursively, which is done

35

by representing the filter in the Chebyshev basis
2
as

gθ(Λ) =
K∑︂

k=0
θkTk

(︂ ˜︁Λ)︂ ,

where Tk(x) are the Chebyshev polynomials (T0(x) = 1, T1(x) = x, Tk(x) =
2xTk−1(x)− Tk−2(x)) and the parameter

˜︁Λ is Λ mapped to the interval [−1, 1]3
with

˜︁Λ = 2Λ/λmax − In. Then the convolution can be expressed as

x ∗G gθ(Λ) = Ugθ(Λ)UT x

= U
(︄

K∑︂
k=0

θkTk

(︂ ˜︁Λ)︂)︄UT x

=
K∑︂

k=0
θkU Tk

(︂ ˜︁Λ)︂UT x

=
K∑︂

k=0
θkTk

(︂˜︁L)︂x

=
K∑︂

k=0
θk˜︁xk,

where
˜︁L = U ˜︁ΛUT = 2L/λmax − In and ˜︁xk = Tk

(︂˜︁L)︂x. The second to last

simplification is possible because in the expanded Tk polynomial, the
˜︁L matrix

occurs only in integer powers, and

˜︁Lk = U ˜︁ΛUT U ˜︁ΛUT · · ·U ˜︁ΛUT = U ˜︁ΛIn
˜︁ΛIn · · · In

˜︁ΛUT = U ˜︁ΛkUT .

Because of the recursive definition of the Chebyshev polynomials, ˜︁xk can be

computed as ˜︁xk = 2˜︁L˜︁xk−1 − ˜︁xk−2. The multiplication by
˜︁L is O (|E|) and it is

done K-times, so the whole convolution computation is done inO (|E|K), which
is far better for sparse graphs than O (|V |2).

Finally, to allow for multiple node feature channels, the ChebNet network is

composed the same way as Spectral CNN (see Definition 17).

4.1.3 Graph Convolutional Network (GCN)
To reduce the overfitting problem on networks with very wide node degree dis-

tributions, Kipf and Welling [30] introduced the Graph Convolutional Network

2
This is possible because the Chebyshev polynomials form an orthogonal basis in the Hilbert

space with inner product ⟨f, g⟩ =
∫︁ 1

−1 f(x)g(x)
(︁
1− x2)︁−0.5 dx.

3
With x ∈ [−1, 1], the output Tn(x) is also bounded, Tn(x) = cos (n arccos x).

36

(GCN), a first-order approximation to ChebNet. With K = 1 and the approxima-

tion λmax ≈ 2, the graph convolution is simplified to

x ∗G gθ′(Λ) ≈ θ′
0x− θ′

1 (L− In) x
= θ′

0x− θ′
1D− 1

2 WD− 1
2 x.

(The approximation λmax ≈ 2 is justified by the expectation that neural network

parameters can adapt to such a change in scale.)

To reduce the overfitting problem even more, GCN further constrains the

number of parameters with θ = θ′
0 = −θ′

1, yielding

x ∗G gθ(Λ) ≈ θ
(︂
In + D− 1

2 WD− 1
2
)︂

x.

Because the eigenvalues of the matrix on the right-hand side are in the interval

[0, 2], repeated multiplication by this matrix can be numerically unstable. GCN

solves this problem by introducing a renormalization trick: let
˜︂W = W + In,(︂˜︂D)︂

i,i
= ∑︁

j

(︂˜︂W)︂
i,j
, and change In + D− 1

2 WD− 1
2 to

˜︂D− 1
2 ˜︂W˜︂D− 1

2 .

Since each node feature channel now has only one parameter, the general-

ization to multiple node feature channels can now be expressed with a simpler

equation than in Spectral CNN.

Definition 18 (GCN layer). Let G = (V, E, W) be a weighted graph, H(t−1) ∈
R|V |×ft−1

the input node feature matrix and Θ(t) ∈ Rft−1×ft
the matrix of learnable

parameters. The t-th GCN layer output H(t) ∈ R|V |×ft
is defined as

H(t) = h
(︂
WH(t−1)Θ(t)

)︂
, (4.2)

where W = ˜︂D− 1
2 ˜︂W˜︂D− 1

2 , ˜︂W = W+In,
(︂˜︂D)︂

i,i
= ∑︁

j

(︂˜︂W)︂
i,j

and h is a nonlinear

activation function.

4.2 Spatial ConvGNNs
Recall that in a conventional CNN, a convolutional filter centered around a given

neuron is applied by multiplying it with the inputs from the central neuron and

neurons from its neighborhood. In fact, images, for example, can be interpreted as

grid graphs, where each pixel is a node that is connected to its neighboring pixels.

A 3× 3 convolutional filter then takes the information from these pixels/nodes

and passes it to the central node in the next layer. Spatial-based methods are a

generalization of this idea: they propagate information from neighboring nodes

along the edges of the graph.

37

We have, in fact, already described one spatial ConvGNN: because ChebNet of

order K is K-localized and GCN is a first-order approximation of ChebNet, GCN

is 1-localized, which means that the GCN convolution, defined by Equation (4.2),

aggregates information only from the immediate neighbors, and can be also

expressed as

h(t)
v = h

⎛⎝(︂Θ(t)
)︂T
·

⎛⎝ ∑︂
u=v or u∈ne(v)

(︂˜︂A)︂
v,u

h(t−1)
u

⎞⎠⎞⎠ .

In this section, we shall describe some of the spatial ConvGNN approaches.

4.2.1 Message Passing Neural Network (MPNN)

Introduced by Gilmer et al. [31], MPNN generalized several of at that time exist-

ing message-passing models by abstracting commonalities between them, and

therefore, MPNN can be considered a general framework for a wide class of

spatial ConvGNNs. In this general framework, messages to a node are passed

directly along the edges from its neighbors, transformed with message function

M (t)
, accumulated, and applied to the given node with update function U (t)

.

Definition 19 (MPNN). Let G = (V, E) be a graph, X and Xe
its node and edge

feature matrices, T the number of hidden layers and t ∈ {1, . . . , T}. The output
of the t-th hidden layer of a MPNN network on graph G is defined for each node

v ∈ V as

h(t)
v = U (t)

⎛⎝h(t−1)
v ,

∑︂
u∈ne(v)

M (t)
(︂
h(t−1)

v , h(t−1)
u , xe

vu

)︂⎞⎠ ,

where M (t)
and U (t)

are general message and update functions of layer t with
learnable parameters, and h(0)

v = xv.

Moreover, for whole graph-level prediction, the output of the last layer T is

passed via a general readout function R with learnable parameters to compute the

prediction as

hG = R
(︂
HT

)︂
.

By choosing concrete implementations of the general message, update and

readout functions we get a concrete model. In fact, it is even possible to construct

the GGNN model described in Section 3.2.

38

4.2.2 GraphSAGE
When the spectrum of node degrees is large enough (in citation networks, for

example, there are nodes with thousands of neighbors), the computation footprint

may increase too much to be practical. An approach to solve this problem was

given by Hamilton et al. [32] in their GraphSAGE (SAmple and aggreGatE) model.

In this approach, a fixed-size uniformly random sample of neighbors is first

generated for each node, per each hidden layer. Afterward, only the neighbors

from the sample are allowed to pass the messages to the given node, and the

messages are aggregated together with an aggregation function.

Definition 20 (GraphSAGE). LetG = (V, E) be a graph, X its node feature matrix,

T the number of hidden layers, t ∈ {1, . . . , T} and S(t) ∈ N the size of the neighbors

sample at layer t. Let S(t)
v be an uniformly selected random sample of neighbors

of node v ∈ V , generated independently for each layer t, with
⃓⃓⃓
S(t)

v

⃓⃓⃓
= S(t)

. The

output of the t-th hidden layer of the GraphSAGE network on graph G is defined for

node v ∈ V as

h(t)
v = h

(︂
Θ(t) · f (t)

(︂
h(t−1)

v ,
{︂
h(t−1)

u |u ∈ S(t)
v

}︂)︂)︂
,

where f (t)
is a aggregation function, h is a nonlinear activation function, Θ(t)

is a

matrix of learnable parameters and h(0)
v = xv.

The aggregation functions f should be invariant to the permutation of the

neighbors but must not necessarily be. The authors examined the following

aggregation functions f (hv, {hu |u ∈ Sv}):

• mean aggregator, with

mean ({hv} ∪ {hu |u ∈ Sv}) ,

where mean is the element-wise mean operator,

• learnable pooling aggregator, with

hv ∥max ({h (Θpoolhu + b) |u ∈ Sv}) ,

where Θpool and b are learnable parameters, h is a nonlinear activation

function, max is the element-wise max operator and ∥ is the concatenation
operator,

• LSTM aggregator, where the non-symmetricity is adapted to by training

on a random permutation of node neighbors. We give a definition for the

LSTM unit later in Section 6.1.

39

In their experiments with citation network and Reddit post datasets, the

authors found that increasing T beyond 2 gives only marginal performance

increase, and with T = 2 and S(1) · S(2) ≤ 500, the approach gives reasonably

high performance.

4.2.3 Graph Attention Network (GAT)

Because the importance of messages passed to a node from its neighbors may

not necessarily be uniform, a mechanism which could learn to determine the

importance was proposed by Veličković et al. [33].

In their Graph Attention Network framework, the network learns to pay

different attention coefficients ev,u, which indicate the importance of node u’s
features to node v, with ev,u = a (Θhv, Θhu), where Θ is a weight matrix and

a is the shared attention mechanism implemented by a single-layer FNN. The

attention coefficients of a given node are normalized with the softmax function

so that they can be comparable across different nodes.

Definition 21 (Normalized Attention Coefficients). Let G = (V, E) be a graph,
f, f ′ ∈ N, a ∈ R2f

, Θ ∈ Rf×f ′
and hv ∈ Rf ′

for every v ∈ V .

The normalized attention coefficients of node v ∈ V are defined for each u ∈
ne(v) or u = v as

αv,u,Θ,a = exp (ev,u,Θ,a)∑︁
w∈ne(v) exp (ev,w,Θ,a) ,

with

ev,w,Θ,a = LeakyReLUβ

(︂
aT · (Θhv ∥Θhw)

)︂
,

where LeakyReLUβ is a nonlinear activation function, defined for β ∈ (0, 1) as

LeakyReLUβ(x) =

⎧⎨⎩x, x ≥ 0
βx, x < 0

To make the attention mechanism more robust, GAT employs what they call

multi-head attention, where several attention heads are used in a single hidden

layer. Thus the network can be made to learn different kinds of attention paid.

Definition 22 (GAT layer). Let G = (V, E) be a graph,
{︂
hv ∈ Rf | v ∈ V

}︂
the set

of input node embeddings of dimension f ∈ N and K ∈ N the number of attention

40

heads. The output h′
v of a GAT layer on graph G for node v is given by

h′
v =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K⃦⃦⃦
k=1

h

⎛⎝ ∑︂
u∈Nv

αv,u,k,Θ(k),a(k)Θ(k)hu

⎞⎠ , for non-last layer,

h

⎛⎝ 1
K

K∑︂
k=1

∑︂
u∈Nv

αv,umk,Θ(k),a(k)Θ(k)hu

⎞⎠ , for last layer,

(4.3)

where ∥ is the concatenation operator, Nv = ne(v) ∪ {v}, Θ(k)
is the learnable

parameter matrix of the k-the attention head, αv,u,k,Θ(k),a(k) are the normalized

attention coefficients of the k-th attention head and h is a nonlinear activation

function.

Notice that if single-head attention is used for all layers (K = 1), the cases in
Equation (4.3) are identical.

The GAT network itself is composed of GAT layers as defined in Definition 22,

with the node feature matrix X taken as the input to the first hidden layer.

41

42

Chapter 5

Graph Autoencoders

In this chapter we describe two models of graph autoencoders. Further vari-

ants include, for example, the Deep Neural Network for Graph Representations

(DNGR), Structural Deep Network Embedding (SDNE), or Adversarially Regularized

Variational Graph Autoencoder (ARGVA), but we will not discuss them.

Recall that an autoencoder is a pair (enc,dec) of artificial neural networks,
the encoder and the decoder, which is used to learn efficient representations of

input data by minimizing the difference between the original input, and the

decoded regeneration. They have proven effective many tasks, for example in

dimensionality reduction and anomaly detection, but also in image denoising.

A graph autoencoder is a deep neural framework which embeds graph nodes

(or whole graphs) into latent vector spaces and then reconstructs from these latent

embeddings some of the information from the original graph (for example link

prediction). It can be used for learning node embeddings which preserve node

topological information (these are called network embeddings). It can also be used

for graph generation, but in this thesis we will omit this topic.

In general, the encoder half of a graph autoencoder is some kind of graph

neural network, while the decoder may be implemented as a simple inner product

of the node embeddings, or some kind of feedforward neural network.

5.1 Graph Autoencoder* (GAE*)

Introduced by Kipf and Welling [34], the Graph Autoencoder* (the * symbol is

added to avoid confusion with the generic term) leverages the GCN model from

Section 4.1.3 for encoding by using two GCN layers, with the first layer using the

ReLU activation function. GAE* aims to decode the original adjacency matrix

via a inner product of the node embeddings.

43

Definition 23. GAE* Let G = (V, E) be a graph with adjacency matrix A and

node feature matrix X. The GAE* node embeddings of G for X are defined as

Z = enc(X, A) = GCN(X, A) = A ReLU
(︂
AXΘ(1)

)︂
Θ(2), (5.1)

where Θ(1)
and Θ(2)

are learnable parameter matrices and A is the renormalized

adjacency matrix from Definition 18.

The GAE* reconstruction from the embeddings Z is defined as

Â = dec(Z) = σ
(︂
Z · ZT

)︂
, where σ is the logistic sigmoid activation function.

During the training phase, GAE* tries to minimize the negative cross-entropy

loss between the original adjacency matrix A and the reconstructed adjacency

matrix Â.

The GAE* network can be used for link prediction by training with a dis-

torted input adjacency matrix (with some of the links removed), while trying to

reconstruct the original adjacency matrix.

5.2 Variational Graph Autoencoder (VGAE)
A more elaborate version of GAE* was introduced in the same paper that is

capable of learning the distribution of node features. This version is called the

Variational Graph Autoencoder.

VGAE assumes that the node embeddings zv are random variables. The

encoder, instead of producing a point node embedding directly, first produces

multivariate Gaussian distribution parameters µv and σv, and then generates

random samples for node embeddings from these distributions.

Definition 24. VGAE Let G = (V, E) be a graph with adjacency matrix A and

node feature matrix X. The VGAE encoder produces node embedding Gaussian

distributions with parameters computed as

µ = GCNµ(X, A),
ln σ = GCNσ(X, A),

where µ and σ are the matrices of mean vectors and standard deviation vectors for

each node v and GCNµ and GCNσ are defined as GCN from Equation (5.1).

The encoder then samples random node embeddings zv for every node v ∈ V
from the generated distribution q (zv |X, A) = N (µv, diag (σ2

v)).

44

The VGAE decoder generates probability distribution p for the adjacency matrix

defined as

p(A |Z) =
∏︂

v,u∈V

p (Av,u | zv, zu) ,

p (Av,u = 1 | zv, zu) = σ
(︂
zT

v zu

)︂
,

where σ is the logistic sigmoid function.

Definition 25 (KL divergence). The Kullback-Leibler (KL) divergence between two

probability distributions with density functions p and q defined on probability space

X is defined as

DKL (p ∥ q) =
∫︂

X
p(x) ln

(︄
p(x)
q(q)

)︄
dx.

The KL divergence is non-negative and measures the difference between the two

distributions, with DKL (p ∥ q) = 0 if and only if p = q.

VGAE learns by minimizing a loss function which consists of two parts:

• the binary cross-entropy between the original adjacency matrix and the

generated adjacency matrix distribution,

• the KL divergence between the prior distribution p(Z) = ∏︁
v∈V N (0, In)

and the generated (posterior) distribution

q (Z |X, A) =
∏︂
v∈V

q (zv |X, A) .

This is done so that after training, the learned distribution for the zv vari-

ables is close to the standard normal distribution N (0, In). The KL diver-

gence for this case reduces to a simple formula

DKL (q (zv |X, A) ∥N (0, In)) = 1
2sum

(︂
σ2

v + µ2
v − 1− ln

(︂
σ2

v

)︂)︂
,

where the sum operator sums the vector elements, and the squaring and

logarithm are done element-wise.

5.3 Discussion
Both the GAE* and VGAE networks can be used for link prediction through

training with a distorted adjacency matrix as input while trying to reconstruct

the original undistorted adjacency matrix. The distorted adjacency matrix is

constructed by removing random links from the original matrix.

In our experiments, we will use several variants of GAE for link label predic-

tion.

45

46

Chapter 6

Spatial-temporal Graph Neural
Networks (STGNNs)

The last category of GNNs we will discuss is the category of Spatial-temporal

Graph Neural Networks (STGNNs), which are suited to problems that can be

modeled by graphs that are dynamic in time. Examples of such problems include,

among others

• prediction of the spread of disease through a population [35],

• traffic congestion forecasting [36].

In this chapter, we will focus on two types of the Graph Convolutional Re-

current Network (GCRN) model, introduced by Seo et al. [37] in 2016. Further

variants of the STGNN category include the Diffusion Convolutional Recurrent

Neural Networks (DCRNNs), Structural RNNs, Spatial Temporal Graph Convolu-

tional Networks (ST-GCNs) and Adaptive Graph Convolutional Recurrent Networks

(AGCRNs).

6.1 GCRN-LSTM
The GCRN-LSTM model combines the ChebNet convolution defined in Sec-

tion 4.1.2 with the recurrent neural unit LSTM.

The LSTM unit was introduced by Hochreiter and Schmidhuber back in

1997 [38]. Although we have already mentioned it in the thesis, we will only now

provide the definition.

Definition 26 (LSTM). A Long Short-Term Memory unit with input x ∈ Rdx
,

previous state

(︂
h(t), c(t)

)︂
∈ Rdh × Rdh

and learnable parameters Wf , Wi, Wo,

47

σ σ tanh σ

× +

× ×

tanh

c(t)

h(t)

x(t)

c(t+1)

h(t+1)

h(t+1)

Figure 6.1 An illustration of the LSTM unit.

Wc ∈ Rdh×dx
, Uf , Ui, Uo, Uc ∈ Rdh×dh

, and bf , bi, bo, bc ∈ Rdh
, computes next

state

LSTM
(︂
x,
(︂
h(t), c(t)

)︂)︂
=
(︂
h(t+1), c(t+1)

)︂
,

where

f = σ
(︂
Wfx + Ufh(t) + bf

)︂
i = σ

(︂
Wix + Uih(t) + bi

)︂
o = σ

(︂
Wox + Uoh(t) + bo

)︂
˜︁c = tanh

(︂
Wcx + Uch(t) + bc

)︂
c(t+1) = f ⊙ c(t) + i⊙ ˜︁c
h(t+1) = o⊙ tanh

(︂
c(t)

)︂
,

with σ being the logistic sigmoid function.

The vectors f , i, o and ˜︁c are called the activation vectors of forget gate, input/up-

date gate, output gate and cell input, respectively. The vector c(t) is called cell

state, which we can omit in practice from the argument and return value since it is

supposed to be remembered by the cell.

An illustration of the LSTM unit can be seen in Figure 6.1.

The GCRNmodel combines the LSTM unit with the ChebNet spectral convolu-

tional GNN by simply the matrix multiplication of the learnable LSTM parameters

to the ChebNet graph convolutional operator. Take, for example, the multiplica-

tionWfx, and consider changing it toWf ∗Gx, where ∗G is a graph convolutional

48

operator. This can be done for a multi-channel graph signal as a described in

Definition 17, but the dimensionality of Wf needs to change from dh × dx to

K×dh×dx, because we need to learn one graph convolutional filter for each pair

of input-output channels, and K ∈ N is the number of real parameters needed to

represent one ChebNet filter with degree K .

Definition 27 (GCRN-LSTM). Let G = (V, E) be a (potentially weighted) graph,

let K ∈ N be the hyperparameter for the ChebNet graph convolution, let X ∈
Rdx×|V |

be graph node attributes dx ∈ N channels, and let dh ∈ N be the number

of hidden state channels.

The GCRN-LSTM graph neural unit for graphGwith hidden state

(︂
H(t), C(t)

)︂
∈

Rdh×|V | × Rdh×|V |
and learnable parameters Wf , Wi, Wo, Wc ∈ RK×dh×dx

, Uf ,

Ui, Uo, Uc ∈ RK×dh×dh
, and bf , bi, bo, bc ∈ Rdh

, computes next hidden state

GCRNLSTM
(︂
X,
(︂
H(t), C(t)

)︂)︂
=
(︂
H(t+1), C(t+1)

)︂
,

where

F = σ
(︂
Wf ∗G X + Uf ∗G H(t) + bf

)︂
I = σ

(︂
Wi ∗G X + Ui ∗G H(t) + bi

)︂
O = σ

(︂
Wo ∗G X + Uo ∗G H(t) + bo

)︂
˜︁C = tanh

(︂
Wc ∗G X + Uc ∗G H(t) + bc

)︂
C(t+1) = F⊙C(t) + I⊙ ˜︁C
H(t+1) = O⊙ tanh

(︂
C(t)

)︂
,

with σ being the logistic sigmoid function.

6.2 GCRN-GRU
The same process as is used in the construction of the GCRN-LSTM model from

ChebNet and LSTM can also be used for the GRU recurrent unit, which we have

described in Section 3.2.

Definition 28 (GCRN-GRU). Let G = (V, E) be a (potentially weighted) graph, let
K ∈ N be the hyperparameter for the ChebNet graph convolution, let X ∈ Rdx×|V |

be graph node attributes dx ∈ N channels, and let dh ∈ N be the number of hidden

state channels.

The GCRN-LSTM graph neural unit for graph G with hidden state H(t) ∈
Rdh×|V |

and learnable parameters Wz , Wr, W ∈ RK×dh×dx
and Uz , Ur, U ∈

49

RK×dh×dh
computes the next hidden state

GCRNGRU
(︂
X, H(t)

)︂
= H(t+1),

where

Z = σ
(︂
Wz ∗G X + Uz ∗G H(t)

)︂
,

R = σ
(︂
Wr ∗G X + Ur ∗G H(t)

)︂
,˜︂H = tanh

(︂
W ∗G X + U ∗G

(︂
R ⊙H(t)

)︂)︂
,

H(t+1) = (1− Z)⊙H(t) + Z⊙˜︂H,

with σ being the logistic sigmoid function.

50

Chapter 7

Visualisation methods

In order to get some insight into what the GNNs do with the high-dimensional

graph data, some visualization techniques that reduce the data dimensionality to

two or three dimensions are explored in this chapter. A comparison of how these

methods transform the MNIST handwritten digit dataset is given in Figure 7.1.

Note that unlike the Principal Component Analysis method (PCA, which we do

not describe since we consider it elementary), all the methods described here are

nonlinear.

In this chapter, the matrix X = (x1 · · · xn) ∈ Rf×n
will represent the data

points that are to be dimensionality-reduced by the described methods, and

Y = (y1 · · · yn) ∈ Rf ′×n
will represent the points after reduction.

7.1 Spectral Embedding
We begin with the Spectral Embedding method, also called Laplacian Eigen-

maps [39].

First, we construct a weighted graph G = (X, E, W). The nodes of this graph
represent the data points, and edges exist between them either if the points are

close enough to each other (∥xi − xj∥2 ≤ ϵ) or if at least one of the points belongs
to the k-nearest neighborhood of the other point.

1
The original paper mentions

two ways on how to produce the weights:

• we can use the radial basis function kernel with hyperparameter γ, as

(W)i,j = exp
(︂
−γ ∥xi − xj∥2

)︂
,

• or we can simply assign 0 or 1 depending on whether there is an edge.

1ϵ and/or k are hyperparameters.

51

Next, we will consider only the first row of the embedding Y as vector z =
(z1, . . . , zn)T

, meaning that zi is the first coordinate of yi. We want to find

such values for z that they are close to each other (in a certain sense) if the

corresponding points from X are close. With how we defined the weight matrix

W, a reasonable way to do this would be to find such z that it minimizes the

objective function ∑︂
i,j

(zi − zj)2 (W)i,j , (7.1)

while constraining z to be non-zero. This nontriviality of z can be enforced by, for

example,

∑︁
i z2

i = 1, but an even better requirement is

∑︁
i deg(xi)z2

i = 1, since it
pushes embeddings of points with higher degrees closer to the origin.

Recall now the graph Laplacian ∆ from Definition 12. It is easy to show that

for any z ∈ Rn
, the following holds:

zT ∆ z = 1
2
∑︂
i,j

(zi − zj)2 (W)i,j ,

and so our optimization problem can be rewritten as

argminz zT ∆ z
subject to zT Dz = 1. (7.2)

This optimization problem can be solved by the Lagrange multipliers method (as

done, for example, in the tutorial by Ghojogh et al. [40]), and the solution z should

be the eigenvector corresponding to the lowest eigenvalue of the generalized

eigenvalue problem

∆ z = λDz. (7.3)

There is a problem: the eigenvector corresponding to the lowest eigenvalue

(which is zero) has all coordinates equal (z1 = z2 = . . . = zn). To eliminate this

trivial solution, we need to take as z the eigenvector with the lowest non-zero

eigenvalue. So formally, the original formulation of our optimization problem from

Equation (7.2) is wrong and can be fixed by adding this constraint as zT D1 = 0.
We now know how to embed the dataset X to one-dimensional embedding z.

The generalization to f ′
dimensions is done by substituting the objective function

in Equation (7.1) with∑︂
i,j

∥yi − yj∥2 (W)i,j = tr
(︂
YT ∆ Y

)︂
,

so that the optimization problem becomes

argminY tr
(︂
YT ∆ Y

)︂
subject to YT DY = In.

52

The rows of the solution Y are given by the first f ′
eigenvectors corresponding

to eigenvalues sorted in ascending order of the generalized eigenvalue problem

from Equation (7.3). As in the one-dimensional case, we want to skip the first

eigenvector (with eigenvalue 0).

7.2 t-distributed Stochastic Neighbor Embedding
(t-SNE)

Another method we shall describe is t-SNE, introduced by Van der Maaten and

Hinton [41].

Definition 29 (Neighbor Similarity). Let X ∈ Rf×n
be a matrix of data points

and σi ∈ R+
for each i ∈ {1, . . . , n}. For i ̸= j we define the conditional neighbor

similarity of point xj to point xi as

pj|i =
exp

(︂
−∥xi − xj∥2 / (2σ2

i)
)︂

∑︂
k∈{1,...,n}\{i}

exp
(︂
−∥xi − xk∥2 /

(︂
2σ2

i

)︂)︂ , (7.4)

and the symmetrized neighbor similarity of points xi and xj as

pij = pji = pj|i + pi|j

2n
.

For the special case i = j, we set pi|j = pj|i = pij = pji = 0.

The conditional neighbor similarity pj|i can be interpreted as a probability of

picking point xj as neighbor to point xi with the Gaussian probability distribution

centered around xi with standard deviation σi.

But how to choose the standard deviations σi? Since
∑︁n

j=1 pj|i = 1, for a fixed
i we can interpret values pj|i as a probability distribution Pi, which has Shannon

entropy
2 H(Pi) and perplexity Perp(Pi)

H(Pi) = −
n∑︂

j=1
pj|i log2 pj|i,

Perp(Pi) = 2H(Pi) = 2−
∑︁n

j=1 pj|i log2 pj|i .

According to the original paper, “the perplexity can be interpreted as a smooth

measure of the effective number of neighbors.” The t-SNE method considers

2
Recall that Shannon entropy of a probability distribution measures the size of the information

carried by the distribution, measured, for example, in bits.

53

the perplexity a hyperparameter to be chosen by the user and by means of the

bisectional method finds the values for the standard deviations σi so that they fit

the requested perplexity.

Next, we notice that

∑︁n
i,j=1 pij = 1 as well, and so we can also interpret values

pij as a probability distribution P .

The idea behind t-SNE is to map the high-dimensional data points X to low-

dimensional points Y in such a way that the mapped points Y have neighborhood

probability distribution as close to X as possible. To do this, a probability distri-

bution Q of low-dimensional symmetrized neighbor similarities for data points

Y is defined, and the data points Y are updated by the gradient descent method,

with the Kullback-Leibler divergence (from Definition 25) between distributions

P and Q used as the loss function.

How to define the distribution Q? A natural idea would be to use the same

definition of neighbor similarity as with the distribution P . In fact, this is what

the SNE method, on which t-SNE is based, does: qj|i is defined in the same way

as pj|i in Equation (7.4), but with Y instead of X used as the data point matrix

and all σi = 1√
2 (because of this, the mapped data do not model the original data

perfectly).

The t-SNE method, however, instead of the Gaussian distribution assumes for

Q the Student t-distribution with a single degree of freedom:

qij =

(︂
1 + ∥yi − yj∥2

)︂−1

∑︂
k ̸=l

(︂
1 + ∥yk − yl∥2

)︂−1 . (7.5)

Because the t-distribution has heavier tails than the normal distribution, moderate

distances in the high-dimensional space are allowed to be modeled by rather large

distances in the low-dimensional space. This helps to avoid the so-called crowding

problem, as described in sections 3.2 and 3.3 of the original article [41].

With P and Q defined, the loss function becomes

L = DKL (p ∥ q) =
∑︂
i ̸=j

pij ln pij

qij

.

Tominimize this loss function by the gradient descent method, we need the partial

derivative

∂L
∂yi

= 4
n∑︂

j=1
(pij − qij) · (yi − yj) ·

(︂
1 + ∥yi − yj∥2

)︂−1
. (7.6)

With the above explained, the algorithm itself is pretty straightforward:

54

1. the symmetrized neighbor similarities pij are found so that they fit the

requested perplexity,

2. the low-dimensional outputs yi are initialized randomly,

3. the low-dimensional neighbor similarities qij are computed using Equa-

tion (7.5),

4. the gradients ∂L/∂yi are computed using Equation (7.6),

5. the outputs yi are updated by the gradient-descnet method with the com-

puted gradients ∂L/∂yi,

6. steps 3 to 5 are repeated for a requested number of epochs.

Because a value is computed for each pair of inputs, the computational com-

plexity of one epoch is O (n2). Using tree-based algorithms, it is possible to

compute a high-quality approximation variant of t-SNE, called the Barnes-Hut

t-SNE [42], in time O (n log n).
Finally, we note that the interpretation of pij values as probabilities is not

formally grounded—averaging the probabilities pi|j and pj|i is not in accordance

with how conditional and joint probabilities work. But this is just a heuristic

definition, and the visualizations given by t-SNE are of high quality and were

considered state-of-the-art after the introduction of the method [43].

7.3 UniformManifold Approximation and Projec-
tion (UMAP)

We will now describe another nonlinear dimensionality reduction technique

called UMAP, which, according to its authors, is “competitive with t-SNE for

visualization quality and arguably preserves more global structure with superior

time performance” (McInnes et al. [43]).

Although the theoretical foundations behind UMAP require non-trivial knowl-

edge of Riemannian geometry, algebraic topology and fuzzy set theory, the com-

putational part is very similar to t-SNE, and we shall explain it as such.

First, the neighbor similarities pj|i are considered only for k-nearest-neighbors
of xi, which greatly reduces time complexity over t-SNE. One intuition behind

this is that the dataset X lies on a Riemannian manifold, and the k neighbors

lie on a part of the manifold that can be considered locally flat. The neighbor

similarity is defined as

pj|i =

⎧⎨⎩exp (− (d (xi, xj)− ρi) /σi) if d (xi, xj) ≥ ρi,

1 otherwise,

55

with d(·, ·) a metric in the high-dimensional space (UMAP does not require

Euclidean metric), and ρi the distance to the nearest neighbor in this metric. This

ensures that the nearest neighbor has pj|i = 1.
To normalize the locally flat part of the manifold the σi values are found by

bisecting so that

k∑︂
i=0

pk|i = log2 k.

Next, the symmetrized neighbor similarities are defined as

pij = pi|j + pj|i − pi|j · pj|i,

If pj|i were interpreted as the probability of xi considering xj as its neighbor, the

symmetrized value pij would be the probability that at least one of the pair xi, xj

considers the other its neighbor. In the UMAP paper, this is formalized in terms

of fuzzy set theory.

To mirror the definition in the high-dimensional space, the formula for low-

dimensional neighbor similarities would naively be

qnaive
ij =

⎧⎨⎩exp (− (∥yi − yj∥ − ρY)) if ∥yi − yj∥ ≥ ρY,

1 otherwise,

where ρY is a hyperparameter: the expected distance to the nearest neighbor in

the embedded space. Since qnaive
ij is not differentiable, an approxiamtion of the

form

qij =
(︂
1 + a ∥yi − yj∥2b

)︂−1

is found instead, with a and b fitted by nonlinear least squares method against

qnaive
ij .

Before starting the gradient descent procedure, instead of initializing the

low-dimensional data points Y randomly, a weighted graph GX = (X, EX, P)
of the data points X is constructed with weights pij and the spectral embedding

method from Section 7.1 is used to initialize the outputs Y.

The weighted graph GX is interpreted in fuzzy set theory, where it is un-

weighted and instead the meaning of values pij becomes the certainty of member-

ship ∈X in set EX. A similar graph GY is considered for the embedded values

with qij as the certainties of membership ∈Y.

UMAP then uses the fuzzy set cross entropy between membership ∈X and

∈Y as the loss function:

L′ =
∑︂

{i,j}∈EX

(︄
pij log pij

qij

+ (1− pij) log 1− pij

1− qij

)︄
.

56

Because the values pij are fixed, the constant part of the loss function can be

disregarded, leaving us with

L = −
∑︂

{i,j}∈EX

(pij log qij + (1− pij) log (1− qij)) .

Finally, we note that for performance purposes, UMAP uses stochastic gradient

descent with negative sampling to optimize the loss function: in each epoch, the

algorithm iterates the pij values, and in each iteration, it does with probability

pij the following:

• updates yi by gradient of log qij ,

• randomly selects several yk as negative samples and updates yi by gradient

of log (1− qik).

Interestingly, according to the analysis by Damrich and Hamprecht [44], the

use of this method of gradient descent makes the effective loss function of UMAP

differ from the intended one quite significantly, and they attribute the success

of UMAP to the “balancing of attraction and repulsion resulting from negative

sampling.”

7.4 Discussion
From Figure 7.1 we can see that although the spectral embedding method indeed

groups together points that are closer to each other, it fails to clearly separate the

clusters in the picture. This leaves us with t-SNE or UMAP for the visualization

in our experiments.

We compare the running times of all these methods in Figure 7.2. Since UMAP

is much faster than t-SNE, we have decided to use the UMAP technique.

57

(a) PCA (b) Spectral Embedding (k = 50)

(c) t-SNE (Perp = 30) (d) UMAP (k = 15)

Figure 7.1 Comparison of the different dimensionality reduction techniques used on
the MNIST handwritten digit dataset. Each point represents one grayscale picture of a
handwritten digit, with 28× 28 pixels. Before reduction to two dimensions, the pictures
are reshaped to 784 dimensional vectors. The 10 different colors represent the 10 digits.

0.1

1

10

100

1000

10000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

ti
m
e
in

se
co
nd

s

of samples

PCA
SpectralEmbedding

t-SNE
UMAP

Figure 7.2 Comparison of the running times of the dimensionality reduction tech-
niques as run on variously sized subsets of the MNIST dataset.

58

Chapter 8

Dataset

In this chapter, we will describe the dataset we used in our experiments. This

includes the description of the data source, acquisition, and preprocessing into

formats suitable for our study.

8.1 Data source
As already mentioned in the Introduction, the source of our data is the Tripadvisor

website [1].

Tripadvisor is a travel review website that allows users to rate and review

various aspects of their travel experiences, including hotels, restaurants, and

tourist attractions. It is one of the largest travel review websites, with millions

of reviews and ratings from travelers worldwide. The website also provides

information on travel destinations, such as descriptions and photos of hotels,

restaurants, and attractions, as well as information on prices, availability, and

booking options. By aggregating and displaying this information, Tripadvisor

aims to help travelers plan and book their trips and provide a platform for travelers

to share their experiences with others.

Figure 8.1 shows the screenshot of the top of a hotel offering page, while

Figures 8.2 and 8.3 in this chapter show the screenshot of additional information

for the hotel and an example of a review, respectively.

8.2 Data acquisition
Modern web applications are built using various web frameworks, allowing devel-

opers to focus on the high-level design and functionality of their web applications.

However, this often makes the resulting HTML code very complicated, as it is

59

Figure 8.1 A screenshot of the top section of the Tripadvisor page for the Casablanca
Hotel in New York City [45].

Figure 8.2 A screenshot of the About section of the Tripadvisor page for the Casablanca
Hotel in New York City [45].

60

Figure 8.3 A screenshot example of a Tripadvisor review for the Casablanca Hotel in
New York City [45].

generated dynamically by a framework. This can make it more challenging to

analyze the HTML code, especially if one is trying to scrape data from it.

This was also the case for the Tripadvisor website. In our first attempts at

data scraping, we tried classical parsing of the HTML structure of the documents

representing each hotel page. This turned out to make the scraping code overly

tangled.

After analyzing the documents more, we discovered that each served HTML

document contains the definition of a JSON object called urqlCache in one of its

nested JavaScript scripts. This JSON object always contains all the information

displayed on the web page in a structured format. Although the structure uses

some seemingly random indexes at the first level, with simple heuristics, it was

always possible to retrieve the data we desired.

See Listing 1 for an example of this object, and Listing 2 for an excerpt from

the source code of our scraping program.

8.3 Scraped data format
Our data scraping utility stores the scraped information into three JSON files,

each containing one JSON record per line:

• hotels.json, which contains information about the reviewed hotels.

These include name, description, location, contact information, star rating,

61

Listing 1 An excerpt from the urqlCache JSON object of a hotel offering page [45].

{
" locationId ": 113317 ,
" parentGeoId ": 60763 ,
"name": " Casablanca Hotel by Library Hotel Collection ",
" placeType ": " ACCOMMODATION ",
" reviewSummary ": {

" rating ": 5,
"count": 7186

},
" currentUserOwnerStatus ": null ,
" accommodationCategory ": "HOTEL",
"url": "/ Hotel_Review -g60763 -d113317 -Reviews - Casablanc ...",
" reviewListPage ": {

" totalCount ": 6656 ,
" preferredReviewIds ": [],
" reviews ": [

{
"id": 870658508 ,
"url": "/ ShowUserReviews -g60763 -d113317 - r8706585 ...",
" location ": {

" locationId ": 113317 ,
"name": " Casablanca Hotel by Library Hotel Col ...",
" placeType ": " ACCOMMODATION ",
" parentGeoId ": 60763 ,
" __typename ": " LocationInformation ",
" additionalNames ": {

" normal ": " Casablanca Hotel by Library Hotel ...",
"long": " Casablanca Hotel by Library Hotel C...",
" longOnlyParent ": "New York",
" longParentAbbreviated ": " Casablanca Hotel b...",
" longOnlyParentAbbreviated ": "NY",
" longParentStateAbbreviated ": " Casablanca Ho ...",
" longOnlyParentStateAbbreviated ": "NY",
"geo": "New York City",
" abbreviated ": " Casablanca Hotel by Library ...",
" abbreviatedRaw ": " Casablanca Hotel by Libra ...",
" abbreviatedStateTerritory ": " Casablanca Hot ...",
" abbreviatedStateTerritoryRaw ": " Casablanca ...",

},
" parent ": {

" locationId ": 60763 ,
" additionalNames ": {

" normal ": "New York City",
"long": "New York City , New York",

62

Listing 2 An excerpt from the source code of the scraping program, scraper.py.

urqlcache_re = re. compile (’" urqlCache ":(.*) ," redux ":’)

def parse_urqlcache (contents):
’’’The reviews are stored in a json object in the webpage
called urqlCache . Find this object and return it as a
dictionary .’’’
urqlcache = urqlcache_re . search (contents)[1]

x = json.loads (urqlcache)
for k in x.keys ():

x[k] = json.loads (x[k][’data ’])

return x

def parse_hotel_page (contents):
’’’Parse hotel info from hotel page contents .
The infromation is found in the urqlCache JSON object .’’’

urqlcache = parse_urqlcache (contents)

numRooms = None
contactLinks = []

Because each page may return the urqlcache object with
slightly different keys , we apply some heuristics to
find the needed information .
for k in urqlcache :

if not contactLinks :
try:

contactLinks = urqlcache [k]\
[’currentLocation ’]\
[0][’businessAdvantageData ’]\
[’contactLinks ’]

if contactLinks is None:
contactLinks = []

except :
pass

if ’locations ’ not in urqlcache [k]:
continue

l = urqlcache [k][’locations ’][0]
if ’locationDescription ’ in l:

hotelInfo = l
elif ’localizedStreetAddress ’ in l:

address = l[’localizedStreetAddress ’]\
[’fullAddress ’]

63

file name file size

authors.json 6,605 KiB
hotels.json 324 MiB
reviews.json 2,901 MiB

Table 8.1 Scraped data file sizes.

a list of languages that the staff at the reception of the hotel should be able

to speak, and a list of amenities/perks (stuff like Non-smoking hotel, WiFi,

Laundry service, ...). See Table 8.2 for a full example.

• authors.json, with review author fields (these are just ID, username,

displayed name, home town, and home town ID),

• and finally reviews.json, which contains the reviews themselves. Among

identifying information, a review contains review ratings (mandatory over-

all rating and optional per-type ratings), dates of stay, creation and publica-

tion, the type of the trip (family, couples, friends, business, solo or none),

review title, text and a potential room tip (another text field). See Table 8.3

for an example.

Table 8.1 shows the sizes of the resulting JSON files.

8.4 Scraped data basic information
After letting the scraping utility run for several days non-stop,

1
we have acquired

records of 3,125,631 Tripadvisor reviews for 3,260 hotels, from 2,296,247 unique

authors.

Table 8.4 summarizes basic information about the dataset. In Figure 8.4 we can

see the number of reviews and unique authors per year, while figure 8.7 shows the

number of reviews per year and month. Figures 8.5 and 8.6 show the histograms

of the number of reviews per author and hotel, respectively. Figure 8.8 shows the

cumulative number of reviews per month in year.

There are two interesting facts to note from Figures 8.4 and 8.7:

• The number of submitted reviews per year peaked in 2016 and started

falling afterward. This may mean that Tripadvisor’s platform popularity

is waning or that the hotels we have scraped reviews are becoming less

popular for visitors.

1
Surprisingly (and fortunately), we did not trigger any Denial of Service protection.

64

hotel ID 1465162

type hotel

name Tba Nyc Times Square

description Located in the heart of Manhattan, tba NYC Times Square features
extended-stay guestrooms featuring kitchenettes for stovetop cooking,
microwave, dishwasher and full-size refrigerator. Amenities include
newly designed fitness center with cardio and strength training ma-
chines, business center, 24 hour guest laundry facility and pantry for
sundry and food purchases. A complimentary breakfast buffet is served
each morning, as well as a complimentary “social hour” reception with
appetizers, beer, wine and soft beverages Monday - Wednesday. The
Den features an extensive drink menu and is open every evening. Our
Concierge services include procuring reservations for restaurants and
local sites as well as theater tickets.

URL /Hotel_Review-g60763-d1465162-Reviews-Tba_Nyc_Times_S...

stars 3

region ID 60763
address 340 West 40th Street, New York City, NY 10018-1404
GPS location 40.756810, −73.992615

phone none
e-mail none
has website no

of rooms 310

amenities Iron, Convenience store, Express check-in/check-out, Non-smoking
hotel, Free High Speed Internet (WiFi), Refrigerator, 24-hour check-in,
Telephone, Bar/lounge, Laundry service, Suites, 24-hour front desk,
Dry cleaning, Newspaper, Ironing service, Safe, Hair dryer, Microwave,
Self-serve laundry, Conference facilities, Wake-up service/alarm clock,
Allergy-free room, Air conditioning, Snack bar, Kitchenette, Non-
smoking rooms, Meeting rooms, Flatscreen TV, Baggage storage, Pets
Allowed (Dog/Pet Friendly), Breakfast available, Free breakfast, Parking,
Paid private parking nearby, Concierge, Business Center with Inter-
net Access, Fitness Center with Gym/Workout Room, Family rooms,
Housekeeping, Wifi, Breakfast buffet

languages English, Spanish

Table 8.2 Example of a hotel record.

65

review ID 138758479

title Excellent position, reasonable breakfast but public areas a
little small

text I stayed here with my wife and 2 daughters in July 2012
using reward nights. Having stayed in a couple of the UK
SBS I was unsure about what to expect as while over here
they are quite spacious but I know from previous trips to
New York that space there is at a premium and in retrospect
that is the only slight down side to this hotel. The room was
a squash with the 4 of us in it and the public areas are not
big enough for the number of people in the hotel, I did on
one occasion have to eat my breakfast standing up.
However the rooms were spotless and modern with all the
amenities you could require, the gym was satisfactory and
never busy, the free food and drink between 5pm and 7pm
is always welcome and while the wine was a little rough the
beer was very welcome as were the snacks and finally the
breakfast was also acceptable. What I also appreciated was
the PC and printer access in the reception which you can
use to print out boarding cards, vouchers etc.
All in all this is a nice hotel and gives you what you need
Tips: If you walk out of the hotel and turn left on the corner
you will find a $0.99 a slice pizza place that is very nice, if
you turn left again and walk up that street (9th Ave) there is
a number of reasonably priced restaurants and take-away
food shops as well as shops that sell wine, beer and food

room tip Ask for a room with a view as half of the room face onto
another building

hotel ID 1465162

author ID A25525D29366315AC8BC936B63EABF74

date of stay July 31, 2012
date of creation August 29, 2012
date of submission August 29, 2012

trip type family

ratings

service 4
cleanliness 5
sleep quality 4
rooms 3
location 5
value 4
overall 4

Table 8.3 Example of a review record.

66

of hotels 3,260
of reviews 3,125,631
of authors 2,296,247
avg reviews per author 1.36
max reviews per author 134
avg reviews per hotel 958.78
max reviews per hotel 19,534

of reviews # of authors

1 1,895,027
2 239,682
3 77,155
4 34,374
5 17,649
6 10,247
7 6,328
8 4,138
9 2,866
10 1,946

Table 8.4 Left: basic information about the dataset (after filtering bad reviews). Right:
number of authors doing 1 to 5 reviews.

• In 2020, the number of reviews fell even more due to the coronavirus

pandemic but started growing again in 2021 and 2022.

8.5 Initial data preprocessing
After data acquisition, The next step in the preparation of the dataset for our

experiments is data preprocessing. The purpose of preprocessing is to transform

the data so that each entry is flattened and contains only the information we will

be using. This process decreases the sizes of the dataset JSON files significantly.

The process, as done by the preprocess.py utility, consists of:

• Flattening. Both hotel and review records contain normalized informa-

tion: hotels have lists of amenities and languages, while reviews contain

lists of ratings. All these fields are flattened so that they are transformable

into tensors suitable for deep learning computations.

• Filtering. From each record, we filter away unneeded textual information,

such as names, descriptions, URLs, and addresses. We also filter hotel ameni-

ties and languages so that only the most popular amenities and languages

are kept.

8.6 Graph construction
After the preprocessing, we can formally consider our dataset a bipartite social

network (A, H, R, aA, aH , r) according to Definition 7, where:

67

0 k

50 k

100 k

150 k

200 k

250 k

300 k

350 k

400 k

450 k

20
03
20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15
20
16
20
17
20
18
20
19
20
20
20
21
20
22

#
of

re
vi
ew

s
an

d
au

th
or
s

year

of reviews
of authors

Figure 8.4 Number of reviews and authors per year. Notice the peak in 2016 and fall
in 2020 (the fall is caused by the coronavirus pandemic).

100

101

102

103

104

105

106

10 20 30 40 50 60

#
of

au
th
or
s

of reviews

Figure 8.5 Number of users depending on how many reviews they submitted. Loga-
rithmic scale.

68

0

100

200

300

400

500

600

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

#
of

ho
te
ls

of reviews

Figure 8.6 Number of hotels depending on how many reviews were submitted to them,
in bins of 100, ignoring hotels with 4,000 or more reviews (there are only 312 such hotels).

0 k

5000 k

10000 k

15000 k

20000 k

25000 k

30000 k

35000 k

40000 k

45000 k

20
02
20
03
20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15
20
16
20
17
20
18
20
19
20
20
20
21
20
22

#
of

re
vi
ew

s

month

Figure 8.7 Number of reviews per year and month.

69

• A is the set of review authors,

• H is the set of reviewed hotels,

• R ⊆ A×H is the set of reviews—author-hotel pairs that have a rating,

• aA and aH are author and hotel attribute functions,

• r : R→ {1, 2, 3, 4, 5}k
is the edge attribute function—a function that maps

author-hotel pairs to rating values: r(a, h) = v means that author a gave

rating v to the hotel h.

Because of memory limitations on the cluster machines we used for experi-

ments, it is not always practical to use the whole review dataset. For this purpose,

the dataset preprocessing utility allows us also to specify the minimum number

of reviews for each hotel and author, and only those authors and hotels (and their

reviews) are kept. The resulting graph that we construct admits the following

definition.

Definition 30 (Review Graph Filtering). Let G = (A, H, R, aA, aH , r) be a bipar-
tite social network of authors A, hotels H and reviews R, and let ma, mh ∈ N. The
filtered review subnetwork of the network G with parameters ma, mh is the maxi-

mal subnetwork
2 Gf = (Af ∪Hf , Rf , XAf

, XHf
, rf), Af ⊆ A, Hf ⊆ H, Ef ⊆ E,

such that for each a ∈ Af : deg(a) ≥ ma and for each h ∈ Hf : deg(h) ≥ mh.

In other words, each author in the filtered subgraph Gf of the above definition

has authored at least ma reviews in Gf , and each hotel in Gf has at least mh

reviews in Gf , and Gf is the maximal such subgraph of G. An illustration of this

is provided in Figure 8.9.

In order to be able to find communities and analyze the eigenvector centrality

of hotels and authors, we need to create monopartite networks. This is where

we will use the bipartite network projection from Definition 8. We create a

network of authors, where each author is connected to another author if they

both have reviewed the same hotel. The strength of this association grows with

more common hotels between the two authors. A monopartite network of hotels

is created in a similar way.

Definition 31 (Projection to Authors and Hotels). Let G = (A, H, R, aA, aH , r)
be a bipartite social network of authors A, hotels H and reviews R, and let

mr, mc, mn ∈ N be the minimum number of reviews, common associations and

neighbors, respectively.

The projection to authors GA of G with parameters mr, mc, mn is constructed

by:

2
Maximal with respect to the subset relation ⊆ of graph nodes.

70

0 k

50 k

100 k

150 k

200 k

250 k

300 k

350 k

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

#
of

re
vi
ew

s

month of year

Figure 8.8 Cumulative number of reviews per month.

H5

H4

H3

H2

H1

A4

A3

A2

A1

H5

H4

H3

H2

H1

A4

A3

A2

A1

Figure 8.9 An illustration of review graph filtering as defined in Definition 30, with
mina = 3 and minh = 2. The pink nodes represent hotels, while the violet nodes
represent review authors.

71

• first removing from G all author nodes v ∈ A with deg(v) < mr,

• then constructing the bipartite network projection
˜︁G = (A, E, aA, aE) of G

to A with the attribute-combining function p(h, e1, e2) = h and the attribute-

aggregating function f(U) = |U | (so that the projected edges simply count

the number of common associations),

• then removing all edges e ∈ E from
˜︁G with aE(e) < mc (so that only edges

representing at least mc common associations are kept),

• then removing from
˜︁G all nodes with fewer than mn neighbors,

• finally normalizing the edge attributes in
˜︁G by changing aE to a′

E , with

a′
E(e) = aE(e)

maxe∈E aE(e) .

The projection to hotels GH is constructed in the same way (only with swapping

hotels and authors in the this above).

An illustration of a projection thus defined can be seen in Figure 8.10.

In one of our experiments, we will try to predict hotel eigenvector centrality

scores as they changed in time. In order for this to be possible, we need to create

a dynamic social network of hotels. The following definition described how to do

this for both authors and hotels.

Definition 32 (Temporal Projection). Let G = (A, H, R, aA, aH , r), A, H , R, mr,

mc, mn be as in Definition 31. Let T = {t0, t1, t2, . . . , tn | t1 < t2 < · · · < tn}
be a partition of the time interval for which there are reviews in G. Let Gtk

be the

maximal subnetwork of G which contains only reviews created at time t ≤ tk and

where each author and hotel have at least one neighbor.

The temporal projection to authors of G with parameters T , mr, mc, mn is the

sequence of monopartite networks

GT
A = (GA,tk

)n
k=1 ,

where GA,tk
is the projection to authors of the network Gtk

with parameters

mr, mc, mn.

The temporal projection to hotels GT
H is created correspondingly, by using the

projection to hotels instead of authors.

72

A6

A5

A4

A3

A2

A1

H9

H8

H7

H6

H5

H4

H3

H2

H1

A1

A2

A3

A4

A5

A6

3/3

2/3

2/3

2/3

3/31/3

Figure 8.10 An illustration of projection to authors fromDefinition 31, with parameters
mr = 2, mc = 2, mn = 2. Left: original bipartite review network. Right: projection of
the network to authors where, for example, the link between A2 and A3 has strength
2/3, because there are two common associations between A2 and A3 in the original
network (through H2 and H4) and the maximal number of common associations for any
pair is 3. Moreover, authors A4, A5 and A6 are removed because A6 submitted only one
review, A5 has only one neighbor after the removal of A6, and A4 has only one neighbor
after the removal of A5.

73

8.7 Community detection
We have applied the Louvain community detection method on the yearly snap-

shots of both the projection to authors and hotels. In Figures 8.11 and 8.12

we can see the progresses of basic statistics of the detected communities. The

hotel projections were made from the last snapshot (2022) with parameters

(mr, mc, mn) = (20, 3, 3), while the author projections from the year 2011 snap-

shot, with (mr, mc, mn) = (5, 2, 2).
We have then tried to decide whether the community detection method ac-

tually extracts some real information. For hotels, we have made a visualization

of the detected communities on a map of the United States, giving each hotel a

color according to its Louvain community. This can be seen in Figure 8.14. The

hotels seem to be clustered into communities by their physical location.

This method is not immediately possible to apply to the projection to au-

thors, since we do not have their coordinates. Therefore, for the projection to

authors, we have simply visualized the graph via the force-directed graph drawing

technique [46]. The result can be seen in Figure 8.13.

From this we conclude that for both the author and hotel projections the

Louvain method extracts meaningful information when forming communities.

8.8 Discussion
Finally, we would like to conclude this chapter with two points:

• It is important to note that the scraped dataset contains only reviews about

hotels from several US cities (this can also be seen in Figure 8.14), and

moreso for some cities than for others. This may cause the dataset to be

biased.

• The coronavirus pandemic of the last few years have greatly disturbed

travelling globally. This may also have caused the dataset to be somehow

biased, at least the snapshots starting from 2020.

74

0

2

4

6

8

10

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

100

200

300

400

500

600

#
of

de
te
ct
ed

co
m
m
un

it
ie
s

#
of

ho
te
ls
in

a
co
m
m
un

it
y

year

of communities
avg community size
min community size
max community size

Figure 8.11 The progress of changes in communities detected by the Louvain method
in yearly snapshots of the projection to hotels.

0

5

10

15

20

25

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

2000

4000

6000

8000

10000

#
of

de
te
ct
ed

co
m
m
un

it
ie
s

#
of

au
th
or
s
in

a
co
m
m
un

it
y

year

of communities
avg community size
min community size
max community size

Figure 8.12 The progress of changes in communities detected by the Louvain method
in yearly snapshots of the projection to authors.

75

Figure 8.13 Visualization of the detected Louvain communities on the projection to
authors from the 2011 snapshot, using the force-directed graph drawing technique.

76

Fi
gu

re
8.
14

V
is
ua

liz
at
io
n
of

th
e
de
te
ct
ed

Lo
uv
ai
n
co
m
m
un

it
ie
s
on

th
e
pr
oj
ec
ti
on

to
ho

te
ls
.H

ot
el
s
ar
e
gi
ve
n
a
co
lo
r
ac
co
rd
in
g
to

th
e
co
m
m
un

it
y
th
ey

be
lo
ng

to
,a
nd

th
en

m
ap

pe
d
on

to
th
ei
r
po

si
ti
on

on
a
m
ap
.C

le
ar
ly

th
e
co
m
m
un

it
y
de
te
ct
io
n
al
go
ri
th
m

de
te
ct

m
ea
ni
ng

fu
li
nf
or
m
at
io
n
fr
om

th
e
pr
oj
ec
te
d
gr
ap

h.

77

78

Chapter 9

Experiments

9.1 Review Rating Prediction
As we can see from Table 8.3, each review carries information about several

ratings, valued from 1 to 5, that the author of the review gave to the reviewed

hotel. This naturally gives rise to the question of whether this rating could be

predicted, and this is the first problem we will focus on. This problem belongs to

the area of recommender systems.

Formally, we work with the bipartite social network (see Definition 7)

(A, H, R, aA, aH , r) from Section 8.6.

Our goal is to extend the domain of the function r to the whole set of possible

edges A×H , by leveraging the information given by the attribute functions r,
aA, and aH . We do this by constructing GNNs that will try to learn r.

In the context of GNNs, this can be seen as a link label prediction problem.

9.1.1 Data preprocessing
Because of memory limitations, it was not practical to use the whole review

dataset for this task.

For our review rating prediction experiments, we found that it is enough to

filter the reviews with the process described in Definition 30, with parameters

ma = mh = 8 in order for the experiments to be able to run on the GPUs, but we

also found that setting ma = mh = 12 yields similar learning curves with much

faster training.

With ma = mh = 12 the resulting preprocessed dataset has 76,692 reviews of

1,287 hotels from 4,404 authors.

The hotel feature matrix XH used for this task contains

• hotel class,

79

• presence of hotel website (binary value),

• presence of 15 most popular amenities (binary values),

• presence of 5 most popular languages (binary values),

• optionally, the eigenvector centrality and one-hot encoded Louvain com-

munity of the hotel in the network projection to hotels (as introduced in

Definition 31),

while the author features, XA, are simply one-hot encodings of author IDs.

In some models, we also augment the bipartite network with hotel-hotel links,

as computed by the projection to hotels from Definition 31. We use the computed

association factor as the weight of these edges.

All of our experiments try to predict only the overall hotel ratings; we ignore

the per-type ratings.

9.1.2 Methodology

We used the k-fold cross-validation technique to compute the means and con-

fidence intervals of the performance metrics, as described in section 5.6 of the

Machine Learning book by Mitchell [47]. With k = 10, in each fold the review

links in the network were divided into train and test sets with 90% and 10% of the

links, respectively. We trained each model for 800 epochs in each of the k folds.

The Adam optimizer [48] was used for neural weights optimization, with

standard hyperparameters β1 = 0.9, β2 = 0.999, and with learning rate 0.1%.

Adam (Adaptive Moment Estimation) is a stochastic gradient descent optimization

algorithm that combines the benefits of Adadelta [49], which is known for its fast

convergence, and RMSProp [50], which can handle sparse gradients well. This

combination of advantages allows Adam to often perform better and converge

faster than other optimization algorithms in a variety of machine learning tasks.

The mean squared error function was used as the loss function between true

ratings and predicted ratings

MSE(x, y) = mean

(︄∑︂
i

((x)i − (y)i)
2
)︄

.

Note that in the figures of loss curves, we will show the root mean squared error

RMSE(x, y) =
√︂

MSE(x, y).

80

9.1.3 Models
Several models were tested in order to evaluate the possibility of predicting review

ratings, all of them based on the graph autoencoder models from Chapter 5.

Because our graph contains two distinct node types, we follow the Hetero-

geneous Graph Transform introduced by Hu et al. [51], which we apply to our

augmented bipartite author-hotel-review network. We get a heterogeneous GNN

described in the following definition. (See Figure 9.1 for illustration.)

Definition 33 (Heterogeneous Graph Neural Network). Let

• A ∈ {0, 1}|A|×|H|
be the adjacency matrix of reviews between authors and

hotels,

• Xe ∈ RdR×|R|
be the author-hotel edge feature matrix,

1

• WH ∈ R|H|×|H|
and WA ∈ R|A|×|A|

be the weighted adjacency matrices of

the projections to hotels and authors,

• d
(t)
H , d

(t)
A ∈ N be the dimensionalities of hotel and author input embeddings,

while d
(t+1)
H , d

(t+1)
A ∈ N be the corresponding dimensionalities of output em-

beddings,

• H(t)
H ∈ Rd

(t)
H ×|H|

and H(t)
A ∈ Rd

(t)
A ×|A|

be the current hidden state matrices of

the hotel and author nodes,

• FA→H : Rd
(t)
A ×|A| × {0, 1}|A|×|H| → Rd

(t+1)
H ×|H|

be a graph neural function

(recurrent or convolutional) that computes the embeddings of hotel nodes from

the current states of author nodes H(t)
A and the adjacency matrix A,

• FH→A : Rd
(t)
H ×|H| × {0, 1}|A|×|H| → Rd

(t+1)
A ×|A|

be a graph neural function

that computes the embeddings of author nodes from the current states of hotel

nodes H(t)
H and the adjacency matrix A,

• FH→H : Rd
(t)
H ×|H| × R|H|×|H| → Rd

(t+1)
H ×|H|

be graph neural function that

computes the embeddings of hotel nodes from their current hidden states H(t)
H

and the weighted adjacency matrix WH ,

• FA→A : Rd
(t)
A ×|A| × R|A|×|A| → Rd

(t+1)
A ×|A|

be graph neural function that

computes the embeddings of author nodes from their current hidden states

H(t)
A and the weighted adjacency matrix WA.

1
The review feature matrix Xe

is not used in the review rating prediction task, but it is used

in hotel class prediction.

81

H(0)
A = XA

FA→A

ReLU

FA→A

ReLU

H(2)
A

FA→H

FA→H

H(0)
H = XH

FH→A

ReLU

FH→A

ReLU

H(2)
H

FH→H

FH→H

Figure 9.1 An illustration of a 2-layer heterogeneous graph neural network as defined
in Definition 33.

(The graph neural functions can be, e.g., SAGE, GAT, GCN, GGNN, ...)

The (sum-aggregating) heterogeneous graph layer HetLayer computes the next

hidden state of author and hotel nodes

(︂
H(t+1)

H , H(t+1)
A

)︂
∈ Rd

(t+1)
H ×|H| ×Rd

(t+1)
A ×|A|

as

H(t+1)
H = ReLU

(︂
FA→H

(︂
H(t)

A , A, Xe
)︂)︂

+ ReLU
(︂
FH→H

(︂
H(t)

H , WH , Xe
)︂)︂

H(t+1)
A = ReLU

(︂
FH→A

(︂
H(t)

H , A
)︂)︂

+ ReLU
(︂
FA→A

(︂
H(t)

A , WA

)︂)︂
.

Furthermore, let XH , XA be hotel and author feature matrices, let T ∈ N be

the number of layers, and let HetLayert be a heterogeneous graph layer constructed

from the given F∗→∗ functions for every t ∈ {1, . . . , T}.
Then the heterogeneous graph neural network HetGNN with layers HetLayert

is defined as

HetGNN (XH , XA, A, WH , WA) =
(︂
H(T)

H , H(T)
A

)︂
,

where H(T)
H and H(T)

A are computed by the following recurrent definition:

(︂
H(t)

H , H(t)
A

)︂
=

⎧⎨⎩(XH , XA) , if t = 0
HetLayert

(︂
H(t)

H , H(t)
A , A, WH , WA

)︂
, otherwise.

We can now give the generic definition for our review rating prediction

models.

82

Definition 34 (Review Rating Prediction Model). Let XH , XA, A, WH , WA be

as in Definition 33, and let HetGNN be a heterogeneous graph neural network

constructed for these parameters.

The review rating prediction model is a graph autoencoder model with the encoder

enc defined as

enc (XH , XA, A, WH , WA) = HetGNN (XH , XA, A, WH , WA)
= (HH , HA) ∈ RdH×|H| × RdA×|A|

and the decoder dec defined for particular hotel h ∈ H embedding hh = (HH)h ∈
RdH

and author a ∈ A embedding ha = (HA)a ∈ RdA
, as

dec (hh, ha) = Θ1 ReLU
(︄

Θ0

(︄
hh

ha

)︄
+ b0

)︄
+ b1, (9.1)

where Θ0 ∈ Rd0×(dH+dA), b0 ∈ Rd0
and Θ1 ∈ Rd1×d0 , b1 ∈ Rd1

represent two

fully connected linear layers with d0, d1 ∈ N being the dimensionalities of the edge

embeddings produced by these layers.

The decoder defined this way takes the pair of hotel and author embeddings and

produces a review rating prediction of dimensionality d1.

With this generic definition, we have constructed models with the following

parameter ranges:

• the rating prediction dimensionality d1 is always 1 (we only predict the

overall rating),

• the number of layers T ranged through values 1, 2, and 3 (higher values

led to worse performance),

• the number of hidden channels (the dimensionality of node embeddings)

ranged through values 4, 8, 12, and 16 (higher values led to worse perfor-

mance), and was same for all layers (d = d(t)
for all t ∈ {1, . . . , T}),

• the same heterogeneous graph neural function Fhetero was used for both

FA→H and FH→A, ranging through the SAGE, GAT, GNN* and GGNN
models,

• the same homogeneous graph neural function Fhomo was used for both

FA→A, FH→H , ranging through the same functions as for the heterogeneous

case, and additionally through GCN and ChebNetK=2. Models without

homogeneous edges were also evaluated.

The model names follow the format GAE-T-layer-d-hidden-Fhetero-Fhomo.

83

9.1.4 Evaluation
We found that the GAE-1-layer-12-hidden-SAGE-GAT model was the best-

performing model for the rating prediction task, with minimal test RMSE loss

0.8538± 0.0132. Figure 9.2 shows the learning curves of this model.

Table 9.1 gives a comparison of the first 20 best-performing models, while

in Figure 9.3 we can see the comparison of test loss curves of the first five best-

performing models.

It seems that for this task, a larger number of hidden neurons and a lower

number of layers yielded better results. Also, all of the 20 best models use the

SAGE layer for heterogeneous author-review message-passing, while the GAT
layer seems to yield better results when used for the homogeneous links.

All the models were trained on a NVIDIA GeForce RTX 2080 Ti graphical

processing unit (GPU). With a few exceptions, the training time for each model

was under one minute.

In Figures 9.4 and 9.5, we can see the UMAP visualizations of the sec-

ond to last and last pairs of author and hotel embeddings of the best model,

GAE-1-layer-12-hidden-SAGE-GAT. The review rating predictions are com-

puted from these embeddings. In the pictures of the second to last embeddings,

we can see multiple clusters that show the learned structures, with the color

changing continuously from one end of the structure to the other. The noise

in this color changing in the pictures where the colors indicate real ratings can

be explained by the RMSE loss of 0.8, which means that “on average”
2
, the real

ratings are shifted by 0.8 from the predicted ratings.

9.2 Hotel Class Prediction
Another problem we focused on was the prediction of a node’s label. We have

chosen hotel class (the number of stars) as the target. The potential use cases for

a model predicting hotel classes are:

• the detection of fake or misleading information about hotels submitted by

their owners,

• the prediction of hotel class for a hotel for which this information was not

submitted,

• just another hotel score for the users to consider when deciding whether to

visit the hotel.

2
In the sense of RMSE.

84

F h
et

er
o

F h
om

o
#
of

la
ye
rs

#
of

hi
dd

en
ch
an

ne
ls

#
of

tr
ai
na

bl
e

pa
ra
m
et
er
s

m
ea
n

tr
ai
ni
ng

ti
m
e

be
st
M
SE

lo
ss

(9
9%

co
nf
id
en
ce
)

SA
G
E

G
AT

1
12

10
6,
86
1

27
.3
2
s

0.
85

38
±

0.
01

32
SA

G
E

G
AT

1
16

14
2,
60
9

27
.8
7
s

0.
85

43
±

0.
00

67
SA

G
E

SA
G
E

1
12

10
7,
10
1

26
.1
2
s

0.
85

77
±

0.
01

03
SA

G
E

SA
G
E

1
16

14
2,
92
9

26
.2
9
s

0.
85

85
±

0.
00

98
SA

G
E

SA
G
E

2
16

14
4,
51
3

31
.0
5
s

0.
85

85
±

0.
01

39
SA

G
E

G
AT

2
16

14
3,
96
9

33
.4
4
s

0.
85

96
±

0.
01

05
SA

G
E

G
AT

1
8

71
,1
77

27
.3
5
s

0.
85

99
±

0.
00

88
SA

G
E

G
AT

2
12

10
7,
64
1

33
.0
9
s

0.
86

07
±

0.
00

82
SA

G
E

SA
G
E

1
8

71
,3
37

26
.1
2
s

0.
86

24
±

0.
00

88
SA

G
E

SA
G
E

2
12

10
8,
00
1

30
.8
9
s

0.
86

28
±

0.
01

20
SA

G
E

–
1

16
14
2,
20
9

24
.7
1
s

0.
86

38
±

0.
01

05
SA

G
E

C
he

bN
et

1
8

71
,3
37

27
.8
7
s

0.
86

44
±

0.
01

23
SA

G
E

G
C
N

1
16

14
2,
57
7

26
.2
5
s

0.
86

61
±

0.
01

14
SA

G
E

G
AT

3
12

10
8,
42
1

62
.3
8
s

0.
86

63
±

0.
01

65
SA

G
E

–
2

16
14
3,
26
5

27
.7
2
s

0.
86

66
±

0.
01

23
SA

G
E

SA
G
E

3
12

10
8,
90
1

57
.8
1
s

0.
86

71
±

0.
01

91
SA

G
E

C
he

bN
et

1
12

10
7,
10
1

27
.8
7
s

0.
86

75
±

0.
00

80
SA

G
E

C
he

bN
et

2
16

14
4,
51
3

33
.9
7
s

0.
86

88
±

0.
01

43
SA

G
E

–
1

8
70
,9
77

24
.4
2
s

0.
86

93
±

0.
01

20
SA

G
E

C
he

bN
et

1
16

14
2,
92
9

28
.3
0
s

0.
86

96
±

0.
01

18

Ta
bl
e
9.
1

C
om

pa
ri
so
n
of

th
e
fi
rs
t
20

be
st
-p
er
fo
rm

in
g
m
od

el
s
fo
r
th
e
re
vi
ew

ra
ti
ng

pr
ed
ic
ti
on

ta
sk
.T

he
gi
ve
n
tr
ai
ni
ng

ti
m
es

ar
e

re
le
va
nt

fo
r
tr
ai
ni
ng

on
N
V
ID

IA
G
eF
or
ce

R
TX

20
80

Ti
G
P
U
.

85

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800

0.78±0.0047

0.85±0.0097R
M
SE

epoch

99% train loss confidence
99% test loss confidence

mean train loss
mean test loss

Figure 9.2 Learning curves of the best-performing model for review rating prediction,
GAE-1-layer-12-hidden-SAGE-GAT. 10-fold cross-validation was used to determine
the 99% confidence intervals.

0.85

0.86

0.87

0.88

0.89

0.9

0 100 200 300 400 500 600 700 800

R
M
SE

epoch

GAE-1-layer-12-hidden-SAGE-GAT
GAE-1-layer-16-hidden-SAGE-GAT

GAE-1-layer-12-hidden-SAGE-SAGE
GAE-1-layer-16-hidden-SAGE-SAGE
GAE-2-layer-16-hidden-SAGE-SAGE

Figure 9.3 Comparison of test loss curves of the five best-performing models for review
rating prediction. Beware the potentially misleading range [0.85, 0.9] of the vertical axis,
which was chosen to better show the differences between the functions.

86

(a
)T

ra
in

se
t,
co
lo
rs

ar
e
re
al
ra
ti
ng

s
(b
)T

es
t
se
t,
co
lo
rs

ar
e
re
al
ra
ti
ng

s

(c
)T

ra
in

se
t,
co
lo
rs

ar
e
pr
ed
ic
te
d
ra
ti
ng

s
(d
)T

es
t
se
t,
co
lo
rs

ar
e
pr
ed
ic
te
d
ra
ti
ng

s

Fi
gu

re
9.
4

U
M
A
P k

=
30

vi
su
al
iz
at
io
n
of

th
e
se
co
nd

to
la
st
fe
at
ur
e
em

be
dd

in
g
of

th
e
be
st
m
od

el
GA

E-
1-

la
ye

r-
12

-h
id

de
n-

SA
GE

-G
AT

of
th
e
re
vi
ew

ra
ti
ng

pr
ed
ic
ti
on

ta
sk

(t
he

st
ac
ke
d
ho

te
l-
au

th
or

ve
ct
or
s

(h
h

h a
)T

fr
om

Eq
ua

ti
on

(9
.1
))
.

87

(a)
Train

set,colors
are

realratings
(b)

Test
set,colors

are
realratings

(c)
Train

set,colors
are

predicted
ratings

(d)
Test

set,colors
are

predicted
ratings

Figure
9.5

U
M
A
P

k=
30

visualization
ofthe

last
feature

em
bedding

ofthe
best

m
odelGAE-1-layer-12-hidden-SAGE-GAT

ofthe
review

rating
prediction

task
(aft

er
application

ofR
eLU

in
Equation

(9.1)).

88

Formally, we work with the same bipartite social network (A, H, R, aA, aH , r)
as in the previous section.

Our goal is to learn to predict the hotel class attribute (a part of aH), which

has the possible values from the set {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, by considering
the information from the other attributes.

In the context of GNNs, this is called a node classification problem.

9.2.1 Data preprocessing
Similar preprocessing, as is described in Section 9.1.1, was used for this task, with

the exception that the hotel feature matrix XH does not contain hotel class since

this is the attribute that we want to predict.

The same parameters ma = mh = 12 were used for review graph filtering,

and the bipartite network was augmented with author-author and hotel-hotel

edges, the same as in the review rating prediction experiment.

9.2.2 Methodology
The methodology for the hotel class prediction experiment is also the same as for

the review rating prediction experiment:

• we use k-fold cross-validation with k = 10, but instead of splitting the set

of review links we instead split the set of hotels into train-test subsets,

• the Adam optimizer with standard parameters and a learning rate 0.1% is

used for neural weights optimization, with the MSE function as the loss

function.

9.2.3 Models
The following generic definition is used to construct the models we have used for

hotel class prediction.

Definition 35 (Hotel Class Prediction Model). Let XA, A, WH , WA be as in

Definition 33, let XH be the hotel feature matrix without hotel class, let Xe
be

the matrix of review ratings between authors and hotels (author-hotel edge feautre

matrix), and let HetGNN be a heterogeneous graph neural network constructed for

these parameters.

The hotel class prediction model computes the predictions with

HotelClassPred (XH , XA, Xe, A, WH , WA) = ΘH(T)
H + b,

89

where H(T)
H is taken from(︂

H(T)
H , H(T)

A

)︂
= HetGNN (XH , XA, Xe, A, WH , WA) ,

and where Θ ∈ Rd×dH , b ∈ Rd
represents one fully connected linear layer with

d ∈ N the dimensionality of the resulting node embedding.

Because hotel class is a one-dimensional attribute, we use d = 1. The other
parameters (the number of hidden layers, the number of hidden channels, and

the homogeneous and heterogeneous graph neural functions) ranged the same

parameters as in the review rating prediction experiment.

The model names follow the format GNN-T-layer-d-hidden-Fhetero-Fhomo.

9.2.4 Evaluation
In this experiment, the model GNN-2-layer-12-hidden-SAGE-ChebNet yielded

the best test loss of 0.4154± 0.0514. Since the granularity of hotel classes is 0.5

and RMSE is always greater than the mean absolute error, we can conclude that

in most cases, the class predicted by the model is at most one hotel class level off.

We trained these models on a NVIDIA A100-SXM4-40GB GPU. Most of the

models were trained in under 30 seconds.

In Table 9.2, we can see the performances of the best 20 models. As in the

review prediction task, in terms of accuracy, the SAGE graph neural function for

the author-hotel heterogeneous links outperformed other functions. Also, the

best model ignores the augmented homogeneous author-author and hotel-hotel

links, but the next seven models use various graph convolutions for these links,

and since the confidence intervals of the losses overlap in models with similar

performance, it is possible that with some changes in the parameters, they could

be made to outperform the best model.

Figure 9.6 shows the learning curves of the best-performing model while

Figure 9.7 shows a comparison of the test losses of the best 5 models.

Figures 9.8 and 9.9 show UMAP visualizations of the two embeddings of

hotel features from the best model, GNN-2-layer-12-hidden-SAGE-ChebNet.
Comparing these to the corresponding pictures for the review rating prediction

experiment, we can see the better performance of the hotel class prediction model

from how there is less noise in the pictures that shows the true classes.

9.3 Hotel Score Prediction
Our final experiment evaluates the possibility of predicting how the score of a

hotel changes over time. Because such temporal hotel information is not directly

90

F h
et

er
o

F h
om

o
#
of

la
ye
rs

#
of

hi
dd

en
ch
an

ne
ls

#
of

tr
ai
na

bl
e

pa
ra
m
et
er
s

m
ea
n

tr
ai
ni
ng

ti
m
e

be
st
M
SE

lo
ss

(9
9%

co
nf
id
en
ce
)

SA
G
E

C
he

bN
et

2
12

10
7,
65
3

24
.4
7
s

0.
41

54
±

0.
05

14
SA

G
E

G
AT

2
12

10
7,
30
5

24
.2
7
s

0.
41

63
±

0.
03

47
SA

G
E

G
C
N

2
12

10
7,
25
7

20
.8
5
s

0.
41

78
±

0.
03

64
SA

G
E

G
C
N

2
8

71
,3
45

20
.8
1
s

0.
41

84
±

0.
02

18
SA

G
E

SA
G
E

1
16

14
2,
33
7

15
.8
2
s

0.
41

98
±

0.
01

85
SA

G
E

C
he

bN
et

2
8

71
,5
77

24
.5
5
s

0.
42

22
±

0.
03

38
SA

G
E

G
C
N

1
16

14
2,
00
1

15
.5
8
s

0.
42

23
±

0.
03

80
SA

G
E

G
C
N

2
16

14
3,
32
9

20
.9
8
s

0.
42

70
±

0.
03

16
SA

G
E

C
he

bN
et

2
16

14
3,
92
1

24
.4
6
s

0.
42

85
±

0.
03

96
SA

G
E

SA
G
E

2
16

14
3,
92
1

21
.3
2
s

0.
42

96
±

0.
04

37
SA

G
E

G
AT

1
16

14
2,
03
3

17
.3
7
s

0.
43

06
±

0.
03

87
SA

G
E

SA
G
E

2
8

71
,5
77

21
.2
5
s

0.
43

31
±

0.
05

15
SA

G
E

G
C
N

3
8

71
,6
89

26
.1
1
s

0.
43

55
±

0.
04

13
SA

G
E

SA
G
E

1
12

10
6,
75
3

15
.7
7
s

0.
43

58
±

0.
03

28
SA

G
E

G
AT

2
16

14
3,
39
3

24
.5
3
s

0.
43

71
±

0.
02

82
SA

G
E

SA
G
E

2
12

10
7,
65
3

21
.3
4
s

0.
43

84
±

0.
06

83
SA

G
E

C
he

bN
et

1
16

14
2,
33
7

17
.5
7
s

0.
43

90
±

0.
03

23
SA

G
E

G
C
N

3
12

10
8,
01
3

26
.2
9
s

0.
44

02
±

0.
03

96
SA

G
E

G
C
N

3
16

14
4,
65
7

26
.4
0
s

0.
44

25
±

0.
03

03
SA

G
E

G
AT

1
12

10
6,
52
5

17
.3
7
s

0.
44

26
±

0.
04

85

Ta
bl
e
9.
2

C
om

pa
ri
so
n
of

th
e
fi
rs
t
20

be
st
-p
er
fo
rm

in
g
m
od

el
s
fo
r
th
e
ho

te
lc
la
ss

ta
sk
.
Th

e
gi
ve
n
tr
ai
ni
ng

ti
m
es

ar
e
re
le
va
nt

fo
r

tr
ai
ni
ng

on
N
V
ID

IA
A
10
0-
SX

M
4-
40
G
B
G
P
U
.

91

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800
0.06±0.0247

0.42±0.0510

R
M
SE

epoch

99% train loss confidence
99% test loss confidence

mean train loss
mean test loss

Figure 9.6 Learning curves of the best-performing model for hotel class prediction,
GNN-2-layer-12-hidden-SAGE-ChebNet. 10-fold cross-validation was used to deter-
mine the 99% confidence intervals.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 100 200 300 400 500 600 700 800

R
M
SE

epoch

GNN-2-layer-12-hidden-SAGE-Cheb
GNN-2-layer-12-hidden-SAGE-GAT
GNN-2-layer-12-hidden-SAGE-GCN
GNN-2-layer-8-hidden-SAGE-GCN

GNN-1-layer-16-hidden-SAGE-SAGE

Figure 9.7 Comparison of test loss curves of the five best-performing models for hotel
class prediction. Beware the potentially misleading range [0.4, 0.7] of the vertical axis,
which was chosen to better show the differences between the functions.

92

(a
)T

ra
in

se
t,
co
lo
rs

ar
e
re
al
ra
ti
ng

s
(b
)T

es
t
se
t,
co
lo
rs

ar
e
re
al
ra
ti
ng

s

(c
)T

ra
in

se
t,
co
lo
rs

ar
e
pr
ed
ic
te
d
ra
ti
ng

s
(d
)T

es
t
se
t,
co
lo
rs

ar
e
pr
ed
ic
te
d
ra
ti
ng

s

Fi
gu

re
9.
8

U
M
A
P k

=
20

0
vi
su
al
iz
at
io
n

of
th
e

se
co
nd

to
la
st

ho
te
l

fe
at
ur
e

em
be
dd

in
g

of
th
e

be
st

m
od

el
GN

N-
2-

la
ye

r-
12

-h
id

de
n-

SA
GE

-C
he

bN
et

of
th
e
ho

te
lc
la
ss

pr
ed
ic
ti
on

ta
sk
.

93

(a)
Train

set,colors
are

realratings
(b)

Test
set,colors

are
realratings

(c)
Train

set,colors
are

predicted
ratings

(d)
Test

set,colors
are

predicted
ratings

Figure
9.9

U
M
A
P

k=
200

visualization
of

the
last

hotel
feature

em
bedding

of
the

best
m
odel

GNN-2-layer-12-hidden-SAGE-ChebNet
ofthe

hotelclass
prediction

task.

94

contained in the scraped dataset, we have decided to represent the score by the

eigenvector centrality of hotels in the projection to hotels defined in Definition 31.

Formally, we create a temporal projection to hotels GT
H from Definition 32, and

then we try to predict the eigenvector centrality from the static hotel attribute

function aH and the dynamic edge weights in the temporal projection.

9.3.1 Data preprocessing

For this task, we have divided the time interval for which we have scraped the

reviews (2003–2022) into monthly partitioning T , and then created a temporal

projection to hotels with parameters T , mr = 20, mc = 3, mn = 3. From the

resulting dynamic network, we have then removed the initial part in which the

monthly snapshots contain less than 10,000 edges.

Figure 9.10 shows how the eigenvector centrality changed for the top 10 hotels

(with respect to eigenvector centrality at the end of the year 2022). Notice how

the centralities stabilized in the last several years. From 2020 this can be explained

by the coronavirus pandemic, but even before, the centralities were more stable.

For this reason, we have also decided to remove the last six years (72 months)

from the projected temporal network. This left us with 109 monthly snapshots in

the dynamic network.

We use the same hotel feature matrix X = XH as in the review rating

prediction task.

9.3.2 Methodology

We do yet again use the Adam optimizer for gradient descent optimization as in

the previous two tasks, with the same parameters, and the MSE function as the

loss function.

Instead of k-fold cross-validation, we simply run the experiment k times (with

k = 5) and compute the means and confidence intervals of the learning curves

(the learning curves are different for different runs because the model is always

initialized with random neural weights). This is because unless we allow splitting

the set of hotels into train-test subsets, there is no straightforward way to do

k-fold cross-validation on this temporal dataset, and we do not want to split the

set of hotels because of the nature of this task—removing 10% of hotels would

also remove a lot of edges that contribute to the eigenvector centrality.

The temporal dataset is split into 80%–20% training-testing sequences (the

training sequence has 87 monthly snapshots, and the testing sequence has 22

monthly snapshots). We trained each model for 3000 epochs.

95

9.3.3 Models
For this task, we use the GCRN models from Chapter 6, GCRN-GRU, and GCRN-

LSTM. After the recurrent layer, we apply the ReLU activation function and a

linear transformation to generate the score prediction.

Definition 36 (Hotel Score Prediction Model). Let X be the hotel feature matrix

and W(t)
be the weighted adjacency matrices of the temporal projection to hotels

for t ∈ {1, . . . , T} and let GRCN be either GRCNLSTM or GRCNGRU.

The hotel score prediction model computes the t-th score prediction as

Θ ReLU
(︂
X, W(t), X, H(t)

)︂
+ b,

where Θ ∈ Rd×dH
, b ∈ Rd

one fully connected linear layer with d ∈ N the

dimensionality of hidden states, and where H(t)
is computed recurrently with

H(0) = 0
H(t) = GRCN

(︂
X, W(t), H(t−1)

)︂
.

We have constructed models with the order of the ChebNet’s Chebyshev

polynomial K ranging through values 1, 2, and 3, and the number of hidden

channels d ranging through values 4, 8, 12, and 16. Overall, we have evaluated 12

models based on GCRN-LSTM and 12 models based on GCRN-GRU.

The model names follow the format LSTM-d-hidden-K-ChebNet and GRU--
d-hidden-K-ChebNet.

9.3.4 Evaluation
In this experiment, we found that the model LSTM-16-hidden-2-ChebNet gave

the best predictions, with amean loss of 0.001203. It seems that better performance

is achieved with LSTM-based models and with higher values of K (which makes

sense as higher K means that information from greater distances is flowing into

nodes since ChebNet is K-localized).

Interestingly there are two GRU-based models among the best four models.

This is probably because of high variations in the progress of loss curves, as can be

seen from the confidence intervals of Figures 9.11 and 9.12. Unfortunately, it was

not possible to perform more evaluations since each training took a significant

amount of time.

Table 9.3 compares the best 20 of the 24 models.

A comparison of the real progress of scores through time with the predicted

scores can be seen in Figure 9.13. This comparison is made only for the top 10

hotels (with respect to the real score at the end of the evaluated time interval).

The predicted score seems to be offsetted, but interestingly its progress roughly

follows the real score.

96

0

0.05

0.1

0.15

0.2

0.25

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

ei
ge
nv
ec
to
r
ce
nt
ra
lit
y

year

Figure 9.10 The progress of eigenvector centralities of ten hotels with highest eigen-
vector centralities at the last month (2022/12) of the considered time interval.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

R
M
SE

epoch

99% train loss confidence
99% test loss confidence

mean train loss
mean test loss

Figure 9.11 Learning curves of the best-performing GRCNLSTM-based model for
hotel score prediction, LSTM-16-hidden-2-ChebNet. The 99% confidence intervals are
calculated from five runs.

97

G
C

R
N
type

K
#
ofhidden

channels
#
oftrainable

param
eters

training
tim

e
best

M
SE

loss

LSTM
2

16
5,121

92.85
m
in

0
.001203

G
R
U

3
4

965
49.56

m
in

0
.001238

LSTM
2

8
2,049

91.93
m
in

0
.001513

G
R
U

3
16

5,585
55.23

m
in

0
.001783

LSTM
3

12
5,089

97.92
m
in

0
.001803

LSTM
3

16
7,553

98.66
m
in

0
.001938

LSTM
3

8
3,009

98.64
m
in

0
.002230

LSTM
3

4
1,313

98.39
m
in

0
.002370

LSTM
2

12
3,457

92.94
m
in

0
.002459

G
R
U

2
8

1,497
60.03

m
in

0
.002679

G
R
U

2
16

3,761
68.66

m
in

0
.002798

G
R
U

3
8

2,217
59.96

m
in

0
.002902

G
R
U

3
12

3,757
60.90

m
in

0
.003122

G
R
U

2
12

2,533
78.98

m
in

0
.003200

LSTM
1

16
2,689

68.71
m
in

0
.007512

LSTM
1

8
1,089

68.11
m
in

0
.008416

LSTM
1

12
1,825

68.77
m
in

0
.008440

G
R
U

1
16

1,937
42.83

m
in

0
.008610

G
R
U

1
8

777
41.02

m
in

0
.008863

LSTM
2

4
897

90.85
m
in

0
.008874

Table
9.3

C
om

parison
of

the
best

20
m
odels

for
tem

poralhotelscore
prediction.

The
given

training
tim

es
are

not
com

parable
because

three
diff

erent
G
P
U
s
w
ere

used
for

training.

98

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

R
M
SE

epoch

99% train loss confidence
99% test loss confidence

mean train loss
mean test loss

Figure 9.12 Learning curves of the best-performing GRCNGRU-based model for hotel
score prediction, GRU-4-hidden-3-ChebNet. The 99% confidence intervals are calcu-
lated from five runs.

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

ei
ge
nv
ec
to
r
ce
nt
ra
lit
y

year

Figure 9.13 The comparison of the predicted future hotel scores to their real values
for the hotels from Figure 9.10. The lines with stronger colors represent the predictions.
Although the predictions are offsetted a little, interestingly, they seem to somehow copy
the progress of the real curves (notice, for example, how both yellow curves wave). The
order of the curves also seems to be preserved in most cases.

99

100

Chapter 10

Software

In the last chapter, we will give a brief description of the software framework we

created for the analysis and evaluation of our models.

The software framework consists of several UNIX-like command line interface

(CLI) utilities. It is written in the Python 3 programming language [52], and uses

the following libraries:

• PyTorch [53], a fast machine learning library with high-level abstractions

for defining deep learning models,

• PyTorch Geometric [54], a library for deep learning on graphs andmanifolds,

built on top of PyTorch,

• PyTorch Geometric Temporal [55], a library for deep learning on spatio-

temporal graphs,

• NetworkX [56], a library for the creation, manipulation, and study of com-

plex networks,

• Matplotlib [57], a plotting library that is used to create figures and plots,

• NumPy [58], a library for scientific computing that provides support for

large, multi-dimensional arrays and matrices,

• SciPy [59], a scientific computing library providing a range of numerical

algorithms and functions for working with scientific data,

• scikit-learn [60], a machine learning library that provides a range of algo-

rithms and tools for data analysis and modeling,

• UMAP [43], the library providing UMAP dimensionality reduction.

101

The source code is part of this thesis and is included as an attachment. The

framework and the scraped dataset are available online.
1

In the rest of this chapter we will describe the specific utilities and provide

usage examples.

10.1 scraper.py

The scraper.py utility is used to scrap the dataset from the Tripadvisor website.

It supports the following arguments:

• -r, --region REG will tell to scrap reviews for hotel from region REG,
which is a number that can be extracted from the URL of a Tripadvisor hotel

page (https://www.tripadvisor.com/Hotel_Review-gREGION-...)

• -o, --output-dir DIR specifies the output directory where the

scraped data are to be stored.

Example usage:

./ scraper .py -r 60763 -r 187147 -r 186338 -o scraped

10.2 preprocess.py

The preprocess.py utility is used for initial data preprocessing as described in

Section 8.5 and Definition 30.

It supports the following arguments:

• -A, --min-author-reviews N minimum number of reviews each au-

thor will have in the preprocessed dataset,

• -H, --min-hotel-reviews N minimum number of reviews each hotel

will have in the preprocessed dataset,

• --amenities N the number of most popular hotel amenities to keep,

• --languages N the number of most popular hotel languages to keep,

• -i, --input-dir DIR input directory containing scraped data,

• -o, --output-dir DIR output directory.

Example usage:

./ preprocess .py -i scraped -o preprocessed -5 -5 -10 -10 \
-A 5 -H 5 --amenities 10 --languages 10

1https://www.ms.mff.cuni.cz/~behunm/tripadvisor

102

https://www.ms.mff.cuni.cz/~behunm/tripadvisor

10.3 projection.py

The projection.py creates a bipartite network projection to hotels or authors

as defined in Definition 31.

It supports the following arguments:

• -y, --max-year Y will consider reviews only until the end of the spec-

ified year,

• -p, --projection-to {authors,hotels} specifies whether this a

projection to authors or to hotels will be created,

• -r, --min-reviews N the parameter mr from Definition 31,

• -c, --min-common N the parameter mc from Definition 31,

• -n, --min-neighbors the parameter mn from Definition 31,

• -i, --input-dir DIR input directory containing scraped or prepro-

cessed data,

• -o, --output OUTPUT output file where to save the projection graph.

Example usage:

./ projection .py -Y 2015 -p authors \
-r 10 -c 3 -n 3 -i preprocessed \
-o author_projection_2015 .graph

./ projection .py -Y 2020 -p hotels \
-r 10 -c 3 -n 3 -i preprocessed \
-o hotel_projection_2020 . graph

10.4 temporal_projection.py

The temporal_projection.py utility creates the temporal projection/dynamic

network from Definition 32. The time interval is partitioned into monthly snap-

shots. It also computes the eigenvector centralities for the projected nodes for

each snapshot.

It supports the following arguments:

• -p, --projection-to {authors,hotels} specifies whether this a

projection to authors or to hotels will be created (currently only supported

for hotels),

103

• -r, --min-reviews N the parameter mr from Definition 32,

• -c, --min-common N the parameter mc from Definition 32,

• -n, --min-neighbors the parameter mn from Definition 32,

• -i, --input-dir DIR input directory containing scraped or prepro-

cessed data,

• -o, --output OUTPUT output filewhere to save the temporal projection

/ dynamic network.

Example usage:

./ temporal_projection .py -p hotels -r 20 -c 3 -n 3 \
-i preprocessed -o temporal_hotels .graph

10.5 community_detection.py

The community_detection.py utility is used for community detection on pro-

jected graphs created with the projection.py utility.

It supports the following arguments:

• -i, --input INPUT the input graph created with the projection.py
utility,

• -o, --output OUTPUT where to save the updated graph that contains

the detected node communities

• -d, --draw-graph FILE whether to draw an image of the graph with

colors representing the detected communities,

• -M, --draw-hotel-map FILE whether to draw a map of hotels with

colors representing the detected communities on top of the United States

map.

Example usage:

draw hotel map to hotel_map .png and
#save detected communities to graph
./ community_detection .py -i hotel_projection_2020 .graph \

--draw -hotel -map hotel_map .png \
-o hotel_projection_2020 .graph

104

10.6 centrality.py

The centrality.py utility is used to compute the eigenvector and Katz cen-

tralities on projected graphs created with the projection.py utility, and also

to dump the progress of centralities on temporal graphs created with the

temporal_projection.py utility.

It supports the following arguments:

• -i, --input INPUT the input graph created with the projection.py
utility or the temporal_projection.py utility,

• -o, --output OUTPUT where to save the updated graph that contains

the computed centralities (if not given, the computed centralities will just

be dumped),

• --dump-temporal-centralities whether the input is a temporal pro-

jection and we just want to dump the centralities,

• --dump-temporal-centralities-only-best-n-nodes N for how

many nodes do we want to dump the centralities (the nodes are sorted in

descending order according to the centralities at the last snapshot).

Example usage:

to dump temporal centralities
./ centrality .py --dump -temporal - centralities \

-i temporal_hotels .graph

to compute and dump centralities
./ centrality .py -i hotel_projection_2020 .graph

to compute and add centralities
to hotel_projection_2020 .graph
./ centrality .py -i hotel_projection_2020 .graph \

-o hotel_projection_2020 . graph

10.7 review_counts.py

The review_counts.py dumps various statistics about preprocessed data created

with the preprocess.py utility.

It supports the following arguments:

• -y, --yearly count reviews by year,

• -m, --monthly count reviews by year/month,

105

• -M, --monthly-only count reviews by month only,

• --histogram-by-author count histogram of reviews by author,

• --histogram-by-hotel count histogram of reviews by hotel,

• -a, --authors-per-year count active authors per year,

• --min-author-reviews N consider only authors with a given number

of reviews when counting active authors,

• -i, --input-dir DIR

Example usage:

./ review_counts .py -i preprocessed \
--authors -per -year --min -author - reviews 10

10.8 create_torch_data.py

The create_torch_data.py utility is used for preprocessing the data so that

they are suitable for our prediction experiments.

It supports the following arguments:

• -i, --input-dir DIR the directory with the preprocessed JSON files

created by the preprocess.py utility,

• --review-rating-prediction create data suitable for review rating

prediction,

• --hotel-class-prediction create data suitable for hotel class predic-

tion,

• --temporal-hotel-prediction FILE create data suitable for the

temporal hotel score prediction, with the given file created by the

temporal_projection.py utility,

• --augment-hotels-from FILE augment hotels—add the computed ho-

tel eigenvector centralities, detected communities, and edges between ho-

tels, created by utilities projection.py, community_detection.py, and
centrality.py,

• --augment-authors-from FILE augment authors—add the computed

author eigenvector centralities, detected communities, and edges between

authors, created by utilities projection.py, community_detection.py,
and centrality.py,

106

• -o, --output OUTPUT where to save the torch data to then be used by

review rating/hotel class/hotel score prediction utilities.

Example usage:

to create for review rating prediction
./ create_torch_data .py -i preprocessed \

--review -rating - prediction \
-o review_rating .data

to create for hotel class prediction
with hotels augmentation
./ create_torch_data .py -i preprocessed \

--hotel -class - prediction \
--augment -hotels -from hotel_projection_2020 . graph \
-o hotel_class .data

to create for the temporal
hotel score prediction
./ create_torch_data .py -i preprocessed \

--temporal -hotel - prediction temporal_hotels . graph \
-o hotel_score .data

10.9 experiment_review_rating.py

The experiment_review_rating.py utility is used for running the experiment

described in Section 9.1.

It supports the following arguments:

• -i, --input FILE file created by the create_torch_data.py utility

• -k, --k-folds K the k for k-fold cross-validation,

• -e, --epochs N how many epochs to train for,

• -l, --layers N how many heterogeneous layers should the model

have,

• --hidden-channels N the number of hidden channels,

• --hetero-edge-convolution TYPE the type of heterogeneous edge

convolution, i.e. SAGE,

• --homo-edge-convolution TYPE the type of homogeneous edge con-

volution, i.e. Cheb,

107

• --learning-rate RATE learning rate of the Adam optimizer,

• --save-last-epoch-embedding FILE save embeddings from last

epoch to be later visualized by the visualization.py utility,

Example usage:

./ experiment_review_rating .py -i review_rating .data \
-k 10 --epochs 1000 --layers 2 --hidden - channels 12 \
--hetero -edge - convolution GAT \
--save -last -epoch - embedding review_rating .emb.data

10.10 experiment_hotel_class.py

The experiment_hotel_class.py utility is used for running the experiment

described in Section 9.2

It supports the following arguments:

• -i, --input FILE file created by the create_torch_data.py utility

• -k, --k-folds K the k for k-fold cross-validation,

• -e, --epochs N how many epochs to train for,

• -l, --layers N how many heterogeneous layers should the model

have,

• --hidden-channels N the number of hidden channels,

• --hetero-edge-convolution TYPE the type of heterogeneous edge

convolution, i.e. SAGE,

• --homo-edge-convolution TYPE the type of homogeneous edge con-

volution, i.e. Cheb,

• --learning-rate RATE learning rate of the Adam optimizer,

• --save-last-epoch-embedding FILE save embeddings from last

epoch to be later visualized by the visualization.py utility,

Example usage:

./ experiment_hotel_class .py -i hotel_class .data \
-k 10 --epochs 1000 --layers 2 --hidden - channels 12 \
--hetero -edge - convolution GAT \
--homo -edge - convolution Cheb \
--save -last -epoch - embedding hotel_class .emb.data

108

10.11 experiment_hotel_score.py

The experiment_hotel_score.py utility is used for running the experiment

described in Section 9.3

It supports the following arguments:

• -i, --input FILE file created by the create_torch_data.py utility

• -e, --epochs N how many epochs to train for,

• -l, --layers N how many layers should the model have,

• --hidden-channels N the number of hidden channels,

• --recurrent-layer TYPE the type of the GCRN model, either GRU or

LSTM,

• –k K the degree of the Chebyshev polynomial,

• –repeat N run multiple times to compute means and confidence inter-

vals for learning curves,

• --learning-rate RATE learning rate of the Adam optimizer,

• --save-best-model FILE save best-performing model,

• --predict-with-saved-model FILE load saved model and dump pre-

dictions.

Example usage:

train and save model
./ experiment_review_rating .py -i hotel_score .data \

--repeat 10 --epochs 3000 --layers 3 \
--hidden - channels 20 --recurrent -layer LSTM \
--k 6 --save -best -model hotel_score .model

load saved model and dump predictions
./ experiment_review_rating .py -i hotel_score .data \

--predict -with -saved -model hotel_score .model

10.12 visualization.py

The visualization.py utility is used to create visualizations of the embeddings

of review rating prediction models and hotel class prediction models, by using

the UMAP dimensionality reduction method.

It supports the following arguments:

109

• -i, –input FILE the file with the embeddings,

• -p, –prefix PREFIX the prefix for the names of the visualizations

(PNG files),

• -r, –review-rating input file contains review rating model embed-

dings,

• -H, –hotel-class input file contains hotel class model embeddings.

Example usage:

create visualizations of review rating model embeddings
./ visualization .py -i review_rating .emb.data \

--review - rating --prefix review_rating

create visualizations of hotel class model embeddings
./ visualization .py -i hotel_class .emb.data \

--hotel - class --prefix hotel_class

110

Conclusion

In this thesis, we have explored the application of Graph Neural Networks to

Social Network Analysis. We have described the theory behind several types of

GNN models and then applied these models to hotel review data scraped from

the Tripadvisor website. Our focus was to determine whether GNNs represent an

adequate technique for solving tasks like the prediction of review ratings, hotel

classes or temporal hotel centrality measures.

A non-trivial part of this study was also the analysis of the scraped data using

traditional SNA techniques, like degree centrality and community detection, for

which we have also given a theoretical overview. Using these methods, we have,

for example, discovered that, in a certain sense, hotels across the United States

form communities.

Despite the results of our prediction experiments being simple to compre-

hend, the extracted information from within the deep learning models is high-

dimensional. We use non-trivial methods (UMAP) for the visualization of these

internal embeddings. Because of this, we have dedicated one chapter to the

theoretical background behind these methods.

In order to be able to do our experiments, we have implemented several soft-

ware utilities that together form a framework suitable for GNN experimentation

on data scraped from Tripadvisor. The implemented framework has been designed

to be mainly used from the command-line interface (CLI).

Brief documentation of the software framework is included, together with

enough researcher-oriented information necessary to understand and use it.

We have performed several experiments for all the explored prediction tasks

and determined which models are best suited for them:

• For the review rating prediction task, the best performing model was

GAE-1-layer-12-hidden-SAGE-GAT, which yielded 0.8538 ± 0.0132
RMSE on the testing set. We find this accuracy adequate for use in a

possible Tripadvisor recommender system.

• For the second of our experiments, the hotel label prediction task, the best

model we found (GNN-2-layer-12-hidden-SAGE-ChebNet) performed

111

with 0.4154± 0.0514 RMSE on the testing set.

• For the temporal hotel score prediction, the LSTM-16-hidden-2-ChebNet
model gave the best RMSE of 0.001203 on the testing part of the temporal

dataset.

Further work
There are several viable paths for future work on this topic:

• Because the Tripadvisor data scraping utility we have developed contains

also the actual texts of the reviews, it may be of benefit to other researchers

when conducting experiments such as fake review detection.

• The Tripadvisor website also provides information about restaurants and

attractions nearby given hotels. These extended data could be analyzed

and several new tasks could be designed, such as the prediction of hotel

popularities based on nearby restaurants.

112

Bibliography

[1] Tripadvisor. https://www.tripadvisor.com. Accessed: 2022-12-19.

[2] Tripadvisor: Days Inn byWyndhamMemphis. https://www.tripadvisor.
com/Hotel_Review-g60763-d113317-Reviews-Casablanca_Hotel_
by_Library_Hotel_Collection-New_York_City_New_York.html.
Accessed: 2023-01-02.

[3] Barry Wellman. “The development of social network analysis: A study in

the sociology of science”. In: Contemporary Sociology 37.3 (2008), p. 221.

[4] Tao Zhou et al. “Bipartite network projection and personal recommenda-

tion”. In: Physical review E 76.4 (2007), p. 046115.

[5] Charu C Aggarwal et al. Data mining: the textbook. Vol. 1. Springer, 2015.

[6] Mohammed J Zaki, Wagner Meira Jr, and Wagner Meira. Data mining and

analysis: fundamental concepts and algorithms. Cambridge University Press,

2014.

[7] Leo Katz. “A new status index derived from sociometric analysis”. In: Psy-

chometrika 18.1 (1953), pp. 39–43.

[8] Santiago Segarra and Alejandro Ribeiro. Stability and Continuity of Central-

ity Measures in Weighted Graphs. 2014. doi: 10.48550/ARXIV.1410.5119.
url: https://arxiv.org/abs/1410.5119.

[9] Mark Newman. Networks: An Introduction. Oxford University Press, Mar.

2010. isbn: 9780199206650. doi: 10.1093/acprof:oso/9780199206650.
001.0001.url: https://doi.org/10.1093/acprof:oso/9780199206650.
001.0001.

[10] Michelle Girvan and Mark EJ Newman. “Community structure in social

and biological networks”. In: Proceedings of the national academy of sciences

99.12 (2002), pp. 7821–7826.

113

https://www.tripadvisor.com
https://www.tripadvisor.com/Hotel_Review-g60763-d113317-Reviews-Casablanca_Hotel_by_Library_Hotel_Collection-New_York_City_New_York.html
https://www.tripadvisor.com/Hotel_Review-g60763-d113317-Reviews-Casablanca_Hotel_by_Library_Hotel_Collection-New_York_City_New_York.html
https://www.tripadvisor.com/Hotel_Review-g60763-d113317-Reviews-Casablanca_Hotel_by_Library_Hotel_Collection-New_York_City_New_York.html
https://doi.org/10.48550/ARXIV.1410.5119
https://arxiv.org/abs/1410.5119
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

[11] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. “Finding commu-

nity structure in very large networks”. In: Physical Review E 70.6 (2004).

doi: 10.1103/physreve.70.066111. url: https://doi.org/10.1103%
2Fphysreve.70.066111.

[12] Brian W Kernighan and Shen Lin. “An efficient heuristic procedure for par-

titioning graphs”. In: The Bell system technical journal 49.2 (1970), pp. 291–

307.

[13] Vincent D Blondel et al. “Fast unfolding of communities in large networks”.

In: Journal of statistical mechanics: theory and experiment 2008.10 (2008),

P10008.

[14] Zonghan Wu et al. “A comprehensive survey on graph neural networks”.

In: IEEE transactions on neural networks and learning systems 32.1 (2020),

pp. 4–24.

[15] Claudio Gallicchio and Alessio Micheli. “Graph Echo State Networks”. In:

The 2010 International Joint Conference on Neural Networks (IJCNN). 2010,

pp. 1–8. doi: 10.1109/IJCNN.2010.5596796.

[16] Yujia Li et al. “Gated graph sequence neural networks”. In: arXiv preprint

arXiv:1511.05493 (2015).

[17] Hanjun Dai et al. “Learning Steady-States of Iterative Algorithms over

Graphs”. In: Proceedings of the 35th International Conference on Machine

Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings

of Machine Learning Research. PMLR, 2018, pp. 1106–1114. url: https:
//proceedings.mlr.press/v80/dai18a.html.

[18] M. Gori, G. Monfardini, and F. Scarselli. “A new model for learning in

graph domains”. In: Proceedings. 2005 IEEE International Joint Conference on

Neural Networks, 2005. Vol. 2. 2005, 729–734 vol. 2. doi: 10.1109/IJCNN.
2005.1555942.

[19] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Trans-

actions on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.
2005605.

[20] Luis B. Almeida. “A Learning Rule for Asynchronous Perceptrons with

Feedback in a Combinatorial Environment”. In: Artificial Neural Networks:

Concept Learning. IEEE Press, 1990, 102–111. isbn: 0818620153.

[21] Fernando J. Pineda. “Generalization of back-propagation to recurrent neural

networks”. In: Phys. Rev. Lett. 59 (19 1987), pp. 2229–2232. doi: 10.1103/
PhysRevLett.59.2229. url: https://link.aps.org/doi/10.1103/
PhysRevLett.59.2229.

114

https://doi.org/10.1103/physreve.70.066111
https://doi.org/10.1103%2Fphysreve.70.066111
https://doi.org/10.1103%2Fphysreve.70.066111
https://doi.org/10.1109/IJCNN.2010.5596796
https://proceedings.mlr.press/v80/dai18a.html
https://proceedings.mlr.press/v80/dai18a.html
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1103/PhysRevLett.59.2229
https://doi.org/10.1103/PhysRevLett.59.2229
https://link.aps.org/doi/10.1103/PhysRevLett.59.2229
https://link.aps.org/doi/10.1103/PhysRevLett.59.2229

[22] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation. 2014. doi: 10.48550/ARXIV.
1406.1078. url: https://arxiv.org/abs/1406.1078.

[23] Joan Bruna et al. Spectral Networks and Locally Connected Networks on

Graphs. 2013. doi: 10.48550/ARXIV.1312.6203. url: https://arxiv.
org/abs/1312.6203.

[24] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolu-

tional Neural Networks on Graphs with Fast Localized Spectral Filtering”.

In: (2016). doi: 10.48550/ARXIV.1606.09375. url: https://arxiv.
org/abs/1606.09375.

[25] Benjamin Ricaud et al. “Fourier could be a data scientist: From graph Fourier

transform to signal processing on graphs”. In: Comptes Rendus Physique 20.5

(2019). Fourier and the science of today / Fourier et la science d’aujourd’hui,

pp. 474–488. issn: 1631-0705. doi: https://doi.org/10.1016/j.crhy.
2019.08.003. url: https://www.sciencedirect.com/science/
article/pii/S1631070519301094.

[26] Xavier Desquesnes, Abderrahim Elmoataz, and Olivier Lézoray. “Eikonal

equation adaptation on weighted graphs: fast geometric diffusion process

for local and non-local image and data processing”. In: Journal of Mathe-

matical Imaging and Vision 46.2 (2013), pp. 238–257.

[27] Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. “From Graphs

to Manifolds – Weak and Strong Pointwise Consistency of Graph Lapla-

cians”. In: Learning Theory. Ed. by Peter Auer and Ron Meir. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2005, pp. 470–485. isbn: 978-3-540-31892-

7.

[28] Ulrike von Luxburg. “A Tutorial on Spectral Clustering”. In: (2007). doi: 10.
48550/ARXIV.0711.0189. url: https://arxiv.org/abs/0711.0189.

[29] David KHammond, Pierre Vandergheynst, and Rémi Gribonval.Wavelets on

Graphs via Spectral Graph Theory. 2009. doi: 10.48550/ARXIV.0912.3848.
url: https://arxiv.org/abs/0912.3848.

[30] Thomas N. Kipf andMaxWelling. Semi-Supervised Classification with Graph

Convolutional Networks. 2016. doi: 10.48550/ARXIV.1609.02907. url:
https://arxiv.org/abs/1609.02907.

[31] Justin Gilmer et al. Neural Message Passing for Quantum Chemistry. 2017.

doi: 10.48550/ARXIV.1704.01212. url: https://arxiv.org/abs/
1704.01212.

115

https://doi.org/10.48550/ARXIV.1406.1078
https://doi.org/10.48550/ARXIV.1406.1078
https://arxiv.org/abs/1406.1078
https://doi.org/10.48550/ARXIV.1312.6203
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://doi.org/10.48550/ARXIV.1606.09375
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://doi.org/https://doi.org/10.1016/j.crhy.2019.08.003
https://doi.org/https://doi.org/10.1016/j.crhy.2019.08.003
https://www.sciencedirect.com/science/article/pii/S1631070519301094
https://www.sciencedirect.com/science/article/pii/S1631070519301094
https://doi.org/10.48550/ARXIV.0711.0189
https://doi.org/10.48550/ARXIV.0711.0189
https://arxiv.org/abs/0711.0189
https://doi.org/10.48550/ARXIV.0912.3848
https://arxiv.org/abs/0912.3848
https://doi.org/10.48550/ARXIV.1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.48550/ARXIV.1704.01212
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212

[32] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation

Learning on Large Graphs. 2017. doi: 10.48550/ARXIV.1706.02216. url:
https://arxiv.org/abs/1706.02216.

[33] Petar Veličković et al. Graph Attention Networks. 2017. doi: 10.48550/
ARXIV.1710.10903. url: https://arxiv.org/abs/1710.10903.

[34] Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. 2016.

doi: 10.48550/ARXIV.1611.07308. url: https://arxiv.org/abs/
1611.07308.

[35] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis.

Transfer Graph Neural Networks for Pandemic Forecasting. 2020. doi: 10.
48550/ARXIV.2009.08388. url: https://arxiv.org/abs/2009.
08388.

[36] Jiawei Zhu et al.A3T-GCN: Attention Temporal Graph Convolutional Network

for Traffic Forecasting. 2020. doi: 10.48550/ARXIV.2006.11583. url:
https://arxiv.org/abs/2006.11583.

[37] Youngjoo Seo et al. Structured Sequence Modeling with Graph Convolutional

Recurrent Networks. 2016. doi: 10.48550/ARXIV.1612.07659.url: https:
//arxiv.org/abs/1612.07659.

[38] Sepp Hochreiter and Jurgen Schmidhuber. “Long short-term memory”. In:

Neural computation 9.8 (1997), pp. 1735–1780.

[39] Mikhail Belkin and Partha Niyogi. “Laplacian eigenmaps for dimensionality

reduction and data representation”. In: Neural computation 15.6 (2003),

pp. 1373–1396.

[40] Benyamin Ghojogh, Fakhri Karray, and Mark Crowley. Eigenvalue and

Generalized Eigenvalue Problems: Tutorial. 2019. doi: 10.48550/ARXIV.
1903.11240. url: https://arxiv.org/abs/1903.11240.

[41] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using

t-SNE”. In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605.

url: http://jmlr.org/papers/v9/vandermaaten08a.html.

[42] Laurens van derMaaten. “Accelerating t-SNE using Tree-BasedAlgorithms”.

In: Journal of Machine Learning Research 15.93 (2014), pp. 3221–3245. url:

http://jmlr.org/papers/v15/vandermaaten14a.html.

[43] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Man-

ifold Approximation and Projection for Dimension Reduction. 2018. doi:

10.48550/ARXIV.1802.03426. url: https://arxiv.org/abs/1802.
03426.

116

https://doi.org/10.48550/ARXIV.1706.02216
https://arxiv.org/abs/1706.02216
https://doi.org/10.48550/ARXIV.1710.10903
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/1710.10903
https://doi.org/10.48550/ARXIV.1611.07308
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://doi.org/10.48550/ARXIV.2009.08388
https://doi.org/10.48550/ARXIV.2009.08388
https://arxiv.org/abs/2009.08388
https://arxiv.org/abs/2009.08388
https://doi.org/10.48550/ARXIV.2006.11583
https://arxiv.org/abs/2006.11583
https://doi.org/10.48550/ARXIV.1612.07659
https://arxiv.org/abs/1612.07659
https://arxiv.org/abs/1612.07659
https://doi.org/10.48550/ARXIV.1903.11240
https://doi.org/10.48550/ARXIV.1903.11240
https://arxiv.org/abs/1903.11240
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v15/vandermaaten14a.html
https://doi.org/10.48550/ARXIV.1802.03426
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426

[44] Sebastian Damrich and Fred A Hamprecht. “On UMAP’s true loss function”.

In: Advances in Neural Information Processing Systems 34 (2021), pp. 5798–

5809.

[45] Tripadvisor: Casablanca Hotel by Library Hotel Collection (New York City).

https://www.tripadvisor.com/Hotel_Review-g60763-d113317-
Reviews-Casablanca_Hotel_by_Library_Hotel_Collection-New_
York_City_New_York.html. Accessed: 2023-01-02.

[46] Stephen G. Kobourov. Spring Embedders and Force Directed Graph Drawing

Algorithms. 2012. doi: 10.48550/ARXIV.1201.3011. url: https://
arxiv.org/abs/1201.3011.

[47] Tom M Mitchell and Tom M Mitchell. Machine learning. Vol. 1. 9. McGraw-

hill New York, 1997.

[48] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-

mization. 2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.
org/abs/1412.6980.

[49] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012.

doi: 10.48550/ARXIV.1212.5701. url: https://arxiv.org/abs/
1212.5701.

[50] Sebastian Ruder. An overview of gradient descent optimization algorithms.

2016. doi: 10.48550/ARXIV.1609.04747. url: https://arxiv.org/
abs/1609.04747.

[51] Ziniu Hu et al. Heterogeneous Graph Transformer. 2020. doi: 10.48550/
ARXIV.2003.01332. url: https://arxiv.org/abs/2003.01332.

[52] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts

Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[53] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Advances in Neural Information Processing Systems

32. Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.
neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[54] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning

with PyTorch Geometric. 2019. doi: 10.48550/ARXIV.1903.02428. url:
https://arxiv.org/abs/1903.02428.

[55] Benedek Rozemberczki et al. PyTorch Geometric Temporal: Spatiotemporal

Signal Processing with Neural Machine Learning Models. 2021. doi: 10 .
48550/ARXIV.2104.07788. url: https://arxiv.org/abs/2104.
07788.

117

https://www.tripadvisor.com/Hotel_Review-g60763-d113317-Reviews-Casablanca_Hotel_by_Library_Hotel_Collection-New_York_City_New_York.html
https://www.tripadvisor.com/Hotel_Review-g60763-d113317-Reviews-Casablanca_Hotel_by_Library_Hotel_Collection-New_York_City_New_York.html
https://www.tripadvisor.com/Hotel_Review-g60763-d113317-Reviews-Casablanca_Hotel_by_Library_Hotel_Collection-New_York_City_New_York.html
https://doi.org/10.48550/ARXIV.1201.3011
https://arxiv.org/abs/1201.3011
https://arxiv.org/abs/1201.3011
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1212.5701
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701
https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://doi.org/10.48550/ARXIV.2003.01332
https://doi.org/10.48550/ARXIV.2003.01332
https://arxiv.org/abs/2003.01332
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/ARXIV.1903.02428
https://arxiv.org/abs/1903.02428
https://doi.org/10.48550/ARXIV.2104.07788
https://doi.org/10.48550/ARXIV.2104.07788
https://arxiv.org/abs/2104.07788
https://arxiv.org/abs/2104.07788

[56] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,

dynamics, and function using NetworkX. Tech. rep. Los Alamos National

Lab.(LANL), Los Alamos, NM (United States), 2008.

[57] John D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing

in science & engineering 9.3 (2007), pp. 90–95.

[58] Charles R. Harris et al. “Array programming with NumPy”. In: Nature

585.7825 (Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.
url: https://doi.org/10.1038/s41586-020-2649-2.

[59] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:

10.1038/s41592-019-0686-2.

[60] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

118

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2

Attachments

Attachment A - the Enclosed CD
On the CD attached to this thesis (and also on the online Thesis Repository of

Charles University
2
) we enclose the source codes of the implemented software

framework used in our experiments.

The electronic version of this thesis is also enclosed on the CD.

2https://dspace.cuni.cz

119

https://dspace.cuni.cz

120

	Introduction
	Preliminaries
	Notation
	Basic definitions

	Social Network Analysis
	Actor centrality
	Degree centrality
	Eigenvector centrality
	Katz centrality
	Betweenness centrality
	Generalizations for weighted graphs

	Community detection
	Girvan-Newman method
	Kernighan-Lin bisection method
	Louvain method
	Discussion

	Recurrent Graph Neural Networks (RecGNNs)
	Graph Neural Network* (GNN*)
	Gated Graph Neural Networks (GGNNs)

	Convolutional Graph Neural Networks (ConvGNNs)
	Spectral ConvGNNs
	Spectral CNN
	ChebNet
	Graph Convolutional Network (GCN)

	Spatial ConvGNNs
	Message Passing Neural Network (MPNN)
	GraphSAGE
	Graph Attention Network (GAT)

	Graph Autoencoders
	Graph Autoencoder* (GAE*)
	Variational Graph Autoencoder (VGAE)
	Discussion

	Spatial-temporal Graph Neural Networks (STGNNs)
	GCRN-LSTM
	GCRN-GRU

	Visualisation methods
	Spectral Embedding
	t-distributed Stochastic Neighbor Embedding (t-SNE)
	Uniform Manifold Approximation and Projection (UMAP)
	Discussion

	Dataset
	Data source
	Data acquisition
	Scraped data format
	Scraped data basic information
	Initial data preprocessing
	Graph construction
	Community detection
	Discussion

	Experiments
	Review Rating Prediction
	Data preprocessing
	Methodology
	Models
	Evaluation

	Hotel Class Prediction
	Data preprocessing
	Methodology
	Models
	Evaluation

	Hotel Score Prediction
	Data preprocessing
	Methodology
	Models
	Evaluation

	Software
	scraper.py
	preprocess.py
	projection.py
	temporal_projection.py
	community_detection.py
	centrality.py
	review_counts.py
	create_torch_data.py
	experiment_review_rating.py
	experiment_hotel_class.py
	experiment_hotel_score.py
	visualization.py

	Conclusion
	Further work

	Bibliography
	Attachments

