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Abstract: In the weighted Minimum 2-Edge Connected Steiner Subgraph
(2-ECSS) problem, the input is a simple undirected edge-weighted graph. The
task is to find a subgraph with the least cost (sum of weights of edges), such
that for each pair of vertices u, v from a distinguished subset (called terminals),
there exist at least two edge-disjoint u-v paths in the subgraph. We give a ran-
domized XP algorithm, parameterized by the number of terminals, for weighted
Minimum 2-ECSS in case of uniform edge weights, at the heart of which lies the
randomized algorithm by Björklund, Husfeldt, and Taslaman (SODA 2012), for
finding a shortest cycle through a given subset of vertices.

A close variant of weighted Minimum 2-ECSS is the weighted Minimum 2-Edge
Connected Steiner Multi-subgraph (2-ECSM) problem. In weighted Minimum
2-ECSM, the solution subgraph can use multiple copies of each edge in the in-
put graph, paying separately for each copy. We show that weighted Minimum
2-ECSM is polynomially equivalent to a problem called Bi-directed Strongly Con-
nected Steiner Subgraph (BI-SCSS), for which an FPT algorithm is known due to
Chitnis et al. (TALG 2021). We show that by combining the results of Jordán
(Discret. Appl. Math. 2001) and Feldmann et al. (SOSA 2022), one can obtain
an FPT algorithm for weighted Minimum 2-ECSM (parameterized by the num-
ber of terminals), which, as we prove, gives a faster FPT algorithm for BI-SCSS,
compared to the one by Chitnis et al.

Keywords: parameterized algorithms, XP, fixed-parameter tractability, random-
ized algorithms, 2-edge connected
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List of Notations
Notations
G(V, E) graph G with vertex set V and edge set E

V (G) vertex set of graph G

E(G) edge set of graph G

dG(v) degree of vertex v in graph G

A complement of set A

δ(A) (elementary) edge cut containing edges uv s.t. u ∈ A and v ∈ A

a-b path path with end-points a, b

G\e graph obtained by deleting edge e from G

poly-time polynomial time in the input instance
poly(·) polynomial function
exp(·) exponential function
[n] set of first n natural numbers
[a .. b] interval of all integers between a and b, including a and b
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Introduction
In this work, we focus on the (weighted) Minimum k-Edge Connected Steiner Sub-
graph (k-ECSS) problem and the weighted Minimum k-Edge Connected Steiner
Multi-subgraph (k-ECSM) problem, which arise in the design of fault-resilient
communication networks [RE06]. An instance of weighted Minimum k-ECSS is
a pair (G, T ), where G is a simple undirected edge-weighted (with positive real
weights) graph and T is a subset of vertices called the terminals. The goal is
to find a subgraph H with the minimum cost (sum of weights of edges) s.t. any
two terminals have at least k edge-disjoint paths between them in H. For the
weighted Minimum k-ECSM problem, the solution H can be a multi-subgraph,
i.e., H is allowed to contain multiple copies of any edge of the input graph, with
each copy contributing towards the cost of H. Both weighted Minimum k-ECSS
and k-ECSM are known to be NP-hard for k ≥ 1 [GJ78].

Parameterized algorithms [DF13, FKLM20] are a fairly recent paradigm for
“tackling” NP-hard problems. Here, the input comes together with a param-
eter k ∈ N, which expresses some property of the input. The instances of a
parameterized optimization [LPRS17] problem are pairs (I, k) ∈ Σ* × N for
some finite alphabet Σ, and a solution to (I, k) is simply a string s ∈ Σ*,
such that |s| ≤ |I|+ k. The value of a solution s is given by Π(I, k, s), where
Π : Σ* × N× Σ* → R is some computable function. Given an input instance to
a parameterized minimization (or maximization) problem, the task is to find
an optimum solution, i.e., a solution with the minimum (or maximum) possible
value. A parameterized optimization problem is called fixed-parameter tractable
(FPT), if there exists an algorithm for it, which computes an optimum solution in
time f(k)nO(1), where f : N→ N is some computable function, and n is the input
size. The corresponding algorithm is called an FPT algorithm and is said to run
in FPT time in parameter k. The idea is to restrict any super-polynomial runtime
to the parameter, making the problem at hand tractable for input instances with
small values of k. A closely related class of algorithms is that of the slice-wise
polynomial (XP) algorithms, where the running time is of the form f(k)ng(k), for
some computable functions f, g : N→ N.

Another common approach for dealing with NP-hard problems is the use of
approximation algorithms [HV03, WS11]. The idea here is to relax the require-
ment to compute an optimum solution and instead compute an α-approximation
in polynomial time, i.e., a solution within a factor α of the optimum solution.

Weighted Minimum k-ECSS is a special case of the Edge Connectivity Sur-
vivable Network Design Problem (EC-SNDP) [KM05], wherein one is asked to
find a subgraph H with the minimum cost s.t. for each pair of terminals s, t ∈ T
there are at least ds,t edge-disjoint s-t paths in H, where {ds,t}s,t∈T are called
demands and are a part of the input. In his seminal work, Jain [Jai01] showed
that EC-SNDP admits a poly-time 2-approximation algorithm. We show that
one can beat the factor of 2 for unweighted Minimum 2-ECSS (or simply Min-
imum 2-ECSS) where all the edges have unit weight, and compute an optimal
solution with high probability, but using XP time in parameter |T |, the number
of terminals.

Theorem 1. Minimum 2-ECSS admits a randomized XP algorithm for the pa-
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rameter k = |T |, with a runtime of nO(k) s.t. the algorithm may fail (can output
“fail” or a non-optimal feasible solution) with probability at most exp(− poly(n)),
where n is the number of vertices in the input graph.

We note that while writing this work, Bansal et al. [BCGI22] independently
proved Theorem 1, along with some other additional results, including a ran-
domized Fully Polynomial Time Approximation Scheme (FPTAS) for weighted
Minimum 2-ECSS, given a constant value of |T |.

Turning to weighted Minimum 2-ECSM, we show that it is polynomially equiv-
alent to a previously studied [CFM17] problem called the Bi-directed Strongly
Connected Steiner Subgraph (BI-SCSS) problem. That is, we show that weighted
Minimum 2-ECSM and BI-SCSS are polynomially reducible to each other. In
BI-SCSS, given an edge-weighted bi-directed graph, the aim is to find a minimum
cost strongly connected subgraph which contains a given subset of vertices called
the terminals. A bi-directed edge-weighted graph is such, that for every directed
edge in the graph there is a directed edge of the same weight in the opposite
direction. It is known due to Chitnis et al. [CFM17] that BI-SCSS admits an FPT
algorithm with a runtime of 2O(|T |2)nO(1), where T is the terminal set and n the
number of vertices in the input graph. We show, that by combining the results
of Jordán [Jor03] and Feldmann et al. [FMvL21] one can obtain an FPT algo-
rithm with a runtime of 2O(|T | log |T |)nO(1) for weighted Minimum 2-ECSM. Using
this, in addition to the polynomial reduction from BI-SCSS to weighted Minimum
2-ECSM, we get a faster algorithm for BI-SCSS.

Theorem 2. BI-SCSS admits an FPT algorithm (parameter |T |) with a runtime
of 2O(|T | log |T |)nO(1), where |T | is the number of terminals and n is the number of
vertices in the input graph.

In chapter 1 we go through the relevant preliminaries. In chapter 2 we prove
Theorem 1. Using results from [BCGI22], we give an alternative proof of Theo-
rem 1 in chapter 3. Finally, in chapter 4 we prove Theorem 2.

Related work
Both (weighted) Minimum 1-ECSS and 1-ECSM are equivalent to the Steiner
Tree problem [Kar72], which has been well-studied both in terms of polynomial
time approximation algorithms [CC02, BGRS13], and parameterized complexity
[DW71, FKM+07, BHKK07, DF13, DFK+21].

All the vertices are terminals. In the (weighted) Minimum Spanning k-Edge
Connected Subgraph (Spanning-k-ECS) problem, the aim is to find a minimum
cost spanning subgraph in which every pair of vertices have k edge-disjoint paths
between them, i.e., (weighted) Minimum Spanning-k-ECS is a special case of
(weighted) Minimum k-ECSS where every vertex of the input graph is a terminal.
Analogously, (weighted) Minimum Spanning k-Edge Connected Multi-subgraph
(Spanning-k-ECM) is a special case of (weighted) Minimum k-ECSM. We note
that both (weighted) Minimum Spanning-1-ECS and Spanning-1-ECM are equiva-
lent to the Minimum Spanning Tree problem, which is known to admit a poly-time
algorithm [Bor26].
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It is known that Minimum Spanning-2-ECS is Max-SNP hard [CL99], and
thus is unlikely to have a Polynomial Time Approximation Scheme (PTAS).
In their ground-breaking work, Khuller and Vishkin [KV94] gave a poly-time
3
2 -approximation algorithm for the same, beating the previous factor of 2. Since
the approximation ratio has been improved to the current best factor of 4

3 [CSS01,
SV14, HVV19, KK01, Ç19]. Interestingly, in planar graphs there does exist a
PTAS for weighted Minimum Spanning-2-ECS (2-ECM) [BCGZ05, BG07, Kle08].
It turns out that one can, without loss of generality, take the metric closure of
the input graph in case of weighted Minimum k-ECSM (see chapter 4). Thus it
is known due to Fredrickson and Jájá [FJ82] that Christofides algorithm has a
performance guarantee of 3

2 for weighted Minimum Spanning-2-ECM.
For k ≥ 2, the most notable result is by Gabow et al. [GGTW08] showing that

Minimum Spanning-k-ECM (k-ECS) admits a poly-time algorithm with approxi-
mation ratio 1+ 2

k
, i.e., the ratio approaches 1 as k →∞. For weighted Minimum

Spanning-k-ECM, in a recent work, Karlin et al. [KKGZ21] gave a randomized
poly-time approximation algorithm with ratio 1 +

√︂
8 ln k

k
, which is a step toward

answering the open conjecture that the problem (like its unweighted counterpart)
admits a 1 + O(1)

k
poly-time approximation algorithm.

General case and parameterization. It follows from the work of Hu, Hsu, and
Lin [HHL00] that weighted Minimum 2-ECSM has a poly-time 3

2 -approximation
algorithm. In planar graphs, weighted Minimum 2-ECSM is even known to admit
a PTAS1 [BK16]. For some other special graphs, polytopes associated with the
solutions have also been studied [MP00].

Coming to the world of parameterized algorithms, it follows from the work
of Feldmann, Mukherjee, and van Leeuwen [FMvL21] that weighted Minimum
k-ECSS admits an FPT algorithm for the parameter ‘solution size’ (the number
of edges in the solution). Feldmann et al. [FMvL21] also proved that EC-SNDP
is FPT for the parameter D + tw, where tw is tree-width of the input graph,
and D is the sum of demands {ds,t}s,t∈T . This implies, that weighted Minimum
k-ECSS admits an FPT algorithm for the parameter k+|T |+tw, as for (weighted)
Minimum k-ECSS the sum of demands is D = k

(︂
|T |
2

)︂
. However, it remains an

open question if there exists an FPT algorithm for (weighted) Minimum k-ECSS,
for k ≥ 2, for the parameter |T |.

1whether a PTAS exists for weighted Minimum 2-ECSS in planar graphs is an open question.
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1. Preliminaries
We skip definitions and notations that are not specific to this work and instead
refer the reader to the following texts: Deo’s Graph Theory with Applications to
Engineering and Computer Science [Deo04], The Design of Approximation Algo-
rithms by David P. Williamson and David B. Shmoys [WS11], and Parameterized
Algorithms by Marek Cygan et al. [CFK+15].

Unless stated explicitly, we deal only with undirected graphs. A graph is
called 2-edge (2-vertex) connected if it remains connected even after an edge
(vertex1) is removed from the graph. The following theorem gives an equivalent
characterization in terms of disjoint paths.

Theorem 3 (Menger’s theorem;[Men27]).

1. (Edge). Given vertices x and y, the size of the minimum x-y edge cut
(edges whose removal disconnects x and y) equals the maximum number of
pairwise edge-disjoint x-y paths.

2. (Vertex). For two non-adjacent vertices x and y, the size of the mini-
mum x-y vertex cut (vertices distinct from x and y, whose removal dis-
connects x and y) is equal to the maximum number of pairwise internally
vertex-disjoint x-y paths.

It follows from Theorem 3 that a graph is 2-edge (vertex) connected if and
only if every pair of vertices has at least 2 edge (internally vertex) disjoint paths
between them.

Definition 1 (Minimally (2, T )-edge connected;[Jor03]). A graph G(V, E) is
called (2, T )-edge connected, if for all u, v (u ̸= v) in T ⊆ V , there exist 2
edge-disjoint paths between u and v in G. A (2, T )-edge connected graph is
called minimally (2, T )-edge connected if it contains no isolated vertices, and
after removal of any edge, it no longer remains (2, T )-edge connected.

We now formally define the Minimum 2-ECSS problem.

Problem 1 (Minimum 2-ECSS). Given as input an unweighted simple graph
G(V, E) with a set of distinguished vertices (terminals) T ⊆ V , find a subgraph
H of G s.t.

1. H is (2, T )-edge connected.

2. |E(H)| is minimized.

If H satisfies only condition 1, it is said to be a feasible solution, and if it meets
both conditions, it is said to be an optimal solution. Vertices in the set V \T are
called Steiner vertices.

Analogous to Definition 1 and Problem 1 we can define minimally (2, T )-vertex
connected graphs (by changing the requirement from edge-disjoint to internally

1and the graph has at least 3 vertices.
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vertex-disjoint paths), and the Minimum 2-Vertex Connected Steiner Subgraph
(2-VCSS) problem, by requiring H to be (2, T )-vertex connected in condition 1.

For weighted Minimum 2-ECSS instead of minimizing the number of edges in
H (condition 2), the aim is to minimize the sum of weights of edges in H. In
weighted Minimum 2-ECSM, H is allowed to have multiple copies of any edge of
the input graph, i.e., H is a multi-subgraph (instead of a subgraph) of the input
graph.

Moving forward, we assume |T | > 1, and that the input graph G is (2, T )-edge
connected (this can be checked in poly-time using Theorem 3 and a max-flow
algorithm [Din06]) in case of (weighted) Minimum 2-ECSS. Otherwise, one can
output “no feasible solution”. In the case of weighted Minimum 2-ECSM, it is
trivial to check that a feasible solution exists if and only if all the terminals
belong to the same connected component. Thus we assume that the input graph
to weighted Minimum 2-ECSM is connected.
Definition 2 (Ear decomposition;[Nar16]; see Figure 1.1). An ear of G is a path
P of length at least 1, such that the end-points of P may coincide, but every
other pair of vertices of P are distinct. An ear-decomposition of G is a sequence
P0, P1, · · · , Pk, where P0 is a vertex and P1, · · · , Pk are ears such that Pi shares
exactly its two end-points with the vertices of P0 ∪ P1 ∪ · · · ∪ Pi−1. An open ear
decomposition is an ear decomposition in which the two end-points of each ear
Pi (i ≥ 2) are distinct.

Ear decomposition gives us an alternative way of defining 2-edge (2-vertex)
connected graphs, which is crucial to the algorithm in Theorem 1.
Theorem 4 ([Rob39a]). A graph is 2-edge connected if and only if it has an ear
decomposition.
Theorem 5 ([Whi32]). A graph G(V, E) with |V | > 2 is 2-vertex connected if
and only if it has an open ear decomposition.

As the following theorem states, an ear decomposition of a 2-edge (vertex)
connected graph can be computed efficiently.
Theorem 6 ([Sch12]). An ear (open ear) decomposition of a 2-edge (vertex)
connected graph can be found in poly-time.

Figure 1.1: An example of an (open) ear decomposition with vertex P0 and ears
P1, P2 and P3.

P0
P3

P2

P1
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Definition 3 (Extended edge). An extended edge between vertices u and v
(u ̸= v) in graph G, denoted by uvex is a path u, w1, · · · , wi, · · · , v such that
for all the internal vertices wi, dG(wi) = 2. An edge uv is an extended edge with
no internal vertices.

Definition 4 (Chord-path). Let u, v (u ̸= v) be two vertices that lie on a cycle C.
Let uvex denote an extended uv edge. Then uvex is called a chord-path (simply
chord, if uvex is just an edge) of C if it does not share any edges or vertices with
C (apart from u, v).

We formally define the problems BI-SCSS and EC-SNDP, as we would require
these definitions in chapter 4.

Problem 2 (BI-SCSS;[CFM17]). Given a directed graph G(V, E) with weight
function w : E → R+ and a subset of vertices T ⊆ V (called terminals), s.t. for
every edge −→uv (directed edge from u to v) there is an edge −→vu of the same weight
in G, the task is to find a subgraph H of minimum cost (sum of weights of edges)
s.t. T ⊆ V (H) and H is a strongly connected component.

Problem 3 (EC-SNDP;[FMvL21]). We are given a (multi-) graph G(V, E) with
positive real edge-weights, together with a terminal set T ⊆ V , and a non-negative
integer demand ds,t ∈ N0 for each terminal pair s, t ∈ T . The aim is to find a
subgraph H so that each terminal pair s, t ∈ T is connected by at least ds,t

edge-disjoint paths in H, while minimizing the sum of weights of edges in H.
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2. Randomized XP algorithm
In sections 2.1 and 2.2, we make some observations about the structure of an
optimal solution to Minimum 2-ECSS, essentially showing that an optimal solu-
tion “decomposes into a tree-like structure”. We then use these observations to
describe the randomized XP algorithm for Minimum 2-ECSS in section 2.3.

2.1 Structure of an optimal solution
First, we make the following three observations about a minimally (2, T )-edge
connected graph, which will be useful going forward.

Observation 1. If a graph G is minimally (2, T )-edge connected, it is 2-edge
connected.

Proof. See Appendix A.

Observation 2. If G(V, E) is 2-edge connected, then every edge uv ∈ E lies on
some cycle.

Proof. See Appendix A.

Observation 3. Any chord-path uvex in a minimally (2, T )-edge connected graph
G(V, E) has at least one terminal in its interior.

Proof. By contradiction assume there exists a chord-path uvex (of some cycle C)
s.t. uvex either has no internal vertices or all the internal vertices of uvex are
Steiner vertices. Let G′(V ′, E ′) be the graph obtained by removing all the edge(s)
(and internal vertices, if any) of uvex. We prove that G′ is (2, T )-edge connected,
contradicting the minimality of G. First, we observe that all the terminals (ver-
tices in T ) and the cycle C exist in G′ as we remove only edges and possibly
(internal) Steiner vertices along the chord-path uvex. By contradiction, assume
for some x, y ∈ T the maximum number of edge-disjoint x-y paths in G′ is less
than two. Using Theorem 3 there exists an x-y cut (in G′) characterized by
∅ ≠ A ⊊ V ′ s.t. x ∈ A, y ∈ A and there exist less than 2 edges in the cut δ(A).
Either u, v ∈ A or u, v ∈ A, otherwise we would have at least 2 edges in the
cut δ(A), as u, v lie on the cycle C. Without loss of generality, let u, v ∈ A.
Consider the x-y cut in G characterized by B = A ∪ Vex where Vex is the set of
internal vertices of uvex. As all the internal vertices of uvex have degree 2, and all
of them are in B, the number of edges in the x-y cut δ(B) in G is the same as the
number of edges in the x-y cut δ(A) in G′, which is less than 2. Using Theorem 3,
the maximum number of edge-disjoint paths between x and y in G is less than 2,
which leads to a contradiction as G is minimally (2, T )-edge connected.

Let H* be an optimal solution to Minimum 2-ECSS. As |T | > 1, without
loss of generality, we assume H* has no isolated vertices and is thus minimally
(2, T )-edge connected. We begin by noting the following crucial theorem, which
states that for a minimally (2, T ′)-edge connected simple graph with all the Steiner
vertices having a degree of at least 3, the total number of vertices in the graph is
bounded in terms of the number of terminals.

9



Theorem 7 ([Jor03]). Let G(V, E) be a minimally (2, T ′)-edge connected simple
graph s.t. for every vertex v ∈ V \T ′, dG(v) ≥ 3. Then |V | ≤ 17

3 |T
′| − 8.

The idea behind using Theorem 7 is to guess the (Steiner) vertices in an
optimal solution to Minimum 2-ECSS using XP time in the number of terminals
in the input graph. Thus, in light of Theorem 7, we “short-circuit” Steiner vertices
of degree 2. We follow the convention that a loop contributes a degree of 2, and
p copies of an edge uv (u ̸= v) contribute p each towards degrees of u and v.
Let H*

sc denote the graph obtained from H* by repeating the following operation
exhaustively while there exists a Steiner vertex u of degree 2.

Op 1
• Let x and y be neighbors of u. Short-circuit u by deleting it and

creating an edge between x and y, allowing multi-edges to be
formed in the process.

We note that in the definition of Op 1, we implicitly assume that the neigh-
bors x, y of the vertex u being short-circuited are distinct and different from u.
The proof of Lemma 1 justifies this assumption.

Lemma 1. Let the sequence of graphs created by exhaustive application of Op 1
be H0, H1, · · · , Hi, · · · , Hl where H0 = H* and Hl = H*

sc. Then Hi for 0 ≤ i ≤ l
is minimally (2, T )-edge connected.

Proof. We give proof by induction. For H0 = H* the lemma follows from opti-
mality of H* (and the assumption that H* has no isolated vertices). Assuming
the lemma holds for 0 < i < l, we prove it holds for i+1 as well. By the induction
hypothesis, Hi is minimally (2, T )-edge connected; thus, it contains no loops. Let
u be the degree 2 Steiner vertex in Hi that is short-circuited to obtain Hi+1. Then
u has distinct neighbors x and y, as otherwise, if u shared two parallel edges with
some vertex w, it would contradict the minimality of Hi, as the parallel edges
incident to u could be deleted (still keeping the graph (2, T )-edge connected).
First we observe Hi+1 is (2, T )-edge connected. For arbitrary a, b ∈ T let p1 and
p2 be two edge-disjoint a-b paths in Hi. If none of these paths contain edges
in {ux, uy}, then they are edge-disjoint a-b paths in Hi+1 as well. Otherwise,
without loss of generality let p1 contain edge xu. As u has a degree of 2 and
is a Steiner vertex (so u ̸∈ {a, b}), p1 contains the edge uy as well. More pre-
cisely, p1 contains the sub-path xuy. As p2 is edge-disjoint from p1 it does not
contain edges in {ux, uy}. We can substitute the sub-path xuy in p1 with the
“new” (the only, if edge xy did not exist previously) copy f of edge xy (obtained
by short-circuiting u), getting 2 edge-disjoint a-b paths in Hi+1. Now assume
by contradiction that Hi+1 is not minimally (2, T )-edge connected. Then, there
exists an edge e in Hi+1 such that H ′

i+1 := Hi+1\e is (2, T )-edge connected (note,
Hi+1 has no isolated vertices, as by the induction hypothesis Hi has no isolated
vertices, and u has distinct neighbors).

Case (1): e = f . For arbitrary a, b ∈ T let p1, p2 be two edge-disjoint a-b
paths in H ′

i+1. Then p1, p2 exist in H ′
i as well, where H ′

i is the graph obtained
from Hi by deleting edges ux, uy. This contradicts the minimality of Hi.

Case (2): e is an edge that exists in Hi+1 and Hi. For arbitrary a, b ∈ T let
p1, p2 be two edge-disjoint a-b paths in H ′

i+1. If none of p1, p2 contain the edge f ,

10



then p1, p2 exist in Hi\e as well. Otherwise, without loss of generality let p1
contain f . As e cannot be either of ux, uy (as they do not exist in Hi+1), we can
substitute f by path xuy in p1 to obtain p′

1. Now p′
1,p2 are edge-disjoint a-b paths

in Hi\e. This again contradicts the minimality of Hi.

Corollary 1. H*
sc does not contain loops and has at most 2 copies of any edge.

Proof. Absence of loops follows trivially from minimality of H*
sc (which follows

from Lemma 1). H*
sc cannot have more than 2 copies of an edge uv, as two

copies of uv can be treated as a cycle and the third copy as a chord, which using
Observation 3 contradicts the minimality of H*

sc.

u v
Op 1

u v

Figure 2.1: Example of application of Op 1. Red (square) vertices are terminals,
and the black vertex is a Steiner vertex.

It follows from the construction of H*
sc and Lemma 1 that H*

sc is minimally
(2, T )-edge connected, and does not contain Steiner vertices of degree less than 3.
But we cannot directly apply Theorem 7 to H*

sc, as it can be a multi-graph (fol-
lows from Corollary 1; see Figure 2.1). Thus we “break” H*

sc into sub-parts and
analyze them separately. Before doing so, we make two observations, which later
help us argue about the structure of H* from that of H*

sc. The first observation
(Corollary 2) states that the set of vertices short-circuited by exhaustive appli-
cation of Op 1 is exactly the set of degree 2 Steiner vertices in H*. The second
observation (Observation 5) broadly states that each edge uv in H*

sc corresponds
to an extended edge uvex in H*, such that, the internal vertices of uvex are from
the set of short-circuited vertices.

Observation 4. Let the sequence of graphs created by exhaustive application
of Op 1 be H0, H1, · · · , Hi, · · · , Hl where H0 = H* and Hl = H*

sc. Then for
0 ≤ i ≤ l the following holds for every vertex v in Hi : dHi

(v) = dH*(v).

Proof. We give proof by induction. The claim trivially holds for i = 0. Assuming
it holds for 0 < i < l, we prove it for i + 1. Let u be the degree 2 Steiner vertex
in Hi, which is short-circuited to obtain Hi+1. Using Lemma 1, we know Hi is
minimally (2, T )-edge connected. Thus u has two distinct neighbors x, y (in Hi).
The loss of a degree of 1 (for x and y) by deleting edges ux and uy is offset by
creating an edge xy. As degrees of other vertices remain unchanged while going
from Hi to Hi+1, using the induction hypothesis we get that for each vertex v in
Hi+1, dHi+1(v) = dHi

(v) = dH*(v).

Corollary 2. Let S denote the set of degree 2 Steiner vertices in H*, then
V (H*

sc) = V (H*)\S.
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Proof. Let ui (0 ≤ i < l) denote the degree 2 Steiner vertex in Hi, that is short-
circuited to obtain Hi+1. Using Observation 4, dHi

(ui) = dH*(ui), i.e. ui is a
degree 2 Steiner vertex in H*. Conversely, assume by contradiction that a degree
2 Steiner vertex u in H* exists in H*

sc as well. Again using Observation 4, we
get dH*

sc
(u) = dH*(u) = 2. But this leads to a contradiction as Op 1 can still be

applied to H*
sc.

Observation 5. Let the sequence of graphs created by exhaustive application of
Op 1 be H0, H1, · · · , Hi, · · · , Hl where H0 = H* and Hl = H*

sc. Let ui (0 ≤ i < l)
be the vertex short-circuited to obtain Hi+1 from Hi. Also, let S0 = ∅ and
Si = Si−1 ∪{ui−1} for 1 ≤ i ≤ l. Then for 0 ≤ i ≤ l, H* can be obtained from Hi

by replacing each edge uv in Hi by an extended edge uvex in H* s.t. the following
holds:

1. I(uvex) ⊆ Si where I(uvex) represents the set of internal vertices of uvex.

2. For any two distinct edges (parallel edges are considered to be distinct)
e1, e2 ∈ Hi, if the extended edges they are replaced with are e1

ex and e2
ex

respectively, then I(e1
ex) ∩ I(e2

ex) = ∅.

Proof. We give proof by induction. For H0 = H*, edge uv in H0 can be replaced
by itself i.e. uvex = uv. Trivially the resulting graph is H*. As I(uv) = ∅, the
observation follows. Assuming the observation holds for 0 < i < l we prove
it holds for i + 1 as well. It follows from Lemma 1 that ui has two distinct
neighbors x, y in Hi. While going from Hi to Hi+1, edges uix, uiy are deleted,
and a new xy edge is created; let it be denoted by f . If edge e ∈ Hi ∩Hi+1 is
replaced by extended edge eex in Hi (to obtain H*), then we replace e by eex

in Hi+1 as well. Let uix, uiy be replaced by extended edges uixex, uiyex respec-
tively in Hi. Then we replace f by the path fex := uixex, uiyex in Hi+1. Us-
ing the induction hypothesis and the fact that ui is a degree 2 (Steiner) vertex
in H* (as by Observation 4 we have dHi

(ui) = dH*(ui) = 2), it follows that fex

is an extended xy edge in H*. It is not hard to see that using the mapping
mentioned above from edges of Hi+1 to extended edges of H*, we obtain H*.
Lastly, we prove that conditions 1 and 2 are met. Using the induction hy-
pothesis, we know that for every edge e ∈ Hi ∩Hi+1, I(eex) ⊆ Si ⊆ Si+1, and
I(fex) ⊆ Si+1 as I(uixex), I(uiyex) ⊆ Si ⊆ Si+1 and ui ∈ Si+1. Again using the
induction hypothesis, we know that for any two distinct edges e1, e2 ∈ Hi ∩Hi+1,
I(e1

ex) ∩ I(e2
ex) = ∅, and for any edge e ∈ Hi ∩ Hi+1, I(eex) ∩ I(fex) = ∅, since

I(eex) ∩ (I(uixex) ∪ I(uiyex)) = ∅, and ui ̸∈ Si ⊇ I(eex).

Coming back to the idea of breaking H*
sc into smaller sub-parts, we first show

that, ˜︃H*
sc, the simple graph underlying H*

sc (see Definition 6) “decomposes into a
tree-like structure” (Observation 9).

Definition 5. Let Xsc denote the set of edges in H*
sc that have a single copy, and

Ysc the set of edges that have two copies, i.e. if there are two copies of uv in H*
sc,

it is counted once in Ysc.

For example in Figure 2.1 Xsc = ∅ and Ysc = {uv}. Recall, using Corollary 1
we know that each edge in H*

sc has at most two copies.

12



Definition 6. Let ˜︃H*
sc denote the simple graph obtained from H*

sc by removing
one copy of each edge in Ysc.

For proving Observation 9, we make some auxiliary observations.

Observation 6. There exists no cycle in H*
sc that contains a copy of some edge

uv ∈ Ysc, except for the one formed by two copies of uv (a trivial cycle).

Proof. Assume by contradiction that there exists a (non-trivial) cycle C, which
contains a copy of some edge uv ∈ Ysc. Then C contains exactly one copy of uv,
and the other copy forms a chord of C. But, using Observation 3 this contradicts
the minimality of H*

sc (which follows from Lemma 1).

Let N1, N2, · · ·Nt denote the maximally 2-edge connected components in ˜︃H*
sc

s.t.
t⋃︁

i=1
V (Ni) = V (˜︃H*

sc), where possibly Ni might consist of a single vertex. Note,
by maximality of Ni, V (Ni) ∩ V (Nj) = ∅ for i ̸= j. We call Ni nodes. We say an
edge uv in ˜︃H*

sc belongs to node Ni if u, v ∈ V (Ni), and thus by maximality of Ni,
uv ∈ E(Ni).

Observation 7 and Observation 8 simply show that all the edges in Ysc are
exactly the bridges in ˜︃H*

sc, and all edges in Xsc belong to some node.

Observation 7. Edges in Ysc do not belong to any node.

Proof. Consider an arbitrary edge uv ∈ Ysc. Assume by contradiction that it
belongs to some node Ni. As Ni is 2-edge connected, by Observation 2 uv lies
on some cycle C in Ni (in ˜︃H*

sc). C exists in H*
sc as well and contains a single

copy of uv, as ˜︃H*
sc is a simple graph by construction. However, this leads to a

contradiction using Observation 6, as C is a non-trivial cycle.

Figure 2.2: Pictorial aid for Observation 8

Ni Nj
u v

Observation 8. Every edge in Xsc belongs to some node.

Proof. Assume by contradiction that there exists uv ∈ Xsc s.t. uv does not belong
to any node, i.e. u ∈ Ni and v ∈ Nj for i ̸= j. Using Lemma 1 and Observation 1
we know that H*

sc is 2-edge connected. Also, using Observation 2 we know that
there exists a cycle C in H*

sc, which contains the edge uv. C exists in ˜︃H*
sc as well,

as C is a non-trivial cycle (as uv ∈ Xsc). But this contradicts maximality of Ni

and Nj as N ′ which contains Ni, Nj and C is 2-edge connected (see Figure 2.2).
Any u-v cut in N ′ has at least 2 edges as u, v lie on the cycle C; for any other
cut characterized by ∅ ≠ A ⊊ V (N ′) s.t. u, v ∈ A:

• if there exists a vertex w ∈ A s.t. w ∈ V (Ni) (or V (Nj)). Then there exist
at least 2 edges in the cut δ(A) as u, w ∈ V (Ni) (or v, w ∈ V (Nj)) and Ni

(Nj) is 2-edge connected.

13



• otherwise, there exists a vertex w ∈ A s.t. w ̸∈ {u, v} and w ∈ C. Then
there exist at least 2 edges in δ(A) as u, v, w lie on C and u, v ∈ A.

2.1.1 Summarizing the structure
Consider the graph T obtained by contracting each node Ni in ˜︃H*

sc to a vertex.
We denote the vertex of T corresponding to Ni by vNi

.

Observation 9. T is a tree (see Figure 2.3).

Proof. Using Lemma 1, we know that H*
sc is minimally (2, T )-edge connected and

hence connected. As ˜︃H*
sc is obtained from H*

sc by removing one copy of every edge
(and leaving the other) in Ysc, ˜︃H*

sc is connected as well. Using Observation 8 and
Observation 7, we know that all the edges in Xsc belong to some node, and edges
in Ysc do not belong to any node, and thus are exactly the edges of T , in the
sense that edge uv ∈ Ysc, where u ∈ Ni and v ∈ Nj, becomes edge vNi

vNj
in T .

As a result, edges of T do not form a cycle, as it would imply the existence of a
non-trivial cycle in H*

sc containing a single copy of some edge in Ysc, which using
Observation 6 would lead to a contradiction.

Figure 2.3: An example showing how T is obtained from H*. Red (square)
vertices are terminals, and black vertices are Steiner vertices. The blue circles
denote the nodes. The figure also shows a boundary vertex w of node N1.

H*

w

H*
sc

N1

N2

N4

N3

N5˜︃H*
sc

vN1 vN2

vN4

vN5

vN3

T

14



We now summarize what the observations so far imply about the structures
of H*

sc and H*. As ˜︃H*
sc is obtained from H*

sc by keeping only one copy of every
edge in Ysc, using Observation 7 and Observation 8 it follows that, H*

sc exactly
comprises of nodes Ni, and a pair of parallel edges corresponding to each edge
of T ; with edge vNi

vNj
corresponding to two parallel edges between u and v,

such that u ∈ V (Ni) and v ∈ V (Nj). Also, using Observation 5 we have, that
corresponding to every edge uv with two copies (pair of parallel edges) in H*

sc,
there exist two (internally) vertex-disjoint u-v paths in H*. Furthermore, as each
node by definition is 2-edge connected (possibly a single vertex), using Theorem 3
and Observation 5 it is not hard to see that, every node Ni (in H*

sc) corresponds
to a (2, V (Ni))-edge connected subgraph of H*. Using Corollary 2, it also follows
that any vertex in the subgraph which is not in V (Ni), is a degree 2 Steiner vertex
of H*.

2.2 Looking at parts of the tree structure
Recall that by construction, the nodes are simple graphs. In Lemma 2, we show
that every node Ni is minimally (2, Ti ∪Bi)-edge connected (or contains a single
vertex); with Ti and Bi being defined in Definition 8. Also, Observation 10 tells
us, that the degree of every vertex s ∈ V (Ni)\(Ti ∪Bi), in Ni, is at least 3. This
gives us all the ingredients to apply Theorem 7 to every node.

Definition 7. A vertex v ∈ Ni is called a boundary vertex (of Ni), if there exists
an edge uv (in ˜︃H*

sc) s.t. u ̸∈ Ni.

We note that a boundary vertex (see Figure 2.3) can be a terminal or a Steiner
vertex.

Definition 8. Let Bi and Ti denote the set of boundary vertices and terminals
in node Ni.

Observation 10. For any Steiner vertex s ∈ V (Ni)\Bi (i.e. a non-boundary
Steiner vertex of Ni) we have dNi

(s) ≥ 3.

Proof. As s is a non-boundary vertex, dNi
(s) = dH*

sc
(s), and dH*

sc
(s) ≥ 3. The lat-

ter follows from exhaustive application of Op 1 and minimality of H∗
sc (Lemma 1).

Lemma 2. Every node Nj is either minimally (2, Tj ∪ Bj)-edge connected or
contains a single vertex.

Proof. Assume by contradiction that there exists an index i s.t. Ni contains more
than one vertex and is not minimally (2, Ti ∪ Bi)-edge connected. We note that
by using Theorem 3, Ni is (2, Ti ∪Bi)-edge connected, as Ni is 2-edge connected
by definition. It means that there exists an edge e in Ni s.t. N ′

i := Ni\e is
still (2, Ti ∪Bi)-edge connected (note, Ni has no isolated vertices). We prove
H := H*

sc\e is (2, T )-edge connected which contradicts the minimality of H*
sc.

Let Mj := Nj for j ∈ [t]\{i} and Mi := N ′
i (recall t is the number of nodes). Now

consider arbitrary terminals a, b ∈ T .
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Case (1): a, b ∈ V (Mx) for some x. Then, there exist 2 edge-disjoint paths
between them, as Mx is (2, Tx ∪Bx)-edge connected (and a, b ∈ Tx).

Case (2): a ∈ Mx and b ∈ My (x ̸= y). It follows from the tree structure of
T , that there exists a path P = vNx , · · · , vNy in T . But this implies that there
exist 2 edge-disjoint paths between a and b (in H), as (1) for each edge vNj

vNz

in P , there exist vertices p, q such that there are two parallel edges between p
and q in H*

sc (and hence H)1, where p and q are boundary vertices of Nj and
Nz respectively, and (2) for all j ∈ [t], there exist two edge-disjoint paths in Mj

between any two vertices in Tj ∪Bj.

Finally, we apply Theorem 7 to every node, bounding the total number of
vertices in a node in terms of the number of terminals and boundary vertices in
it.

Lemma 3. For a node Ni, the total number of vertices in it is upper bounded
by 6 · |Ti ∪Bi|.

Proof. First, we consider the case where Ni contains a single vertex. If the sole
vertex of Ni is a boundary vertex, then the lemma follows trivially. Otherwise,
if Ni has no boundary vertex then, ˜︃H*

sc consists of a single node (Ni), as ˜︃H*
sc is

connected (which follows from Lemma 1 and the definition of ˜︃H*
sc). However, this

leads to a contradiction as we assume |T | > 1, whereas Ni consists of a single
vertex.

If Ni consists of more than one vertex, then by Lemma 2 it is minimally
(2, Ti ∪Bi)-edge connected. Also, using Observation 10, for any non-boundary
Steiner vertex s of Ni, we have that dNi

(s) ≥ 3. Lastly, we recall that Ni is a
simple graph by definition. Thus, by using Theorem 7, we get

|V (Ni)| ≤
17
3 |Ti ∪Bi| − 8 ≤ 6 · |Ti ∪Bi|

Now, we bound the size of the vertex set of T except for a certain subset L, in
terms of k = |T |, the number of terminals in the input graph (Observation 14).
We also bound the total number of vertices in nodes corresponding to vertices
in V (T )\L, in Lemma 4. As we see in the next section, this helps us guess
the nodes corresponding to vertices in V (T )\L, in time nO(k), where n is the
number of vertices in the input graph. In Lemma 5, we also show that the nodes
corresponding to vertices (of T ) in L consist of a single (Steiner) vertex.

We root T at some arbitrary vertex and begin by observing that a node
corresponding to a leaf of T contains at least one terminal. Note that we do not
consider the root vertex as an internal vertex or as a leaf.

Observation 11. If vNi
is a leaf in T , then Ni contains at least one terminal.

Proof. Assume by contradiction that there exists a leaf vNi
in T s.t. Ni does not

contain any terminal. Let the edge incident to vNi
(in T ) be e = vNi

vNj
. Then, by

using Observation 7 and Observation 8 we know that e corresponds to two copies
1recall for each edge in T there exist parallel edges in H*

sc (with end-points in different
nodes). These parallel edges exist in H as well, as e belongs to a node, namely Ni.
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of an edge uv in H*
sc where u ∈ Ni and v ∈ Nj (where u is the sole boundary

vertex of Ni). But this contradicts the minimality of H*
sc (Lemma 1), as Ni and

two copies of the edge uv could be removed from H*
sc, still keeping the resulting

graph (2, T )-edge connected.
Corollary 3. Let l denote the number of leaves in T , and r the number of
internal vertices vNi

s.t. Ni contains a terminal. Then, l + r ≤ k.
Proof. Follows from Observation 11 and (vertex) disjointness of the nodes.

Next, we observe that the number of internal vertices in T with at least 2
children is bounded from above by k.
Observation 12. Let s denote the number of internal vertices in T with at least
2 children. Then s ≤ k.
Proof. First, we note that the number of internal vertices with at least 2 children
is bounded by the number of leaves in a tree (which can be proved by induction
[B2́2]). Thus, the observation follows from Corollary 3.

After Corollary 3 and Observation 12, we are left to argue about the size
of set L, where L is the set of internal vertices vNi

s.t. vNi
has exactly 1 child,

and Ni does not contain a terminal. Instead of trying to bound |L| in terms
of k, we short-circuit the vertices in L. Let S be the tree obtained from T by
short-circuiting vertices in L (see Figure 2.4), while retaining the labels of other
vertices. The following two observations show that every terminal belongs to a
node corresponding to some vertex of S and that the number of vertices in S is
upper bounded in terms of k.
Observation 13. T ⊆ ⋃︁

i:vNi
∈V (S)

V (Ni).

Proof. We know T ⊆
t⋃︁

i=1
V (Ni). As V (S) =

(︄
t⋃︁

i=1
{vNi
}
)︄
\L, the observation

follows from the definition of L.
Observation 14. |V (S)| ≤ 2k + 1.
Proof. Follows from Corollary 3, Observation 12, and the definition of S. The
plus 1 accounts for the root.

Figure 2.4: Example showing how S is obtained for T as per the example in
Figure 2.3. We root T at vN1 and short-circuit vertices vN2 and vN4 .

vN1 vN2

vN4

vN5

T

vN3

vN1 vN5

S

vN3
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In the following lemma, we bound the total number of vertices in nodes cor-
responding to vertices of S.

Lemma 4. The total size of all the nodes corresponding to the vertices of S is
upper bounded by 30k, i.e.,

(︃ ∑︁
i:vNi

∈V (S)
|V (Ni)|

)︃
≤ 30k.

Proof. We claim that the total number of boundary vertices across all the nodes
corresponding to vertices of S is bounded by 4k, i.e.

(︃∑︁
i:vNi

∈V (S) |Bi|
)︃
≤ 4k.

Consider an arbitrary node Ni. Let u be an arbitrary boundary vertex of Ni (if
one exists). Then, by the definition of a boundary vertex, there exists an edge
incident to u (in ˜︂H*

sc) s.t. the other end-point of the edge does not belong to Ni.
Thus, the number of boundary vertices in Ni is upper bounded by the number of
edges in ˜︂H*

sc which have exactly one end-point in Ni. By construction of T , an
edge uv in ˜︂H*

sc, where u ∈ Ni and v ∈ Nj for i ̸= j, corresponds to edge vNi
vNj

in T . Therefore, the number of boundary vertices in Ni is upper bounded by
the number of edges incident to vNi

in T , i.e. |Bi| ≤ dT (vNi
). As short-circuiting

vertices in L to obtain S leaves the degrees of vertices (of T ) apart from L
unchanged, we have |Bj| ≤ dS(vNj

), for an arbitrary vertex vNj
of S. As the

nodes are vertex disjoint, by summing we get that
(︃∑︁

i:vNi
∈V (S) |Bi|

)︃
≤ 2|E(S)|,

where the factor of 2 comes from each edge of S being counted twice, once for
each of its end-points. The claim follows by using the fact that |E(S)| ≤ 2k,
which follows from Observation 14.

Using the above claim about the number of boundary vertices, we get

∑︂
i:vNi

∈V (S)
|V (Ni)| ≤

∑︂
i:vNi

∈V (S)
6 · |Ti ∪Bi|

≤ 6 ·
(︃ ∑︂

i:vNi
∈V (S)

|Ti|+ |Bi|
)︃

= 6 ·
(︃

k +
∑︂

i:vNi
∈V (S)

|Bi|
)︃

≤ 6 · (k + 4k)
= 30k

where the first inequality follows from Lemma 3, and the first equality follows
from disjointness of nodes and the fact that every terminal belongs to a node
corresponding to some vertex of S (Observation 13).

Though we did not argue about the size of L, we show the following important
property of nodes corresponding to vertices (of T ) in L.

Lemma 5. For every vertex vNi
∈ L, the corresponding node Ni consists of only 1

(Steiner) vertex, which is also the only boundary vertex of Ni.

Proof. Consider an arbitrary vertex vNi
∈ L. By construction of T , the number

of edges incident to vNi
(in T ), is same as the number of edges in ˜︂H*

sc with
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exactly one end-point in Ni (with the end-points being boundary vertices). As
dT (vNi

) = 2, we get that 0 < |Bi| ≤ 2 (see Figure 2.5), i.e., Ni either has a single
boundary vertex or two boundary vertices.

Case (1): |Bi| = 1. Let Bi = {v}. Then, as Ni contains only Steiner vertices,
if Ni contained any other vertex apart from v (which would be a non-boundary
vertex), it would contradict the minimality of H*

sc (Lemma 1), because all the
vertices (except v) and edges belonging to Ni could be removed from H*

sc, still
keeping the resulting graph (2, T )-edge connected.

Case (2): |Bi| = 2. Let Bi = {u, v}. Using Lemma 2 we know that Ni

is minimally (2, {u, v})-edge connected (as Ni contains no terminals). Thus, Ni

consists of exactly two edge-disjoint paths between u and v. Using Observation 10
we know that for any non-boundary vertex s (of Ni), dNi

(s) ≥ 3, as Ni contains
only Steiner vertices by definition. However, this implies that there exist x, y ∈
V (Ni) s.t. there are parallel edges between x and y, in Ni. This leads to a
contradiction as Ni is a simple graph.

Figure 2.5: Local view of vNi
∈ L being expanded back to node Ni in H*

sc. By
Lemma 5, only case (1) is possible, where Ni consists of a single vertex. Black
vertices are Steiner vertices, and the blue vertices can be terminals or Steiner
vertices.

vNi

case (1)

vNi

case (2)

T

Ni

H*
sc

Ni

It follows from the definition of S that every edge vNi
vNj
∈ S corresponds to

a path vNi
, · · · , vNj

in T , s.t. all the internals vertices of the path are from the
set L. Recalling our discussion from section 2.1.1, we also know, that every edge
vNxvNy ∈ T corresponds to two (internally) vertex-disjoint u-v paths in H*, where
u ∈ V (Nx) and v ∈ V (Ny). Thus, using Lemma 5, it follows that every edge
vNi

vNj
∈ S corresponds to two edge-disjoint p-q paths in H*, where p ∈ V (Ni)

and q ∈ V (Nj).

2.3 Patching things together
Before we finally describe the randomized XP algorithm in Theorem 1, we mention
algorithms in Lemma 6 and Lemma 7, which we use as sub-routines.

Lemma 6 (Min-cost flow algorithm;[Kle67]). Given a graph G and two vertices u
and v, one can find two edge-disjoint u-v paths (in G) with the minimum number
of edges in poly-time.
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We can assume that the algorithm in Lemma 6 outputs “fail” if G does
not have two edge-disjoint u-v paths (this can be checked in poly-time using
a max-flow algorithm [Din06]).

The objective behind algorithm A (in Lemma 7) is to extract out the special
case, where one is interested in computing a feasible solution to Minimum 2-ECSS,
which has fewer edges than any other feasible solution with only degree 2 Steiner
vertices.

Definition 9. If Z is a (2, T ′)-edge connected graph (with no isolated vertices)
s.t. all the Steiner vertices (vertices apart from T ′) are of degree 2, then Z is
called a skeleton (2, T ′)-edge connected graph.

Lemma 7. There exists an algorithm A, which given as input a simple graph
G(V, E) and T ′ ⊆ V (called terminals), where g = |T ′| > 1, behaves as follows.

1. A runs in time gO(g)nO(1), where n = |V |.

2. A always outputs “fail” or a (2, T ′)-edge connected subgraph of G.

3. If there exists a skeleton (2, T ′)-edge connected subgraph of G, then with
probability at least 1 − exp(− poly(n)), A outputs a (2, T ′)-edge connected
subgraph H s.t. |E(H)| ≤ |E(Z)|, where Z is a skeleton (2, T ′)-edge con-
nected subgraph with the minimum number of edges.

Assuming G has a skeleton (2, T ′)-edge connected subgraph, A essentially,
with high probability outputs a (2, T ′)-edge connected subgraph of G, with no
more edges than any skeleton (2, T ′)-edge connected subgraph (of G). For now,
we use algorithm A as a sub-routine and describe it later in section 2.3.1.

Description of algorithm 1 (for Minimum 2-ECSS). Given the input graph
G(V, E) and set of terminals T ⊆ V , we begin by guessing the tree structure2 of S.
Let the tree guessed be denoted by S ′, and the vertices in S ′ by v1, v2, · · · , vs. For
every vertex vi (i ∈ [s]), we guess a subset of vertices Ci (of G) with the following
constraints.

• T ⊆
s⋃︁

i=1
Ci.

• Ci ∩ Cj = ∅ for i ̸= j, and Ci ̸= ∅ for all i ∈ [s].

• | ˜︁C| ≤ 30k, where ˜︁C =
s⋃︁

i=1
Ci and k = |T |.

Lastly, for every edge e = vivj of S ′, we guess a pair of vertices ue, we s.t. ue ∈ Ci

and we ∈ Cj. We then compute the following:

1. two edge-disjoint ue-we paths Pe and Qe in G (assuming G has two edge-
disjoint ue-we paths), using Lemma 6, for every edge e of S ′.

2. Xi, the output of algorithm A (Lemma 7) for input graph G and terminal
set Ci, for every i ∈ [s].

2possibly an isolated vertex.
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If for every edge e of S ′, G has two edge-disjoint ue-we paths, and A “succeeds”
for all i ∈ [s], i.e. there is no i ∈ [s], for which Xi is “fail”, we define H ′ to be
the graph consisting of edges in {Pe, Qe}e∈E(S′) and Xi (i ∈ [s]). Finally, among
all the possible guesses, we output H ′ with the least number of edges (or “fail” if
H ′ is undefined for all guesses).

The proof of Theorem 1, follows from Lemma 8 and Lemma 9, which respec-
tively show, that algorithm 1 runs in XP time for the parameter k = |T |, and fails
to output an optimal solution with probability exponentially small in n = |V (G)|.

Lemma 8. Algorithm 1 takes nO(k) time.

Proof. Using Observation 14, we know that |V (S)| ≤ 2k + 1. Thus, we can
generate all the guesses for the tree structure of S in time kO(k) by generating all
possible trees on at most 2k + 1 vertices. For each guess S ′, we can guess ˜︁C in
time nO(k) as | ˜︁C| ≤ 30k. Also, given ˜︁C, we can generate all possible partitions
{Ci}i∈[s] in time kO(k). Lastly, for a given partition {Ci}i∈[s], we can generate
all the possible guesses for {(ue, we)}e∈E(S′) by using brute force, in time kO(k),
as |E(S ′)| ≤ 2k and |Ci| ≤ 30k (i ∈ [s]). Using Lemma 6 (and |E(S ′)| ≤ 2k)
we know that computing Pe, Qe for every edge e of S ′ takes time nO(1). Finally,
it follows from Lemma 7 (and again using |Ci| ≤ 30k and s ≤ 2k + 1) that,
calling A with input graph G and terminal set Ci, for all i ∈ [s], altogether takes
time kO(k)nO(1). As k ≤ n, this brings the total running time to nO(k).

Observation 15. H ′ is (2, T )-edge connected.

Proof. We prove H ′ is (2, ˜︁C)-edge connected, which implies H ′ is (2, T )-edge
connected as T ⊆ ˜︁C. Using Theorem 3, it suffices to show that any p-q edge cut
in H ′, for p, q ∈ ˜︁C, has at least 2 edges (note | ˜︁C| > 1, as |T | > 1). Consider an
arbitrary cut in H ′ characterized by A s.t. ∅ ≠ A ∩ ˜︁C ⊊ ˜︁C.

Case (1): if there exists i ∈ [s] s.t. A ∩ Ci ̸= ∅ and A ∩ Ci ̸= ∅. Then, there
exist at least 2 edges in the cut δ(A), as H ′ contains Xi, which is (2, Ci)-edge
connected.

Case (2): for every i ∈ [s], either Ci ⊆ Ai or Ci ⊆ A. Consider the cut in S ′

characterized by B s.t. vi ∈ B, if Ci ⊆ A, else vi ∈ B. It follows from A∩ ˜︁C ⊊ ˜︁C,
that ∅ ̸= B ⊊ V (S ′). As S ′ is a tree, there exists an edge e = vxvy (of S ′) in
the cut δ(B), s.t. vx ∈ B and vy ∈ B. Consider the edge-disjoint paths Pe and
Qe in H ′. By definition these paths are edge-disjoint ue-we paths s.t. ue ∈ Cx

and we ∈ Cy. But vx ∈ B implies Cx ⊆ A, and vy ∈ B implies Cy ⊆ A, and thus
there are at least 2 edges in the cut δ(A).

Lemma 9. For sufficiently large n, algorithm 1 outputs an optimal solution, with
failure3 probability at most exp(− poly(n)).

Proof. Before we prove the lemma, we define a notation that we use later in the
proof. For a vertex vNi

of S, we define arg(vNi
) to be i, i.e. the index of the node

corresponding to vNi
.

Let vNi
be an arbitrary vertex of S, and Ni the node corresponding to it,

in H*
sc. Then, by definition, Ni is 2-edge connected (possibly a single vertex),

3where the algorithm outputs either “fail” or a non-optimal feasible solution.
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Algorithm 1 Randomized XP algorithm for Minimum 2-ECSS.
Precondition: |T | > 1.
Precondition: G is (2, T )-edge connected.

1: function Min2ECSS(G(V, E), T ⊆ V )
2: H ← ∅, OPT ←∞, k ← |T |
3: for each guess S ′ for the tree structure of S do
4: Let the vertices of S ′ be v1, v2, · · · , vs.
5: for each guess {Ci}i∈[s], s.t. T ⊆

s⋃︁
i=1

Ci ⊆ V , Ci ∩ Cj = ∅ (i ̸= j),

Ci ̸= ∅ for all i ∈ [s], and | ˜︁C| ≤ 30k where ˜︁C =
s⋃︁

i=1
Ci do

6: for each guess {(ue, we)}e∈E(S′), s.t. ue ∈ Ci, we ∈ Cj

for e = vivj do
7: for each edge e ∈ E(S ′) do
8: if G has two edge-disjoint ue-we paths then
9: Let Pe and Qe be edge-disjoint ue-we paths, with the

minimum number of edges, computed using Lemma 6
10: end if
11: end for
12: for i ∈ [s] do
13: if |Ci| = 1 then
14: Xi ← Ci; continue
15: end if
16: Let Xi be the output of algorithm A for input graph G

and terminal set Ci
17: ▷ The output Xi may be “fail”
18: end for
19: if for all i ∈ [s], Xi ̸= “fail” and G has two

edge-disjoint ue-we paths for every edge e ∈ E(S ′) then
20: H ′ ←

s⋃︁
i=1

E(Xi) ∪
⋃︁

e∈E(S′)
(E(Pe) ∪ E(Qe))

21: if |E(H ′)| < OPT then
22: OPT ← |E(H ′)|
23: H ← H ′

24: end if
25: end if
26: end for
27: end for
28: end for
29: if H ̸= ∅ then return H
30: end if
31: return “fail”
32: end function
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and thus by using Theorem 3 and Observation 5, H* has a subgraph Yi s.t. Yi is
skeleton (2, V (Ni))-edge connected. Also, using Lemma 5, Observation 7, Obser-
vation 8, and Observation 5, we know, that for every edge e = vNxvNy of S, there
exist two edge-disjoint a-b paths Ae, Be in H* s.t. a ∈ V (Nx) and b ∈ V (Ny).
Moreover, using disjointness of nodes, Observation 7, Observation 8, and Ob-
servation 5, it follows that the graphs in W are pairwise edge-disjoint, where
W := {Ae}e∈E(S) ∪ {Be}e∈E(S) ∪ {Yi}i:vNi

∈V (S).
Consider the case where S ′ is the correct guess for the tree structure of S i.e.

S ′ is isomorphic to S, with the isomorphism effectively given by ϕ : [s]→ V (S).
Using Observation 13, we know that every terminal belongs to some node corre-
sponding to a vertex of S, i.e. T ⊆ ⋃︁

i:vNi
∈V (S) V (Ni). It follows from the maxi-

mality of the nodes that they are (vertex) disjoint, and by Lemma 4, the total size
of all the nodes corresponding to vertices of S is upper bounded by 30k. Thus,
there is a case where for every i ∈ [s], Ci is the vertex set of the node Narg(ϕ(i)).
Let eϕ denote the edge of S, to which edge e ∈ E(S ′) maps to. Given Ci is the
correct guess for the vertex set of Narg(ϕ(i)) (for i ∈ [s]), there is a case where
ue and we are correct guesses for the end-points of Aeϕ , Beϕ , for every edge e
of S ′. Furthermore, using Lemma 7, Observation 14 and union bound we know
that with probability at least δ = 1 − (2k + 1) · exp (− poly (n)), A will output
a subgraph Xi (of G), for every i ∈ [s] s.t. |E(Xi)| ≤

⃓⃓⃓
E
(︂
Yarg(ϕ(i))

)︂⃓⃓⃓
. As k ≤ n,

for sufficiently large n, δ is at least 1− exp (− poly (n)). Thus, with a probability
of at least δ, H ′ is defined for the correct guesses made by the algorithm. Us-
ing Observation 15, we know that H ′ is (2, T )-edge connected, and the following
implies it is an optimal solution:

|E(H ′)| ≤
∑︂

e∈E(S′)

(︄
|E(Pe)|+ |E(Qe)|

)︄
+
∑︂
i∈[s]
|E(Xi)|

≤
∑︂

e∈E(S)

(︄
|E(Ae)|+ |E(Be)|

)︄
+

∑︂
i:vNi

∈
V (S)

|E(Yi)|

≤ |E(H*)|
The second inequality follows from Lemma 6, Lemma 7, and ϕ being an iso-
morphism. The last inequality follows from graphs in W being pair-wise edge-
disjoint.

2.3.1 Proof of lemma 7
We first introduce two new problems, the Shortest Steiner cycle problem and
the Shortest (a, b)-Steiner path problem. We also show in Observation 16 that
Shortest (a, b)-Steiner path is reducible to Shortest Steiner cycle in polynomial
time.
Problem 4 (Shortest Steiner cycle). Given a simple graph G(V, E) and T ⊆ V
(called terminals), find a cycle with the minimum number of edges that contains
all the terminals.
Problem 5 (Shortest (a, b)-Steiner path). Given a simple graph G(V, E), T ⊆ V
(called terminals) and two distinct terminals a, b ∈ T (called end-points), find an
a-b path with the minimum number of edges, which contains all the terminals.
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Observation 16. Shortest (a, b)-Steiner path is poly-time reducible to Shortest
Steiner cycle.

Proof. Given an instance I1 :=
(︂
G, T ⊆ V (G), {a, b}

)︂
, of Shortest (a, b)-Steiner

path, we create an instance I2 :=
(︂
G′, T ∪ {x′}

)︂
, of Shortest Steiner cycle, where

G′ is the graph obtained from G by adding a new vertex x′, and edges ax′ and bx′.
It is easy to verify the following: a feasible solution for I1 with c edges exists, if
and only if there exists a feasible solution for I2 with c + 2 edges, s.t. given a
feasible solution for one instance, we can find the corresponding feasible solution
for the other instance in poly-time.

Theorem 8 gives us a randomized FPT algorithm for Shortest Steiner cycle,
parameterized by the number of terminals. As in the reduction outlined in the
proof of Observation 16, the number of terminals increases by only one, we also
get a randomized FPT algorithm (parameterized by the number of terminals) for
Shortest (a, b)-Steiner path, with the same time complexity as in Theorem 8.

Theorem 8 ([BHT12]). There exists a 2pnO(1) time algorithm for Shortest Steiner
cycle, such that the algorithm fails to output a shortest cycle containing the
terminals (given a cycle exists), with probability less than exp(− poly(n)), where
p is the number of terminals and n is the number of vertices in the input graph.

It can be assumed that the algorithm in Theorem 8 always outputs either
a cycle containing the terminals or “fail”. We now describe algorithm A, using
the randomized FPT algorithms mentioned above, for Shortest Steiner cycle and
Shortest (a, b)-Steiner path, as sub-routines.

Description of algorithm A. Given the input graph G(V, E) and set of ter-
minals T ′ ⊆ V , we begin by guessing an integer r from [g], where g = |T ′|. We
then guess for every i ∈ [r] a subset of vertices Wi (of G), with the following
constraints.

• T ′ =
r⋃︁

i=1
Wi.

• Wi ∩Wj = ∅ for i ̸= j.

• |W1| ≥ 2 and |Wi| ≥ 1 for all i ∈ [2 .. r].

Lastly for every i ∈ [2 .. r] we guess a pair of vertices ai and bi, s.t. ai, bi ∈
i−1⋃︁
j=1

Wj.

We then compute Xi for every i ∈ [r], where Xi is defined as follows.

1. if i = 1, then X1 is the output of the Shortest Steiner cycle sub-routine for
input graph G and terminal set W1.

2. if i ∈ [2 .. r] and ai = bi, then Xi is the output of the Shortest Steiner cycle
sub-routine for input graph G and terminal set Wi ∪ {ai}.

3. otherwise, Xi is the output of the Shortest Steiner (a, b)-path sub-routine
for input graph G, terminal set Wi ∪ {ai, bi} and end-points ai, bi.
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In case the sub-routines “succeed” for all i ∈ [r], i.e. there is no i for which Xi

is “fail”, we define H ′ to be the graph consisting of edges in ⋃︁r
i=1 E(Xi). Finally,

among all the possible guesses, we output H ′ which has the least number of edges,
or “fail” if H ′ is undefined for all guesses.

Proof of Lemma 7 follows from Lemma 10, Observation 17, and Lemma 11,
which respectively show that algorithmA satisfies the three conditions outlined in
Lemma 7. We begin by proving that A takes time gO(g)nO(1) (where n = |V (G)|),
i.e., it runs in FPT time for the parameter g (number of terminals).

Lemma 10. Algorithm A takes time gO(g)nO(1).

Proof. Trying all the possible values of r takes O(g) time. For a given value of
r ∈ [g], all the possible partitions {Wi}i∈[r] of T ′, can be generated in time gO(g),
using brute force. For a given partition {Wi}i∈[r], {(ai, bi)}i∈[2..r] can be guessed
in time gO(g), again using brute force. Lastly, there are at most r ≤ g sub-routine
calls. Using Theorem 8, Observation 16 and the fact that each sub-routine is
called with input graph G and a terminal set which is a subset of T ′, it follows
that each sub-routine call takes time 2gnO(1). Thus, the total running time of the
algorithm is gO(g)nO(1).

In the following observation we show that A satisfies condition 2, as it always
outputs either “fail” or a (2, T ′)-edge connected subgraph (of G).

Observation 17. H ′ is (2, T ′)-edge connected.

Proof. First, we observe that H ′ contains all the vertices in T ′, as T ′ = ⋃︁r
i=1 Wi,

and thus every vertex in T ′ lies on some cycle/path in H ′ by construction. Thus,
using Theorem 3, it suffices to prove that H ′ is 2-edge connected. We give proof
by induction. Let Ii = ⋃︁i

j=1 E(Xj) for i ∈ [r], thus Ir = H ′, where, for ease
of notation we use Ii to represent both the set of edges and the corresponding
graph formed by them. I1 is 2-edge connected as X1 is a cycle. Assuming Ii

is 2-edge connected for 1 < i < r, we prove the same for i + 1. By defini-
tion Ii+1 = Ii ∪ E(Xi+1). Consider an arbitrary edge cut in Ii+1 characterized
by ∅ ≠ A ⊊ V (Ii+1).

Case (1): V (Ii)∩A ̸= ∅ and V (Ii)∩A ̸= ∅. Then there exist at least 2 edges
in the cut δ(A), as Ii is 2-edge connected by the induction hypothesis.

Case (2): V (Ii) ⊆ A or V (Ii) ⊆ A, w.l.o.g. we assume the former.
As A ⊊ V (Ii+1) by assumption, there exists a vertex w ∈ A s.t. w ∈ V (Xi+1).
But Xi+1 either forms an ai+1-bi+1 path (or a cycle containing ai+1) where ai+1
and bi+1 are in V (Ii) ⊆ A. Thus, the cut δ(A) contains at least 2 edges.

Before we prove Lemma 11, we make the following auxiliary observation.

Observation 18. If Z is a skeleton (2, T ′)-edge connected subgraph of G with
the minimum number of edges, then Z is minimally (2, T ′)-edge connected.

Proof sketch. If we assume by contradiction that Z is not minimally (2, T ′)-edge
connected, then there exists a (2, T ′)-edge connected subgraph with fewer edges
than Z. However, one still needs to prove the subtle point that this implies the
existence of a skeleton (2, T ′)-edge connected subgraph with fewer edges than Z.
See Appendix A.
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Algorithm A.
Precondition: |T ′| > 1.

1: function A(G(V, E), T ′ ⊆ V )
2: H ← ∅, OPT ←∞, g ← |T ′|
3: for r ∈ [g] do
4: for each guess {Wi}i∈[r] s.t. T ′ =

r⋃︁
i=1

Wi, Wi ∩Wj = ∅ (i ̸= j),
|W1| ≥ 2, and |Wi| ≥ 1 for all i ∈ [2 .. r] do

5: for each guess {(ai, bi)}i∈[2..r] s.t. ai, bi ∈
i−1⋃︁
j=1

Wj do

6: X1 ← SteinerCycle(G, W1)
7: for i ∈ [2 .. r] do
8: if ai = bi then Xi ← SteinerCycle(G, Wi ∪ {ai})
9: else

10: Xi ← SteinerPath(G, Wi ∪ {ai, bi}, ai, bi)
11: end if
12: end for
13: if for all i ∈ [r], Xi ̸= “fail” then
14: H ′ ←

r⋃︁
i=1

E(Xi)

15: if |E(H ′)| < OPT then
16: OPT ← |E(H ′)|
17: H ← H ′

18: end if
19: end if
20: end for
21: end for
22: end for
23: if H ̸= ∅ then
24: return H
25: end if
26: return “fail”
27: end function
28:
29: function SteinerCycle(G,E)
30: Let C be the output of algorithm in Theorem 8 for input graph G and

terminal set E
31: return C ▷ C can be “fail”
32: end function
33:
34: function SteinerPath(G,E,a,b) ▷ a, b ∈ E
35: Construct G′ from G by adding a new vertex x′ and edges ax′ and bx′

36: C ← SteinerCycle(G′, E ∪ {x′})
37: if C ̸= “fail” then
38: Let P be the a-b path obtained from C by removing x′

39: return P
40: end if
41: return “fail”
42: end function
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Finally, we prove that A satisfies condition 3, i.e., with high probability it
outputs a (2, T

′)-edge connected subgraph (of G) with no more edges than any
skeleton (2, T ′)-edge connected subgraph.
Lemma 11. For sufficiently large n algorithm A satisfies condition 3 of Lemma 7.
Proof. Assume Z is a skeleton (2, T ′)-edge connected subgraph (of G) with the
minimum number of edges. Using Observation 18, we know that Z is minimally
(2, T ′)-edge connected, and is thus 2-edge connected using Observation 1. Us-
ing Theorem 4, we know that there exists an ear decomposition of Z, given by
P0, P1, · · ·Pl, where l ≥ 1, as we assumed g = |T ′| > 1. First, we show that P1, a
cycle by definition, contains at least two terminals.

Case (1): l = 1. In this case, Z is just a cycle given by P1, and by our
assumption of g > 1 contains at least two terminals.

Case (2): l > 1. Assume by contradiction that P1 contains less than 2 termi-
nals. As all the Steiner vertices in Z have degree 2, they do not serve as end-points
of any ear Pi (for i > 1). Therefore, P1 contains exactly one terminal u, which
serves as the end-points of ear P2, and possibly other ears. Consider the graph Z ′

obtained from Z by removing all the edges and vertices in P1 (except for u). Then,
Z ′ contains all the terminals, has only degree 2 Steiner vertices, and is 2-edge con-
nected by Theorem 4, as it has an ear decomposition given by u, P2, · · · , Pl. But
using Theorem 3, this leads to a contradiction as Z ′ is a skeleton (2, T ′)-edge
connected subgraph of G, and |E(Z ′)| < |E(Z)|.

Similarly, we show that if l > 1, then for every i ∈ [2 .. l], Pi has at least one
internal vertex (a vertex apart from its end-points), which is a terminal. Assume
by contradiction that there exists j ∈ [2 .. l] s.t. Pj has no terminal as an internal
vertex. Consider the graph Z ′ obtained by removing the ear Pj (except its end-
points) from Z. As the internal vertices (if any) of Pj do not serve as end-points
for any ear, Z ′ has an ear decomposition given by P0, · · ·Pj−1, Pj+1, · · ·Pl, and
is thus 2-edge connected by Theorem 4. Also, Z ′ contains all the terminals and
has only Steiner vertices with degree 2. However, this leads to a contradiction,
as using Theorem 3, Z ′ is a skeleton (2, T ′)-edge connected subgraph of G, with
fewer edges than Z.

As P1 contains at least two terminals, and each ear Pi (for i > 1) contains at
least one terminal in its interior, using the definition of an ear decomposition we
get that l ≤ g. Therefore, among all the guesses for r, there is a case where r = l.
Let T1 denote the set of terminals in P1, and Ti for i ∈ [2 .. l], the set of terminals
which are internal vertices of Pi. We know that |T1| ≥ 2 and |Ti| ≥ 1 for i ∈ [2 .. l],
if l > 1. It follows from the definition of an ear decomposition that Ti ∩ Tj = ∅
for i ̸= j, and T ′ = ⋃︁

i∈[l] Ti. Thus, for r = l the algorithm will be able to guess
{Wi}i∈[r] s.t. Wi = Ti. As Z has only Steiner vertices with degree 2, the end-
points of an ear Pi (i ∈ [2 .. l]), are terminals from the set ⋃︁i−1

j=1 Tj. Thus, the
algorithm will also be able to correctly guess the end-points ai, bi of ear Pi, for
every i ∈ [2 .. l], given l > 1. For these correct guesses, using l ≤ g, Theorem 8,
and union bound we get that with probability at least δ = 1− g · exp(− poly(n)),
the algorithm computes Xi for every i ∈ [r], s.t.

• for i = 1, X1 is a shortest cycle through the terminals in T1.

• for i ∈ [2 .. r], if ai = bi, Xi is a shortest cycle through the terminals in
Ti ∪ {ai}.
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• for i ∈ [2 .. r], if ai ̸= bi, Xi is a shortest ai-bi path containing the terminals
in Ti ∪ {ai, bi}.

Therefore, with a probability of at least δ, H ′ is defined. As g ≤ n, δ is at least
1− exp (− poly (n)) for sufficiently large n. Using Observation 17, we know that
H ′ is (2, T ′)-edge connected. Finally, H ′ has no more edges than Z as

|E(H ′)| ≤
r∑︂

i=1
|E(Xi)| ≤

l∑︂
i=1
|E(Pi)| = |E(Z)|

The second inequality follows from the fact that P1 is a cycle containing terminals
in T1, and for l > 1, Pi is a cycle containing terminals Ti ∪ {ai}, if ai = bi, and
otherwise an ai-bi path containing terminals in Ti ∪ {ai, bi}, for i ∈ [2 .. l]. The
equality follows from the definition of an ear decomposition.
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3. Another approach
Let us assume that the number of high-degree (degree at least 3) Steiner ver-
tices in an optimal solution H*, to Minimum 2-ECSS, can be (linearly) bounded
in terms of k, the number of terminals. We could then guess the high-degree
Steiner vertices in H* in time nO(k), where n is the number of vertices in the
input graph. Using Observation 1 and Theorem 4, we know that H* has an
ear decomposition. Thus, we could also guess for each ear the terminals and
high-degree Steiner vertices in its interior, along with its end-points (which can
only be high-degree vertices). Finally, using Theorem 8 as a sub-routine, we
could find a “cheap substitute” for every ear (this was essentially the idea be-
hind algorithm A). This would give us a (randomized) nO(k) time algorithm for
Minimum 2-ECSS. However, the number of high-degree Steiner vertices in an
optimal solution to Minimum 2-ECSS need not be bounded in terms of k (see
Figure A.1). Thus, it was necessary to first break H* into “smaller sub-parts” for
the algorithm discussed in chapter 2.

Although, it can be proved that the number of high-degree Steiner vertices
in an optimal solution to Minimum 2-VCSS can be upper bounded by twice
the number of terminals. Recall that in Minimum 2-VCSS, the aim is to find
a subgraph (of the input graph) which has the least number of edges and is
(2, T )-vertex connected i.e., for each pair of terminals s, t ∈ T there are two
(internally) vertex disjoint s-t paths in the subgraph.

Lemma 12 ([BCGI22]). For any optimal solution J* to Minimum 2-VCSS, the
number of Steiner vertices s, s.t. dJ*(s) ≥ 3, is bounded from above by 2k (where
k is the number of terminals).

We note that analogous to Observation 1, one can show that an optimal
solution to Minimum 2-VCSS is 2-vertex connected. Using Theorem 5, we also
know that a 2-vertex connected graph has an open ear decomposition. Thus,
using the abovementioned idea, one can obtain a (randomized) XP algorithm for
Minimum 2-VCSS, as the high-degree Steiner vertices can be guessed in time,
using Lemma 12.

Theorem 9 ([BCGI22]). Minimum 2-VCSS has a randomized XP algorithm1

with a runtime of nO(k), where k is the number of terminals and n is the number
of vertices in the input graph.

3.1 Reduction to Minimum 2-VCSS
Taking into account Theorem 9, we give an alternative proof of Theorem 1 by
giving a reduction from Minimum 2-ECSS to Minimum 2-VCSS. Given input(︂
G(V, E), T ⊆ V

)︂
to Minimum 2-ECSS, first we create a weighted graph G′ with

binary weights (see Figure 3.1). We start with G and alter it to obtain G′ as
follows.

1as defined in Theorem 1.
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1. For every vertex v in G, we expand v to a complete graph Kv on dG(v)
vertices. We call the vertices of Kv copies of v. In a one-to-one fashion, we
then make the edges incident to v in G, incident to copies of v. We declare
all the vertices of Kv as Steiner vertices and give a weight of 0 to all the
edges in Kv.

2. For every terminal t in G, we create a terminal t in G′, along with edges
att and btt where at, bt are two distinct adjacent copies of t in Kt. Recall,
we assumed that G is (2, T )-edge connected. Therefore, for every terminal
t in G, dG(t) ≥ 2 and thus Kt has at least two distinct vertices. We give a
weight of 0 to the edges att, btt.

3. We give a weight of 1 to rest of the edges in G′.

We denote by f(e) = uewe the edge in G′ that the edge e = uw in G gets
mapped to, where ue, we are copies of u and w respectively.

G G
′

Figure 3.1: Construction of G′ from G, where all the blue edges have weight 0,
and the rest have a weight 1. Red (square) vertices are terminals, and black
vertices are Steiner vertices.

Next, we create the graph G′′ by modifying the weights of edges in G′ as
follows: we change the weight 0 to 1, and weight 1 to M , where M = |E(G′)|+2 =
|E(G′′)| + 2. Finally, we create the graph G′′′ from G′′ as follows: for each edge
with weight M in G′′, we sub-divide it into M edges each with a weight of 1,
s.t. all the new vertices introduced by sub-dividing an edge are Steiner vertices
(see Figure 3.2). We denote the extended edge (recall Definition 3) obtained by
sub-diving an edge uv ∈ E(G′′), by ˜︂uvex.
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G
′′

G
′′′

M

1

1

Figure 3.2: Construction of G′′′ from G′′, where the black vertices are Steiner
vertices. Note that by construction, an edge of weight M in G′′ is always between
two Steiner vertices.

As G′, G′′, and G′′′ have the same number of terminals as G, we also identify
their terminal set by T .

3.1.1 Correctness of the reduction
It is easy to check that G′′′ can be constructed from G in poly-time. Also, Ob-
servation 19, Observation 20, and Observation 21 together show that given an
optimal solution to Minimum 2-VCSS for the input instance (G′′′, T ), one can
compute in poly-time an optimal solution to Minimum 2-ECSS for the input in-
stance (G, T ). Consequently, using Theorem 9 we get a randomized XP algorithm
for Minimum 2-ECSS parameterized by the number of terminals k, with a runtime
of nO(k), where n = |V (G)|.

We denote the cost (sum of the weights of edges) of a graph H by cost(H).

Observation 19. G has a (2, T )-edge connected subgraph H with c edges if
and only if G′ has a (2, T )-vertex connected subgraph H ′ with cost(H ′) = c.
Furthermore, given H ′, one can obtain H in poly-time.

Proof. Let H be a (2, T )-edge connected subgraph of G. Then, consider the
subgraph H ′ of G′, consisting of edges in

⋃︂
e∈E(H)

{f(e)} ∪
⋃︂

v∈V (H)
E(Kv) ∪

⋃︂
t∈T

{att, btt}

First, we note cost(H ′) = |E(H)|, as the edges in the complete graph Kv have
weight 0, and so do the edges att, btt. We prove H ′ is (2, T )-vertex connected.
Fix two distinct arbitrary terminals p, t. As H is (2, T )-edge connected it has two
edge-disjoint p-t paths P1, P2. We consider two p-t paths Q1, Q2 in H ′, where we
obtain Q1 from P1 (and similarly Q2 from P2). Let P1 be given by e1, e2, · · · , el

s.t. ei ∈ E(H), ei = uiui+1 and u1 = p, ul+1 = t; and similarly let P2 be given by
h1, h2, · · · , hy s.t. hi = wiwi+1. Then, consider Q1 and Q2 respectively, given by

Qstart
1 , f(e1), · · · · · · , u

ei−1
i uei

i , f(ei), uei
i+1u

ei+1
i+1 , · · · · · · , f(el), Qend

1

and

Qstart
2 , f(h1), · · · · · · , w

hi−1
i whi

i , f(hi), whi
i+1w

hi+1
i+1 , · · · · · · , f(hy), Qend

2
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Here, Qstart
1 and Qstart

2 are (internally) vertex-disjoint pe1-p and ph1-p paths2 re-
spectively, consisting of only edges from E(Kp) ∪ {app, bpp}. Similarly Qend

1 and
Qend

2 are (internally) vertex-disjoint tel-t and thy -t paths, consisting of only edges
from E(Kt) ∪ {att, btt}. It is not hard to see that Q1, Q2 are (internally) vertex-
disjoint p-t paths; with the idea being that if P1, P2 intersect at some internal
vertex u, then the edges in Q1, Q2 “corresponding” to the ones incident to u
in P1, P2, are incident to different copies of u (where the copies induce a complete
graph).

For the other direction, let H ′ be a (2, T )-vertex connected subgraph of G′

such that cost(H ′) = c. Then, consider the graph H obtained from H ′ in the
following manner: for a Steiner vertex s ∈ G, we contract all copies of s (in H ′)
to a single vertex and label it s (removing the edges between contracted vertices),
and similarly, for a terminal t we contract all its copies into t. It is not hard to
check that H is a subgraph of G (as, in a nutshell, we just reversed the steps taken
to create G′ from G), which contains all the terminals in T . Also, |E(H)| = c, as
while contracting we removed exactly the edges with weight 0 in H ′. Now assume
by contradiction that H is not (2, T )-edge connected. Then, by Theorem 3 there
exists a p-t edge cut in H, characterized by ∅ ≠ A ⊊ V (H), where p, t are distinct
terminals (note we assume |T | > 1), such that p ∈ A, t ∈ A and there are less
than 2 edges in the cut δ(A). Consider the p-t cut in H ′ characterized by B,
where if vertex v ∈ A (A), then we put all the vertices that were contracted in H ′

to obtain v, in B (B). This leads to a contradiction as the cut δ(B) has less than
2 edges, but H ′ is (2, T )-vertex connected and hence (2, T )-edge connected.

Thus, it follows that given a (2, T )-vertex connected subgraph H ′ of G′, with
the least cost, one can find an optimal solution to Minimum 2-ECSS for the input
instance (G, T ) in poly-time.

Observation 20. Given a (2, T )-vertex connected subgraph H ′′ of G′′ with the
least cost, one can obtain a (2, T )-vertex connected subgraph H ′ of G′ with the
least cost in poly-time.

Proof. Let H ′′ contain a edges with weight 1 and b edges with weight M . Consider
the subgraph H ′ of G′ containing the same3 edges as H ′′. Then clearly H ′ is
(2, T )-vertex connected and cost(H ′) = b. Assume by contradiction that there
exists a subgraph H of G′ which is (2, T )-vertex connected and cost(H) = c < b.
Let H contain d edges with weight 0. Consider the subgraph ˜︂H of G′′ with
the same edges as H. Then, ˜︂H is (2, T )-vertex connected. But this leads to a
contradiction as

cost(H ′′) = a + b ·M
= a + M + (b− 1) ·M
≥ a + M + c ·M
> d + c ·M
= cost(˜︂H)

2recall, pe1 and ph1 are copies of p, to which the edges f(e1) and f(h1) are respectively
incident.

3recall G′ and G′′ have the same edge set and differ only in the weights given to the edges.
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The first inequality follows from c and b being integers, and the last follows from
the fact that d ≤ |E(G′)| < M and a ≥ 0.

Observation 21. Given a (2, T )-vertex connected subgraph H ′′′ of G′′′ with the
least cost, one can obtain a (2, T )-vertex connected subgraph H ′′ of G′′ with the
least cost in poly-time.

Proof. First, we observe that for any extended edge ˜︂uvex in G′′′, H ′′′ either con-
tains ˜︂uvex or it does not contain any edge from ˜︂uvex (recall ˜︂uvex is the ex-
tended edge obtained by sub-diving the edge uv of G′′). Otherwise, the edges
(and internal vertices) of ˜︂uvex in H ′′′ could be removed, still keeping the graph
(2, T )-vertex connected, as all the internal vertices of ˜︂uvex are Steiner vertices
of degree 2. However, this would contradict the optimality of H ′′′. Now, con-
sider the graph H ′′ obtained by replacing back every extended edge ˜︂uvex in H ′′′,
by edge uv of weight M . Trivially, cost(H ′′) = cost(H ′′′). We argue that H ′′ is
(2, T )-vertex connected. Consider two arbitrary terminals p and t. As H ′′′ is
(2, T )-vertex connected, it contains two (internally) vertex-disjoint p-t paths P1
and P2. Again using the fact that for any arbitrary extended edge ˜︂uvex (in H ′′′),
all its internal vertices are degree 2 Steiner vertices, it follows that either P1, P2
do not contain any edge from ˜︂uvex or ˜︂uvex belongs to exactly one of the paths
from P1 and P2. Thus, the paths obtained by replacing every extended edge ˜︂uvex

in P1, P2 by edge uv, are (internally) vertex-disjoint p-t paths in H ′′. Lastly, it is
not hard to check that if there existed a (2, T )-vertex connected subgraph of G′′

with cost strictly less than cost(H ′′), one could replace each edge uv of weight M
in such a subgraph by ˜︂uvex, obtaining a (2, T )-vertex connected subgraph of G′′′

with cost strictly less than cost(H ′′′), leading to a contradiction.

Lastly, we note that finding a (2, T )-vertex connected subgraph of G′′′ with
the least cost is equivalent to finding an optimal solution to the Minimum 2-VCSS
problem for input graph G′′′ and terminal set T (as all the edges of G′′′ have unit
weight).
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4. Multiple copies of edges being
allowed
In this chapter, we prove Theorem 2, improving over the FPT algorithm for
BI-SCSS by Chitnis et al. [CFM17] in terms of the runtime.

Theorem 10 ([CFM17]). There is a 2O(k2)nO(1) time FPT algorithm (with pa-
rameter k) for BI-SCSS, where k is the number of terminals and n is the number
of vertices in the input graph.

First, we prove that BI-SCSS and weighted Minimum 2-ECSM are polynomi-
ally equivalent.

Observation 22. Weighted Minimum 2-ECSM and BI-SCSS are polynomially
reducible to each other.

Proof. Let
(︂ ˜︁G, T ⊆ V (G)

)︂
be the input to weighted Minimum 2-ECSM, and

(G, T ) the input to BI-SCSS, where G is the directed graph obtained from ˜︁G, by
having directed edges −→uv and −→vu for every edge uv of ˜︁G, s.t. −→uv and −→vu have the
same weight as uv.

Let ˜︂H be an optimal solution (without any isolated vertices)1 to weighted
Minimum 2-ECSM, with cost c. Then, ˜︂H is minimally (2, T )-edge connected, and
using Observation 3 we know that there is no edge (of ˜︁G) in ˜︂H with more than
two copies. Also, it follows from Observation 1, Theorem 4, and Theorem 6 that
we can find an ear decomposition of ˜︂H in poly-time. Consider the directed graph
H obtained from ˜︂H by orienting all the edges of an ear in one direction2. Then,
it is not hard to check that H is strongly connected, contains all the terminals,
and is a solution to the BI-SCSS instance with cost c.

For the other direction, let H be an optimal solution to BI-SCSS with cost c.
Then consider the undirected graph (possibly multi-graph) ˜︂H obtained from H by
removing edge directions. Trivially, ˜︂H has cost c, contains all the terminals in T ,
and is connected. We show that ˜︂H is 2-edge connected, and hence (2, T )-edge
connected using Theorem 3. If any edge uv is removed from ˜︂H, then there still
exists a u-v path quv in ˜︂H\{uv}, and thus ˜︂H\{uv} is connected, because: if the
corresponding directed edge −→uv (or −→vu) is removed from H, there still exists a
directed path from v to u (or u to v) as H is strongly connected, and quv can be
taken to be the corresponding undirected path in ˜︂H. Thus, ˜︂H is a solution of
cost c to weighted Minimum 2-ECSM for the input instance ( ˜︁G, T ).

We note that both the instances ( ˜︁G, T ) and (G, T ) in Observation 22 have
the same number of terminals. Thus, using Theorem 10 and Observation 22, we
get an FPT algorithm (parameterized by the number of terminals) for weighted
Minimum 2-ECSM, with the same runtime as in Theorem 10.

We now piece together previous results to show that weighted Minimum
2-ECSM admits an FPT algorithm with a runtime of 2O(k log k)nO(1), where k is the

1recall, we are always interested in the case |T | > 1.
2we note that this idea of orienting all the edges of an ear in one direction is a known way of

proving Robbins’ theorem [Rob39b], which states that the graphs that have strong orientations
are exactly the 2-edge connected graphs.
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number of terminals and n is the number of vertices in the input graph. This,
along with the reduction outlined in Observation 22 will complete the proof of
Theorem 2. We start by making the following observation, which helps us take
the metric closure of the input graph without loss of generality.

Observation 23. For weighted Minimum 2-ECSM, one can take the metric clo-
sure of the input graph without loss of generality3.

Proof. Let
(︂
G, T ⊆ V (G)

)︂
be the original input instance, and ˜︁G the metric

closure of G. Consider a solution H, of cost c, for the input instance (G, T ).
Then, ˜︂H obtained by considering the same edges as H, but weights according to˜︁G is a solution for the input ( ˜︁G, T ), of cost at most c.

Now, consider ˜︂H, an arbitrary solution of cost c, for input ( ˜︁G, T ). Consider
the graph H obtained in the following manner: for each edge uv in ˜︂H, we replace
it with a shortest u-v path in G, s.t. every time we use an edge e of G, we use a
new copy of e. Trivially, H is (2, T )-edge connected (as ˜︂H is), has cost c, and is
a solution for the original input instance.

The following theorem lets us upper-bound the size (number of edges) of
an optimal solution to weighted Minimum 2-ECSM, in terms of the number of
terminals, given the input graph defines a metric.

Theorem 11 ([Jor03]). Suppose the input graph G is a complete graph with
edge weights according to a metric. Then, there exists an optimal solution to
weighted Minimum 2-ECSM s.t. the number of edges in the optimal solution is
upper bounded by 4k, where k is the number of terminals in G.

Thus, using Observation 23 and Theorem 11, we can assume w.l.o.g. that
there always exists an optimal solution to weighted Minimum 2-ECSM, whose
size is upper bounded by 4k.

Lastly, we use that weighted Minimum 2-ECSM admits an FPT algorithm for
the parameter ‘solution size’ (number of edges in the solution).

Theorem 12 ([FMvL21]). There exists a 2O(l log l)nO(1) FPT algorithm for
EC-SNDP, where l is the number of edges in the solution, and n is the number of
vertices in the input graph.

Using Theorem 12 along with the bound of 4k on the size of an optimal
solution, yields an FPT algorithm for weighted Minimum 2-ECSM with a runtime
of 2O(k log k)nO(1). What is left to argue is that weighted Minimum 2-ECSM is
a special case of EC-SNDP (recall Problem 3). Let O be an arbitrary optimal
solution (possibly with parallel edges) to weighted Minimum 2-ECSM for input
graph G and terminal set T . It follows from the optimality of O that it is
minimally (2, T )-edge connected. Using Observation 3, O cannot have more than
two copies of any edge of G. Thus, the weighted Minimum 2-ECSM problem can
be seen as a special case of EC-SNDP, where the input graph is ˜︁G and all the
demands ds,t for s, t ∈ T are set to two. Here, ˜︁G is a multi-graph that contains
exactly two copies of every edge in G.

3the proof can easily be generalized to show that the observation holds for weighted Minimum
k-ECSM, for any k ≥ 1.

35



Conclusion
In chapter 2 and chapter 3, we described randomized XP algorithms with pa-
rameter k (number of terminals) for finding an optimal solution to the Minimum
2-ECSS problem, s.t. the algorithms failed with a small probability. This still
leaves an open question, can the approximation factor of 2 for Minimum 2-ECSS
(due to [Jai01]) be improved by a poly-time or an FPT algorithm?

Open question 1. Does there exist a poly-time or an FPT (with parameter k)
algorithm for (weighted) Minimum 2-ECSS with approximation ratio better
than 2?

A comparatively less studied parameter we did not explore in this work is
p, the number of Steiner vertices in the solution (where parameterization by p
is as defined by Dvořák et al. [DFK+21]), for which we have the following open
question analogous to 1:

Open question 2. Does there exist an FPT (or even XP) algorithm with pa-
rameter p, for (weighted) Minimum 2-ECSS, with approximation ratio better
than 2?

In chapter 4, we discussed a 2O(k log k)nO(1) FPT algorithm for weighted Min-
imum 2-ECSM. It would be interesting to see if there exists an FPT algorithm
(parameter k) with a better runtime.

Open question 3. Does there exist a 2O(k)nO(1) FPT algorithm for weighted
Minimum 2-ECSM?
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A. Missing proofs and figures
Proof sketch for Observation 1. Let us assume by contradiction that G(V, E) is
not 2-edge connected. Then, there exists an edge cut characterized by ∅ ≠ A ⊊ V ,
such that there is exactly 1 edge in the cut δ(A); note G is connected (follows from
minimality of G). Also, both A and A have at least one terminal1. Otherwise,
w.l.o.g. say A contains no terminals, then A (along with the cut edge) could
be removed, still leaving the graph (2, T )-edge connected, which contradicts the
minimality of G. Thus there exist x, y ∈ T s.t. x ∈ A and y ∈ A. As G is
(2, T )-edge connected, using Theorem 3 there should be at least 2 edges in the
cut δ(A), which leads to a contradiction.

Proof of Observation 2. If G is a multi-graph and contains 2 copies of an edge uv,
then the observation trivially holds for both copies of uv. Let us assume G has a
single copy of edge uv. As G is 2-edge connected, using Theorem 3 there exist (at
least) two edge-disjoint paths between u, v. Let these paths be p1 and p2. If none
of these paths contain edge uv, then uv and p2 together form a cycle. Otherwise,
w.l.o.g. let p1 contain uv; as we are looking at simple u-v paths it implies p1 = uv.
Thus, again uv and p2 together form a cycle (as p1, p2 are edge-disjoint).

Proof sketch for Observation 18. Z by definition is (2, T ′)-edge connected; as-
sume by contradiction it is not minimal. Then there exists an edge e in Z s.t.
Z ′ := Z\e is (2, T ′)-edge connected2. Let C be the connected component of Z ′

containing the terminals. Let Z ′′ be the graph obtained from C by repeatedly
removing any degree 1 Steiner vertices. Then it is not hard to check that Z ′′ is a
skeleton (2, T ′)-edge connected subgraph of G. But this leads to a contradiction
as |E(Z ′′)| < |E(Z)|.

Figure A.1: An example showing that in a minimally (2, T )-edge connected graph,
the number of Steiner vertices with a degree of at least 3 need not be bounded in
terms of the number of terminals. Red (square) vertices are terminals, and black
vertices are Steiner vertices.

1recall, we assume throughout that |T | > 1.
2note Z has no isolated vertices by Definition 9.
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