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Introduction

In this thesis we introduced the theory of affine and projective varieties, and we

introduced concepts that help us with resolution of their singularities.

Singularities are a very common problem not only in geometry but also in

different disciplines of mathematics. They are often the reason why we cannot

solve problems generally and have to give up on our obtained insight into these

special places.

This is not only a problem in pure math but also in real-life applications.

Equations defined by polynomials are used almost everywhere where you have

computer graphics, robotics and also numerical calculations. There is still ongo-

ing research in this area, which is a sign of the importance of this topic.

In our thesis, we use the method of blow-ups which is very powerful but

quite hard to use everywhere, and it needs to solve a lot of special cases if you

do not have deep enough insight into this theory.

We first introduce the basics of algebraic geometry, and then we build upon

them and introduce blow-ups, which will allow us to find equivalent variety

without singularities.
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Chapter 1

Affine varieties

Unless stated otherwise, K will denote a field and K will denote its algebraic

closure. The set of all polynomials in variables x1, . . . , xn will be denoted by

K[x1, . . . , xn]. We will also assume that n ∈ N. This chapter is mainly from [7].

Definition 1 (Affine space). Affine space of dimension n ∈ N over field K is
simply the Cartesian product

An
K = K × · · · ×K⏞ ⏟⏟ ⏞

n times

.

An element of An
K or simply An will be called point, and if P = (a1, . . . , an), ai ∈

K , then the ai will be called the coordinates of P .

Definition 2 (Affine algebraic set). A set A is an affine algebraic set if there exist
I ⊆ K[x1, . . . , xn] such thatA is the zero set of I .

That is A = V (I) = {a ∈ Kn | f(a) = 0 ∀f ∈ I} ⊆ An
K . Note the set I can

be arbitrary, not necessarily finite or countable.

Note. Given a set of polynomials f1, . . . , fm ∈ K[x1, . . . xn]}, m ∈ N we

use a slightly incorrect notation V (f1, . . . , fm) instead of the formally correct

V ({f1, . . . , fn}).

Lemma 1 (Closedness of algebraic sets). The following hold:

1. ∅ and An
K are affine algebraic sets.

2. Union of two algebraic sets is algebraic.

3. Arbitrary intersection of algebraic subsets of An
K is again an algebraic set.

Proof .
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1. We have ∅ = V (1) and V (0) = An
K .

2. It holds that V (I1) ∪ V (I2) = V ({f1f2 | f1 ∈ I1, f2 ∈ I2}), which is

algebraic.

3. Let {V (Ii)}i∈α be a set of affine algebraic varieties. Then

⋂︁
i∈α V (Ii) =

V (⋃︁
i∈α Ii).

Definition 3 (Topology). A topological space is a pair (X, τ) consisting of a set
X and a faimily of subsets of X satisfying the following conditions:

1. ∅ ∈ τ and X ∈ τ .

2. If U1 ∈ τ and U2 ∈ τ , then U1 ∩ U2 ∈ τ .

3. If A ⊆ τ , then
⋃︁ A ∈ τ .

Elements of τ are called open sets, and their complements in X are called closed

sets.

Definition 4 (Continuous map). Let (X, τ) and (Y, τ1) be topological spaces. A
mapping f : X → Y is called continous if f−1(U) ∈ τ for any U ∈ τ1.

Definition 5 (Induced topology). Let (X, τ) be a topological space. For A ⊆ X
we define topology induced by τ on A as τA = {B ∩ A | B ∈ τ}.

Definition 6 (Closure in topology). Let (X, τ) be a topological space. For any
A ⊆ X consider the family CA of all closed sets containing A. We define A = ∩CA.
Obviously A is the smallest closed set containing A.

Definition 7 (Homeomorphism). Let (X, τX), (Y, τY ) be topological spaces. A
mapping f : X → Y is said to be a homeomorphism if it is a continous bijection
with a continous inverse (it is open mapping).

Definition 8 (Dense set). Let (X, τX) be a topological space. A set A ⊆ X is
called dense set inX ifA = X . Or equivalently, for each open non-emptyG ⊆ X ,
A ∩G ̸= ∅.

Definition 9 (Zariski open set). Let Z be the set of all complements of affine al-
gebraic varieties on An

K

Z = {XS | XS = An
K \ V (S), S ⊆ K[x1, . . . , xn]}.

This defines a topology on An
K called Zariski topology.
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Correctness of the definition can be infered from Lemma 1.

Definition 10 (Noetherian ring). A commutative ring R is called noetherian if
there is no infinite strictly increasing chain of ideals I1 ⊆ eqI2 ⊊ I3 ⊊ . . .. Equiv-
alently, R is noetherian if each ideal I ⊆ R is finitely generated.

Note. Equivalence of both conditions is proven in [3].

Theorem 2 (Hilbert Basis Theorem). Commutative ring R is a noetherian if and
only if R[x] is noetherian. In particular, K[x1, . . . , xn] is noetherian for each field
K and natural number n ≥ 1.

Proof . Proof can be found for instance in [3].

Corollary 1. For each algebraic setX ⊆ An
K there exist an ideal I ⊆ K[x1, . . . , xn]

so that X = V (I). By Theorem 2 there exists r ∈ N and polynomials f1, . . . , fr

so that X = V (f1, . . . , fr).

Definition 11 (Basis of topology). A family B ⊆ τ is a called a basis of a topo-
logical space (X, τ) if every open subset of X can be represented as the union of a
subfamily of B. [1]

Note that empty set can be obtained as ∅ = ∪∅.

Lemma 3 (Characterization of basis). A familly of subsets B ⊆ τ which satisfies
conditions (B1) and (B2) below if and only if it is a basis of topological space (X, τ),
where τ = {⋃︁ A | A ⊆ B}.

(B1) For any U1, U2 ∈ B and every point x ∈ U1 ∩ U2 there exists a U ∈ B such
that x ∈ U ⊆ U1 ∩ U2.

(B2) For every x ∈ X there exists a U ∈ B such that x ∈ U . [1]

Proof . “⇒”

We have X = ⋃︁
x∈X Ux, where x ∈ Ux from (B2) and ∅ as the trivial union. Fix

U an open set U ∈ τ . Then U = ⋃︁
x∈U Vx where x ∈ Vx ⊆ U ∩ U = U so B is a

basis of (X, τ). If U1, U2 ∈ B then U1 ∩ U2 = ⋃︁
x∈U1∩U2 Vx where Vx ⊆ U1 ∩ U2

from (B1).

“⇐”

Trivial.
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Definition 12 (Irreducible set). Let X be a topological space and let Y be its
nonempty subset. Y is irreducible if it cannot be expressed as the union Y = Y1∪Y2
of two proper subsets Y1, Y2 ̸= ∅, closed in Y .

Lemma 4 (Characterization of irreducibility). A nonempty topological space X
is irreducible if and only if each non-empty open subset of X is dense in X .

Proof . If X is reducible, then there are A,B closed proper nonempty subsets of

X such that X = A ∪ B. X \ B and X \ A are both open and nonempty, and

but their intersection is equal to X \ (A∪B) = ∅, thus neither of them is dense

in X .

In order to prove the converse, let us assume that there is a non-empty open

subset U ⊆ X which is not dense in X . Then there is open subset G ⊆ X such

that G ∩ U = ∅. But X = X \ U ∪ U . Both of these sets are closed, non-empty

and proper, since U ̸= X and hence X is reducible.

Definition 13 (Quasi-affine variety). An open subset of an affine variety is called
a quasi-affine variety. Equivalently, a quasi-affine variety is the intersection of an
open set and a closed irreducible set in the Zariski topology.

Definition 14 (Ideal). The ideal of a set X ⊆ An
K is defined as

I(X) = {f ∈ K[x1, . . . , xn] | f(P ) = 0,∀P ∈ X}.

The terminology comes from the fact that I(X) ⊆ K[x1, . . . , xn] is an ideal

of the polynomial ring. This is easy to see beacause if f, g ∈ I(x) and h ∈
K[x1, . . . , xn] then (f+g)(x) = f(x)+g(x) and (h·f)(x) = h(x)·f(x) = h(x)·
0 = 0 thus f +g, h ·f ∈ I(X) and this implies I(X) is an ideal ofK[x1, . . . , xn].
Now we have a function V : S ↦→ V (S) which maps subsets of K[x1, . . . , xn]
to algebraic sets, and a function I : X ↦→ I(X) which maps subsets of An

K to

ideals. Some of their basic properties are summarized in following lemma.

Lemma 5 (Properties of V and I). Let n ∈ N, X,X1, X2 ⊆ An
K and S, S1, S2 ⊆

K[x1, . . . , xn].

1. If X1 ⊆ X2, then I(X1) ⊇ I(X2).

2. If S1 ⊆ S2, then V (S1) ⊇ V (S2).

3. I(X1 ∪X2) = I(X1) ∩ I(X2).

4. I(V (S)) ⊇ S and V (I(X)) ⊇ X .

8



5. V (I(X)) = X .

6. I(∅) = K[x1, . . . , xn] and, if the fieldK is infinite it also holds that I(An
K) =

{0}.

7. I(V (I(X))) = I(X) and V (I(V (S))) = V (S).

Proof. (1), (2), (6) and (3) can be proven straight from definitions.

(4): Fix A ∈ X . For f ∈ I(X) we have f(A) = 0 and this implies A ∈ V (I(X)),
thus X ⊆ V (I(X)). Similarly, if f ∈ I(X) then f(A) = 0, ∀A ∈ V (S) and this

implies f ∈ I(V (S)).
To prove the statement of ( 7), we need to prove two inclusions. First is by ( 4)

we have I(V (I(X))) ⊇ I(X)(4). The other inclusion:

V (I(X)) ⊇ X (4)
I(V (I(X))) ⊆ I(X) (1)

The proof of V (I(V (S))) = V (S) would be similar.

To prove (5) we prove two inclusions. By definition of the Zariski topology we

see that V (I(X)) is closed. From ( 4) we have V (I(X)) ⊇ X . Next we need to

prove that if Y ⊇ X is closed then V (I(X)) ⊆ Y . Since Y is closed we have

Y = V (J) for some ideal J ⊆ K[x1, . . . , xn]. Now by applying ( 1) and ( 2), we

get that V (I(V (J))) ⊇ V (I(X)). The left-hand side can be simplified with ( 7)

and we get Y = V (J) ⊇ V (I(X)), which is what we wanted.

Definition 15 (Radical ideal). If R is a commutative ring and I ⊆ R is and ideal
then the radical of I , denoted by

√
I , is defined as:

√
I = {f ∈ R | ∃s ∈ N such that f s ∈ I}

Theorem 6 (Weak Nullstellensaztz). LetK be an algebraically closed field, n ∈ N
and I ⊆ K[x1, . . . , xn] be a proper ideal. Then V (I) is non-empty.

Theorem 7 (Hilbert’s Nullstellensatz). Let K be algebraically closed field, n ∈ N
and J ⊆ K[x1, . . . , xn] be an ideal. Then I(V (J)) =

√
J .

Proof . Both proofs can be found in [7].

Lemma 8 (Characterization of irreducible algebraic sets). An algebraic set X ⊆
An

K is irreducible if and only if its ideal I(X) is a prime ideal.
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Proof . We first show that irreducibility of X implies I(X) is prime ideal. To-

ward a contradiction, suppose that A,B ⊆ K[x1, . . . , xn] are ideals such that

AB ⊆ I(X) and both A,B ̸⊆ I(X). This implies that there exists f ∈ A and

g ∈ B such that f(x) ̸= 0 ̸= g(y) for some x, y ∈ X . We work over integral

domain K so f(x)g(x) ̸= 0 but fg ∈ AB ⊆ I(X) and that is contradiction with

our assumption.

For the other implication let I(X) be prime ideal and X = X1 ∪ X2. Thus we

have I(X) = I(X1) ∩ I(X2), but I(X) is a prime ideal and that means WLOG

I(X) = I(X1). Hence X = X1 and X is irreducible.

Corollary 2. Let M be a maximal ideal of A = K[x1, . . . , xn]. Then M corre-

sponds to minimal irreducible closed subset of An
K , that is, a point.

Definition 16 (Polynomial map). Let n, l ∈ N, X ⊆ An
K and Y ⊆ Aℓ

K be al-
gebraic sets. A map f : X → Y is a polynomial map if there exist polynomials
f1, , . . . , fℓ ∈ K[x1, . . . , xn] such that for each P = (a1, . . . , an) ∈ X we have

f(P ) = (f1(P ), . . . , fℓ(P )).

Lemma 9 (Polynomial maps are continous). Polynomial maps f : X → Y are
continous with respect to the Zariski topologies on X and Y.

Proof. Suppose that f : X → Y, X ⊆ An
K , Y ⊆ Aℓ

K is a polynomial map

such that f(P ) = (f1(P ), . . . , fℓ(P )) for fi ∈ K[x1, . . . , xn]. It is sufficient to

show that the preimage of a closed set in f is again a closed set. Fix a closed

set C ⊆ Y . By corollary of the Hilbert basis theorem 2 we can find polyno-

mials g1, . . . , gr, so that C = V (g1, . . . , gr). This can also be understood as

C = g−1((0, . . . , 0)), (0, . . . , 0) ∈ Ar
K , where

g : Y → Ar
K

P ↦→ (g1(P ), . . . , gr(P )).

By the following computation we see that

f−1 (C) = f−1
(︂
g−1 ((0, . . . , 0))

)︂
= (g ◦ f)−1 ((0, . . . , 0)) = V (h1, . . . , hr) .

Here hi (P ) = gi (f1 (P ) , . . . , fℓ (P )), for P ∈ X . The preimage of C with

respect to f is clearly closed and that is what we wanted to show.

Definition 17 (Affine coordinate ring). The set {f : X → A1
K | f is a polynomial map }

is called the coordinate ring of X and is denoted by K[X].
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Chapter 2

Projective Space

In this chapter, we will present projective space and some constructions anal-

ogous to constructions from Chapter 1. We will use a natural compactification

of An
K obtained by adding an infinitely distant point in every direction called

protective space. The concept of projective space is very important in under-

standing sets of solutions of polynomial equations. Instead of thinking about

a point in space, we will be thinking about lines through origin. Each line is

represented by its direction, hence we remove 0 because it does not generate a

line. This approach, originally created by Desargues to study the conics, offers

us tremendous advantages in generalizing special cases of affine geometry, into

all-inclusive statements. [4]

Definition 18 (Projective space). Projective space is the set of all one dimensional
subspaces of the vector spaceKn+1 that is set of all lines through the origin inKn+1.
Projective space is denoted by Pn

K . Formally we will define it as

Pn
K = An+1

K \ {0}
∼

where ∼ denotes the equivalence relation of points lying on the same line through
the origin: (x0, . . . , xn) ∼ (y0, . . . , yn) if there exists λ ∈ K,λ ̸= 0 such that
(x0, . . . , xn) = λ(y0, . . . , yn). We will denote [x0 : · · · : xn] = [(x0, . . . , xn)]∼.
We call this homogenous coordinates of the point in the projective space.

This notation emphasizes that the homogeneous coordinates are defined only

up to their nonzero scalar multiple. [6]

The value of a polynomial at a point x ∈ Pn
is generally not well-defined.

Thus, the naive way of defining vanishing set of a polynomial will fail.

Observation. For polynomial f = x2 − y ∈ K[x, y] and [1 : 1] = [2 : 2] ∈ P1
, but
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we have

f(1, 1) = 12 − 1 = 0
f(2, 2) = 22 − 2 = 2

However if every term of the polynomial would be of the same degree, we

could factor out the scaling constant. This motivates the definition of homoge-
nous polynomial.

Definition 19 (Homogenous polynomial). A polynomial f ∈ K[x1, . . . , xn] is
called homogenous (or a form) if all of its terms have the same degree.

Note that every polynomial f ∈ K[x1, . . . , xn] of degree d has a unique ex-

pression f = f0 + f1 + · · · + fd, where fi is a form of degree i.

Observation. Let m,n ∈ N and d ∈ N, d ≥ 0 and let f ∈ K[x1, . . . , xn] be

homogenous of degree d ≥ 0. Let λ ∈ K, λ ̸= 0 and [(a1, . . . , an)]∼ ∈ Pn−1
.

Since f is homogenous of degree d, we can see that:

f(λa1, . . . , λan) = λdf(a1, . . . , an).

So if f(a1, . . . , an) = 0, then f(λa1, . . . , λan) = λdf(a1, . . . , an) = λd · 0 = 0.

Hence f is a zero for all representatives (a1, . . . , an) of [(a1, . . . , an)]∼ and the

statement “P ∈ P is a zero of f” is not unreasonable.

This allows us to define the vanishing set of a polynomial in a projective

space as well as other constructions from Chapter 1. But before we do that let

us introduce a couple of definitions which will help us describe homogenous

polynomials better.

Definition 20 (Homogenous ideal). An ideal I is homogenous if it can be ex-
pressed as I = (f1, . . . , fm) where all fi are homogenous polynomials.

Definition 21 (Projectvie algebraic set). We say that [a1 : · · · : an+1] ∈ Pn is
zero of a homogenous polynomial f ∈ K[x1, . . . , xn+1] or that f vanishes on
[a1 : · · · : an+1], if f(a1, . . . , an+1) = 0. For a set S of homogeneous poly-
nomials of K[x1, . . . , xn+1] we will denote vanishing set V(S) = {P ∈ P |
P is a zero of f, ∀f ∈ S}. A setX ⊆ Pn is a projective algebraic set ifX = V(T )
for a set T of homogenous polynomials.

The properties of projective algebraic sets are very similar to properties of

affine algebraic sets as we can see in following lemma.

Lemma 10 (Projective sets are closed). The following hold:

1. ∅ and An
K are projective algebraic sets.
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2. Union of two projective algebraic sets is algebraic.

3. Arbitrary intersection of projective algebraic subsets of An
K is again an alge-

braic set.

Proof . This proof is basically the same as the proof of Lemma 1.

Definition 22 (Zariski topology on Pn
). Similarly to the affine case, we define

Zariski topology on Pn as

Z = {XS |, XS = Pn \ V(S), S ⊆ K[x1, . . . , xn+1]}.

Definition 23 (Projective variety). A Projective variety is an irreducible algebraic
set in Pn. Equivalently, it is a closed irreducible set in (Pn,Z). Intersection of a
projective variety and a Zariski open set is called quasi-projective variety.

2.1 Open cover of projective space
In this section, we will decompose projective space into simpler parts and estab-

lish a connection between these parts and the whole space. In fact, Pn
admits

an open cover consisting of open sets, each of which is homeomorphic to the

affine space An
K . We saw in the previous section, that projective space consists

of equivalence classes of affine points, which correspond to lines through the

origin. We would like to better understand the connection between the affine

word and the projective word.

The significance of this approach becomes evident in the subsequent devel-

opment of the text, where it is utilized to solve a problem in projective space by

solving it “locally” and then reconstructing the solution. Our first step will be

to look at the intersections of “lines” with the hyperplane not passing through

the origin. To put this formally, we first define affine charts, denoted by Ui, as

complements of V(xi) in the projective space Pn
. Equivalently we could say that

Ui = {[(a1 : · · · : an+1)] ∈ Pn | ai = 1}. We now claim that every affine chart is

homeomorphic to An
K .

Theorem 11 (Homeomorphism of affine charts). Let i ∈ {1, . . . , n + 1}. The
affine chart Ui ⊆ Pn with its induced topology, is homeomorphic to An

K with its
Zariski topology via homeomorphism φi defined as:

φi : Ui → An
K

(a1 : · · · : ai : · · · : an+1) ↦→ (a1

ai

, . . .
ai−1

ai

,
ai+1

ai

. . . ,
an+1

a1
)

13



Proof . Without loss of generality we will prove this for i = 1. Denote U = U1
and φ = φ1 and also denote S = K[y1, . . . , yn+1] and the set of homogeneous

elements of K[x1, . . . , xn] by Sh
. The mapping φ1 is clearly a bijection. We will

prove that both φ and φ−1
map closed sets to closed sets. For this proof we will

introduce two maps:

K[x1, . . . , xn+1] K[y1, . . . , yn]

Sh S
β

α
⊆ =

Map α : f ↦→ f(1, y1, . . . , yn) for f ∈ Sh
and β is defined as the homogeneous

polynomial β(g) = xd
1g(x2/x1, . . . , xn+1/x1) for g ∈ K[x1, . . . , xn], deg(g) = d.

First we will fix T ⊆ U to be a closed subset. Let Y be the closure of Y in Pn
, thus

Y = V(T ), T ⊆ Sh
. Let T ′ = α(T ). We have (b1, . . . , bn) ∈ φ(Y ) ⇔ [1 : b1 :

· · · : bn] ⇒ f(1, b1, . . . , bn) = 0, ∀f ∈ T ⇔ g(b1, . . . , bn) = 0, ∀g ∈ T ′ = α(T )
⇔ (b1, . . . , bn) ∈ V (T ′). We get the other implication by f(1, b1, . . . , bn) =
0, ∀f ∈ T ⇒ [1 : b1 : · · · : bn] ∈ Y . Since Y ⊆ U is closed in U we have

Y ∩ U = Y and clearly [1 : b1 : · · · : bn] ∈ U thus [1 : b1 : · · · : bn] ∈ Y .

Conversely, let W be a closed subset of An
K . Then W = V (T ′) for some subset

T ′ ⊆ K[x1, . . . , xn].

φ−1(W ) = {[1 : a1 : · · · : an] | f(a1, . . . , an) = 0, ∀f ∈ T ′} = V(β(T ′)) ∩ U.

So φ is homeomorphism.

The following lemma then allows us to compute the closure in projective

space by computing closures of each part separately.

Lemma 12 (Homeomorphism preserve closure). Let f : X → Y be a homeo-
morphism between topological spaces. Let A ⊆ X . Then f(A) = f(A).

Proof . From continuity of f we have that f−1(f(A)) ⊃ A and by aplying f to

both sides we get f(A) ⊇ f(A)
We know that f−1

is continuous hence f(A) is closed. We have f(A) ⊆ f(A)
and this implies f(A) ⊆ f(A). Now we can apply f−1

to both sides and we get

A = f−1(f(A)) ⊆ f−1(f(A)) = A

14



2.2 Product of varieties

2.2.1 The Segre Embedding
The Segre embedding is a mathematical construction that embeds the product

of two projective spaces into a higher-dimensional projective space. We define a

map:

ψ : Pr × Ps → PN

[a1 : · · · : ar+1] × [b1 : . . . bs+1] ↦→ [a1b1 : · · · : aibj : . . . ar+1bs+1]

whereN = (r+1)(s+1)−1 = rs+r+s. We can think about this in a language

of matrices. The space PN
is the projective space of (r + 1) × (s + 1) matrices.

Vectors [a1 : · · · : an+1] and [b1 : · · · : bn+1] get mapped to their matrix product:

[a1 : · · · : an+1]T [b1 : · · · : bn+1] = [(aibj)i,j],

where by [(aibj)i,j] we mean all elements of the product understood as elements

of PN
in obvious left to right order. Clearly, if we multiply any of the input

vectors by a nonzero scalar, the change will propagate into the projective matrix

but we will get the same element under equivalence. Also, we have at least one

pair of i, j that ai and bj is nonzero, thus (aibj)i,j is an element of PN
and it is

a well-defined mapping. The image of this map is clearly the set of all rank 1

matrices. They can be characterized by having all 2 × 2 minors equal to zero

while not being a zero matrix:⃓⃓⃓⃓
⃓aibj aibℓ

akbj akbℓ

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓zij ziℓ

zkj zkℓ

⃓⃓⃓⃓
⃓ = 0

Thus it can be expressed as projective variety in PN
:

V({zijzkℓ − ziℓzkj | 1 ≤ i < j ≤ r + 1, 1 ≤ k < ℓ ≤ s+ 1})

2.2.2 Products of Affine Varieries
Theorem 13 (Product of affine varieties). Let X ⊆ An

K and Y ⊂ Am
K affine

varieties. Then X × Y ∈ An+m
K is affine algebraic variety. (Solution of Exercise

3.15[2].)

Proof . From Corollary 1 we know that we can write varieties as X =
V (f1, . . . , fk) and Y = V (g1, . . . , gℓ). We need to prove irreducibility of X × Y .
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IfX×Y = Z1 ∪Z2 for ∅ ≠ Z1, Z2 ⊆ eqX×Y are closed nontrivial sets, we can

find two distinct (x1, y1) ∈ Z1 \ Z2, (x2, y2) ∈ Z2 \ Z1 such that either x1 = x2
or y1 = y2. If this would not be possible then ∀(x1, y1) ∈ Z1 : {x1} × Y,⊆
Z1X × {y1} ⊆ Z1 and ∀(x2, y2) ∈ Z2 : {x2} × Y,X × {y2} ⊆ Z2 but that

is contradiction with nontriviality of Z1, Z2. WLOG x1 = x2. We can define

function f : Y → X × Y , f(y) = (x1, y). Then f is a polynomial function

hence continuous, but Y = f−1({(x1, y) ∈ Z1}) ∪ f−1({(x1, y) ∈ Z2} which

are nontrivial from the choice of (x1, y1), (x2, y2).

16



Chapter 3

Blowups

3.1 Morphism of varietes
Definition 24 (Regular function). Let X ⊆ An

K be a quasi-affine variety. A func-
tions f : X → A1

K is regular at P if there exist g, h ∈ K[X] and open neighbour-
hood U with P ∈ U ⊆ X such that h ̸= 0 on U , and f = g

h
on U . We say that f

is regular on X if it is regular at every P ∈ X .

Lemma 14 (Continuity of regular function on affine variety). Lemma 3.1 [2] A
regular function is continuous whenK is identified with A1

K in its Zariski topology.

Proof. Proof similar to the proof for quasi-projective varieties stated below.

Lemma 15 (Equivalent condition for a closed subset). A subset Z of topological
space Y is closed in Y if and only if there exists open cover B of Y such that Z ∩U
is closed in U for every U ∈ B.

Proof. “⇒”

Trivial from the definition of subset topology. “⇐”

We have that Z ∩ Ui is closed in Ui for all Ui ∈ B. We want to prove that Z is

closed or equivalently that X \ Z is open. We have:

X \ Z =
⎛⎝ ⋃︂

Ui∈B
Ui

⎞⎠ \ Z =
⋃︂

Ui∈B
(Ui \ Z)

Since Ui \Z is open in Ui, which is open, thus Ui \Z is open, and this imply that

Z is closed in Y .

Lemma 16 (Continuity of regular function on quasi-affine variety). Let Y ⊆ Pn

be a quasi-projective variety and f : Y → A1
K be regular function. Then f is

continuous with respect to Zariski topology.

17



Proof. It is enough to show that f−1(a) for a ∈ A1
K is a closed set, because

only closed sets of A1
K are a finite union of such points or the whole set A1

K ,

which preimage is clearly closed. For f−1(a) = {P ∈ Y | f(P ) = a}, a ∈
An

K to be closed means that it can be covered by open subsets U ⊆ Y , such

that U ∩ f−1(a) is closed in U . Let U ⊆ Y be an open subset, such that f =
g
h
, g, h ∈ K[x1, . . . , xn], homogenous of the same degree and h ̸= 0 on U . Then

f−1(a) ∩ U = {P ∈ Y | f(P ) = g(P )
h(P ) = a} = V (g(P ) − ah(P )) ∩ U is closed

in U by definition of closed sets in Zariski topology. Hence f−1(a) is closed in

Y .

Corollary 3. Let f and g be regular functions on a variety X . If f = g on some

nonempty open subset U ⊆ X , then f = g everywhere.

Proof. The set of points V (f − g) is clearly closed. But by assumption, it is at

least open nonempty, hence dense by Lemma 4 and thus equal to X.

3.2 Rational maps
Definition 25 (Morphism of varieties). Let K be an algebraically closed field.
We define variety over K as any affine, quasi-affine, projective or quasi-projective
variety. If X, Y are two varieties, a morphism φ : X → Y is a continuous map
such that for every open set V ⊆ Y , and for every regular function f : V → K ,
the function f ◦ φ : φ−1(V ) → K is regular.

Definition 26 (Rational map). Let X, Y be varieties. A rational map φ : X → Y
is an equivalence class of pairs ⟨U,φU⟩ where U is a nonempty open subset U ⊆
X , φU is a morphism of U to Y , and where ⟨U,φU⟩ ∼ ⟨V, φV ⟩ are equivalent if
φU = φV on U ∩ V . If the image of φU is dense in Y for any U we say that φ is
dominant.

Note. It does not matter which U we will pick in definition of dominant map:

Fix U ⊆ X open nonempty set with dense image in Y . Then fix any other open

nonempty set U1 ⊆ X . Assume, for the sake of contradiction, that there is an

open and nonempty setG ⊆ Y such thatG∩φU1(U1) = ∅. From the equivalence,

we have that φU1(U ∩ U1) = φU(U ∩ U1). It follows that

∅ = φU1(U1) ∩G ⊇ φU(U ∩ U1) ∩G = φ(U ∩ U1 ∩ φ−1(G))

So the set U ∩U1 ∩φ−1(G) is empty. But this set is also intersection of nonempty

open sets of irreducible algebraic set, thus dense, hence it is nonempty and that

is contradiction.
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Definition 27 (Birational map). A birational map φ : X → Y is a rational map
for which there exists a rational map ψ : Y → X such that ψ ◦ φ = idX and
φ ◦ ψ = idY . If there is birational map from X to Y , we say that X and Y are
birationally equivalent.

3.3 Examples
In this section, we will denote the origin of an affine space, (0, . . . , 0), by O.

We will work with An
K × Pn−1

, which is a quasi-projective variety and can

be thought of as affine space to which we add all the lines through O. We will

define blowing-up of An
at the point O to be the closed subset X of An × Pn−1

defined by the equations {xiyj = yixj | i, j ∈ {1, . . . , n}}.

X An
K × Pn−1

An
K

φ

The morphism φ : X → An
is obtained by restricting the projection map of

An × Pn−1
onto the first coordinate of An

.

Let P = (a1, . . . , an) ∈ An \ {O}. WLOG a1 ̸= 0. Now if P, (y1, . . . , yn) ∈
φ−1(P ), then for each j, yj = aj

a1
y1. Thus φ−1(P ) consists of a single point. Fur-

thermore, we can define ψ(P ) = (P, [a1 : · · · : an]) defines an inverse morphism

to φ, showing that X \ φ−1(O) is isomorphic to An
.

The set φ−1(O) consist of all points (O,Q), Q ∈ Pn
, because the condition on

X is 0 = 0 thus always valid.

Definition 28 (Blow-up). If Y is a closed subvariety of An
K ,O ∈ Y , we define blow-

up of Y at the point O to be Ỹ = (φ−1(Y −O)), where φ : X → An
K , is as above.

To blow up other point than O we make a linear change of coordinates sending it to
O

Definition 29 (Singularity). Let Y ⊆ An be an affine variety, and let g1, . . . , gℓ ∈
K[x1, . . . , xn] is set of generators for the ideal of Y . Y is nonsingular at a point

P ∈ Y if the rank of the matrix ∥ ∂gi

∂xj
(P )∥ is equal to n−r, where r is the dimension

of Y . Y is nonsingular if it is nonsingular at every point. Definition of dimension [2]

Example 1. Let X be a curve V (y2 − x3 − x2). We can easily see that O is a
singular point on X . If we substitute (t,mt) for (x, y) in F (x, y) = y2 − x3 − x2,
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then will get F (t,mt) = (−1 +m2)t2 − t3. Let us think about the projection map
φ : A2

K ×P1 → A2
K defined by φ((x, y), [x : y]) = (x, y). We can define the blow-

up of An
K = ({{(0, 0)} ×P1}) ∪ {{((x, y), [x : y]) ∈ A2

K ×P1 | (x, y) ̸= (0, 0)}}.
The preimage of X \ {0} is determined by:

ϕ(X \ {0}) = {((x, y), [x : y]) ∈ A2
K × P1 | (x, y) ∈ X \ {0}}.

As we saw in Section 2.1, P1 can be thought of as an union of two affine spaces,
namely P1 = U0 ∪ U1 where Ui = {[z0 : z1] | zi ̸= 0}, we can also think of
φ−1(X{0}) as a union ofφ−1(X\{0})∩(A2

K ×U0) andφ−1(X\{0})∩(A2
K ×U1).

Using this we have:

φ−1(X \ {0}) ∩ (A2
K × U0) =

= {((x, y), [x : y]) ∈ A2
K × P1 | (x, y) ∈ X, x ̸= 0}

= {((x, y), [x : y]) ∈ A2
K × P1 | y2 = x3 + x2, x ̸= 0}

= {((x, mx), [1 : m]) ∈ A2
K × P1 | m2 = x + 1, x ̸= 0, m ∈ K}

∼= {(x, m) ∈ A2
K | m2 = x + 1, x ̸= 0, m ∈ K}

Since the Zariski closure of {(x,m) ∈ A2
K | m2 = x+ 1, x ̸= 0,m ∈ K} in A2

K is
V (m2 − x − 1), if we think about the corresponding set in An

K × U0, then we can
conclude that Zariski closure of φ−1(X \ {0}) ∩ (A2

K × U0) in (A2
K × U0) is

(φ−1(X \ {0})) ∩ (A2
K × U0)) ∪

{︂
((0, 0), [1 : 1]), ((0, 0), [1,−1])

}︂
,

similarly we can also find that the Zariski closure of φ−1(X \ {0}) ∩ (A2
K × U1)

in (A2
K × U1) is

(φ−1(X \ {0})) ∩ (A2
K × U1)) ∪

{︂
((0, 0), [1 : 1]), ((0, 0), [1,−1])

}︂
,

As a result, the blow-up of X at point 0 is

Bp(X) = (φ−1(X \ {0}))
=

(︂
(φ−1(X \ {0}) ∩ (A2

K × U0)
)︂

∪
(︂
(φ−1(X \ {0}) ∩ (A2

K × U1)
)︂

= (φ−1(X \ {0})) ∪
{︂
((0, 0), [1 : 1]), ((0, 0), [1 : −1])

}︂
This computation was from [5].

Example 2. Let Y be given by the equation Y = V (xy − z3). We see that Y
has a singularity in O. We will blow up Y at O. Let u, v, w be homogeneous co-
ordinates for P2. Then X , the blow-up of An

K at O, is defined by the equations
{yw = zv, xv = yu, zu = xw} inside A3

K × P2.
The preimage of O in φ is the set of points in X such that (x, y, z) = (0, 0, 0)

and from equations defining X we can easily see that preimage of O is the whole
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{(0, 0, 0)} × P2 ∼= P2. As we saw in Section 2.1 projective space has open cover by
sets Uω, ω ∈ {u, v, w}. To compute the blowup, we will first compute its “parts”.
Let us denote the part of the preimage, φ−1(Y \ {0}) ∩ (A3

K × Uω), by Wω for
ω ∈ {u, v, w}.

Wu =
(︂
φ−1(Y \O) ∩ (A3

K × Uu)
)︂

=

=
{︃

(x, y, z) : [u : v : w] ∈ A3
K × P2 | (x, y, z) ̸= (0, 0, 0), u ̸= 0,

yw = zv, xv = yu, zu = xw, xy − z3 = 0
}︃

We can assume that u = 1 and since it holds that [x : y : z] = [u : v : w], we also
have x ̸= 0. From the blowup equations for u = 1 we see that xv = y and wx = z.
With this we can rewrite xy−z3 as xvx−w3x3 = x2(v−w3x). But since x ̸= 0, the
zero set of x2(v−w3x) is equal to the zero set of v−w3x. From that we haveWu =
{(x, vx, wx), [1 : v : w] | v = w3x, x ̸= 0} = {(x,w3x2, wx), [1 : w3x : w] | x ̸=
0} ∼= A2 \ V (x). Mapping ψ : Wu → A2, ((a, b, c), [d : e : f ]) ↦→ (a, c

a
) with

inverse ψ−1 : (a, b) ↦→ ((a, b3a3, ab), [1, b3a, b]) which is birational equivalence.
The set A2 \V (x) is dense by lemma Lemma 4. The closure of Wu can be computed
as follows: We have WU = ψ−1(A2 \ V (X)) = ψ−1(A2) = {(x,w3x2, wx), [1 :
w3x : w] ∈}. We saw before that this set is defined by polynomials yw − zv, xv −
yu, zu − xw, v − w3x. If we homogenize the polynomials we get quasi-projective
variety V(yw − zv, xv − yu, zu− xw, u2v − w3x) ⊆ A3 × P2.

InA3×P2 it holds that V(yw−zv, xv−yu, zu−xw, u2v−w3x) is Zariski closed
set. It contains the set φ−1(Y \O), which is irreducible, because it is isomorphic to
Y \ O, which is irreducible, because it is isomorphic to Y \ O which is irreducible.
From its irreducibility we have that φ−1(Y \O) ∩Uu is dense in φ−1(Y \O). That
means that every closed set in A3 × P2 containing φ−1(Y \O) ∩ Uu also contains
φ−1(Y \O). And this implies that implies

Since the original polynomial is symmetric in x, y we can repeat almost same
process forWv and we will get thatWv = V(yw−zv, xv−yu, zu−xw, v2u−w3y).
The set Ww = {(zu, zv, z), [u : v : 1] ∈ A3 × P2} = V(yw − zv, xv − yu, zu −
xw, uv−w2z) The same thing as for Wu holds for the other two sets, and hence we
have:

φ(Y \O) ⊂ V(yw−zv, xv−yu, zu−xw, u2v−w3x, uv2 −w3y, uv−w2z) =: V
Together we have that

φ−1(Y \O) = V(yw − zv, xv − yu, zu− xw, u2v − w3x) ∩ Uu

∪ V(yw − zv, xv − yu, zu− xw, uv2 − w3y) ∩ Uv

∪ V(yw − zv, xv − yu, zu− xw, uv − w2z) ∩ Uw

Which is same as φ−1(Y \O) = (V ∩ uu) ∪ (V ∩ Uv) ∪ (V ∩ Uw)
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Conclusion

The aim of this thesis was to introduce a simple and comprehensible way to

understand the method of blow-ups and how to resolve singularities using it in

special cases.

We first introduced affine and projective space and proved some of its prop-

erties. We then used a more basic approach to blow-ups to introduce them to a

wider audience. We also tried to fill in gaps in the literature on this topic.

We showed how to use the method of blow-ups on exercises and resolved

certain singularities.
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