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Abstract: In this work we investigate the Weyl anomaly from a new perspective.
Our goal is to identify a set-up for which the classical Weyl symmetry is not
broken, at the quantum level by the usual arguments related to the Euler in-
variants, but rather by the impact of other geometrical obstructions. Therefore,
we work, mostly, in three spatiotemporal dimensions, where general arguments
guarantee the absence of trace anomalies. In particular, our interest here is on
whether various types of singularities, emerging in the description of the differ-
ential geometry of surfaces, could induce some form of quantum inequivalence,
even though the classical symmetry is at work. To this end, we work with a
very special three-dimensional metric, whose nontriviality is fully in its spatial
two-dimensional part. The last ingredient we use, to clean-up the way from other
complications, is to work with physical systems where no Weyl gauge field is
necessary, to have the classical invariance. The system we focus on is then the
massless Dirac field theory (that, as well known, enjoys local Weyl symmetry) in
three-dimensional conformally flat spacetimes.

With these premises, the research programme consists of three steps. The first
step is to find the coordinate transformations that link the conformal factor iden-
tifying the surface to the spatiotemporal conformal factor. This task is highly
nontrivial. In this thesis we have fully solved the issue for the cases in point,
filling gaps of the relevant research literature. The second step is to identify the
quantum operator that, when applied to the the Dirac field, produces the correct
Weyl transformation. Here we have found a possible candidate for such an oper-
ator, and the analysis of the impact of singularities of the conformal factor on its
regularity are particularly simple. Nonetheless, this operator needs further stud-
ies to be fully put into contact with the third, and final point of the programme,
that is the study of the effects of the above on the quantum Weyl symmetry of
the Dirac system.
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Introduction
The grand goal of the presented thesis is to investigate the phenomenon of the
quantum anomaly from a new perspective, the focus being on the Weyl anomaly.
The latter is often referred to, in the literature, as the trace, scale or conformal
anomaly, that are all related but different concepts. In all cases, as customary,
by quantum anomaly we shall mean the quantum mechanical obstruction to a
classical symmetry.

We consider systems1 related by the Weyl classical symmetry. After the quan-
tization of the fields, we want to search for an inequivalence of related Hilbert
spaces, stemming from the singularities of classical nature: the spacetime singu-
larities such as cusps, boundaries and other. For illustration, see the fig. 1.

Let us add that the singularities play a crucial role when it comes to the
inequivalence of Hilbert spaces in the quantum field theory (QFT). We shall see
this when we discuss the Bogoliubov transformation (BT) and the inequivalent
representations of the canonical commutation relations (CCRs)2 in chapter 5.
This is our motivation to investigate whether the classical singularities cause the
inequivalence of Hilbert spaces.

In the following paragraphs we shall introduce a model where the trace
anomaly is not present3, so the quantum inequivalence we are in search of has
the potential to be transparent.

Figure 1: Concept map of the grand goal of this thesis

In order to describe our model, we introduce the basic terminology. The Weyl
transformation (WT) is a simultaneous rescaling of the metric tensor gµν and the

1 When we talk about a ”system”, we mean some field Φ and some spacetime on which the
field ”lives”. The spacetime is described by its metric tensor gµν . We shall usually denote the
system as a pair (gµν , Φ).

2Similarly, we shall donote the canonical anticommutation relations as ”CARs”.
3In the literature, when it comes to the Weyl anomaly, it is mostly understood as the trace

anomaly. In this work, we want to avoid this viewpoint.
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field4 Φ such that [1]:
(gµν ,Φ) →

(
g′

µν ,Φ′
)
, (1)

with
g′

µν(Q) = e2Σ(Q)gµν(Q), Φ′(Q) = edΦΣ(Q)Φ(Q), (2)

where eΣ(Q) is the (spacetime) conformal factor, a function of spacetime coordi-
nates Qµ, and dΦ is the scale dimension. It is worth emphasizing that the WT is
not a coordinate transformation, but an actual transformation of the spacetime
metric/geometry (proper distances are changed).

The action A[gµν ,Φ] is said to be Weyl invariant, if and only if it is invariant
under the WT:

A[e2Σgµν , e
dΦΣΦ] = A[gµν ,Φ]. (3)

The actions invariant under the WT usually do not contain any preferable unit
of a scale, like mass, which may otherwise break the symmetry.

Moreover, it turns out that the trace of the energy-momentum tensor:

T µν = 2√
−g

δA

δgµν

, (4)

vanishes:
T µ

µ = 0, (5)

where g is the determinat of the metric tensor gµν and δ/δgµν is the standard
functional derivative [2].

Nevertheless, once we quantize5 the field Φ, the situation changes dramati-
cally:

gµν < Tµν >∼ (Full contractions of the Riemann tensor)n/2 , (6)

where < . > denotes the vacuum expectation value (VEV) and n = 2m, m being
a natural number, is the dimension of the spacetime. From (6) it becomes clear
why the Weyl anomaly is referred to as the trace anomaly [3].

However, in the odd dimensions n = 2m + 1 the situation is dramatically
different from (6):

gµν < Tµν >= 0. (7)

This is because there are no Euler invariants in the odd dimensions [4]. So, if a
quantum inequivalence is present, it is not because of the trace anomaly.

We want to identify the cleanest tractable situation to have our problem under
scrutiny. The following setup seems to be the most convenient:

1. We focus on the spacetimes of the dimension n = 3, because there are
no Euler invariants (so no trace anomaly). Moreover, we choose a special
subset of these spacetimes such that:

4With general inner structure, i.e. scalar, spinor or other fields.
5In this work we only quantize the fields, but the spacetimes remain classical. This is the so

called semiclassical quantization.
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1.1. They are conformally flat. It means that there exists a coordinate
system Qµ ≡ (T,X, Y ) such that:

gµν = e2Σηµν . (8)

Then the dynamics of the field edΦΣΦ referes to the flat case:

A[e2Σηµν , e
dΦΣΦ] = A[ηµν ,Φ]. (9)

We shall be interested in how the Hilbert space gets changed when we
move from a flat spacetime to a curved (conformally flat) spacetime,
which contains singularities (e.g. cusps). Because only the curved
spacetime does possess singularities, it will make our investigation,
how the singularities affect the quantization, more transparent.

1.2. They are constructed as a Cartesian product of a flat time and two-
dimensional surfaces. We shall see later that the surfaces cannot be
arbitrary, but due to the condition 1.1. they are of constant Ricci (and
Gaussian) curvature. These surfaces have been widely studied in the
literature and we shall be able to use this knowledge to our advantage.
We shall denote such spacetimes as IR × M2 and their metric tensor
is:

gµν(q) =
(

1 0
0 −gij(q⃗)

)
, (10)

where qµ ≡ (t, x, y) and q⃗ ≡ (x, y) denotes unspecified abstract coor-
dinates covering the surface. We shall understand t as the laboratory
time and the spatial part of the metric tensor gij as the metric of a
surface.

2. We choose to work with the Dirac massless field theory. Its action is invari-
ant under the WT. If we denote the Dirac field, living on the Minkowski
spacetime with ηµν , as ψα then the Weyl transformed system is:

gµν = e2Σηµν , ψΣα = e− n−1
2 Σψα, (11)

where Σ is a function of spacetime coordinates and we consider the general
dimension of spacetime n. Although we are interested in n = 3, most of
our calculations will be done for a general dimension n.
The classical dynamics of the field ψα is preserved under the transformation:

A[gµν , ψΣα] = A[ηµν , ψα]. (12)
We shall discuss in chapter 1 that the Dirac massless action is invariant
under the WT as it is, i.e. we do not need to introduce any additional
gauge (Weyl) field, as it is the case for e.g. the scalar field [1].

Once we are in this setup, we quantize both Dirac fields ψα and ψΣα and
consider the following quantum Weyl transformation (QWT):

ψΣa = WψαW
−1

= e− n−1
2 Σψα,

(13)
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where the operator W realizes the quantum transformation. We shall study
the QWT in a general dimension n and focus on n = 3 when we need to apply
considerations related to the geometry of the surfaces of constant Ricci (Gaussian)
curvature, as we discussed above. It is natural to expect such operator W to be
unitary, since it implements a quantum symmetry. We want to understand how
the geometrical obstruction can make this operator irregular, which would break
the symmetry (which was thus defined only formally).

We shall discuss in chapter 6 that the QWT is an example of a canonical
transformation (CT). In QFT, CT is a tranformation which preserves the struc-
ture of the CCRs (or CARs), but still leads to different Hilbert spaces. We shall
explain the concept of the canonical transformation and related inequivalent rep-
resentations in chapter 5.

Our research can be formulated as a three-step programme:

1. Since we want to understand the impact of the geometrical obstruction on
the quantum inequivalence (symmetry breaking), we shall

1.1. focus on the classical Weyl symmetry, where the essential role is played
by the function Σ, giving the spacetime conformal factor e2Σ;

1.2. study the conformally flat spacetimes IR×M2 of constant Ricci curva-
ture and its spatial parts M2, the surfaces of constant Ricci curvature,
where all of the non-triviality of the spacetimes is present.

At the end of this step we know the function Σ(T,X, Y ) including its singu-
larities and we identify the coordinates Qµ ≡ (T,X, Y ), in which the metric
is explicitly conformally flat. This is a crucial step.
This is the content of the chapters 1, 2, 3, 4 and appendix A.

2. We need to find the quantum operator W which implements the Weyl trans-
formation at the quantum level. This operator is supposed to be unitary
because it implements a quantum symmetry [5].
However, we expect that W depends on Σ and this can be a source of
singularities, which would make W irregular. If this happens, the quantum
symmetry is broken, since W is not well defined.
We shall introduce the operator W , which depends on Σ, but we shall also
find out that it is quite peculiar. We shall show in chapter 6 that there is
no, at least no simple, way how to find such a unitary operator W . We
shall define it formally, but we shall find out that it leads to a discrepancy.
However, it turns out that this discrepancy can be avoided, technically,
when we consider that the operator W is not unitary, but hermitian. The
link between this operator and the symmetry of the system is unobvious at
this moment.
On the other hand, relaxing the requirement of unitarity, we shall study the
operator W and investigate when it becomes singular, in correspondence to
the geometrical singularities of the spacetimes, enconded into Σ. The task
will turn out to be very demanding and we arrived at a partial solution.
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We shall discuss in chapter 5 the general case of irregular quantum trans-
formations among different Hilbert spaces. In the next chapter 6 and ap-
pendices B and C we treat the operator W as a hermitian operator and
explore under what circumstances it becomes singular.

3. Provided that the point 2. would have been finished completely, the next
step is to understand the connection between our W and the quantum Weyl
symmetry.

To fulfill the general goal of this project it would be necessary to solve all the
three points discussed above. We fully solved step 1. and set-up the stage for the
solution of step 2., while step 3. seemed too demanding and further work, based
on the results we found here, is necessary. We shall discuss the list of what must
be done in Conclusions 7.

Finally, let us briefly comment on the content of each chapter and appendix:

• Chapter 1 is devoted to the introduction of the Weyl symmetry of the Dirac
massless action.

• In chapter 2 we discuss on the general ground the spacetimes IR × M2 in
more details. We show how the condition that the spacetimes under con-
sideration are conformally flat implies that the surfaces must have constant
Ricci (Gaussian) curvature.

• Chapter 3 is devoted to the study of the surfaces of constant Ricci (Gaus-
sian) curvature: their local geometry as well as global properties (singular-
ities).

• Chapter 4 is dedicated to the further study of the spacetimes IR × M2:
their local geometry as well as the global description.

• In chapter 5 we introduce the Bogoliubov transformation and discuss in-
equivalence between Hilbert spaces on the general ground.

• In chapter 6 we apply the knowledge gained in chapter 5 and discuss the
quantum Weyl transformation.

• In chapter 7 we summarize our results and suggest other ways in which the
work can be developed.

• In appendix A we explore how the concept of curvature can be generalized
to manifolds which are not smooth everywhere, focusing on the conical
singularity.

• In appendices B and C we present some technical calculations which, sup-
plementing chapter 6, did not fit directly into the main body of this thesis

8



1. Weyl symmetry
This chapter is dedicated to the Dirac massless field theory with emphasis on its
Weyl symmetry. Its content is as follows:

We start by recalling the action for the Dirac field on flat spacetime. Assuming
its mass term disappears (m = 0), the action becomes scale invariant1.

In order to investigate symmetries in curved spaces, we rewrite the action
in a diffeomorphic invariant form. The action remains scale invariant, but it is
the metric tensor rather than the coordinates that must be transformed. This
scale transformation is also called rigid Weyl transformation, because its scale
factors (for the metric tensor and the field) depend on powers of eΣ, where Σ is
independent on the coordinates.

Then we take one more step further and promote Σ into a function Σ(Q) of
spacetime coordinates Qµ. The transformation is named local Weyl transforma-
tion. It is not granted that the action remains invariant under this transformation.
When the action ceases to be invariant it is necessary to introduce a gauge field,
which compensates the extra terms in the transformed action and saves the sym-
metry. However, for the Dirac massless field theory this is not the case. Its action
is invariant under the local Weyl transformation without introducing the Weyl
field Wµ, playing the role of the gauge field. Nevertheless, the Weyl field can be
formally introduced, but no physical meaning can be abscribed to it.

The main reference for this chapter is [1], but we also refer extensively to [6]
and [7]. Let us just mention that in the last two articles, the Weyl symmetry of
the massless Dirac action is put into the interesting context of graphene. We shall
also revisit these papers when we focus on geometry of spacetimes, see chapter 2.

1.1 Lorentz invariance and diffeomorphism
We begin by recalling the Dirac equation [8],[9]:

iγa∂aψα −mψα = 0, (1.1)

where ψα is the Dirac spinor with α being a spinor index, γb is a standard gamma
matrix, satisfying the Clifford algebra:

{γa, γb} ≡ γaγb + γbγa = 2ηab, (1.2)

where ηab is the Minkowski metric, a and b are both Lorentz (flat) indices, ∂a ≡
∂/∂xa, and m is mass. Let us add that we work in units where the reduced
Planck constant ℏ and the speed of light c are as follows: ℏ = 1 = c.

The mass term breaks the symmetry we are looking for, thus we can set it to
zero it from now on: m = 0.

The Dirac equation is invariant under the Lorentz transformation:

ψ′(x′) = Sψ(x), (1.3)
1Here, the coordinates and fields are transformed simultaneously.
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where S = exp
(
−1

2ϵ
abJab

)
is a matrix with generators:

Jab = 1
4 [γa, γb] ≡ 1

4(γaγb − γbγa) (1.4)

satisfing the Lorentz algebra2 [8]. The coefficients ϵab are constants and specify
the Lorentz transformation.

The corresponding action:

A[ηab, ψ, ∂aψ] ≡ i
∫
dnxψ̄(x)γa∂aψ(x). (1.5)

It is invariant under the Lorentz transformation, because the Jacobian of the
transformation is: det

(
∂x′

∂x

)
= +1.

Next we want to find the generalization of the Dirac action to curved space-
times. The action must be invariant under:

i) the local Lorentz transformation: locally, the spacetime is flat, therefore,
the laws of special theory of relativity (STR) apply;

ii) diffeomorphisms: all well-defined coordinates describing the same spacetime
are suitable for its description.

With this in mind, the action must become:

A[gµν , ψ,∇µψ] ≡ i
∫
dnx

√
−gψ̄(x)γaeµ

a∇µψ(x), (1.6)

where ∇µ ≡ ∂µ + Ωµ is the diffeomorphic covariant derivative, µ is the Einstein
(curved) index, eµ

a is the inverse Vielbein3, Ωµ ≡ 1
2ω

ab
µ Jab with ωab

µ being the spin
connection. Ωµ is necesarry if the action must stay invariant under the local
Lorentz transformation:

ωab
µ → ωab

µ + ∂µϵ
ab, ψ → exp

(
−1

2ϵ
abJab

)
ψ, (1.7)

where ϵ is not a constant anymore, but a function of coordinates x, i.e. ϵ(x).
Notice that although γa was replaced by γµ ≡ γaeµ

a , the Dirac adjoint has
remained unchanged: ψ̄ ≡ ψ†γ0, where 0 is a flat rather than curved index
(which we denote by underlying, e.g.: 0), see [6].

In what follows we shall refer to (1.5) as flat Dirac action and (1.6) as curved
Dirac action.

1.2 Scale and Weyl invariance
It is simple to check that the flat Dirac action (1.5) is invariant under the following
transformation:

xa → eΣxa, ψ → e− n−1
2 Σψ, (1.8)

where Σ is a constant. This is an example of scale transformations.
2It is the spinor representation of the Lorentz transformation.
3A mapping from the local Cartesian system to the global coordinate system.
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For curved spaces, we can find an analogue of (1.8):

ea
µ → eΣea

µ, ψ → e− n−1
2 Σψ, (1.9)

where ea
µ ≡ ∂xa/∂xµ is the Vielbein. Let us stress that (1.9) is not a coordinate

transformation, so xµ → xµ. The metric tensor gµν can be expressed using the
Vielbeins as:

gµν = ea
µe

b
νηab, (1.10)

so the transformation implies:

gµν → e2Σgµν ,
√

−g → enΣ√
−g. (1.11)

This transformation does not change ωab
µ , because Σ is still a constant. This

transformation, (1.9), is also known as the rigid Weyl transformation.
The further step is to promote Σ into a function of spacetime coordinatess:

Σ → Σ(x). (1.12)

Considering (1.12) in (1.9) we get the local Weyl transformation, with non-trivial
transformation of the spin connection [6]:

ωab
µ → ωab

µ +
(
ea

µe
νb − eb

µe
νa
)
∂νΣ. (1.13)

Following the standard procedure of gauging, this non-triviality is the reason to
introduce a new field, here called Weyl field Wµ, which transforms as:

Wµ → Wµ + ∂µΣ. (1.14)

The Weyl covariant derivative is then:

Dµ = ∇µ + Λν
µWν , (1.15)

where Λv
µ is called Virial [10] and is yet unspecified function. It is straightforward

to check that:
Λν

µ = n− 1
2 δν

µ − ea
µe

bνJab, (1.16)

is the correct choice for the action A[gµν , ψ,Dµψ] to be invariant under the local
Weyl transformations.

This general procedure, though, in the case of the Dirac field leads to:

A[gµν , ψ,Dµψ] = i
∫
dnx

√
−gψ̄γaeµ

a∇µψ

+i
∫
dnx

√
−gψ̄γaeµ

aΛν
µψ = A[gµν , ψ,∇µψ],

(1.17)

because of the following identity:

γaeµ
aΛν

µ = 0. (1.18)

The derivation of this identity is straightforward and short and it just needs the
use of the Clifford algebra: {γµ, γν} = 2gµν .

11



This tells us that A[gµν , ψ,∇µψ] is already local Weyl invariant as it stands
and Wµ is not necessary. Let us check this directly. The extra term in the action
coming from the Weyl transformation is following:

δA ≡ A[g′
µν , ψ

′,∇′
µψ] − A[gµν , ψ,∇µψ] =

= i
∫
dnx

√
−gψ̄

[
−n− 1

2 γµ∂µΣ + 1
2
(
eb

µe
νc − eνbec

µ

)
∂νΣJbc

]
ψ,

(1.19)

where ψ′ ≡ e− n−1
2 Σψ and g′

µν ≡ e2Σgµν .
Applying Jµν ≡ 1

4 [γµ, γν ] ≡ ea
µe

b
νJab and the Clifford algebra {γµ, γν} = 2gµν ,

we can simply obtain:

1
2
(
eb

µe
νc − eνbec

µ

)
∂νΣJbc = n− 1

2 γµ∂µΣ. (1.20)

From this follows that δA = 0 and the Dirac action (1.6) is invariant under the
local Weyl transformations.

Of course, we can choose to work with fields of different sorts, for intance a
scalar field. The latter example has a simpler algebraic structure than the Dirac
field, but the action for the free scalar field of m = 0 is not invariant under the
local Weyl transformation, until we define a gauge field (see [1]). Because we are
looking for the clearest situation, we want to avoid the need to define additional
fields. Therefore, the Dirac massless field is an ideal candidate to work with.

1.3 Flat and conformally flat regimes
In this thesis we shall focus on that case when the curved metric tensor is con-
formally flat:

gµν = e2Σηµν . (1.21)

from which follows:
ea

µ = eΣδa
µ,

√
g = enΣ. (1.22)

The coordinates, in which the conformal structure of spacetime becomes obvious,
will be denoted as Qµ ≡ (T,X, Y ):

gµν(Q) = e2Σ(Q)ηµν(Q). (1.23)

Because of our choice of metric tensors (1.21), the classical dynamics of the mass-
less Dirac field on conformally flat spacetime is the same as on flat counterpart,
as one can see from:

A[gµν , ψΣ,∇µψΣ] = A[ηab, ψ, ∂aψ], (1.24)

where
ψΣ ≡ e− n−1

2 Σψ. (1.25)

This setup, when the action is invariant under the Weyl transformation and
spacetimes are conformally flat, is known as conformal triviality [4].
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2. Conformal flatness
In chapters 3 and 4 we study two-dimensional surfaces of constant Gaussian
(or Ricci) curvature and (2+1) dimensional spacetimes, obtained as a Cartesian
product of flat time and these surfaces. We denote such spacetimes as IR × M2.

In this chapter, we show that the spacetimes IR × M2 are conformally flat.
We start with the metric tensor (10), add a condition for conformal flatness and
obtain that the surfaces, described by gij in (10), must have constant Gaussian
curvature.

For beginning let us recall the metric tensor (10), expressed in the coordinate
frame qµ ≡ (t, x, y):

gµν(q) =
(

1 0
0 −gij(q⃗)

)
. (2.1)

We take advantage of the fact that any surface is locally conformally flat
(see e.g. [11]). It means that there exists so called isothermal coordinates (x̃, ỹ),
covering the surface, that its line element becomes:

dl2 = e2σ(x̃,ỹ)
(
dx̃2 + dỹ2

)
, (2.2)

where eσ(x̃,ỹ) is called (spatial) conformal factor, a function describing the surface’s
local geometry. In these coordinates, the full spacetime metric becomes quite
simple:

gµν(q̃) =

⎛⎜⎝1 0 0
0 −e2σ(x̃,ỹ) 0
0 0 −e2σ(x̃,ỹ)

⎞⎟⎠ , (2.3)

where q̃µ = (t, x̃, ỹ). Obviously, it is more confident to work within the coordinate
frame (t, x̃, ỹ) rather than (t, x, y), because there is only one unspecified function
σ (in comparision to the latter case where there are four unknown functions gij).

Another useful coordinate frame Qµ ≡ (T,X, Y ) is where the metric tensor is
explicitly conformally flat:

gµν(Q) = e2Σ(Q)

⎛⎜⎝1 0 0
0 −1 0
0 0 −1

⎞⎟⎠ . (2.4)

The matrix (2.4) also fixes our signature.
While the metric tensor in the coordinate frame Qµ (2.4) is conformally flat

by definition, conformal flatness of (2.3) is not guaranteed. Therefore, we expect
that the function σ in (2.3) cannot be chosen arbitrary.

The necessary and sufficient condition for a spacetime of dimension n = 3 to
be conformally flat is that its Cotton tensor (see e.g. [6], [12]):

Cµν = ϵµσρ∇σR
ν

ρ + (µ ↔ ν) (2.5)

vanishes:
Cµν = 0. (2.6)
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It is worth mentioning that it is the Cotton tensor Cµν rather than the Weyl
tensor Cµνσρ (e.g. [13]):

Cµνσρ = Rµνσρ + 1
n− 2 (Rµρgνσ −Rµσgνρ +Rνσgµρ −Rνρgµσ)

+ 1
(n− 1)(n− 2)R (gµσgνρ − gµρgνσ) ,

(2.7)

which must vanish. The Weyl tensor, for n ≥ 4, vanishes if and only if the space-
time is conformally flat. However, it vanishes identically for n = 3 and thus loses
its practical applicability to test the spacetime on conformal flatness. Then we
must use the Cotton tensor instead of the Weyl tensor [12].

We shall see in a moment that the Cotton tensor (2.5) computed for the metric
tensor gµν(q̃) (2.3) vanishes only if a spacetime has constant Ricci curvature
R(3). This constraints Σ, because not every conformally flat spacetime must have
constant Ricci curvature.

Let us notice that in the metric tensor (2.3) the curvature can only be carried
by a surface because time is flat. Therefore, the Ricci scalar R(2) of the surface
must be constant. Now, it is simple to see that:

R(3) = −R(2), (2.8)

where the additional minus sign follows from the metric’s signature. This can be
verified by straightforward mechanical calculation, see e.g. [6].

Finally, it will turn out that σ must be a solution of the Liouville equation
[6], [14], a famous equation of mathematical physics (see below, (2.18)).

Before we compute the Cotton tensor Cµν for (2.3), let us compute the
Christoffel symbols, components of the Riemann and Ricci tensors and the Ricci
scalar. The only non-trivial independent Christoffel symbols are:

Γ1
11 = Γ2

12 = −Γ1
22 = ∂x̃σ, (2.9a)

Γ2
22 = Γ1

12 = −Γ2
11 = ∂ỹσ. (2.9b)

From that it follows that only two non-trivial components of the Riemann and
the Ricci curvature tensors are:

R11 = R1
212 = −∆(x̃,ỹ)σ = R1

212 = R22, (2.10)

where ∆(x̃,ỹ) ≡ ∂2
x̃ + ∂2

ỹ , ∂x̃ ≡ ∂/∂x̃, ∂ỹ ≡ ∂/∂ỹ.
During the computation, we assumed that:

[∂x̃, ∂ỹ]σ = 0. (2.11)

Thanks to that the following components of the Ricci tensor:

R12 = −R21 = [∂x̃, ∂ỹ]σ (2.12)

becomes zero. This is important to stress, because the interchangeability of order
of derivatives is not always granted when singularities are taken into considera-
tions, see [15], [16]. It is usual to condider the following integrability conditions
[15]:

[∂µ, ∂ν ] gσρ = 0, [∂µ, ∂ν ] Γλ
σρ = 0. (2.13)

14



Finally, the Ricci scalar reads as:

R(3) = 2e−2σ∆(x̃,ỹ)σ. (2.14)

We are now in the right position to compute the Cotton tensor. It has only
two non-trivial independent components:

C01 =ϵ021∇2R
1
1 + ϵ012∇1R

1
2, (2.15a)

C02 =ϵ021∇2R
2
1 + ϵ012∇1R

2
2. (2.15b)

As we already know, the Cotton tensor has to vanish whether spacetime should
be conformally flat. From (2.6) and (2.15) follows:

∂x̃∆(x̃,ỹ)σ − 2∂x̃σ∆(x̃,ỹ)σ = 0, (2.16a)
∂ỹ∆(x̃,ỹ)σ − 2∂ỹσ∆(x̃,ỹ)σ = 0. (2.16b)

The direct consequence of this is that the scalar curvature (2.14) must be constant:

∂x̃R
(3) = 2e−2σ

[
∂x̃∆(x̃,ỹ)σ − 2∂x̃σ∆(x̃,ỹ)σ

]
= 0, (2.17a)

∂ỹR
(3) = 2e−2σ

[
∂ỹ∆(x̃,ỹ)σ − 2∂ỹσ∆(x̃,ỹ)σ

]
= 0. (2.17b)

Since R(3) = −R(2), then R(2) is constant too, and so is K ≡ R(2)/2, the Gaussian
curvature. (2.14) can be rewritten as:

∆(x̃,ỹ)σ = −Ke2σ, (2.18)

that is the celebrated Liouville equation for σ(x̃, ỹ) [14].
It is also usual to find the Liouville equation in the following form:

∆(x̃,ỹ) lnϕ(x̃, ỹ) = −Kϕ2(x̃, ỹ), (2.19)

where we defined ϕ ≡ eσ.
Solving the Liouville equation (2.18) or (2.19), we obtain spatial conformal

factors such that the associated spacetimes IR × M2 are conformally flat.
For K = 0, the Liouville equation reduces to the Laplace equation:

∆(x̃,ỹ)σ = 0, (2.20)

whose solutions are the harmonic functions [17]. They represent a local geometry
of surfaces with zero Gaussian curvature.

For K ̸= 0, Liouville found the general solution of his equation (2.19) [14]:

ϕ(z, z̄) = 2√
|K|

f ′(z)
1 ± |f(z)|2 , (2.21)

where z ≡ x̃+iỹ, f(z) is a meromorhic function, with at most simple poles, which
satisfies f ′ ≡ df/dz ̸= 0 for all zs in a simply connected domain. The function
f represents a ”degree of freedom” - it specifies the solution of the Liouville
equation. If K > 0, then one chooses ’+’ and the solution is a conformal factor
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describing local geometry of a surface with positive constant Gaussian curvature,
and vice versa for K < 0.

Although we shall deal with specific σs in chapter 3, dedicated to surfaces of
constant K, we shall not need to use this result. Therefore, we shall not derive it
in this thesis and we just recommend the reference where the proof can be found,
see the Liouville’s original paper [14].

Before we start studying the surfaces of constant K, let us come back to
the function Σ and to the metric tensor (2.4). Since the Gaussian curvature
is constant, Σ cannot be arbitrary, but fulfills an analogous equation to (2.18).
Let us rederive this constrain [18]. We start by computing the Ricci scalar R(3)

in terms of Σ, in the coordinates (T,X, Y ). Denoting the partial derivatives as
∂0 ≡ ∂T ≡ ∂/∂T , ∂1 ≡ ∂X ≡ ∂/∂X, ∂2 ≡ ∂Y ≡ ∂/∂Y , the only independent
Christoffel symbols are:

Γ0
00 = Γ0

11 = Γ0
22 = Γ1

01 = Γ2
02 = ∂0Σ, (2.22a)

Γ0
01 = Γ1

00 = Γ1
11 = −Γ1

22 = Γ2
12 = ∂1Σ, (2.22b)

Γ0
02 = Γ1

12 = Γ2
00 = −Γ2

11 = Γ2
22 = ∂2Σ. (2.22c)

The relevant components of the Ricci tensor are:

R00 =
(
−2∂2

0 + ∂2
1 + ∂2

2

)
Σ + (∂1Σ)2 + (∂2Σ)2 , (2.23a)

R11 =
(
∂2

0 − 2∂2
1 − ∂2

2

)
Σ + (∂0Σ)2 − (∂2Σ)2 , (2.23b)

R22 =
(
∂2

0 − ∂2
1 − 2∂2

2

)
Σ + (∂0Σ)2 − (∂1Σ)2 . (2.23c)

The Ricci scalar is:

R(3) = e−2Σ (R00 −R11 −R22) . (2.24)

From (2.23) and (2.24) along with R(3) = −R(2) = −2K, it follows:

□Σ = −1
2∂aΣ∂aΣ + 1

2Ke
2Σ, (2.25)

where □ ≡ ∂2
0 − ∂2

1 − ∂2
2 and ∂aΣ∂aΣ ≡ (∂0Σ)2 − (∂1Σ)2 − (∂2Σ)2. We shall refer

to the equation (2.25) as the modified Liouville equation of the first form.
In [18] the authors found the following solutions of (2.25):

ΣK<0(T,X, Y ) = −1
2 ln T

2 −X2 − Y 2

r2 , (2.26a)

ΣK=0(T,X, Y ) = − ln T
2 −X2 − Y 2

c2 , (2.26b)

where the subscript of Σ indicates that the solution holds for constant nega-
tive/zero K, r ≡

√
−K is the constant radius of curvature and c is a constant,

required for dimensional reasons.
Since the authors found more suitable to work within the light cone, the case

K > 0 was not considered, so the solution:

ΣK>0(T,X, Y ) = −1
2 ln X

2 + Y 2 − T 2

r2 , (2.27)
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where r ≡
√
K. We shall see that we have a good reason to work in outer region

of the light cone. For instance, this is the case of the Rindler spacetime (a wedge
of the Minkowski spacetime; for a short review, see e.g. [19]).

The relation between Σ and σ or the coordinate transformations T (t, x̃, ỹ),
X(t, x̃, ỹ) and Y (t, x̃, ỹ) were unfounded in the mentioned literature, too. This
we shall face in chapter 4.

We shall show that there are many more solutions than (2.26). We shall also
discuss the solutions for K > 0.

Let us just state that all of this is potentially interesting for graphene physics,
see [18],[7] or a short review [20].
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3. Surfaces of constant K
In this chapter, we introduce surfaces of constant K and put emphasis on de-
scription of their geometry and singularities (cusps, boundaries). We start with
the surfaces of K = 0 and emphasize case of the cone, because it is locally flat
everywhere except for its tip, where the curvature is infinite (conical singularity).
We then move to the surfaces of constant K ̸= 0. While there are three types
of surfaces of K > 0, there is an infinite number of surfaces of constant K < 0,
differing by their topologies ([7], [21]). In the latter case, we focus mainly, but
not only, on surfaces of revolution.

We managed to contribute by original results. We found isothermal coordi-
nates for two particular surfaces of constant K < 0: the elliptic pseudosphere and
the Dini surface. This task is non-trivial considering the fact that any coordinate
transformation leads to a system of non-linear partial differential equations, a
problem difficult to solve in general. To the best of our knowledge, this issue has
remained unresolved in the dedicated literature, see [7], [21], [22], [23], [24], [25].

3.1 Surfaces of K = 0
For K = 0, the Liouville equation (2.18) reduces to the Laplace equation:

∆(x̃,ỹ)σ = 0. (3.1)

Its solutions are the harmonic functions, defined earlier (2.20) [26].
One solution can be guessed quit easily:

e(x̃+iỹ)/c, (3.2)

where c is a real constant which makes the exponent dimensionless. Because we
are interested in real functions, we take real or imaginary part of the complex
exponential function (3.2):

σ(x̃, ỹ) = ex̃/c cos ỹ
c
, σ(x̃, ỹ) = ex̃/c sin ỹ

c
. (3.3)

Another solution can be found easily when we assume that it is radially symmet-
ric: σ(r̃), r̃ =

√
x̃2 + ỹ2. The Laplace eq. (3.1) becomes:(

∂2

∂r̃2 + 1
r̃

∂

∂r̃

)
σ(r̃) = 0. (3.4)

The solution of (3.4) is then:

σ(x̃, ỹ) = a

2 ln x̃
2 + ỹ2

c2 , (3.5)

where a, c are real constants. Another example of a harmonic function is:

σ(x̃, ỹ) = arctan x̃
ỹ
. (3.6)

18



More harmonic functions can be generated simply by derivatives, e.g.:

∆(x̃,ỹ)σ = 0 −→ ∂x̃∆(x̃,ỹ)σ = ∆(x̃,ỹ)∂x̃σ = 0, (3.7)

where we assumed [∂x̃, ∂ỹ]σ = 0 (see also (2.11)). So if σ is a harmonic function,
so are ∂x̃σ, ∂ỹσ etc.

Now we show how σs are related to local geometry of surfaces of K = 0.
Focusing on (3.5), the corresponding line element is:

dl2 = e2σ(x̃,ỹ)
(
dx̃2 + dỹ2

)
=
(
r̃a

ca
dr̃
)2

+ r̃2(a+1)

c2a
dϕ̃2, (3.8)

where we applied the substitution from cartesian (x̃, ỹ) to polar (r̃, ϕ̃) isothermal
coordinates: x̃ = r̃ cos ϕ̃, ỹ = r̃ sin ϕ̃. Depending on value of a, we obtain different
results. We shall require a ∈ [−1, 0]. Then we distinguish the following cases:
1) a ̸= −1

dl2 = dR̃2 + (a+ 1)2R̃2dϕ̃2, R̃ ≡ 1
ca

r̃a+1

a+ 1 , (3.9)

2) a = −1
dl2 = dR̃2 + c2dϕ̃2, R̃ ≡ c ln r

b
, (3.10)

where we ignored a constant of integration in the case 1), computing R̃, and b is
a constant of integration.

Obviously, the line element (3.9) coincides with the line element of a plane if
a = 0:

dl2 = dλ2 + λ2dϕ2, (3.11)
or a cone if a ∈ (−1, 0):

dl2 = dλ2 + (sinα)2 λ2dϕ2, (3.12)

where λ ∈ [0,+∞), ϕ ∈ [0, 2π).
In the case of a plane, the coordinates (λ, ϕ) are standard polar coordinates.

In the case of a cone, the coordinates are defined by the plot 3.1 (a). The non-zero
angle 2α is the apex angle of the cone and for α = π/2, the cone becomes a plane.

For a = −1, the line element (3.10) coincides with the line element of a
cylinder:

dl2 = dλ2 + ρ2dϕ2, (3.13)
where ρ is the radius of the cylinder and λ ∈ [0,+∞), ϕ ∈ [0, 2π). (λ, ϕ) is a
cylindrical coordinate system, see the plot 3.1 (b).

The cone is an interesting example because it has zero Gaussian curvature ev-
erywhere except for its apex. This singularity is unremovable by a coordinate
transformation (on the other hand, the circle boundary can be removed by the
assumption of infinite cone). The singularity is called the conical singularity and
we describe the method of calculating its scalar curvature in the Appendix A.
Here, we present the final result [27]:

R = 4π(1 − sinα)δ(2)(λ). (3.14)

This result is consistent with our intuition: the curvature is non-zero everywhere,
except for a single point, the apex, where the curvature is infinite.
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(a) Cone (b) Cylinder

Figure 3.1: Coordinates (λ, ϕ) for the cone and the cylinder

3.2 Surfaces of revolution with K ̸= 0
A surface of revolution is a surface (in the Euclidean space of dimension three)
created by rotating a curve around an axis of rotation. All surfaces (both of
constant or nonconstant K) can be parametrized as (e.g. [7], [22]):

x(u, v) = R(u) cos v, y(u, v) = R(u) sin v, z(u) = ±
∫ u√

1 −R′2(ū)dū, (3.15)

where x, y, z denotes the Euclidean coordinates, v ∈ [0, 2π) is angular coordinate
and u is meridian coordinate, whose range is determinated by the condition:

1 −R′2(u) ≥ 0, (3.16)

where R′(u) ≡ dR(u)/du. R(u) is a function specific for particular surface of
revolution1. The parametirization (3.15) is also refered to as the ”canonical
parametrization” [7].

With respect to the coordinates (u, v), the line element has a simple form:

dl2 = du2 +R2(u)dv2. (3.17)

Let us compute the Gaussian curvature in these coordinates. The only non-trivial
independent Christoffel symbols are:

Γ1
22 = −RR′, Γ2

12 = R′

R
, (3.18)

which gives:
R1

212 = −RR′′, R2
121 = −R′′

R
. (3.19)

From that follows a simple relation for K = R(2)/2:
R′′

R
= −K. (3.20)

To find solutions of (3.20) we must distinguish (a) K > 0 and (b) K < 0.
1Since we deal with surfaces of constant curvature, hence we shall not have, e.g., R(2)(u),

this notation is tenable.

20



Case (a): K > 0

Denoting with r the radius of the constant Gaussian curvature, K ≡ 1/r2 > 0,
the solution of (3.20) is:

R(u) = c cos
(
u

r
+ b

)
, (3.21)

where b, c are constants of integration. Without loss of generality, we can choose
b = 0 and c > 0, so that the maximum value of R corresponds to u = 0. Looking
at (3.16), it becomes clear that the ratio c/r determinates the range of the u-
coordinate, and at the same time the shape of the corresponding surface:

1) When c = r, we have the Sphere, with u/r ∈ [−π/2, π/2].

2) When c > r, we have the Bulge, with u/r ∈ [− arcsin(r/c), arcsin(r/c)].

3) When c < r, we have the Spindle, with u/r ∈ [−π/2, π/2].

The sphere does not possess any singularity, the Bulge surface has two circles as
boundaries, and the Spindle surface has two cusps, see 3.2 (a), (b), (c), respec-
tively.

(a) Sphere (b) Bulge

(c) Spindle

Figure 3.2: Surfaces of constant K > 0; Figures are taken from [28].

Let us note that the last two surfaces can be reduced to the sphere by a simple
coordinate redefinition:

v → v̄ ≡ c

r
v, (3.22)

with which the line element (3.17):

dl2 = du2 +R2(u)dv2 = du2 +
(
R(u)r

c

)2
dv̄2 ≡ du2 + R̄2(u)dv̄2, (3.23)
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where R̄(u) ≡ R(u)r/c = r cos (u/r) , is the one of the sphere (c = r) and we can
enjoy the full range of u-coordinates, i.e. the circle boundaries or cusps, discussed
before, are absent.

Of course, if v ∈ [0, 2π), then v̄ ∈ [0, 2πc/r) and the surface is just a part
of the sphere (for c < r), or, conversely, is larger in the sense that possesses
self-intersections (for c > r). These singularities can be avoided when we require
v̄ ∈ [0, 2π).

Although the singularities of the Bulge and Spindle surfaces can be removed by
the coordinate redefinition (obtaining the sphere), they are all different surfaces
in laboratory. See, e.g., [28] for possible applications.

We are also interested in finding the spatial conformal factors and isothermal
coordinates (x̃, ỹ). It is easy to find (see also [7]):

dl2 = r2

cosh2 ỹ

(
dx̃2 + dỹ2

)
, (3.24)

with
x̃ = cv

r
, ỹ = ln

(
1 + 2

cot(u/2r) − 1

)
, σ(u) = ln cos u

r
. (3.25)

As in the case of the cone, we should bear in mind that σ should be properly
defined. It means that σ(u, 0) = σ(u, 2π), where the coordinate points [u, v = 0]
and [u, v = 2π] correspond to the same point on the manifold. Otherwise, such
ambiguity is unpleasent when we wish to make predictions for global geometry.
Fortunately, this is not the case for surfaces of K > 0 - σ depends only on the
u-coordinate, i.e. σ respects rotational symmetry.

Nonetheless, there is subtle point with this σ. Obviously, it diverges for
u → ±π/2. This divergence cannot be clearly connected with singular points of
the surface (also called the essential singularites). For example, the sphere has
no singular points; in the case of the Bulge surface, the values u = ±π/2 are even
not in the domain of σ.

Case (b): K < 0

For K ≡ −1/r2 < 0, the solution of (3.20) is:

R(u) = c1 sinh u
r

+ c2 cosh u
r
, (3.26)

where c1 and c2 are constants of integration. The three different pseudospheres
are given by:

1) c ≡ c1 = c2, u/r ∈ (−∞, ln(r/c)] (Beltrami);

2) c ≡ c2, c1 = 0,
u/r ∈ [− arccosh

(√
1 + (r/c)2

)
, arccosh

(√
1 + (r/c)2

)
] (Hyperbolic);

3) c ≡ c1, c2 = 0, u/r ∈ [0, arcsinh cot β], where c ≡ r sin β (Elliptic).

The Beltrami pseudosphere is an infinite surface with a circle of radius r as a
boundary at umax, see the fig. 3.3 (a). The Hyperbolic pseudosphere is a finite
surface with two circles of radii

√
c2 + r2 as its boundaries at ±umax, see the fig.
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(a) Beltrami

(b) Hyperbolic (c) Elliptic

Figure 3.3: Pseudospheres; Figures are taken from [28].

3.3 (b). The Elliptic pseudosphere is also a finite surface, has an apex at umin = 0
and a circle as a boundary at umax, see the fig. 3.3 (c).

In constrast to the surfaces of K > 0, these singularities are unremovable
by any coordinate redefinition. This is the consequence of the famous Hilbert
theorem [23], which establishes:

”There exists no analytical complete surface of constant negative Gaussian
curvature in the Euclidean space of dimension three.”

A ”complete surface” is a surface which does not possess essential singularities
(e.g. cusps).

The surfaces with constant K < 0 are closely related to hyperbolic (also
called ”Lobachevsky”) geometry. Because of that they are also called Lobachevsky
surfaces. We shall not delve into details about Lobachevsky geometry, rather we
shall recommend relevant literature, see [23], [24], [25]. Still, let us say a few
words.

Hyperbolic geometry differs from Euclidean geometry for the fifth (”paral-
lel”) postulate: two different parallels can pass through the same point. All
these straight lines (geodesics) then lie in the Lobachevky plane (analogue of the
”Euclidean plane”). In the Lobachevsky plane, some basic facts, known from Eu-
clidean geometry, do not apply. For instance, the sum of the angles in a triangle
is less than π. Another useful concept is the horocycle: a curve whose normals
all converge asymptotically in the same direction, its center. The area delimited
by the horocycle and some of two its normals is called the horocycle sector [23].
This sector can be immersed into the Euclidean space; particular example of the
horocycle sector and the surface, created from this immersion, is depicted in the
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fig. 3.4. It is the Beltrami pseudosphere.
We work within the Poincaré upper half-plane model {(x̃, ỹ)|ỹ > 0}, where

(x̃, ỹ) are called isothermal coordinates. The straight lines in the hyperbolic plane
are represented in this model by circular arcs perpendicular to the x̃-axis (half-
circles whose origin is on the x̃-axis) and straight vertical rays perpendicular to
the x̃-axis [29], [30].

The Poincaré upper-half-plane model is equipped with the Poincaré metric
tensor [23], [30]:

dl2 = r2

ỹ2

(
dx̃2 + dỹ2

)
. (3.27)

The Lobachevsky surfaces are covered by isothermal coordinates (x̃, ỹ) and their
local geometry is (3.27).

Figure 3.4: Horocycle sector and the Beltrami pseudosphere. ns are normals on
the horocycle. Fig. is taken from [7], [31].

Now, we would like to find the coordinate transformation from (u, v), with
the line element in the form (3.17) and (3.26), to (x̃, ỹ), with line element in the
form (3.27), for all pseudospheres.

The Beltrami pseudosphere is obtained with the transformation:

x̃ = cv, ỹ = re−u/r. (3.28)

For the Hyperbolic pseudosphere, the transformation is not that simple [7]:

x̃ = recv/r tanh u
r
, ỹ = recv/r 1

cosh u
r

. (3.29)

To the best of our knowledge, isothermal coordinates for the Elliptic pseudosphere
found in the literature do not have an attractive form [7]. Here, we found a clear
and attractive form of such coordinates, given by:

x̃ = r
sinh u

r
cos cv

r

cosh u
r

− sinh u
r

sin cv
r

, ỹ = r
1

cosh u
r

− sinh u
r

sin cv
r

. (3.30)
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How we managed to find these coordinates will become clear later, when we
shall discuss coordinate transformations in order to find isothermal coordinates
(T,X, Y ) for the corresponding IR × M2 spacetimes, see (4.44).

The spatial conformal factors for the Beltrami, Hyperbolic and Elliptic pseu-
dospheres are following:

σB(u) = u

r
, (3.31a)

σH(u, v) = −cv

r
+ ln

(
cosh u

r

)
, (3.31b)

σE(u, v) = ln
(

cosh u
r

− sinh u
r

sin cv
r

)
, (3.31c)

respectively. Obviously, σB is well defined and becomes singular as u → −∞ and
is finite on its boundary. On the other hand, last two σs are not properly defined:

σE,H(u, 0) ̸= σE,H(u, 2π). (3.32)
For the case of the Hyperbolic pseudosphere it is obvious. For the Elliptic pseu-
dosphere, it is because of c/r < 1 and sin cv

r
in (3.31). For this reason, we cannot

easily draw conclusions about the global geometry of surfaces.

3.3 Other surfaces of constant K < 0
As we said earlier, there is an infinite number of surfaces of constant K < 0.
Besides the previous three examples, we would like to make a comment on other
examples, particularly: the Dini, the Kuen and the Breather surfaces.

In the case of the Dini surface, we found isothermal coordinates with a well-
behaved conformal factor. This surface represents a sort of generalization of the
Beltrami pseudosphere: it depends on two real parameters a, b, with curvature
radius r ≡

√
a2 + b2, and for b vanishing it reduces to the Beltrami pseudosphere

with a = r = c, see (3.28).
In the case of the last two examples, we present their parametrizations and

plots.

3.3.1 Dini surface
The Dini surface can be parametrized in the following way [32]:

x = a sin u cos v, y = a sin u sin v, z = a
[
cosu+ ln tan u2

]
+ bv, (3.33)

where u ∈ [0, π/2), v ∈ [0, 2π) and a, b are real parameters discussed above.
These coordinates are also refered to as the ”canonical parametrization”.

In order to find isothermal coordiates, we assume the following substitution
ρ = ln sin u, which leads to:

dl2 =
(
a2e2ρ + b2

)
dv2 + a2dρ2 + 2ab

√
1 − e2ρdρdv. (3.34)

In isothermal coordinates, the line element takes the form:

dl2 = a2 + b2

ỹ2

(
dx̃2 + dỹ2

)
. (3.35)
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Both (3.34) and (3.35) lead to a system of non-linear partial differential equations:

a2e2ρ + b2 = a2 + b2

ỹ2

⎡⎣(∂x̃
∂v

)2

+
(
∂ỹ

∂v

)2
⎤⎦ , (3.36)

a2 = a2 + b2

ỹ2

⎡⎣(∂x̃
∂ρ

)2

+
(
∂ỹ

∂ρ

)2
⎤⎦ , (3.37)

ab
√

1 − e2ρ = a2 + b2

ỹ2

[
∂x̃

∂v

∂x̃

∂ρ
+ ∂ỹ

∂v

∂ỹ

∂ρ

]
. (3.38)

We shall solve the (3.36)-(3.38) by the following Ansatz:

x̃ = h(v)g1(ρ) + c, ỹ = h(v)g2(ρ), (3.39)

where c is a constant. We shall omit the detailed, lengthy ’step by step’ calculation
and present just the result:

g1(ρ) = a2

b2

√
1 − b4

a4
a2 + b2

a2e2ρ + b2 g(ρ), g2(ρ) =
√

a2 + b2

a2e2ρ + b2 g(ρ), (3.40)

g(ρ) = exp
[√

a2 + b2b

a2 arctanh
(
a
√

1 − e2ρ

√
a2 + b2

)
− b

a
arctanh

(√
1 − e2ρ

)]
, (3.41)

h(v) = exp
(
b2

a2v

)
, c = −a2/b2. (3.42)

From (3.40) it follows the condition:

e2ρ ≥ − b2

a2 + b4

a4 + b6

a6 . (3.43)

The right-hand side is negative for b/a ∈
(

0,
√√

5
2 − 1

2

)
≈ (0, 0.786). For b/a in

this range, it holds ρ ∈ (−∞, 0], i.e. u ∈ [0, π/2). For b/a larger than
√√

5
2 − 1

2 ,
ρmin should be larger than −∞ provided that these isothermal coordinates cover
the whole surface. However, ρmin = −∞, so the coordinates do not.

The limit b/a → 0 reproduces the Beltrami pseudosphere with:

x̃ = v, ỹ = e−ρ, a = r = c, v ∈ [0, 2π), ρ ∈ (−∞, 0]. (3.44)

In constrast to (3.28), (3.39) and (3.44) are dimensionless coordinates. Of course,
the coordinates can be redefined as:

x̃ =
√
a2 + b2 (h(v)g1(ρ) + c) , ỹ =

√
a2 + b2h(v)g2(ρ). (3.45)

This becomes necessary when we wish to write the conformal factor:

σ = 1
2
a2e2ρ + b2

a2 + b2 + b2

a2

(
v +

√
a2 + b2

b
arctanh a

√
1 − e2ρ

√
a2 + b2

− a

b
arctanh

√
1 − e2ρ

)
.

(3.46)
Althought the conformal factor (3.46) does depend on v (azimuthal angle), it is
still well-defined: no multivalueness is present, because the Dini surface is not
rotational symmetric, but it is like a helix, see (3.5).

26



(a) a = 1, b = 0 (b) a = 1, b = 0.1 (c) a = 1, b = 0.3

Figure 3.5: Dini surface

3.3.2 Kuen and Breather surfaces
The canonical parametrization for the Kuen surface is:

x = a
sin u cos v

1
2 + 1

2v
2 sin2 u

+ a
sin u sin v

1
2 + 1

2v
2 sin2 u

v, (3.47)

y = a
sin u sin v

1
2 + 1

2v
2 sin2 u

− a
sin u cos v

1
2 + 1

2v
2 sin2 u

v, (3.48)

z = a

[
cosu

1
2 + 1

2v
2 sin2 u

+ ln tan u2

]
, (3.49)

where u ∈ [0, 2π), v ∈ [0, π) and a stands for the curvature radius [33], [25].

Figure 3.6: Kuen surface
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The canonical parametrization for the Breather surface is:

x = −
2
√

1 − b2 cosh bu
(
−

√
1 − b2 cos v cos

(√
1 − b2v

)
− sin v sin(

√
1 − b2v)

)
b
[
(1 − b2) cosh2 bu+ b2 sin2(

√
1 − b2v)

] ,

(3.50)

y = −
2
√

1 − b2 cosh bu
(
−

√
1 − b2 sin v cos

(√
1 − b2v

)
+ cos v sin(

√
1 − b2v)

)
b
[
(1 − b2) cosh2 bu+ b2 sin2(

√
1 − b2v)

] ,

(3.51)

z = u− 2(1 − b2) cosh bu sinh bu
b
[
(1 − b2) cosh2 bu+ b2 sin2(

√
1 − b2v)

] , (3.52)

where u ∈ (−∞,+∞), v ∈ (−∞,+∞), a ∈ (0, 1). The Gaussian curvature is:
K ≡ −1, so independent on a [23], [25].

Let us add one more observation. Firstly, let us shift the u-coordinate for the
Kuen surface as u → u + π/2, which symmetrizes its u-range: u ∈ [−π/2, π/2].
If the u-coordinate is from a vicinity of zero, it holds:

x = a

(
cos v

1
2 + 1

2v
2 + sin v

1
2 + 1

2v
2v

)
, (3.53)

y = a

(
sin v

1
2 + 1

2v
2 − cos v

1
2 + 1

2v
2v

)
, (3.54)

z = a

(
u− u

1
2 + 1

2v
2

)
. (3.55)

Then, for the breather surface, we define ϵ: b ≡ 1 − ϵ, and make a limit
ϵ → 0+. Again, if the u-coordinate is from a vicinity of zero, the surface satisfies:

x = cos v
1
2 + 1

2v
2 + sin v

1
2 + 1

2v
2v, (3.56)

y = sin v
1
2 + 1

2v
2 − cos v

1
2 + 1

2v
2v, (3.57)

z = u− u
1
2 + 1

2v
2 . (3.58)

The comparison (3.53)-(3.55) and (3.56)-(3.58) suggests that both surfaces coin-
cide with each other (in prescribed limits).
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(a) a = 0.4 (b) a = 0.8

(c) a = 0.9999

Figure 3.7: Breather surface
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4. Spacetimes IR × M2

In this Chapter, we focus our attention on the spacetimes IR×M2, defined earlier
in chapter 2. Our goals can be summarized as follows: We shall investigate the
modified Liouville equation and search for new solutions, see (2.25) and (2.26).
Next, we shall make the effort to find the explicit coordinate transformation from
(t, x̃, ỹ) to (T,X, Y ):

ds2 = dt2 − r2

ỹ2

(
dx̃2 + dỹ2

)
= e2Σ(T,X,Y )

(
dT 2 − dX2 − dY 2

)
, (4.1)

to obtain the functions:

T (t, x̃, ỹ), X(t, x̃, ỹ), Y (t, x̃, ỹ), Σ(t, x̃, ỹ). (4.2)

We have already found that coordinate transformation can be a difficult task,
since it leads to a system of non-linear partial differential equations (N-PDE).
The task to find (4.2) was faced and partially solved in [7]: the authors found
(4.2) for one particular example - the Elliptic pseudosphere:

T = ret/r cosh u
r
, X = ret/r sinh u

r
cos cv

r
, Y = ret/r sinh u

r
sin cv

r
, (4.3a)

ΣE(T,X, Y ) = −1
2 ln T

2 −X2 − Y 2

r2 , (4.3b)

ΣE(t) = − t

r
. (4.3c)

We managed to generalize this result (4.3) to all surfaces of K = −1/r2, with
the same conformal factor (4.3c). We have even found another set of functions
(4.2) for K = −1/r2, with different Σ(T,X, Y ), see (4.24). They can be useful
for further work in the context of [7] and [18], for instance. We also discuss (4.3)
for K = 0 and K > 0. The latter case was considered unsolved, see [7], but
was already found by Roger Penrose himself during the 1960s when he worked
on the method of compactification of spacetimes (we recommend [13]). For the
case K = 0, we recall the results from [18].

4.1 Conformal factors Σs
The modified Liouville equation of the first form (2.25):

□Σ = −1
2∂aΣ∂aΣ + 1

2Ke
2Σ, (4.4)

can be rewritten as:
□f = K

4 f
5, (4.5)

where
f ≡ eΣ/2. (4.6)

We must keep in mind that f ≥ 0, with f = 0 if and only if Σ → −∞. We shall
refer to (4.5) as the modified Liouville equation of the second form.
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Case K = 0

For K = 0, (4.5) becomes the wave equation:

□f = 0. (4.7)

Considering the following initial conditions:

f(0, Q⃗) = g1(Q⃗), fT (0, Q⃗) = g2(Q⃗), (4.8)

where Q⃗ ≡ (X, Y ), T ≥ 0 and fT (0, Q⃗) ≡ ∂Tf(T, Q⃗)|T =0, the general solution of
the 2-dimensional wave equation (4.7) can be found as [34],[35]:

f(T, Q⃗) = 1
2πt2

∫
B(T,Q⃗)

Tg1(P⃗ ) + T 2g2(P⃗ ) + T∇g1(P⃗ ) · (P⃗ − Q⃗)√
T 2 − |P⃗ − Q⃗|2

dP, (4.9)

where P⃗ ≡ (X̃, Ỹ ), dP ≡ dX̃dỸ and B(T, Q⃗) is a disk of radius T about Q⃗,
whose area is |B(T, Q⃗)| = πT 2.

Let us introduce a few particular examples of (4.9):

f = sin (T − kXX − kY Y ) , (4.10a)
f = sin (kXX + kY Y − T ) , (4.10b)

f =
(

c2

T 2 −X2 − Y 2

)1/2

, (4.10c)

f =
(

c2

−T 2 +X2 + Y 2

)1/2

, (4.10d)

where k2
X + k2

Y = 1 and c is a real constant. Notice that (4.10c) corresponds to:

Σ = − ln T
2 −X2 − Y 2

c2 , (4.11)

which was found and presented as the only solution in (2.26).
Once we find the function f(T, Q⃗), we must focus on the ranges of X, Y such

that f ≥ 0. They are, in general, time dependent.
Let us find another solution: we consider the following Ansatz:

f(T,R) = g(T )h(R), (4.12)

where R ≡
√
X2 + Y 2. Then (4.7) becomes:

∂2
Tgh− g∂2

Rh− 1
R
g∂Rh = 0, (4.13)

which can be adjusted to:

∂2
Tg

g
= ∂2

Rh

h
+ 1
R

∂Rh

h
≡ c1, (4.14)

where c1 is a real constant. We managed to find two equations, each for one
function. The solutions of these equations then depend on the sign of c1. Notice
that the equation for h(R) is actually the Bessel equation:

R2∂2
Rh+R∂Rh− c1hR

2 = 0, (4.15)
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whose solutions are the Bessel functions.
We can have three cases:

for c1 > 0 : g(T ) = e
√

c1T , h(R) = k1J0(i
√
c1R) + k2Y0(−i

√
c1R), (4.16a)

for c1 < 0 : g(T ) = c2 sin(
√

|c1|T + ϕ), h(R) = k1J0(
√

|c1|R) + k2Y0(
√

|c1|R),
(4.16b)

for c1 = 0 : g(T ) = c3T + c4, h(R) = k1 ln (k2R) . (4.16c)

where J0 and Y0 are examples of the Bessel functions [36]. The Bessel functions
of the first and second kind are, respectively:

Jα(x) =
∞∑

k=0

(−1)k(x/2)α+2k

k!Γ(α + k + 1) , Yα(x) = Jα(x) cos(απ) − J−α(x)
sin(απ) , (4.17)

where α is a real parameter. For α ≡ p to be an integer, (4.17) becomes:

Jp(x) = Jα(x), Yp(x) ≡ lim
α→p

Yα(x). (4.18)

Next, the conformal factor can also depend only on one spatial and time coor-
dinate: f(T,X). In this case, (4.7) reduces to the 1-dimensional wave equation.
Its general solution is the d’Alembert’s formula [35]:

f(T,X) = 1
2 [g1(X − T ) + g1(X + T )] + 1

2

∫ X+T

X−T
g2(ξ)dξ. (4.19)

We can also assume that f does not depend on time T , so the wave equation
reduces to the Laplace equation:

∆(X,Y )f = 0. (4.20)

The solutions of the Laplace equation are the harmonic functions, which we have
already discussed, see (3.1).

Case K ̸= 0

Depending on the sign of K, we found the following solutions:

1) K ≡ 1/r2 > 0

f =
(

r2

X2 + Y 2 − T 2

)1/4

, Σ = −1
2 ln X

2 + Y 2 − T 2

r2 , (4.21a)

f =
(

r2

T 2 −X2

)1/4

, Σ = −1
2 ln T

2 −X2

r2 , (4.21b)

f =
(

r2

T 2 − Y 2

)1/4

, Σ = −1
2 ln T

2 − Y 2

r2 . (4.21c)
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2) K ≡ −1/r2 < 0

f =
(

r2

T 2 −X2 − Y 2

)1/4

, Σ = −1
2 ln T

2 −X2 − Y 2

r2 , (4.22a)

f =
(

r2

X2 − T 2

)1/4

, Σ = −1
2 ln X

2 − T 2

r2 , (4.22b)

f =
(

r2

Y 2 − T 2

)1/4

, Σ = −1
2 ln Y

2 − T 2

r2 , (4.22c)

f =
(

r2

X2 + Y 2

)1/4

, Σ = −1
2 ln X

2 + Y 2

r2 . (4.22d)

Let us recall that the solution (4.22a) was found in [18]. Later on, we shall add
one more solution for K > 0 and the explicit coordinate transformation, which
leads to it, see (4.50). This solution was found in [37], but also by Penrose, see
[13].

Perhaps, we could find more solutions. However, we showed that there are
more solutions of the modified Liouville equation of the first form (4.4) than
just found in [18]. Each of them should correspond to particular solution of the
coordinate transformation (4.2).

Finally, we must care about the ranges of X, Y , since f ≥ 0. The next step
is to find the explicit coordinate transformation (4.2) and link Σs to particular
spacetimes IR × M2.

4.2 Coordinate transformations for K < 0
We start with K < 0 and look for the explicit coordinate transformation from
(T,X, Y ) to (t, x̃, ỹ).

1st Attempt

In the coordinates (t, x̃, ỹ), the spacetime interval can be rewritten as:

ds2 = r2

ỹ2

(
ỹ2

r2 dt
2 − dx̃2 − dỹ2

)

≡ r2

ỹ2ds
2
R,

(4.23)

where R stands for ”Rindler”. It was shown in [7] that ds2
R is the line element of

the Rindler spacetime (i.e. the right or the left wedge of the Minkowski spacetime,
where an accelerated Rindler observer moves). For a review, we recommend e.g.
[19]. What is missing in [7] is the explicit coordinate transformation (4.2), which
is the following:

T = ỹ sinh t

r
, Y = ỹ cosh t

r
, X = x̃, (4.24a)

ΣK<0(T, Y ) = σ(ỹ(T, Y )) = − ln ỹ(T, Y )
r

= −1
2 ln Y

2 − T 2

r2 . (4.24b)
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Both ΣK<0 and σ are the same function. Let us recall here the local conformal
factors of the three pseudospheres (3.31):

σB(u) = u

r
,

σH(u, v) = −cv

r
+ ln

(
cosh u

r

)
,

σE(u, v) = ln
(

cosh u
r

− sinh u
r

sin cv
r

)
.

(4.25)

As we have already discussed, the last two factors suffer from the ambiguity
(multivalueness):

σH,E(u, 0) ̸= σH,E(u, 2π). (4.26)
This limits our ability to discuss global geometry. Because of this reason, it seems
plausible to apply this transformation only on the Beltrami pseudosphere, see the
fig. (3.3), and the Dini surface, see the fig. (3.5).

Notice that there is another straighforward way how to obtain the same re-
sult (4.24) especially for the spacetime associated to the Beltrami pseudosphere
IR × M2

B. We start with its spacetime interval:

ds2
B = dt2 − du2 − c2e2u/rdv2 = dzdw − c2 1

ew/re−z/r
dv2, (4.27)

where we used z ≡ t+ u, w ≡ t− u. Applying z ≡ −r ln(p/r), w ≡ r ln(q/r), the
line element (4.27) becomes:

ds2
B = r2

pq

[
−dpdq − d (cv)2

]
. (4.28)

Finally, p ≡ Y − T , q ≡ Y + T , X ≡ cv leads to:

ds2
B = r2

Y 2 − T 2

(
dT 2 − dX2 − dY 2

)
, (4.29)

which makes the conformal factor evident:

ΣB(T, Y ) = −1
2 ln Y

2 − T 2

r2 , (4.30a)

ΣB(u) = u

r
. (4.30b)

Then, the coordinates transformation from (T,X, Y ) to (t, u, v) is:

T = re−u/r sinh t

r
, Y = re−u/r cosh t

r
, X = cv. (4.31)

Obviously, such Σ differs from the one in (4.3). This will be found by the explicit
coordinate transformation in what follows.

2nd Attempt

Here, we would like to find the explicit coordinate transformation from (t, x̃, ỹ) to
(T,X, Y ), with the global conformal factor ΣK<0 in (2.26). We shall start with
one particular example, the spacetime associated to the Hyperbolic pseudosphere,
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IR × M2
H , and treat it similarly as we did IR × M2

B above. We shall discover that
the same procedure leads to the conformal factor we are looking for. Then we
shall find the generalization for all Lobachevsky surfaces.

The spacetime interval of IR × MH
2 is:

ds2
H = dt2 − du2 − c2 cosh2 u

r
dv2 = dzdw − c2

4ez/rew/r

(
ez/r + ew/r

)2
dv2 (4.32)

where z ≡ t+u, w ≡ t−u. The next substitution is: z ≡ r ln(p/r), w = r ln(q/r),
from which follows:

ds2
H = r2

pq

[
dpdq − 1

4 (p+ q)2 d
(
cv

r

)2
]
. (4.33)

Applying p ≡ T̃ +XH , q ≡ T̃ −XH , θ ≡ cv/r, the previous result can be written
as:

ds2
H = r2

T̃ 2 −X2
H

[
dT̃ 2 − dX2

H − T̃ 2dθ2
]
. (4.34)

Finally, we apply TH ≡ T̃ cosh θ, YH ≡ T̃ sinh θ and obtain:

ds2 = r2

T 2
H −X2

H − Y 2
H

(
dT 2

H − dX2
H − dY 2

H

)
(4.35)

which gives for the conformal factor:

ΣH(TH , XH , YH) = −1
2 ln T

2
H −X2

H − Y 2
H

r2 , (4.36a)

ΣH(t) = − t

r
. (4.36b)

The final coordinate transformation is:

TH = ret/r cosh u
r

cosh cv
r
, YH = ret/r cosh u

r
sinh cv

r
, XH = ret/r sinh u

r
.

(4.37)
This can be generalized to all Lobachevsky surfaces in the straighforward way.

Let us remind isothermal coordinates corresponding to the Hyperbolic pseudo-
sphere (3.29):

x̃H = ecv/r tanh u
r
, ỹH = ecv/r 1

cosh u
r

, (4.38)

where isothermal coordinates are dimensionless.
When we replace (u, v), denoting here the coordinates covering the Hyperbolic

pseudosphere, by (x̃H , ỹH) in (4.37), using (4.38), we obtain:

TH = ret/r x̃
2
H + ỹ2

H + 1
2ỹH

, YH = ret/r x̃
2
H + ỹ2

H − 1
2ỹH

, XH = ret/r x̃H

ỹH

, (4.39)

Then the spacetime interval ds2
H can be written in the following forms:

e2ΣH
(
dT 2

H − dX2
H − dY 2

H

)
= dt2 − du2 − c2 cosh2 u

r
dv2 = dt2 − r2

ỹ2
H

(
dx̃2

H + dỹ2
H

)
.

(4.40)
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This can be generalized to all Lobachevsky surfaces in very natural way. It is
simple to consider (or show directly) that:

T = ret/r x̃
2 + ỹ2 + 1

2ỹ , Y = ret/r x̃
2 + ỹ2 − 1

2ỹ , X = ret/r x̃

ỹ
, (4.41)

leads to the following transformation of the spacetime interval:

e2ΣK<0
(
dT 2 − dX2 − dY 2

)
= dt2 − r2

ỹ2

(
dx̃2 + dỹ2

)
, (4.42)

with the conformal factor same as (4.3) and (4.36):

ΣK<0(T,X, Y ) = −1
2 ln T

2 −X2 − Y 2

r2 , (4.43a)

ΣK<0(t) = − t

r
. (4.43b)

This conformal factor (4.43) is properly defined in the sense that its value does
not change replacing v = 0 → v = 2π.

Finally, let us state that we can find the global isothermal coordinates for the
spacetime associated to the Elliptic pseudosphere, IR × M2

E, by a direct calcula-
tion, similar to what we did for the Beltrami and the Hyperbolic pseudospheres
above, see (4.27) and (4.32). This procedure leads to this parametrization:

T = ret/r cosh u
r
, X = ret/r sinh u

r
cos cv

r
, Y = ret/r sinh u

r
sin cv

r
(4.44)

and the same conformal factor as (4.43):

ΣE(T,X, Y ) = −1
2 ln T

2 −X2 − Y 2

r2 , (4.45a)

ΣE(t) = − t

r
. (4.45b)

Comparing (4.44) and (4.41), we can find the isothermal coordinates for the
Elliptic pseudosphere, as shown in (3.30) and below:

x̃ = r
sinh u

r
cos cv

r

cosh u
r

− sinh u
r

sin cv
r

, ỹ = r
1

cosh u
r

− sinh u
r

sin cv
r

. (4.46)

4.3 Coordinate transformations for K > 0
The problem to find Σ for K > 0 and (T,X, Y ) as function of (t, u, v), describing
the spacetime associated to the sphere, Bulge or Spindle surface, was stated
as an open, see e.g. [7]. However, we found that this issue has already been
solved by Penrose in the 1960s [13], and again more recently in [37]. To be more
precise, this global conformal factor ΣK>0 was not discussed there in the context
of (2+1)-dimensional spacetimes, or even IR × M2. The authors were working in
higher dimensions and focus on the compactification method or the mathematical
cosmology, respectively. But they found the coordinate transformation which
leads to this conformal factor.
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We start by rewriting the spacetime interval in the following form:

ds2
S = dt2 − du2 − c2 sin2 u

r
dv2 = dt2 − du2 − r2 sin2 u

r
dv̄2, (4.47)

where v̄ = cv/r. This looks like the spacetime interval corresponding to the
sphere.

Then we apply the following substitution:

T = r tan t+ u

2r + r tan t− u

2r , R = r tan t+ u

2r − r tan t− u

2r , (4.48)

which transformes the spacetime interval as:

ds2
S = dt2 − du2 − r2 sin2 u

r
dv2 = e2Σ(dT 2 − dR2 −R2dv2) (4.49)

and the global conformal factor is:

eΣ(t,u) = cos t+ u

2r cos t− u

2r = 1
2

(
cos t

r
+ cos u

r

)
. (4.50)

4.4 Coordinate transformations for K = 0
Finally, for completness, let us show the explicit coordinate transformation from
(t, x, y) to (T,X, Y ) [18]. The flat spacetime interval is:

ds2
flat = e2ΣK=0(dT 2 − dX2 − dY 2) = c4

(T −R)2(T +R)2

(
dT 2 − dR2 −R2dθ2

)
(4.51)

with X ≡ R cos θ, Y ≡ R sin θ. Defining u ≡ T −R, v ≡ T +R, we obtain:

ds2
flat = c2du

u2 c
2dv

v2 − c4

u2v2
(v − u)2

4 dθ2. (4.52)

Applying z ≡ −c2/u, w ≡ −c2/v we obtain:

ds2
flat = dzdw − 1

4(z − w)2dθ2. (4.53)

From the substitution t ≡ (z + w)/2, r ≡ (z − w)/2, the flatness of spacetime is
obvious:

ds2
flat = dt2 − dr2 − r2dθ2. (4.54)

Finally, we can apply x ≡ r cos θ and y ≡ r sin θ. Then coordinates transforma-
tion from (t, x, y) to (T,X, Y ) is:

T = −c2 t

t2 − x2 − y2 , X = −c2 x

t2 − x2 − y2 , Y = −c2 y

t2 − x2 − y2 . (4.55)
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5. Canonical transformations
In this chapter, we discuss the profound differences between the systems described
by quantum mechanics (QM) and those described by quantum field theory (QFT),
mostly referring to the following references: [38], [39] and [40]. The essential
difference lies in the number of degrees of freedom, which these systems have.
For instance, the harmonic oscillator described by one pair of annihilation and
creation operators (a, a†), or equivalently by a pair of canonical coordinates (q, p),
has one degree of freedom. On the other hand, an infinite number of degrees of
freedom is the case of QFT. We can consider a system described by a scalar field
ϕ, which is in fact a sum of infinite number of oscillators, hence the system is
described by (ak⃗, a

†
k⃗
), where k⃗ is the momentum:

ϕ(x) =
∫
dk⃗Nk⃗

(
ak⃗e

−ikx + a†
k⃗
eikx

)
, (5.1)

where Nk is the normalization, kx ≡ k0x0 − k⃗ · x⃗ is the scalar product of two
spacetime vectors: n-momentum vector kµ = (k0, k⃗) and n-position vector xµ =
(x0, x⃗), where k0 =

√
m2 + k⃗2. We considered the speed of light c ≡ 1. Notice

that we work in n-dimensional spacetimes, hence dk⃗ ≡ dn−1k.
This difference has far-reaching consequences, which we shall discuss for boson

systems, but the generalization for fermions is straightforward, e.g. [41].
In both QM and QFT, the annihilation and creation operators satisfy the

canonical commutation relations (CCRs):

[a, a] = 0 = [a†, a†], [a, a†] = 1, (5.2a)
[ak⃗, al⃗] = 0 = [a†

k⃗
, a†

l⃗
], [ak⃗, a

†
l⃗
] = δ(n−1)(k⃗ − l⃗), (5.2b)

where n denotes the dimension of the spacetime and we considered ℏ ≡ 1. The
defining property of a, as well as ak, is that it annihilates the vacuum state:

a|0⟩ = 0, (5.3a)
ak⃗|0⟩ = 0 ∀k⃗. (5.3b)

Let us denote the Fock space, the Hilbert space created from repeated use of the
operator a†, as H[a]:

H[a] =
{ ∞∑

i=0
cn|n⟩; |n⟩ = 1√

n!

(
a†
)n

|0⟩,
∞∑

i=0
|ci|2 < ∞

}
. (5.4)

The Fock space built from a†
k (∀k) will be denoted in the same way H[a].

At this point, the problem of many vacua pops up. We can do a transformation
of states and operators, through a unitary operator U(θ), on the Hilbert space1

H[a]:

a → α(θ) = U(θ)aU(θ)−1, (5.5a)
ak⃗ → αk⃗(θk⃗) = U(θ)ak⃗U(θ)−1, (5.5b)

1From now on, we shall very often mix the ”Fock” and ”Hilbert” space, although we shall
mean the same object.
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which preserves the structure of the CCRs, i.e.:

[α(θ), α†(θ)] = 1, (5.6a)
[αk⃗(θk⃗), α†

l⃗
(θl⃗)] = δ(n−1)(k⃗ − l⃗), (5.6b)

where θ, as well as θk⃗, is a complex parameter of the transformation. In the case
of QFT, U(θ) depends on θl⃗ for ∀l⃗. Such a transformation on the Hilbert space,
which preserves the structure of the CCRs, is called the canonical transformation
(CT).

One particular example of CT, which we shall study later, is as follows:

α(θ) = a+ θ, (5.7a)
αk⃗(θk⃗) = ak⃗ + θk⃗. (5.7b)

It is obvious that |0⟩ is not the vacuum state for α, or αk⃗(θk⃗):

α(θ)|0⟩ = θ|0⟩, (5.8a)
αk⃗(θk⃗)|0⟩ = θk⃗|0⟩. (5.8b)

We thus define a new vacuum state, denoted same for QM and QFT case, as:

α(θ)|0(θ)⟩ = 0, (5.9a)
αk⃗(θk⃗)|0(θ)⟩ = 0 ∀k⃗, (5.9b)

where the two vacua are connected via the operator U(θ) as:

|0(θ)⟩ = U(θ)|0⟩. (5.10)

Repeated application of the operator α†(θ), or α†
k⃗
(θk⃗) on |0(θ)⟩ creates a new

Fock space, which we denote H[α(θ)] for both QM and QFT. The Fock space
with θ = 0 corresponds to H[α(0)] = H[a], i.e. it is the same space.

A CT provides a new representation of the CCRs, which gives a rise to a new
vacuum state and in turn to a new Fock space. However, it turns out that there
is a dramatic difference between QM and QFT.

In QM the new Fock space H[α(θ)] is equivalent to H[a], because the CT is a
well-defined, proper unitary transformation, that we are free to perform. We say
that the Fock spaces are unitarily equivalent. From this follows that the choice
of the representation of the CCRs is purely a matter of convention and after the
CT we still work within the same Hilbert (physical) space, just with a different
basis. This unitarly equivalence between H[a] and H[α(θ)] is the content of the
famous Stone von Neumann theorem (see e.g. [42], [43], [44]) and we shall discuss
two examples.

On the other hand, the two Fock spaces H[a] and H[α(θ)] can be orthogonal
to each other in QFT. If the vacua |0⟩ and |0(θ)⟩ are such that:

⟨0|0(θ)⟩ = 0, (5.11)

the corresponding Fock spaces, built up from these vacua, are othogonal, too.
Then the Fock spaces are said to be unitarly inequivalent and the Stone von Neu-
mann theorem no longer applies. The Fock spaces then represent really different
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physical spaces [39].

In this chapter, we shall not discuss the problem of inequivalent representa-
tions of the CCRs in general, but rather discuss two simple examples: the boson
translation (or the Bogoliubov translation for coherent states, which we have al-
ready met, see (5.7a)) and the Bogoliubov transformation for two modes squeezed
states. There we shall become familiar with the concept of the unitarily inequiv-
alence of the Hilbert spaces and the relevant computational techniques, useful for
the following.

In what follows of this chapter, we discuss CTs for a classical system of finite
degrees of freedom: (qi, pi)n

i=1. Then we move to QM and QFT.
Althought what we discuss in this chapter is well known, it is useful to recollect

those facts here, as this will serve as basis for our when we shall discuss the
quantum Weyl transformation, that is, an example of a canonical transformation.

In the following we shall not use special symbols for operators (e.g., â, etc.),
as it will be clear from the context when a quantity is an operator, and when a
c-number function.

5.1 CT in classical mechanics
In this section, we briefly recall the concept of CT for a classical system de-
scribed by n independend coordinates (q1, . . . , qn) and n conjugated momenta
(p1, . . . , pn). The key role will be played by the Poisson brackets, invariant under
CTs.

Let us begin with Hamilton’s equations, describing the dynamics of the clas-
sical system:

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

, (5.12)

where i = 1, . . . , n and the dot above qi, pi denotes the time derivative. They can
be written in more compact way by introducing the new coordinates (ηi)2n

i=1 such
that:

(q1, . . . , qn, p1, . . . , pn) ≡ (η1, . . . , ηn, ηn+1, . . . , η2n). (5.13)
Then Hamilton’s equations become:

η̇i = Jij
∂H

∂ηj

, (5.14)

where Jij are the components of the symplectic matrix J :

J =
(

0n×n 1n×n

−1n×n 0n×n,

)
(5.15)

where 1n×n is the identity matrix with n rows and n columns, 0n×n is the n × n
zero matrix.

Consider a linear transformation from (ηi)2n
i=1 to (ξi)2n

i=1, with the matrix ele-
ments Mij = ∂ξi/∂ηj. Then the form of Hamilton’s equations is invariant under
a transformation with M satisfying:

J = MJMT . (5.16)
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Such a transformation is called a canonical transformation. Such transformations
form a group called the symplectic group. For two functions f(ηi), g(ηi), defined
on the phase space, the following expression is invariant under the CT:

Jij
∂f

∂ηi

∂g

∂ηj

= ∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

≡ {f, g}(q,p), (5.17)

where the Einstein sum convention is applied. The last expression is called the
Poisson bracket. Since it is independent from the choice of canonical variables,
we can suppress (q, p) and simply denote it by {f, g}.

It is easy to check that:

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij. (5.18)

The quantization formal procedure consists in:

q → q̂, p → p̂, {., .} → i[., .], (5.19)

where [Â, B̂] ≡ ÂB̂ − B̂Â, q̂ and p̂ are the position and momentum operators,
respectively. As announced, we shall omit all hats in what follows, because we
shall mainly deal with operators, so there will be no confusion. Notice that we
also set ℏ = 1.

So the CCRs are:

[qi, qj] = 0, [pi, pj] = 0, [qi, pj] = iδij, (5.20)

In straighforward analogy to classical mechanics, the CT for QM is such a trans-
formation on the Hilbert space which does leave the CCRs unchanged. Same
statement holds for QFT.

5.2 CT in QM and QFT
We shall now study CTs for two particular examples. In the first example, we
shall start with the computations within QM and then we recompute the same
problem within QFT. There we shall see the difference between QM and QFT.
In the second example, we shall start with the calculations already within QFT.

5.2.1 Boson translation
The system under consideration is described by one pair of (a, a†):

[a, a†] = 1, [a, a] = 0, [a†, a†] = 0, a|0⟩ = 0. (5.21)

The Hilbert space H[a] is built by repeated actions of a† on the vacuum state |0⟩:

H[a] =
{ ∞∑

i=0
cn|n⟩; |n⟩ = 1√

n!

(
a†
)n

|0⟩,
∞∑

i=0
|ci|2 < ∞

}
. (5.22)

Consider now:
a → α(θ) = a+ θ, (5.23)
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where θ is a complex parameter. This is an example of CT:

[α(θ), α†(θ)] = 1, [α(θ), α(θ)] = 0, [α†(θ), α†(θ)] = 0. (5.24)

This representation of the CCRs has a different vacuum, denoted |0(θ)⟩:

α(θ)|0(θ)⟩ = 0, α(θ)|0⟩ = θ|0⟩, (5.25)

from which follows:
a|0(θ)⟩ = −θ|0(θ)⟩. (5.26)

The Hilbert space generated by repeated action of α†(θ) on |0(θ)⟩ is denoted
H[α(θ)].

We shall assume that the transformation is mediated by the operator U such
that:

U(θ) = eiG(θ), (5.27a)
α(θ) = U(θ)αU(θ)−1, (5.27b)

where G(θ) = G(θ)† is a hermition operator, which we want to find.
(5.27b) can be rewritten, applying the Baker–Campbell–Hausdorff formula

[45]:

eXeY = eZ , Z = X+Y + 1
2 [X, Y ]+ 1

12 [X, [X, Y ]]− 1
12 [Y, [X, Y ]]+ . . . , (5.28)

as it follows:

eiG(θ)ae−iG(θ) = a+ [iG(θ), a] + 1
2! [iG(θ), [iG(θ), a]] + . . . ,

= a+ θ,
(5.29)

where the second row follows from (5.23). It is easy to find out:

[G(θ), a] = −iθ, (5.30)

from which follows:
G(θ) = −i

(
θ∗a− θa†

)
. (5.31)

The transformed vacuum then looks like this:

|0(θ)⟩ = e−θa†+θ∗a|0⟩ = e− 1
2 |θ|2e−θa†|0⟩, (5.32)

where we applied, coming from (5.28):

e−θa†+θ∗a = e− 1
2 |θ|2e−θa†

eθ∗a. (5.33)

The new ground state |0(θ)⟩ is a superposition of states with many a-particles,
since the scalar product ⟨n|0(θ)⟩ is non-zero for ∀n:

|0(θ)⟩ =
∑

n

|n⟩⟨n|0(θ)⟩, (5.34)

where {|n⟩}∞
n=0 is the base of H[a] and the identity operator, action on H[a], can

be written as:
1 =

∞∑
n=0

|n⟩⟨n|. (5.35)
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This can be done not only for the vacuum state |0(θ)⟩, but for all states of the
Fock space H[α(θ)]: any vector in H[α(θ)] is a superposition of vectors in H[a]
and vice versa. In this sense, these two Hilbert spaces are the same ([38]).

Let us denote the number operator of a-particles by:

N(a) ≡ a†a. (5.36)

Then it is straighforward to compute the number of a-particles in |0(θ)⟩:

⟨0(θ)|N(a)|0(θ)⟩ = e−|θ|2⟨0|e−θ∗aN(a)e−θa†|0⟩
= −θe−|θ|2⟨0|e−θ∗aa†e−θa†|0⟩
= |θ|2e−|θ|2⟨0|e−θ∗ae−θa†|0⟩
= |θ|2,

(5.37)

where we used:

N(a)e−θa† = e−θa†
N(a) − θa†e−θa†

, (5.38a)
e−θ∗aa† = a†e−θ∗a − θ∗e−θ∗a, (5.38b)

following from (5.21) and (5.36).

Now, we repeat the calculation for a quantum system with infinite number of
degrees of freedom. Now the CCRs include these:

[ak⃗, a
†
q⃗] = δ(n−1)(k⃗ − q⃗), [ak⃗, aq⃗] = 0, [a†

k⃗
, a†

q⃗] = 0, (5.39)

and the vacuum state is |0⟩:

αk⃗(θk⃗)|0⟩ = 0 ∀k⃗. (5.40)

The transformation for the mode k⃗ is:

ak⃗ → αk⃗(θk⃗) = ak⃗ + θk⃗, (5.41)

which is the CT:

[αk⃗(θk⃗), α†
q⃗(θq⃗)] = δ(n−1)(k⃗− q⃗), [αk⃗(θk⃗), αq⃗(θq⃗)] = 0, [α†

k⃗
(θk⃗), α†

q⃗(θq⃗)] = 0 (5.42)

and for all modes k⃗ we define the new vacuum state:

αk⃗(θk⃗)|0(θ)⟩ = 0. (5.43)

Following the same procedure as before we find this U :

U(θ) = eiG(θ), G(θ) = −i
∫
dk⃗
(
θ∗

k⃗
ak⃗ − θk⃗a

†
k⃗

)
, (5.44)

and the following vacuum:

|0(θ)⟩ = e− 1
2

∫
dk⃗|θ

k⃗
|2e

−
∫

dk⃗θ
k⃗

a†
k⃗ |0⟩. (5.45)
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If we denote the number of particle with a given momentum k⃗:

Nk⃗(a) = a†
k⃗
ak⃗, (5.46)

then the vacuum state |0(θ)⟩ has this number of a-particles:

⟨0(θ)|Nk⃗(a)|0(θ)⟩ = |θk⃗|2, (5.47)

so the total number of particles is:

N (a) =
∫
dk⃗|θk⃗|2. (5.48)

The integral in (5.45) and (5.48) depends on the function θk⃗. We restrict our
attention to the case in which the vacuum is invariant under the spatial transla-
tion, i.e. the function θk⃗ is the Fourier transform of a constant function. Then it
holds:

θk⃗ = θδ(n−1)(k⃗), (5.49)
from which follows: ∫

dk⃗|θk⃗|2 = δ(n−1)(0) = +∞, (5.50)

since we assume an infinite volume (otherwise, the vacuum would not be invariant
under translation symmetry/homogeneous condensation). Because of that we
obtain the following:

N (a) = +∞, (5.51a)

|0(θ)⟩ = e−∞|θ|2e
−
∫

dk⃗θ
k⃗

a†
k⃗ |0⟩. (5.51b)

Of course, the numerical factor in (5.51b) is zero. We shall comment that in what
follows, see (5.55).

Let us focus now on (5.51a). The infinite number of particles is actually no
surprise, since the vacuum is homogeneous condensation of a-particles and the
volume is infinite. Consider for a moment that the volume is finite, and only later
we make a limit: V → +∞. Then we can rewrite δ(0)(n−1) as:

δ(n−1)(0) = (2π)−(n−1)
∫
dx⃗eik⃗·x⃗|k⃗=0⃗= (2π)−(n−1)V, (5.52)

and define the density of particles as:

n(a) = N (a)
V

= (2π)−(n−1)|θ|2, (5.53)

which is finite and well defined for V → +∞.
Finally, let us discuss (5.51b). Because the numerical factor vanishes:

e−δ(n−1)(0)|θ|2 → 0, the projection of |0(θ)⟩ on the basis vectors:

|nk⟩ = 1√
nk!

(
a†

k

)n
|0⟩, (5.54)

of the Fock space H[α(θ)] is inevitably zero:

⟨nk|0(θ)⟩ = 0 ∀k⃗. (5.55)
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The transformed vacuum |0(θ)⟩ is orthogonal to the Fock space H[a], so cannot
be written as a superposition of vectors from H[a], as it was the case of QM
(see (5.34)). This shows us a crucial feature of QFT: the Hilbert spaces H[a],
H[α(θ)] are not equivalent, because no vector in one space can be written as a
superposition of vectors from another space. The spaces are orthogonal as can be
seen by computing:

⟨0|0(θ)⟩ = e− 1
2

∫
dk⃗|θ

k⃗
|2 = e−δ(n−1)(0) = 0. (5.56)

Let us now show how the CT (5.41) looks at the level of fields. Considering
the scalar field:

ϕ(x) =
∫
dk⃗Nk⃗

(
ak⃗e

−ikx + a†
k⃗
eikx

)
, (5.57)

the transformed field is:

ϕθ(x) =
∫
dk⃗Nk⃗

(
α(θk⃗)e−ikx + α†(θk⃗)eikx

)
, (5.58)

which can be rewritten as:

ϕθ(x) = ϕ(x) + f(x), (5.59)

where f(x) is a real function:

f(x) ≡
∫
dk⃗Nk⃗

(
θk⃗e

−ikx + θ∗
k⃗
eikx

)
. (5.60)

Moreover, the CT (5.59) can be generalized. Consider the following transfor-
mation:

ϕθ(x) = ϕ(x) + g(x), (5.61)
where g(x) is a function, which does not need to have its Fourier counterpart.

Finally, notice that it may look like the inequivalence of the Hilbert spaces is
caused by the infinite volume. This is actually not the right argument. Of course,
if we assume that the space is finite, then δ(n−1)(0) is finite, see (5.52), but that
would break the translation symmetry which we required. The inequivalence of
Hilbert spaces has its roots in the infinite number of degrees of freedom. [38].

For the discussion of the inequivalence of Hilbert spaces in condesed matter
(so finite) systems, or the role of defects (singularities) in the phase space, we
recommend the discussion in [38]. We shall open the issue regarding the defects
in the next chapter, where we shall discuss the quantum Weyl transformation.
Also, an interesting list of references can be found in [40] and in the recent paper
[16].

5.2.2 Bogoliubov transformation
We would like to introduce one more example of CT, where we become familiar
with a useful technique of computation of ⟨0|0(θ)⟩, using the functional derivative.

We consider a system described by two sets of ladder operators:

[ak⃗, a
†
l⃗
] = δ(n−1)(k⃗ − l⃗) = [bk⃗, b

†
l⃗
], (5.62)

and the vacuum |0⟩:
ak⃗|0⟩ = bk⃗|0⟩ = 0 ∀k⃗. (5.63)
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Let us recall that kµ = (k0, k⃗), E =
√
m2 + k⃗2, and similarly for l⃗. The associated

Hilbert space will be denoted as H[a, b].
Now, we consider the following transformation:

αk⃗(θk⃗) = ak⃗ cosh θk⃗ − b†
k⃗

sinh θk⃗, (5.64a)
βk⃗(θk⃗) = bk⃗ cosh θk⃗ − a†

k⃗
sinh θk⃗, (5.64b)

where θk⃗ is a real parameter. It is simple to show that this transformation is
canonical:

[αk⃗(θk⃗), α†
l⃗
(θl⃗)] = δ(n−1)(k⃗ − l⃗) = [βk⃗(θk⃗), β†

l⃗
(θl⃗)]. (5.65)

Neither αk⃗(θk⃗) or βk⃗(θk⃗) is an annihilation operator for |0⟩:

αk⃗(θk⃗)|0⟩ = − sinh θk⃗b
†
k⃗
|0⟩, βk⃗(θk⃗)|0⟩ = − sinh θk⃗a

†
k⃗
|0⟩. (5.66)

Therefore, we define a new ground state:

αk⃗(θk⃗)|0(θ)⟩ = βk⃗(θk⃗)|0(θ)⟩ = 0 ∀k⃗, (5.67)

with the corresponding new Hilbert space denoted as H[α(θ), β(θ)].
We wish to find the unitary operator:

U(θ) = eiG(θ), (5.68)

so that:

αk⃗(θk⃗) = U(θ)ak⃗U(θ)−1, (5.69a)
βk⃗(θk⃗) = U(θ)bk⃗U(θ)−1 (5.69b)

αk⃗(θk⃗) = eiG(θ)ak⃗e
−iG(θ) = ak⃗ +

[
iG(θ), ak⃗

]
+ 1

2!
[
iG(θ),

[
iG(θ), ak⃗

]]
+ . . .

= ak⃗ − θk⃗b
†
k⃗

+ 1
2!θ

2
k⃗
ak⃗ − . . . ,

(5.70)

βk⃗(θk⃗) = eiG(θ)bk⃗e
−iG(θ) = bk⃗ +

[
iG(θ), bk⃗

]
+ 1

2!
[
iG(θ),

[
iG(θ), bk⃗

]]
+ . . .

= bk⃗ − θk⃗a
†
k⃗

+ 1
2!θ

2
k⃗
bk⃗ − . . . .

(5.71)

From the following observation:[
iG(θ), ak⃗

]
= −θk⃗b

†
k⃗
,
[
iG(θ), bk⃗

]
= −θk⃗a

†
k⃗
, (5.72)

we simply obtain the generator G ≡ G(θ):

G(θ) = −i
∫
d⃗lθl⃗

(
a†

l⃗
b†

l⃗
− bl⃗al⃗

)
. (5.73)

The new ground state is then:

|0(θ)⟩ = U(θ)|0⟩ = eiG(θ)|0⟩. (5.74)
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The computation of (5.74) is more demanding and tricky than (5.45). We
start by computing the scalar product ⟨0|0(θ)⟩:

f(θ) ≡ ⟨0|0(θ)⟩ = ⟨0|e
∫

d⃗lθl(a†
l
b†

l
−blal)|0⟩. (5.75)

Then we apply the functional derivative in the direction ϵδ(n−1)(k⃗ − l⃗):

δ

δθ
f(θ) ≡ lim

ϵ→0

1
ϵ

(f(θ + ϵδ) − f(θ)) = ⟨0|U
(
a†

kb
†
k − bkak

)
|0⟩ = ⟨0|Ua†

kb
†
k|0⟩

= ⟨0|
(
a†

kb
†
k − bkak

)
U |0⟩ = −⟨0|bkakU |0⟩,

(5.76)

where we used a short-hand notation ϵδ ≡ ϵδ(n−1)(k⃗− l⃗). Because of the following
identity:

Ua†
kb

†
k =

(
a†

k cosh θk − bk sinh θk

) (
b†

k cosh θk − ak sinh θk

)
U, (5.77)

which can be derived simply, when we write:

Ua†
kb

†
k = Ua†

kU
−1Ub†

kU
−1U (5.78)

and apply (5.69) and (5.64), we can find from (5.76) the following equation:

δ

δθ
f(θ) = −δ(n−1)(0) tanh θkf(θ), (5.79)

whose solution is:

f(θ) = exp
(

−δ(n−1)(0)
∫
d⃗l ln cosh θl

)
. (5.80)

At this point, the inequivalence of the Hilbert spaces H[a, b] and H[α(θ), β(θ)]
is showing up: f(θ) = 0, since δ(n−1)(0) = +∞. This is the result we have been
looking for.

It remains to find the vacuum |(θ)⟩. This particular thing will not be of crucial
importance for our next discussion, so we shall not show the quite tricky step-
by-step procedure here. Instead of that, we recommend e.g. [39] and show the
result:

|0(θ)⟩ = exp
(

−δ(n−1)(0)
∫
d⃗l ln cosh θl

)
exp

(∫
dk⃗ tanh θka

†
kb

†
k

)
|0⟩. (5.81)
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6. Quantum Weyl transformation
In this chapter, we focus our attention on the Weyl transformation (WT) of
massless Dirac field (discussed in chapter 1) from a quantum perspective. We
shall refer to this as the quantum Weyl transformation (QWT). It will turn
out that the QWT is an example of CT, because the structure of the canoni-
cal anticommutation relations (CARs) is preserved:

{ψα(Q), πβ(P )}E.T. = iδαβδ
(n−1)(Q⃗− P⃗ ), (6.1a)

{ψΣα(Q), πΣβ(P )}E.T. = iδαβδ
(n−1)(Q⃗− P⃗ ), (6.1b)

and the other CARs are zero. We defined the anticommutator {A,B} ≡ AB+BA
for some operators A,B and E.T. means ”equal time”.

Let us add that we shall denote the Hilbert space, where ψ, π act, as H. The
Hilbert space, where the transformed fields ψΣ, πΣ act, will be denoted as HΣ.

We want to find the operator W , realizing the QWT:

ψΣα = WψαW
−1 = e− n−1

2 Σψα, (6.2)

and search for relation of H with HΣ. We shall focus on the computation of
⟨0|W |0⟩, as we did in chapter 5.

We shall see that the operator W depends on the function Σ, so the properties
of the space-time background are imprinted there. Then it is natural to ask if the
space(time) singularities, including the singular behaviour of Σ, can be a source
of singularities in W . If so, they might cause the inequivalence of the Hilbert
spaces associated to these spacetimes (giving a new type of Weyl anomaly).

We open this chapter by proving that QWT is an example of CT. Then we
find the operator W , discuss its nature and focus on computation of the scalar
product ⟨0|W |0⟩.

6.1 Canonicity of the QWT
Let us write the diffeomorphic invariant action for the Weyl transformed Dirac
field (see (1.6), (1.24)):

A[gµν , ψΣ,∇µψΣ] ≡ i
∫
dnx

√
−gψ̄Σ(x)γµ∇µψΣ(x), (6.3)

whose Lagrangian is:
LΣ ≡ iψ̄Σγ

µ∇µψΣ. (6.4)

The conjugated momentum of the field πΣ is:

πΣα ≡ δA

δψΣα

= i
√

−gψ̄Σβγ
0
βα, (6.5)

where α, β are spin indices and the underlined index denotes the Einstein index:

γ0 ≡ γae0
a = γae−Σδ0

a = e−Σγ0. (6.6)
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We write the momentum (6.5) as:

πΣα = ie(n−1)Σψ†
Σα = ie

n−1
2 Σψ†

α = e
n−1

2 Σπα. (6.7)

After the quantization, the CARs for the non-transformed field and conjugated
momentum are:

{ψα(Q), ψβ(P )}E.T. = 0, (6.8a)
{πα(Q), πβ(P )}E.T. = 0, (6.8b)
{ψα(Q), πβ(P )}E.T. = iδαβδ

(n−1)(Q⃗− P⃗ ), (6.8c)

where Qµ ≡ (Q0, Q⃗), P µ ≡ (P 0, P⃗ ) are flat spacetime coordinates, E.T. means
”equal time”, so Q0 = P 0. Let us recall that the WT is not a coordinate trans-
formation, so both flat and curved spacetimes are described by same coordinates.
It means that Qµ ≡ (Q0, Q⃗) is a coordinate point, which denotes a point (event)
on flat as well as curved spacetime.

The Weyl transformed field and conjugated momentum are:

ψΣα = e− n−1
2 Σψα, (6.9a)

πΣα = e
n−1

2 Σπα, (6.9b)

which preserves the structure of the CARs:

{ψΣα(Q), ψΣβ(P )}E.T. = 0, (6.10a)
{πΣα(Q), πΣβ(P )}E.T. = 0, (6.10b)
{ψΣα(Q), πΣβ(P )}E.T. = iδαβδ

(n−1)(Q⃗− P⃗ ), (6.10c)

where in (6.10c) we simplified the right hand side as:

e− n−1
2 (Σ(Q)−Σ(P ))δ(n−1)(Q⃗− P⃗ ) ≡ δ(n−1)(Q⃗− P⃗ ), (6.11)

where we used the properties of δ-function. It means that both sides of (6.11) are
zero when Q⃗ ̸= P⃗ and are the same when Q⃗ = P⃗ . This confirm that the QWT is
CT.

6.2 The operator W
Now we wish to find an operator W such that:

ψΣα = WψαW
−1. (6.12)

If we assume:
W ≡ eB, (6.13)

then the previous equation (6.12) can be rewritten as:

eBψαe
−B = e− n−1

2 Σψα. (6.14)

The left hand side of (6.14) can be expanded as:

ψα + [B,ψα] + 1
2! [B, [B,ψα]] + . . . , (6.15)
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while the Taylor series for the right hand side of (6.14) is:

ψα − n− 1
2 Σψα + 1

2!

(
n− 1

2

)2
Σ2ψα + . . . . (6.16)

Comparing both sides, we obtain this simple relation:

[B,ψα] = −n− 1
2 Σψα. (6.17)

Before we embark to find B, let us explain why it is difficult to define W as a
unitary operator.

If W is unitary, then W † = W−1 and

ψΣα = WψαW
−1, (6.18a)

ψ†
Σα = Wψ†

αW
−1. (6.18b)

From the following CARs:

{ψα(Q), ψ†
β(P )}E.T. = δαβδ

(n−1)(Q⃗− P⃗ ), (6.19)

and applying (6.18), we obtain:

{ψΣα(P ), ψ†
Σβ(Q)}E.T. = δαβδ

(n−1)(Q⃗− P⃗ ), (6.20)

and similarly for the other CARs.
However, Σ is a real function, so it holds:

ψΣα = e− n−1
2 Σψα, (6.21a)

ψ†
Σα = e− n−1

2 Σψ†
α. (6.21b)

Combining (6.19) and (6.21), we obtain:

{ψΣα(Q), ψ†
Σβ(P )}E.T. = e− n−1

2 (Σ(Q)+Σ(P ))δαβδ
(n−1)(Q⃗− P⃗ )

≡ e−(n−1)Σ(P )δαβδ
(n−1)(Q⃗− P⃗ ),

(6.22)

where we used the properties of δ-function in the second row of (6.22). Compar-
ing (6.22) and (6.19), we find that they are in conflict.

In QFT operators which implement a symmetry are either unitary or anti-
unitary [5]. Nonetheless, given the real nature of the Weyl transformation (as
opposed to the complex nature of a standard gauge transformation ψ′ = eiαψ), the
simplest solution to the conflict between (6.22) and (6.19) is to relax the request
for unitarity in favor of hermiticity. On the one hand, this will make less easy to
put such a transformation in direct contact with what customarily considered a
quantum symmetry. On the other hand, though, it will be a legitimate procedure
that will generate the Weyl transformation at a quantum level. Furthermore, this
will make possible to link singularities of the conformal factor to singular/irregular
behaviors of the transformation, which is a crucial point of our work.
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For W hermitian, it follows that:

ψ†
Σα = W−1ψ†

αW. (6.23)

With this in hands, let us start again with (6.19) and apply W from the left and
W−1 from the right hand side. Then we can write:[

Wψα(Q)W−1
]
W 2

[
W−1ψ†

β(P )W
] (
W−1

)2

+W 2
[
W−1ψ†

β(P )W
] (
W−1

)2 [
Wψα(Q)W−1

]
= δαβδ

(n−1)(Q⃗− P⃗ ).
(6.24)

This can be rewritten in a more compact form:

{ψΣα(Q),W 2ψ†
Σβ(P )

(
W−1

)2
}E.T. = δαβδ

(n−1)(Q⃗− P⃗ ). (6.25)

We compare (6.25) with (6.22) and find that it should hold:

W 2ψ†
Σβ(P )

(
W−1

)2
= e(n−1)Σ(P )ψ†

Σβ(P ). (6.26)

This can be easily proved:

W 2ψ†
Σβ

(
W−1

)2
= Wψ†

βW
−1 = eBψ†

βe
−B = ψ†

β + [B,ψ†
β] + . . .

= ψ†
β + n− 1

2 Σψ†
β + · · · = e

n−1
2 Σψ†

β = e(n−1)Σψ†
Σβ,

(6.27)

where we applied (see also (6.17)):

[B,ψ†
α] = n− 1

2 Σψ†
α. (6.28)

Now we multiply (6.26) by the imaginary unit i:

{ψΣα(Q), iW 2ψ†
Σβ(P )

(
W−1

)2
}E.T. = iδαβδ

(n−1)(Q⃗− P⃗ ), (6.29)

and compare it with (6.10c). This leads to the following question:

πΣβ(P ) ?= iW 2ψ†
Σβ(P )

(
W−1

)2
. (6.30)

In (6.27) we found:

W 2ψ†
Σβ(P )

(
W−1

)2
= e

n−1
2 Σ(P )ψ†

β(P ), (6.31)

so our question (6.30) can be formulated as:

πΣβ(P ) ?= iW 2ψ†
Σβ(P )

(
W−1

)2
= e

n−1
2 Σ(P )iψ†

β(P ) = e
n−1

2 Σ(P )πβ(P ), (6.32)

which coincides with (6.9b). It seems that W as a hermition operator works well.
Let us add that it becomes clear from our previous computations that the

following two relations must hold simultaneously:

e−B(Σ)ψ†
αe

B(Σ) = e− n−1
2 Σψ†

α, (6.33a)
eB(Σ)ψ†

αe
−B(Σ) = e

n−1
2 Σψ†

α, (6.33b)
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where (6.33a) follows from (6.23) and (6.21b), (6.33b) follows from (6.27). There-
fore, it must apply:

B(−Σ) = −B(Σ). (6.34)

Let us remind now the conclusions of the previous chapter. We could see for the
BT that the operator U is unitary. Its singular behaviour, rooted in an infinite
number of degrees of freedom, is the reason for orthogonality of Hilbert spaces.
We said about the CCRs that they are unitarily inequivalent.

However, the operator W that implements the quantum WT is quite peculiar.
In the first place, this operator seems to be hermitian, rather than unitary. More-
over, once we show that the operator W is given by the function Σ, the question
arises whether such operator can be singular due to the space-time singularities
(including the singularities of the function Σ). If so, the inequivalence of Hilbert
spaces might have roots in singularities of classical nature.

Let us now look for an explicit expression of the operator W . Let us recall
the equation which the operator B must satisfy (6.17):

[B,ψα(Q)] = −n− 1
2 Σ(Q)ψα(Q). (6.35)

We also remind a useful commutation relation which applies for T ≡ Q0 = P0:

[ψ†
β(P )ψβ(P ), ψα(Q)] = −δ(n−1)(P⃗ − Q⃗)ψα(P ), (6.36)

where we applied the Einstein summation convention on β.
Finally, the following Ansatz comes naturally:

B(T,Σ) ≡ n− 1
2

∫
dP⃗Σ(T, P⃗ )ψ†

β(T, P⃗ )ψβ(T, P⃗ ), (6.37)

where P⃗ is symbol for spatial coordinates, e.g. for n = 3: P⃗ ≡ (X, Y ). Note
that such Ansatz is in good agreement with (6.34). Let us check that this Ansatz
works:

[B(T,Σ), ψα(Q)] ≡ [B(T,Σ), ψα(T, Q⃗)]

= n− 1
2

∫
dP⃗Σ(T, P⃗ )[ψ†

β(T, P⃗ )ψβ(T, P⃗ ), ψα(T, Q⃗)]

= −n− 1
2

∫
dP⃗Σ(T, P⃗ )δ(n−1)(P⃗ − Q⃗)ψα(T, P⃗ )

= −n− 1
2 Σ(T, Q⃗)ψα(T, Q⃗)

≡ −n− 1
2 Σ(Q)ψα(Q),

(6.38)

where we applied (6.36).
Let us notice that the operator W explicitly depends on time: W (T,Σ), and

the QWT works when all the operators are given at the same time T :

ψΣα(T, Q⃗) = W (T,Σ)ψα(T, Q⃗)W (T )−1 = eB(T,Σ)ψα(T, Q⃗)e−B(T,Σ)

= e− n−1
2 Σ(T,Q⃗)ψα(T, Q⃗).

(6.39)
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This must be because the commutation relation (6.36) holds at equal time: T ≡
P0 = Q0. This is an interesting outcome which should be understand, too.

Let us add that we shall usually denote the operator B(T,Σ) as:

B = n− 1
2

∫
dP⃗Σ(P )ψ†

β(P )ψβ(P ), (6.40)

where P µ ≡ (T, P⃗ ). Similarly, we shall usually denote W (T,Σ) as W . Also, let
us emphasise that we shall always work with operators at the same time T , unless
we say otherwise.

6.3 The transformed vacuum W |0⟩
We shall denote the (unnormalized) transformed vacuum as:

|0(Σ)⟩ ≡ W (T,Σ)|0⟩ (6.41)

and the projection of |0(Σ)⟩ on |0⟩ as:

f(Σ) ≡ ⟨0|0(Σ)⟩ ≡ ⟨0|W (T,Σ)|0⟩. (6.42)

Our aim is to explicitly calculate f(Σ) ≡ ⟨0|0(Σ)⟩, as we did for the BT, see the
section (5.2). There we studied the BT on two examples and used two computa-
tional techniques to obtain f(θ):

• 1st approach: expand the operator eB in a power series, see (5.56);

• 2nd approach: apply the functional derivative, see (5.80).

Before we proceed, we write the Dirac field as a linear combination of the ladder
operators:

ψβ(Q) =
∫
dk⃗Nk⃗

∑
s

(
b(k⃗, s)uβ(k⃗, s)e−ikQ + d†(k⃗, s)vβ(k⃗, s)eikQ

)
, (6.43)

where k⃗ is momentum, s is spin, uβ(k⃗, s), vβ(k⃗, s) are spinors, b(k⃗, s) is the par-
ticle annihilation operator, d(k⃗, s) is the antiparticle annihilation operator, the
hermitian conjugate operators are the creation operators. They satisfy the CARs:

{b(k⃗, s), b(⃗l, s′)†} = δ(n−1)(k⃗ − l⃗)δss′ , {d(k⃗, s), d(⃗l, s′)†} = δ(n−1)(k⃗ − l⃗)δss′ (6.44)

and the other CARs are zero.

6.3.1 The 1st approach of computation
Because the operator B has quite complicated structure (6.40), the 1st approach
gives the complicated results:

f(Σ) ≡ ⟨0|W |0⟩ = ⟨0|eB|0⟩ = 1+ ⟨0|B|0⟩+ 1
2!⟨0|B2|0⟩+ 1

3!⟨0|B3|0⟩+ . . . . (6.45)
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Defining the following two matrices:

Cαβ(−P +Q) ≡
∫
dk⃗N2

k⃗

∑
s

v†
α(k⃗, s)vβ(k⃗, s)eik(−P +Q) (6.46a)

=
∫
dk⃗N2

k⃗

∑
s

v†
α(k⃗, s)vβ(k⃗, s)e−ik⃗(−P⃗ +Q⃗), (6.46b)

C̄αβ(−P +Q) ≡
∫
dk⃗N2

k⃗

∑
s

u†
α(k⃗, s)uβ(k⃗, s)e−ik(−P +Q) (6.46c)

=
∫
dk⃗N2

k⃗

∑
s

u†
α(k⃗, s)uβ(k⃗, s)eik⃗(−P⃗ +Q⃗), (6.46d)

where Qµ = (T, Q⃗), P µ = (T, P⃗ ), kx ≡ k · x ≡ k0x0 − k⃗ · x⃗, we can express the
first three orders of B as:

⟨0|B|0⟩ = n− 1
2

∫
dP⃗Σ(P )TrC(0), (6.47a)

⟨0|B2|0⟩ =
(
n− 1

2

)2 ∫
dP⃗dL⃗Σ(P )Σ(L)

[
(TrC(0))2 + TrC(L− P )C̄(P − L)

]
,

(6.47b)

⟨0|B3|0⟩ =
(
n− 1

2

)3 ∫
dP⃗dL⃗dK⃗Σ(P )Σ(L)Σ(K)I(P,L,K), (6.47c)

where Tr denotes the trace of a matrix and I(P,L,K) stands for:

I(P,L,K) = (TrC(0))3 + TrC(0)TrC̄(P −K)C(K − P )
+ TrC(0)TrC̄(P − L)C(L− P ) + TrC(0)TrC̄(K − L)C(L−K)
− TrC̄(P − L)C(L−K)C(K − P )
+ TrC(−P + L)C̄(−L+K)C̄(−K + P ),

(6.48)

where P µ = (T, P⃗ ), Lµ = (T, L⃗), Kµ = (T, K⃗). The evaluation of higher order
terms is a demanding task. Therefore, it seems reasonable to use the 2nd approach.

6.3.2 The 2nd approach of computation
Let us recall f(Σ) and define f(Σ + ϵδ):

f(Σ) = ⟨0| exp
[
n− 1

2

∫
dP⃗Σ(P )ψ†

β(P )ψβ(P )
]

|0⟩, (6.49a)

f(Σ + ϵδ) ≡ ⟨0| exp
[
n− 1

2

∫
dP⃗

(
Σ(P ) + ϵδ(n−1)(P⃗ − Q⃗)

)
ψ†

β(P )ψβ(P )
]

|0⟩.
(6.49b)

Then the functional derivative of f(Σ) is:

δ

δΣf(Σ) ≡ lim
ϵ→0

f(Σ + ϵδ) − f(Σ)
ϵ

= n− 1
2 ⟨0|W (T,Σ)ψ†

β(Q)ψβ(Q)|0⟩, (6.50)

where P µ ≡ (T, Q⃗), Qµ ≡ (T, Q⃗). Also, we used the Einstein summation conven-
tion: repeated indices (here βs) are implicitly summed over.
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Strictly speaking, we should write δ
δΣf(Σ)(Q) instead of δ

δΣf(Σ), but we shall
ignore this in what follows.

In what follows, to ease the notation, we shall write, e.g., δ
δΣf(Σ) instead of

the more explicit expression δ
δΣf(Σ)(Q).

It seems useful to change the order of the operators in (6.50):

δ

δΣf(Σ) = n− 1
2 e

n−1
2 Σ(Q)⟨0|ψ†

β(Q)W (T,Σ)ψβ(Q)|0⟩, (6.51)

where we used:

W (T,Σ)ψ†
β(Q) = e

n−1
2 Σ(Q)ψ†

β(Q)W (T,Σ), (6.52)

because then only the antiparticle operators act nontrivially on the vacuum.
Finally, let us denote the vacuum expectation value (VEV) in (6.51) as the

trace of the matrix A(Q, T,Q):

TrA(Q, T,Q) ≡ Aββ(Q, T,Q) ≡ ⟨0|ψ†
β(Q)W (T )ψβ(Q)|0⟩. (6.53)

We can define the matrix, for general spacetime positions Qµ
1 = (Q0

1, Q⃗1),
Qµ

2 = (Q0
2, Q⃗2), as:

Aβγ(Q1, T,Q2) = ⟨0|ψ†
β(Q1)W (T )ψγ(Q2)|0⟩. (6.54)

If we succeed to find the matrix (6.54), we might have a good chance to compute
its trace and evaluate f(Σ), solving the equation:

δ

δΣf(Σ) = n− 1
2 e

n−1
2 Σ(Q)TrA(Q, T,Q). (6.55)

6.3.3 Computation of Aβγ(Q, T,Q)
We expand the Dirac field, see (6.43), and substitute into the equation (6.55).
We obtain this result:

Aβγ(Q1, T,Q2) = f(Σ)Cβγ(−Q1 +Q2)

+
∫
dk⃗d⃗lNk⃗Nl⃗

∑
s,s′

v†
β(k⃗, s)vγ (⃗l, s′)e−ikQ1eilQ2⟨0|d(k⃗, s)[W,d†(⃗l, s′)]|0⟩. (6.56)

Let us recall the matrix C(−Q1 +Q2):

Cβγ(−Q1 +Q2) =
∫
dk⃗N2

k⃗

∑
s

v†
β(k⃗, s)vγ(k⃗, s)eik(−Q1+Q2). (6.57)

We need to compute the commutator on the right hand side of (6.56).
To achieve this, we use the following well-known identity:

e−tG
[
O, etG

]
=
∫ t

0
dse−sG [O,G] esG, (6.58)

where O,G are some operators, t is a parameter. Notice that the identity (6.58)
is trivially satisfied for t = 0 and, if we differentiate both sides of (6.58) with
respect to t, we get the same expression e−tG[O,G]etG on both sides.
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Applying the identity (6.58) and set t = 1, we obtain:
[
W,d†(⃗l, s′)

]
= W

∫ 1

0
dse−sB[B, d†(⃗l, s′)]esB, (6.59)

where W = eB. Now, we must compute the commutator of B with d†(⃗l, s′). After
some calculations, we find:

[
B, d†(⃗l, s′)

]
= −n− 1

2

∫
dP⃗Σ(T, P⃗ )Nlv

†
α(⃗l, s′)e−ilPψα(P ), (6.60)

where P µ ≡ (T, P⃗ ). With (6.60) in hand, we can finally calculate (6.59). The
result of lengthy calculations is:[

W,d†(⃗l, s′)
]

= −Nlv
†
α(⃗l, s′)

∫
dP⃗

(
e

n−1
2 Σ(P ) − 1

)
e−ilPWψα(P ). (6.61)

After applying (6.61) in (6.56), we obtain a quite involved expression:

Aβγ(Q1, T,Q2) =f(Σ)Cβγ(−Q1 +Q2)

− f(Σ)
∫
dP⃗

(
e

n−1
2 Σ(P ) − 1

)
Cβα(−Q1 + P )Cαγ(−P +Q2)

+
∫
dk⃗d⃗lNk⃗N

2
l⃗

∑
s,s′

v†
β(k⃗, s)vγ (⃗l, s′)v†

α(⃗l, s′)
∫
dP⃗

(
e

n−1
2 Σ(P ) − 1

)
× eil(Q2−P )e−ikQ1⟨0|

[
W,d(k⃗, s)

]
ψα(P )|0⟩.

(6.62)

The commutator in (6.62) can be obtained from (6.61). The result of the com-
putation is:

A(Q1, T,Q2) = f(Σ)C(−Q1 +Q2)

− f(Σ)
∫
dP⃗

(
e

n−1
2 Σ(P ) − 1

)
C(−Q1 + P )C(−P +Q2)

+
∫
dP⃗dL⃗

(
e

n−1
2 Σ(P ) − 1

) (
e

n−1
2 Σ(Q) − 1

)
C(−Q1 + L)A(L, T, P )C(−P +Q2),

(6.63)

where Lµ ≡ (T, L⃗), P µ ≡ (T, P⃗ ).
Notice that the matrix A stands on the left hand side, A(Q1, T,Q2), as well

as on the right hand side, A(L, T, P ), of the equation (6.63). In order to find
A(Q1, T,Q2), we suggest to apply the procedure analogous to the Dyson series
[5], [46]: By repeatedly substituting A on the right side we get:

A(Q1, T,Q2) = f(Σ) [C(−Q1 +Q2) + E(Q1, T,Q2) − F (Q1, T,Q2)] , (6.64)

where we defined two new matrices E,F :

E(Q1, T,Q2) =
∞∑

k=1

∫
dP⃗1dP⃗2 . . . dP⃗2k

(
e

n−1
2 Σ(P1) − 1

) (
e

n−1
2 Σ(P2) − 1

)
. . .

×
(
e

n−1
2 Σ(P2k) − 1

)
C(−Q1 + P1)C(−P1 + P2) . . . C(−P2k +Q2),

(6.65)

56



F (Q1, T,Q2) =
∞∑

k=1

∫
dP⃗1dP⃗2 . . . dP⃗2k−1

(
e

n−1
2 Σ(P1) − 1

) (
e

n−1
2 Σ(P2) − 1

)
. . .

×
(
e

n−1
2 Σ(P2k−1) − 1

)
C(−Q1 + P1)C(−P1 + P2) . . . C(−P2k−1 +Q2),

(6.66)

where P µ
i ≡ (T, P⃗i).

The evaluation of (6.53) seems a demanding task. However, we have not yet
studied the matrix C in many details. If we found that C actully has a simple
form (for instance, like a unit matrix, multiplied by a c-number), it would lead
to a tractable result.

Before we get to that point, when we discuss if we can find a more tractable
form of the matrices C, C̄, let us refer the reader to appendix B, where we show
how ladder operators transform under the ”hermitian tranformation” W , and
appendix C, where we show how to derive ψΣα from ψα, using the results of the
appendix B.

6.3.4 How the matrices C(−P +Q), C̄(−P +Q) look like
We found in the appendix C that sum of both matrices is:

C̄αβ(−P +Q) + Cαβ(−P +Q) = δαβδ
(n−1)(Q⃗− P⃗ ). (6.67)

Although the equation (6.67) does not determine what each of the matrices is,
we may make the following Ansatz :

C̄αβ(−P +Q) = Cαβ(−P +Q) = 1
2δαβδ

(n−1)(Q⃗− P⃗ ). (6.68)

If this Ansatz is right, then (6.65) and (6.66) would be much simplified. Let us
discuss this Ansatz in more details.

We recall the well known completness relations:∑
s

u(k⃗, s)ū(k⃗, s) = /k +m,
∑

s

v(k⃗, s)v̄(k⃗, s) = /k −m. (6.69)

If m = 0, we can rewrite (6.69) as:∑
s

uα(k⃗, s)u†
δ(k⃗, s)γ0

δβ = kaγ
a
αβ,

∑
s

vα(k⃗, s)v†
δ(k⃗, s)γ0

δβ = kaγ
a
αβ, (6.70)

and substract both equations:∑
s

[
uα(k⃗, s)u†

δ(k⃗, s) − vα(k⃗, s)v†
δ(k⃗, s)

]
γ0

δβ = 0. (6.71)

Considering: ∑
s

u†
δ(k⃗, s)uα(k⃗, s) =

∑
s

v†
δ(k⃗, s)vα(k⃗, s), (6.72)

we can rewrite the matrix C̄αβ(−P +Q):

C̄αβ(−P +Q) ≡
∫
dk⃗N2

k⃗

∑
s

u†
α(k⃗, s)uβ(k⃗, s)e−ik(−P +Q)

=
∫
dk⃗N2

k⃗

∑
s

u†
α(k⃗, s)uβ(k⃗, s)eik⃗(−P⃗ +Q⃗),

(6.73)
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in the following form:

C̄αβ(−P +Q) =
∫
dk⃗N2

k⃗

∑
s

v†
α(−k⃗, s)vβ(−k⃗, s)e−ik⃗(−P⃗ +Q⃗). (6.74)

We recall the matrix Cαβ(−P +Q):

Cαβ(−P +Q) ≡
∫
dk⃗N2

k⃗

∑
s

v†
α(k⃗, s)vβ(k⃗, s)eik(−P +Q)

=
∫
dk⃗N2

k⃗

∑
s

v†
α(k⃗, s)vβ(k⃗, s)e−ik⃗(−P⃗ +Q⃗),

(6.75)

and compare (6.75) with (6.74). If the following equation applied:∑
s

v†
δ(k⃗, s)vα(k⃗, s) =

∑
s

v†
δ(−k⃗, s)vα(−k⃗, s), (6.76)

it would confirm our Ansatz (6.68). However, we shall introduce one example
when (6.76) is not satisfied, which challenges our Ansatz.

We shall consider the following problem: n = d = 4, where n is the dimension
of the spacetime, d is the dimension of Dirac space. Also, we shall consider m ̸= 0
for beginning, but then we shall make the limit m → 0. The spinors v(k⃗, s) in
the Dirac representation are:

v
(
k⃗, s = −1

2

)
=
√
E +m

2m

⎛⎜⎜⎜⎝
σ⃗k⃗

E+m

(
0
1

)
0
1

⎞⎟⎟⎟⎠ , v
(
k⃗, s = 1

2

)
=
√
E +m

2m

⎛⎜⎜⎜⎝
σ⃗k⃗

E+m

(
1
0

)
1
0

⎞⎟⎟⎟⎠ ,
(6.77)

where σ⃗ ≡ (σx, σy, σz) are the Pauli matrices. Let us assume that k⃗ is oriented
along the z-axis. Then it holds, for small m (or large k⃗):∑

s

v†
α(kz, s)vβ(kz, s) ∝

(
12×2 σz

σz 12×2,

)
, (6.78a)

∑
s

v†
α(−kz, s)vβ(−kz, s) ∝

(
12×2 −σz

−σz 12×2

)
, (6.78b)

which suggests that (6.76) does not apply, at least not in general. We take this as
the argument why we should figure out a new Ansatz, and not settle for (6.68).

We want to modify our first Ansatz (6.68) to include non-diagonal terms. The
following observation, based on (6.78), gives us a hint what we should/could take
into account. If we denote Ẽ as 4 × 4 matrix such that:

Ẽ ≡
(

0 σz

σz 0,

)
, (6.79)

then it holds:
TrẼ = 0, Ẽ2 = 14×4, (14×4 + Ẽ)2 = 2

(
14×4 + Ẽ

)
. (6.80)

We shall build our Ansatz on extrapolation of these properties. We suggest
the following new Ansatz :

C̄αβ(−P +Q) = 1
2 (δαβ − Eαβ) δ(n−1)(Q⃗− P⃗ ), (6.81a)

Cαβ(−P +Q) = 1
2 (δαβ + Eαβ) δ(n−1)(Q⃗− P⃗ ), (6.81b)
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where the matrix E satisfies TrE = 0 and E2 = 1. This implies:

(1 + E)n = 2n−1 (1 + E) . (6.82)

We shall see that this Ansatz gives surprisingly simple outcome.

6.3.5 Calculation of ⟨0|W |0⟩ using the Ansatz for (6.81)
Our goal is to compute the trace of:

A(Q, T,Q) = f(Σ) [C(0) + E(Q, T,Q) − F (Q, T,Q)] . (6.83)

With (6.81) in hands, we can compute E(Q, T,Q), F (Q, T,Q):

E(Q, T,Q) = δ(n−1)(0)
2

∞∑
k=1

(
e

n−1
2 Σ(Q) − 1

)2k
(1 + E) ,

F (Q, T,Q) = δ(n−1)(0)
2

∞∑
k=1

(
e

n−1
2 Σ(Q) − 1

)2k−1
(1 + E) ,

(6.84)

which leads to this result:

A(Q, T,Q) = f(Σ)δ
(n−1)(0)

2

[
1 +

(
1 − 1

y

) ∞∑
k=1

y2k

]
(1 + E) , (6.85)

where we defined y such that:

y ≡ e
n−1

2 Σ(Q) − 1. (6.86)

If the function Σ is such that:

Σ(Q) ∈
(

−∞,
2

n− 1 ln 2
)
, (6.87)

the geometric sum in (6.85) converges and leads to:

A(Q, T,Q) = f(Σ)δ
(n−1)(0)

2 e− n−1
2 Σ(Q), (6.88a)

TrA(Q, T,Q) = f(Σ)δ
(n−1)(0)

2 de− n−1
2 Σ(Q). (6.88b)

(6.88c)

Putting (6.88b) into (6.51), we obtain:

δ

δΣf(Σ) = f(Σ)n− 1
2 d

δ(n−1)(0)
2 , (6.89)

where d is the dimension of the Dirac space. Solving (6.89), we find f(Σ):

f(Σ) = exp
(
n− 1

2 d
δ(n−1)(0)

2

∫
dP⃗Σ(T, P⃗ )

)

= exp
(
n− 1

2 TrC(0)
∫
dP⃗Σ(T, P⃗ )

)
.

(6.90)
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This is the simplest result we could get.
We would also like to compare this result, obtained by the 2nd approach, 6.3.2,

with the 1st approach, 6.3.1, how to compute f(Σ). Let us remind the what the
1st approach gives:

f(Σ) = ⟨0|U |0⟩ = ⟨0|eB|0⟩ = 1 + ⟨0|B|0⟩ + 1
2!⟨0|B2|0⟩ + 1

3!⟨0|B3|0⟩ + . . . . (6.91)

As the calculation of higher order terms becomes more and more demanding, we
focus only on the first three terms which includes B. Direct calculation gives:

⟨0|B|0⟩ = n− 1
2

∫
dP⃗Σ(P )TrC(0), (6.92a)

⟨0|B2|0⟩ =
(
n− 1

2

)2 ∫
dP⃗dL⃗Σ(P )Σ(L)

[
(TrC(0))2 + TrC(L− P )C̄(P − L)

]
,

(6.92b)

⟨0|B3|0⟩ =
(
n− 1

2

)3 ∫
dP⃗dL⃗dK⃗Σ(P )Σ(L)Σ(K)I(P,L,K), (6.92c)

where

I(P,L,K) = (TrC(0))3 + TrC(0)TrC̄(P −K)C(K − P )
+ TrC(0)TrC̄(P − L)C(L− P ) + TrC(0)TrC̄(K − L)C(L−K)
− TrC̄(P − L)C(L−K)C(K − P )
+ TrC(−P + L)C̄(−L+K)C̄(−K + P ).

(6.93)

Applying (6.81), so CC̄ ∝ (1 + E) (1 − E) = (1 − E2) = 0, because E2 = 1, we
obtain:

⟨0|B|0⟩ = n− 1
2 d

δ(n−1)(0)
2

∫
dP⃗Σ(P ), (6.94a)

⟨0|B2|0⟩ =
(
n− 1

2 d
δ(n−1)(0)

2

∫
dP⃗Σ(P )

)2

= (⟨0|B|0⟩)2 , (6.94b)

⟨0|B3|0⟩ =
(
n− 1

2 d
δ(n−1)(0)

2

∫
dP⃗Σ(P )

)3

= (⟨0|B|0⟩)3 . (6.94c)

As we have shown above, to the third order of the Taylor series both proce-
dures coincide. This is a sign of that we performed our calculations correctly.
However, we should not take this as an argument that our Ansatz is right. Both
approaches should lead to the same Taylor series anyway.

This is the end of our calculations in this chapter. Let us add some comments
about them.

In standard QFT, we work with unitary operators Us, as we could see in (5.2).
The fact that the operator W is hermitian and depends explicitly on time T is
novelty and it would be interesting to examine the consequences thereof. Some
inspiration for further study can be found in this article [6], where the authors
had the first remarks on the QWT.
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Next, we proposed the Ansatz (6.81) for C, C̄, which significantly simplified
the calculation of (6.83). This was our main intention. We obtained (6.85) which
is simple enough to compute TrA(Q, T,Q). However, it contains a geometric
series which can diverge if Σ is not from a suitable range, see (6.87):

Σ(Q) ∈
(

−∞,
2

n− 1 ln 2
)
, (6.95)

Such a range can remind us the Beltrami pseudosphere 3.2:

σB(u) ∈
(

−∞, ln r
c

]
. (6.96)

Another work should be to examine this Ansatz and whether equations (6.95)
and (6.96) can be understood together to see the effect of singularities on the
convergence/divergence of the geometric series. This task seems to us now to be
quite challenging and it would take more time than we had for this thesis.
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7. Conclusions
In Introduction, we stated the general goal of this thesis, to investigate the Weyl
anomaly from a new perspective, and proposed a model which has the potential
to make our analysis simple and transparent. We considered the Weyl transfor-
mation of the Dirac massless field and the conformally flat metric, mapping the
dynamics of the field in a curved space into a flat space, since the transformation
is a symmetry of Dirac massless action.

In chapters 1 and 2, we discussed the model in details, investigating the Weyl
symmetry and conformally flat spacetimes.

In chapter 3 we studied the surfaces of constant Ricci curvature. We put
emphasis on description of their singularities and geometry. We were looking for
the coordinate transformations from (u, v) to (x̃, ỹ), while doing so we also found
the local conformal factors. We found, for the first time, the tractable isother-
mal coordinates and conformal factors for the Elliptic pseudosphere and the Dini
surface. Moreover, we added appendix A to this chapter where we described the
conical singularity.

In chapter 4 we studied the conformally flat spacetimes of the dimension
n = 3, which the surfaces of constant Ricci curvature produce (when we add flat
time to their line element). We have investigated the solutions Σs of the modified
Liouville equation of the first form and searched for the coordinate transforma-
tions between (T,X, Y ) and (t, x̃, ỹ). The results of both chapters 3 and 4 are
important in order to understand the quantum inequivalence we were investigat-
ing. These results are also relevant for further work in [18] and [7], for instance.

In chapter 5, we introduced the canonical transformations, the Bogoliubov
transformation, the concept of unitarity (in)equivalence of the CCRs and Fock
spaces. We discussed both QM and QFT systems.

In chapter 6 we introduced the operator W , implementing the Weyl transfor-
mation at the quantum level. To be a symmetry, this transformation should be
unitary as the quantum theory states. The main question we are addressing here
is whether the operator W is irregular, then the expected quantum symmetry
would be just formal and no matter how this operator is related to a symmetry
operator, this would be the case of violation of the quantum symmetry.

Given the real nature of the Weyl transformation, the simplest solution for
W is to relax the request for unitarity in favor of that of hermiticity. Although
not a standard choice, it is a fully legitimate procedure when considered as the
quantum procedure that generates the Weyl transformation. Of course it raises
questions on how such transformation is in direct contact with what is customarily
considered a unitary quantum symmetry. Nonetheless, this makes possible to link
the singularities of the conformal factor to singular (irregular) behaviors of the
transformation, which is the most crucial point of our work.

Under special considerations, we were able to see a point where this operator
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becomes singular due to the properties of the function Σ. This is still not the end
as our Ansatz for C (6.81) needs to be further investigated. After that we can
confront (6.95) with (6.96).

Let us add that this last chapter is supplemented with two technical appen-
dices B and C.
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A. Conical singularity
The cone is not a regular surface, because of its vertex, where no tangent space
is defined. Therefore the standard way how to compute the scalar curvature is
not applicable at this point. Here, we shall sketch one way how the concept of
curvature can be extended to cover conical singularities. The presented method
is based on the distribution theory and was in details described in [27]. We sketch
this procedure here.

A.1 Basic concepts of the Distribution theory
Let us remind necessary background of the distribution theory. We consider a
two-dimensional manifold S on which a local coordinate system (u, v) is defined.
Next we define a function ϕ ≡ ϕ(u, v) ∈ C∞ with compact support on S. This
is called the test-function. A continuous linear functional (distribution) F ∗ maps
the test-function ϕ into real numbers, (F ∗, ϕ) ∈ R, in the following way:

1. Linearity condition: for real numbers a1, a2 it holds:

(F ∗, a1ϕ1 + a2ϕ2) = a1(F ∗, ϕ1) + a2(F ∗, ϕ2), (A.1)

2. Continuity condition: if a sequence of test-functions ϕi, i = 1, . . . , n, tends
uniformaly to zero, then (F ∗, ϕi) tends to zero as well.

The distribution F ∗ is said to be regular if there exists a locally integrable
function F such that:

(F ∗, ϕ) =
∫

U
F (u, v)ϕ(u, v)√gdudv, (A.2)

where U ⊂ S is a compact domain, g is the determinant of the metric tensor
gij on S. If F ∗ is not expressable as an integral, then the distribution is called
singular.

The product of the coefficient α(x) ∈ C∞ with the distribution F∗ is the
distribution αF ∗, defined as:

(αF ∗, ϕ) = (F ∗, αϕ). (A.3)

Moreover, we can define the derivative of F ∗ as a functional δF/δu, which is
related to F ∗ in following way:

(
δF ∗

δu
, ϕ

)
= −

⎛⎝F ∗,
1

√
g

∂
(√

gϕ
)

∂u

⎞⎠ , (A.4)

where the √
g, 1√

g
must be C∞, otherwise we must find another coordinate system

where these functions are C∞.
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A.2 Generalized concept of curvature
Let us write the metric in the following form:

dl2 = E(u, v)du2 + F (u, v)dudv +G(u, v)dv2, (A.5)

where E,F,G are the coefficients of the first fundamental form [22].
Then one can compute the Ricci scalar in the same way as we did for (2.14).

Then the Ricci scalar can be obtained as:

R = 1
√
g

(
∂P

∂v
− ∂Q

∂u

)
, (A.6)

where P and Q are functions:

P = 1
√
g

(
∂F

∂u
− ∂E

∂v
− 1

2
F

E

∂E

∂u

)
,

Q = 1
√
g

(
∂G

∂u
− 1

2
F

E

∂E

∂v

)
, .

(A.7)

where g = EG− 1
4F

2.
The formula (A.6) can be used to compute the Ricci scalar if the manifold is

smooth everywhere - it is a differential manifold.
However, this is not the case of the cone because it is not smooth at its apex.

The approach we follow generalizes the concept of curvature by promoting R to
distributions:

R∗ = 1
√
g

(
δP ∗

δv
− δQ∗

δu

)
, (A.8)

where P ∗ and Q∗ are the regular distributions corresponding to P and Q, respec-
tively.

The curvature-distribution is related to functions P and Q in the following
way:

(R∗, ϕ) = −
(
P ∗,

1
√
g

∂ϕ

∂v

)
+
(
Q∗,

1
√
g

∂ϕ

∂u

)
=
∫ ∫

S

(
−P ∂ϕ

∂v
+Q

∂ϕ

∂u

)
dudv. (A.9)

A.3 Curvature at cone’s apex
As we showed in (3.12) the cone’s metric can be written as:

dl2 = dr2 + sin2 αr2dϕ2. (A.10)

However, such a parametrization is not suitable for description of the cone, e.g.
1/√g is not C∞ function everywhere.

The cone is a two-dimensional surface embeded into the three-dimensional
eucledian space with cartesian coordinates (x, y, z), where z-coordinate satisfies:
z = a

√
x2 + y2, where a ≡ 1/ tanϕ. Parametrizating the surface by (x, y), the

metric becomes:

dl2 =
(

1 + a2x2

x2 + y2

)
dx2 +

(
1 + a2y2

x2 + y2

)
dy2 + 2a2xy

x2 + y2dxdy. (A.11)
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Then the functions P and Q become:

P = 2a2
√

1 + a2

y3

(x2 + y2)(x2 + y2 + a2x2)

Q = − 2a2
√

1 + a2

xy2

(x2 + y2)(x2 + y2 + a2x2) ,
(A.12)

where √
g =

√
1 + a2. It might seem that both functions P and Q are not locally

integrable, because they are not bounded. However, if we change coordinates from
the cartesian one (x, y) to polar one (R, θ), x = R cos θ, y = R sin θ, Jacobian
regularizes the singularity at R = 0, so integrals are finite.

Now, let us consider a disk with radius ϵ with center at the apex. Then we
remove the disk from the manifold S and denote the remaing part of S as Sϵ.
Because P and Q are locally integrable functions, the formula for the curvature
(A.9) can be rewritten as follows:

(R∗, ϕ) = lim
ϵ→0

∫ ∫
Sϵ

(
−P ∂ϕ

∂y
+Q

∂ϕ

∂x

)
dxdy. (A.13)

Applying the Green theorem, we obtain:

(R∗, ϕ) = lim
ϵ→0

∫ ∫
Sϵ

(
∂P

∂y
− ∂Q

∂x

)
ϕdxdy − lim

ϵ→0

∫
∂Sϵ

(Pdx+Qdy)ϕ. (A.14)

The integrand in the first integral is the formula for the Ricci scaler (upto the
test-function ϕ), see (A.6). Because the integral is computed in Sϵ for the given
ϵ, it is zero in value. The second term in (A.14) is the key one. It was shown in
[27] and [47] that the second term becomes:

(R∗, ϕ) = 2∆χϕ(0), (A.15)

where ∆χ is the angular deficit of the cone, ∆χ = 2π(1 − sinα). Then it holds:

(R∗, ϕ) = 4π(1 − sinα)ϕ(0). (A.16)

This can be rewritten in more familiar way, with help of the delta fuction as:

R∗ = 4π(1 − sinα)δ(2)(r), (A.17)

where the delta function is defined as:∫
δ(2)(r)

√
rdrdϕ = 1. (A.18)

In (3.14) we omitted the ’star’ in the label and we work with the delta function
as we are used to do in physics literature.
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B. Ladder operators b, d, b†, d†

In this appendix, we would like to find how the (anti)particle creation and anni-
hilation operators, b, b†, d, d†, transform.

We know how the Dirac field is transformed:

W (T,Σ)ψα(Q)W (T,Σ)−1 = e− n−1
2 Σ(Q)ψα(Q), (B.1)

where Qµ ≡ (T, Q⃗), n is dimension of spacetime and W (T,Σ):

W (T,Σ) ≡ expB(T,Σ) ≡ exp
(
n− 1

2

∫
dP⃗Σ(P )ψ†

β(P )ψβ(P )
)
, (B.2)

where P µ ≡ (T, P⃗ ). For the sake of brevity, we shall write only W in what follows,
but mean W (T,Σ). Similarly, we shall denote B(T,Σ) simply as B. For instance:

Wψα(Q)W−1 = e− n−1
2 Σ(Q)ψα(Q), (B.3a)

B = n− 1
2

∫
dP⃗Σ(P )ψ†

β(P )ψβ(P ). (B.3b)

Also, W (T,Σ)−1 = W (T,−Σ) will be denoted as W−1.

In order to find the transformation relations for the ladder operators, we start
with the the following commutators:[

W,d†(⃗l, s′)
]

= −Nlv
†
α(⃗l, s′)

∫
dP⃗

(
e

n−1
2 Σ(P ) − 1

)
e−ilPUψα(P ), (B.4a)[

W, b(⃗l, s′)
]

= −Nlu
†
α(⃗l, s′)

∫
dP⃗

(
e

n−1
2 Σ(P ) − 1

)
eilPUψα(P ), (B.4b)

where the commutator (B.4a) was derived before, see (6.59), and the other can
be derived in a similar way. From (B.4) follows the transformation relations for
b, d, b†, d†:

Wb(⃗l, s′)W−1 = b(⃗l, s′) −Nlu
†
α(⃗l, s′)

∫
dP⃗

(
1 − e− n−1

2 Σ(P )
)
eilPψα(P ), (B.5a)

Wd(⃗l, s′)W−1 = d(⃗l, s′) −Nlvα(⃗l, s′)
∫
dP⃗

(
1 − e

n−1
2 Σ(P )

)
eilPψ†

α(P ), (B.5b)

Wb†(⃗l, s′)W−1 = b†(⃗l, s′) −Nluα(⃗l, s′)
∫
dP⃗

(
1 − e

n−1
2 Σ(P )

)
e−ilPψ†

α(P ), (B.5c)

Wd†(⃗l, s′)W−1 = d†(⃗l, s′) −Nlv
†
α(⃗l, s′)

∫
dP⃗

(
1 − e− n−1

2 Σ(P )
)
e−ilPψα(P ). (B.5d)

Let us recall the following CARs:{
b(k⃗, s), b†(⃗l, s′)

}
= δ(n−1)(k⃗ − l⃗)δss′ , (B.6a){

d(k⃗, s), d†(⃗l, s′)
}

= δ(n−1)(k⃗ − l⃗)δss′ (B.6b)
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and the remaining CARs for b, d, b†, d† are zero. If we act by W from the left and
W−1 from the right each of these CARS, they can be absorbed into the CARs,
for instance:

{Wb(k⃗, s)W−1,Wb†(⃗l, s′)W−1} = δ(n−1)(k⃗ − l⃗)δss′ (B.7)

and similarly for the remaining CARs.
It is a good check of consistency to compute an anticommutator:

{Wb(k⃗, s)W−1,Wb†(⃗l, s′)W−1}, (B.8)

using (B.5a) and (B.5c). Then we should obtain the same right hand side as the
equation (B.7) has:

{Wb(k⃗, s)W−1,Wb†(⃗l, s′)W−1} (B.5)= · · · ?= δ(n−1)(k⃗ − l⃗)δss′ . (B.9)

We shall not elaborate detailed calculations here, which are straightforward and
lengthy, but we conclude that all the CARs, computated like (B.9), are in good
agreement with expectations (it means (B.7), and similarly others).
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C. Fields ψα and ψΣα
In the appendix B, we found the transformation relations for the ladder operators,
see (B.5). Now, we would like to apply these relations to transform the Dirac
field ψα. It is another consistency check. Let us add that we shall use the same
notation as we did in B.

Let us recall the Dirac field ψβ(Q), expanded into a series of ladder operators:

ψβ(Q) =
∫
dk⃗Nk⃗

∑
s

(
b(k⃗, s)uβ(k⃗, s)e−ikQ + d†(k⃗, s)vβ(k⃗, s)eikQ

)
. (C.1)

The Dirac field is transformed as:

ψΣα = WψαW
−1, (C.2)

which leads to the following result:

ψΣβ(Q) =
∫
dk⃗Nk⃗

∑
s

(
Wb(k⃗, s)W−1uα(k⃗, s)e−ikQ +Wd†(k⃗, s)W−1vα(k⃗, s)eikQ

)
= ψβ(Q) −

∫
dP⃗

(
1 − e− n−1

2 Σ(P )
) [
C̄αβ(−P +Q) + Cαβ(−P +Q)

]
ψα(P )
(C.3)

with Q ≡ (T, Q⃗), P ≡ (T, P⃗ ), and we used our results from appendix B, see
(B.5), and defined two matrices:

Cαβ(−P +Q) ≡
∫
dk⃗N2

k⃗

∑
s

v†
α(k⃗, s)vβ(k⃗, s)eik(−P +Q),

=
∫
dk⃗N2

k⃗

∑
s

v†
α(k⃗, s)vβ(k⃗, s)e−ik⃗(−P⃗ )+Q⃗,

C̄αβ(−P +Q) ≡
∫
dk⃗N2

k⃗

∑
s

u†
α(k⃗, s)uβ(k⃗, s)e−ik(−P +Q),

=
∫
dk⃗N2

k⃗

∑
s

u†
α(k⃗, s)uβ(k⃗, s)eik⃗(−P⃗ +Q⃗).

(C.4)

The sum of the matrices Cαβ(−P+Q) and C̄αβ(−P+Q) in (C.3) can be computed
using the following CARs:

{ψβ(Q), ψ†
α(P )}E.T. = δαβδ

(n−1)(Q⃗− P⃗ ). (C.5)

Now, we act by ⟨0| from the left and |0⟩ from the right:

⟨0|ψβ(Q)ψ†
α(P )|0⟩ + ⟨0|ψ†

α(P )ψβ(Q)|0⟩ = δαβδ
(n−1)(Q⃗− P⃗ ). (C.6)

Using (C.1), it is straightforward to show that:

⟨0|ψβ(Q)ψ†
α(P )|0⟩ = C̄αβ(−P +Q), ⟨0|ψ†

α(P )ψβ(Q)|0⟩ = Cαβ(−P +Q), (C.7)

which leads to:

C̄αβ(−P +Q) + Cαβ(−P +Q) = δαβδ
(n−1)(Q⃗− P⃗ ). (C.8)

Thanks to (C.8), the transformed field ψΣβ (C.3) becomes:

ψΣβ(Q) = e− n−1
2 Σ(Q)ψβ(Q). (C.9)
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