
HABILITATION DISSERTATION

ANALYSIS FOR THE INTERACTIONS BETWEEN
FLUIDS AND SOLIDS

SEBASTIAN SCHWARZACHER

DEPARTMENT OF MATHEMATICAL ANALYSIS

FACULTY OF MATHEMATICS AND PHYSICS

CHARLES UNIVERSITY, PRAGUE

1st of May 2021



SCHWARZACHER ANALYSIS FOR FSI

I declare that I carried out this habilitation thesis independently, and only with the cited sources, literature and
other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright
Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague 1/5/2021 signature of the author

i



SCHWARZACHER ANALYSIS FOR FSI

Abstract:

The study on systems of partial differential equations (PDE) that are coupled via a common interface is one
of the important challenges of nowadays mathematics. This is due to the overwhelming number of real live
applications in which two different materials interact; for example fluid-structure interactions like a blood flow
in a vessel or an airplane flaying in the air.

The thesis covers recent progress on coupled systems with an emphasis on fluid-structure interactions. It is
biased on the projects that have been achieved by the support of two grants of the author. On the one hand the
junior grant GJ19-11707Y of the Czech national grant agency (GAČR), on the other hand the Primus research
programme PRIMUS/19/SCI/01 of Charles University. Further the projects where supported by the University
Centre UNCE/SCI/023.

The chapters after the introduction are each dedicated to a (submitted) preprint. The chapters 2–4 are on
the existence, regularity and uniqueness of fluids interacting with thin objects. Namely shells interacting with
incompressible, compressible and/or heat conducting fluids. Chapter 5–7 are about variational methods for
coupled systems of fluid-structure interaction type involving bulk elastic solids. Finally Chapter 8 is on the
bouncing of (elastic) solids of a rigid wall.

Chapter 2 Existence and regularity of weak solutions for a fluid interacting with a non-linear shell. This work
was achieved in collaboration with Boris Muha [142]. It is about an existence and regularity theory for
weak solutions on fluid-structure interactions.

Chapter 3 Navier-Stokes-Fourier fluids interacting with elastic shells. This is a work that has been achieved in
collaboration with Dominic Breit on the existence of compressible and heat conducting fluids interacting
with elastic non-linear shells [23]. It relies on the regularity estimate from chapter 2 and an earlier work
on compressible fluid [22].

Chapter 4 Weak-strong uniqueness for an elastic plate interacting with the Navier Stokes equation. This is
the first weak-strong uniqueness result for fluid-structure interactions involving deformable solids. It is a
work achieved in collaboration with Matthias Sroczinski [169].

Chapter 5 A variational approach to fluid-structure interactions. This is the first part of the joint work with
Barbora Benešová and Malte Kampschulte [13]. Here we introduce a methodology how to produce
coupled systems via minimizing movements–this is applied to fluid-structure interactions.

Chapter 6 A variational approach to hyperbolic evolutions. This is taken from the second part of the joint work
with Barbora Benešová and Malte Kampschulte [13]. It is only for elastic solid motions including inertia
terms. Here a generalization of De Giorgis minimizing movements to hyperbolic PDEs is performed.

Chapter 7 Bulk elastic solids interacting with Navier-Stokes fluids. This is taken from the fhird and last part
of the joint work with Barbora Benešová and Malte Kampschulte [13]. Here the hyperbolic variational
strategy is extended to a bulk elastic solid interacting with an incompressible fluid.

Chapter 8 Contactless rebound of elastic bodies in a viscous incompressible fluid. This is a joint interdisci-
plinary work with Giovanni Gravina, Karel Tůma and Ondřej Souček [91]. The final chapter is about the
challenging question on contact and bouncing of solids in viscous incompressible fluids.

Further the introduction contains some parts of the survey article [14].
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Chapter 1

Introduction

Due to its significance for various applications, the research on fluid-structure interactions is rich and diverse
with contributions from many different scientific disciplines including mathematics. While most of the mathe-
matical literature on fluid-structure interactions concerns numerical analysis and simulations, see for example
the recent monograph [165], there is also an ever increasing effort on the rigorous analysis in the field [27].

In this habilitation thesis we wish to unify the effort of the last two years of the working group on the
analysis of the interaction of Fluids and Solids. The aim was to advance the existence theory of weak solutions,
the related theory on the regularity of weak solutions, the theory on its uniqueness and a mathematical study
on specific behavior when solids and fluids are interacting. All effort was driven by two controversial scientific
ambitions. The first direction was to make the theory of weak solutions accessible to more applications. This
includes on the one hand more general solid materials, such as largely deformable bulk solids (see chapter 7) or
non-linear elastic shells (see chapter 2), or on the other hand more general fluids as heat conducting gases (see
chapter 3). The second direction was to produce a quantitative and accurate (local) description on the peculiar
phenomena that appear when fluids are interacting with solids; to understand it quantitatively as well as locally
(see chapter 8).

1.0.1 The setup of fluid-structure interactions

Typical for fluid-structure interaction is that the geometry of the Eulerian domain of definition for the fluid
motion is a part of the solution and variable in time. We introduce Ω ` Rn as the Eulerian domain in which the
interaction between the fluid and the solid (the structure) is happening.

The problems studied in the field of fluid structure interaction generally can be divided into three different
classes by the types of solid used: Rigid objects, elastic shells which can either be a (moving) part of the
boundary or a thin object in between two fluids and elastic objects with the same dimension as the fluid.

Rigid body Plates and Shells Elastic bulk

η�t� �Q
∂tη�t�

Ω�t� Ω�t�
Q η

Q Ω�t�

Ω�t�

Ω�t�

η�Q�

η

Please observe the characteristic difficulty for fluid-structure interactions stemming from the presence of two
different coordinate systems. The Eulerian coordinates, natural to be used for the fluid and the Lagrangian
coordinates, natural to be used for the solid. Respectively, the solid is commonly characterized via a coordinate
map from its reference configuration Q. η � �0, T � � Q � Ω The fluid is commonly characterized by its

1
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velocity v and its pressure p. Both are defined in Eulerian coordinates over the possibly time dependent domain
Ω�t� ` Ω. This means in particular that v � �0, T ��Ω�t�� Rn and p � �0, T ��Ω�t�� R. Typically they satisfy
Navier-Stokes equations over the variable fluid domain. In the case of an incompressible Newtonain fluid this
means that

ρf�∂tv � �©v�v� � ν∆v �©p � ρff on Ω�t�,
divv � 0 on Ω�t�, (1.0.1)

for all t > �0, T �.
The coupling between fluid and solid is happening at the interface ∂Ω�t� 9 η�Q� via implicit boundary

conditions.
In this thesis we will assume no-slip boundary conditions at the interface, which reads

v�t, η�x�� � ∂tη�t, x� for all contact points η�t, x� > Ω. (1.0.2)

Further, the forces of the fluid acting on the solid have to be in equilibrium with the respecting forces of the
solid. This could mean, as is the case with rigid motions, that the total force of the fluid acting on the rigid
body is equal to its momentum and as such summarizes in the (macroscopical) motion of the rigid body. In
contrast, in the case of an elastic bulk solid the stresses of the fluid would equalize pointwisely on the interface
the respective stresses of the elastic solid.

1.0.2 An overview on the related literature

Let us review some progress in fluid-structure interaction that was relevant for the work summarized in this
thesis. We split the overview into several research sub-areas, as the progress in each of them is at different
stages. we begin with the analysis for the three regimes of fluid-structure interactions, rigid bulk solid, elastic
plates and elastic bulk solids. This follows some references on numerical results and some results in a fourth
type of fluid-structure interaction, the filed of homogenization that is related to rigid body motions.The three
analytic regimes of bulk, shell and rigid solids are all covered in the thesis. The references in the field of
numerics as well as homogenization are included in order to give some examples of the variety of mathematical
research questions related to fluid-structure interactions.

Literature on the analysis for rigid body motions: For rigid body motions in fluids many results, dating back
to Archimedes, have been achieved already. We refer to [68, 76, 71, 178, 72, 73] for results on the existence
of (periodic) weak solutions and some regularity estimates. See [177, 178, 84, 32] for some results concerning
uniqueness questions. Interesting are the qualitative results [186, 100, 81, 104, 105] where it is shown that the
contact between smooth rigid bodies in an incompressible fluid endowed with no-slip boundary conditions may
not happen. In contrast in case of slip-boundary conditions or compressible fluids contacts may happen [81, 32].
Only recently it was shown that if elastic (bulk) solids are considered it is likely that solids do bounce off each
other even in the absence of a topological contact which is discussed in chapter 8.

Literature on the analysis for elastic shells or plates: This is a very popular setting in fluid-structure inter-
actions. The solid is assumed to be a shell or a plate that is modeled as a thin object of one dimension less than
the fluid. For related up-to-date modeling and model reductions on plates and shells see [38] and the references
therein. Well-posedness results for weak solutions with a fixed prescribed scalar direction of displacement of
the shell is commonly shown until a self-touching of the solid is approached. For incompressible Newtonian
fluids see [52, 53, 127, 153, 88, 149, 29] and for incompressible non-Newtonian fluids see [126]. In this work
we discuss the regularity for the solid deformations in chapter 2. The first existence result of weak solutions
in the compressible regime was shown in [22]. Built on chapter 2 and [22] is the work presented in chapter 3
where existence of a weak solution for heat conducting compressible fluids interacting with non-linear shells
are constructed.

Quite recent is also the first weak-strong uniqueness result involving elastic plates which is discussed here
in chapter 4. Additionally, we would like to mention that there are numerous existence and uniqueness results
for short times [43, 12, 17] and some global results for small initial data [36, 111].
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Literature on the analysis for elastic bulk solids: There is very little literature avaliable about this theme.
Up to very recently, results have been restricted to small deformations of the elastic solid; see [86, 74] for
steady problems and [164, 136] for unsteady problems. Only due to a recent effort that will be recapitulated in
chapter 5–chapter 7 a theory involving large deformations was optained in [13] and is the content of chapter 5–
chapter 7.

Literature on numerical methods in fluid-structure interactions: The literature on numerical strategies are
numerous and we will only give a few examples with no ambition of completeness. For an overview we
recommend the monograph [165]. Further numerical results (involving different strategies to approximate
fluid-structure interactions) can be found here [158, 93, 162, 185, 167, 65, 168].

Literature on homogenization and fluid-structure interactions: Homogenization results involving fluids are
limits of fluid-structure interactions. Overlap between the community on homogenisation and on fluid-structure
interactions is via the case of rigid bodys interacting with fluids. Indeed, most of the literature considers do-
mains where equisized obstacles are distributed periodically; hence the solid objects are merrily resisting the
fluid without moving. The homogenization is then performed by simultaneously increasing the number of ob-
stacles while decreasing their sizes. This represents a porous medium. See [179, 41, 2, 3, 61] for incompressible
fluids and [60, 56, 132, 107] for compressible fluids. Further results include randomly distributed particles and
possibly moving particles. See [166, 55, 83, 28, 106] and the references therein. For results concerning the mo-
tion of a viscous incompressible fluid interacting with a (fixed) periodically perforated wall (or sieve) see [41]
and the references therein. See also the recent preprint [14], where a fluid-structure interaction modelling the
flow of air through a porous mask is shown. Here the interaction at the elastic (porous) solid with the fluid is
given as a Brinkman type friction term.

In the following we introduce the scientific content of the upcoming chapters.

1.1 Existence, uniqueness and regularity for weak solutions to fluid-structure
interactions involving shells or plates chapter 2–chapter 4

In the first part of the habilitation we consider the solid to be deforming in one dimension less. Central for
all three results is to use the dissipative properties of the fluid for the elastic solid (see Theorem 1.1.2 below).
This key regularity estimate is demonstrated in Section 2.4 and relies on solenoidal extension operators and
difference quotient techniques. It is remarkable that only the coupling to the fluid allows to deduce existence of
the non-linear hyperbolic PDEs that are modelling the solid evolutions. Indeed, for some of the here considered
non-linear hyperbolic PDEs the existence of a weak solution (not interacting with a fluid) has not been shown
to exists even for smooth data.

This extra regularity is used in chapter 2 to show the existence of a solution to non-linear solid evolutions
coupled to Navier-Stokes fluid. In chapter 3 it is used to produce an energy equality (which is a speciality to
hold for this closed system of weak solutions). Finally in chapter 4 it is needed to show the a-priori finiteness
of several appearing error terms.

In chapter 2 and chapter 3 we can treat the following non-linear model of an elastic shell.

1.1.1 The non-linear Koiter shell

In this work we consider the classic (non-linear) Koiter shell model (see e.g. [38, 117]) which describes the
evolution of the elastic boundary of the fluid domain. Let Ω ` R3 be a domain such that its boundary Γ � ∂Ω is
parameterized by a C3 injective mapping ϕ � ω � R3, where ω ` R2. 1

We denote the tangential vectors at any point ϕ�y� in the following way:

aα�y� � ∂αϕ�y�, α � 1,2, y > ω.

1To simplify notation we assume that the boundary of Ω can be parameterized by a flat torus ω � R2~Z2 which corresponds to the
assumption of periodic boundary conditions for the structure displacement. We consider the periodic boundary conditions just to avoid
unnecessary technical complications.
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The unit normal vector is given by ν�y� � a1�y� � a2�y�Sa1�y� � a2�y�S . The surface area element of ∂Ω is given by dS �Sa1�y� � a2�y�Sdy. We assume that the domain deforms only in the normal direction and denote by η�t, y� the
magnitude of the displacement. This reflects the situation when the fluid pressure is the dominant force acting
on the structure in which case it is reasonable to assume that the shell is deforming in normal direction. In this
case the deformed boundary can be parameterized by the following coordinates:

ϕη�t, y� � ϕ�y� � η�t, y�ν�y�, t > �0, T �, y > ω. (1.1.1)

We wish to emphasize that this restriction is rather standard in the majority of mathematical works on the
analysis of weak solutions, mainly due to severe technical difficulties associated with the analysis of the case
where the full displacement is taken into account. The deformed boundary is denoted by Γη�t� � ϕη�t, ω�.
It is a well known fact from differential geometry (see e.g. [125]) that there exist α�Ω�, β�Ω� A 0 such that
for η�y� > �α�Ω�, β�Ω��, ϕη�t, .� is a bijective parameterization of the surface Γη�t� and it defines a domain
Ωη�t� in its interior such that ∂Ωη�t� � Γη�t�. Moreover, there exists a bijective transformation ψη�t, .� � Ω�
Ωη�t�.2

We denote the moving domain in the following way:

�0, T � �Ωη�t� �� �
t>�0,T �

�t� �Ωη�t�.
The non-linear Koiter model is given in terms of the differences of the first and the second fundamental forms of
Γη�t� and Γ which represent membrane forces and bending forces respectively. These forces are summarized
in its potential - the Koiter energy EK�t, η�. The definition of the potential is taken from [38, Section 4]. For a
precise definition and the derivation of the energy for our coordinates see (2.2.14) below. Let LKη be the L2-
gradient of the Koiter energy EK�t, η�, h be the (constant) thickness of the shell and %s the (constant) density
of the shell. Then the respective momentum equation for the shell reads

%sh∂
2
t η �LKη � g, (1.1.2)

where g are the momentum forces of the fluid acting on the shell.

Figure 1.1: An example of the deformed cylindrical domain.

For more details and some model examples please see Subsection 2.2.2.
2For more details on the geometry see Section 2.2.2 and Definition 2.2.1.
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1.1.2 Existence for non-linear shells and regularity for the shell evolution–chapter 2

This chapter is based on the work in collaboration with B. Muha from the University of Zagreb [142]. In this
chapter we consider the non-linear Koiter shell model introduced above and couple it with a fluid flow that is
governed by the incompressible Navier-Stokes equations:

%f�∂tu � �u � ©��u � divσ�u, p� in �0, T � �Ωη�t�, (1.1.3)

divu � 0 in �0, T � �Ωη�t�, (1.1.4)

where σ�u, p� � �pI � 2µsym©u is the fluid stess tensor and %f the (constant) density of the fluid.
The fluid and the structure are coupled via kinematic and dynamic coupling conditions. We prescribe the

no-slip kinematic coupling condition which means that the fluid and the structure velocities are equal on the
elastic boundary:

u�t,ϕη�t, y�� � ∂tη�t, y�ν�y�, y > ω. (1.1.5)

The dynamic boundary condition states that the total force in the normal direction on the boundary is zero:

g�t, y� � �σ�u, p��t,ϕη�t, y��ν�η�t, y�� � ν�y�, y > ω, (1.1.6)

where ν�η�t, y�� � ∂1ϕη�t, y��∂2ϕη�t, y� is defined as a weighted vector pointing in the direction of the outer
normal to the deformed domain at point ϕη�t, y�; the weight is exactly the Jacobian of the change of variables
from Eulerian to Lagrangian coordinates.

We may summarize and state the full fluid-structure interaction problem.
Find �u, η� such that

%f�∂tu � �u � ©��u � divσ�u, p� in �0, T � �Ωη�t�,
divu � 0 in �0, T � �Ωη�t�,

%sh∂
2
t η �LKη � ��σ�u, p� Xϕη�ν�η� � ν in �0, T � � ω, (1.1.7)

u Xϕη � ∂tην in �0, T � � ω,
u�0, .� � u0 in Ωη�0�,

η�0� � η0, ∂tη�0� � η1 in ω.

The solution of the above coupled system formally satisfies the following energy equality:

d

dt
�%f

2
Yu�t�Y2

L2�Ωη�t�� �
h%s
2

Y∂tη�t�Y2
L2�ω� � EK�t, η�� � �2µS

Ωη�t� Ssym©uS2. (1.1.8)

The main result of the chapter is the existence of a weak solution:

Theorem 1.1.1. Assume that ∂Ω > C3, η0 > H2�ω�, η1 > L2�ω� and u0 > L2�Ωη0�, and η0 is such that Γη0

has no self-intersection and γ�η0� x 0. Moreover, we assume that the compatibility condition u0SΓη0 � η1ν
is satisfied. Then there exists a weak solution �u, η� on the time interval �0, T � to (1.1.7) in the sense of
Definition 2.2.3.

Furthermore, one of the following is true: either T � �ª, or the structure self-intersect, or γ�η� x 0, i.e.
the H2-coercivity of the structure energy degenerates, where γ is defined in Definition 2.2.1 below.

The second main theorem says that all possible solutions in the natural existence class satisfy better struc-
tural regularity properties.

Theorem 1.1.2. Let �u, η� be a weak solution to (1.1.7)3. Then the solution has the additional regularity
property4 η > L2�0, T ;H2�s�ω�� and ∂tη > L2�0, T ;Hs�ω�� for s > �0, 1

2�. Moreover, it satisfies the following
regularity estimate YηYL2�0,T ;H2�s�ω�� � Y∂tηYL2�0,T ;Hs�ω�� B C1

with C1 depending on ∂Ω, C0 and the H2-coercivity size γ�η�.
3in the sense of Definition 2.2.3
4For the definition of the fractional Sobolev spaces Hs�ω� see Subsection 2.2.5
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Remark 1.1.3 (Coercivity and non-linearity). Due to the fact that the Koiter shell equation is non-linear—more
precisely since the curvature change is measured w.r.t. the deformed geometry—the H2-coercivity of the Koiter
energy can become degenerate. This is quantified by the estimate that is shown in Lemma 2.4.3 below. At such
degenerate instant the given existence and regularity proofs break down. This is a phenomenon purely due to
the non-linearity of the Koiter shell equations. Indeed, in case when the leading order term of the elastic energy
is quadratic (i.e. the equation is linear or semi-linear), this loss of coercivity is a-priori excluded.

Novelty & Significance

The main novelty is the improved regularity of the elastic displacement. In particular it allows to overcome
the border between Lipschitz and non-Lipschitz domains. This critical step has caused a significant amount of
effort in previous works [31, 87, 127, 144, 153]. The regularity uses classical differential quotient techniques
applied to the non-linear structure equation. Problematic is the impact of the fluid on the structure which is
rather implicit in the frame-work of weak equations. Here newly developed extension-operators are developed
that are certainly of independent value (see Proposition 2.3.3). Of critical technical difficulty are commutator
estimates for the time dependent extension of a difference quotient (see Lemma 2.3.5).

The power of the newly introduced method to gain higher regularity for the structure allows to prove the
existence of weak solutions for fluids interacting with non-linear Koiter shells. These more physical models
have not been in reach for the theory of weak solutions that may exists for arbitrary long times. The mathemat-
ical reason is that the respective energies are highly non-linear and non-convex. The extra regularity estimate
however, allows to derive sequences that converge strongly to the solution w.r.t the highest order of the operator.
That is the reason why no linearity or convexity assumptions are needed anymore to pass to the limit with in
the non-linear stress tensor of the structure equation.

For previous results, the limit passage of the convective term in the Navier Stokes equation was the main
effort [31, 87, 127, 144, 153]. The limit passage usually relies on compactness results of Aubin-Lions type.
The variable geometry make its application highly technical. In Section 2.5 we rewrite the celebrated result
in a form that we believe to be suitable for coupled systems (see Theorem 2.5.1). Indeed, it can be applied to
systems where the solution space depends on the solution itself. This section can be seen as the second main
technical novelty.

The interval of existence is potentially arbitrary large. The interval of existence is restricted to cases when
the geometry degenerates. However, the minimal interval of existence depends on the reference geometry
(which defined the shell model) and can be arbitrary large for some commonly used models. We demonstrate
this by providing explicit bounds for two popular reference geometries in Subsection 2.2.2; namely the case
when the reference geometry is a sphere or a cylinder.

The method seems very suitable to be adapted for further interaction problems. Possible future applications
for fluid structure interactions problems are in the field of membrane energies, compressible fluids, tangential
displacements, uniqueness issues and/or numerical analysis. In two space dimensions or in the regime of low
Reynolds numbers the method inherits great potential to further improve the regularity theory for the fluid
structure interactions problems [88]. However, due to the lack of the global regularity result for the fluid
equations in three dimensions, we do not expect it is possible to further improve the regularity of the shell. In
this sense our regularity result for the shell displacement can be viewed as optimal.

1.1.3 Existence for heat-conducting fluids interacting with non-linear shells–chapter 3

In this chapter the solid evolution is assumed to be the same as in the previous chapter. The fluid, however
follows the Navier-Stokes-Fourier system: We then seek the velocity field u � I � Ωη � R3, the density

6
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% � I �Ωη � R and the temperature ϑ � I �Ωη � R solving the following system

∂t% � div�%u� � 0, in I �Ωη, (1.1.9)

∂t�%u� � div�%ua u� � divS�ϑ,©u� �©p�%,ϑ� � %f in I �Ωη, (1.1.10)

∂t�%e�%,ϑ�� � div�%e�%,ϑ�u� � S�ϑ,©u� � ©u � p�%,ϑ�divu

� divq�ϑ,©ϑ� � %H in I �Ωη, (1.1.11)

u�t, x � η�t, x�ν�x�� � ∂tη�t, x�ν�x� in I � ω, (1.1.12)

∂νηϑ � 0 on I �Ωη, (1.1.13)

%�0� � %0, �%u��0� � q0, ϑ�0� � ϑ0 in Ωη0 . (1.1.14)

Here we consider the volume force f � I �Ωη � R3 and the heat sourceH � I �Ωη � R. In (1.1.10) we suppose
Newton’s rheological law

S�ϑ,©u� � µ�ϑ��©u �©uT

2
�

1

3
divuI� � λ�ϑ�divuI

with strictly positive viscosity coefficients µ, λ (see Remark 1.3 in [22] for the case λ C 0). The internal energy
(heat) flux is determined by Fourier’s law

q�ϑ,©ϑ� � ��ϑ�©ϑ � �©K�ϑ�, K�ϑ� � S ϑ

0
�z� dz (1.1.15)

with strictly positive heat-conductivity . The thermodynamic functions p and e are related to the (specific)
entropy s through Gibbs’ equation

ϑDs�%,ϑ� �De�%,ϑ� � p�%,ϑ�D�1

%
� for all %,ϑ A 0. (1.1.16)

The model case is given by

p�%,ϑ� � %γ � a
3
ϑ4, e�%,ϑ� � 1

γ � 1
%γ�1

� a
ϑ4

%
, s�%,ϑ� � 4a

3

ϑ3

%
,

for a A 0 and γ A 1. In view of Gibb’s relation (1.1.16), the internal energy equation (1.1.11) can be rewritten
in the form of the entropy balance

∂t�%s�%,ϑ�� � div�%s�%,ϑ�u� � �div�q�ϑ,©ϑ�
ϑ

� � σ � %H
ϑ

(1.1.17)

with the entropy production rate

σ �
1

ϑ
�S�ϑ,©u� � ©u �

q�ϑ,©ϑ� � ©ϑ
ϑ

�. (1.1.18)

In the weak formulation (1.1.17) will be replaced by a variational inequality.
The shell should response optimally with respect to the forces, which act on the boundary. Therefore we have

ε0%S∂
2
t η �K

��η� � g � ν �F in I � ω, (1.1.19)

where %S A 0 is the density of the shell. Here, g � I � ω � R is a given force and F is given by

F �� � � τνη� Xϕη�t�SdetDϕη�t�S, τ �� S�©u� � p�%,ϑ�I.
Here, ϕη�t� � ω � ∂Ωη�t� is the change of coordinates from (2.2.1) and τ is the Cauchy stress. To simplify the
presentation in (1.1.19) we will assume

ε0%S � 1

7
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throughout the paper. We assume the following boundary and initial values for η

η�0, �� � η0, ∂tη�0, �� � η1 in ω, (1.1.20)

where η0, η1 � ω � R are given functions. Here, we assume that

Im�η0� ` �a, b�.
In view of (1.1.12) we have to suppose the compatibility condition

η1�y�ν�y� � q0

%0
�y � η�y�ν�y�� in ω. (1.1.21)

Our main result is the following existence theorem. The system (1.1.9)–(1.1.21) can be written in a natural
way as a weak solution. The concept is introduced in the next section, (see (3.2.14)–(3.2.17)), where also the
precise formulation of our main result is presented (see Theorem 3.2.14). It is concerned with the existence of
a weak solution up to degeneracy of the geometry and reads in a simplified version as follows.

Theorem 1.1.4. Under natural assumptions on the data there exists a weak solution �η,u, %, ϑ� to (1.1.9)–
(1.1.20) with satisfies the energy balance

E�t� � E�0� � S
Ωη
%H dx � S

Ωη
%f � udx � S

ω
g ∂tη dy,

E�t� � S
Ωη�t� �1

2
%�t�Su�t�S2 � %�t�e�%�t�, ϑ�t���dx � S

ω

S∂tη�t�S2
2

dy �K�η�t��. (1.1.22)

The interval of existence is of the form I � �0, t�, where t @ T only in case Ωη�s� approaches a self-intersection
when s� t or the Koiter energy degenerates (namely, if lims�t γ�s, y� � 0 for some point y > ω).

The function space of existence for a weak solution to (1.1.9)–(1.1.20) is determined by the total energy E
in (1.1.22) as well as the quantity σ in (1.1.18) taking into account the variable domain.

Novelty & significance
Theorem 3.2.14 extends the results from [22] to the case of a heat-conducting fluid but also applies to

nonlinear structure equations. As in the case of fixed domains studied in [63] the heat-conducting model
allows (different to the isentropic equations) the striking feature of an energy equality. Energy, which is lost by
dissipation, is transfered into heat, cf. (1.1.11). There are few results for compressible fluids interacting with
solids. In [22] the authors of the present chapter showed the existence of a weak solution to the compressible
Navier–Stokes equations coupled with a linear elastic shell of Koiter type. Eventually, a similar result has been
shown by a time-stepping method [184], where the interaction of a compressible fluid with a thermoelastic
plate is studied (compare also with with the numeric results from [168]). Results on the short-time existence
of strong solutions for compressible fluid models coupled with one-dimensional linear elastic structures can
be found in [133, 141]. In [18] the author studies an elastic structure (with a regularised elasticity law) which
is immersed into a compressible fluid and proves the existence of weak solutions to the underlying system.
Results concerning the long-time existence of weak solutions about structure interactions with heat conducting
are missing so far - even in the incompressible case. The existence of a unique local-in-time strong solution to
compressible Navier–Stokes–Fourier system coupled with a damped linear plate equation has been established
very recently in [134]. Of independent significance are regularity results for variable in time versions of damped
equations for density and temperature (see Section 3.3).

1.1.4 Weak-Strong uniqueness for fluid-structure interactions involving elastic solids–chapter 4

The subject is technically quite involving. In particular in the incompressible set up. This is due to the fact that
two domains of two solution velocities are different. In order to show that there difference is zero on has to do
a change of variables from one domain to the other. However in order to not involving the pressure this change
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of variables has to be done in a way such that solenoidality is conserved. This can be done using a corrector
function (a so-called Bogovskiı̆ operator) or (what might be more natural) by the use of the Piola transform.
This transform however is in general not so easy to handle. For that reason in this chapter we restrict ourselves
to the case of an elastic plate which means that the reference geometry is flat and the direction of deformation
orthogonal to the flat configuration. Please see Subsection 4.1.1 for the precise set up of this chapter.

The main result of the chapter consists in the weak-strong uniqueness of solutions for a flow in a variable
3D (or 2D) domain interacting with a 2D (or 1D) plate (see Theorem 4.1.2). While the regularity of the weak
solutions that we use are known to be satisfied for all weak solutions we assume additional regularity of the
velocity of the strong solution, that can be related (via its index) to the celebrated Ladyzhenskaya-Prodi-Serrin
conditions [161, 171, 172, 121]. These are conditions for solutions to Navier-Stokes equations in a fixed domain
that imply their smoothness and uniqueness.

Please observe, that we do not assume any additional regularity of the solid displacement; in particular
the domain of the strong fluid-velocity is not even assumed to be uniformly Lipschitz continuous. In order to
handle the limited regularity assumptions (on the strong solution) rather complex estimates where necessary.
Some of them depend sensitively on a-priori estimates for the solid deformation shown in chapter 2.

To measure the distance between two solutions it is necessary to introduce a change of variables as the do-
mains of the two velocity fields depend on the solution itself. Moreover, since the solid deformation is governed
by a hyperbolic equation a mollification in time is unavoidable. In this paper a methodology is introduced that
overcomes both obstacles with operators that conserve the property of solenoidality (see Lemma 4.2.6).

The weak-strong uniqueness result is a consequence of the following stability estimate.

Theorem 1.1.5. Let �v2, η2� be weak solutions to the fluid-structure interaction (4.1.1)-(4.1.9) on �0, T �, such
that min�0,T ��ω η2 A 0 and that additionally v2 > L

r�0, T ;W 1,s�Ωη2�� and ∂tv2 > L
2�0, T ; W̃ �1,r�Ωη2�� for

any s A 3 and any r A 2. If �v1, η1� is a weak solution to (4.1.1)-(4.1.9) on �0, T �, then for ṽ2�t, x, y� �

v2�t, x, y η1�t,x�
η2�t,x�� we find that

sup
t>�0,T �

Y�v1 � ṽ2��t�Y2
L2�Ωη1�t�� � Y∂t�η1 � η2��t�Y2

L2�ω� � Y�η1 � η2��t�Y2
H2�ω�

� S
T

0
Y�v1 � ṽ2��τ�Y2

H1�Ωη1�τ��dτ
B C�Yv0

1 � ṽ
0
2Y2
L2�Ω

η0
1
� � Yη�1 � η�2Y2

L2�ω�� � Y�η0
1 � η

0
2�Y2

H2�ω�

�C S
T

0
Y�f1 � f̃2��τ�Y2

H1�Ωη1�τ�� � Y�g1 � g2��τ�Y2
L2�ω�dτ,

where the constant depends on ω,T , the assumed bounds on v2, the L2-bounds of f1, f2 and (symmetrically)
on the two deformations η1, η2 via the bounds related to the energy estimates and via Theorem 4.2.2.

In particular, the constant C can be bounded a-priori in dependence of ω,T , the assumed bounds on v2

and the right hand side of the energy inequality (4.1.10) for both solutions. In some situations strong solu-
tions are known to exist. In this case we proved that they are unique in the class of all weak solutions. (See
Theorem 4.1.3).

Analytical strategy & technical novelties Usually for uniqueness (or stability estimates) one takes the
difference of the two solutions or, in case of a hyperbolic evolution, its time-derivative as a test function. We
wish to emphasize that due to the variable geometry depending on the solution, even uniqueness of strong
solutions for longer times (provided they exist) does not follow in a straight forward manner. An additional
difficulty regarding weak-strong uniqueness results is that the regularity of one solution is too low to be used
as a test function. We follow the approaches developed in [177, 24, 32]. The idea is to resolve the difference
of the systems tested by the difference of solutions into the energy inequality of the weak solution and terms
containing a coupling where at least one function is sufficiently regular.

In order to make one fluid velocity a test function for the other equation we follow the methodology in-
troduced in [92] where a change of variables from one geometry to the other is introduced that conserves the

9
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solenoidality property. This suffices to circumvent the weak regularity properties of the pressure in case of
incompressible fluids.5 What can not be circumvented is the weak regularity of the time-derivative of the in-
volved test-functions. The technical highlight is a mollification-in-time operator that conserves solenoidality in
the variable domains and the coupling of the boundary conditions. Moreover, it does not reduce the regularity
(in space) significantly. The operator is introduced in Lemma 4.2.6. A result that might be of independent
interest is that this mollification can be used to show that all weak solutions do indeed have a distributional time
derivative in a Bochner space involving negative Sobolev spaces (see Proposition 4.2.7). Finally, of further use
in the future might be the estimates (especially on the convective term) which were necessary in order to stay
with our assumptions in the regime of the Ladyzhenskaya-Prodi-Serrin conditions.

In case of compressible flows weak-strong uniqueness is much less involving. Please see [183] for more
details.

1.2 Bulk elastic solids. Variational strategies for fluid-structure interactions
chapter 5–chapter 7

In this section we will discuss some results that have been achieved recently in [13]. Even so the results are all
about the existence of weak solutions we hope that it will be clear from the constructive nature of the approach
that it potentially is quite appropriate for numerical schemes and respective analysis.

1.2.1 Energies and dynamics

There are many complementary ways to perform modelling of dynamical continuum-mechanical systems. A
common way to do so in modern mathematical treatments of the topic centers on the balance of forces/momentum.
Beginning with Newton’s second law, one adds up all the forces acting on each point of each object one seeks to
describe. These then equal the change of momentum. Together with boundary data and possibly some auxiliary
equations, such as conservation of mass, this balance then forms a system of PDEs. For solutions to this system
one then seeks to derive properties, such as an energy (in)-equality.

In this article, we advocate for a different approach, beginning instead with an energy balance as our primary
tool of modeling and deriving the balance of forces from it.6 Consequently, variational methods can be applied
replacing PDE-arguments. In particular in contrast to many of the methods employed when dealing with PDEs,
these variational methods generally do not rely on linearity of forces or convexity of the admissible set of
configurations.

Specifically, we are concerned with energy balances of the form

Epot�T � �Ekin�T � � S T

0
Wdiss�t�dt � Epot�0� �Ekin�0� � S T

0
Wext�t�dt

where we consider four quantities: Potential energy Epot, kinetic energy Ekin, energy lost through dissipation
Wdiss and work done by external forces Wext. The kinetic energy and the external forces will generally each
always have a similar form, independent of the considered model. More interesting and highly dependent on
the model one considers are the other two terms.

However, we are not entirely free in the choice of the two terms. At any given time, the current status of
the system is given by the values of its variables. For dynamical problems in continuum mechanics, it helps to
roughly split this into two parts, the state and the rate variables.

The state variables are those that describe the state of the continuum at any given time instant with examples
being the deformation, density or pressure. Such variables are well defined without introducing a continuous
time such as are time-derivatives. The dynamic, rate variables in contrast, consist of terms involving velocities

5In unsteady incompressible problems the pressure is known to be hard to control w.r.t. the time variable even in the simplest case
of Stokes equation in a fixed (smooth) geometry [116].

6In modeling ”energetic” approach has been advocated by many authors; e.g. [95] for solids or [192, 193, 191] for fluids. In the
analysis an energetic approach is primal in many applications concerning solid materials; see e.g. the monographs [139, 119].
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and accelerations. While the rate variables generally can be sought in a linear-space (possibly depending on the
values of the state variables), the state variables in generally can not be expected to form a linear space.7

Now, by its very nature, the potential energy will only depend on the state variables. It can do so rather
freely, usually only restricted due to mathematical reasons. The potential energy also induces an associated
force, which is the negative formal gradient with respect to changes of the state; it “resists moving uphill”.

In full contrast, the dissipation results in a force resisting movement. In the problems we consider, it is
given as the formal gradient (with respect to the rate variables) of a dissipation functional. This functional can
also depend on the current state variables, but more importantly for each fixed static state, it usually is a convex
function of the rate variables with a global minimum in zero.8

Starting with the energy balance allows to use a method that begins at the same place. We construct a time-
discrete iteration using a minimization involving the energy and the dissipation functional; consequently one
gains a discrete estimate and an Euler-Lagrange equation. The latter will naturally become a discretized version
of the momentum balance, with which one eventually may pass to the limit. Thus the momentum-equation is
the result of a minimization and not a directly constructed object.

Certainly variational methods are not new in the context of continuum-mechanics. Whenever one is looking
for stable stationary configurations, one is looking for local minimizers of the potential energy. Similarly, for
quasi-static problems, where inertial effects are ignored, one can consider consecutive minimization of the sum
of the potential energy and a “dissipation distance” to the last step. This is known as the method of minimizing
movements (see e.g [48, 139, 119]). Both have been studied for a wide class of problems and since our method
can be seen as an extension of the latter method, we can in fact build on these results.

Finally it should be noted that in all the methods described above, including ours, the minimization and
thus the variational aspect happens in space, for a fixed instant of time. There are variational methods that
work on a functional in space-time which could be seen as the grandfather of all motion by the principle of
least action or more precisely principle of stationary action. In fact, in the case of continuum mechanics, the
action generally cannot be expected to be minimal, but rather of saddle-point structure, which prevents the use
of in-time variational methods.9

1.2.2 Time-delayed problems for hyperbolic systems–a simple example

The method for existence proofs we presented in chapter 5–chapter 7 can be explained in different ways. At one
extreme it represents a way of a reduction principle. This means that its goal is to approximate the solutions to
a second-order-in-time (hyperbolic) problem using solutions to a related curious first-order-in-time, (parabolic)
problem. At the other extreme, it is a two-time scale extension of the well known time-incremental method of
minimizing movements [48].

Fundamentally though, we need the following central observation about the energy balance for discrete-in-
time approximations in case of a non-linear energy. Consider a simple toy model involving a single unit mass
particle with position x�t� > Rn and a potential energy E�x�t��. Hence, we seek the solution to the following
hyperbolic ODE: ∂2

t x � �©E�x� with initial data x�0� � x0 and ∂tx�0� � x�. The naive ansatz is to consider
a time-discretization with step-size τ in order to approximate the solution. This provides the following implicit

7Note that any time-dependent change of a state variable involves a rate variable one, but there are dynamic phenomena involving
rate variables, such as incompressible fluid flows, that might not change any state variables at all. The rate variables thus includes a
“tangential space” of the state, but the two are not equivalent.

8In fact we will only consider the case where the dissipation functional is 2-homogeneous, as this is the most common case and
avoids additional terms. Specifically if R�λb� � λ2b, we know that ẋ �DR�ẋ� � 2R�ẋ� and thus for such a functional the dissipated
energy corresponds to twice the dissipation functional. For general convex dissipation functionals one would need to use the Legendre-
transformation and gain an additional term.

9An easy way to see this is by noting that the action functional roughly consists of the difference between kinetic and potential
energy. For a Lagrangian solid with deformation η, the kinetic energy generally will only depend coercively on the time derivative
∂tη and the potential energy only on the spatial derivatives ©η. So neither can be estimated against the other and adding small, quick
oscillations in space/time can potentially greatly increase one of them without influencing the other by much.
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equation

0 � ©E�xk�1� � xk�1�xk
τ �

xk�xk�1

τ

τ
. (1.2.1)

But what can we say about the energy balance here? In particular, can we say anything aboutE�xk�1��E�xk�?
The standard approach would be to test with the discretized time derivative. This yields a©E�xk�1�, xk�1�xk

τ
f.

If E is convex, this term can be used for a-priori estimates. But if it is not convex it can be that only in the limit
τ � 0 we find an admissible term for estimates, namely d

dtE�x� � `©E�x�, ∂txe. As long as τ A 0, it is not
clear whether and how this ”chain rule” can be imitated.

For the parabolic situation, when considering the first, instead of the second time-derivative, this problem
has been solved by rewriting the implicit equation as a minimization of a functional. Instead of just solving
0 � ©E�xk�1� � xk�1�xk

τ , one defines xk�1 to be the minimizer of the functional Fk � x ( E�x� � 1
2τ Sx � xkS2.

Then instead of using the equation, one can compare the values of this functional at xk�1 and xk to get the
summable estimate

E�xk�1� � τ
2
Txk�1 � xk

τ
T2 � Fk�xk�1� B Fk�xk� � E�xk�.

In the here considered hyperbolic case one first attempt would be to minimize the functional

Fk�x� �� E�x� � 1

2
Sx�xkτ �

xk�xk�1

τ S2, (1.2.2)

which is easily checked to have (1.2.1) as Euler-Lagrange equation. But here the estimate does not work as we
get

E�xk�1� � τ2

2
U xk�1�xk

τ �
xk�xk�1

τ

τ
U2 � Fk�xk�1� B Fk�xk� � E�xk� � 1

2
Sxk�xk�1

τ S2
with a term on the right hand side that turns out to have entirely the wrong scaling to estimate.10

The solution to this quandry is to note that there is no need for the two difference quotients in (1.2.1) to
employ the same τ . We thus keep our step size τ in the first derivative and add an independent time-scale
h Q τ . Accordingly we introduce the following two-scale minimization. The trick is to first construct an
approximation xh � �0, h�� R as a gradient flow (under forcing) satisfying

©E�x�t�� � �∂tx�t� � x�
h

, x�0� � x0.

Indeed, we may minimize iteratively for k > �0, ..., 
hτ ��
F

0
k�x� �� E�x� � τ

2h
Tx � x0

k

τ
� x�T2.

The above implies a uniform-in-τ estimate by a telescope sum

E�x0
k�1� � τ

2h
Tx0
k�1 � x

0
k

τ
� x�T2 B E�x0

k� � τ

2h
Sx�S2.

This allows to pass with τ � 0 and to construct xh over the first h-interval �0, h�. Then we can interatively
prolong xh from �0, �` � 1�h� to �0, `h� by minimizing

F
`
k�x� �� E�x� � τ

2h
Wx � x`k

τ
�

�k�1�τ
�S
kτ

∂tx
h��` � 1�h � s�dsW2

10This is not surprising, as we are comparing a proper approximately inertial solution with one that suddenly stops. A better
competitor might be the “straight continuation” xk � τ�xk � xk�1�, but then the estimate again requires convexity to deal with the
energy-term.
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where we use �R A �dt � 1SAS RA �dt as the mean value integral for sets of finite measure A.
As a result we get what we will call a time-delayed solution, satisfying

©E�x�t�� � �∂tx�t� � ∂tx�t � h�
h

(1.2.3)

for t > �0, T �. We can test this time-delayed solution with ∂tx�t� and find the hyperbolic a-priori estimate

E�x�b�� �E�x�a�� � �S b

a
d∂tx�t� � ∂tx�t � h�

h
, ∂tx�t�i dt

B �
1

2

b

�S
b�h

S∂tx�t�S2dt � 1

2

a

�S
a�h

S∂tx�t�S2dt,
whenever the solution was constructed over �a � h, b�.11

The above gives us a good estimate on E�x�t�� and an averaged time-derivative, independent of h which
allows for sending h� 0 in (1.2.3).

The here explained approach, turns out to be admissible for infinite-dimensional spaces instead of Rn and
even coupling between Eulerian and Lagrangian coordinates. For that Eulerian-Lagrangian coupling however
additional difficulties appear that require some novel ideas on its own. This will be discussed in the forthcoming
sections.

Remark 1.2.1 (Numerical use of the method). Since numerous numerical schemes for minimization (over dis-
crete spaces) are available the above methodology might also be attractive for computational mathematics. The
idea would here be to do a two-scale approximation: This means that once x`�1

k�1, x
`�1
k and x`k are constructed.

Then we can define x`k�1 as the minimizer of

F
`
k�x� �� E�x� � τ

2h
Ux � x`k

τ
�
x`�1
k�1 � x

`�1
k

τ
U2.

In order to pass to the limit it is in general unavoidable to use the hyperbolic structure on a time-continuous
level. This means that first τ � 0 and only afterwards h � 0. The question is how much smaller does τ needs
to be? One observes quickly, that in case E is convex τ and h can be chosen arbitrarily. Hence, the smallness
of τ in relation should depend on the non-convexity of the assumed energies. In a forthcoming paper we hope
to investigate this issue further.

1.2.3 A quasistatic fluid-structure interaction, chapter 5

This is a simplified fluid-structure interaction that was treated in [13] and involves largely deformable elastic
bulk solids. This means Q ` Rn and Ω ` Rn. We look for η � �0, T � � Q � Ω, Ω�t� � Ω � η�t,Q�,
v � �0, T � �Ω�t�� Rn and p � �0, T � �Ω�t�� R satisfying

divσ�η� � ρsf X η in Q, (1.2.4)

0 � ν∆v �©p � ρff on Ω�t�, (1.2.5)

divv � 0 on Ω�t�, (1.2.6)

Here, σ is the first Piola–Kirchhoff stress tensor of the solid, ν is the viscosity constant of the fluid, ρs and ρf
are the densities of the solid and fluid respectively and f is the actual applied force in the current (Eulerian)
configuration. Thus, the fluid is assumed to be Newtonian with the steady Stokes equation modeling its behav-
ior. For the solid, we consider a material for which the first Piola–Kirchhoff stress tensor σ can be derived from
underlying energy and dissipation potentials; i.e.

divσ ��DE�η� �D2R�η, ∂tη� (1.2.7)

11Actually in the construction procedure the hypoerbolic a-priori estimate should be used for each ` to guarantee that the h-dependent
a-priori estimate possesses a uniform upper bound.
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with E being the energy functional describing the elastic properties while R is the dissipation functional used
to model the viscosity of the solid. Here D denotes the Fréchet derivative and D2 the Fréchet derivative with
respect to the second argument. Such materials are often called generalized standard materials [95, 155, 119].
The results in [13] is for quite general forms of E and R. The assumptions are inspired by the following
prototypical examples for E and R:

R�η, ∂tη� �� S
Q
S�©∂tη�T©η � �©η�T �©∂tη�S2dx � S

Q
S∂t�©ηT©η�S2dx (1.2.8)

E�η� �� ¢̈̈¦̈̈¤RQ
1
8 S©ηT©η � I SC � 1�det©η�a � 1

q S©2ηSqdx if det©η A 0 a.e. in Q

�ª otherwise
(1.2.9)

where we use the notation S©ηT©η � I SC �� �C�©ηT©η � I�� � �©ηT©η � I�, with C being a positive definite
tensor of elastic constants, q A n and a A qn

q�n .
Notice that in (1.2.9) the first term corresponds to the Saint Venant-Kirchhoff energy, the second models

the resistance of the solids to infinite compression and the last is a regularisation term.
The coupling of the fluid and the solid are via their common interface. We consider no-slip boundary

conditions and a force balance

v�t, η�x�� � ∂tη�t, x� in �0, T � � ∂Q, (1.2.10)

σ�t, x�n�x� � �νεv�t, η�t, x�� � p�t, η�t, x��I�n̂�t, η�t, x�� in �0, T � � ∂Q, (1.2.11)

where n�x� is the unit normal to Q while n̂�t, η�t, x�� �� cof�©η�t, x��n�x� is the weighted normal trans-
formed into to the Eulerian configuration and εv �� ©v � �©v�T is the symmetrized gradient.12 Additionally,
there are second order Neumann-type boundary conditions for the deformation η arising from the second order
gradient in its energy.

The main result of the chapter is the following theorem.

Theorem 1.2.2. Under appropriate initial condition η0 there exists a weak solution of (1.2.4)–(1.2.11). This
means in particular that there are η, v, p which satisfy

S
T

0
`DE�η�, φe � `D2R�η, ∂tη�, φe � `εv, εξeΩ�t� � `p,divξe dt

� S
T

0
ρf `f, ξeΩ�t� � ρs `f X η, φeQ dt (1.2.12)

for all φ > Cª��0, T � �Q;Rn� and ξ > Cª

0 ��0, T � �Ω;Rn�� such that φ�t, x� � ξ�t, η�t, x�� on �0, T � �Q.
Moreover, limt�0 η�t� � η0 in an appropriate sense. Here the maximal time of existence T is restricted

only in case a collision of the solid with itself or ∂Ω is approached, or if the elastic energy approaches infinity
in finite time (a phenomenon that can not be excluded a-priori in the quasi-steady case).

The key part here is to show how geometrically coupled PDEs with coupled Dirichlet boundary values can
be approximated variationally. The construction of a weak solution to (1.2.4)-(1.2.6) is via an implicit-explicit
time-discretization scheme that exploits the variational structure of the problem. Recall that we consider the
steady Stokes operator whose solutions are minimizers over the square integral of the symmetric gradient over
solenoidal functions. Hence both the stress tensor for the solid as well as of the fluid are related to some
potential.

Indeed, let us split �0, T � into N equidistant time steps of length τ . Assume, for k > �0, . . . ,N �1�, that ηk
is given and denote Ωk � Ω�ηk�Q�. We then define ηk�1, vk�1 to be the solution of the following minimization
problem

E�η� � τR�ηk, η � ηk
τ

� � τν
2
Y©vY2

Ωk
� τρs cf X ηk, η � ηk

τ
h
Q
� τρf `f, veΩk Ð� min. (1.2.13)

12Here we consider a solid floating in a fluid. This is merely for the sake of abbreviation. It is however possible to assume that parts
of the solid are fixed or even attached to the boundary of Ω at some parts.
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This is the place to specify the space over which the minimization needs to be performed. It turns out to be a
sensitive point, which we want to discuss in a bit more detail here. Essentially we have to take into account the
following three aspects:

(i) The potential energy of the solid E, defined in (1.2.9) has to be well defined. Hence as an underlying
function space one should consider W 2,q�Q�. However, this does not suffice. We further have to take
into account the important non-convex restriction that the determinant should not be negative; in our case
this means that we will only consider states of finite energy. What turns out to be a good choice for
the state space of η is the following set that is in coherence with the celebrated Ciarlet-Nečas condition
proposed in [39]:

E �� �η >W 2,q�Q; Ω� � E�η� @ª, Sη�Q�S � S
Q

det©η dx  .
Here, the finite energy guarantees local injectivity and that any C1-local homeomorphism is globally
injective except for possible touching at the boundary. This space is also a valid state space for the
dissipation potential R of the solid deformation.

(ii) The dissipation potential for the fluid is the standard Stokes potential. Hence the natural space is the
space of divergence free functions Vk �� �v > W 1,2�Ωk� � divv � 0, vS∂Ω � 0�. The respective fluid
pressure then appears as the according Lagrange multiplier.

(iii) Finally the coupling condition at the common interface has to be captured. It turns out that it suffices
to prescribe coupling of the common Dirichlet boundary values (1.2.10). Indeed, the second coupling
condition is then an automatic consequence of the coupled weak formulation (certainly in a weak sense
only). Consequently we require that �η, v� > E �Vk, such that the time-discrete speed of the deformation
equals to the velocity of the fluid:

v�ηk�x�� � η�x� � ηk�x�
τ

for a.e. x > ∂Q.

It turns out that the minimization implies a natural approximation of (1.2.12). Indeed, let �ηk�1, vk�1� be a
minimizer and φ > Cª�Q;Rn� as well as ξ >W 1,2�Ω�τ�

k ;Rn� with divξ � 0. Then we can use the perturbation�η�τ�k�1 � εφ, v
�τ�
k�1 � εξ~τ� as a competitor provided that ξ X ηk � φ. This implies the following Euler-Lagrange

equation:

`DE�ηk�1�, φe � cD2R�ηk, ηk�1 � ηk
τ

� , φh � ν `εvk�1,©ξeΩk
� ρf `f, ξeΩk � ρs `f X ηk, φeQ . (1.2.14)

for any φ > Cª�Q;Rn� and ξ > Cª�Ωk;Rn�, divξ � 0, ξS∂Ω � 0 such that ξ X η � φ in ∂Q. The fact that
DE�ηk�1� is in a valid negative Sobolev space is certainly relying on estimates of Healy-Krömer type [96]
(which again relies on the choices of a, q).

Searching for time-discrete approximations of the weak solution to (1.2.4) alone via a minimization problem
similar to the one above is actually well known and heavily used in the mathematics of continuum mechanics
of solids (see e.g. [119]). The method is known as the method of minimizing movements or, in particularly in
the engineering literature, also called the time-incremental problem. As far as the authors are aware this method
has not been applied to the theory of fluid-structure interaction problems before.

The advantage of the variational approach in contrast to directly solving the corresponding Euler-Lagrange
equations is twofold. Not only do we deal with the non-convexity of E and the underlying non-convex space E
in a natural way, but also we automatically gain an energetic a-prori estimate. Indeed comparing the value of the
functional in (1.2.13) in �ηk�1, vk�1� with its value for �ηk,0� and iterating, we get the following (quantitatively
optimal) estimate of energy and dissipation
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E�ηk�1�´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Final energy

�

k

Q
l�0

τ �R�ηl, ηl�1 � ηl
τ

� � ν
2
Yεvl�1Y2

Ωk
�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1~2 of Dissipation

(1.2.15)

B E�η0�´¹¹¹¹¸¹¹¹¹¹¶
Initial energy

�

k

Q
l�0

τ �ρs cf X ηl, ηl�1 � ηl
τ

h
Q
� ρf `f, vl�1eΩk	´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Work from forces

.

This estimate suffices to pass to the limit after overcomming certain technical difficulties. In particular a Korn’s
inequaliy estimating fluid and solid velocity simultaneously is introduced and a subtle approximation of test-
functions. The latter is necessary due to the fact that the fluid-domain (the part where the test-function is
supposed to be solenoidal) is a part of the solution. This allows to pass to the limit with (1.2.14) and derive
(1.2.12).

1.2.4 Minimizing movements for solids involving inertia, chapter 6

In this part we extend the example given in Subsection 1.2.2 to infinite dimensions. Let us consider a mere
solid deformation that is not interacting with a fluid. Namely we seek η � �0, T � �Q� Rn, evolving according
to

�DE�η� �D2R�η, ∂tη� � f X η � ρs∂2
t η (1.2.16)

with appropriate prescribed boundary and initial conditions
Following the finite dimensional example, we aim to turn this hyperbolic problem into a sequence of short

time consecutive parabolic problems. First one replaces ∂2
t η with a difference quotient and solving what we

call the time-delayed problem

DE�η�t�� �D2R�η�t�, ∂tη�t�� � f X η�t� � ∂tη�t� � ∂tη�t � h�
h

(1.2.17)

for a given h A 0.
Considered on a short interval of length h, the term ∂tη�t�h� can be seen as fixed given data. Then on this

interval the problem is parabolic and is solved using the minimizing movements approximation as to what was
described before; meaning for fixed h we pick τ @@ h and iteratively minimize

E�η� � τR�ηk, η � ηk
τ

� � τρs cf X ηk, η � ηk
τ

h
Q
�

1

2h
Yη � ηk

τ
� ∂tη�τk � h�Y2

Ð� min.

Upon sending τ � 0 using the same techniques as before, we then obtain a weak solution to (1.2.17) on�0, h� which can be used as data on �h,2h� and so on, until we have derived a time-delayed solution on �0, T �.
It is important to note that the a-priori estimate obtained via the minimization is dependent on h. Only after

passing with τ � 0 the chain rule can be used, to provide an h-independent a-priori estimate. In particular one
has to ensure that the following chain rule can be made rigorous ∂tE�η� � `DE�η�, ∂tηeQ which then leads to
the following a-priori estimate

E�η�t�� � ρs t

�S
t�h

Y∂tη�s�Y2
Q

2
ds � S

t

0
2R�η, ∂tη�ds B E�η0� � ρs Yη�Y2

Q

2
� S

t

0
`f X η, ∂tηeQ ds,

where η0 and η� are the given initial conditions for η and ∂tη respectively.
The estimate then allows to construct a weak solution to (1.2.16), via weak compactness, Aubin-Lions

lemma and the Minty method.
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1.2.5 Bulk elastic solids coupled to Navier-Stokes equations, chapter 7

In this chapter we describe the main result of [13] which is the existence of a bulk solid interacting with the
incompressible system of Navier-Stokes equations:

ρs∂
2
t η � divσ � ρsf X η in Q,

ρf�∂tv � �©v�v� � ν∆v �©p � ρff on Ω�t�,
divv � 0 on Ω�t�

with coupling conditions (1.2.10) and (1.2.11) and σ satisfying (1.2.7).

Theorem 1.2.3. Under appropriate conditions on the initial values v0, η0, η
� for v, η, ∂tη the right hand side f

and the domains Ω and Q, there exists a weak solution to the above until the point of collision of the solid with
itself or ∂Ω. This means in particular that there are η, v, p satisfying

S
T

0
�ρs `∂tη, ∂tφeQ � ρs `v, ∂tξ � v � ©ξeΩ�t� � `DE�η�, φe � `D2R�η, ∂tη�, φe � ν `εv, εξeΩ�t� dt

� S
T

0
`p,divξeΩ�t� � ρs `f X η, φeQ � ρf `f, ξeΩ�t� dt � ρs `η�, φ�0�eQ � ρf `v0, ξ�0�eΩ�0�

for all �φ, ξ� > Cª��0, T ��Q��Cª��0, T �;Cª

0 �Ω;Rn�� satisfying ξ�T � � 0, φ�t� � ξ�t� Xη�t� on Q for all
t > �0, T � and ∂tη�t� � v�t� X η�t� on ∂Q.

The main obstacle here lies in the Eulerian description of the fluid. Here it turns out to be natural to approx-
imate the material derivative of the fluid velocity �∂tv � �©v�v� by a time-discrete difference quotient. This is
done by subsequently introducing a flow map Φs�t� � Ω�t�� Ω�t�s� fulfilling ∂sΦs�t, y� � v�t�s,Φs�t, y��
(resp. a discrete version of this) and Φ0�t, y� � y in both the discrete and the time-delayed approximation
layers. This means that Φ transports the domain of the fluid along with its velocity.

In particular the fluid analogue of the difference quotient in the time-delayed problem will be a “material
difference quotient” in the size of the acceleration scale h, which is essentially of the form

v�t,Φh�t � h, y�� � v�t � h, y�
h

.

As Φ and v are inseparably linked we need to construct their discrete counterparts alongside each other already
in the τ scale. This discrete construction of the highly nonlinear Φ and its subsequent convergence are explained
in more detail in the existence proof shown in chapter 7.

We wish to mention that the minimizing movements method has been previously used to show existence
of solutions to the Navier-Stokes equation for fixed domains. In particular we want to highlight [82] as an
inspiration. There the authors also employ flow maps to obtain the material derivative, but as they work on a
fixed domain, they do not need to construct them iteratively but can instead rely on the respective existence
theory for the Stokes-problem. As an indirect consequence, their minimization happens on what we would
consider the h-level, which makes it incompatible with our way of handling the solid evolution. Thus, the
scheme proposed here is more of an improvement of the numerical scheme [159] which has been developed
much earlier. Also the recent variational work on compressible Euler equation [30] is related. The latter might
be a starting point to show fluid-structure interactions involving bulk solids also in the compressible regime.

1.2.6 Outlook: Variational approaches for shells interacting with fluids

In order to provide a connection between the chapters 2–4 with the chapters 5–7 we discuss a work which is
currently in preperation [115]. There we use variational methods to construct solutions for a fluid structure
interaction involving a plate/shell; which means an elastic object of one dimension less then the fluid. Conse-
quently the fluid stresses become a right hand side for the deformation of the thin object. Let us recall that all
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previous work on weak solution is restricted to settings, where the fluid domain is a sub-graph for some un-
changed reference manifold; most of the works allowing deformation of the structure to be scalar with respect
to a given fixed direction (see for instant the recent contributions [153, 29, 142] and chapter 2–chapter 4).

In the work [115] we overcome this obstacle by relying again on the variational method. For the sake of
a clearer explanation let us consider the following simple set-up. A beam that forms the top of a 2D canister
filled with a fluid governed by the Navier-Stokes equation. The reference cube is hence �0, `� � �0,1�.

η � �0, T � � �0, `�� Γ�t� ` R2 injective, such that η�t,0� � �0,1�T � η�t, `� and

consequently the variable fluid domain Ω�t� is the area enclosed by Γ�t� an the box underneath. In order
to allow for large deformations in all spatial coordinate directions we have to consider an elastic energy that
penalizes 1) stretching of the beam, 2) bending of the beam and 3) compression of the beam. The latter one is
excluded a-priori in case the deformation is restricted to a fixed coordinate direction. A simple model example
that penalizes the deformation with respect to a flat reference configuration is given by

EK�η� �� S l

0
�cstretchS∂xη1 � 1S2 � ccomprS∂xη1S2α � ccurv S∂xxη2S2

2
�dx,

with material constants cstretch, ccompr, ccurv, α A 0. The fluid structure interaction hence becomes

ρs∂
2
t η �DEK�η� � ρsf X η � �νεv�t, η�t, x�� � p�t, η�t, x��I�n̂�t, η�t, x�� in �0, T � � �0, `�, (1.2.18)

ρf�∂tv � �©v�v� � ν∆v �©p � ρff on Ω�t�, (1.2.19)

divv � 0 on Ω�t�, (1.2.20)

∂tη � v�t, η�t, x�� in �0, T � � �0, `�, (1.2.21)

recall here, that n̂�t, η�t, x�� is the variable in time Eulerian normal-direction on Γ�t�. This system is closed
by equipping it with according initial and boundary conditions.

Unfortunately even for this simple example the elastic energy on its own does not produce enough regularity
to show that the respective (step-wise) minimizaters are injective, after very short times. Hence for the time
being we have to include a regularizing term in the energy of the type ε0

S∂xxη1S2
2 . However, we do not require

any dissipative terms acting on the solid–hence considering (on its own) a hyperbolic solid evolution. Or put in
different words the dissipation of the fluid suffices to obtain a weak solution.

Theorem 1.2.4 (To appear in [115]). Assume that the additional regularizer ε0
S∂xxη1S2

2 is part of the elastic
energy EK , then there exists a weak solution to (1.2.18)–(1.2.21) until η touches the bottom of the container.

This theorem is the starting point for many interesting further developments. First, the extra regularizer is
used here merely to guaranty a minimal interval of existence for any injective initial geometry. At this point the
question of existence is closely related to regularity results and to no-contact results. We wish to discuss that
matter a little here:

As was mentioned before in [88] the authors were able to apply both regularity and no-contact theory
(building on [100]) to show that global in time strong solution exists for a 1D beam interacting with a 2D fluid
of Navier Stokes type. However, on the one hand the deformation is scalar there 13. On the other hand the beam
was assumed to be dissipative. It is somehow peculiar that the theory of global strong solutions could not be
transferred to purely hyperbolic solid evolutions–indeed, for the scalar set-up global weak solutions are known
to exists [29] but the regularity is an open problem up to date.

In discussion with B. Muha we came to the following possibility: The regularity could be missing due to
the nonphysical restriction of scalar deformation of the structure in a prescribed direction. Hence we finish this
section with the following conjecture.

Conjecture: There exists a global strong solution for the fluid structure interaction (1.2.18)–(1.2.21).

13In explicit η1�t, x� � x, hence the deformation of the beam is only with respect to the prescribed x2 direction.
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1.2.7 Further potential applications of the variational method

More general material laws for fluids: Within chapter 5 and chapter 7 we cover incompressible Newtonian
fluids. However, more general fluid laws could be considered with the main requirement being that the stress
tensor posesses a potential that can be used in place of νYεvY2. Examples include non-Newtonain incompress-
ible fluids (power law fluids), or even Newtonian compressible fluids, for which fluid-structure interactions
involving simplified elastic models have alread been studied [126, 22]. The latter feature the added difficulty
of density as an additional state variable.

Evolution in solid mechanics including inertia: While the hyperbolic evolution of solid materials including
inertia has already been studied [50, 51], the scheme presented here has the potential to provide generalizations
of those works. First, in the case when higher gradients are present in the energy, it might be possible to prove
existence of injective solutions in full dimension. So far, such results have been limited to special geometries
only, like the radial symmetric case [140]. Moreover, it might be possible to prove existence of measure valued
solutions to elastodynamics even for quasiconvex energies.

Non-quadratic dissipation of the solid: Similarly as in fluid mechanics, quadratic dissipation potentials are
commonly used when modelling solid materials. However, a large class of solid materials are known to behave
in a rate-independent manner; i.e. the appropriate dissipation potential R is homogeneous of degree one in the
second variable. Such models have already been studied extensively in the case of quasistatic evolution [138].
The main problem there is that their invariance under reparametrisation of the time-scale allows for sudden
jumps, something that could be mitigated by considering inertial effects or coupling with a fluid.

Contact conditions: The time-stepping existence scheme by minimization introduced in this work produces
results for arbitrarily large times, even over the point of self touching. This allows to gain a global-in-time
object. However in order to show that this object has a meaning as a solution to the given contact-problem,
further work needs to be done. Even for the case of an elastic solid alone, the understanding of self-touching
(or alternatively touching the container) is still unclear from a mathematical point of view; in particular under-
standing the contact force on the solid that is preventing the self-penetration. Some contact-forces have been
identified in the fully static problem only recently in [157] and a generalization to the quasi-static situation
is due to [118]. Generalizations to fluid-structure interaction or even hyperbolic evolution, however, remain
widely open.

A different point of view would be to use the fluid as a damping substance. In case the solid surface is
smooth it is conjectured that any sort of contact is prevented by the incompressible fluid. Please see [103, 99]
or [90] where respective results have been shown. It should be mentioned that the incompressability as well
as the no-slip boundary conditions are essential for these results. Certainly, once self-contact of the solid can
be excluded a-priori (due to the fluid surrounding it) global solutions are available. One should also mention
that due to chapter 8 the no-contact is not necessarily a paradoxical feature since bouncing can be expected to
happen.

Limit passage to simpler geometries: Mathematically, fluid-stucture evolution is much better understood if
the solid object is of lower dimension (see e.g. [145, 128]).

While passage to lower dimensional objects for solid materials has been studied (see e.g. [123, 67]), cou-
pling with the fluid and passing to the limit in a similar manner is another relevant topic.

Coupling to other physical phenomena: Here we consider a strictly mechanical system but coupling to further
physical phenomena such as heat transfer is worthwhile studying. Indeed, as heat transfer happens in the actual
configuration even results for the solid alone are sparse, we refer to [137] for a recent work in the quasi-steady
case. The methods from chapter 6 in this work might allow a generalization to the case with inertia both for the
solid alone and, ultimatively, also fluid-structure interaction.

Analytical bounds on numerical approximations of the scheme: The schemes we are proposing here are
constructive in their very nature. Thus one can construct numerical approximations without having to deviate
much from the main ideas. There are certain difficulties related to minimizing a non-convex functional and the
fact that we are dealing with changing domains, but both have been dealt with before. Instead the main point of
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interest will be the rate of convergence of any such scheme. Fundamentally our method relies on energy bounds
on the acceleration scale which we are only able to obtain after convergence of the velocity scale and which
may not hold for any approximation. Proving convergence of a numerical scheme would thus necessitate first
finding discrete bounds on that level.

1.3 Contactless rebound in viscous incompressible fluids, chapter 8

The last chapter is dedicated to the important problem of collisions between solids in a viscous fluid. The
problem of particle-particle or particle-wall collisions in viscous fluids has important practical applications
and has thus been the subject of a plethora of studies, not only experimental and numerical, but also from
a purely mathematical standpoint. Yet, the problem is far from being fully resolved and the partial results
which are available can often be counterintuitive. An example is given by the simple case of a spherical
rigid particle surrounded by a Stokes linear fluid which moves towards a wall. Indeed, it has been known
for some time already that if both the particle and the wall are equipped with no-slip boundary conditions,
contact cannot take place in a viscous incompressible fluid in finite time without singular forcing. We refer
to [25, 42, 59, 79, 80, 88, 98, 101, 105, 102, 187] for the detailed treatment of this issue in several different
scenarios. Despite the fact that in an incompressible fluid with no-slip boundary conditions contact seems to be
impossible, it has been hypothesized that a particle can rebound provided that it is elastic, or in general, when
it admits the storage and release of mechanical energy during the rebound, see e.g. [47].

Apart from that, other physical mechanisms allowing for contact or rebound have been suggested and in-
vestigated, such as slip boundary conditions [79], the fluid compressibility [58], pressure-dependent material
properties [10], wall roughness [80], etc. (see also [113, 114] and references therein).

In this chapter we consider a solid object (also referred to as particle or structure) that may be elastic or
rigid and study its motion when thrown towards a rigid wall in a viscous incompressible liquid environment
that adheres to all surfaces (that is, under no-slip boundary conditions). We consider both the two and the three
dimensional case. For simplicity, we will assume that the fluid is governed by the steady Stokes equations
(8.2.19). We expect, however, that most of our observations should be also relevant in case the fluid is governed
by the steady or unsteady Navier–Stokes equations, as analogous conclusions have been drawn by several other
authors investigating related issues (see e.g. [79, 80]).

As explained in several of the references given above (see in particular [98, 101, 102]), it has been mathe-
matically proven that the interplay of the regularity of all surfaces involved, the incompressibility of the fluid,
and the prescribed no-slip boundary conditions imply that a smooth, rigid body cannot reach any other smooth
solid obstacle in finite time. This phenomenon is also known as the no-contact paradox. See Figure 1.2 for a
demonstration of this surprising phenomenon in the case of a ball falling towards a flat horizontal ramp.

In this chapter, we aim to advance the understanding of the extent to which the pathological behavior
described in the no-contact paradox can affect the dynamics of solid particles in close proximity to the boundary
of the container. Throughout the chapter, special emphasis is given to the phenomenon of particle rebound.
Indeed, the main question that motivated this work can be formulated as follows:

(Q.1) Can solid particles rebound in the absence of a topological contact?

One of our main contributions is that we provide an affirmative answer to (Q.1) in a simplified setting. To
be precise, we introduce a system of coupled non-linear ODEs as a toy model approximation for the notoriously
challenging fluid-structure interaction problem describing the motion of an elastic solid immersed in a viscous
incompressible fluid.

Our design of the reduced model is methodologically inspired by the observation that, under certain simpli-
fying assumptions, the motion of a rigid body (described by the system of partial differential equations for the
coupled fluid-structure interaction problem) can be reduced to a single second order ODE (see [101]; see also
subsubsection 8.2.3.1), and conceptually by numerical experiments (see subsubsection 8.4.2.1). In particular,
our simplified model (described in detail in subsubsection 8.2.3.2) presents the following two defining features:
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Figure 1.2: (a) A rigid ball falling towards a wall in a fluid environment of viscosity µ � 0.1 Pa s, cf. sub-
subsection 8.4.2.1. (b) Dependence of the distance from the bottom (denoted by h) on time t for different
viscosities.

�i� it allows for the storage and release of mechanical energy to account for an elastic response of the solid
(see Figure 8.1);

�ii� it encodes possible deformations of the body.

While property �i� is a rather natural requirement, a few comments on �ii� are in order. Motivated by our
numerical experiments, we allow the fluid-solid interaction to affect the shape of the solid object. It is well
understood (see, for example, the discussion in Subsection 8.2.4 and the reference therein), that changes in
the flatness of the particle in the nearest-to-contact region can have a significant influence on the magnitude of
the drag force. Furthermore, since this effect becomes even more dramatic at small distances from other solid
objects or from the boundary of the container, we tailor our model to adequately capture this interplay by con-
sidering a possible dependence on the deformation parameter in the damping term which represents the drag
force. In this simplified setting (see Theorem 8.3.3), we show that rebound is indeed possible for sufficiently
small values of the viscosity parameter, provided that the solid experiences a substantial flattening.

Let us mention here that our investigation uncovers a rather surprising “trapping” phenomenon, thus provid-
ing further insight into the consequences of the no-contact paradox. In order to illustrate this effect, consider a
rigid object, which however allows for the storage and release of (a fraction of) its kinetic energy, as in property�i� above. As a model example, consider a rigid spherical shell with an internal mass-spring energy storing
mechanism, as sketched in Figure 8.1, falling towards a horizontal wall. For small values of the dynamic vis-
cosity parameter, the expected dynamics for this particular configuration are as follows: as the outer shell is
slowed-down by the viscous forces preventing from collision, part of the kinetic energy of the system is stored
in the inner mechanism; the shell can then be expected to rebound once this energy is transferred back to it by
the upwards push applied by the mass-spring system. Moreover, one would also anticipate to witness increas-
ingly pronounced rebounds as friction in the fluid is reduced by considering gradually smaller values of the
viscosity parameter. However, the analysis of this peculiar fluid-structure interaction performed on our reduced
model predicts a rather different behavior. This is made precise in the following corollary.

Corollary 1.3.1. In the vanishing viscosity limit, the rigid shell system described above falls freely (that is, as
it would in the vacuum) towards the wall, to which it then sticks for all times after collision.

For a proof of the corollary we refer the reader to Section 8.3, and in particular to the proof of Theorem 8.3.2
below, in which we show a more general result.

In view of Theorem 1.3.1, we say that a system does not produce a physical rebound if the distance between
the body and the wall converges, in the vanishing viscosity limit, to a monotone function of the time variable
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t. Thus, for our purposes, a rebound is said to be physical (or physically meaningful) only if it withstands the
vanishing viscosity limit.

Obviously, some crucial aspect is missing in the models considered in Theorem 1.3.1 (and Theorem 8.3.2)
in order to capture physical bouncing effects. The motion described is not only in clear contrast with our real-
world experience of bouncing objects, but also with laboratory experiments and numerical simulations (see,
for example, the recent contributions [94, 188]). For more details, we refer to Section 8.4; see also the results
presented in [65, 165]. These observations naturally lead to the following question.

(Q.2) What is the mathematical reason for a physical rebound?

We present here our scientific progress on this complicated issue. Specifically, our investigations and results
prompted us to formulate the following conjecture.

Conjecture: A qualitative change in the flatness of the solid body as it approaches the wall, together with
some elastic energy storage mechanism within the body, can potentially allow for a physically meaningful re-
bound even for no-slip boundary conditions preventing from topological contact.

The results presented in this chapter (both analytical and numerical) strongly support our leading conjecture.
Indeed, it turns out that our “educated guess” in the design of the reduced model, for which we are able to
prove the possibility of a physical rebound, admits solutions that are in striking match with the finite element
solutions (FEM solutions) for a full fluid-structure interaction. See indeed ??, where the motions are compared
for several values of the viscosity parameter. We refer to Subsection 8.4.3 for a detailed discussion of the
comparison between the numerical simulations.
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(a) (b)

Figure 1.3: Comparison of numerically obtained solutions to the reduced model of ODEs (a) and FEM solutions
(b).

While this figure allows to speculate that our reduced model could have indeed potentially captured the
essential feature for rebound in the absence of collisions, certainly, a precise connection between the two
models is still missing.

It is worth noting, however, that up to now even the existence theory for bulk elastic solids interacting
with fluids is rather sparse (see, for example, [86] or chapter 7). We recall that in the existence, regularity
and uniqueness results of the previous chapters always some kind of no-contact conditions are required on the
solid. (These assumptions are rather standard even in case of rigid body motions.) On the other hand, no-contact
results (which can be regarded as the starting point of our investigations) for smooth deformable objects can be
expected to be true. An important result in this direction is given by the paper [88], where the authors consider
the case of a beam interacting with a viscous fluid.

We conclude by mentioning that special effort is put into keeping the assumptions in the analytical section
of the paper as general as possible, without however hindering the tractability of the reduced model. For this

22



SCHWARZACHER INTRODUCTION ANALYSIS FOR FSI

reason, in Subsection 8.3.1 we provide an axiomatic set of assumptions which give the reduced model enough
flexibility when it comes to fitting it with the full FSI problem.
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Chapter 2

Existence and regularity of weak solutions
for a fluid interacting with a non-linear shell

2.1 Introduction

In this chapter we study the coupling of the 3D incompressible Navier-Stokes equations with the evolution of
the non-linear Koiter shell equation. Our main result is that any finite-energy weak solution to the considered
FSI problem satisfies an additional regularity property on its interval of existence (see Theorem 2.2.5). More
precisely, we show that the elastic displacement belongs to the following Bochner space L2

t �H2�s
x � 9H1

t �Hs
x�

for all s @ 1
2 . Here Hs denotes the standard fractional Sobolev space1. In particular, due to respective embed-

ding theorems, the elastic displacement is Lipschitz continuous in the space variable for almost every moment
of time. We use this result to show the existence of weak solutions to a fluid-non-linear Koiter shell interaction
problem (see Theorem 2.2.4). Since the non-linear Kotier shell equations are quasi-linear with non-linear co-
efficients depending on the terms of leading order in the energy, the additional structure regularity estimate is
crucial for the compactness argument in the construction of a weak solution. The main idea behind the regular-
ity theorem is to use the fluid dissipation and the coupling conditions to prove the additional regularity estimate
for the structure displacement. The realization of this idea is technically challenging. It includes the devel-
opment of a comprehensive analysis to construct a solenoidal extension and smooth approximations for the
time-changing domain with clear (local) dependence on the regularity of the boundary values and the boundary
itself. The approach is quite general and thus seems suitable for further applications related to the analysis of
variable geometries. Actually, the present result was already applied, please see the preprints [21, 183] and the
next two chapters.

Fluid-structure interaction has been an increasingly active area of research in mathematics in the last 20
years. Due to the overwhelming number of contributions in the area we just mention analytic results that are
most relevant for our work in this brief literature review. The existence results for weak solutions for the FSI
problems where the incompressible Navier-Stokes equations are coupled with a lower-dimensional elasticity
model (e.g. plate or shell laws) have been obtained in [31, 87, 144, 127, 109, 147]. The corresponding existence
result for the compressible fluid flow was proved in [22]. All mentioned results on the existence of weak
solutions are valid up to time of possible self-intersection of the domain. Up to our knowledge the number
of regularity estimates for long time solutions are rather limited. Recently some significant results on strong
solutions for large initial data and a 2D fluid interacting with a 1D solid have been obtained, see [88, 29]. For
a three dimensional fluid interacting with a three dimensional elastic body see [110, 111] for the global results
with small initial data and structural damping. The theory of local-in-time strong solutions for 3D-3D FSI
problems is rather well developed, see recent results in [120, 163] and references within. We wish to emphasize
that in all these works the structure equations were linear. For the FSI problem with non-linear structure the
theory is far less developed. The existence of weak solution to the FSI problem with a Koiter membrane energy
that includes non-linearities of lower order and a leading order linear regularizing term was proved in [153].

1For a precise definition of the fractional Sobolev space see Subsection 2.2.5.
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Short time or small data existence result in the context of strong solutions for various non-linear fluid structure
models have been obtained in [34, 35, 44]. Finally, we wish to mention some results in the static case that can
be found here [75, 86].

The role of the fluid dissipation on the qualitative properties of the solution is one of the central questions
in the area of fluid-structure interactions and related systems, and has been studied by many authors, see e.g. [8,
190] and references within. We present here a new technique that allows to transfer dissipation features from
the fluid equation to the non-linear hyperbolic elastic displacement. We wish to point out that better regularity
can not be expected for a non-linear hyperbolic PDE with arbitrary smooth right hand sides and initial data. It
is the coupling with a dissipative equation that allows for this better regularity.

Outline of the chapter: The next section first derives the Koiter energy w.r.t. our chosen coordinates,
gives two explicit examples of Koiter energies with respective geometric restrictions on α�Ω�, β�Ω�, γ�η�, and
introduces the definition of a weak solution for fluid-structure interactions. Section 2.3 is the technical heart
of the paper since there the solenoidal extension and approximation operators are introduced. In Section 2.4,
we give the proof of the regularity result Theorem 2.2.5. Section 2.5 provides a new version of Aubin-Lions
compactness result that reveals the connection between the existence of suitable extensions and compactness
results for fluid-structure interactions involving elastic shells. Finally, in Section 2.6 we show Theorem 2.2.4;
the existence is shown by combining the extra regularity of the shell with the compactness theory.

2.2 Weak solutions

2.2.1 Fluid and interaction

Let Ω ` R3 be a domain such that its boundary Γ � ∂Ω is parameterized by a C3 injective mappingϕ � ω � R3,
where ω ` R2. To simplify notation we assume that the boundary of Ω can be parameterized by a flat torus ω �

R2~Z2 which corresponds to the assumption of periodic boundary conditions for the structure displacement.2

We denote the tangential vectors at any point ϕ�y� in the following way:

aα�y� � ∂αϕ�y�, α � 1,2, y > ω.

The unit normal vector is given by ν�y� � a1�y� � a2�y�Sa1�y� � a2�y�S . The surface area element of ∂Ω is given by dS �Sa1�y� � a2�y�Sdy. We assume that the domain deforms only in the normal direction and denote by η�t, y� the
magnitude of the displacement. This reflects the situation when the fluid pressure is the dominant force acting
on the structure in which case it is reasonable to assume that the shell is deforming in normal direction. In this
case the deformed boundary can be parameterized by the following coordinates:

ϕη�t, y� � ϕ�y� � η�t, y�ν�y�, t > �0, T �, y > ω. (2.2.1)

We wish to emphasize that this restriction is rather standard in the majority of mathematical works on the
analysis of weak solutions, mainly due to severe technical difficulties associated with the analysis of the case
where the full displacement is taken into account. The deformed boundary is denoted by Γη�t� � ϕη�t, ω�.
It is a well known fact from differential geometry (see e.g. [125]) that there exist α�Ω�, β�Ω� A 0 such that
for η�y� > �α�Ω�, β�Ω��, ϕη�t, .� is a bijective parameterization of the surface Γη�t� and it defines a domain
Ωη�t� in its interior such that ∂Ωη�t� � Γη�t�. Moreover, there exists a bijective transformation ψη�t, .� � Ω�
Ωη�t�.3

We denote the moving domain in the following way:

�0, T � �Ωη�t� �� �
t>�0,T �

�t� �Ωη�t�.
2We consider the periodic boundary conditions just to avoid unnecessary technical complications.
3For more details on the geometry see Section 2.2.2 and Definition 2.2.1.
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The non-linear Koiter model is given in terms of the differences of the first and the second fundamental forms of
Γη�t� and Γ which represent membrane forces and bending forces respectively. These forces are summarized
in its potential - the Koiter energy EK�t, η�. The definition of the potential is taken from [38, Section 4]. For a
precise definition and the derivation of the energy for our coordinates see (2.2.14) below. Let LKη be the L2-
gradient of the Koiter energy EK�t, η�, h be the (constant) thickness of the shell and %s the (constant) density
of the shell. Then the respective momentum equation for the shell reads

%sh∂
2
t η �LKη � g, (2.2.2)

where g are the momentum forces of the fluid acting on the shell.

Figure 2.1: An example of the deformed cylindrical domain.

The fluid flow is governed by the incompressible Navier-Stokes equations:

%f�∂tu � �u � ©��u � divσ�u, p� in �0, T � �Ωη�t�, (2.2.3)

divu � 0 in �0, T � �Ωη�t�, (2.2.4)

where σ�u, p� � �pI � 2µsym©u is the fluid stess tensor and %f the (constant) density of the fluid.
The fluid and the structure are coupled via kinematic and dynamic coupling conditions. We prescribe the

no-slip kinematic coupling condition which means that the fluid and the structure velocities are equal on the
elastic boundary:

u�t,ϕη�t, y�� � ∂tη�t, y�ν�y�, y > ω. (2.2.5)

The dynamic boundary condition states that the total force in the normal direction on the boundary is zero:

g�t, y� � �σ�u, p��t,ϕη�t, y��ν�η�t, y�� � ν�y�, y > ω, (2.2.6)

where ν�η�t, y�� � ∂1ϕη�t, y��∂2ϕη�t, y� is defined as a weighted vector pointing in the direction of the outer
normal to the deformed domain at point ϕη�t, y�; the weight is exactly the Jacobian of the change of variables
from Eulerian to Lagrangian coordinates.
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We may summarize and state the full fluid-structure interaction problem.
Find �u, η� such that

%f�∂tu � �u � ©��u � divσ�u, p� in �0, T � �Ωη�t�,
divu � 0 in �0, T � �Ωη�t�,

%sh∂
2
t η �LKη � ��σ�u, p� Xϕη�ν�η� � ν in �0, T � � ω, (2.2.7)

u Xϕη � ∂tην in �0, T � � ω,
u�0, .� � u0 in Ωη�0�,

η�0� � η0, ∂tη�0� � η1 in ω.

2.2.2 The elastic energy

Coordinates.
Here we follow the strategy of [127, Section 2] by introducing the following coordinates attached to the

reference geometry Ω which are well defined in the tubular neighborhood of ∂Ω (see e.g. [125, Section 10] and
Figure 2.2 for an illustration).

Figure 2.2: Cross section of cylindrical domain, its deformation and corresponding coordinate system.

Definition 2.2.1. Let x be a point in the neighborhood of ∂Ω. We define the distance parameter with respect to
the reference point

y�x� � arg miny>ω Sx �ϕ�y�S, s�x� � �x � y�x�� � ν�x�
and the projection p�x� � ϕ�y�x��.

We define the numbers α�Ω�, β�Ω� so that �α�Ω�, β�Ω�� is the largest open interval such that numbers
s�x�,p�x�, y�x� are uniquely defined over �ϕ�y� � sν � y > ω, s > �α�Ω�, β�Ω���.

For κ A 0 we introduce the indicator mapping σκ > Cª�R�, such that

σκ�s� � 1 for s > �α�Ω� � κ,ª�, σκ�s� � 0 for s B α�Ω� � κ
2

and σ�κ C 0.

We set
Sκ � �ϕ�y� � sν�y� � �s, y� > �α�Ω� � κ,β�Ω� � κ� � ω�

Further
Qκ � Sκ 8Ω and Qκ � Ω � Sκ.
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In particular we have a clear information on the support of the derivative:

Aκ �� �ϕ�y� � sν�y� � �s, y� > �α�Ω� � κ~2, α�Ω� � κ� � ω� a supp�σ�κ�s�����.
For η�y� > �α�Ω� � κ,β�Ω� � κ�, this allows to introduce the mapping ψη�t, .� � Ω� Ωη�t� by

z ( �1 � σκ�s�z���z � σκ�s�z���p�z� � �η�y�z�� � s�z��ν�y�z���,
and ψ�1

η �t, .� � Ωη�t� � Ω by

x( �1 � σκ�s�x���x � σκ�s�x���p�x� � �s�x� � η�y�x���ν�y�x���.
Moreover we define

Φ � �α�Ω� � κ,β�Ω� � κ� � ω � Sκ, Φ�s, y� � ϕ�y� � ν�y�s.
The function is smooth and invertible in dependence of ϕ and κ. This implies that

ψη XΦ � �α�Ω� � κ,0� � ω � Ωη, ψη XΦ�s, y� � ϕ�y� � �s � σκ�s�η�y��ν�y�
Finally, we define the following geometric quantity depending on ∂Ω and η:

γ�η� � 1Sa1 � a2S �Sa1 � a2S � η�ν � �a1 � ∂2ν � ∂1ν � a2�� � η2ν � �∂1ν � ∂2ν��.
Remark 2.2.2. The numbers α�Ω�, β�Ω� do not have to be small. For example, if Ω is a ball or a cylinder
with radius R, then �α�Ω�, β�Ω�� � ��R,ª�. The geometric quantity γ�η� is connected to the H2-coercivity
of the non-linear structure energy and its meaning is clarified in Lemma 2.4.3 and Remark 2.4.4.

Derivation of the elastic energy.
The non-linear Koiter model is given in terms of the differences of the first and the second fundamental

forms of Γη�t� and Γ. The tangent vectors to the deformed boundary are given by:

aα�η� � ∂αϕη � aα � ∂αην � η∂αν, α � 1,2. (2.2.8)

Therefore, the components of the first fundamental form of the deformed configuration are given by:

aαβ�η� � aα�η� � aβ�η� � aαβ � ∂αη∂βη � η�aα � ∂βν � aβ � ∂αν� � η2∂αν � ∂βν. (2.2.9)

We define the change of metric tensorG�η�:
Gαβ�η� � aαβ�η� � aαβ � ∂αη∂βη � η�aα � ∂βν � aβ � ∂αν� � η2∂αν � ∂βν. (2.2.10)

The normal vector to the deformed configuration is given by:

ν�η� � a1�η� � a2�η� � Sa1 � a2Sν � ∂2η�a1 � ν � η∂1ν � ν�
�∂1η�ν � a2 � ην � ∂2ν� � η�a1 � ∂2ν � ∂1ν � a2� � η2�∂1ν � ∂2ν�. (2.2.11)

Notice that ν�η� is not a unit vector. We follow our reference literature [38] and use the following tensor R
(denoted by R# in [38, Section 4]) which is some non-normalized variant of the second fundamental form to
measure the change of curvature:

Rαβ�η� � 1Sa1 � a2S∂αaβ�η� � ν�η� � ∂αaβ � ν, α, β � 1,2. (2.2.12)
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Finally, we define the elasticity tensor in the classical way [38, Theorem 3.2]:

AE �
4λµ

λ � 2µ
�A � E�A � 4µAEA, E > Sym�R2�2�. (2.2.13)

Here A is the contravariant metric tensor associated with ∂Ω (see e.g. [38, Section 2] for the precise definition
of A), and λ A 0, µ A 0 are the Lamé constants. The Koiter energy of the shell is given by:

EK�t, η� � h
4
S
ω
AG�η�t, .�� � G�η�t, .��dy � h3

48
S
ω
AR�η�t, .�� �R�η�t, .��dy, (2.2.14)

where h is the thickness of the shell. In order to simplify the notation we introduce the following forms
connected to the membrane and bending effects in the variational formulation:

am�t, η, ξ� � h
2
S
ω
AG�η�t, .�� �G��η�t, .��ξ dy, (2.2.15)

ab�t, η, ξ� � h3

24
S
ω
AR�η�t, .�� �R��η�t, .��ξ dy, (2.2.16)

whereG� andR� denote the Fréchet derivatives ofG andR respectively. Therefore, the elastodynamics of the
shell is given by the following variational formulation:

h%s
d

dt
S
ω
∂tη�t, .�ξ dy � am�t, η, ξ� � ab�t, η, ξ� � S

ω
gξ dy on �0, T �, ξ >W 2,p�ω�, (2.2.17)

where %s is the structure density, g is the density of area force acting on the structure, and p A 2. We denote the
elasticity operator by LK which is formally given by

`LKη, ξe � am�t, η, ξ� � ab�t, η, ξ�, ξ >W 2,p�ω�. (2.2.18)

Next we give some examples for which we can calculate our restrictive numbers α�Ω�, β�Ω� and γ�η�.
Example 1: Cylindrical Koiter shell

The parameterization of the reference cylinder is given byϕ�θ, z� � �R cos θ,R sin θ, z�, �θ, z� > ω � �0,2π���0,1�, where R A 0 is the radius of the cylinder. We compute

a1�θ, z� � ��R sin θ,R cos θ,0�, a2�θ, z� � �0,0,1�, ν�θ, z� � �cos θ, sin θ,0�.
The corresponding contravariant metric tensor is given by A � � 1

R2 0
0 0

� . The deformation of the cylindrical

boundary is given by:

ϕη�θ, z� � �R cos θ � η�θ, z� cos θ,R sin θ � η�θ, z� sin θ, z�.
Straightforward calculation yields:

a1�η� � �1 � 1

R
�a1 � ηθν, a2�η� � a2 � ηza3,

ν�η� � �R � η�ν � ηz�R � η�a2 �
ηθ
R

a1.

Therefore, the change of metric tensor is given by

G�η� � � �R � η�2 � η2
θ �R

2 ηθηz
ηθηz 1 � η2

z
� ,

and the change of curvature tensor by

R�η� � � �1 � η
R�ηθθ � 1

R�η �R�2 � 2
η2
θ

R �R �1 � η
R�ηθz � 1

Rηθηz�1 � η
R�ηθz � 1

Rηθηz �1 � η
R�ηzz � .
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Here �α�Ω�, β�Ω�� � ��R,ª� and γ�η� � 1 � η
R .

Example 2: Spherical shell
Strictly speaking, the sphere does not fit in our framework since it does not have a global parameterization.
However, this assumption was introduced just for technical simplicity and can be easily removed by working
with local coordinates. In this example we consider an elastic sphere with holes around north and south poles.
On these holes we prescribe the boundary condition for the fluid flow, e.g. inflow/outflow or Dirichlet. The shell
is clamped on the boundary of the holes (see Figure 2.1 for illustration). More precisely, the parameterization
is given by

ϕ�θ, φ� � R�cos θ sinφ, sin θ sinφ, cosφ�, �θ, φ� > w � �0,2π� � �a, π � a�,
where R A 0 is the radius of the sphere, and a A 0 is the parameter determining the size of the holes. We
compute the tangent and normal vectors to the reference configuration

a1 � �R�sin θ sinφ, cos θ sinφ,0�, a2 � R�cos θ cosφ, sin θ cosφ,� sinπ�,
ν � ��cos θ sinφ, sin θ sinφ, cosφ�.

The contravariant metric tensor is given by A � � 1
R2 sin2 φ

0

0 1
R2

� , and the deformation of the cylindrical

boundary by

ϕη�θ, φ� � �R � η�θ, φ���cos θ sinφ, sin θ sinφ, cosφ�.
We calculate the tangent and normal vectors to the deformed configuration:

a1�η� � �1 � η

R
�a1 � ηθν, a2�η� � �1 � η

R
�a2 � ηφν,

ν�η� � �R � η�2 sinφν � �1 � η

R
�� ηθ

sinφ
a1 � ηφ sinφa2�.

The change of the metric tensor is given by

G�η� � � η2
θ � �sinφ�2η�η � 2R� ηθηφ

ηθηφ η2
φ � �R � η�2 �R2 � .

Finally, the components of the change of curvature tensor are given by

R11�η� � 1

2R2
� � 2η3 sin2 φ � η2�6R sin2 φ � ηφ sin 2φ � 2ηθθ�

� 2η�3R2 sin2 φ �Rηφ sin 2φ � 2η2
θ � 2Rηθθ� �R�Rηφ sin 2φ � 4η2

θ � 2Rηθθ��
R12�η� � R21�η� � η �R

R2
�ηθ�R cotφ � η cotφ � 2ηφ� � ηθφ�η �R��

R22�η� � 1

R2
� � η3

� η2�3R � ηφφ� �R�2η2
φ �Rηφφ� � η�2η2

φ �R�3R � 2ηφφ���.
The clamped boundary conditions are η � ∂φη � 0, φ � a, π � a. Since we will take finite differences of order
less than 1, we can extend η by zero (over the poles) and complete all estimates related to the regularity. Here�α�Ω�, β�Ω�� � ��ª,R� and γ�η� � �η�R�2

R2 .
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2.2.3 Weak coupled solutions

We use here the standard notation of Bochner spaces related to Lebesgue and Sobolev spaces. We will use bold
letters for vector valued functions in three dimensions. Usually we take y > ω to be a two dimensional variable
and x as a three dimensional variable. In order to define weak solutions, let us first define the appropriate
function spaces:

Vη�t� � �u >H1�Ωη�t�� � divu � 0�,
VF � Lª�0, T ;L2�Ωη�t�� 9L2�0, T ;Vη�t��,
VK � Lª�0, T ;H2�ω�� 9W 1,ª�0, T ;L2�ω��,
VS � ��u, η� > VF � VK � u�t,ϕη�t, .�� � ∂tη�t, .�ν�η�t, .���,
VT � ��q, ξ� > VF � VK � q�t,ϕη�t, .�� � ξ�t, .�ν�η�t, .��, ∂tq > L2�0, T ;L2�Ωη�t���.

(2.2.19)

Here VS and VF are solution and test space respectively. Even though for η > VK , Ωη�t� is not necessary a
Lipschitz domain, the traces used in definitions (2.2.19) and (2.3.3) are well defined, see Corollary 2.9. from
[127] (see also [31, 143]). We introduce the concept of solution which we will consider here. Observe, that from
this point on we normalize all physical constants ρs � ρf � h � µ � λ � 1 for notational simplicity since the
proofs require just positivity of these constants. We emphasize that the restrictions on existence and regularity
are only of geometrical nature. This can be quantified by α�Ω� and β�Ω� depending only on the reference
geometry, and γ�η� depending on the reference geometry and on the particular magnitude and direction of the
displacement, but not on the above physical constants.

Definition 2.2.3 (Weak solution). We call �u, η� > VS a weak solution of problem (2.2.7) if it satisfies the
energy inequality (2.2.21) and for every �q, ξ� > VT the following equality holds in D��0, T �

d

dt
S

Ωη�t� u � qdx � S
Ωη�t� � � u � ∂tq � ua u � ©q � 2sym©u � sym©q�dx

�
d

dt
S
ω
∂tηξ dy � S

ω
∂tη∂tξ � am�t, η, ξ� � ab�t, η, ξ�dy � 0,

(2.2.20)

Furthermore, the initial values η0, η1,u0 are attained in the respective weakly continuous sense.

By formally multiplying (2.2.7)1 by u and (2.2.7)2 by ∂tη, integrating over Ωη�t� and ω respectively,
integrating by parts and using the coupling conditions (2.2.7)4, we obtain the energy inequality (see e.g. [31,
144] for details of the computations related to the change of the domain and the convective term):

1

2
Yu�t�Y2

L2�Ωη�t�� �
1

2
Y∂tη�t�Y2

L2�ω� � EK�t, η� � 2S
t

0
S�Ωη�t�� Ssym©uS2 dxdt

B
1

2
Yu0Y2

L2�Ωη0� �
1

2
Yη1Y2

L2�ω� � EK�0, η0� �� C0.

(2.2.21)

2.2.4 Main results

The main result of the chapter is the existence of a weak solution:

Theorem 2.2.4. Assume that ∂Ω > C3, η0 > H2�ω�, η1 > L2�ω� and u0 > L2�Ωη0�, and η0 is such that Γη0

has no self-intersection and γ�η0� x 0. Moreover, we assume that the compatibility condition u0SΓη0 � η1ν
is satisfied. Then there exists a weak solution �u, η� on the time interval �0, T � to (2.2.7) in the sense of
Definition 2.2.3.

Furthermore, one of the following is true: either T � �ª, or the structure self-intersect, or γ�η� x 0, i.e.
the H2-coercivity of the structure energy degenerates, where γ is defined in Definition 2.2.1 below.

The second main theorem says that all possible solutions in the natural existence class satisfy better struc-
tural regularity properties.
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Theorem 2.2.5. Let �u, η� be a weak solution to (2.2.7) in the sense of Definition 2.2.3. Then the solution
has the additional regularity property4 η > L2�0, T ;H2�s�ω�� and ∂tη > L2�0, T ;Hs�ω�� for s > �0, 1

2�.
Moreover, it satisfies the following regularity estimateYηYL2�0,T ;H2�s�ω�� � Y∂tηYL2�0,T ;Hs�ω�� B C1

with C1 depending on ∂Ω, C0 and the H2-coercivity size γ�η�.
Remark 2.2.6 (Coercivity and non-linearity). Due to the fact that the Koiter shell equation is non-linear—more
precisely since the curvature change is measured w.r.t. the deformed geometry—the H2-coercivity of the Koiter
energy can become degenerate. This is quantified by the estimate that is shown in Lemma 2.4.3 below. At such
degenerate instant the given existence and regularity proofs break down. This is a phenomenon purely due to
the non-linearity of the Koiter shell equations. Indeed, in case when the leading order term of the elastic energy
is quadratic (i.e. the equation is linear or semi-linear), this loss of coercivity is a-priori excluded.

2.2.5 Fractional spaces

In the paper, we use the standard definitions of Bochner spaces related to Lebesgue and Sobolev spaces. In
particular, we consider fractional Sobolev spaces and Nikolskii spaces. We recall their definitions here.

For α > �0,1� (the order of derivative) and q > �1,ª� (the exponent of integrability) we say that g >

Wα,q�A�, for a domain A ` Rd if its norm

YgYq
Wα,q�A� �� �SASA Sg�x� � g�y�SqSx � ySn�αq dxdy� 1

q

� �S
A
Sg�x�Sqdx� 1

q

is finite. Fractional Sobolev spaces can be extended to higher order. For α > �k, k � 1� with k > N it is said that
g > Wα,q�A�, if all partial derviatives of order up to k are in Wα�k,q�A�. In the particular case q � 2 we use
the abbreviation

Hs�A� �W s,2�A� for s > �0,ª�.
We say that g > Nα,q�A� if its norm

YgYNα,q�A� �� sup
i>�1,...,d�

sup
hx0

�S
Ah

Ug�x � hei� � g�x�ShSα�1h
Uqdx� 1

q

� �S
A
Sg�x�Sqdx� 1

q

,

where ei is the i-th unit vector and Ah � �x > A � dist�x, ∂A� A h�, is finite. Nikolskii spaces are closely
related to fractional Sobolev spacesWα,q�A�. Let us just mention that for 0 @ α @ β @ 1 and a bounded domain
A we have

W β,q�A� ` Nβ,q�A� `Wα,q�A�.
Recall also that for fractional Sobolev spaces an embedding theorem is available for a Lipschitz domainA ` Rn
and g > Nβ,q�A� and 0 @ α @ β @ 1 we have for αq @ n thatYgY

L
nq
n�αq �A� B c1YgYWα,q�A� B c2YgYNβ,q�A�, (2.2.22)

and for αq A n YgY
C
α�nq �A� B c1YgYWα,q�A� B c2YgYNβ,q�A�. (2.2.23)

For the above estimates and more detailed study on the given function spaces we refer to [1, Chapter 7] and
[181]. The Nikolskii spaces are very popular in the analysis of PDE, since their definition via difference
quotients is rather easy to handle. Namely we introduce for g > L1�ω� and h x 0

Ds
h,e�g��x� �� g�x � he� � g�x�ShSs�1h

for any (unit) vector e > R2.

4For the definition of the fractional Sobolev spaces Hs�ω� see Subsection 2.2.5
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In the following, we will omit mentioning the direction e since it is never of relevance and write Ds
h�q��y� ��

Ds
h,e�q��y� for an arbitrary direction e. At this point we just wish to mention that these expressions satisfy the

following summation-by-parts formula

S
ω
Ds
h,e�g��y�q�y�dy � �S

ω
g�y�Ds

�h,e�q��y�dy
for all periodic functions g > Lp�ω� and q > Lp

��ω� with p > �1,ª�.
For a vector field g � A � Rd, we say that g >Wα,p�A�, if gi >Wα,p�A� for all i > �1, ..., d�. Finally we

denote by
Wα,p

div �A� � �g >Wα,p
div �A� � div�g� � 0 in a distributional sense�.

2.3 Solenoidal extensions and smooth approximations

In this section we construct a divergence free extension operator from �0, T � � ∂Ω to �0, T � � Ωη�t�. The
construction is based on the ideas of the construction in [127, Prop. 2.11]. In contrast to the approach there we
will use the celebrated Bogovskiı̆ theorem in place of the steady Stokes operator. We use the following theorem
that can be found in [77, Section 3.3], and in [63, Appendix 10.5].

Theorem 2.3.1. Let Ω be uniformly Lipschitz. There exists a linear operator B � Ĉª

0 �Ω� � Cª

0 �Ω�d which
extends from Ŵ k�1,p

0 �Ω��W k,p
0 �Ω� for 1 @ p @ª and k > Z, such that

YB�f�YWk,p�Ω� B CYfYŴk�1,p�Ω�, k > Z, (2.3.1)

where C is an absolute constant depending only on the Lipschitz constant. Here we use the notation Ĉª

0 �Ω� ��f > Cª

0 �Ω� � RΩ fdx � 0�, and for l C 0, Ŵ l,p
0 �Ω� � �f > W l,p

0 �Ω� � RΩ fdx � 0�, Ŵ �l,p
0 �Ω� � �f >

W̊ �l,p�Ω� � `f,1e � 0�, where W̊ �l,p�Ω� is defined via the norm

YfYW̊�l,p�Ω� � sup
�φ>W l,p��Ω��YφY

Wl,p� �1�
`f, φe.

Within this section we assume that η � �0, T � � ω � R is such that there exists αη, βη such that

α�Ω� � κ B αη B η�t, y� B βη B β�Ω� � κ for all �t, y� > �0, T � � ω. (2.3.2)

Moreover, in this section we use c orC as generic constants which may change their sizes in different instances.
Since their dependence on the geometry is relevant for our arguments, it will always be given explicitly in the
statements of the results.

The first step is to introduce a solenoidal extension operator. However, since all functions defined on the
boundary do not necessary allow for a solenoidal extension, we first need to construct a suitable corrector. We
use the coordinates introduced in Definition 2.2.1. For ease of readability we define for a function ξ � ω � R

ξ̃ � ∂Ω� R with ξ̃�p�x�� � ξ̃�x� �� ξ�y�x��.
In our solenoidal extension the Bogovskiı̆ theorem will be applied to

Sκ
2
� Sκ �� Aκ.

Observe, that Aκ is a C2 domain that contains the support of the function �p, s� ( σ�κ�p � sν̃�p�� from
Definition 2.2.1.

Next we introduce the following weighted mean-value over that set. Let λ > Lª�Aκ�, λ C 0, and RAκ λ�x�dx A
0 be a given weight. Then `ψeλ �� RAκ ψ�x�λ�x�dxRAκ λ�x�dx for ψ > L1�Aκ�.
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We will denote

λη�t, x� �� e�s�x��η�t,y�x���div�ν�p�x���σ�κ�s�x�� C 0, (2.3.3)

which has compact support in Aκ and satisfies (uniformly in t)

c1 B YληYL1�Aκ� B c2YληYLª�Aκ� B c3

for some positive constants c1 B c2 B c3 depending just on κ and the upper and lower bounds of η.

Corollary 2.3.2 (Corrector). Let (2.3.2) be satisfied. Then the corrector map

Kη � L
1�ω�� R, ξ ( Kη�ξ� � `ξ̃eλη � RAκ ξ̃�p�x��λη�t, x�dxRAκ λη�t, x�dx ,

satisfies the following estimates for q > �1,ª�:YKη�ξ�YLq�0,T � B CYξYLq�0,T ;L1�ω��, (2.3.4)Y∂tKη�ξ�YLq�0,T � B C�Y∂tξYLq�0,T ;L1�ω�� � Yξ∂tηYLq�0,T ;L1�ω���, (2.3.5)

whenever the right hand side is finite. Here C depends only on αη, βη, and κ.

Proof. The estimates in Lq�0, T � are immediate by the uniform bounds of λη and σ. In order to estimate the
time-derivative, we use the calculation

∂t`ξ�t�eλη�t� � � 1Yλη�t�Y2
L1

S
Aκ

∂tλη�t�dxS
Aκ

ξ̃�t�λη�t�dx � 1Yλη�t�YL1
S
Aκ

∂tξ̃�t�λη�t�dx
�

1Yλη�t�YL1
S
Aκ

ξ̃�t�∂tλη�t�dx.
The estimate now follows using ∂tλη � �∂tηλη and by the uniform bounds of λη and σ.

Proposition 2.3.3 (Solenoidal extension). Let (2.3.2) be satisfied and η > Lª�0, T ;W 1,2�ω��. Then there
exists a linear solenoidal extension operator

Fη � �ξ > L1�0, T ;W 1,1�ω�� � Kη�ξ� � 0�� L1�0, T ;W 1,1�Qκ
2 ��,

such that divFη�ξ � Kη�ξ�� � 0 for all ξ > L1�0, T ;W 1,1�ω�� and �Fη�ξ � Kη�ξ��, ξ � Kη�ξ�� > VT for
ξ > VK .

Moreover, Fη�ξ � Kη�ξ���t, x� � 0 for �t, x� > �0, T � � Qκ
2

and it satisfies the following estimates for
q > �1,ª�, p > �1,ª� and l > N.YFη�ξ �Kη�ξ��YLq�0,T ;Lp�Qκ

2 �� B CYξYLq�0,T ;Lp�ω��, (2.3.6)

YFη�ξ �Kη�ξ��YLq�0,T ;W 1,p�Qκ
2 �� B C�YξYLq�0,T ;W 1,p�ω� � Yξ©ηYLq�0,T ;Lp�ω��, (2.3.7)

Y∂tFη�ξ �Kη�ξ��YLq�0,T ;Lp�Qκ
2 �� B C�Y∂tξYLq�0,T ;Lp�ω� � Yξ∂tηYLq�0,T ;Lp�ω���, (2.3.8)

Y©2
Fη�ξ �Kη�ξ��YLq�0,T ;Lp�Qκ

2 �� B C�Y©2ξYLq�0,T ;Lp�ω� � Yξ©2ηYLq�0,T ;Lp�ω���
�C�YS©ξSS©ηS�YLq�0,T ;Lp�ω�� � YξS©ηS2YLq�0,T ;Lp�ω���,Y∂t©Fη�ξ �Kη�ξ��YLq�0,T ;Lp�Qκ

2 �� B C�Y∂t©ξYLq�0,T ;Lp�ω� � Yξ∂t©ηYLq�0,T ;Lp�ω���
�CYS∂tξSS©ηS � S©ξSS∂tηS � Sξ∂tηSS©ηSYLq�0,T ;Lp�ω��,Y∂lνFη�ξ �Kη�ξ��YLq�0,T ;W 1,p�Qκ

2 �� B CYFη�ξ�YLq�0,T ;W 1,p�Qκ
2 ��, (2.3.9)

whenever the right hand side is finite. Here C depends only on αη, βη, and κ.
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Proof. Construction:
The construction relies exclusively on the reference geometry, namely on Sκ defined in Definition 2.2.1. Hence
to keep the notation compact we will omit the dependence on the time variable t. Moreover, without loss of
generality we assume that Kη�ξ� � 0, since otherwise we replace ξ by ξ �Kη�ξ�, for which we have

Kη�ξ �Kη�ξ�� � RAκ�ξ̃ �Kη�ξ��λη dxRAκ λη dx
�
RAκ ξ̃λη dx
RAκ λη dx

�Kη�ξ� � 0.

Hence, once the estimates are valid for ξ, such that Kη�ξ� � 0 the estimates follow by Corollary 2.3.2 also for
the case Kη�ξ� x 0.

First observe, that for the coordinates s�x�,p�x� introduced in Definition 2.2.1 we find

©s�x� � ∂νs�x�ν and ©p�x� � �∂τi�p�x��p�x��i�1,...,d�1

and (independent of s�x�)
div�ν�p�� � d�1

Q
i�1

∂τi�p�ν�p� � τi�p�.
For y > ω and x > Sκ we find by the assumption on Ω, that y � y�x� if and only if p�x� � ϕ�y� and so
(wherever well defined)

∂ν�p�y�x� � 0 and so ∂ν�p�ξ�y�x�� � 0.

Next we introduce the operator:

Fη�ξ��x� �� e�s�x��η�y�x���div�ν�p�x���ξ̃�p�x��σκ�s�x��ν�p�x��.
Observe, that for x > Ωη 9 Sκ, we find

Fη�ξ��x� � e�s�x��η�y�x���div�ν�p�x���ξ̃�p�x��ν�p�x��.
In particular, for x > ∂Ωη, we find s�x� � η�y�x�� and hence

Fη�ξ��x� � ν�p�x��ξ�y�x��, x > ∂Ωη.

Using that ∂ν�p�x��f�x� � �∂sf�p, s� we find for x > Q
κ
2 9 Sκ

div�Fη�ξ��x�� � ©��e�s�x��η�y�x���div�ν�p�x���ξ̃�p�x��� � ν�p�x��
� e�s�x��η�t,y�x���div�ν�p�x���ξ̃�p�x��div�ν�p�x���

� �∂s��e�s�x��η�y�x���div�ν�p�x���ξ̃�p�x���
� e�s�x��η�y�x���div�ν�p�x���ξ̃�p�x��div�ν�p�x���

� 0.

On Aκ we find (by the same calculations) that

div�Fη�ξ��x�� � �e�s�x��η�t,y�x���div�ν�p�x���ξ̃�p�x��σ�κ�s�x��,
which has compact support in Aκ. Moreover,

S
Aκ

div�Fη�ξ��x��dx � �S
Aκ

λη�x�ξ̃�p�x��dx � 0.

Since Aκ is by assumption a C2 domain we can apply the Bogovskiı̆ operator on this domain which we denote
by Bκ. We define

Fη�ξ��x� �� Fη�ξ��x� � Bκ�div�Fη�ξ����x�.
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Estimates:
The estimates are quite standard relaying on the regularity of ϕ, namely on the C2-regularity of ∂Ω. We give
some details on the estimate in order show a clear dependence on η.

We start with the estimates of the time derivative of Fη�ξ�. We calculate

∂tFη�ξ� � ∂tFη�ξ� � Bκ�∂tdiv�Fη�ξ���.
The Bogovskiı̆ operator is well defined due to the fact, that (formally)

S
Ωη�t�

∂tdiv�Fη�ξ��dx � S
Aκ

∂tdiv�Fη�ξ��dx � ∂t�S
Aκ

div�Fη�ξ��dx� � 0.

We calculate further

∂tFη�ξ��t, x� � e�s�x��η�t,y�x���div�ν�p�x���∂tξ�t, y�x��ν�p�x��
� div�ν�p�x���∂tη�t, y�x��e�s�x��η�t,y�x���div�ν�p�x���ξ�t, y�x��ν�p�x��,

which implies the pointwise estimates for ∂tFη�ξ�:
S∂tFη�ξ��t, x�S B c�S∂tξ�t,p�x��S � S∂tη�t,p�x��SSξ�t,p�x��S�, (2.3.10)

where the constant only depends on κ,αη, βη and the C2-regularity of ∂Ω. For the sake of better understanding
we demonstrate that the assumption Kη�ξ� � 0 is indeed without loss of generality. We estimate

S∂tFη�ξ �Kη�ξ���t, x�S
B c�S∂tξ�t,p�x��S � S∂tη�t,p�x��S�Sξ�t,p�x��S � Yξ�t�YL1� � Y∂tη�t�ξ�t�YL1�. (2.3.11)

In order to estimate the Bogovskiı̆ part we find by Theorem 2.3.1 (with a constant just depending on the
Lipschitz constant of Aκ) that

YBκ�∂tdiv�Fη�ξ �Kη�ξ����YLp�Ωη� � YBκ�∂tdiv�Fη�ξ �Kη�ξ����YLp�Aκ�
B cYdiv�∂tFη�ξ �Kη�ξ����YŴ�1,p�Aκ�
� cY∂tFη�ξ �Kη�ξ��YLp�Aκ�.

and so the estimate on ∂tFη�ξ �Kη�ξ�� follows by (2.3.11).
The estimates on ©Fη�ξ�Kηξ�,©2Fη�ξ�Kηξ� and ∂t©Fη�ξ�Kηξ� are analogous and we skip the details

here. Observe that due to the compact support of div�Fη�ξ �Kη�ξ����, by Gauss theorem we find that

S
Ωη�t�

©
ldiv�Fη�ξ �Kηξ��dx � 0 � S

Ωη�t�
∂t©

ldiv�Fη�ξ �Kηξ��dx;

hence Bκ is always well defined.
Clearly the normal derivatives of the constructed function Fη�ξ �Kη�ξ��� depend on the estimates of the

derivatives of σκ and not on the regularity of the derivatives of η. Since the Bogovskiı̆ theorem transfers the
regularity to Fη�ξ � Kη�ξ�� with no further loss, (2.3.9) follows with according dependences on the higher
order derivatives of σκ.

We include the following corollary that will be necessary for our compactness result (See Section 2.5).

Corollary 2.3.4 (Smooth Solenoidal Extension). Let a, r > �2,ª�, p, q > �1,ª� and s > �0,1�. Assume that
η > Lr��0, T �;W 2,a�ω�� 9W 1,r��0, T �;La�ω��, such that α�Ω� � κ B αη B η B βη B β�Ω� � κ.
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Let b >W s,p�ω�� and take �b�δ as a smooth approximation of b in ω. Then Eη,δ�b� �� Fη��b�δ�Kη��b�δ��
satisfies all the regularity of Proposition 2.3.3. In particular

YEη�t�,δ�b� �Fη�b �Kη�b��YLp�Qκ
2 � B cY�b�δ � bYLp�ω�

and Y∂tEη�t�,δ�b�YLr�0,T ;La�Qκ
2 � B cY�b�δ∂tη�t�YLr�0,T ;La�ω�

uniformly in t > �0, T �.
We include the following technical lemma, that will be necessary for the regularity result.

Lemma 2.3.5. Let p, ã > �1,ª� such that p� @ ã B
dp�

d�p� if p� @ d, and p� @ ã @ ª otherwise, and let

the assumptions of Proposition 2.3.3 be satisfied. Assume additionally that η > C0,θ�ω� 9W 1, ãp
ãp�ã�p �ω� and

u >W 1,p��Ωη� then the above constructed test function satisfies

WS
Ωη

u �Fη�Ds
h,eξ �Kη�Ds

h,eξ��dxW B c�hθ�s � YDs
h,eηY

W
1,

ãp
ãp�ã�p �ω��YuYW 1,p��Ωη�YξYLp�ω� (2.3.12)

and in case ∂tξ > Lp�ω�
WS

Ωη
u � ∂tFη�Ds

h,eξ �Kη�Ds
h,eξ��dxW (2.3.13)

B c��hθ�s � YDs
h,eηY

W
1,

ãp
ãp�ã�p �ω��Y∂tξYLp�ω�YuYW 1,p��Ωη� � YDs

h,eξ∂tηYLã��ω�YuYW 1,p��Ωη��. (2.3.14)

The constants are only depending on αη, βη, κ and (linearly) on YηYC1,θ�ω�.

Proof. In the following we use the abbreviation δhf�y� � �f�y � eih� � f�y�� for i � 1,2. Moreover, since
all estimates are done pointwise in time, we omit the dependence on t of η and Ωη. First, since the support of
Fη�δhξ � Kη�δhξ�� is Sκ

2
, we can use the coordinates �p, s� on the full support of Fη�δhξ � Kη�δhξ��. We

will use the following change of coordinates ψη XΦ � ω��α�κ~2,0�� Ωη in order to be able to do integration
by parts. Hence

S
Ωη

u �Fη�δhξ �Kη�δhξ��dx
� S

0

α�κ~2Sω�u �Fη�δhξ �Kη�δhξ��� X ψη XΦSdet�©�ψη XΦ�Sdy ds
We will use the following abbreviations for the sake of a better overview:

α � α�Ω�, γ̃�s, y� �� Sdet�©�ψη XΦ��s, y�S and λ̃η�s, y� �� e�s�η�y�divx�ν�y��σ�κ�s�γ̃�s, y�.
Hence, we calculate

YληYL1�Aκ�Kη�δhξ� � S α�κ

α�κ~2Sω λη X ψη XΦδhξSdet�©�ψη XΦ�Sdy ds
�� S

α�κ

α�κ~2Sω δhξ�y�λ̃η�s, y�dy ds � S α�κ

α�κ~2Sω ξ�y�δhλ̃η�s, y�dy ds.
where we used summation by parts formula for finite differences. Therefore,

δhξ �Kη�δhξ� � δh�ξ �Kη�ξ�� � R α�κα�κ~2 Rω ξ�y�δh�λ̃η�dyYληYL1�Aκ�
.
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And so

Fη�δhξ �Kη�δhξ�� X ψη XΦ�s, y� � δh�Fη�ξ �Kη�ξ�� X ψη XΦ�s, y��
� δh�e�s�η�y�divx�ν�y���σκ�s��ξ � `ξeλη�ν�y�
� e�s�η�y�divx�ν�y��σκ�s��ξ � `ξeλη�δh�ν�y��
� e�s�η�y�divx�ν�y��σκ�s�R α�κα�κ~2 Rω ξ�y�δh�λ̃η�dy dsYληYL1�Aκ�

ν�y�
�� δh�Fη�ξ� X ψη XΦ�s, y�� � T1 � T2 � T3.

The partial summation and the Hölder’s inequality imply that

WS
Ωη

u �Fη�δhξ �Kη�δhξ��dxW
B WS 0

α�κ~2Sω�u X ψη XΦ � δhFη�ξ �Kη�ξ�� X ψη XΦ γ̃ dy dsW
� WS 0

α�κ~2Sω�u X ψη XΦ � �T1 � T2 � T3��γ̃ dy dsW
� WS

Aκ

u � Bκ�div�Fη�δhξ �Kη�δhξ��dxW
� �I� � �II� � �III�.

Recall, that p� @ ã B dp�

d�p� (if p @ d and no upper bound otherwise). Observe, that

SδhηS B chθ, Sγ̃S � S©�ψη XΦ�S B c�1 � S©ηS� and Sδhγ̃S B cSδh©ηS
and

Sδhu X ψη XΦS B Wu�ψη XΦ�x � h�� � u�ψη XΦ�x��
ψη XΦ�x � h� � ψη XΦ�x� WSψη XΦ�x � h� � ψη XΦ�x�S

B chθ
ψηXΦ�x�h�

�S
ψηXΦ�x�

S©uSds.
We estimate �I� using partial integration, the above inequality, Hölder’s inequality for 1

p �
1
ã �

ãp�p�ã
ãp � 1 and

Sobolev embedding:

�I� � WS 0

α�κ~2Sω�δh�u X ψη XΦ� �Fη�ξ �Kη�ξ�� X ψη XΦ� γ̃
� �u X ψη XΦ� �Fη�ξ �Kη�ξ�� X ψη XΦ� δhγ̃ dy dsW

B chθYuYW 1,p��Ωη�YξYLp�ω� � cYuYLã�Ωη�YξYLp�ω�YδhηY
W

1,
ãp

ãp�ã�p �ω�
B c�hθ � YδhηY

W
1,

ãp
ãp�ã�p �ω��YuYW 1,p��Ωη�YξYLp�ω�.

(2.3.15)

We further estimate �II� by using, in a rather straightforward manner, the fact that SδhgS B hθYgY0,θ
CST1γ̃S B c�h � SδhηS��SξSγ̃ � S`ξeλ̃η λ̃η S� B chθ�SξSγ̃ � S`ξeλ̃η λ̃η S�,ST2γ̃S B ch�SξSγ̃ � S`ξeλ̃η λ̃η S�,

ST3γ̃S B c Sλ̃η SYληYL1�Aκ�
YξYLp�ω�YδhηYW 1,p��Ω�.
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This implies

2

Q
i�1
S

0

α�κ~2Sω STiγ̃Sp dy, ds B chθpYξYpLp�ω��1 �
Yλ̃ηYpLp��Aκ�Yλ̃ηYpL1�Aκ�

�,
S

0

α�κ~2Sω ST3γ̃Sp dy, ds B cYλ̃ηYpLp��α�κ~2,0��ω�YληYpL1�Aκ�
YξYp

Lp�ω�YδhηYpW 1,p��ω�.

Hence, we find by Hölder’s and Poincaré’s inequality that

�II� B cYuYLp��Ωη� 3

Q
i�1

YTiγ̃YLp��α�κ~2,0��ω� B c�hθ � YδhηYW 1,p��ω��YξYLp�ω�YuYW 1,p��Ωη�. (2.3.16)

The estimates on �I� and �II� allow to estimate the Bogovskiı̆ term �III�. This is possible since due to
Theorem 2.3.1 and due to the compact support of σ� in Aκ we find�III� � � S`u,Bκ�div�Fη�δhξ �Kη�δhξ���eS

B YuYW 1,p��Aκ�YBκ�div�Fη�δhξ �Kη�δhξ���YW̊�1,p�Aκ�
B cYuYW 1,p��Aκ�Ydiv�Fη�δhξ �Kη�δhξ���YW̊�2,p�Aκ�
B cYuYW 1,p��Aκ�YFη�δhξ �Kη�δhξ��YW̊�1,p�Aκ�.

Now take q >W 1,p�

0 �Aκ�, with YqYW 1,p��Aκ� B 1 arbitrary. From the calculations above, i.e. by replacing u by
q in (2.3.15) and (2.3.16) we find`Fη�δhξ �Kη�δhξ��, qe

� S
0

α�κ~2Sω�δh�Fη�ξ �Kη�ξ��� � q� X ψη XΦγ̃ dy ds �
3

Q
i�1
S

α�κ

α�κ~2Sω Ti � q X ψη XΦγ̃ dy ds

� S
0

α�κ~2Sω�Fη�ξ �Kη�δhξ�� X ψη XΦ � δh�q X ψη XΦγ̃�dy ds
�

3

Q
i�1
S

α�κ

α�κ~2Sω Ti � q X ψη XΦγ̃ dy ds B c�hθ � YδhηY
W

1,
ãp

ãp�ã�p �ω��YξYLp�ω�.
But so �III� B cYuYW 1,p��Aκ�YFη�δhξ �Kη�δhξ��YW̊�1,p�Aκ�

B cYuYW 1,p��Aκ��hθ � YδhηY
W

1,
ãp

ãp�ã�p �ω��YξYLp�ω�.
This finishes the proof of (2.3.12). For the time derivative we use the fact that

∂t�δhξ �Kη�δhξ�� � �δh∂tξ �Kη�δh∂tξ�� � `δhξ̃�t�eληYλη�t�YL1
S
Aκ

∂tλη�t�dx
�

1Yλη�t�YL1
S
Aκ

δhξ̃�t�∂tλη�t�dx �� Kη�δh∂tξ�� �K�t�, (2.3.17)

and hence

∂tFη�δhξ �Kη�δhξ���t, x�
� σ�s�x��e�s�x��η�t,y�x���div�ν�p�x����δh�∂tξ� �Kη�δh�∂tξ���t, y�x��ν�p�x��
� σ�s�x��div�ν�p�x���∂tη�t, y�x��e�s�x��η�t,y�x���div�ν�p�x����δhξ �Kη�δhξ���t, y�x��ν�p�x��
� σ�s�x��div�ν�p�x���e�s�x��η�t,y�x���div�ν�p�x���K�t�ν�p�x��

� �A� � �B� � �C�.
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The estimates on �A� follows by (2.3.12). We proceed with the straightforward estimates

S�B�S B cS∂tη�t, y�x��S�Sδh�ξ�t, y�x��S � Yδh�ξ�t��YL1�Aκ��,
and S�C�S B cYδhξ�t�∂tη�t�YL1�ω�.
Hence, we find by (2.3.12), the estimates on �B� and �C�, Hölder’s inequality and Sobolev embedding that

WS
Ωη

u � ∂tFη�δhξ �Kη�δhξ��dxW
B �hθ � YδhηY

W
1,

ãp
ãp�ã�p �ω��Y∂tξYLp�ω�YuYW 1,p��Ωη� � cYuYLã�Ωη�Yδhξ∂tηYLã��ω�

B c��hθ � YδhηY
W

1,
ãp

ãp�ã�p �ω��Y∂tξYLp�ω� � Yδhξ∂tηYLã��ω��YuYW 1,p��Ωη�.

The Bogovskiı̆ part will be estimated once more in form of negative norms using that

sup
YqY

W1,p� �Aκ�
B1
`∂tFη�δhξ �Kη�δhξ����, qe

B c��hθ � YδhηY
W

1,
ãp

ãp�ã�p �ω��Y∂tξYLp�ω� � Yδhξ∂tηYLã��ω��,
which finishes the proof.

2.4 The regularity result

2.4.1 Estimates for the structure

In this section we explore the consequences of the energy inequality (2.2.21).

Lemma 2.4.1 (Uniform Korn’s inequality). For every u > VF such that u�t,ϕη�t, .�� � ξν the following Korn’s
equality holds: Y©uY2

L2Ωη�t� � 2Ysym©uY2
L2Ωη�t�. (2.4.1)

Proof. We follow the idea from [31, Lemma 6] and compute:

S
Ωη�t�

Ssym©uS2 dx � 1

2
�S

Ωη�t�
S©uS2 dx � S

Ωη�t�©
Tu � ©udx�.

Therefore it remains to show that the second term is zero:

S
Ωη�t�©

Tu � ©udx �
2

Q
i,j�1

S
Ωη�t� ∂jui∂iuj dx

� �

2

Q
i,j�1

S
Ωη�t� ∂j∂iuiuj dx � S∂Ωη�t� ∂juiniujdS. � S∂Ωη�t��©u�ν � udS

Now using the no-slip condition (2.2.5) and the incompressibility condition we deduce
R∂Ωη�t��©u�ν � udS � 0 (see [127, Lemma A.5]) and therefore the Korn’s equality holds.

In the following we exploit the energy estimate (2.2.21). In particular, the number C0, which depends only
on the initial conditions, always refers to this energy bound.

Lemma 2.4.2. Let �u, η� be such that energy inequality (2.2.21) is satisfied.
Then η > Lª�0, T ;W 1,4�ω�� and YηY

Lªt W
1,4
x

B cC0, where c depends only on ϕ.
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Proof. The boundedness of YηYLªt L2
x

follows directly from the energy inequality (2.2.21). Now, we use [38,
Theorem 3.3-2.] to conclude that by the definition of A and (2.2.21):

S
ω
SG�η�t, .��S2 dy B cS

ω
AG�η�t, .�� �G�η�t, .��dy B cC0,

here the constant c just depends on the Lamé constants and the geometry of ∂Ω. If ∂αν x 0 we my use the
bound for Gαα�η� and (2.2.10) to get the bounds for Y∂αη�t�YL4�ω� and Yη�t�YL4�ω� uniform in t. Using these
bounds, again (2.2.10) and the bound for Gββ�η� above for β x α we finish the proof.

If ∂1ν � ∂2ν � 0, we get the bound for Y©ηYL4 directly from (2.2.10) and the boundedness of Rω SG�η�t, .��S2.
However, since YηYLªt L2

x
is also bounded (using the bounds on ∂tη in (2.2.21)), the Lemma follows also by the

Poincaré inequality.

Lemma 2.4.3. Let �u, η� be such that energy inequality (2.2.21) is satisfied. Then if γ�η� x 0 we have η�t� >
H2�ω�. Moreover,

sup
t>�0,T �Sω γ

2�η�S©2ηS2 dy B cC0.

where c depends only on ϕ.

Proof. We can again use Theorem 3.3-2. from [38] and work with bounds on R. From (2.2.8) we compute:

∂βaα�η� � ∂2
αβϕ � ∂2

αβην � ∂αη∂βν � ∂βη∂αν � η∂
2
αβν, α, β � 1,2. (2.4.2)

Using (2.2.8), (2.2.11), (2.2.12) and the definition of γ from Definition 2.2.1 we have

Rαβ�η� � 1Sa1 � a2S∂2
αβη�Sa1 � a2S � η�ν � �a1 � ∂2ν � ∂1ν � a2�� � η2ν � �∂1ν � ∂2ν��

�P0�η,©η� �� γ�η�∂2
αβη � P0�η,©η�, (2.4.3)

where P0 is a polynomial of order three in η and ©η such that all terms are at most quadratic in ©η, and the
coefficients of P0 depend on ϕ.

From Lemma 2.4.2 we gain in particular by Sobolev embedding that YηYLªt Lªx and Y©ηYLªt L4
x

are bounded
by the energy. Therefore

sup
t>�0,T �Sω γ

2�η�S©2ηS2 dy B c�YRYLªt L2
x
� YP0�η,©η�YLªt L2

x
� B cC0.

Remark 2.4.4. By definition we know that γ A 0, as long as

η�ν � �a1 � ∂2ν � ∂1ν � a2�� � η2ν � �∂1ν � ∂2ν� A � 1Sa1 � a2S . (2.4.4)

Therefore it can be easily checked that there exists a c2 (depending on ϕ only) such that if YηYLªt Lªx B c2,
then (2.4.4) is satisfied and hence γ�η� A 0. Finally, the energy estimate allows to deduce, that in dependence
of the initial configuration there is a minimal time interval �0, T � for which YηYLªt Lªx B c2 is always satisfied.

Similarly as in previous Lemma, let us write form ab defined by (2.2.15) as a sum of the bilinear form in
second derivatives plus the remainder. We calculate the Fréchet derivative of R:

Rαβ�η�ξ � γ�η�∂2
αβξ � γ�ξ�∂2

αβη � P
�

0�η,©η�ξ.
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Therefore we have

ab�t, η, ξ� � h3

24
S
w
�A�γ�η�©2η� � �γ�η�©2ξ� �A�γ�η�©2η� � �γ�ξ�©2η�

��A�γ�η�©2η� � P �

0�η,©η�ξ �A�P0�η,©η�� � �γ�ξ�©2η��
�A�P0�η,©η�� � �γ�η�©2ξ� �A�P0�η,©η�� � P �

0�η,©η�ξ�dy
� a1

b�η;©2η,©2ξ� � a2
b�η,©2η; ξ� � a3

b�η,©η,©2η; ξ,©ξ�
�a4

b�η,©η;©ξ,©2ξ� � a5
b�η,©η, ξ,©ξ�.

(2.4.5)

We take ξ �Ds
�hD

s
hη, 0 @ s @ 1~2, and obtain the following estimates.

Lemma 2.4.5. Let η > H2�ω� such that γ�η� x 0. Then for every h A 0, 0 @ s @ 1~2 the following inequality
holds:

ab�t, η,D�s
h D

s
hη� C YDs

h©
2ηYL2�ω� �C�YηYH2�ω��.

Proof. Since all estimates in this lemma are uniform in t for simplicity of notation, we omit the t variable in
this proof. First we use the fact that since ω ` R2 Sobolev embedding implies YDs

hηYLª B cYηYH2�ω� andYDs
�hD

s
hηYLª�ω� B cYηYH2�ω�. Due to Sobolev embedding the estimate is uniform in h for all s > �0,1~2�.

This and the integration by parts formula for the finite differences can be used to estimate a1
b :

a1
b�η;©2η,©2Ds

�hD
s
hη� C C S

ω
SDs

h©
2ηS2 dy �CYDs

hγ�η�2YLªY©2ηYL2YDs
h©

2ηYL2

C
C

2
YDs

h©
2ηY2

L2 �CYDs
hγ�η�2Y2

LªY©2ηY2
L2 C

C

2
YDs

h©
2ηY2

L2 �C�YηYH2�ω��.
Similarly, since YDs

�hD
s
hηYLª�ω� B YηYH2�ω� uniformly, we estimate

Sa2
b�η,©2η,Ds

�hD
s
hη�S B C�YηYH2�ω��.

To estimate a3
b we first notice that YP0�η,©η�YL2 B CYηYLªY©ηY2

L4 B C�YηYH2�ω��. Moreover,

YP �

0�η,©η�Ds
hηYL2 B CYηYLªY©ηYL4Y©Ds

hηYL4 B C�YηYH2�ω��.
Now we can use integration by parts and Young’s inequality in the same way as in the estimate for a1

b to get

Sa3
b�η,©η,©2η;D

1~2
�h D

1~2
h η,©,D

1~2
�h D

1~2
h η� B C

8
YDs

h©
2ηY2

L2 �C�YηYH2�ω��.
Estimate for a4

b is done in analogous way by integration by parts and using:

YDs
hP0�η,©η�YL2 B YηYLªYηYW 1,4©Ds

hηYL4 B C�YηYH2�ω��.
Hence, Sa4

b�η,©η;©Ds
�hD

s
hη,©

2Ds
�hD

s
hη�S B C8 YDs

h©
2ηY2

L2 �C�YηYH2�ω��.
Finally, the last term a5

b is a lower order term and is easily estimated using the same inequalities:

Sa5
b�η,©η,Ds

�hD
s
hη,©D

s
�hD

s
hη�S B C�YηYH2�ω��.
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2.4.2 Closing the estimates–Proof of Theorem 2.2.5

In this section we finish the proof of Theorem 2.2.5. Please observe first, that due to the Sobolev embedding
theorem and due to the trace theorem [22, Lemma 2.4] we find for all θ > �0,1� and all s > �0, 1

2�YηYLª�0,T ;C0,θ�ω�� B cYηYLª�0,T ;H2�ω�� and Y∂tηYL2�0,T ;Hs�ω�� B cYuYL2�0,T ;H1�Ωη��.

Assume that s > �0, 1
2� and take

�Fη�Ds
�hD

s
hη �Kη�Ds

�hD
s
hη��,Ds

�hD
s
hη �Kη�Ds

�hD
s
hη��

as a test function in (2.2.20) and integrate from 0 to T . The test function is admissible by construction, see
Proposition 2.3.3. The estimates on the forms am and ab connected to the elastic energy follow directly by
Lemma 2.4.5. Indeed, sinceKη�Ds

�hD
s
hη� is constant in space direction and hence does not change the estimate

on the derivatives of η we find (using the uniform bounds on λη) that

inf
ω
�γ2�η��ab�t, η, �D�s

h D
s
hη �Kη�Ds

�hD
s
hη�� C YDs

h©
2ηYL2�ω� �C�YηYH2�ω��.

Hence we are left to estimate the term coming from the structure inertia. Using partial integration and Corol-
lary 2.3.2, we find

S
T

0
WS
ω
∂tη∂t�Ds

�hD
s
hη �Kη�Ds

�hD
s
hη�dyWdt � S T

0
WS
ω
∂tηD

s
�h�∂t�Ds

hη �Kη�Ds
hη��dyWdt

� S
T

0
WS
ω
�Ds

h∂tη�2
�Ds

h∂tη∂tKη�Ds
hη�dyWdt

B cY∂tηY2
L2�0,T ;Hs�ω�� � S

T

0
Y∂tηYW 1,s�ω���Y∂tηYW 1,s�ω�� � Y∂tηYL2�ω��Y©ηYL2�ω��dt

B cY∂tηY2
L2�0,T ;Hs�ω�� � cT Y∂tηY2

Lª�0,T ;L2�ω��Y©ηY2
Lª�0,T ;L2�ω��

B cYuY2
L2�0,T ;H1�Ωη�t�� � cT Y∂tηY2

Lª�0,T ;L2�ω��Y©ηY2
Lª�0,T ;L2�ω�� B cC2

0 .

Here in the last estimate we used the trace theorem [22, Lemma 2.4] and the coupling condition (2.2.5). Notice
that this term cannot be estimated in a purely hyperbolic problem and that here it is essential to use the coupling
and the fluid dissipation.

Let us next prove the estimates related to the fluid part. From Proposition 2.3.3 and the energy inequality
(2.2.21) we have the following estimate

Y©Fη�Ds
�hD

s
hη �Kη�Ds

�hD
s
hη��YLª�0,T ;L2�Ωη�t��

B C�YDs
�hD

s
hηYLª�0,T ;H1�ω�� � Y�Ds

�hD
s
hη�©ηYLª�0,T ;L2�ω���

B C�YηYLª�0,T ;H2�ω�� � YDs
�hD

s
hηYLª�0,T ;Lª�ω��Y©ηYLª�0,T ;L2�ω���

B C�YηYLª�0,T ;H2�ω�� � YηY2
Lª�0,T ;H2�ω��� B C�C0 �C

2
0�.

This allows to estimate the integrals:

WS T

0
S

Ωη�t���ua u � ©Fη�Ds
�hD

s
hη �Kη�Ds

�hD
s
hη�� � sym©u � sym©FηD

s
�hD

s
hη�dxW

B Y©FηDs
�hD

s
hηYLª�0,T ;L2�Ωη�t���Y©uY2

L2�0,T ;L2�Ωη�t� � Y©uYL2�0,T ;L2�Ωη�t��� B C�C0 �C
2
0�2.

The most difficult estimate is the estimate involving the distributional time-derivative of v. It can be estimated
using Lemma 2.3.5; indeed by defining p � 2 � p� and ã � 6 we get that ãp

ãp�ã�p � 3. Hence using the fact that
1
2 �

1
3 �

5
6 and

3

2
�

2

3
�

5

6
@ 1 � 2 �

2

2
and so W

3
2
,3�ω� `W 2,2�ω�,
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we find by Hölder’s inequality and Sobolev embedding that for every θ > �0,1� there is a constant c, such that

�I� �WS T

0
S

Ωη�t� u � ∂tFη�Ds
�hD

s
hη �Kη�Ds

�hD
s
hη��dxW

B c�hθ�s � YDs
hηYLª�0,T ;W 1,3�ω���YuYL2�0,T ;W 1,2�Ωη�t��Y∂tDs

hηYL2�0,T ;L2�ω��
� cYuYL2�0,T ;W 1,2�Ωη�t��YDs

�hD
s
hη∂tηYL2�0,T ;L6~5�ω��.

Hence choosing θ � s, we find

�I� B c�1 � YηYLª�0,T ;W 3~2,3�ω���YuYL2�0,T ;W 1,2�Ωη�t��Y∂tDs
hηYL2�0,T ;L2�ω��

� cYuYL2�0,T ;W 1,2�Ωη�t��Y∂tηYLª�0,T ;L2�ω�YDs
�hD

s
hηYL2�0,T ;L3�ω�

B c�1 � YηYLª�0,T ;W 2,2�ω���YuYL2�0,T ;W 1,2�Ωη�t��Y∂tDs
hηYL2�0,T ;L2�ω��

� cYuYL2�0,T ;W 1,2�Ωη�t��Y∂tηYLª�0,T ;L2�ω�YηYL2�0,T ;W 1,3�ω��
B cC0�C0 �C

2
0�,

and the estimate on the term of the time-derivative is complete. The result follows by combining the obtained
estimates.

2.5 Compactness rewritten

We introduce the following version of the celebrated Aubin-Lions compactness lemma [7, 112]. The version
below is tailored to be applicable for the coupled systems of PDE like the fluid-structure interaction which
we we study in this paper. The key point is to fully decouple the compactness assumption in space and the
compactness assumption in time. We emphasize this fact by showing that under appropriate conditions the
product of two weak convergent sequences decouple in the limit. It in some sense unifies ideas from time-
space decoupling with compensated compactness approaches of div-curl type (see e.g. [26] for some further
discussion on that matter).

In this context, the most difficult property to capture is the compactness in time assumption. Commonly it
is given in the form of a uniform bound on time-derivative is certain dual space or more precisely a uniform
continuity assumption in time. What turned out to be the key observation is that it suffices only to extract the
uniform continuity properties over a suitable approximation of its argument. In the theorem below requirement
(3) summarizes the time-compactness assumption. As can be seen, no function space is appearing. The assump-
tion is that the pairing of the continuity in time for gn is uniform with respect to a given suitable approximation
of fn.

This non-function space type requirement is necessary for the application in the context of fluid-structure
interactions. Indeed, the weak time derivative of an approximate sequence ∂tηε, vε is defined merely over a non-
linear coupled space that changes both with respect to time and with respect to the approximation parameter ε
itself.

Theorem 2.5.1. Let X,Z be two Banach spaces, such that X � ` Z �. Assume that fn � �0, T � � X and
gn � �0, T ��X �. Moreover assume the following:

1. The weak convergence: for some s > �1,ª� we have that fn
�
@ f in Ls�X� and gn

�
@ g in Ls

��X ��.
2. The approximability-condition is satisfied: For every δ > �0,1� there exists a fn,δ > Ls�0, T ;X� 9
L1�0, T ;Z�, such that for every ε > �0,1� there exists a δε > �0,1� (depending only on ε) such that

Yfn � fn,δYLs�0,T ;X� B ε for all δ > �0, δε�
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and for every δ > �0,1� there is a C�δ� such that

Yfn,δYL1�0,T ;Z� dt B C�δ�.
Moreover, we assume that for every δ there is a function fδ, and a subsequence such that fn,δ

�
@ fδ in

Ls�X�.
3. The equi-continuity of gn. For every ε A 0 and δ A 0 that there exist a nε,δ and a τε,δ A 0, such that for all
n C nε,δ and all τ > �0, τε,δ�

S
T�τ

0
U τ�S

0

`gn�t� � gn�t � s�, fn,δ�t�eX�,X dsUdt B ε.
4. The compactness assumption is satisfied: X �

00 Z �. More precisely, every uniformly bounded sequence
in X � has a strongly converging sub-sequence in Z �.

Then there is a subsequence, such that

S
T

0
`fn, gneX,X� dt� S

T

0
`f, geX,X� dt.

Remark 2.5.2 (Modification for applications). With regard of our application it seems somehow natural to
replace (3) by the following condition

(3’) The equi-continuity of gn. We require that there exists an α > �0,1� a sequence An that is uniformly
bounded in L1��0, T ��, such that for every δ A 0 that there exist a C�δ� A 0 and an nδ > N such that for
τ A 0 and a.e. t > �0, T � τ�

sup
nCnδ

U τ�S
0

`gn�t� � gn�t � s�, fn,δ�t�eX�,X dsU B C�δ�τα�An�t� � 1�.
Here (3’) implies (3) by integration over �0, T � τ� and an appropriate choice of τδ,ε.

Remark 2.5.3 (Classic Aubin-Lions lemma). Let us explain how Theorem 2.5.1 relates to the classic Aubin-
Lions lemma. The simplest case is when Z is a compact subspace of X , f > L2�Z� and ∂tgn > L2�Z ��. In this
case one may take fn,δ � fn and finds for s @ t

S`gn�t� � gn�s�, fm�t�eS � US t

s
`∂tgn�τ�efm�t�dτ U B Yfm�t�YZ S t

s
Y∂tgn�τ�YZ� dτ B cSt � sS 12 Yfm�t�YZ ,

with c � Y∂tgnYL2�0,T ;Z��. The classic Gelfand triple is then the particular case when X is a Hilbert space.
Since then Z ``X ` Z � implies the same argument as above.

The generalization to allow that Z is independent of the regularity of fn is essentially some hidden inter-
polation result (also known as Ehrling property). Here classically one can use convolution estimates to show
that a mollifier in one space is uniformly close, while in the other (smaller space) they are merely bounded.
One standard example is the periodic solutions over the torus Q and X � Ha

per�Q� and Z � Hc
per�Q�, such

that fn > Hb
per�Q� uniformly with a @ b @ c. Then convolution with the standard mollifying kernel ψδ im-

plies that Yf � f � ψδYHr
per�Q� B Cδ

s�rYfYHs
per�Q� which implies precisely the wanted properties in (2) above.

This shows that condition (2) can be seen as a ”spatial compactness” condition in the Aubin-Lions lemma (or
more generally in Simon’s compactness theorem [175]). The condition (3) could be viewed as a ”temporal
compactness”, i.e. as equi-continuity of time shifts in the weaker space Z �.

Remark 2.5.4 (Function spaces). Since we do not assume that Z is dense in X , an additional clarification of
condition (5) is required. Let Z

Y�YX
�X 9Z

Y�YX be the closure of Z w.r.t. X and �ZY�YX �� its dual (w.r.t. X as

pivot space). Then condition (5) has a meaning in the following sense �ZY�YX �� 00 Z �.
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Proof of Theorem 2.5.1. In this prove we will produce for every ε A 0 an nε > N, a τε A 0 with τε � 0 for ε� 0
and a subsequence of `fn, gneX,X� such that

US T�τε

0
`fn, gneX,X� � `fm, gmeX,X� dtU B ε

for all n,m C nε. This then allows to construct the desired converging subsequence by taking a discrete
sequence εi � 0 and a respective diagonal argument.

Hence let ε A 0, we may choose δε in such a way, that for all δ > �0, δε�,
Yfn � fn,δYLs�0,T ;X� B ε (2.5.1)

Next we fix τε,0 A 0 and nε,0, such that for all τ > �0, τε,0�
sup
nCnε,0

S
T�τ

0
U τ�S

0

`gn�t� � gn�s�, fn,δ�t�eX�,X dsUdt B ε. (2.5.2)

Fix N > N such that τε �� T
N B τε,0. For k > �0, ...,N � 1� and n > N we define

gkn �

�k�1�τ
�S
kτ

gn�s�ds.
This implies by Jensen’s inequlaity

YgknYX� B

�k�1�τ
�S
kτ

Ygn�s�YX� ds,

and so we define for the given τε

gτεn �t� �� gkn for t > �kτε, �k � 1�τε�.
Since

sup
�kτε,�k�1�τε�`�0,T �

sup
n>N

Ygkn�YX� B
C

τε
,

we find by the compactness assumption, that we can find a subsequence for which there exists a nε,1, such that

sup
k

Ygkn � gkmYZ� B ε0 for all n,m A nε,1. (2.5.3)

In particular there exists gτε and a subsequence, such thatgτεn � gτε strongly in Lª�0, T ;Z ��. Clearly, by the
uniform bounds we find that gτ > Ls

��X ��.
At this point τε and δε are fixed. Hence we may define

ε0 ��
ε

C�δε� ,
where C�δε� is defined via (2). Therefore, we find an nε > N, such that for all n,m C nε

US T

0
`fn,δε , gτεn � gτεmedtU

X,X�

B Yfn,δεYL1�0,T ;Z�Ygτεn � gτεmYLª�0,T ;Z� B ε. (2.5.4)
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Now all preparations have been made in order to estimate:

US T�τε

0
`fn�t�, gn�t�eX,X� � `fm�t�, gm�t�eX,X� dtU

B US T�τε

0
`fn,δε�t�, gn�t�eX,X� � `fm,δε�t�, gm�t�eX,X� U

� US T�τε

0
`fn�t� � fn,δε�t�, gn�t�eX,X� � `fm�t� � fm,δε�t�, gm�t�eX,X� dtU

B US T�τε

0
`fn,δε�t�, gn�t�eX,X� � `fm,δε�t�, gm�t�eX,X� U � 2ε.

We estimate the left

�I� � � S T�τε

0
`fn,δε�t�, gn�t�eX,X� � `fm,δε�t�, gm�t�eX,X� dt

� S
T�τε

0
`fn,δε�t�, gn�t� � gτεn �t�eX,X� dt � S

T�τε

0
`fn,δε�t�, gτεn �t� � gτεn �t�eX,X� dt

� S
T�τε

0
`fm,δε�t� � fn,δε�t�, gτεm�t�eX,X� dt � S

T�τε

0
`fm,δε�t�, gm�t� � gτεn �t�eX,X� dt

�

N�2

Q
k�0
S

�k�1�τε
kτε

τε

�S
0

`fn,δε�t�, gn�t� � gn�s�eX,X� dsdt �
N�2

Q
k�0
S

�k�1�τε
kτε

`fn,δε�t�, gkn � gkmeX,X� dt

�

N�2

Q
k�0
S

�k�1�τε
kτε

`fm,δε�t� � fn,δε�t�, gkmeX,X� dt �
N�2

Q
k�0
S

�k�1�τε
kτε

τε

�S
0

`fm,δε�t�, gm�t� � gm�s�eX,X� dsdt

� �II� � �III� � �IV � � �V �.
First observe that �II� and �V � can be estimated using the equi-continuity condition, namely (2.5.2). Term�III� is estimated using the compactness condition, namely (2.5.4). Finally for �IV � we deviate and apply
(2.5.4) a second and third time

�IV � � S T

0
`fm,δε � fn,δε , gτεmeX,X� dt

� S
T

0
`fm,δε � fn,δε , gτεeX,X� � `fm,δε � fn,δε , gτεm � gτεeX,X� dt

B US T

0
`fm,δε � fn,δε , gτεeX,X� U � 2ε.

Now we take another subsequence of fn,δε > L
s�X� that converges weakly*. Hence we may eventually increase

nε one last time (in dependence of gτε) and find that for this subsequence and n,m C nεS�IV �S B 3ε.

This finishes the proof.

2.6 The existence result

2.6.1 The approximate system

In this section we construct approximate solutions �uε, ηε� > VS , ηε > Lª�0, T ;H3�ω�� which satisfy the
following weak formulation:

d

dt
S

Ωη�t� uε � qdx � S
Ωη�t� � � uε � ∂tq � uε a uε � ©q � sym©uε � sym©q�dx

�
d

dt
S
ω
∂tη

εξ dy � S
ω
∂tη

ε∂tξ dy � am�t, ηε, ξ� � ab�t, ηε, ξ� � εS
ω
©

3
xη

ε
� ©

3
xξ dy � 0,

(2.6.1)
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where ε A 0 is a regularizing parameter and with initial conditions η0, η1,u0. In this section we prove the
following Theorem:

Theorem 2.6.1. There exists a T A 0 just depending on ∂Ω and the initial data, such that for every ε > �0,1�
there exists a weak solution �uε, ηε� to the regularized problem (2.6.1). Moreover, the weak solution satisfies
the following uniform in ε estimate:

YuεYVF � YηεYVS � YηεYL2�0,T ;Ns,2�ω�� B C, (2.6.2)

for every (fixed) s @ 5
2 , with C just depends on ∂Ω and the initial conditions.

The existence of regularized solutions can be proved following the ideas and techniques introduced in [153].
The problem solved in [153] is actually very similar to the regularized system above since there the existence
of a solution to a FSI problem with a structure being an elastic shell with a non-linear Koiter membrane energy
without bending energy, but with a (linear) regularization term of fourth order is shown. In order to be able
to treat the non-linear bending energy in an analogous way we have to include a sixth order regularization
term. Another difference comes from the fact that in [153] cylindrical geometry is considered. Nevertheless
the introduced existence scheme does not depend on the geometry of the problem and more general geometries
can be handled by combining the existence proof with the estimates in this paper and in [127]. To avoid lengthy
repetitions of the arguments analogous to [153] here, we summarize the main steps of the construction of a
weak solutions with emphasis on the differences coming from the non-linear bending term and the setting of
more general geometries. The main steps of the construction are:

1. Arbitrary Lagrangian-Eulerian (ALE) formulation. We reformulate the problem in a fixed reference
domain Ω using suitable change of variables. This approach is popular in numerics and the change of
variables is called Arbitrary Lagrangian-Eulerian (ALE) mapping. The formulation in the fixed refer-
ence domain is called ALE formulation of the FSI problem. We use the mapping ψη (introduced in
Definition 2.2.1) as an ALE mapping.

2. Construction of the approximate solutions. We construct the approximate solutions using time-discretizations
and operator splitting methods. We use the Lie splitting strategy (also known as Marchuk-Yanenko split-
ting) to decouple the FSI problem.

3. Uniform estimates. Let ∆t A 0 be the time-discretization parameter. We show that the constructed
approximate solutions satisfy uniform bounds w.r.t. ∆t (and ε) in the energy function spaces. We identify
weak and weak* limits.

4. Compactness. We prove that the set of approximate solutions is compact in suitable norms. By using
the compactness we prove that a limit of the sequence of approximate solutions is a weak solution to the
regularized FSI problem. Here we use a generalization of the Aubin-Lions-Simon lemma for discrete in
time solutions adapted to the moving domain problems from [151].

Since a solution is constructed by decoupling the problem, the largest difference from [153] is in the second
step where in the structure sub-problem we include also the non-linear bending energy. However, we will show
that the bending term can be discretized in an analogous way as the membrane term. Other steps are analogous
as in [153] using the sixth order regularization. For the convenience of the reader we will describe the details
of the time-discretization of the structure sub-problem with the corresponding uniform estimates in the time-
discretization parameter ∆t. We conclude this chapter with the description of the compactness step. Generally,
for more details on the procedure we refer the reader to [153].

In the rest of the subsection we fix the regularizing parameter ε and drop superscripts ε in �uε, ηε� since
there is no chance of confusion.

Construction of discrete approximations
The main problem in the construction of approximate solution is how to discretize the Fréchet derivatives of G
and R to obtain the discrete analogue of R��η�∂tη � ∂tR�η�. In [153] this was achieved by using the fact that
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the first fundamental form was polynomial of order two of η and©η which was a consequence of the cylindrical
geometry. Here we consider a more general geometry so we need to develop a more general approach.

For a given end-time T , we fix ∆t as the time step, such that �0, T � � �0,N∆t� for some N > N. Now let�ηn�Nn�1 be a given time-discrete solution and η̃ be the piece-wise linear function in time such that η̃�n∆t� � ηn.
Then we have

R��η̃�ηn�1 � ηn

∆t
� R��η̃�∂tη̃ � ∂tR�η̃� on �n∆t, �n � 1�∆t�.

Notice that the expression R��η̃�∂tη̃ is a third order polynomial in the t variable so we can compute its integral

R �n�1�∆t
n∆t by using Newton-Cotes formula. Hence, by defining ηn�1 ��

ηn�1
�ηn

2 we find the approximation of
G��η�ξ and R��η�ξ in the following way:

G��ηn�1, ηn�ξ �� 1

3
�G��ηn� � 4G��ηn�1� �Gn�1�ξ (2.6.3)

and

R��ηn�1, ηn�ξ �� 1

3
�R��ηn� � 4R��ηn�1� �Rn�1�ξ. (2.6.4)

By straightforward calculation it follows that

G��ηn� 1
2 , ηn�ηn� 1

2 � ηn

∆t
� ∆tS

�n�1�∆t
n∆t

d

dt
G�η̃�

�
1

∆t
�G�ηn� 1

2 � �G�ηn��
which is the correct substitute for ”∂tG�η� � G��η�∂tη”. Analogously we find as substitute for ”∂tR�η� �
R��η�∂tη”

R��ηn� 1
2 , ηn�ηn� 1

2 � ηn

∆t
�

1

∆t
�R�ηn� 1

2 � �R�ηn��.
These identities will be used to derive a semi-discrete uniform energy inequality. First we define the sequence
of approximate solutions by solving the following problems.

Structure sub-problem.
Find �vn� 1

2 , ηn�
1
2 � > �H2

0�ω� 9H3�ω��2
such that:

S
ω

ηn�
1
2 � ηn

∆t
φdy � S

ω
vn�

1
2φdy,

S
ω

vn�
1
2 � vn

∆t
ψ dy �

1

2
S
ω
AG�ηn� 1

2 � � G��ηn� 1
2 , ηn�ψ dy

�
1

24
S
ω
AR�ηn� 1

2 � � R��ηn� 1
2 , ηn�ψ dy � εS

ω
©

3ηn�
1
2©

3ψ dy � 0,

(2.6.5)

for all �φ,ψ� > L2�ω� � �H2
0�ω� 9H3�ω��.

The existence of a solution to the above problem follows by Schaefer’s Fixed Point Theorem as it was
demonstrated in [153, Proposition 4]).

Fluid sub-problem.
The fluid problem stays the same as in [153] (which is the advantage of the operator splitting method). Since
the domain deformation is calculated in the structure sub-problem and does not change in the fluid sub-problem
we set ηn�1 � ηn�

1
2 , and define �un�1, vn�1� > VηnF �L2�ω� by requiring that for all �q, ξ� > VηnF �L2�ω� such
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that qSΓ � ξν, the following weak formulation holds:

S
Ω
Jn�un�1 � un

∆t
� q �

1

2
��un �wn� 1

2 � � ©ηn�un�1
� q

�
1

2
��un �wn� 1

2 � � ©ηn�q � un�1�dx
�

1

2
S

Ω

Jn�1 � Jn

∆t
un�1

� qdx � 2S
Ω
JnDηn�u� � Dηn�q�dx

� S
ω

vn�1 � vn�
1
2

∆t
ξ dy � 0

with ©η
n

� un�1
� 0, un�1SΓ � vn�1ν.

Here ©η is the transformed gradient, wn�1~2 is the ALE velocity (i.e. the time discretization of ∂tψηn (see
Definition 2.2.1)), and Jn � det©ψηn is the Jacobian of the transformation from Ωηn to the reference configu-
ration Ω. Please observe that the above system is a linear equation on a fixed domain and it is solvable as long
as Jn A 0 by the Lax-Milgram Lemma. One can see that no self-intersection implies Jn A 0.

Now we define the approximate solutions as a piece-wise constant functions in time:

u∆t�t, .� � un∆t, η∆t�t, .� � ηn∆t, v∆t�t, .� � vn∆t, v�∆t�t, .� � vn� 1
2

∆t for t > �n∆t, �n � 1�∆t�. (2.6.6)

Uniform estimates in ∆t.
The following proposition gives us the uniform boundedness of the approximate solutions defined by (2.6.6).
It is a consequence of [153, Lemma 8] combined with Lemma 2.4.2 and Lemma 2.4.3.

Proposition 2.6.2. Let ∆t A 0. Then the approximate solutions defined by (2.6.6) satisfy the following estimate:Yu∆tYLªt L2
x
� Yu∆tYL2

tH
1
x
� Yη∆tYLªt H2

x
� Yv∆tYLªt L2

x
� Yv�∆tYLªt L2

x
�
º
εYη∆tYLªt H3

x
B C, (2.6.7)

where C depends on the data only. Moreover, there exists a T A 0 independent of ∆t such that no self-
intersection is approached.

Proof. The proof can be directly adapted from [153, Lemma 8] combined with Lemma 2.4.2 and Lemma 2.4.3.
In particular, we find by the uniform Lªt H

2
x estimates on η∆t that Yη∆tYLªt �Lªx � is uniformly bounded with

constants just depending on ∂Ω and the initial condition. Moreover, since v�∆t is bounded in Lªt L
2
x we can use

the interpolation inequality for Sobolev spaces to show that there exists T A 0 such that η∆t satisfies (2.4.4) and
J∆t A 0 in �0, T �, uniformly in ∆t (and ε), cf. [153, Proposition 9]. In particular ∂Ωη∆t

has no self-intersection
on �0, T �.

Let us denote by u, η, v and v� the corresponding weak or weak* limits of ∆t � 0. From [153, Lemma
11] it follows that v � v�.

Compactness for ∆t� 0.
First, we prove the strong convergence of the sequence η∆t. This is a consequence of the uniform boundedness
of the discrete time derivatives Yηn�1

�ηn

∆t YL2�ω� and the boundedness of η∆t in Lª�0, T ;H3�ω��. By using the
classical Arzelá-Ascoli theorem for the piece-wise affine interpolation we get that

η∆t � η in Lª�0, T ;Hs�ω�� for s > �0,3�.
This is enough to pass to the limit in the terms connected to the elastic energy. In order to pass to the limit
in the convective term and the terms connected to the moving boundary we need strong L2 convergence of�u∆t, v∆t�. This is the most delicate part of the existence proof where one has to use the uniform convergence
of η∆t and the fact that the fluid dissipates higher frequencies of the structure velocities.

In the current case this follows by a version of the Aubin-Lions-Simon lemma adapted for the problems
with moving boundary [151, Theorem 3.1. and Section 4.2]. Hence, by passing to the limit we find a T A 0
such that for every fixed ε A 0 there exists a weak solution to (2.6.1).
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2.6.2 Proof of Theorem 2.2.4.

In this subsection we first collect the necessary a-priori estimates (which essentially follow from the regularity
theorem) and then pass to the limit with ε � 0. Here the establishment of the non-linearity in the convective
term is (as usually) the most delicate part.

Uniform estimates in ε.
We use the test function:�q, ξ� � �Fη�Ds

�hD
s
hη

ε�Kη�Ds
�hD

s
hη

ε��,Ds
�hD

s
hη

ε�Kη�Ds
�hD

s
hη

ε�� in (2.6.1) in an analogous way as in the
proof of Theorem 2.2.5. In combination with the energy estimates ee obtain the following uniform regularity
estimate for all (fixed) s @ 1

2 :

YηεYLª�0,T ;�H29
º
εH3��ω�� � Y∂tηεYLª�0,T ;L2�ω�� � YηεYL2�0,T ;N2�s,2�ω�� � Y∂tηεYL2�0,T ;Ns,2�ω�� B C. (2.6.8)

Passing with ε� 0.
From the (classic) Aubin-Lions lemma we obtain

ηε � η in L2�0, T ;Hs�ω�� 9Lª�0, T ;Hs�1~2�ω�� for s @ 5~2. (2.6.9)

In particular, ηε � η in L2�0, T ;H2�ω��9Lª�0, T ;Lª�ω�� which is enough to pass to the limit in the elastic
terms, see (2.4.5) for the highest order terms. The existence result is completed once we can show that (for a
sub-sequence)�∂tηε,uε� � �∂tη,u�, since this allows to establish all nonlinearities in the limit equation and
the existence is complete.

The proof of the L2 convergence of the velocities is known to be the most delicate part of the construction
of weak solutions in the framework of FSI in the incompressible regime, see [87, 127, 151]. Here we present
a more universal approach based on the reformulation of the Aubin-Lions lemma (Theorem 2.5.1) combined
with the extension operator presented in Corollary 2.3.4.

Lemma 2.6.3. There exists a strongly converging subsequence

�∂tηε,uε�� �η,u�
in L2�0, T ;L2�Ωη�t�� �L2�ω��.
Proof. The strong convergence follows from Theorem 2.5.1. Actually we will apply the theorem two times.
First for the boundary compactness and the other time for the interior compactness. For that please note that
since divuεn � 0 and uεn�x� � ∂tηεn�y�x��ν�p�x��, for x > ∂Ωη, it follows that

0 � S
∂Ωη

∂tη
εn�y�x��dx.

Moreover, since divFη�∂tηεn �Kη�∂tηεn�� � 0 we find that

S∂Ωη SKη�b� � S
∂Ωη

∂tη
εn�y�x���dx � 0.

Hence, Fηεn �∂tηεn� is well defined:

S
T

0
Y∂tηεnY2

L2�ω� � YuεnY2
L2�Ωηεn dt � S

T

0
`∂tηεn , ∂tηεne � `uεn ,Fηεn �∂tηεn�edt

� S
T

0
`uεn ,uεn �Fηεn �∂tηεn�edt �� �In� � �IIn�.

For both terms we will show the convergence separately by using Theorem 2.5.1 The convergence implies that

Y∂tηεnYL2
tL

2
x
� YuεnχΩηεn YL2

tL
2
x
� Y∂tηYL2

tL
2
x
� YuχΩηYL2

tL
2
x
,
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which implies, by the uniform convexity of L2, the strong convergence �∂tηε,uε� � �η,u� and the Lemma is
proved.

For the first term �In� we define gn � �∂tηεn ,uεnχΩηεn � and fn � �∂tηεn ,Fηεn �∂tηεn��, and apply The-
orem 2.5.1 using the spaces X � L2�ω� �H�s�Qκ� and consequently X � � L2�ω� �Hs�Qκ�. The space
Z � Hs0�ω� �Hs0�Qκ� for 0 @ s @ s0 @

1
4 . Also with respect to time we work in setting of Hilbert spaces,

which means that all Lebesgue exponents are equal to two. Further we recall the smooth extension Eηεn�t�,δ
introduced in Corollary 2.3.4 and denote by �∂tηεn�δ �� ∂tηεn � ψδ. This allows to define

fn,δ �� ��∂tηεn�δ,Eηεn ,δ�∂tηεn��
Next, let us check the assumptions of Theorem 2.5.1 and Remark 2.5.2. First observe that [127, Propo-

sition 2.28] and (2.6.8) implies that gn is uniformly bounded in L2
t �Hs

x� (for s B 1
4 ). Hence the assumptions

(1) follows in a rather straightforward manner by weak compactness in Hilber spaces. Next (2) follows by
Corollary 2.3.4 and the standard estimates for mollifiers:Yfn � fn,δYL2�Qκ� B cY∂tηεn � ψδ � ∂tηεnYL2�ω� B CδsY∂tηεnYHs�ω�.
Hence we are left to check (3’). As usual for equi-continuity in time, this is a consequence of the weak
formulation of the problem (2.6.1). For σ > �t, t�τ� (using the solenoidality and the matching of the extension)
we have

S`gn�t� � gn�σ�, fn,δ�t�eS � WS
Qκ

�uεn�t�χΩηεn �t�
� uεn�σ�χΩηεn �σ�

� �Eηεn�t�,δ�∂tηεn�t��dx
� S

ω
�∂tηεn�t� � ∂tηεn�σ���∂tηεn�t��δ�dyW

� WS
Qκ

uεn�t�χΩηεn �t�
�Eηεn�t�,δ�∂tηεn�t�� � uεn�σ�χΩηεn �σ�

�Eηεn�σ�,δ�∂tηεn�t��dx
� S

ω
�∂tηεn�t� � ∂tηεn�σ���∂tηεn�t��δ�dyW

� WS
Qκ

uεn�σ�χΩηεn �σ�
� �Eηεn�σ�,δ�∂tηεn�t�� �Eηεn�t�,δ�∂tηεn�t���dxW

�� �A1� � �A2�
First observe that by Corollary 2.3.4

�A2� B S Suεn�σ�SχΩηεn �σ�
� S

σ

t
S∂sEηεn�s�,δ�∂tηεn�t��Sdsdx

B cYuεn�σ�YL2�Ωηεn �σ��
Y∂tηεn�∂tηεn�δYLªt �L2

x�Sσ � tS 12
B C�δ�τ 1

2 ,

where we used the uniform Lªt L
2
x estimate of uεn and ∂tηεn multiple times. Second, by the weak formulation

(2.6.1), we find

�A1� � WS t

σ
S

Ωη
�uεn�s� � ∂sEηεn�s�,δ�∂tηεn�t��

� �sym©uεn�s� � uεn�s�a uεn�s�� � ©Eηεn�s�,δ�∂tηεn�t��dx
� S

ω
am�t, ηεn , �∂tηεn�t��δ� � ab�t, ηεn , �∂tηεn�δ� � εn©3ηεn�s� � ©3�∂tηεn�t��δ dy dsW

B C�δ���YuεnYL2�t,t�τ ;W 1,2�1��Ωηεn ��Y∂tηεnYLªt �L2
x� � YηεnYLªt �H2

x�εH
3
x��

� YηεnYL2�t,t�τ ;W 1,ª�ω�YuεnY2
Lª�0,T ;L2�Ωηεn ���St � σS 12

B C�δ�τ 1
2 .

53



SCHWARZACHER NONLINEAR SHELLS ANALYSIS FOR FSI

This implies (3’), namely

Ut�τ�S
t

`gn�t� � gn�σ�, fn,δ�t�edσU B C�δ�τ 1
2 .

This finishes the proof of the convergence of �I�n term. For the second term �IIn� we again apply The-
orem 2.5.1. Here we set gn � uεnχΩηεn and fn � �uεn � Fηεn �∂tηεn��χΩηεn We apply Theorem 2.5.1 with
the following spaces X � H�s�Qκ� and consequently X � � Hs�Qκ� for some s > �0, 1

4�. Further we define
Z � L2�Qκ�. Please observe that we may extend all involved quantities by zero to be functions over Qκ.
Finally, we again set all Lebesgue exponents to two. Similarly as for the first term, again the main effort is the
construction of the right mollification. Indeed the assumptions �1� and �4� follow by standard compactness
arguments. In particular, for assumption �1� it has been shown in [127, Proposition 2.28] that gn is uniformly
bounded in Hs�Qκ� (if s B 1

4 ). For (2) we use the fact that fn has a zero trace on ∂Ωηεn�t�. First, let δ A 0 be
given. We take nδ large enough and τδ A 0 small enough, such that

sup
nCnδ

sup
τ>�t�τδ,t�τδ�9�0,T �

Yη�t, x� � ηεn�τ, x�Y
ª
B δ. (2.6.10)

Second, we fix 0 @ s0 @ s and ε A 0. By [127, Lemma A.13] there exits a σε and a sequence f̃n,δ, such that
supp�f̃n,δ�t�� ` Ωηεn�t��3δ for all 3δ B σε, that is divergence free and Yf � f̃n,δY�H�s0�Qκ�� B εYfYL2�Qκ�. We
mollify this solenoidal function to define

fn,δ � f̃n,δ � ψδ where ψ is the standard mollifier in space.

Then this definition implies (3’) by standard mollification estimate. Indeed, choosing

Yfn � fn,δYH�s�Qκ� B Yf̃n,δ � fn,δYH�s�Qκ� � Yf̃n,δ � fnYH�s0�Qκ�
B cδs�s0Yf̃n,δYH�s0�Qκ� � εYfnYL2�Qκ� B cεYfnYL2�Qκ�,

for δ small enough in dependence of s � s0. Please observe that by the properties of the mollification and
(2.6.10) that supp�fn,δ� ` Ωηεn�t��2δ ` Ωηεm �τ� which implies that fn,δ�t� can be used as a testfunction on
the fluid equation alone over the interval �t, t � τ� for t > �0, T � τ�. Hence (3’) follows exactly along the lines
of the above estimates using the weak formulation (2.6.1). Notice that here we will work just with the fluid
equation since the traces of test function are zero at the moving interface.

End of the proof of Theorem 2.2.4
The a-priori estimates and the above compactness arguments guarantee that for given initial conditions there
is a minimal time interval T A 0 for which a weak solution exists (see Remark 2.4.4). Once the solution is
established we can repeat the argument (by using η�T �, ∂tη�T �,u�T � as initial conditions) until either a self-
intersection is approached or a degeneracy of the H2-coercivity is violated (namely if γ�η�t, x��� 0 for some
t� T ).
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Chapter 3

Navier–Stokes–Fourier fluids interacting
with elastic shells

3.1 Introduction

Nowadays there exists a vast body of literature on incompressible fluid structure interaction, where a part of the
boundary of the underlying domain is the mid-section of a flexible shell.
The mathematical analysis of continuum mechanical models in fluid mechanics reaches back to the pioneering
work of Leray on the existence of weak solutions for the incompressible Navier–Stokes equations [129]. Based
on this, various fluid-structure interaction results have been achieved already; we will explain this in more detail
below. A similar foundational work in the compressible case is due to Lions [130] with important extensions
by Feireisl et al. [64]. Compressible fluids are important for applications in aero-dynamics and mathematical
results on their interactions with elastic structures appeared in this context recently in [22, 184]. A next natural
step is to study the thermodynamics of fluid structure interactions. In fact, the assumption that a physical process
is isentropic can only be valid for a very short period of time. In general it is indispensable to take into account
the transfer of heat. Similarly, the linearisation of the shell model, often applied in the mathematical literature,
looses its validity as soon as the displacement of the boundary is not on a small scale any more. The treatment
of non-linear shell models in the context of weak solutions is very recent [142] (see also chapter 2) and (up
to date) only available for incompressible fluids. In this work we progress on the theory of weak solutions by
showing the existence for systems that take into account 1) heat conduction and compression effects for the
fluid and 2) a non-linear elastic respond for the solid. More specifically, we use the classical model by Koiter to
describe the shell movement which yields a fully nonlinear fourth order hyperbolic equation with a non-convex
energy. The main result of this paper is the existence of a global-in-time weak solution to the Navier–Stokes–
Fourier system coupled to the motion of a solid shell of Koiter type. This means that a fourth order PDE for the
solid is coupled (via the geometry) to a viscous fluid. A special feature of the Navier–Stokes–Fourier system
is that even weak solutions can satisfy an energy equality. We produce a respective equality for the energy
of the coupled fluid-structure interaction; this includes the full Koiter energy of the solid deformation. In this
context it is noteworthy that we consider perfect elastic shells. This means that no heat is produced by the
solid, or reversely entropy is only increased via the fluid. Still some viscous effects can be shown to hold for
the elastic solid due to the tight coupling between the solid and the fluid. It is this key observation (and the
respective estimate in Subsection 3.5.2) that allows to show that the elastic part of the energy has the necessary
compactness in order to prove that the system is indeed closed (energy is preserved). We note that the interval
of existence for our weak solutions could be arbitrarily large. In fact, the time of existence is only restricted
once either the topology of the fluid domain changes, namely if a self-intersection of the variable boundary (of
the elastic shell) is approached, or if the solid energy reaches a point of degeneracy.

Incompressible viscous fluids interacting with lower-dimensional linear elastodynamic equations were stud-
ied, for instance, in [31, 87, 144, 127, 109, 147]. All are concerned with the existence of weak solutions which
exist as long as the moving part of the structure does not touch the fixed part of the fluid boundary. There
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are much less results concerning the compressible case. In [22] the authors of the present chapter showed the
existence of a weak solution to the compressible Navier–Stokes equations coupled with a linear elastic shell of
Koiter type. Eventually, a similar result has been shown by a time-stepping method [184], where the interac-
tion of a compressible fluid with a thermoelastic plate is studied (compare also with with the numeric results
from [168]). Results concerning the long-time existence of weak solutions about structure interactions with
heat conducting are missing so far - even in the incompressible case. The existence of a unique local-in-time
strong solution to compressible Navier–Stokes–Fourier system coupled with a damped linear plate equation has
been established very recently in [135].

3.1.1 Overview of the chapter

In Section 3.2 we present basics concerning variable domains as well as the functional analytic set-up. In its
last subsection the concept of weak solutions for the coupled system and the main theorem are introduced.
The preliminary section is rather significant. Indeed, many standard tools of the analysis need an appropriate
adaptation to the variable geometry set-up, as well as to the particular non-linear coupling of the PDE system.
In particular, in Subsection 3.2.3 we introduce two different extension operators that are needed for the analysis
performed later. In Section 3.3 we study the (regularized) continuity equation as well as the (regularized) inter-
nal energy equation in a time dependent domain. These are non-trivial extensions from the analysis presented in
[22, Section 3]. In particular, we provide regularity estimates and minimum and maximum principles. Section
3.4 is dedicated to the construction of an approximate solution. Different to previous fixed point approaches
(see e.g. [22] and [127]) we construct a fixed point on the Galerkin level which we believe to be appropriate
also for future applications. A further achievement is the derivation of the entropy inequality which sensitively
relies on Section 3.3. Finally, in Section 3.5 the two limit passages ε� 0 and δ � 0 are performed which leads
to the proof of Theorem 3.2.14 and the existence of a weak solution is shown. Of particular importance is here
Subsection 3.4.4 where the derivation of an energy equality is performed. Critical is the strong convergence of
the elastic energy of the solid deformation. Here we adapt a recent regularity argument for the shell displace-
ment derived in [142]. As shown in [142] these estimates are crucial to involve non-linear Koiter shell laws in
the weak existence theory for incompressible fluids. In the here considered Navier-Stokes-Forier system the
regularity is needed even for linear shell models. Since, even for linear Koiter shell models an energy equality
cannot be derived without additional regularity estimates and the related compactness properties.

3.2 Preliminaries

3.2.1 Structural and constitutive assumptions

We impose several restrictions on the specific shape of the thermodynamic functions p � p�%,ϑ�, e � e�%,ϑ�
and s � s�%,ϑ� which are in line with Gibbs’ relation (1.1.16). We consider the pressure p in the form

p�%,ϑ� � pM�%� � pR�ϑ�, pM�ϑ� � %γ , pR�ϑ� � a
3
ϑ4, a A 0, (3.2.1)

the specific internal energy

e�%,ϑ� � eM�%� � eR�%,ϑ�, eM�%,ϑ� � 1

γ � 1
%γ�1, eR�ϑ, %� � aϑ4

%
, (3.2.2)

and the specific entropy

s�%,ϑ� � 4a

3

ϑ3

%
. (3.2.3)

This is slightly more restrictive than the assumptions in [63, Chapter 1], to which we refer for the physical
background and the relevant discussion. In fact, in [63, Chapter 1] a weak temperature dependence of pM is
allowed which vanishes asymptotically such that pM�%,ϑ� � %γ for large %.
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The viscosity coefficients µ, λ are continuously differentiable functions of the absolute temperature ϑ, more
precisely µ, λ > C1��0,ª��, satisfying

µ�1 � ϑ� B µ�ϑ� B µ�1 � ϑ�, (3.2.4)

sup
ϑ>�0,ª�

�Sµ��ϑ�S � Sλ��ϑ�S� Bm, (3.2.5)

λ�1 � ϑ� B λ�ϑ� B λ�1 � ϑ�, (3.2.6)

with positive constants µ,µ,m,λ, λ. The heat conductivity coefficient > C1�0,ª� satisfies

0 @ �1 � ϑ3� B �ϑ� B �1 � ϑ3� (3.2.7)

with some positive , . We introduce the following regularizations

pδ�%,ϑ� � p�%,ϑ� � δ%β, eδ�%,ϑ� � e�%,ϑ� � δ

β � 1
%β,

δ�ϑ� � �ϑ� � δ�ϑβ � 1

ϑ
�, Kδ�ϑ� � S ϑ

0
δ�z� dz,

Sε�ϑ,©u� � S�ϑ,©u� � ε�1 � ϑ�S©uSp�2
©u,

(3.2.8)

for some p A 2.

3.2.2 Function spaces on variable domains

We use the notation introduced in autorefsec:shell. Here the spatial domain Ω is assumed to be a non-empty
bounded subset of R3 with C4-boundary and an outer unit normal ν. We recall from Subsection 2.2.2 that
we assume that ∂Ω can be parametrised by an injective mapping ϕ > C4�ω;R3� such that for all points y ��y1, y2� > ω, the pair of vectors ∂iϕ�y�, i � 1,2, are linearly independent. For a point x in the neighbourhood
or ∂Ω we can define

y�x� � arg min
y>ω

Sx �ϕ�y�S, s�x� is defined such that s�x�ν�y�x�� � y�x� � x.
Moreover, we define the projection p�x� � ϕ�y�x��. We define L A 0 to be the largest number such that s, y
and p are well-defined on SL, where

SL � �x > R3
� dist�x, ∂Ω� @ L�, (3.2.9)

see also Remark 3.2.17 in connection with this. We remark that due to theC2 regularity of Ω forL small enough
we find that Ss�x�S � miny>ω Sx�ϕ�y�S for all x > SL. This implies that SL � �sν�y��y � �s, y� > ��L,L��ω�.
For a given function η � I � ω � R we parametrise the deformed boundary by

ϕη�t, y� � ϕ�y� � η�t, y�ν�y�, y > ω, t > I,

and the deformed space-time cylinder I �Ωη � �t>I �t� �Ωη�t� through

∂Ωη�t� � �ϕ�y� � η�t, y�ν�y� � y > ω�.
The corresponding function spaces for variable domains are defined as follows.

Definition 3.2.1. (Function spaces) For I � �0, T �, T A 0, and η > C�I � ω� with YηYLªt,x @ L we set
I �Ωη �� �t>I�t� �Ωη�t� ` R4. We define for 1 B p, r Bª

Lp�I;Lr�Ωη�� �� �v > L1�I �Ωη� � v�t, �� > Lr�Ωη�t�� for a.e. t, Yv�t, ��YLr�Ωη�t�� > Lp�I��,
Lp�I;W 1,r�Ωη�� �� �v > Lp�I;Lr�Ωη�� � ©v > Lp�I;Lr�Ωη���.
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For various purposes it is useful to relate the time dependent domains and the fixed domain. This can be
done by the means of the Hanzawa transform. Its construction can be found in [127, pages 210, 211]. Note that
variable domains in [127] are defined via functions ζ � ∂Ω � R rather than functions η � ω � R (clearly, one
can link them by setting ζ � η Xϕ�1). For any η � ω � ��L,L� we define the Hanzawa transform Ψη � Ω� Ωη

by

Ψη�x� � ¢̈̈¦̈̈¤p�x� � �s�x� � η�y�x��φ�s�x���ν�y�x��, if dist�x, ∂Ω� @ L,
x, elsewhere

. (3.2.10)

Here φ > Cª���3L
4 ,ª�, �0,1�� is such that φ � 0 in ��3L

4 ,�
L
2 � and φ � 1 in ��L4 ,ª�. Due to the size of L,

we find that Ψη is a homomorphism such that Ψη SΩ�SL is the identity. Moreover, η > Ck�ω� for k > N implies
that Ψη is a Ck-diffeomorphism.

We collect a few properties of the above mapping Ψη.

Lemma 3.2.2. Let 1 @ p Bª and σ > �0,1�.
a) If η >W 2,2�ω� with YηYLªx @ L, then the linear mapping v ( v XΨη (v ( v XΨ�1

η ) is continuous from
Lp�Ωη� to Lr�Ω� (from Lp�Ω� to Lr�Ωη�) for all 1 B r @ p.

b) If η >W 2,2�ω� with YηYLªx @ L, then the linear mapping v ( v XΨη (v ( v XΨ�1
η ) is continuous from

W 1,p�Ωη� to W 1,r�Ω� (from W 1,p�Ω� to W 1,r�Ωη�) for all 1 B r @ p.

c) If η > C0,1�ω�with YηYLªx @ L, then the linear mapping v ( v XΨη (v ( v XΨ�1
η ) is continuous from

W σ,p�Ωη� to W σ,p�Ω� (from W σ,p�Ω� to W σ,p�Ωη�).
d) If η >W 2,2�∂Ω�with YηYLªx @ L, then the linear mapping v ( v XΨη (v ( v XΨ�1

η ) is continuous from
W σ,p�Ωη� to W θ,r�Ω� (from W σ,p�Ω� to W θ,r�Ωη�) for all θ > �0, σ� and all 1 @ r @ p.

The continuity constants depend only on Ω, p, r, σ, θ, the respective norms of η.

The following lemma is a modification of [127, Cor. 2.9].

Lemma 3.2.3. Let 1 @ p @ 3, σ > �1
p ,1� and η > W 2,2�ω� with YηYLªx @ L. The linear mapping trη � v (

v XΨη XϕS∂Ω is well defined and continuous from W σ,p�Ωη� to W σ� 1
r
,r�ω� for all r > � 1

σ , p� and well defined
and continuous from W σ,p�Ωη� to Lq�ω� for all 1 @ q @ 2p

3�σp . The continuity constants depend only on Ω, p, σ,

and YηY
W 2,2
x

.

Remark 3.2.4. If η > Lª�I;W 2,2�ω�� we obtain non-stationary variants of the results stated above.

It will be convenient for our purposes to extend Ψη, originally defined only on

Ω�L�η�� � Ω 8 �x > SL � s�x� @ min�L,L � η�y�x�����,
to ΩL � Ω 8 SL by setting

Ψη�x� � ¢̈̈¦̈̈¤p�x� � �s�x� � η�y�x��φ�s�x���ν�y�x��, if dist�x, ∂Ω� @ L, s�x� � η�p�x�� @ L,
x, elsewhere.

All the above statements are also true for v ( v XΨη and v ( v XΨ
�1
η on their respective domains.
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3.2.3 Extensions on variable domains

Since Ω is assumed to be sufficiently smooth, it is well-know that there is an extension operator FΩ which
extends functions from ∂Ω to R3 and satisfies

FΩ �W σ,p�∂Ω��W σ�1~p,p�R3�
for all p > �1,ª� and σ > �0,1�, all as well as FΩvS∂Ω � v. Now we define Fη by

Fηb � FΩ��bν� Xϕ�1� XΨ
�1
η , b >W σ,p�ω�, (3.2.11)

where ϕ is the C4-function in the parametrisation of Ω. If η is smooth Fη behaves as a classical extension by
Lemma 3.2.2. The following properties can all be easily derived from the formulas

©Fηb � ©FΩ��bν� Xϕ�1� XΨ
�1
η ©Ψ

�1
η ,

©
2Fηb � ©

2FΩ��bν� Xϕ�1� XΨ
�1
η ©Ψ

�1
η ©Ψ

�1
η �©FΩ��bν� Xϕ�1� XΨ

�1
η ©

2Ψ
�1
η ,

∂tFηb � ©FΩ��bν� Xϕ�1� XΨ
�1
η ∂tΨ

�1
η ,

where ©Ψ
�1
η , ©2Ψ

�1
η and ∂tΨ

�1
η behave as ©η, ©2η and ∂tη respectively.

Lemma 3.2.5. Let η > C0,1�ω� with YηYLªx @ α @ L.

(a) The operator Fη defined in (3.2.11) satisfies for all p > �1,ª� and σ > �0,1�
Fη �W

σ,p�ω��W σ�1~p,p�Ω 8 Sα�
and trηFηb � bν for all b >W 1,p�ω�. In particular, we have

YFηbYWσ�1~p,p�Ω8Sα� B c YbYWσ,p�ω�
for all b >W 1,p�ω�, where the constant c depends only on Ω, p, σ, Y©ηYLªx and L � α.

(b) If p �ª we have

YFηbYW 1,ª�Ω8Sα� B c�1 � Y©ηYLª�ω�� YbYW 1,ª�ω�
for all b >W 1,ª�ω�, where c depends only on Ω, p and L � α.

Corollary 3.2.6. Let η > C1�I � ω� with YηYLªx @ α @ L. Then we have for all q @ª

sup
t>I

Y∂tFηbYLq�Ω8Sα� B c YbYW 1,q�ω�Y∂tηYLª�I�ω�

for all b >W 1,q�ω�, where the constant c depends only on Ω, p and L � α.

We now turn to the case of a less regular function η and analyse the properties of Fη given by (3.2.11) in
this case.

Lemma 3.2.7. Let p > �1,ª� and η > W 2,2�ω� with YηYLªx @ α @ L and let the operator Fη by defined by
(3.2.11).

(a) We have for all p > �1,ª� and σ > �0,1�
Fη �W

σ,p�ω��W σ,q�Ω 8 Sα�
for all q @ 3

2p and trηFηb � bν for all b >W 1,p�ω�. In particular, we have

YFηbYWσ,p�Ω8Sα� B c YbYWσ,p�ω�
for all b >W 1,p�ω�.
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(b) We have for all r @ 2

Fη �W
2,2�ω��W 2,r�Ω 8 Sα�

and trηFηb � bν for all b >W 2,2�ω�. In particular, we haveYFηbYW 2,r�Ω8Sα� B c YbYW 2,2�ω�
for all b >W 2,2�ω�.

The constants in (a) and (b) depend only on Ω, p, q, YηY
W 2,2
x

and L � α.

Corollary 3.2.8. Let η > L2�I;W 2,2�∂Ω�� with YηYLªt,x @ α @ L. Suppose that ∂tη > Lq�I �ω� for some q A 1.
Then we have uniformly in time Y∂tFηbYLr�Ω8Sα� B c YbYW 1,p�ω�Y∂tηYLq�ω�
for all b >W 1,p�ω�, provided 1

r �
1
p �

1
q B 1. The constant c depends only on Ω, p and L � α.

3.2.4 Convergence in variable domains.

Due to the variable domain the framework of Bochner spaces is not available. Hence, we cannot use the
classical Aubin-Lions compactness theorem. In this subsection we are concerned with the question of how to
get compactness anyway. We start with the following definition of convergence in variable domains.

Definition 3.2.9. Let �ηi� ` C�I �ω; ��θL, θL��, θ > �0,1�, be a sequence with ηi � η uniformly in I �ω. Let
p, q > �1,ª� and k > N0.

1. We say that a sequence �gi� ` Lp�I,Lq�Ωηi�� converges to g in Lp�I,Lq�Ωηi�� strongly with respect to�ηi�, in symbols gi �η g inLp�I,Lq�Ωηi��, if

χΩηi
gi � χΩηg in Lp�I,Lq�R3��.

2. Let p, q @ ª. We say that a sequence �gi� ` Lp�I,Lq�Ωηi�� converges to g in Lp�I,Lq�Ωηi�� weakly
with respect to �ηi�, in symbols gi @η g inLp�I,Lq�Ωηi��, if

χΩηi
gi @ χΩηg in Lp�I,Lq�R3��.

3. Let p �ª and q @ª. We say that a sequence �gi� ` Lª�I,Lq�Ωηi�� converges to g in Lª�I,Lq�Ωηi��
weakly� with respect to �ηi�, in symbols gi @�,η g inLª�I,Lq�Ωηi��, if

χΩηi
gi @

� χΩηg in Lª�I,Lq�R3��.
Note that in the case of one single η (i.e. not a sequence) the space Lp�I,Lq�Ωη�� (with 1 B p @ ª and

1 @ q @ª) is reflexive and we have the usual duality pairing

Lp�I,Lq�Ωη�� � Lp��I,Lq��Ωη�� (3.2.12)

provided η is smooth enough. Definition 3.2.9 can be extended in a canonical way to Sobolev spaces: A se-
quence �gi� ` Lp�I,W 1,q�Ωηi�� converges to g in Lp�I,W 1,q�Ωηi�� strongly with respect to �ηi�, in symbols

gi �
η g in Lp�I,W 1,p�Ωηi��,

if both gi and ©gi converges (to g and ©g respectively) in Lp�I,Lq�Ωηi�� strongly with respect to �ηi� (in the
sense of Definition 3.2.9 a)). We also define weak and weak� convergence in Sobolev spaces with respect to�ηi� with an obvious meaning. Note that also an extension to higher order Sobolev spaces is possible but not
needed for our purposes.

For the next compactness lemma (see [22, Lemma 2.8]) we require the following assumptions on the func-
tions describing the boundary
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(A1) The sequence �ηi� ` C�I � ω; ��θL, θL��, θ > �0,1�, satisfies

ηi @
� η in Lª�I,W 2,2�ω��,

∂tηi @
� ∂tη in Lª�I,L2�ω��.

(A2) Let �vi� be a sequence such that for some p, s > �1,ª� and α > �0,1� we have

vi @
η v in Lp�I;Wα,s�Ωηi��.

(A3) Let �ri� be a sequence such that for some m,b > �1,ª� we have

ri @
η r in Lm�I;Lb�Ωηi��.

Assume further that there are sequences �H1
i �, �H2

i � and �hi�, bounded in Lm�I;Lb�Ωηi��, such that
∂tri � divdivH1

i � divH2
i � hi in the sense of distributions, i.e.,

S
I
S

Ωηi

ri ∂tφdxdt � S
I
S

Ωηi

H1
i � ©

2φdxdt � S
I
S

Ωηi

H2
i � ©φdxdt � S

I
S

Ωηi

hi φdxdt

for all φ > Cª
c �I �Ωηi�.

In [22, Lemma 2.8] the corresponding version of (A2) assumes α � 1. But the very same argument is also valid
in case α > �0,1� due to compact embeddings for fractional Sobolev spaces.

Lemma 3.2.10. Let �ηi�, �vi� and �ri� be sequences satisfying (A1)–(A3) where 1
s� �

1
b �

1
a @ 1 (with s� � 3s

3�sα
if s > �1,3~α� and s� > �1,ª� arbitrarily otherwise) and 1

m �
1
p �

1
q @ 1. Then there is a subsequence with

viri @
η vr weakly in Lq�I,La�Ωηi��. (3.2.13)

Corollary 3.2.11. In the case ri � vi we find that

vi �
η v strongly in L2�I,L2�Ωηi��.

We finish this section be repeating the following Aubin-Lions type lemma which is shown in [142, Theorem
5.1. & Remark 5.2.].

3.2.5 Weak solutions and main theorem

In accordance with the current state of the art for weak solutions of Navier-Stokes-Fourier law fluids and fluid-
structure interactions, we introduce here our concept of weak solutions. For that we introduce the following
function spaces:

(S1) For the solid deformation η � I � ω � R, Y I �� �ζ >W 1,ª�I;L2�ω�� 9Lª�I;W 2,2�ω�� �.

(S2) For the fluid velocity u � I �Ωη � Rd, d � 2,3, XI
η �� L

2�I;W 1,2�Ωη��.
(S3) For the fluid density % � I � Ωη � �0,ª�, W I

η �� Cw�I;Lγ�Ωη��, where the subscript w refers to
continuity with respect to the weak topology.

(S4) For the temperature ϑ � I �Ωη � �0,ª�, ZIη � L2�I;W 1,2�Ωη�� 9Lª�I;L4�Ωη��.
The definition of the function spaces above depending on η only make sense provided YηYLªt,x @ L.

Definition 3.2.12. A weak solution to (4.2.2)–(1.1.20) is a quadruplet �η,u, %, ϑ� > �Y I � XI
η �W

I
η � Z

I
η ,

which satisfies the following.
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(O1) The momentum equation is satisfied in the sense that

S
I

d

dt
S

Ωη
%u �φdxdt � S

Ωη
�%u � ∂tφ � %ua u � ©φ�dxdt

� S
I
S

Ωη
S�ϑ,©u� � ©φdxdt � S

I
S

Ωη
p�%,ϑ�divφdxdt

� S
I
� d

dt
S
ω
∂tηb dy � S

ω
∂tη ∂tb dy � S

ω
K ��η� b dy�dt

� S
I
S

Ωη
%f �φdxdt � S

I
S
ω
g b dy dt

(3.2.14)

holds for all �b,φ� > Cª�ω��Cª�I �R3� with trηφ � bν. Moreover, we have �%u��0� � q0, η�0� � η0

and ∂tη�0� � η1. The boundary condition trηu � ∂tην holds in the sense of Lemma 3.2.3.

(O2) The continuity equation is satisfied in the sense that

S
I

d

dt
S

Ωη
%ψ dxdt � S

I
S

Ωη
�%∂tψ � %u � ©ψ�dxdt � 0 (3.2.15)

holds for all ψ > Cª�I �R3� and we have %�0� � %0.

(O3) The entropy balance

S
I

d

dt
S

Ωη
%s�%,ϑ�ψ dxdt � S

I
S

Ωη
�%s�%,ϑ�∂tψ � %s�%,ϑ�u � ©ψ�dxdt

C S
I
S

Ωη

1

ϑ
�S�ϑ,©u� � ©u �

�ϑ�
ϑ

S©ϑS2�ψ dxdt

� S
I
S

Ωη

�ϑ�©ϑ
ϑ

� ©ψ dxdt � S
I
S

Ωη

%

ϑ
Hψ dxdt

(3.2.16)

holds for all ψ > Cª�I � R3� with ψ C 0. Moreover, we have limr�0 %s�%,ϑ��t� C %0s�%0, ϑ0� and
∂νηϑS∂Ωη B 0.

(O4) The total energy balance

�S
I
∂tψ E dt � ψ�0�E�0� � S

I
ψS

Ω
%H dxdt � S

I
ψS

Ωη
%f � udxdt

� S
I
ψS

ω
g ∂tη dy dt

(3.2.17)

holds for any ψ > Cª
c ��0, T ��. Here, we abbreviated

E�t� � S
Ωη�t� �1

2
%�t�Su�t�S2 � %�t�e�%�t�, ϑ�t���dx � S

ω

S∂tη�t�S2
2

dy �K�η�t��.
As will be apparent by the analysis we will show that the renormalized continuity equation in the sense of

DiPerna and Lions is satisfied, cf. [46, 130].

Definition 3.2.13 (Renormalized continuity equation). Let η > Y I and u >XI
η . we say that rhe function % >W I

η

solves the continuity equation (4.2.2) in the renormalized sense if we have

S
I

d

dt
S

Ωη
θ�%�ψ dxdt � S

I
S

Ωη
�θ�%�∂tψ � θ�%�u � ©ψ�dxdt

� �S
I
S

Ωη
�%θ��%� � θ�%��divuψ dxdt

(3.2.18)

for all ψ > Cª�I �R3� and all θ > C1�R� with θ�0� � 0 and θ��z� � 0 for z CMθ.
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We are now ready to formulate our main result.

Theorem 3.2.14. Let γ A 12
7 (γ A 1 in two dimensions). Assume that we have

Sq0S2
%0

> L1�Ωη0�, %0 > L
γ�Ωη0�, ϑ0 > L

4�Ωη0�, η0 >W
2,2�ω�, η1 > L

2�ω�,
f > L2�I;Lª�R3��, g > L2�I � ω�, H > Lª�I �R3�, H C 0 a.e.

Furthermore suppose that %0 C 0 a.e., ϑ0 C 0 a.e. and that (1.1.21) is satisfied. Then there exists a weak
solution �η,u, %, ϑ� to (4.2.2)–(1.1.20) in the sense of Definition 3.2.12. The interval of existence is of the form
I � �0, t�, where t @ T only in case Ωη�s� approaches a self-intersection when s � t or the Koiter energy
degenerates (namely, if lims�t γ�s, y� � 0 for some point y > ω). Moreover, the continuity equation is satisfied
in the renormalized sense as specified in Definition 3.2.13.

Remark 3.2.15 (Minimal interval of existence). Let us mention that for any admissible initial conditions
there is a minimal positive interval of existence. It follows from the fact that η (and consequently also γ,
cf. Theorem 2.2.1) can be shown to be uniformly continuous in space-time (with bounds depending on the data
only). Consequently, for some non-empty open time-interval no self-touching or point of degeneracy can be
approached a-priori.

Remark 3.2.16 (Elastic solids vs. damped elastic solids). Equation (1.1.19) implies that we consider a perfectly
elastic solid. In particular, no damping is assumed and hence dissipative effects are not assumed to act on the
solid. Consequently, no effects stemming from the solid are appearing in the entropy relation. While this
decoupling might seem like an advantage at first glance the opposite is actually true. Indeed, a damped solid
naturally yields better a priori estimates for the solid evolution. As a consequence the damping effects would
simplify the convergence analysis of the energy equality in the latter case.

In conclusion, the strategy developed here assumes with no loss of generality that the solid has no damping
effect. Indeed, it seems to be perfectly applicable for damped shells or plates as well. These damping terms
would, however, create naturally non-homogeneous Neumann boundary values for the temperature since the
motion of the solid could produce heat.1

Remark 3.2.17 (Simplification of notation). We remark that we will assume without further mentioning that the
initial conditions for the elastic deformation are within a neighbourhood of the reference configurations. This
simplification is, however, without loss of generality. Indeed, by rephrasing the reference geometry accordingly,
the existence procedure can be prolonged until a point of self touching or degeneracy (in case of non-linear
Koiter energies) is approached.

3.2.6 Mathematical strategy

In this paragraph we provide an overview of the developed methodologies. Further we aim to explain all
technical novelties and their potential significance.
As is common in the existence theory for weak solutions, the first step is to understand how to prove sequential
compactness. Let us assume there is a given sequence of weak solutions �ηn,un, %n, ϑn� to (4.2.2)–(1.1.20)
possessing suitable regularity properties. Deriving a priori estimates using the entropy balance one can control,
in addition to the total energy defined in (1.1.22), first order spatial derivative of un and ϑn using (1.1.17) and
(1.1.18). Unlike in the steady domain case, these estimates are not sufficient to show that a subsequence is
again converging to a solution. One problem is to derive energy equality (that is expected for closed systems
like the Navier–Stokes–Fourier equations considered here). Critical are the kinetic and elastic part of the solid
energy. To prove their compactness which does not follow from the energy estimates. In fact, the functional K
is not even well-defined onW 2,2�ω� (compare with chapter 2). Our strategy is to derive fractional estimates for

1The Neumann boundary values would naturally be preserved in the limit passage and lead to a respective inequality for the weak
solutions considered here.
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©2ηn as a consequence of a testing procedure for (1.1.19) with difference quotients. Testing the shell equation
with suitable test-functions requires in the weak formulation to choose an appropriate test-function for the full
momentum equation as well. Technically, this means we have to “extend” functions defined on ω to functions
defined on the time dependent domain Ωηn . An obstacle here is that the pressure is only expected to belong to
L1 in space near the moving boundary (compare with [22]).2 To circumvent the irregularity of the pressure we
work with a solenoidal extension F div

ηn that was recently constructed in [142] (that is chapter 2).
A second related problem is the strong convergence of ∂tηn (which is a part of the kinetic energy). Here we
use a modified version of the classical argument by Aubin-Lions. Critical is the uniform continuity in time
of the underlying sequence, which relies on the weak coupled momentum equation. Again a carefully chosen
test-function is needed. Here, however, we use an extension which has (different to F div

ηn ) a regularizing effect
but no solenoidality is needed. What turns out to be the critical point is that the extension is depending on
the variable geometry. In particular, the extension of a constant in time function still possesses a non-trivial
time-derivative. The essential term is

S
I
S

Ωηn
%nun � ∂t�Fηnb�dxdt

using the notation from the next section. We observe that ∂t�Fηnb� (the time-derivative of the extension)
is expected to behave like ∂tηn. Based on the a priori estimates %n > Lªt �Lγx�, un > L2

t �L6
x�, we find that

∂tηn > L
2
t �Lrx� for all r @ 4 uniformly by the trace theorem (see Lemma 3.2.3). Consequently the bound γ A 12

7
naturally appears. It is interesting to note that the same bound was needed in [22, Lemma 7.4] in order to avoid
concentrations of the approximate pressure at the boundary (an argument that we will use later in Lemma 3.5.6).
In order to prove Theorem 3.2.14 we have to work with a multi-layer approximation scheme. As is nowadays
standard in the theory of compressible fluids we follow [63] and use an artificial pressure (replace p�%,ϑ�
by pδ�%,ϑ� � p�%,ϑ� � δ%β where β is chosen large enough) as well as an artificial viscosity (add ε∆% to
the right-hand side of (4.2.2)). The resulting system is solved by means of a Galerkin approximation. More
specifically, we have to solve a finite-dimensional system of ODEs and eventually pass to the limit in the
dimension N . It turns out that existence on the basic level, where the parameters ε and δ are fixed, is quite
involving. Troublesome is the derivation of the entropy balance (1.1.17) (in form of a variational inequality):
Though it is suitable to pass to the limit it is not appropriate for the direct construction of solutions due to
its highly involving non-linearities. Hence the entropy balance is derived a posteriori by dividing the internal
energy equation (1.1.11) by ϑ. In order to do this rigorously it has to be shown that the temperature is strictly
positive - a property which can only be expected from strong solutions to (1.1.11). One of the main efforts of
this paper is consequently to construct strong solutions to (1.1.11) for regularized velocity and smooth pressure.
New a priori estimates for (1.1.11) and (4.2.2) in variable domains are shown that go well beyond the results
from [22, Sec. 3] and form one if the main achievements of this paper. Finally, we wish to note that we
can shorten the approach from [22] considerably. Different to [22] we decouple the geometry from the fluid
system on the Galerkin level and apply the fixed point argument to the resulting semi-discrete problem directly.
This allows to remove one regularization level in which the moving boundary and the convective terms are
regularised by a parameter κ.

3.3 Equations for density and temperature in variable domains

In this section we study the continuity equation (with artificial viscosity) as well as the internal energy equation
in variable domains. In Theorems 3.3.3 and 3.3.4 we prove the existence of classical solutions to both equations
under the assumption the data (the velocity field as well and the variable boundary) are smooth. In particular,
we prove that the temperature stays strictly positive on the regularised level. This is a key ingredient for the
remainder of the paper.

2As is explained in [22] the usual test with the Bogovskiı̆-operator (that implies higher integrability of the density) fails and we are
only able to prove uniform integrability, cf. Lemmas 3.5.4 and 3.5.6.
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3.3.1 The continuity equation

In this subsection we are concerned with the regularised continuity equation in a (given) variable domain.
We assume that the moving boundary is prescribed by a function ζ � I � ω � R. For a given function w >

L2�I;W 1,2�Ωζ�� with trζw � ∂tζν and ε A 0 we consider the equation

∂t% � div�%w� � ε∆% in I �Ωζ ,

%�0� � %0 in Ωζ�0�, ∂νζ%T∂Ωζ
� 0 on I � ∂Ωζ .

(3.3.1)

A weak solution to (3.3.1) satisfies

S
I

d

dt
S

Ωζ
%ψ dxdt � S

I
S

Ωζ
�%∂tψ � %w � ©ψ�dxdt � �S

I
S

Ωζ
ε©% � ©ψ dxdt (3.3.2)

for all ψ > Cª�I �R3�. The following result has been proved in [22, Thm. 3.1](for the analogous results for
fixed in time domains see [64, section 2.1]).

Theorem 3.3.1. Let ζ > C2,α�I � ω, �L2 , L2 �� with α > �0,1� be the function describing the boundary. Assume
that w > L2�I;W 1,2�Ωζ�� 9Lª�I �Ωζ� with trζw � ∂tζν and %0 > L

2�Ωζ�0��.
a) There is a unique weak solution % to (3.3.1) such that

% > Lª�I;L2�Ωζ�� 9L2�I;W 1,2�Ωζ��.
b) Let θ > C2�R�;R�� be such that θ��s� � 0 for large values of s and θ�0� � 0.Then the following holds,

for the canonical zero extension of % � %χΩζ :

S
I

d

dt
S
R3
θ�%�ψ dxdt � S

I�R3
θ�%�∂tψ dxdt

� � S
I�R3

�%θ��%� � θ�%��divwψ dx � S
I�R3

θ�%�w � ©ψ dxdt

� S
I�R3

εχΩζ©θ�%� � ©ψ dxdt � S
I�R3

εχΩζθ
���%�S©%S2ψ dxdt

(3.3.3)

for all ψ > Cª�I �R3�.
c) Assume that %0 C 0 a.e. in Ωζ�0�. Then we have % C 0 a.e. in I �Ωζ .

Remark 3.3.2. Observe that:

• The statement in [22] holds without the assumption trζw � ∂tζν under the boundary condition ∂νζ%T∂Ωζ
�

1
ε%�w � �∂tζν� Xϕ�1

ζ � � νζ .
• Theorem 3.1 in [22] is formulated with the stronger assumption ζ > C3�I � ω, �L2 , L2 ��. However, it can

be checked that the condition ζ > C2,α�I � ω, �L2 , L2 �� is sufficient for the proof.

In the following we improve the result from Theorem 3.3.1 and obtain a classical solution to (3.3.1).

Theorem 3.3.3. Let the assumptions of Theorem 3.3.1 be satisfied and suppose additionally that ∂t©2ζ as
well as ©3ζ belong to the class Cα�I � ω�. Furthermore we assume that Jζ �� det©Ψζ is strictly positive,
%0 > C

2,α�Ωζ�0�� and w > C1,α�I �Ωζ� such that ∂t©w and ©2w belong to the class Cα�I �Ωζ�.
1. The solution % from Theorem 3.3.1 satisfies (3.3.1) in the classical sense and belongs to the regularity

class

Z
I
ζ �� �z > C1�I �Ωζ� � ©2z > C�I �Ωζ��.
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In particular, we have

Y%YC1
t,x
� Y©2%YCt,x B c�%0, ζ, supJ�1

ζ ,w�,
with dependence via the (semi-)norms in the affirmative function spaces.

2. Suppose that %0 C 0. Then we have the estimate

C�1 min
Ωζ�0�

%0 B max
I�Ωζ

% B Cmax
Ωζ�0�

%0,

where C � C�ζ, supJ�1
ζ ,w� with dependence via the (semi-)norms in the affirmative function spaces.

Proof. We start by transforming (3.3.2) to the reference domain. For ψ > Cª�I � R3� we set ψ � ψ X Ψ�1
ζ .

Defining similarly % � % XΨζ and w � w XΨζ we obtain from (3.3.2)

S
I

d

dt
S

Ωζ
% XΨ�1

ζ ψ XΨ�1
ζ dxdt � S

I
S

Ωζ
% XΨ�1

ζ �∂tψ XΨ�1
ζ �©ψ XΨ�1

ζ � ∂tΨ
�1
ζ �dxdt

� S
I
S

Ωζ
% XΨ�1

ζ w XΨ�1
ζ � �©Ψζ��1

©ψ XΨ�1
ζ dxdt

� S
I
S

Ωζ
ε�©Ψ�1

ζ �T©Ψ�1
ζ ©% XΨ�1

ζ � ©ψ XΨ�1
ζ dxdt

such that

S
I

d

dt
S

Ω
Jζ%ψ dxdt � S

I
S

Ω
Jζ%�∂tψ �©ψ � ∂tΨ�1

ζ XΨζ�dxdt

� S
I
S

Ω
Jζ%w � �©Ψζ��1

©ψ dxdt

� S
I
S

Ω
εJζ�©Ψζ��T �©Ψζ��1

©% � ©ψ dxdt,

where Jζ � det©Ψζ . Finally, we replace ψ by ψ~Jζ to obtain

S
I

d

dt
S

Ω
%ψ dxdt � S

I
S

Ω
�%∂tψ � %Jζ∂tJ�1

ζ ψ�dxdt

� S
I
S

Ω
�%∂tΨ�1

ζ XΨζ � ©ψ � %Jζ©J
�1
ζ � ∂tΨ

�1
ζ XΨζψ�dxdt

� S
I
S

Ω
%w � �©Ψζ��1

©ψ dxdt � S
I
S

Ω
%w � Jζ�©Ψζ��1

©J�1
ζ ψ dxdt

� S
I
S

Ω
ε�©Ψζ��T �©Ψζ��1

©% � ©ψ dxdt

� S
I
S

Ω
εJζ�©Ψζ��T �©Ψζ��1

©% � ©J�1
ζ ψ dxdt.

Now we set

gζ � Jζ∂tJ
�1
ζ � Jζ©J

�1
ζ � ∂tΨ

�1
ζ XΨζ �w � Jζ�©Ψζ��1

©J�1
ζ

gζ � �εJζ�©Ψζ��T �©Ψζ��1
©J�1

ζ ,

fζ � ∂tΨ
�1
ζ XΨζ � �©Ψζ��Tw, Aζ � ε�©Ψζ��T �©Ψζ��1

,

such that the equation reads as

�S
I
S

Ω
%∂tψ dxdt � S

I
S

Ω
%gζψ dxdt � S

I
S

Ω
©% � gζψ dxdt � S

I
S

Ω
%fζ � ©ψ dxdt

� S
I
S

Ω
Aζ©% � ©ψ dxdt
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for any ψ with ψ�0� � ψ�T � � 0. Choosing ψ > Cª
c �I �Ω� arbitrarily we obtain

∂t% � %gζ �©% � gζ � div�%fζ� � div�Aζ©%�
� %�gζ � divfζ� �©% � �gζ � fζ� � div�Aζ©%�

and we have the boundary condition

ν �Aζ©% � %fζ � ν � 0.

Here we use that ∂tΨ�1
ζ XΨζ � �©Ψ�T

ζ w on ∂Ω due to the assumption trζw � ∂tζν. In fact, we have

0 � ∂t�Ψζ XΨ�1
ζ � � ∂tΨζ XΨ�1

ζ �©ΨT
ζ XΨ�1

ζ ∂tΨ
�1
ζ

such that

©ΨT
ζ ∂tΨ

�1
ζ XΨζ � �∂tΨζ � ��∂tζν� Xϕ � �w XΨζ � �w

on I � ∂Ω due to the definition of Ψζ from (3.2.10).
We can rewrite the equation further as

∂t% � %�gζ � divfζ� �©% � �gζ � fζ� � divAζ � ©% �Aζ � ©
2%

such that we finally obtain

∂t% � bζ�t, x, %,©%� � Aζ � ©
2% in I �Ω,

νAζ � ©% � 0 on I � ∂Ω,
(3.3.4)

where

bζ�t, x, u,U� � �u�gζ � divfζ� �U � �fζ � gζ � divAζ�.
By the classical theory from [122, Thm.’s 7.2, 7.3 & 7.4, Chapter V] the claim of part (a) follows if we can
control the following quantities:3

• The C2,α-norm of %0;

• The α-Hölder-semi-norms of ©xbζ , ∂ubζ and ∂Ubζ with respect to x; the constants in

�ubζ�t, x, u,U� B c0u
2
� c1SUS2 � c2 ¦�t, x, u,U� > I �Ω �R �R3;Sbζ�t, x, u,U�S � S©�t,u�bζ�t, x, u,U�S � �1 � SUS�S©Ubζ�t, x, u,U�S B c3�1 � u2

� SUS2�;
• The coercivity constant of Aζ and its upper bound; the α-Hölder-semi-norm of ©xAζ and ∂uAζ with

respect to x.

One readily checks that all these quantities can be controlled in terms of Y%0YC2,α
x

, YζY
C2,α
t,x

, Y∂t©2ζYCαt,x ,Y©3ζYCαt,x , supJ�1
ζ , YwY

C1,α
t,x

and Y©2wYCαt,x .
In order to prove (b) we argue similarly to the classical arguments from [122, Thm. 7.3 Chapter V] and set

v�t, x� �� ϕ�x�e�λ1t%

3Note that this gives the required regularity for %; however, transforming back by means of Ψ�1
ζ does not alter it due to the regularity

of ζ.
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to verify the estimate from above. Here ϕ > Cª�Ω� is constructed such that it satisfies

ϕ�x� C 1 in Ω, (3.3.5)
©ϕ �Aζν

ϕ
@ 0 on I � ∂Ω. (3.3.6)

Such a function ϕ can be defined using the distance function to the boundary with respect to the direction Aζν.
By the assumption that YζYLªt,x B L

2 and the C2 regularity of ζ this is a well defined function. Note that ϕ is
chosen independently of λ1 (which we will fix below). We have by (3.3.4) using the linearity of b

∂tv � ϕe
�λ1t∂t% � λ1v � �ϕe

�λ1tbζ�t, x, %,©%� � ϕe�λ1tAζ � ©
2% � λ1v

� �bζ�t, x,ϕe�λ1t%,ϕe�λ1t©%� � ϕe�λ1tAζ � ©
2% � λ1v

� �bζ�t, x, v,©v � %e�λ1t©ϕ� �Aζ � ©
2v �Aζ � �2e�λ1t©%asym ©ϕ � %e�λ1t©

2ϕ� � λ1v.

Let us assume that there is a point �t0, x0� > I �Ω with v�t0, x0� � maxt,x v�t, x�. We obtain in this point

0 � �bζ�t, x, v,�%e�λ1t0©ϕ� �Aζ � ©
2v �Aζ � 2e

�λ1t0%
©ϕ

ϕ
a©ϕ �Aζ � %e

�λ1t0©
2ϕ � λ1v

B �bζ�t, x, v, %e�λ1t0©ϕ� � %e�λ1t0Aζ � �2
©ϕ

ϕ
a©ϕ �©2ϕ� � λ1v

� %e�λ1t0�ϕ�gζ � divfζ� � λ1ϕ �©ϕ � �gζ � fζ � divAζ� �Aζ � �2
©ϕ

ϕ
a©ϕ �©2ϕ��.

If we choose λ1 large (depending on YgζYLªt,x , YgζYLªt,x , Y©fζYLªt,x , Y©AζYLªt,x and ϕ) this leads to a contradic-
tion (note that % is non-negative by Theorem 3.3.1 (b)).
Let us now assume that x0 > ∂Ω and t A 0. Then since Aζ�t0, x0�ν�x0� points outside Ω we have

0 B
d

ds
v�t0, x0 � sAζ�t0, x0�ν�x0��U

s�0
� ©v�t0, x0� �Aζ�t0, x0�ν�x0�.

By (3.3.4) this implies

0 B e�λt0�%�t0, x0�©ϕ�x0� �Aζ�t0, x0�ν�x0� � ϕ©%�x0� �Aζ�t0, x0�ν�x0��
� ϕ�x0�%�t0, x0�e�λt0 ©ϕ�x0� �Aζ�t0, x0�ν�x0�

ϕ�x0� ,
(3.3.7)

which yields a contradiction by (3.3.6). We conclude that the maximum of v is attained at �0, x0� for some
x0 > Ω. By (3.3.5) the estimate for the maximum follows.
Unfortunately, the approach above used for the maximum principle does not work to achieve a minimim prin-
ciple. The reason is that we do not know a priori if % is strictly positive at a potential minimum of v at the
boundary. We multiply (3.3.4) by �m�ξ � %��m�1 where 0 @ ξ P 1 and mQ 1. This yields

∂t�ξ � %��m � �m�gζ � divfζ�%�ξ � %��m�1
�m©% � �gζ � fζ��ξ � %��m�1

�mdiv�Aζ©%��ξ � %��m�1

and

d

dt
S

Ω
�ξ � %��m dx �m�m � 1�S

Ω
�ξ � %��mAζ�©%,©%�dx

� �mS
Ω
�gζ � divfζ�%�ξ � %��m�1 dx �mS

Ω
�gζ � fζ� � ©%�ξ � %��m�1 dx � �I� � �II�

using (3.3.4)2. Using the boundedness of % from (b) we obtain

�I� B cmS
Ω
%�ξ � %��m�1 dx B cmS

Ω
�ξ � %��m dx.
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The constant c depends on YζYC2
t,x
, supJ�1

ζ , YwYLªt,x and Y©wYLªt,x . Similarly, we have for any κ A 0

�II� B cmS
Ω
S©%S�ξ � %��m�1 dx

B κm�m � 1�S
Ω
S©%S2�ξ � %��m dx � c�κ� S

Ω
�ξ � %��m dx

B cκm�m � 1�S
Ω

Aζ�©%,©%��ξ � %��m dx � c S
Ω
�ξ � %��m dx

with c � c�YζY
C2,α
t,x
, YgζYLªt,x , YfζYLªt,x�. If we absorb now the terms containing Aζ and apply Gronwall’s lemma

we obtain

S
Ω
�ξ � %�t����m dx B eCmS

Ω
�ξ � %0��m dx.

The constant C depends on YζYC2
t,x
, Y∂t©2ζYCαt,x , Y©3ζYCαt,x , supJ�1

ζ , YwY
C1,α
t,x

, Y∂t©wYCαt,x and Y©2wYCαt,x ,
but is independent of m. Taking the m-th root shows

�S
Ω
� 1

ξ � %�t���m dx� 1
m

B eC�S
Ω
�ξ � %0��m dx� 1

m

.

Passing with m�ª implies

sup
Ω

1

ξ � %�t� B eC sup
Ω

1

ξ � %0

or, equivalently,

eC inf
Ω
�ξ � %0� B inf

Ω
�ξ � %�t��.

Consequently, passing with ξ � 0 we have eC minΩ %0 B %�t, x� for all �t, x� > I �Ω. Thus, transforming back
to %, (c) is shown and the proof is complete.

3.3.2 The internal energy equation

The regularized internal energy equation reads as

∂t�%e�%,ϑ�� � div�%e�%,ϑ�w� � div�δ�ϑ�©ϑ�
� Sε�ϑ,©w� � ©w � pδ�%,ϑ�divw

� ε%β�2S©%S2 � δ 1

ϑ2
� εϑ5

� %H in I �Ωζ ,

∂νζϑT∂Ωζ
� 0 on I � ∂Ωζ

(3.3.8)

and we have ϑ�0� � ϑ0 (note that δ and Sε are defined in (3.2.8)). Similar to Theorem 3.3.3 we have the
following result concerning a classical solution to (3.3.8).

Theorem 3.3.4. Let ζ > C2,α�I � ω, �L2 , L2 �� with α > �0,1� be the function describing the boundary. Suppose
additionally that ∂t©2ζ as well as ©3ζ belong to the class Cα�I � ω� and suppose that Jζ �� det©Ψζ is
strictly positive. Assume that w > C1,α�I � Ωζ� such that ∂t©w and ©2w belong to the class Cα�I � Ωζ�
and trζw � ∂tζν. Assume further that ϑ0 > C2,α�Ωζ�0��, ϑ0 strictly positive, %,H > C1,α�I � Ωζ� and that
%,H C 0.

69



SCHWARZACHER HEAT-CONDUCTING COMPRESSIBLE FLUIDS ANALYSIS FOR FSI

1. There is a unique classical solution ϑ to (3.3.8) which belongs to the regularity class

Z
I
ζ �� �z > C1�I �Ωζ� � ©2z > C�I �Ωζ��.

In particular, we have

YϑYC1
t,x
� Y©2ϑYCt,x B c�ϑ0, ζ, supJ�1

ζ ,w, %,H�,
with dependence via the (semi-)norms in the affirmative function spaces.

2. We have the estimate

min�C�1 min
Ωζ�0�

ϑ0,1� B min
I�Ωζ

ϑ B max
I�Ωζ

ϑ B max�Cmax
Ωζ�0�

ϑ0,1�,
where C � C�ζ, supJ�1

ζ ,w, %,H� with dependence via the (semi-)norms in the affirmative function
spaces.

Proof. Equation (3.3.8) contains several nonlinear terms which blow up for small or large values of ϑ. Hence
we replace them with regularized versions. Let χ` > Cª��0,ª�� with χ`�Z� � Z for Z > �1~`, `� and
c`�1 B χ` B C` for some positive constants c,C and `Q 1. We define

Sε,`�ϑ,©w� � Sε�χ`�ϑ4�1~4,©w�, `δ�ϑ� � δ� 4
»
χ`�ϑ4��

χ`�ϑ4�3~4 ϑ3,

and consider the equation

∂t�%e�%,ϑ�� � div�%e�%,ϑ�w� � div�`δ�ϑ�©ϑ�
� Sε,`�ϑ,©w� � ©w � p�%,ϑ�divw � εδβ%β�2S©%S2
� δχ`�ϑ4��1~2

� εχ`�ϑ4� 5
4 � %H in I �Ωζ ,

∂νζϑT∂Ωζ
� 0 on I � ∂Ωζ

(3.3.9)

and we have ϑ�0� � ϑ0. We will show that the solution to equation (3.3.9) satisfies

max
I�Ωζ

ϑ B max�Cmax
Ωζ�0�

ϑ0,1� (3.3.10)

as well as

min
I�Ωζ

ϑ C min�C�1 min
Ωζ�0�

ϑ0,1� (3.3.11)

with C � C�YζY
C2,α
t,x
, Y�∂t©2ζ,©3ζ�YCαt,x , supJ�1

ζ , Y%YC1
t,x
, YwY

C1,α
t,x
, Y©2wYCαt,x , YHYLªt,x� independent of `.

Consequently, the cut-offs in (3.3.9) are not seen for ` are enough and we obtain the result for the original
problem (3.3.8). Arguing as in the proof of Theorem 3.3.3 we can transform (3.3.9) to the reference domain.
For this purpose it is useful to work with the weak formulation

S
I
� d

dt
S

Ωζ
%e�%,ϑ�ψ dx � S

Ωζ
�%e�%,ϑ�∂tψ � %e�%,ϑ�w � ©ψ�dx�dt

� S
I
S

Ωζ

`
δ�ϑ�©ϑ � ©ψ dxdt

� S
I
S

Ωζ
�Sε,`�ϑ,©w� � ©w � p�%,ϑ�divw�ψ dxdt

� S
I
S

Ωζ
�εδβ%β�2S©%S2 � δχ`�ϑ4��1~2

� εχ`�ϑ4�5~4
� %H�ψ dxdt
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for all ψ > Cª�I �R3�. Setting ψ � ψ XΨ�1
ζ for some ψ > Cª�I �R3�, % � % XΨζ , w � w XΨζ , H �H XΨζ

and ϑ � ϑ XΨζ this is equivalent to

S
I

d

dt
S

Ωζ
% XΨ�1

ζ e�% XΨ�1
ζ , ϑ XΨ�1

ζ �ψ XΨ�1
ζ dxdt

� S
I
S

Ωζ
% XΨ�1

ζ e�% XΨ�1
ζ , ϑ XΨ�1

ζ � �∂tψ XΨ�1
ζ �©ψ XΨ�1

ζ � ∂tΨ
�1
ζ �dxdt

� S
I
S

Ωζ
% XΨ�1

ζ e�% XΨ�1
ζ , ϑ XΨ�1

ζ �w XΨ�1
ζ � ©Ψ�1

ζ ©ψ XΨ�1
ζ dxdt

� S
I
S

Ωζ

`
δ�ϑ XΨ�1

ζ ��©Ψ�1
ζ �T©Ψ�1

ζ ©ϑ XΨ�1
ζ � ©ψ XΨ�1

ζ dxdt

� S
I
S

Ωζ
�©Ψ�1

ζ �TSε,`�ϑ XΨ�1
ζ ,©Ψ�1

ζ ©w XΨ�1
ζ �©w XΨ�1

ζ ψ XΨ�1
ζ dxdt

� S
I
S

Ωζ
p�% XΨ�1

ζ , ϑ XΨ�1
ζ �©w XΨ�1

ζ � �©Ψ�1
ζ �T ψ XΨ�1

ζ dxdt

� S
I
S

Ωζ
�εδβ�% XΨ�1

ζ �β�2S©Ψ�1
ζ ©% XΨ�1

ζ S2�ψ XΨ�1
ζ dxdt

� S
I
S

Ωζ
�δχ`�ϑ4

XΨ�1
ζ ��1~2

� εχ`�ϑ4
XΨ�1

ζ �5~4
� %H�ψ XΨ�1

ζ dxdt

and, setting Jζ � det©Ψζ ,

S
I

d

dt
S

Ω
Jζ%e�%,ϑ�ψ dxdt � S

I
S

Ω
Jζ%e�%,ϑ� �∂tψ �©ψ � ∂tΨ�1

ζ XΨζ�dxdt

� S
I
S

Ω
Jζ%e�%,ϑ�w � �©Ψζ��1

©ψ dxdt

� S
I
S

Ω
Jζ
`
δ�ϑ��©Ψζ��T �©Ψζ��1

©ϑ � ©ψ dxdt

� S
I
S

Ω
Jζ�©Ψζ��TSε,`�ϑ, �©Ψζ��1

©w� � ©wψ dxdt

� S
I
S

Ω
Jζp�%,ϑ�©w � �©Ψζ��T ψ dxdt

� S
I
S

Ω
Jζ�εδβ%β�2S�©Ψζ��1

©%S2 � δχ`�ϑ4��1~2
� εχ`�ϑ4�5~4

� %H�ψ dxdt

for all ψ > Cª�I �Ω�. Again we replace ψ by ψ~Jζ to obtain

S
I

d

dt
S

Ω
%e�%,ϑ�ψ dxdt � S

I
S

Ω
%e�%,ϑ�∂tψ dxdt

� S
I
S

Ω
%e�%,ϑ�©ψ � ∂tΨ�1

ζ XΨζ dxdt � S
I
S

Ω
%e�%,ϑ�w � �©Ψζ��1

©ψ dxdt

� S
I
S

Ω

`
δ�ϑ��©Ψζ��T �©Ψζ��1

©ϑ � ©ψ dxdt

� S
I
S

Ω
Jζ
`
δ�ϑ��©Ψζ��T �©Ψζ��1

©ϑ � ©J�1
ζ ψ dxdt

� S
I
S

Ω
�©Ψζ��TSε,`�ϑ, �©Ψζ��1

©w� � ©wψ dxdt

� S
I
S

Ω
p�%,ϑ�©w � �©Ψζ��T ψ dxdt

� S
I
S

Ω
�εδβ%β�2S�©Ψζ��1

©%S2 � δχ`�ϑ4��1~2
� εχ`�ϑ4�5~4

� %H�ψ dxdt

� S
I
S

Ω
Jζ%e�%,ϑ� �∂tJ�1

ζ �©J�1
ζ � ∂tΨ

�1
ζ �ψ dxdt

� S
I
S

Ω
Jζ%e�%,ϑ�w � �©Ψζ��1

©J�1
ζ ψ dxdt.
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Now we set

g̃`ζ�ϑ� � �©Ψ�1
ζ �TSε,`�ϑ,©Ψ�1

ζ ©w� � ©w � p�%,ϑ�©w � �©Ψζ��T
� εδβ%β�2S�©Ψζ��1

©%S2 � δχ`�ϑ4��1~2
� εχ`�ϑ4�5~4

� %H

� Jζ%e�%,ϑ� �∂tJ�1
ζ �©J�1

ζ � ∂tΨ
�1
ζ � � Jζ%e�%,ϑ�w � �©Ψζ��1

©J�1
ζ ,

g̃`ζ�ϑ� � �Jζ`δ�ϑ��©Ψζ��T �©Ψζ��1
©J�1

ζ ,

f̃ `ζ�ϑ� � %e�%,ϑ� � ∂tΨ�1
ζ XΨζ � %e�%,ϑ��©Ψζ��Tw

Ã`
ζ�ϑ� � `�ϑ��©Ψζ��T �©Ψζ��1

such that the equation reads as

S
I

d

dt
S

Ω
%e�%,ϑ�ψ dxdt � S

I
S

Ω
g̃`ζ�ϑ�ψ dxdt � S

I
S

Ω
©ϑ � g̃`ζ�ϑ�ψ dxdt

� S
I
S

Ω
f̃ `ζ�ϑ� � ©ψ dxdt � S

I
S

Ω
Ã`
ζ�ϑ�©ϑ � ©ψ dxdt

(3.3.12)

for any ψ with ψ�0� � ψ�T � � 0. Choosing ψ from Cª
c �I �Ω� shows

∂t�%e�%,ϑ�� � g̃`ζ�ϑ� �©ϑ � g̃`ζ�ϑ� � div�f̃ `ζ�ϑ�� � div�Ã`
ζ�ϑ�©ϑ�

and we have the boundary conditions

νÃ`
ζ�ϑ� � ©ϑ � 0

as in (3.3.4). Recalling (3.2.1) and (3.2.2) we define Z � ϑ
4

and set

g`ζ�Z� � �©Ψζ��TSε,`� 4
»
χ`�Z�, �©Ψζ��1

©w� � ©w � �pM�%� � a
3
Z�©w � �©Ψζ��1

� εδβ%β�2S�©Ψζ��1
©%S2 � ∂t�%eM�%�� � δχ`�Z��1~2

� εχ`�Z�5~4
� %H

� �%eM�%� � aZ� �∂tJ�1
ζ �©J�1

ζ � ∂tΨ
�1
ζ �w � �©Ψζ��1

©J�1
ζ �Jζ ,

g`ζ�Z� � �Jζ δ�χ`�Z�1~4�
4χ`�Z�3~4 ©J�1

ζ �©Ψζ��T �©Ψζ��1
,

f `ζ�Z� � aZ�∂tΨ�1
ζ � �©Ψζ��1

w� � %eM�%��∂tΨ�1
ζ � �©Ψζ��1

w�,
A`
ζ�Z� � δ�χ`�Z�1~4�

4χ`�Z�3~4 �©Ψζ��T �©Ψζ��1
,

such that the equation becomes

∂taZ � g`ζ�Z� �©Z � g`ζ�Z� � div�f `ζ�Z�� � div�A`
ζ�Z�©Z� in I �Ω, (3.3.13)

ν �A`
ζ�Z�©Z � 0 on I � ∂Ω. (3.3.14)

It can be written as

∂tZ � b`ζ�t, x,Z,©Z� � A`
ζ�Z� � ©2Z in I �Ω,

νA`
ζ�Z� � ©Z � 0 on I � ∂Ω,

(3.3.15)

where

ab`ζ�t, x, u,U� � �g`ζ�u� � divxf
`
ζ�u� � � � g`ζ�u� � ∂uf `ζ�u� � divxA

`
ζ�u�� �U

� ∂uA
`
ζ�u��U,U�.
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As in proof of Theorem 3.3.3 (a) we can use the theory from [122, Thm. 7.2, 7.3 & 7.4 Chapter V] to infer the
existence of a unique classical solution Z` to (3.3.15) with the required regularity. Transforming back yields the
regularity of ϑ claimed in (a), provided we can show that the cut-offs in (3.3.9) are not seen. As far as (3.3.10)
is concerned we argue as in the proof of Theorem 3.3.3 and set

v�t, x� �� ϕ�x�e�λ1tZ

where ϕ > Cª�I �Ω� is such that

ϕ�x� C 1 in I �Ω, (3.3.16)

©ϕ �A`
ζ�Z�ν
ϕ

@ 0 on I � ∂Ω. (3.3.17)

Note that we have δ� 4
»SZS�

4 4
»SZS3 C 4 by (3.2.7) such that the coercivity constant of A`

ζ�Z� can be bounded from

below independently of `. Consequently, the function ϕ can also be chosen independently of `. In an interior
maximum point �t0, x0� > I �Ω of Z we have again

0 � �e�λ1tϕb`ζ�t, x,Z,©Z� �A`
ζ�ZL� � ©2v � λ1v

�A`
ζ�Z� � �2e�λ1t0Z

ϕ
©ϕa©ϕ �Ze�λ1t0©

2ϕ�
B �e�λ1tϕb`ζ�t0, x,Z,�Zϕ©ϕ� � λ1v � c�ϕ�e�λ1t0�1 �Z�
B ce�λ1t0�1 �Z� � δϕe�λ1t0

χ`�Z�1~2 � λ1e
�λ1t0ϕZ, (3.3.18)

where

c � c�ϕ, YζY
C2,α
t,x
, Y�∂t©2ζ,©3ζ�YCαt,x , Y%YC1

t,x
, J�1
ζ , YwY

C1,α
t,x
, Y©2wYCαt,x , YHYLªt,x� (3.3.19)

is independent of `. Note that we used that the coefficients in the definition of b`ζ have linear growth uniformly
in ` except for δχ`�u��1~2, �εχ`�u�5~4 and ∂uA`

ζ�u��U,U�. Fortunately, the first two terms have the correct
sign, whereas the second one is evaluated at U � �

Z
ϕ©ϕ. Now we distinguish two cases. If Z�t0, x0� B 1 there

is nothing to show. Otherwise, δ
χ`�Z�t0,x0��1~2 is bounded (independent of `) such that we obtain a contradiction

in (3.3.18) by choosing λ1 large (depending on the quantities in (3.3.19)). The case x0 > ∂Ω and t0 A 0 can be
ruled out again as in (3.3.7). Hence (3.3.10) follows with a constant independent of `.
In order to prove (3.3.11) we first establish a lower bound which depends on `. Choosing first ` large enough
and than Z > �0, inf Z0� small enough (depending on `) we have g`ζ�Z��div�f `ζ�Z�� C 0. This is thanks to the
term δχ`�Z��1~2 in the definition of g`ζ . Consequently, we obtain from (3.3.13)

∂ta�Z �Z� C g`ζ�Z� � g`ζ�Z� �©Z � g`ζ�Z� �©Z � g`ζ�Z� � div�f `ζ�Z� � f `ζ�Z��
� div�A`

ζ�Z�©�Z �Z��.
Multiplying by �Z �Z�� and integrating over Ω implies

a

2

d

dt
S

Ω
��Z �Z���2 dx � S

Ω
A`
ζ�Z��©�Z �Z��,©�Z �Z���dx

B S
Ω
�g`ζ�Z� � g`ζ�Z���Z �Z�� dx � S

Ω
�©Z � g`ζ�Z� �©Z � g`ζ�Z���Z �Z�� dx

� S
Ω
�f `ζ�Z� � f `ζ�Z��©�Z �Z�� dx
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using also (3.3.14). By the Lipschitz continuity of g`ζ , g`ζ and f `ζ in Z and (3.3.10) we obtain

d

dt
S

Ω

a

2
S�Z �Z��S2 dx � S

Ω
A`
ζ�Z`��©Z�

` ,©Z
�

` �dx

B ξS
Ω
S©�Z �Z��S2 dx � c�ξ, `�S

Ω
S�Z �Z��S2 dx

for all ξ A 0. Due to (3.2.7) the first term can be absorbed for ξ small enough, whereas the second one can be
handled by Gronwall’s lemma and ϑ0 A 0. We conclude that

Z C Z A 0 in I �Ω. (3.3.20)

Recall that Z depends on `. We are now going to prove a uniform lower bound. Similarly to (3.3.16) and
(3.3.17) we consider a function ϕ > Cª�I �Ω� satisfying

ϕ�x� C 1 in I �Ω, (3.3.21)

©ϕ �A`
ζ�Z�ν
ϕ

C 1 on I � ∂Ω. (3.3.22)

Let us first assume that the minimum of v � ϕeλ1tZ is attained in an interior point �t0, x0� > I �Ω. We obtain
similarly to (3.3.18)

0 C �ceλ1t0�1 �Z� � δϕeλ1t0

χ`�Z�1~2 � εχ`�Z�5~2
� λ1e

λ1t0ϕZ. (3.3.23)

An appropriate choice of λ1 contradicts (3.3.23). In the case of x0 > ∂Ω and t0 A 0 we have similarly to the
proof of (b)

0 C Ze�λ1t0©ϕ �A`
ζ�t0, x0�ν�x0�.

This gives a contradiction by (3.3.20), (3.3.21) and (3.3.22). Consequently, the minimum of Z is attained in a
point �0, x0� for some x0 > Ω. This gives the claim of (b) since λ1 is independent of `.

3.4 Construction of an approximate solution

In this section we construct an approximation of the system, where the continuity equation contains an artificial
diffusion (ε-layer) and the pressure is stabilised by a high power of the density (δ-layer). Following [62] we
add various regularizing terms depending on ε and δ to the equations to preserve the energy balance. One of the
regularizing terms can only be shown to belong to L1, which is not enough to conclude uniform continuity in
time needed for the application of Theorem 2.5.1. To overcome this peculiarity we include a further diffusion
term of the fluid velocity which is non-linear and of p-growth with p A 2. It vanishes in the limit but improves
the time integrability mentioned before. Additionally, we regularize the shell equation by replacing the operator
K with

Kε�η� �K�η� � εL�η�, L�η� � 1

2
S
ω
S©3ηS2 dy,

defined for η >W 3,2�ω�. Thanks to this we can prove compactness of the shell energy in the Galerkin limit.

Remark 3.4.1. We observe that adding dissipative regularization terms to the shell equation is not possible.
This is a special feature for energetically closed systems and in contrast to other fluid systems [88]. Indeed,
a dissipation term in the solid creates heat on the surface, which consequently effects the temperature. In the
case of shells this yields a non-homogeneous Neumann boundary value for the temperature variable. This
non-homogeneity naturally possesses the ”wrong sign” in order to attain in the limit the boundary values
for the temperature that are in accordance with the concept of weak solutions. In the case of visco-elastic
solids, where dissipative terms such as an additional heat source are included (they are physical and not only
relaxation terms) our approximation would yield the correct non-homogeneous boundary values. However, we
considered here perfectly elastic solids. Hence all energy is supposed to be stored in the elastic potential.
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In contrast to [22] and [127] we construct the fixed point on the Galerkin level. This allows to remove
one regularization level for the boundary and the convective term that was needed there. The formulation of
the Galerkin approximation in our case is more involved since the basis functions are defined on the a priori
unknown time dependent domain. The fixed point argument (which is now applied on the Galerkin level) is,
however, much easier. After constructing a solution on the basic level, we prove in Subsection 3.4.2 the energy
equality and derive further estimates through the Helmholz-function. In particular, we derive the approximate
system and the a-priori estimates. They are essential for the remainder of the paper and are preserved in all
limit procedures.
For the original system we seek a solution of the shell in the class

Y I
��W 1,ª�I;L2�ω�� 9Lª�I;W 2,2�ω��.

However, in this section we are dealing with a regularised system where instead solutions are located in

Ỹ I
�� 9W 1,ª�I;L2�ω�� 9Lª�I;W 3,2�ω��.

For ζ > Ỹ I with YζYLªt,x B L
2 we consider

X̃I
ζ �� L

p�I;W 1,p�Ωζ�t���, X̃I
ζ �� L

2�I;W 1,2�Ωζ�t��� ZIζ � L2�I;W 1,2�Ωζ�� 9Lª�I;L4�Ωζ��.
A solution to the regularized system, in the weak formulation, is a quadruplet �η,u, %, ϑ� > Ỹ I � X̃I

η �X
I
η �Z

I
η

that satisfies the following.

(K1) The regularized weak momentum equation

S
I

d

dt
S

Ωη
%u �φdxdt � S

I
S

Ωη
%u � ∂tφdxdt

� S
I
S

Ωη
%ua u � ©φdxdt � S

I
S

Ωη
S�ϑ,©u� � ©φdxdt

� S
I
S

Ωη
pδ�%,ϑ�divφdxdt � S

I
S

Ωη
ε©%©u �φdxdt

� S
I
� d

dt
S
ω
∂tη b dy � S

ω
∂tη ∂tb dy � S

ω
K �

ε�η� b dy�dt
� S

I
S

Ωη
ε�1 � ϑ�P � ©φdxdt

� S
I
S

Ωη
%f �φdxdt � S

I
S
ω
g b dxdt

(3.4.1)

holds for all test-functions �b,φ� > Cª�ω��Cª�I �R3� with trηφ � bν and for some P > Lp
��I �Ωη�.

Moreover, we have �%u��0� � q0, η�0� � η0 and ∂tη�0� � η1. The boundary condition trηu � ∂tην
holds in the sense of Lemma 3.2.3.

(K2) The regularized continuity equation

∂t% � div�%u� � ε∆% (3.4.2)

holds in I �Ωη and we have ∂νη%S∂Ωη � 0 as well as %�0� � %0.
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(K3) The entropy balance

S
I

d

dt
S

Ωη
%s�%,ϑ�ψ dxdt � S

I
S

Ωη
�%s�%,ϑ�∂tψ � %s�%,ϑ�u � ©ψ�dxdt

C S
I
S

Ωη

1

ϑ
�S�ϑ,©u� � ©u � ε�1 � ϑ�max�SPSp� , S©uSp��ψ dxdt

� S
I
S

Ωη

1

ϑ
�δ
2
�ϑβ�1

�
1

ϑ2
��S©ϑS2 � δ 1

ϑ2
�ψ dxdt

� S
I
S

Ωη
��ϑ�
ϑ

� δ�ϑβ�1
�

1

ϑ2
��©ϑ � ©ψ dxdt � S

I
S

Ωη

%

ϑ
Hψ dxdt

� S
I
S

Ωη
ε � δ

2ϑ
β%β�2S©%S2 � ϑ4�ψ dxdt

(3.4.3)

holds for all ψ > Cª�I � R3� with ψ C 0. Moreover, we have limr�0 %s�%,ϑ��t� C %0s�%0, ϑ0� and
∂νηϑS∂Ωη B 0.

(K4) The total energy balance

�S
I
∂tψ Eε,δ dt � ψ�0�Eε,δ�0� � S

I
ψS

Ωη
� δ
ϑ2

� εϑ5� dxdt � S
I
ψS

Ωη
%H dxdt

� S
I
S

Ωη
%f � udxdt � S

I
ψS

M
g ∂tη dy dt

(3.4.4)

holds for any ψ > Cª
c ��0, T ��. Here, we abbreviated

Eε,δ�t� � S
Ωη�t� �1

2
%�t�Su�t�S2 � %�t�eδ�%�t�, ϑ�t���dx � S

M

S∂tη�t�S2
2

dy �Kε�η�t��.
Remark 3.4.2. In order to deal with the term RI RΩη ε©%©u � φdxdt (appearing in (3.4.1) to balance the
artificial viscosity term in (3.4.2)) in the proof of (3.4.33) we need higher integrability of ©u in time. This is
achieved by introducing an artificial p-Laplacian term ε�1�ϑ��1� S©uS�p�2©u for some p A 2 on the Galerkin
approximation in the next section. It gives the additional term ε�1 � ϑ�max�SPSp� , S©uSp� in (3.4.3). The
term ε�1 � ϑ�P in (3.4.1) is the weak limit of the p-Laplacian term and can be seen as the defect in the strong
convergence of ©u. It disappears in the limit ε� 0.

The rest of this section is dedicated to the proof of the following existence theorem.

Theorem 3.4.3. Assume that we have for some α > �0,1�
Sq0S2
%0

> L1�Ωη0�, %0, ϑ0 > C
2,α�Ωη0�, η0 >W

3,2�ω; ��L4 , L4 ��, η1 > L
2�ω�,

f > L2�I;Lª�R3��, g > L2�I � ω�, H > C1,α�I �R3�, H C 0.

(3.4.5)

Furthermore suppose that %0 and ϑ0 are strictly positive and that (1.1.21) is satisfied. Then there exists a
solution �η,u, %, ϑ� > Ỹ I � XI

η � Z
I
η � Z

I
η to (K1)–(K4). Here, we have I � �0, T��, where T� @ T only if

limt�T � Yη�t, ��YLªx �
L
2 or the Koiter energy degenerates (namely, if lims�t γ�s, y� � 0 for some point y > ω).

We prove Theorem 3.4.3 in two steps. First we construct a finite dimensional Galerkin approximation to
(K1)–(K3) in the next subsection. Then we derive the energy balance, prove uniform a priori estimates and
pass to the limit.
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3.4.1 Galerkin approximation

By solving respective eigenvalue problems we construct a smooth orthogonal basis �X̃k�k>N ofW 1,2
0 �Ω� that is

orthogonal in L2�Ω� and a smooth orthonormal basis �Ỹk�k>N of W 3,2�ω� which is orthogonal in L2�ω�. We
define vector fields Ỹk by setting Ỹk � FΩ��Ỹkν� Xϕ�1�, where FΩ is the extension operator used in Section
3.2.3. We recall that FΩ �W k,2�ω� �W k,2�Rn� for k > N such that the Ỹk’s are smooth. Now we choose an
enumeration �ω̃k�k>N of �X̃k�k>N8�Ỹk�k>N. In return we associate wk �� �ω̃kS∂Ων�Xϕ. Obviously, we obtain
a basis �ω̃k�k>N of W 1,2

0 �Ω� and a basis �wk�k>N of W 3,2�ω�. We define PN , as the orthogonal projection (in
space)

PN�φ� �� N

Q
k�1

P kN�φ�wk �� N

Q
k�1

`φ,wkeW 3,2�ω�wk,

which satisfies the expected stability and convergence properties in all spaces relevant for the analysis. Next
we seek for a couple of discrete solutions �ηN ,uN� of the form

ηN � PNη0 �QN

k�1S
t

0
αkNwk dσ, uN �QN

k�1
αkN ω̃k XΨ�1

ηN
,

with time-dependent coefficients αN � �αkN�Nk�1, which solve the following discrete version of (3.4.1):

S
ΩηN

%N�t�uN�t� � ω̃k XΨ�1
ηN
�t�dx

� S
t

0
S

ΩηN

�%NuN � ∂t�ω̃k XΨ�1
ηN
� � %NuN a uN � ©ω̃k XΨ�1

ηN
�dxdt

� S
t

0
S

ΩηN

�Sε�ϑN ,©uN� � ©ω̃k XΨ�1
ηN
�dxdσ

� S
t

0
S

ΩηN

�pδ�%N , ϑN�divω̃k XΨ�1
ηN

� ε©%N©uN ω̃k XΨ�1
ηN
�dxdσ

� S
t

0
S
ω
�K �

ε�ηN�wk � ∂tηN ∂twk� dy dσ � S
ω
∂tηN�t�wk dy dσ

� S
t

0
S

ΩηN

%N f � ω̃k XΨ�1
ηN

dxdσ � S
t

0
S
ω
g wk dy dσ

� S
ΩηN �0�

q0 � ω̃k XΨ�1
ηN
�0, ��dx � S

ω
η1wk dy.

(3.4.6)

Here %N � %�ηN ,uN� and ϑN � ϑ�ηN ,uN , %N� are the unique solutions from Theorems 3.3.3 and 3.3.4 subject
to the initial data %0 and ϑ0, where ζ � ηN and w � uN . Note that by construction we have trηNuN � ∂tηNν
and that we can choose αkN�0� in a way that uN�0� converges to q0~%0. In order to solve (3.4.6) we decouple
the nonlinearities. Consider a given couple of discrete functions �ζN ,vN� of the form

ζN � PNη0 �QN

k�1S
t

0
βkNwk dσ, vN �QN

k�1
βkN ω̃k XΨ�1

ζN
, (3.4.7)
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with time-dependent coefficients βN � �βkN�Nk�1. By construction they satisfy trζNvN � ∂tζNν. We aim to
solve

S
ΩζN

%N�t�uN�t� � ω̃k XΨ�1
ζN
�t�dx

� S
t

0
S

ΩζN

�%NuN � ∂t�ω̃k XΨ�1
ζN
� � %NvN a uN � ©ω̃k XΨ�1

ζN
�dxdt

� S
t

0
S

ΩζN

�Sε�ϑN ,©uN� � ©ω̃k XΨ�1
ζN
�dxdσ

� S
t

0
S

ΩζN

�pδ�%N , ϑN�divω̃k XΨ�1
ζN

� ε©%N©uN ω̃k XΨ�1
ζN
�dxdσ

� S
t

0
S
ω
�K �

ε�ηN�wk � ∂tηN ∂twk� dy dσ � S
ω
∂tηN�t�wk dy

� S
t

0
S

ΩζN

%N f � ω̃k XΨ�1
ζN

dxdσ � S
t

0
S
ω
g wk dy dσ

� S
ΩζN �0�

q0 � ω̃k XΨ�1
ζN
�0, ��dx � S

ω
η1wk dy.

(3.4.8)

Here %N � %�ζN ,vN� and ϑN � ϑ�ζN ,vN , %N� are the unique solutions from Theorems 3.3.3 and 3.3.4 subject
to the initial data %0 and ϑ0, where ζ � ζN and w � vN . Note that this is possible since YPNη0YLªx B

L
3 for N

large enough, which implies YζNYLªt,x B L
2 for T� small enough. The system (3.4.8) is equivalent to a system of

integro-differential equations for the vector αN � �αkN�Nk�1. It reads as

A�t�αN�t� � S t

0
B�σ�αN�σ�dσ � S

t

0
B̃�σ,αN�σ�,S σ

0
αN�s� ds�dσ � S

t

0
c�σ�dσ � c̃, (3.4.9)

with

Aij � S
ΩζN

%N�t�ω̃i XΨ�1
ζN
�t� � ω̃j XΨ�1

ζN
�t�dx � S

ω
wiwj dy

Bij � S
ΩζN

�%N ω̃i XΨ�1
ζN

� ∂t�ω̃j XΨ�1
ζN
� � %NvN a ω̃i XΨ�1

ζN
� ©ω̃j XΨ�1

ζN
�dx

� S
ΩζN

ε©%N©ω̃i XΨ�1
ζN

� ω̃j Xϕ
�1
ζN

dxdσ � S
ω
wi ∂twj dy

B̃j � S
ω
K �

ε�PNη0 �QN

k�1S
σ

0
αkN�s�wk ds�wj dy

� S
ΩζN

Sε�ϑN , NQ
k�1

©�αkN ω̃k XΨ�1
ζN
�� � ©ω̃j XΨ�1

ζN
dx

ci � S
ΩζN

pδ�%N , ϑN�divω̃i XΨ�1
ζN

dx � S
ΩζN

%N f � ω̃i XΨ�1
ζN

dxdt � S
ω
g wi dy

c̃i � S
ΩζN �0�

q0 � ω̃i XΨ�1
ζN
�0, ��dx � S

ω
η1wi dy.

The matrix Aij is invertible and all non-linear quantities are locally Lipschitz continuous in αN (compare also
with [22, Thm. 4.4]). Also our analysis from Section 3.3 shows that ϑN and %N depend in a smooth way
on vN and ζN . By the Picard-Lindelöf theorem there is a unique solution in short time. It can be extended
to a global-in-time solution by means of some a priori estimates which we derive below in (3.4.13). Conse-
quently, we obtain a solution �ηN ,uN� to (3.4.8) which satisfies the following energy balance (testing (3.4.8)
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by �uN , ∂tηN� and (3.3.1) by 1
2 SuN S2)

�S
I
�S

ΩζN

%N
SuN S2

2
dx � S

ω

S∂tηN S2
2

dy �Kε�ηN��∂tψ dt
� S

I
ψS

Ωζ
Sε�ϑN ,©uN� � ©uN dxdt

� ψ�0��S
ΩζN �0�

Sq0S2
2%0

dx � S
ω

Sη0S2
2

dy � S
ω

Sη1S2
2

dy �Kε�η0��
� S

I
ψS

ΩζN

%N f � uN dxdt � S
I
ψS

ω
g∂tηN dy dt

� S
I
ψS

ΩζN

pδ�%N , ϑN�divuN dxdt

for all ψ > Cª
c ��0, T ��. Testing further the continuity equation by δ%β yields

�S
I
�S

ΩζN

%N
SuN S2

2
dx � S

ΩζN

δ

β � 1
%βN dx � S

ω

S∂tηN S2
2

dy �Kε�ηN��∂tψ dt
� S

I
ψS

Ωζ
Sε�ϑN ,©uN� � ©uN dxdt � S

I
ψS

Ωζ
εδβ%β�2

N S©%N S2 dxdt

� ψ�0��S
ΩζN �0�

Sq0S2
2%0

dx � S
ω

Sη0S2
2

dy � S
ω

Sη1S2
2

dy �Kε�η0��
� S

I
ψS

ΩζN

%N f � uN dxdt � S
I
ψS

ω
g∂tηN dy dt

� S
I
ψS

ΩζN

p�%N , ϑN�divuN dxdt

(3.4.10)

for all ψ > Cª
c ��0, T �� using the definition pδ�%,ϑ� � p�%,ϑ� � δ%β .

We consider the mapping

F �D � F �D�, β ( α, D � �β > C1,α�I�,RN� � sup
I�

Yβ�Yα BK��
where I� � �0, T�� and α > �0,1�. We will choose K� sufficiently large. In dependence of K� we find T�
(sufficiently small) but uniform to solve the above ODE uniquely on I�. Note that we may take T � small enough
(in dependence of K�) such that ζN (defined via β by (3.4.7)) satisfies YζNYLªt,x B L

2 for any β > D. We are
going to prove that F has a fixed point. Let us first note that F is upper-semicontinuous. Indeed, if we have a
sequence �βj� which converges in C1,α�I� to some β such that αj � F �βj� converges in C1,α�I� to some α,
we have α � F �β�. This is due to the unique solvability of (3.4.8) and the continuity of the coefficients A, B,
B̃ and c. In fact, the continuity ofA, B, B̃ and c (with respect to β) can be shown by transforming the integrals
to the reference domain and using (3.2.10) similarly to the proofs of Theorems 3.3.3 and 3.3.4. The regularity
and continuity of %N and ϑN then implies the continuity of the coefficients.

Next we aim to show that F �D� `D. The internal energy equation (3.3.9) for ϑN yields

� S
I
S

ΩζN

%Ne�%N , ϑN�∂tψ dxdt � ψ�0�S
ΩζN �0�

%0e�%0, ϑ0�dx

� S
I
S

ΩζN

�Sε�ϑN ,©vN� � ©vN � p�%N , ϑN�divvN�ψ dxdt

� S
I
S

ΩζN

�εδβ%β�2
N S©%N S2 � δ

ϑ2
N

� εϑ5
N�ψ dxdt
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for all ψ > Cª
c ��0, T ��. Combining this with (3.4.10) implies

�S
I
∂tψ E

N
ε,δ dt � ψ�0�ENε,δ�0� � S

I
ψS

ΩζN

� δ

ϑ2
N

� εϑ5
N� dxdt

� S
I
ψS

Ωζ
�Sε�ϑN ,©vN� � ©vN � Sε�ϑN ,©uN� � ©uN�dxdt

� S
I
ψS

Ωζ
p�%N , ϑN��divuN � divvN�dxdt

� S
I
ψS

Ωη
�%NH � %N f � uN�dxdt � S

I
ψS

ω
g ∂tηN dy dt

(3.4.11)

with

E
N
ε,δ�t� � S

ΩζN �t�

�1

2
%N�t�SuN�t�S2 � %N�t�eδ�%N�t�, ϑN�t���dx

� S
ω

S∂tηN�t�S2
2

dy �Kε�ηN�t��.
By choosing ψ � I�0,t�, we find that (3.4.11) implies uniform a-priori estimates. Note that we can apply
Young’s inequality to the forcing terms in (3.4.11) and absorb terms containing the unknowns in the left-hand
side. Moreover, by Theorem 3.3.4 we obtain bounds for θN (in dependence of ε, δ,N,K�) from below such
that

S
I�
S

ΩζN

δ

ϑ2
N

dxdt B c�ε, δ,N,K��T �
B 1

for T � small enough. So, in order to apply the Gronwall lemma it is enough to control the error term

S
I�
S

ΩζN

�Sε�ϑN ,©vN� � ©vN � Sε�ϑN ,©uN� � ©uN�dxdt

� S
I�
S

Ωζ
p�%N , ϑN��divuN � divvN�dxdt

B S
I�
S

ΩζN

�Sε�ϑN ,©vN� � ©vN � p�%N , ϑN��S©uN S � S©vN S��dxdt.

Using Theorem 3.3.3 and 3.3.4 we can bound %N and ϑN in terms of K such that the above is bounded by

B c�K� S
I�
S

ΩζN

�1 � S©vN Sp�dxdt � c�K�S
I�
S

ΩζN

S©uN S2 dxdt

B c�K,N�T ��1 � sup
I�

SβN Sp� � c�K,N�T � sup
I�
S

ΩζN

SuN S2 dx

B c�K,N�T �
� c�K,N�T � sup

I�
S

ΩζN

%N SuN S2 dx.

We choose T � � T ��ε,N,K�� small enough such that c�K,N�T � B
1
2 and and obtain

sup
I�

ENε,δ Bc�f ,H, g,q0, η0, η1, %0�. (3.4.12)

In particular, we have

sup
I�
S

ΩζN

SuN S2 dx � sup
I�
S
ω

S∂tηN S2
2

dy � sup
I�

Kε�ηN� B c�f ,H, g,q0, η0, η1, %0�. (3.4.13)

recalling the lower bound for %N from Theorem 3.3.3 (b) (which depends on N here). Consequently, we see
that the mapping β ( α satisfies F �D� `D, for K� large enough.
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Now, we need to prove compactness of F with respect to the C1,α�I� topology. First we find by Leibnitz rule
that

∂tαN � A
�1�∂t�AαN� � ∂tAαN�.

Due to (3.4.9) and the regularity of %N and ϑN from Theorems 3.3.3 and 3.3.4 we have ∂t�AαN� > C1�I��.
This can be easily seen by transforming the integrals in the definitions of the coefficients A, B, B̃ and c to the
reference domain and recalling from (3.2.10) that ΨζN and Ψ�1

ζN
have the same regularity as ζN . Also note that

βN > C1,α�I�� implies ζN > C2,α�I�� by construction. Similarly, we are going to prove that ∂tAi,j > C1�I��.
By taking the test function ω̃i Xϕ�1

ζN
� ω̃j Xϕ

�1
ζN

in the continuity equation we find that

∂tAi,j �
d

dt
S

ΩζN

%N ω̃i XΨ�1
ζN

� ω̃j XΨ�1
ζN

dx

� S
∂Ωζ

∂tζNν Xϕ
�1
ζN
%N ω̃i XΨ�1

ζN
� ω̃j XΨ�1

ζN
νΩζ dy

� S
Ωζ
%NvN � ©�ω̃i XΨ�1

ζN
� ω̃i XΨ�1

ζN
�dx

� εS
Ωζ
©%N � ©�ω̃i XΨ�1

ζN
� ω̃j XΨ�1

ζN
�dx

� S
Ωζ
%N∂t�ω̃i XΨ�1

ζN
� � ω̃j XΨ�1

ζN
dx

� S
Ωζ
%N ω̃i XΨ�1

ζN
� ∂t�ω̃j XΨ�1

ζN
�dx.

The last two terms containing the time-derivative behave as βN which is bounded in C1,α�I��. Consequently,
we find that ∂tαN > C1�I�� with bound depending only on K (and N ). So, the mapping F is compact by
Arcelá-Ascoli’s theorem. Consequently, there is a fixed point α� which gives rise to the solution to (3.4.6) if
T � is sufficiently small (depending on δ, ε, K� and N ). The general case follows by iterating the procedure
and gluing the solutions together.

3.4.2 Total energy balance

At this stage ϑN is still strictly positive by Theorem 3.3.4 (with a bound depending on N ) so we can devide
energy by ϑN to obtain the entropy balance

∂t�%Ns�%N , ϑN�� � div�%Ns�%N , ϑN�uN� � div���ϑN�
ϑN

� δ�ϑβ�1
N �

1

ϑ2
N

��©ϑN�
�

1

ϑN
�� δ�ϑN�

ϑN
� δ�ϑβ�1

N �
1

ϑ2
N

��S©ϑN S2 � δ 1

ϑN
2
�

�
1

ϑN
Sε�ϑN ,©uN� � ©uN �

εδ

ϑN
β%β�2

N S©%N S2 � εϑ4
N

(3.4.14)

satisfied in I �ΩηN , together with the boundary condition ©ϑN � νηN S∂ΩηN
� 0. In the weak form it reads as

S
I

d

dt
S

ΩηN

%Ns�%N , ϑN�ψ dxdt � S
I
S

ΩηN

�%s�%N , ϑN�∂tψ � %Ns�%N , ϑN�uN � ©ψ�dxdt

C S
I
S

ΩηN

1

ϑN
Sε�ϑN ,©uN� � ©uNψ dxdt

� S
I
S

ΩηN

1

ϑN
���ϑN�

ϑN
�
δ

2
�ϑβ�1

N �
1

ϑ2
N

��S©ϑN S2 � δ 1

ϑ2
N

�ψ dxdt

� S
I
S

ΩηN

��ϑN�
ϑN

� δ�%β�1
N �

1

ϑ2
N

��©ϑN � ©ψ dxdt � S
I
S

ΩηN

%N
ϑN

Hψ dxdt

� S
I
S

ΩηN

ε � δ

2ϑN
β%β�2

N S©%N S2 � ϑ4
N�ψ dxdt
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for all ψ > Cª�I �R3� with ψ C 0. We combine this with the energy balance proved in (3.4.11) which reads as
(note that in the fixed point we have ζN � ηN and vN � uN )

�S
I
∂tψ E

N
δ dt � ψ�0�ENδ �0� � S

I
ψS

ΩηN

� δ

ϑ2
N

� εϑ5
N� dxdt � S

I
ψS

ΩηN

%NH dxdt

� S
I
S

ΩηN

%N f � uN dxdt � S
I
ψS

ω
g ∂tηN dH2 dt (3.4.15)

with

E
N
δ �t� � S

ΩηN �t�

�1

2
%N�t�SuN�t�S2 � %N�t�eδ�%N�t�, ϑN�t���dx

� S
ω

S∂tηN�t�S2
2

dy �K�ηN�t��.
We introduce the ballistic free energy for some parameter value Θ A 0

HΘ�%,ϑ� � % �e�%,ϑ� �Θs�%,ϑ�� , Hδ,Θ�%,ϑ� � % �eδ�%,ϑ� �Θsδ�%,ϑ�� ,
cf. [63, Chapter 2, Section 2.2.3], and obtain

�S
I
∂tψ �ENδ,ε �Θ%s�%,ϑ��dt �ΘS

ΩηN

σε,δ dxdt � S
I
ψS

ΩηN

�εϑ5
�
δ

ϑ2
�dxdt

� ψ�0��ENδ,ε �Θ%s�%,ϑ���0� �ΘS
I
ψS

ΩηN

εϑ4 dxdt

� S
I
ψS

ΩηN

%H dxdt � S
I
S

ΩηN

%f � uN dxdt � S
I
ψS

ω
g ∂tηN dy dt,

(3.4.16)

where

σNε,δ �
1

ϑN
�S�ϑN ,©uN� � ©uN � ε�1 � ϑN�S©uN Sp�

1

ϑN
��ϑN�
ϑN

S©ϑN S2 � δ
2
�%β�1

�
1

ϑ2
N

�S©ϑN S2 � δ 1

ϑ2
N

� � εδ

2ϑN
β%β�2

N S©%N S2.
Consequently, we obtain the estimates

sup
I
S

ΩηN

%N SuN S2 dx � sup
I
S

ΩηN

%βN dx � S
I
S

ΩηN

S©uN Sp dxdt B c,

ε sup
I
S
ω
S©3ηN S2 dy � sup

I
S
ω

S∂tηN S2
2

dy � sup
I
K�ηN� B c,

sup
I
S

ΩηN

ϑ4
N dx � S

I
S

ΩηN

1

ϑN
� δ�ϑN�
ϑN

� δ�ϑβ�1
N �

1

ϑ2
N

��S©ϑN S2 dxdt B c,

where c � �f ,H, g,q0, η0, η1, %0� is independent of N . The first estimate together with Poincaré’s inequality,
the boundary condition trηNuN and bound for ∂tηN from the second estimate impliesthat uN is bounded in
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Lp�I;Lp�ΩηN ��. So, we may choose a subsequence such that

ηN @
� η in Lª�I,W 3,2�ω��, (3.4.17)

∂tηN @
� ∂tη in Lª�I,L2�ω��, (3.4.18)

uN @
η u in Lp�I;Lp�ΩηN ��, (3.4.19)

©uN @
η
©u in Lp�I;Lp�ΩηN ���, (3.4.20)S©uN Sp�2

©uN @
η P in Lp

��I;Lp
��ΩηN ���, (3.4.21)

%N @
η,� % in Lª�I;Lβ�ΩηN ��, (3.4.22)

ϑN @
η,� ϑ in Lª�I;L4�ΩηN ��, (3.4.23)

ϑN @
η ϑ in Lβ�I;L3β�ΩηN ��, (3.4.24)

©ϑN @
η
©ϑ in L2�I;L2�ΩηN ���, (3.4.25)

for some P > Lp
��I �Ωη�. This implies

ηN � η in C�I � ω�. (3.4.26)

Compactness of ϑN can be shown as in [63, Chapter 3, Section 3.5.3.] using (3.4.14). It is based on local
arguments, which are not effected by the moving shell. Consequently we have

ϑN �
η ϑ in L4�I;L4�ΩηN ��. (3.4.27)

In order to pass to the limit in various terms in the equations we are concerned with the compactness of %N .
Using Theorem 3.3.1 (b) with θ�s� � s2 (which is admissible by approximation) we obtain

S
ΩηN

%2
N dx � S

t

0
S

ΩηN

2εS©%N S2 dxdσ

� S
ΩηN �0�

%2
0 dx � S

t

0
S

ΩηN

2%NdivuN dxdσ.
(3.4.28)

Due to (3.4.20) and (3.4.22) we conclude (for a non-relabelled subsequence)

©%N @
η
©% in L2�I;L2�ΩηN ���. (3.4.29)

Applying Corollary 3.2.11 yields

%N �
η % in L2�I;L2�ΩηN ��. (3.4.30)

To improve the integrability we use (3.4.10) with vN � uN and ξN � ηN and ψ � I�0,t�. The forcing terms can
be controlled by a Gronwall-argument such that we obtain

S
I
S

ΩηN

%β�2
N S©%N S2 dxdt

B c�f , g,q0, %0, η0, η1��1 � S
I
S

ΩηN

p�%N , ϑN�divuN dxdt� (3.4.31)

neglecting various non-negative terms on the left-hand side. The constant depends on ε and δ but is independent
of N . Using the inform bounds from (3.4.20), (3.4.22) and (3.4.23) we obtain

S
I
S

ΩηN

p�%N , ϑN�divuN dxdt B c S
I
S

ΩηN

�%2γ
N � ϑ8

N � S©uN S2�dxdt B c

choosing β large enough. In combination with (3.4.30) we have (after passing to a subsequence)

%N �
η % in Lq�I�;Lq�ΩηN ��, (3.4.32)
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for some q A β. This is enough to pass to the limit in the nonlinear pressure. We are, however, still concerned
with the term

εS
I
S

ΩηN

©%N©uN �φdxdt,

which requires compactness of ©%N . As for (3.4.28) we have

S
ΩηN

%2 dx � S
t

0
S

Ωη
2εS©%S2 dxdσ

� S
ΩηN �0�

%2
0 dx � S

t

0
S

ΩηN

2%NdivuN dxdσ.

applying Theorem 3.3.1 (b) to the limit version. Due to (3.4.26), (3.4.32) and the strong convergence of %N we
can pass to the limit in all terms in (3.4.28) expect for the one containing ©%N . Consequently,

S
t

0
S

ΩηN

S©%N S2 dxdσ � S
t

0
S

Ωη
S©%S2 dxdσ

for all t > I such that

lim
N�ª

S
I
S

ΩηN

©%N©uN �φdxdt � S
I
S

Ωη
©%©u �φdxdt

using also (3.4.20). We conclude that (3.4.1) holds.

3.4.3 Compactness of ∂tηN
The effort of this subsection is to prove that

∂tηN � ∂tη in L2�I;L2�ω��. (3.4.33)

We will show this convergence in the generality we will need also in the subsequent limit procedures in the
next section. In particular, we will not make use of any higher regularity beyond Lªt �Lγx� with γ A 12

7 for the
density.
The following aim is establishing

S
I
S

ΩηN

Sº%NuN S2 dxdt � S
I
S
ω
S∂tηN S2 dy dt

Ð� S
I
S

Ωη
Sº%uS2 dxdt � S

I
S
ω
S∂tηS2 dy dt,

(3.4.34)

which implies the strong convergence (3.4.33) by convexity of the L2-norm. Relation (3.4.34) will be a conse-
quence of

S
I
S

ΩηN

%NuN �FηN∂tηN dxdt � S
I
S
ω
S∂tηN S2 dy dt

Ð� S
I
S

Ωη
%u �Fη∂tη dxdt � S

I
S
ω
S∂tηS2 dy dt

(3.4.35)

and

S
I
S

ΩηN

%NuN � �uN �FηN∂tηN�dxdtÐ� S
I
S

Ωη
%u � �u �Fη∂tη�dxdt. (3.4.36)

First observe that (due to the trace theorem Lemma 3.2.3) we find that ∂tηN possesses some compactness in
space. To be precise, we have

Y∂tηNY
L2�I,W 1� 1

r ,r�ω�� � Y∂tηNYL2�I,L`�ω�� B c (3.4.37)
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for all r @ 2 and ` @ 4. The bounds only depend on the L2
t �W 1,2

x � bounds of uN and hence are uniform by
estimates (3.4.19) and (3.4.20). We define the projection

PNw �

N

Q
k�1

αk�w�wk, P
ζ
Nw �

N

Q
k�1

αk�w�ω̃k XΨ�1
ζ ,

where αk�w� � `w,wkeW 3,2�ω� if wk � Ỹ` for some ` > N and αk�w� � 0 otherwise. Obviously, we have
trζP

ζ
Nw � PNw for any w >W 3,2�ω�. We have by definition,

YPNwY2
W 3,2�ω� B YwY2

W 3,2�ω� ¦w >W 3,2�ω�. (3.4.38)

The eigenvalue equation for the basis vectors implies additionally that

YPNwY2
L2�ω� B cYwY2

L2�ω� ¦w > L2�ω�. (3.4.39)

Moreover, by definition of Ỹk and Fζ (see Section 3.2.3) we have

P
ζ
Nw � Fζ�PNw� (3.4.40)

for all w > W 3,2�ω�. Finally, we note that PNηN � ηN such that �ηN ,FηN ηN� is admissible in (3.4.6).
Due to the uniform a priori bounds from the last subsection and the respective embeddings, we find that
the convergence in (3.4.36) follows directly from Lemma 3.2.10 with the choices vN � uN � FηN∂tηN ,
rN � P

ηN
N �%NuN� (which solves the projected equation (3.4.6) in the domain ΩηN ) and the continuity of the

projection operator PηNN defined above (recall also (3.4.40)). The corresponding uniform estimates are given in
the previous subsection and the weak convergence of FηN∂tηN follows from (3.4.17), (3.4.18), Lemma 3.2.7
and Corollary 3.2.8.
In order to prove (3.4.35) we need to make use of the coupled momentum equation using Theorem 2.5.1. We
define gN � �∂tηN , %NuN IΩηN � and fN � �∂tηN ,FηN∂tηN� noticing that (by construction) ΩηN ` Ω 8 SL~2
as well as for all s @ 1

2 and q @ 3

FηN∂tηN > L2�I;W s,q�Ω 8 SL~2�
uniformly in N . The last observation is a consequence of (3.4.37) and Lemma 3.2.7 (a). In particular, we have

fN @ f in L2�I;X�, (3.4.41)

where f � �∂tη,Fη∂tη� and

gN @ g in L2�I;X ��, (3.4.42)

where X � L2�ω� �W sx,q�Ω 8 SL~2� with sx @ sy @ 1
2 (such that X � � L2�ω� �W �sx,q��Ω 8 SL~2�), since4

%NuN @
η %u in L2�I;L

6γ
γ�6 �ΩηN �� (3.4.43)

and L
6γ
γ�6
x 0W �sx,q�

x due to γ A 12
7 (choosing sx sufficiently close to 1~2 and q close to 3). Further we define

Z �W 1,2�ω� �W 1,q�Ω 8 SL~2�
Boundedness of gN inLª�I;Z �� follows now from, (3.4.18), %NuN > L2

t �L 2β
β�1
x � uniformly and the embedding

L
2β
β�1
x 0 W �1,2

x 0 W �1,q
x for β A

3
2 and q C 2. The conditions 1. in Theorem 2.5.1 follow now from (3.4.41)

4Here, this follows easily from (3.4.32), but it will be critical in the final limit δ � 0.
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and (3.4.42) by weak compactness. For 2. we observe that we may assume that a regularizer b ( �b�κ exists
such that for any s, a > R and p > �1,ª�

Yb � �b�κYWa,p�ω� B cκs�aYbYW s,p�ω�, b >W s,p�ω�. (3.4.44)

The estimate is well-known for a, s > N0, while the general case follows by interpolation and duality. Moreover,
since we use standard Fourier bases in W 3,2�ω� for the discretisation of ηN , we find by interpolation that the
projection error satisfies the following stability estimates for all s > �0,3�

YPNbYW s,2�ω� B cYbYW s,2�Ω�. (3.4.45)

Next we introduce the mollification operator on ∂tηN by considering for κ A 0 and N > N PN��∂tηN�κ� and
set

fN,κ�t� �� �PN��∂tηN�t��κ�,FηN �t��PN��∂tηN�t��κ���.
We find by the continuity of the mollification operator from (3.4.44), the continuity of the projection operator
from (3.4.45) and the estimate for the extension operator (due to (3.4.17) and Lemma 3.2.7) that for a.e. t >�0, T �

YfN,κ � fNYL2�ω��W sx,q�Ω8SL~2� B cκ
sy�sY∂tηNYW sy,2�ω�, (3.4.46)

which can be made arbitrarily small in L2 choosing κ appropriately, cf. (3.4.37). Similarly, we have

YfN,κYW 1,2�ω��W 1,q�Ω8SL~2� B cκ
�1Y∂tηNYL2�ω�.

Moreover, by (3.4.41) we clearly can deduce a converging subsequence such that fN,κ @ fκ (for some fκ) in
L2�I;X� for any κ A 0, which implies (b).
For 3. have to control `gN�t� � gN�s�, fN,κ�t�e and hence decompose

`gN�t� � gN�s�, fN,κ�t�e
� �`gN�t�, �PN��∂tηN�t��κ�,FηN �t��PN��∂tηN�t��κ���e
� `gN�s�, �PN��∂tηN�t��κ�,FηN �s��PN��∂tηN�t��κ���e�
� `gN�s�, �0,FηN �t��PN��∂tηN�t��κ�� �FηN �s��PN��∂tηN�t��κ��e �� �I� � �II�.

We begin estimating �II� using Corollary 3.2.8 to find that

�II� � S t

s
S

ΩηN �s�

%N�s�uN�s� � ∂θFηN �θ��PN��∂tηN�κ��t�dx dθ

B cY%NuN�s�Y
L

6γ
γ�6 �ΩηN �s��

Ss � tS 12�S
I
Y∂tηN�θ�Y2

L`�ω�� 1
2 YPN��∂tηN��δ�t�YLª�ω�

for some ` @ 4 (recall that γ A
12
7 ). By Sobolev’s embedding’s, (3.4.44) and (3.4.45) the last term can be

estimated by

YPN��∂tηN�κ��t�YLª�ω� B cYPN��∂tηN�κ�t�YW 3,2�ω� B cY�∂tηN�κ�t�YW 3,2�ω�
B cκ�3Y∂tηN�t�YL2�ω�,

which is bounded to to (3.4.18). Using also (3.4.37) we conclude

�II� B c�κ�Y%NuN�s�Y
L

6γ
γ�6 �ΩηN �s��

Ss � tS 12
The term �I� is estimated using the test-function I�s,t�fN,κ in (3.4.6). One obtains the uniform Hölder estimate
in a similar sense as for �II� using the various estimates on the extension, projections, embeddings and Hölder’s
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inequality. We explain here in detail only the two most complicated terms stemming from the time derivative
and the pressure. All other terms can be estimated analogously by simpler means. First, we consider the term
acting on the time derivative. Observe that this term only appears due to the time-dependent extension. We
choose a such that 1

a �
1
γ �

1
6 � 1. Then by the assumption γ A

12
7 , we find that a @ 4. Hence we can choose

a0 > �a,4� and χ > �0,1� such that 1
a �

χ
2 �

1�χ
a0

and

Y∂tηNYLa�ω� B Y∂tηNYχL2�ω�Y∂tηNY1�χ
La0�ω�.

Using Corollary 3.2.6, (3.4.44) and (3.4.45) we obtain

US t

s
S

ΩηN �θ�

%NuN � ∂θFηN �θ��PN��∂tηN�κ��t�dx dθU
B cS

t

s
Y%NYLγ�ΩηN �YuNYL6�ΩηN �YFηN �θ��PN��∂tηN�κ�YLa�ΩηN � dθ

B cS
t

s
Y%NYLγ�ΩηN �YuNYL6�ΩηN �Y∂tηN�θ�YLa�ω�YPN��∂tηN�κ�YLª�ω� dθ

B cY%NYLª�I;Lγ�Y∂tηNY1�χ
Lª�I;L2�ω�YPN��∂tηN��κ�t�YW 3,2�ω�S

t

s
Y∂tηNYχLa0�ω�YuNYL6�ΩηN � dθ

B cκ�3Ss � tS 1�χ2 Y∂tηNYχL2�I;La0�ω�YuNYL2�I;L6�ΩηN � B cκ�3Ss � tS 1�χ2 ,

where the constant depends on the a priori estimates only. As far as the pressure is concerned, Hölder’s in-
equality and Lemma 3.2.5 (b) imply

US t

s
S

ΩηN �θ�

pδ�%N , ϑN�divFηN �θ��PN��∂tηN�κ��t�dx dθU
B cYpδ�%N , ϑN�YLª�I;L1�ΩηN ��S

t

s
Y©FηN �θ��PN��∂tηN�κ�YLª�ΩηN � dθ

B cS
t

s
�1 � Y©ηNYLª�ω��YPN��∂tηN�κ�YW 1,ª�ω� dθ

B cS
t

s
�1 � Y©ηNYLª�ω��Y�∂tηN�κ�YW 3,2�ω� dθ

B cκ�3Y∂tηNYLª�I;L2�ω��S
t

s
�1 � Y©ηNYLª�ω�� dθ

B cκ�3St � sS 12�S
I
�1 � Y©ηNY2

Lª�ω�� dθ� 1
2

B cκ�3St � sS 12
provided that we have

pδ�%N , ϑN� > Lª�I;L1�ΩηN ��, ∂tηN > Lª�I;L2�ω��, (3.4.47)

©ηN > L2�I;Lª�ω��, (3.4.48)

uniformly inN . While (3.4.47) follows hear and on the subsequent directly form the energy estimates, we need
some further regularity for (3.4.48). On this level it follows from the regularisation of the shell equation, cf.
(3.4.17).
In conclusion, we can now choose α > �0,1� close enough to one and conclude that for τ A 0 and t > �0, T � τ�

U τ�S
0

`gN�t� � gN�t � s�, fN,κ�t�e dsU B cκ�3τ1~2�AN�t� � 1�,
where

AN�t� � YgN�t�Y2
X� � YfN�t�Y2

X � Y%NuN�t�Y
L

6γ
γ�6 �ΩηN �

�

τ

�S
0

�YgN�s�Y2
X� � YfN�s�Y2

X � Y%NuN�s�Y
L

6γ
γ�6 �ΩηN �� ds
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uniformly bounded in L1�I� due to (3.4.41) and (3.4.42) and (3.4.43).
Finally, the condition on 4. follows by the usual compactness in (negative) Sobolev spaces.

3.4.4 Compactness of the shell energy

In order to complete the proof of Theorem 3.4.3 it remains to justify the limit in the shell energy. Since we have
a regularized system (3.4.17) yields for any p @ª

ηN � η in Lp�I;W 2,p�ω��, (3.4.49)

which is enough to conclude

lim
N�ª

S
I
ψK�ηN�dt � S

I
ψK�η�dt (3.4.50)

for all ψ > Cª
c �I� (this step will be much harder on the subsequent levels, see Section 3.5.2). It remains to

show the convergence of the regularizer

lim
N�ª

S
I
ψL�ηN�dt � S

I
ψL�η�dt (3.4.51)

First of all, we can assume that

∂tηN @ ∂tη in L2�I;W 1�1~r,r�ω��, (3.4.52)

for all r @ 2 due to (3.4.37). We infer from (3.4.6) using �ψηN , ψFηN �ηN�� as a test-function

S
I
ψS

ω
K �

ε�ηN�ηN dy dt � S
I
S

ΩηN

%NuN � ∂t�ψFηN �ηN��dxdt

� S
I
ψS

ΩηN

%NuN a uN � ©FηN �ηN�dxdt

� S
I
ψS

ΩηN

Sε�ϑN ,©uN� � ©FηN �ηN�dxdt

� S
I
ψS

ΩηN

�pδ�%N , ϑN�divFηN �ηN� � ε©%N©uNFηN �ηN��dxdt

� S
I
ψS

ω
∂tηN ∂t�ψηN� dy dσ

� S
I
ψS

ΩηN

%N f �FηN �ηN�dxdt � S
I
ψS

ω
g ηN dy dt

� ψ�0�S
ΩηN �0�

q0 �FηN �ηN��0, ��dx � ψ�0�S
ω
η1 ηN dy.

(3.4.53)

The terms on the right-hand side related to the shell clearly converge to their expected limits because of (3.4.17)
and (3.4.33). On account of Lemma 3.2.7 and Corollary 3.2.8 we have

Y∂t�FηN �ηN��YL2
tL

q1
x
� YFηN �ηN��YLªt W 1,q2

x
� YFηN �ηN��YLªt W 2,q3

x
B c

uniformly in N for all q1 @ 4, q2 @ ª and q3 @ 2, cf. (3.4.17) and (3.4.33). In particular, applying standard
compact embeddings we can choose a subsequence (not relabelled) such that

∂t�FηN �ηN��@ ∂t�Fη�η�� in L2�I;Lq1�Ω 8 SL~2��,
FηN �ηN��Fη�η� in Lq2�I;W 1,q2�Ω 8 SL~2��,
FηN �ηN��Fη�η� in Lª�I;Lª�Ω 8 SL~2��,

for all q1 @ 4 and q2 @ ª. Combining these convergences with the convergences form the last subsection we
can pass to the limit in the terms on the right-hand side of (3.4.53) related to the fluid system as well. On the
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other hand, the resulting expression coincides with RI ψK�η�dt as can be seen from testing the limit system
with �ψη,ψFη�η��. We conclude that

εS
I
ψL�ηN�dt � ε

2
S
I
ψL��ηN�ηN dt � 1

2
S
I
ψK �

ε�ηN�ηN dt � 1

2
S
I
ψK ��ηN�ηN dt

Ð�
1

2
S
I
ψK �

ε�η�η dt � 1

2
S
I
ψK ��η�η dt � εS

I
ψL�η�dt

as N � ª due to (3.4.50). Combing this with (3.4.49) shows that (3.4.51) must be true. Combining all the
convergences proven above allows us to pass to the limit in the energy balance (3.4.15) and to conclude that

�S
I
∂tψ Eε,δ dt � ψ�0�Eε,δ�0� � S

I
ψS

Ωη
� δ
ϑ2

� εϑ5� dxdt

� S
I
ψS

Ωη
%H dxdt � S

I
ψS

Ωη
%f � udxdt � S

I
ψS

ω
g ∂tη dy dt

with

Eε,δ�t� � S
Ωη�t�

�1

2
%�t�Su�t�S2 � %�t�eδ�%�t�, ϑ�t���dx � S

ω

S∂tη�t�S2
2

dy �Kε�η�t��.
The proof of Theorem 3.4.3 is hereby complete.

3.5 Construction of a solution.

In this section we pass to the limit in the approximate equations. For technical reasons the limits ε � 0 and
δ � 0 have to be performed independently from each other. For the greater part of this Section we study the
limit ε� 0 in the approximate system (K1)–(K4) and only highlight the difference in the δ-limit.

3.5.1 The limit system for ε� 0

We wish to establish the existence of a weak solution �η,u, %, ϑ� to the system with artificial pressure in the
following sense: We define ÈW I

η � Cw�I;Lβ�Ωη��
as the function space for the density, whereas the other function spaces are defined in Section 3.2.5. A weak
solution is a quadruplet �η,u, %, ϑ� > Y I �XI

η �
ÈW I
η �Z

I
η that satisfies the following.

(D1) The momentum equation holds in the sense that

S
I

d

dt
S

Ωη
%u �φdx � S

Ωη
�%u � ∂tφ � %ua u � ©φ�dxdt

� S
I
S

Ωη
S�ϑ,©u� � ©φdxdt � S

I
S

Ωη
pδ�%,ϑ�divφdxdt

� S
I
� d

dt
S
ω
∂tηb dy � S

ω
∂tη ∂tb dy � S

ω
K ��η� b dy�dt

� S
I
S

Ωη
%f �φdxdt � S

I
S
ω
g b dxdt

(3.5.1)

for all �b,φ� > Cª�ω� �Cª�I �R3� with trηφ � bν. Moreover, we have �%u��0� � q0, η�0� � η0 and
∂tη�0� � η1. The boundary condition trηu � ∂tην holds in the sense of Lemma 3.2.3.

(D2) The continuity equation holds in the sense that

S
I

d

dt
S

Ωη
%ψ dxdt � S

I
S

Ωη
�%∂tψ � %u � ©ψ�dxdt � 0 (3.5.2)

for all ψ > Cª�I �R3� and we have %�0� � %0.
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(D3) The entropy balance

S
I

d

dt
S

Ωη
%sδ�%,ϑ�ψ dxdt � S

I
S

Ωη
�%sδ�%,ϑ�∂tψ � %sδ�%,ϑ�u � ©ψ�dxdt

C S
I
S

Ωη

1

ϑ
�S�ϑ,©u� � ©u � ��ϑ�

ϑ
�
δ

2
�ϑβ�1

�
1

ϑ2
��S©ϑS2 � δ 1

ϑ2
�ψ dxdt

� S
I
S

Ωη
��ϑ�
ϑ

� δ�ϑβ�1
�

1

ϑ2
��©ϑ � ©ψ dxdt � S

I
S

Ωη

%

ϑ
Hψ dxdt

(3.5.3)

holds for all ψ > Cª�I � R3� with ψ C 0. Moreover, we have limr�0 %s�%,ϑ��t� C %0s�%0, ϑ0� and
∂νηϑS∂Ωη B 0.

(D4) The total energy balance

�S
I
∂tψ Eδ dt � ψ�0�Eδ�0� � S

I
ψS

R3

δ

ϑ2
dxdt � S

I
ψS

Ω
%H dxdt � S

I
S

Ωη
%f � udxdt

� S
I
ψS

ω
g ∂tη dy dt

(3.5.4)

holds for any ψ > Cª
c ��0, T ��. Here, we abbreviated

Eδ�t� � S
Ωη�t� �1

2
%�t�Su�t�S2 � %�t�eδ�%�t�, ϑ�t���dx � S

ω

S∂tη�t�S2
2

dy �K�η�t��.
Theorem 3.5.1. Assume that we have for some α > �0,1� and s A 0Sq0S2

%0
> L1�Ωη0�, %0, ϑ0 > C

2,α�Ωη0�, η0 >W
3�s,2�ω�, η1 > L

2�ω�,
f > L2�I;Lª�R3��, g > L2�I � ω�, H > C1,α�I �R3�, H C 0.

Furthermore suppose that %0 and ϑ0 are strictly positive and that (1.1.21) is satisfied. There is a solu-
tion �η,u, %, ϑ� > Y I � XI

η �
ÈW I
η � Z

I
η to (D1)–(D4). Here, we have I � �0, T��, where T� @ T only if

limt�T � Yη�t, ��YLªx �
L
2 or the Koiter energy degenerates (namely, if lims�t γ�s, y� � 0 for some point y > ω).

Lemma 3.5.2. Under the assumptions of Theorem 3.5.1 the continuity equation holds in the renormalized sense
as specified in Definition 3.2.13.

The proof of the above theorem and lemma will be split in several parts. For a given ε we obtain a solution�ηε,uε, %ε� to (K1)–(K4) by Theorem 3.4.3. As in the preceding Section we can combine the total energy
balance (3.4.4) with the entropy balance (3.4.3) to obtain the total dissipation balance

S
Ωηε

�1

2
%εSuεS2 �Hδ,Θ�%ε, ϑε��dx � S

ω

S∂tηN S2
2

dy �K�ηN�
�ΘS

τ

0
S

Ωηε
σε,δ dx � S

τ

0
S

Ωηε
εϑ5

ε dt

B S
Ωηε

�1

2
%0Su0S2 �Hδ,Θ�%0, ϑ0��dx � S

ω

S∂tη1S2
2

dy �K�η0�
� S

τ

0
S

Ωηε
� δ
ϑ2
ε

� εΘϑ4
ε�dxdt

(3.5.5)

for any 0 B τ B T . Here Hδ,Θ�%,ϑ� � % �eδ�%,ϑ� �Θs�%,ϑ�� for some Θ A 0 and

σε,δ �
1

ϑε
�S�ϑε,©uε� � ©uε � ε�1 � ϑε�max�SPεSp� , S©uεSp�� � εδ

2ϑε
β%β�2

ε S©%εS2
�

1

ϑε
��ϑε�
ϑε

S©ϑεS2 � δ
2
�ϑβ�1

ε �
1

ϑ2
ε

�S©ϑεS2 � δ 1

ϑ2
ε

�.
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Absorbing the final term on the left-hand side of (3.5.5) into the left-hand side we deduce the bounds

sup
t>I
S

Ωηε
�1

2
%εSuεS2 �Hδ,Θ�%ε, ϑε��dx B c (3.5.6)

sup
I
S
ω

S∂tηεS2
2

dy � sup
I
K�ηε� � ε sup

I
L�ηε� B c. (3.5.7)

In particular, we have

sup
t>I

Y%εYβLβ�Ωηε� � sup
t>I

Y%εuεY 2β
β�1

L
2β
β�1 �Ωηε�

� sup
t>I

YϑεY4
L4�Ωηε� B c. (3.5.8)

Moreover, boundedness of the entropy production rate

Yσε,δYL1�I�Ωηε� B c (3.5.9)

gives rise to

εY©uεYpLp�I�Ωηε� � εYPεYp�Lp��I�Ωηε� B c, (3.5.10)

Y©uεY2
L2�I�Ωηε� � Y©ϑβ~2ε Y2

L2�I�Ωηε� � Y©ϑεY2
L2�I�Ωηε� B c; (3.5.11)

whence, by Poincare’s inequality and (3.5.8),

YuεY2
L2�I;W 1,2�Ωηε�� � YϑεY2

L2�I;W 1,2�Ωηε�� B c. (3.5.12)

Finally, we deduce from the equation of continuity (3.4.2) (using the renormalized formulation from Theo-
rem 3.3.1 (b) with θ�z� � z2 and testing with ψ � 1)) that

S
Ωηε�t�

%ε�t, ��dx � S
Ωηε�0�

%0 dx, Yºε©%εYL2�I�Ωηε� B c. (3.5.13)

Note that all estimates are independent of ε. Hence, we may take a subsequence such that for some α > �0,1�
we have

ηε @
� η in Lª�I;W 2,2�ω��, (3.5.14)

εηε � 0 in Lª�I;W 3,2�ω��, (3.5.15)

ηε @
� η in W 1,ª�I;L2�ω��, (3.5.16)

ηε � η in Cα�I � ω��, (3.5.17)

uε @
η u in L2�I;W 1,2�Ωηε��, (3.5.18)

εuε �
η 0 in Lp�I;W 1,p�Ωηε��, (3.5.19)

εPε �
η 0 in Lp

��I;Lp
��Ωηε��, (3.5.20)

%ε @
�,η % in Lª�I;Lβ�Ωηε��, (3.5.21)

ε©%ε �
η 0 in L2�I �Ωηε�, (3.5.22)

ϑε @
�,η ϑ in Lª�I;L4�Ωηε��, (3.5.23)

ϑε @
η ϑ in Lβ�I;L3β�Ωηε��, (3.5.24)

ϑε @
η ϑ in L2�I;W 1,2�Ωηε��. (3.5.25)

We observe that the a-priori estimates (3.5.8) imply uniform bounds of %εuε in Lª�I,L 2β
β�1 �. Therefore, we

may apply Lemma 3.2.10 with the choice vi � uε, ri � %ε, p � s � 2, b � β and m sufficiently large to obtain

%εuε @
η %u in Lq�I,La�Ωηε��, (3.5.26)
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where a > �1, 2β
β�1� and q > �1,2�. We apply Lemma 3.2.10 once more with the choice vi � uε, ri � %εuε,

p � s � 2, b � 2β
β�1 and m sufficiently large to find that

%εuε a uε @
η %ua u in L1�I �Ωηε�. (3.5.27)

We also obtain

%εuε �
η %u in Lq�I,Lq�Ωηε��, (3.5.28)

%εuε @
η,� %u in Lª�I,L 2β

β�1 �Ωηε��, (3.5.29)

for all q @ 6β
β�6 . Moreover, we have as a consequence of (3.5.18) and (3.5.23)

S�ϑε,©uε�@η S in L4~3�I,L4~3�Ωηε�� (3.5.30)

for some limit function S. The convergence (3.5.14) and the assumption on K yields

K ��ηε�@� K
�

in Lª�I;W �2,r�ω�� (3.5.31)

for any r @ 2 with some limit quantity K.
At this stage of the proof the pressure is only bounded in L1, so we have to exclude its concentrations. The
standard approach from [63, Chapter 3, Section 3.6.3] only works locally where the moving shell is not seen
(see Lemma 3.5.3 below). The problem can be circumvented by excluding concentrations at the boundary (see
Lemma 3.5.4 which is inspired by [120]). The proof is exactly as in [22, Lemma 6.4].

Lemma 3.5.3. Let Q � J �B f I �Ωη be a parabolic cube. The following holds for any ε B ε0�Q�
S
Q
pδ�%ε, ϑε�%ε dxdt B C�Q� (3.5.32)

with a constant independent of ε.

Lemma 3.5.4. Let κ A 0 be arbitrary. There is a measurable setAκ f I�Ωη such that we have for all ε B ε0�κ�
S
I�R3�Aκ

pδ�%ε, ϑε�%εχΩηε dxdt B κ. (3.5.33)

We connect Lemma 3.5.3 and Lemma 3.5.4 to obtain the following corollary.

Corollary 3.5.5. Under the assumptions of Theorem 3.5.1 there exists a function p such that

pδ�%ε, ϑε�@η p in L1�I;L1�Ωηε��,
at least for a subsequence. Additionally, for κ A 0 arbitrary, there is a measurable set Aκ f I � Ωη such that
p% > L1�Aκ� and

S�I�Ωη��Aκ pdxdt B κ. (3.5.34)

Combining Corollary 3.5.5 with the convergences (3.5.14)–(3.5.31) we can pass to the limit in (3.4.1) and
(3.4.2) and obtain the following. There is

�η,u, %, ϑ, p� > Y I
�XI

η �
ÈW I
η �Z

I
η �L

1�I �Ωη�
that satisfies

u��, � � ην� � ∂tηνη in I � ω,
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the continuity equation

S
I

d

dt
S

Ωη
%ψ dxdt � S

I
S

Ωη
�%∂tψ � %u � ©ψ�dxdt � 0 (3.5.35)

for all ψ > Cª�I �R3� and the coupled weak momentum equation

S
I

d

dt
S

Ωη
%u �φdxdt � S

I
S

Ωη
�%u � ∂tφ � %ua u � ©φ�dxdt

� S
Ωη

S � ©φdxdt � S
I
S

Ωη
pdivφdxdt

� S
I

d

dt
S
ω
∂tηb dy � S

ω
∂tη ∂tb dy � S

ω
K

�
b dy dt

� S
I
S

Ωη
%f �φdxdt � S

I
S
ω
g b dxdt

(3.5.36)

for all �b,φ� > Cª�ω� � Cª�I � R3� with trηφ � bν. It remains to show strong convergence of ϑε, %ε and
©2ηε. The convergence proof for ϑε is entirely based on local arguments. Consequently the shell is not seen
and we can follow the arguments in [63, Chapter 3, Section 3.7.3] to conclude

ϑε �
η ϑ in L4�I �Ωηε�. (3.5.37)

This yields S � S�ϑ,©u� in (3.5.36). Additionally we can pass to the limit in the entropy balance (3.4.3) using
lower semi-continuity. The remainder of this subsection is dedicated to the proof of p � p�%,ϑ�. Eventually,
we will pass to the limit in the shell energy in Section 3.5.2 which will finish the proof of Theorem 3.5.1.
The proof of strong convergence of the density is based on the effective viscous flux identity introduced in
[130] and the concept of renormalized solutions from [46]. Arguing locally, there is no difference to the
standard setting and we can follow the arguments in [63, Chapter 3, Section 3.6.5]. We consider a parabolic
cube Q̃ � J̃ � B̃ with Q f Q̃ f I � Ωη. Due to (3.5.17) we can assume that Q̃ f I � ΩI

ηε (by taking ε small
enough). For ψ > Cª

c �Q̃� we obtain

S
I�R3

ψ2�pδ�%ε, ϑε� � �λ�ϑε� � 2µ�ϑε��divuε�%ε dxdt

Ð� S
I�R3

ψ2�p � �λ�ϑ� � 2µ�ϑ��divu�%dxdt
(3.5.38)

as ε � 0 (note that the term related to Pε disappears due to (3.5.19) provided we choose β large enough). The
proof of Lemma 3.5.2 follows exactly as in [22, Lemma 6.2]. So, for ψ > Cª�I �R3� we have

S
I

d

dt
S
R3
θ�%�ψ dxdt � S

I�R3
θ�%�∂tψ dxdt � S

I�R3
�%θ��%� � θ�%��divEηuψ dxdt

� S
I�R3

θ�%�Eηu � ©ψ.
(3.5.39)

Here Eη �W
1,2�Ωη��W 1,p�R3� is the extension operator from [22, Lemma 2.5] where 1 @ p @ 2 (but may be

chosen close to 2). In order to deal with the local nature of (3.5.38) we use ideas from [63]. First of all, by the
monotonicity of the mapping %( p�%,ϑ�, we find for arbitrary non-negative ψ > Cª

c �Q̃�
lim inf
ε�0

S
I�R3

ψ�λ�ϑ� � 2µ�ϑ���divuε %ε � divu%�dxdt

� lim inf
ε�0

S
I�R3

ψ��λ�ϑε� � 2µ�ϑε��divuε %ε � �λ�ϑ� � 2µ�ϑ��divu%�dxdt

� lim inf
ε�0

S
I�Ωηε

ψ��p � �λ�ϑ� � 2µ�ϑ��divu�% � �p�%ε, ϑε� � �λ�ϑε� � 2µ�ϑε��divuε�%ε�dxdt

� lim inf
ε�0

S
I�Ωηε

ψ�p�%ε, ϑε�%ε � p%�dxdt

� lim inf
ε�0

S
I�Ωηε

ψ�p�%ε, ϑε� � p��%ε � %�dxdt C 0
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using (3.5.38) as well as (3.5.37) (together with (3.2.4) and the uniform bounds (3.5.8) and (3.5.11)). As ψ is
arbitrary and µ strictly positive by (3.2.4) we conclude

divu% C divu% a.e. in I �Ωη, (3.5.40)

where

divuε %ε @
η divu% in L1�Ω;L1�Ωηε��,

recall (3.5.18) and (3.5.21). Now, we compute both sides of (3.5.40) by means of the corresponding continuity
equations. Due to Theorem 3.3.1 (b) with θ�z� � z ln z and ψ � I�0,t� we have

S
t

0
S
R3

divuε %ε dxdσ B S
R3
%0 ln�%0�dx � S

R3
%ε�t� ln�%ε�t��dx. (3.5.41)

Similarly, equation (3.5.39) yields

S
t

0
S
R3

divu%dxdσ � S
R3
%0 ln�%0�dx � S

R3
%�t� ln�%�t��dx. (3.5.42)

Combining (3.5.40)–(3.5.42) shows

lim sup
ε�0

S
R3
%ε�t� ln�%ε�t��dx B S

R3
%�t� ln�%�t��dx

for any t > I . This gives the claimed convergence %ε � % in L1�I � R3� by convexity of z ( z ln z. Conse-
quently, we have p � p�%,ϑ�.
3.5.2 Compactness of the shell energy

All the forthcoming effort is to prove

lim
ε�0
S
I
S
ω
S∂tηε�t�S2 dy dt � S

I
S
ω
S∂tη�t�S2 dy dt, (3.5.43)

lim
ε�0
S
I
Kε�ηε�t��dt � S

I
K�η�t��dt, (3.5.44)

as ε � 0 at least for a subsequence. This will allow us to pass to the limit in the energy balance as well as in
the nonlinear term of the shell equation. In the following we derive a framework to prove (3.5.44) based on
fractional estimates. The same approach will be subsequently used in the limit passage δ � 0 in Section 3.5.3.
The difference is that the bounds on the density will be more restrictive. We develop the theory here using only
these weaker estimates to have it ready for the final limit procedure as well.
A first observation is that trηε�uε� � ∂tηεν implies

∂tηε @ ∂tη in L2�I;W 1�1~r,r�ω��, (3.5.45)

for all r @ 2 by (3.5.11) in combination with Lemma 3.2.3. In the following we are going to prove that

S
I
YηnY2

W 2�s,2�ω� dt (3.5.46)

is uniformly bounded for some s A 0 using an appropriate test-function in the shell equation. On account of the
coupling we need a suitable test-function for the momentum equation for it as well. Hence we set

�φε, φε� � �Fdiv
ηε �∆s

�h∆s
hηε �Kηε�∆s

�h∆s
hηε��,∆s

�h∆s
hηε �Kηε�∆s

�h∆s
hηε��,
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where Fdiv
η and Kη have been introduced in Proposition 2.3.3. Here ∆h

sv�y� � h�s�v�y � heα� � v�y�� is the
fractional difference quotient in direction eα for α > �1,2�. We obtain

S
I
K �

ε�ηε�φε dt
� S

I
S

Ωηε�t�
�%εuε a uε � S�ϑε,uε� � εPε� � ©φε � f �φε�dxdt

� S
I
S

Ωη%�t�
%εuε � ∂tφε dxdt � S

I

d

dt
�S

Ωηε�t�
%εuε �φn dx � S

ω
∂tηε φε dy�dt

� S
I
S
ω
�∂tηε ∂tφε � g φε� dy dt �� �I�ε � �II�ε � �III�ε � �IV �ε

recalling that the functionφε is divergence-free such that the pressure term disappears. Since ηε > Lª�I,W 2,2�ω��
uniformly, we have

S
I
Y∆s

h©
2ηεY2

L2�ω� dt ß 1 � S
I
K ��ηε�φε dt

for every h A 0 and s > �0, 1
2� due to [142, Lemma 4.5]. Consequently, it holds

S
I
Y∆s

h©
2ηεY2

L2�ω� dt � εS
I
Y∆s

h©
3ηεY2

L2�ω� dt ß 1 � �I�ε � �II�ε � �III�ε � �IV �ε
and our task consists in establishing uniform estimates for the terms �I�ε, . . . , �IV �ε. As far as �I�n is con-
cerned the most critical term is the convective term %εuε a uε with integrability 6γ

γ�6 A 1. By Theorem 2.3.3
and (3.5.14)

YφεYLq�I;W 1,p�ω�� B Y∆s
�h∆s

hηεYLq�I;W 1,p�ω�� � Y∆s
�h∆s

hηε©ηεYLq�I;Lp�ω��
B YηεYLq�I;W 1�2s,p�ω�� � Y∆s

�h∆s
hηεYLª�I;L2p�ω��Y©ηεYLª�I;L2p�ω��

B YηεYLq�I;W 1�2s,p�ω�� � YηεYLª�I;W 2s,2p�ω��Y©ηεYLª�I;L2p�ω��
B YηεYLq�I;W 1�2s,p�ω�� � cp

(3.5.47)

for all s @ 1
2 , p @ ª and q > �1,ª�. For p � 6γ

6γ�γ�6 we can choose s A 0 small enough such that W 2,2�ω� 0
W 1�2s,p�ω�. Using (3.5.14) again implies that φε is uniformly bounded in Lªt �W 1,p

x �. We conclude that �I�ε
is uniformly bounded in ε and h if we choose s small enough. The most critical term is in fact �II�ε. We note
that (3.5.18) and (3.5.21) imply

%εuε > L
2�I;Lq3�Ωηn��

uniformly for all q3 @
6γ
γ�6 . Due to the assumption γ A 12

7 we can choose in the above q3 A
4
3 . On the other hand

we have

Y∂tφεYL2�I;Lq�3�SL~28Ω�� ß Y∂t∆s
�h∆s

hηnYL2�I;Lq�3�ω�� � Y∆s
�h∆s

hηn∂tηεYL2�I;Lq�3�ω��
ß Y∂tηεYL2�I;W 2s,q�

3�ω�� � Y∆s
�h∆s

hηεYLª�I�ω�Y∂tηεYL2�I;Lq�3�ω��.

Thus, we can choose s small enough such that ∂tφε is uniformly bounded in L2
t �Lq�3x � thanks to (3.5.14) and

(3.5.45) (together with Sobolev’s embedding and q�3 @ 4). We conclude boundedness of �II�ε. As far as�III�ε is concerned, uniform bounds for the first term are easily obtained from (3.5.47) (choosing p A 2 and
using Sobolev’s embedding) in combination with (3.5.26). For the second term we use

YφεYL2�I;L2�ω�� ß YηεYL2�I;W 2s,2�ω� ß YηεYL2�I;W 1,2�ω��
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together with (3.5.14). The second term in �IV �ε is analogous. Finally, we can use again (3.5.45) to control
the first term in �IV �ε and the proof of (3.5.44) is complete. Moreover we have shown

εS
I
YηnY2

W 3�s,2�ω� dt B c

uniformly in ε. This, interpolated with (3.5.46), yields εL�ηε� � 0 as ε � 0, which completes the proof of
(3.5.44).
Finally we observe that the convergence in (3.5.43) follows exactly as was done in Subsection 3.4.3 (in partic-
ular, (3.5.46) implies the required to obtain a counterpart of (3.4.48)). The proof is even slightly simpler since
we do not need to project into a discrete space when proving the equi-continuity.

3.5.3 Proof of Theorem 3.2.14.

In this section we are ready to prove the main result of this paper by passing to the limit δ � 0 in the system
(D1)–(D4) from Section 3.5.1. Large parts of the proof are very similar to their counterparts in the limit ε� 0.
In particular, the compactness arguments from 3.5.2 and 3.4.3 have been written in such a way that they are
directly adaptable for the final layer here (using only the more restrictive bounds on γ). The main exception
is the analysis related to the limit passage in the molecular pressure. This can, however, be adapted from [22,
Section 7]. As there, we can localise the argument for fixed boundaries from [63]. Consequently, parts of the
argument are independent from the variable domain and the fluid-structure interaction. Nevertheless we sketch
the main steps of the proof for the convenience of the reader.
Given initial data �q0, %0, ϑ0� and H belonging to the function spaces stated in Theorem 3.2.14 it is standard
to find regularized versions �q0,δ, %0,δ, ϑ0,δ� and Hδ such that for all δ A 0

%0,δ, ϑ0,δ > C
2,α�Ωη0�, %0,δ, ϑ0,δ strictly positive, Hδ > C

1,α�I �R3�, Hδ C 0,

as well as

S
Ωη0

�1

2

Sq0,δ S2
%0,δ

� %0,δe�%0,δ, ϑ0,δ��dx� S
Ωη0

�1

2

Sq0S2
%0,δ

� %0e�%0, ϑ0��dx,

Hδ �H in Lª�I �R3�,
as δ � 0. For a given δ we gain a weak solution �ηδ,uδ, %δ, ϑδ� to (3.5.1)–(3.5.2) with this data by Theorem
3.5.1. It is defined in the interval �0, T��, where T� is restricted by the data only. The counterpart of the total
dissipation balance from (3.5.5), that can be derived exactly as in Section 3.5.1, provides the following uniform
bounds:

sup
t>I

Y∂tηδY2
L2�ω� � sup

t>I
YηδY2

W 2,2�ω� B c, (3.5.48)

sup
t>I

Y%δYγLγ�Ωηδ � � sup
t>I

δY%δYβLβ�Ωηδ � B c, (3.5.49)

sup
t>I

Z%δ Suδ S2ZL1�Ωηδ � � sup
t>I

Y%δuδY 2γ
γ�1

L
2γ
γ�1 �Ωηδ �

B c, (3.5.50)

YuδY2
L2�I;W 1,2�Ωηδ �� B c, (3.5.51)

sup
t>I

YϑδY4
L4�Ωηδ � � Y©ϑδY2

L2�I�Ωηδ � B c, (3.5.52)

] δ�ϑδ�
ϑδ

©ϑδ]2

L2�I�Ωηδ �
B c. (3.5.53)

Finally, we report the conservation of mass principle

Y%δ�τ, ��YL1�Ωηδ � � SΩηδ

%�τ, ��dx � S
Ω
%0 dx for all τ > �0, T �. (3.5.54)
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Hence we may take a subsequence, such that for some α > �0,1� we have

ηδ @
� η in Lª�I;W 2,2�ω�� (3.5.55)

ηδ @
� η in W 1,ª�I;L2�ω��, (3.5.56)

ηδ � η in Cα�I � ω�, (3.5.57)

uδ @
η u in L2�I;W 1,2�Ωηδ��, (3.5.58)

%δ @
�,η % in Lª�I;Lγ�Ωηδ��, (3.5.59)

ϑδ @
�,η ϑ in Lª�I;L4�Ωηδ��, (3.5.60)

ϑδ @
η ϑ in L2�I;W 1,2�Ωηδ��. (3.5.61)

By Lemma 3.2.10, arguing as in Sections 3.4.2 and 3.5.1, we find for all q > �1, 6γ
γ�6� that

%δuδ @
η %u in L2�I,Lq�Ωηδ�� (3.5.62)

%δuδ a uδ �
η %ua u in L1�I;L1�Ωηδ��. (3.5.63)º

%δuδ �
η º%u in L1�I;L1�Ωηδ��. (3.5.64)

As in Section 3.5 we also obtain again

S�ϑδ,©uδ�@η S in L4~3�I,L4~3�Ωηδ�� (3.5.65)

K ��ηδ�@� K
�

in Lª�I;W �2,r�ω�� (3.5.66)

for any r @ 2 with some limit objects S and K. As before in Proposition 3.5.3 we have higher integrability of
the density (see [22, Lemma 7.3] for the proof).

Lemma 3.5.6. Let γ A
3
2 (γ A 1 in two dimensions). Let Q � J � B f I � Ωη be a parabolic cube and

0 @ Θ B
2
3γ � 1. The following holds for any δ B δ0�Q�

S
Q
pδ�%δ, ϑδ�%Θ

δ dxdt B C�Q� (3.5.67)

with constant independent of δ.

Similarly to [22, Lemma 7.4] we can exclude concentrations of the pressure at the moving boundary. Here,
we need the assumption γ A 12

7 .

Lemma 3.5.7. Let γ A
12
7 (γ A 1 in two dimensions). Let κ A 0 be arbitrary. There is a measurable set

Aκ f I �Ωη such that we have for all δ B δ0

S
I�R3�Aκ

pδ�%δ, ϑδ�χΩηδ
dxdt B κ. (3.5.68)

Lemma 3.5.6 and Lemma 3.5.7 imply equi-integrability of the sequence pδ�%δ, ϑδ�χΩηδ
. This yields the

existence of a function p such that (for a subsequence)

pδ�%δ, ϑδ�@ p in L1�I �R3�, (3.5.69)

δ%βδ � 0 in L1�I �R3�. (3.5.70)

Similarly to Corollary 3.5.5 we have the following.

Corollary 3.5.8. Let κ A 0 be arbitrary. There is a measurable set Aκ f I �Ωη such that

S
I�R3�Aκ

pdxdt B κ. (3.5.71)

97



SCHWARZACHER HEAT-CONDUCTING COMPRESSIBLE FLUIDS ANALYSIS FOR FSI

Using (3.5.69) and the convergences (3.5.55)–(3.5.66) we can pass to the limit in (3.5.1) and (3.5.2) and
obtain

S
I

d

dt
S

Ωη
%u �φdx � S

Ωη
�%u � ∂tφ � %ua u � ©φ�dxdt

� S
I
S

Ωη
S � ©φdxdt � S

I
S

Ωη
pdivφdxdt

� S
I
� d

dt
S
ω
∂tηb dy � S

ω
∂tη ∂tb dy � S

ω
K

�
b dy�dt

� S
I
S

Ωη
%f �φdxdt � S

I
S
ω
g b dxdt

(3.5.72)

for all test-functions �b,φ� with trηφ � ∂tην, φ�T, �� � 0 and b�T, �� � 0. Moreover, the following holds

S
I
S

Ωη
%∂tψ dxdt � S

I
S

Ωη
div�%u�ψ dxdt � S

Ωη0

%0ψ�0, ��dx (3.5.73)

for all ψ > Cª�I �R3�. It remains to show strong convergence of ϑδ, %δ and ©2ηδ. As in the last section the
proof of the convergence of ϑδ is entirely based on local arguments. Consequently the shell is not seen and we
can follow the arguments in [63, Chapter 3, Section 3.7.3] to conclude

ϑδ �
η ϑ in L4�I;L4�Ωδ��. (3.5.74)

Consequently we have S � S�ϑ,©u� in (3.5.72). Moreover, we can pass to the limit in the entropy balance and
obtain (O3). Next we aim to prove strong convergence of the density. We define the Lª-truncation

Tk�z� �� k T�z
k
� z > R, k > N. (3.5.75)

Here T is a smooth concave function on R such that T �z� � z for z B 1 and T �z� � 2 for z C 3. Now we have
to show that

S
I�Ωηδ

�a%γδ � δ%βδ � �λ�ϑ� � 2µ�ϑ��divuδ�Tk�%δ�dxdt

Ð� S
I�Ωη

�p � �λ�ϑ� � 2µ�ϑ��divu�T 1,k dxdt.
(3.5.76)

For this step we are able to use the theory established in [130] on a local level. Similarly to [22, Subsection
7.1] (see [63, Chapter 3, Section 3.7.4] about how to include the temperature) we first prove a localised version
of (3.5.76) and then use Lemma 3.5.7 and Corollary 3.5.8 to deduce the global version. The next aim is to
prove that % is a renormalized solution (in the sense of Definition 3.2.13). In order to do so it suffices to use
the continuity equation and (3.5.76) again on the whole space. Following line by line the arguments from [22,
Subsection 7.2] we have

∂tT
1,k

� div�T 1,ku� � T 2,k
� 0 (3.5.77)

in the sense of distributions on I �R3. Note that we extended % by zero to R3. The next step is to show

lim sup
δ�0

S
I�R3

STk�%δ� � Tk�%�Sq dxdt B C, (3.5.78)

where C does not depend on k and q A 2 will be specified later. The proof of (3.5.78) follows exactly the
arguments from the classical setting with fixed boundary (see [63, Chapter 3, Section 3.7.5]) using (3.5.76) and
the uniform bounds on uδ (with the only exception that we do not localise). Using (3.5.78) and arguing as in
[22, Sec. 7.2] we obtain the renormalised continuity equation. As in [22, Sec. 7.3] we can use the latter one
to show strong convergence of the density. The limit passage in the shell energy can be performed using the
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method from Section 3.5. At this stage the estimates become absolutely critical. The crucial points are to show
that

S
Ωηδ

%δuδ � ∂t�Fηδ�b��dx > Lχ�I�
for b smooth and some χ A 1 uniformly in δ as well as the uniform bounds of

S
I
S

Ωηδ

%δuδ � ∂t�ψF div
ηδ

�∆�s
h �∆s

h�ηδ����dxdt

for some positive s A 0. As seen in Section 3.5 it requires the bound γ A 12
7 , cf. (3.5.62). This finishes the proof

of Theorem 3.2.14 for the time interval �0, T��, with T� depending on the data only (such that Yη�t�Yª @
L
2 in�0, T ��). As in [22, Sec. 7.4] the existence interval can be extended until a self intersection is reached which

finishes the proof of Theorem 3.2.14.
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Chapter 4

Weak-strong uniqueness for an elastic plate
interacting with the Navier Stokes equation

4.1 Introduction

The chapter investigates the interaction between an elastic solid plate and a viscous incompressible fluid. For
the fluid we will consider the three (or two) dimensional Navier-Stokes equations [69, 129]. For the solid we
consider a shell or a plate that is modeled as a thin object of one dimension less than the fluid and which is
assumed to be fixed on the top of a container (See Figure 1). For modeling on elastic plates see [37, 38] and
the references therein. The fluid and the plate interact via a kinematic and a dynamic coupling condition on the
moving interface.

The main result consists in the weak-strong uniqueness of solutions for a flow in a variable 3D (or 2D)
domain interacting with a 2D (or 1D) plate (see Theorem 4.1.2). While the regularity of the weak solutions that
we use are known to be satisfied for all weak solutions we assume additional regularity of the velocity of the
strong solution, that can be related (via its index) to the celebrated Ladyzhenskaya-Prodi-Serrin conditions [161,
171, 172, 121]. These are conditions for solutions to Navier-Stokes equations in a fixed domain that imply their
smoothness and uniqueness.

Please observe, that we do not assume any additional regularity of the solid displacement; in particular
the domain of the strong fluid-velocity is not even assumed to be uniformly Lipschitz continuous. In order to
handle the limited regularity assumptions (on the strong solution) rather complex estimates where necessary.
Some of them depend sensitively on a-priori estimates for the solid deformation shown in [142].

To measure the distance between two solutions it is necessary to introduce a change of variables as the do-
mains of the two velocity fields depend on the solution itself. Moreover, since the solid deformation is governed
by a hyperbolic equation a mollification in time is unavoidable. In this paper a methodology is introduced that
overcomes both obstacles with operators that conserve the property of solenoidality (see Lemma 4.2.6).

While the existence theory for weak solutions describing flexible (thin) shells interacting with fluids has
been flourishing in the past years [52, 53, 19, 87, 70, 144, 127, 126, 153, 147, 88, 22, 142] the uniqueness and
stability questions are rather untouched. The only available result for an elastic plate seems to be the work
of [92]; it treats a 1D elastic beam interacting with a 2D fluid whith slip-boundary conditions at the interface.1

Otherwise, the only weak-strong uniqueness results for fluid-structure interactions are for non-elastic solids,
namely rigid objects [177, 84, 32, 20]. For fluid-structure interactions involving elastic materials there are some
existence results where the uniqueness of strong solutions (in the class of strong solutions) is inherited from
the methodology of existence. These are short time uniqueness results for strong solutions [43, 44, 12, 17, 89],
global uniqueness results of strong solutions for small data [36, 111] and the uniqueness for arbitrary times of
strong solutions for a 1D visco-elastic plate interacting with a 2D fluid [88]. As a consequence of our estimates

1Actually some conditions in [92] could be missing, as the estimate in formula (6.33) on page 25 seems sensitively incorrect. The
estimate would only be correct if the distributional time-derivative was in the dual of a Sobolev space and not merely in the dual of its
solenoidal subspace.
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all constructed strong solutions (involving elastic plates) are unique within the class of weak solutions.
The applications within this framework consist in fluids interacting with various thin materials. Of par-

ticular interest are those in medicine and biology for arteries or the trachea [162, 15, 108]. These fields
relay strongly on robust computer simulations, many of which are built along the concept of weak solu-
tions [97, 189, 165]. Stability results as the one presented here are very suitable to be adapted to such numerical
approximations. We plan to perform that in a future paper.

Ωη�t�

ω

η�t�

Figure 4.1: 1D plate interacting with a 2D fluid

4.1.1 Formulation of the problem

We consider a 3D container whose top wall consist of a 2D Koiter type plate (or a 2D container whose
walls consist of a 1D Koiter type plate). As is common for the analysis on plates we assume that the plate
can move only upwards and downwards. The deformation of the plate is described by a bounded function
η � �0, T � � ω � �δ,ª� for some time interval �0, T �, some bounded domain ω ` R2 (or ω ` R) that has a
Lipschitz boundary and some δ > �0,1�. The time-dependent fluid domain is defined by

Ωη�t� �� ��x, y� > ω � �0,ª� � 0 B y B η�t, x��, t > �0, T �.
Here and in the following x denotes a 2D (or 1D), y a 1D and z � �x, y� a 3D (or 2D) variable. With some
misuse of notation we consider the space-time domain

�0, T � �Ωη�t� �� �
t>�0,T �

�t� �Ωη�t�.
The motion of the fluid is described by the incompressible Navier-Stokes equations

ρf�∂tv � �©v�v� � µf∆v �©p � ρff on �0, T � �Ωη�t�, (4.1.1)

dv � 0 on �0, T � �Ωη�t�, (4.1.2)

where the fluid’s velocity field v and the pressure p are the unknown quantities, ρf is the fluid density, µf the
fluid viscosity and f is a given outer force (e.g. gravity). By σ�v, p� � 2µfεv � pI we denote the fluid stress
tensor, where εv �� 1

2�©v � �©v�T � is the symmetric part of the gradient and I denotes the identity matrix in
3D, (2D). The incompressibility condition implies that the pressure is determined by the velocity field. On the
non-moving parts of the container Bc � ω � �0� 8 ∂ω � �0,1� we assume no-slip boundary conditions

v � 0 on �0, T � �Bc. (4.1.3)

The moving part of the shell satisfies a linearized plate equation of Koiter type with a source term stemming
from the forces the fluid exerts on the shell

ρsh0∂
2
t η �L�η, ∂tη� � F�u, p, η� � ρsg, on �0, T � � ω, (4.1.4)

with Dirichlet boundary conditions

η � 1, ©η � ∆η � 0 on �0, T � � ∂ω. (4.1.5)
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Here η is the (scalar valued) unknown deformation, ρs is the solid density, h0 is the thickness of the plate,
L�η, ∂tη� is the L2 gradient of the elastic and dissipative potentials of the deformation of the plate, F are
forces stemming from the fluid and g is a given outer force. Due to the troubles between hyperbolic equations
and non-linearities we have to assume that L�η, ∂η� is of the following form

L�η, ∂tη� �� α∆2η � β̃∆η � γ̃∆∂tη

with α A 0 and β̃, γ̃ C 0. Note that the equations for the fluid are stated in Eulerian coordinates while the
equations for the solid are stated in Lagrangian coordinates.

The fluid and the shell are coupled via a kinematic and a dynamic coupling condition on the moving
interface. For expressing the coupling condtions we define the variable transform from Langrangian to Eulerain
coordinates

ψ � �0, T � � ω � �0, T � �R3, �t, x�( �t, x, η�t, x��.
The dynamic coupling condition states that the total force in normal direction at the interface is zero

F�v, η, p� � ��0,1�t��©v � pI� X ψ�n � n on �0, T � � ω, (4.1.6)

where n�t, x� � ��©η,1�~�1 � S©ηS2� 1
2 is the outer normal of Ωη�t� at the point �x, η�x��.

We assume a no slip kinematic boundary condition, i.e. the fluid and the structure velocity are equal at the
interface

v X ψ � �0, ∂tη�T on �0, T � � ω, (4.1.7)

To complete the equations we impose initial conditions

v�0� � v0 on Ωη�0�, (4.1.8)

η�0� � η0, ∂tη�0� � η� on ω. (4.1.9)

Within the chapter we will refer to (4.1.1)-(4.1.9) as FSI.
By formally multiplying equation (4.1.1) by v, (4.1.4) by ∂tη and integrating over Ωη�t�, ω and �0, t� we

get (using Korn’s identity Lemma 4.2.1 and Absorption) the energy inequality

Yv�t�Y2
L2�Ωη�t�� � Y∂tη�t�Y2

L2�ω� � Y©2η�t�Y2
L2�ω� � S

t

0
Y©v�τ�Y2

L2�Ωη�τ��dτ

B c�Yv0Y2
L2�Ωη0� � Yη1Y2

L2�ω� � Y©2η0Y2
L2�ω� � �S

t

0
Yf�τ�Y2

L2�Ωη�τ�� � Yg�τ�YL2�ω� dτ�. (4.1.10)

In the paper we use the standard notation for Lebesgue and Sobolev spaces. The weak solutions to FSI are
defined in the following function spaces.

Vη�t� � �v >H1�Ωη�t�� � dv � 0 in Ωη�t�, v � 0 on Bc�,
VF � Lª��0, T �, L2�Ωη�t�� 9L2��0, T �,Vη�t��,
VK �W 1,ª��0, T �, L2�ω�� 9 �η > Lª��0, T �,H2�ω�� � η � 1, ©η� ∆η � 0 on ∂ω�
VS � ��v, η� > VF � VK � v X ψ � ∂tη�,
VT � ��w, ξ� > VF � VK � w X ψ � ξ, ∂tw > L2�0, T ;L2�Ωη�t����

For the distributional time derivative we introduce the following space

W̃ �l,p��Ω� �� ��f >W 1,p�Ω� � f � 0 on Bc���.
Definition 4.1.1. Let f > L2��0, T � � ω �R�, g > L2��0, T � � ω, η0 > H

2
0�ω�, η� > L2�ω� and v0 > L

2�Ωη0�.
Then we call a pair �v, η� > VS a weak solution to FSI if it satisfies the energy inequality (4.1.10), if

d

dt
�ρf S

Ωη�t� v �wdz� � ρf SΩη�t� v � ∂tw � 2µεv � εw � ρf�v a v� � ©wdz
� h0ρs∂t �S

ω
∂tηξ dx� � h0ρsS

ω
∂tηξt dx � `L�η, ∂tη�, ξe � ρf S

Ωη
f �wdz � ρsS

ω
gξ dx

(4.1.11)
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for all �w, ξ� > VT as an equation in D��0, T � and if it attains the initial conditions in the sense of the L2 weak
convergence.

4.1.2 Main results

The main result of the chapter are the following.2

Theorem 4.1.2. In case that ω ` R2 let r A 2 and s A 3 and in case that ω ` R let r � 2 and s � 2.
Assume that �v2, η2� is a weak solutions to FSI on �0, T �, such that min�0,T ��ω η2 A 0 and additionally that
v2 > L

r�0, T ;W 1,s�Ωη2�� and ∂tv2 > L
2�0, T ; W̃ �1,r�Ωη2��. Then this solution is unique in the class of weak

solutions.In particular, if �v1, η1� is any weak solution to FSI on �0, T0� (for any T0 A 0) and if v1�0� � v2�0�,
η1�0� � η2�0�, ∂tη1�0� � ∂tη2�0�, than �v1, η1� � �v2, η2� as an equation in VS on �0, T0�.

In some situations strong solutions are known to exist. In particular, in the case of ω � �0, L� and γ̃ A 0
strong solutions exist for arbitrary times [88]. This means that our result implies the following corollary.

Corollary 4.1.3. In the 2D case (ω � �0, L�) with γ̃ A 0 and smooth initial values, there exists a strong solution
to FSI which is unique in the class of weak solutions.

Remark 4.1.4 (Minimality of the regularity assumptions on v2.). Let us compare our assumptions to the case
of a non-moving domain for a 3D fluid; i.e. η � ηc and therefore Ωηc ` R3 is constant in time and v1, v2 > VF

are weak (Leray-Hopf) solutions. If additionally v2 satisfies the Ladyzhenskaya-Prodi-Serrin condition, namely
v2 > L

r�0, T ;Lq�Ω�� for 3
q �

2
r � 1, then from the well known regularity and uniqueness result [161, 171, 172,

121] on the Navier-Stokes equations it follows:

Yw�t�Y2
B CYw�0�Y exp�cS t

0
Yv2YrLqdy�

which in particular, implies the weak-strong uniqueness. In order to obtain the above estimate a regularity
theory for solutions satisfying the Ladyzhenskaya-Prodi-Serrin condition is used.

For the here considered fluid-structure interactions a regularity theory for weak solutions satisfying the
Ladyzhenskaya-Prodi-Serrin condition is not known to be satisfied up to date. Actually, it is debatable whether
such a theory can expected to be true. (This counts even for 2D fluid-structure interactions in case when
γ̃ � 0.) However, the borders for the exponents in our assumptions have the same index as in the exponents
in the Ladyzhenskaya-Prodi-Serrin condition. We briefly explain this here: We assume in 3D that the stronger
solution satisfies v2 > L

r�0, T ;W 1,s�Ω�� for some s A 3 and r A 2. As W 1,s�Ω� 0 Lª�Ω� for all s A 3 the
corresponding borderline exponent for v2 is the one of L2�0, T ;Lª�Ω�� which has the index 3

q �
2
r �

3
ª
�

2
2 � 1.

Please observe that in 2D no further assumption on the gradient are necessary beyond its energy estimate.
Our stronger assumptions on the weak time-derivative are necessary both in 2D and 3D. This is again due to
the fact that a regularity theory for solutions satisfying the Ladyzhenskaya-Prodi-Serrin condition might not be
valid. While the bounds on the index for the spaces we request for the weak time-derivative (of the stronger
solution) are in coherence with weak solution, we have to assume that the negative space is considerably
smaller; i.e. the dual of the Sobolev space and not the dual of its solenoidal subspace.

Further we prove the following stability estimate.

Theorem 4.1.5. Let �v2, η2� be weak solutions to FSI on �0, T �, such that min�0,T ��ω η2 A 0 and that addition-
ally v2 > L

r�0, T ;W 1,s�Ωη2�� and ∂tv2 > L
2�0, T ; W̃ �1,r�Ωη2�� for any s A 3 and any r A 2. If �v1, η1� is a

2For the notation please see the next section.
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weak solution to FSI on �0, T �, then for ṽ2�t, x, y� � v2�t, x, y η1�t,x�
η2�t,x�� we find that

sup
t>�0,T �

Y�v1 � ṽ2��t�Y2
L2�Ωη1�t�� � Y∂t�η1 � η2��t�Y2

L2�ω� � Y�η1 � η2��t�Y2
H2�ω�

� S
T

0
Y�v1 � ṽ2��τ�Y2

H1�Ωη1�τ��dτ
B C�Yv0

1 � ṽ
0
2Y2
L2�Ω

η0
1
� � Yη�1 � η�2Y2

L2�ω�� � Y�η0
1 � η

0
2�Y2

H2�ω�

�C S
T

0
Y�f1 � f̃2��τ�Y2

H1�Ωη1�τ�� � Y�g1 � g2��τ�Y2
L2�ω�dτ,

where the constant depends on ω,T , the assumed bounds on v2, the L2-bounds of f1, f2 and (symmetrically)
on the two deformations η1, η2 via the bounds related to the energy estimates and via Theorem 4.2.2.

In particular, the constant C can be bounded a-priori in dependence of ω,T , the assumed bounds on v2 and
the right hand side of the energy inequality (4.1.10) for both solutions.

4.2 Notation & preliminary results

4.2.1 Simplifications

In order to simplify the quite technical argument below we assume in the following that L�η, ∂tη� � ∆2η; as
the argument can be adapted to more general L in a straight forward manner. Moreover we will assume in the
following that we have a fluid in 3D. In particular we assume that ω ` R2. The adaption of the proof for ω ` R
implies only simplifications and no further complications. Finally we set all constants in the equations to one
(i.e. both densities, the thickness of the plate, the viscosity of the fluid).

For vector valued functions u � Ωη � R3 we use u � �u�, u3�T � �u1, u2, u3�T . The constants c, c1, ...
are used as a constants that are independent of η, while the constants C,C1, ... are used as constants that may
depend on bounded quantities of the deformations. Both letters c,C may change there actual value with every
instance. Moreover, we use the notation a � b, if there are constants c, c1 such that SaS B cSbS B c1SaS.
4.2.2 Identities & Estimates

We will use Reynold’s transport theorem which for plates reads (using the fact that the third component of
the outer normal times the Jacobian of the change of variables is one) as for all u > W 1,1�0, T ; Ωη� with
u��x, η�x�� � 0 for all x, we find

∂t�S
Ωη
u�t, z� � φ�t, z�dz� � S

Ωη
∂t�u � φ�dz � S

ω
u3�t, x, η�x��φ3�t, x, η�x���∂tη�t, x�dx,

for all φ, η for which the above expression is well defined.
Next due to the zero boundary conditions of v� on ∂Ω we actually may use Korn’s identity which is done

throughout the paper.

Lemma 4.2.1. Let u >H1�Ωη� such that u � 0 on Bc and u��x, η�x�� � 0, than

YuYH1�Ωη� � Y©uYL2�Ωη� � 2YεuYL2�Ωη�.

Proof. The fact that YuYH1�Ωη� � Y©uYL2�Ωη� follows by Poincaré’s inequality as all components have zero
boundary values on large parts of the boundary and the inequality is a straight consequence of the fundamental
theorem of calculus. Korn’s identity follows by [142, Lemma 4.1].

Our proof makes use of the following additional regularity result that has been shown in [142, Theorem 1.2]:
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Theorem 4.2.2. For any weak solution to FSI we find that as long as η A 0 in �0, T ��ω that η > L2�0, T ;H2�σ�ω��
and ∂tη > L2�0, T ;Hσ�ω�� for all σ @ 1

2 .

An adaption of [142, Theorem 1.2] is the following corollary.
We will need the following interpolation estimate:

1. La
��La� ` Lª�L1� 9L2�L2� for all a > �1,2�.

Lemma 4.2.3. For Y ` R2. If b > Lª�0, T ;L2�Y �� and φ > L2�0, T ;W 1,a�Y �� for all a > �1,2�, thenSbSSφS > L2�0, T ;Lp�Y �� for all p > �1,2�.
Proof. The result follows by Sobolev embedding and Hölder’s inequality.

Very often we will have the product of a function defined on ω with a function defined on Ωη. We will
integrate such products over Ωη where one of the two functions is than constant in the variable direction. In
some cases this allows to improve the regularity. In particular we will need the following extra information on
the weak solution that will be used upon the convective term:

Lemma 4.2.4. Let �η, v� be a weak solution to FSI. Then we find that R η�t,x�0 SvSdy > L2�0, T ;H1�ω��
]S η�t,x�

0
SvSdy]

L2�0,T ;H1�ω��
B cYvYL2�0,T ;H1�Ωη��YηYLª�0,T ;H2�ω��

and R η�t,x�0 SvS2 dy > L2�0, T ;W 1,1�ω��
]S η�t,x�

0
Sv�t�S2 dy]

L2�0,T ;W 1,1�ω��
B YvYL2�0,T ;L2�Ωη�� � 2YvYLª�0,T ;L2�Ωη��Y©vYL2��0,T ��ω�

� Y∂tηY2
Lª�0,T ;L2�ω��Y©ηYL1�0,T ;Lª�ω��.

This implies in particular that R η�t,x�0 SvS2 dy > L2��0, T � � ω�.
Proof. For the first statement we calculate

©xS
η�t,x�

0
Sv�x, y�Sdy � S η�t,x�

0
©xSv�x, y�Sdy �©xη�t, x�S∂tηS

which is uniformly bounded in L2��0, T � � ω� since v1 > L
2�0, T ;H1�Ωη�, ∂tη > L2�0, T ;L3�ω�� and ©η >

Lª�0, T ;L6�ω��. The estimate follows using Sobolev embedding and the trace Theorem [22, Lemma 6].
For the second statement we calculate

©xS
η�t,x�

0
SvS2 dy � S η�t,x�

0
2�©v�v dy � Sv�η�t, x��S2©η�t, x�

� S
η�t,x�

0
2�©v�v dy � S∂tη�t, x�S2©η�t, x� �� I1 � I2

Due to Holeder’s inequality

S
ω
I1 B 2YvYL2�Ωη�Y©vYL2�Ωη�.

And it is also straightforward to see

S
ω
I2 B Y∂tηY2

L2�ω�Y©ηYLª�ω�.

Thus the statement follows since v > Lª�0, T ;L2�Ωη�� 9 L2�0, T ;H1�Ωη��, ∂tη > Lª�0, T,L2�ω�� and by
Theorem 4.2.2 η > L2�0, T ;H2�σ�ω��0 L2�0, T ;W 1,ª�ω�� for all σ A 0.
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4.2.3 Convolution

Since the regularity in space of ∂tη and the regularity in time for v a a test function is formally not sufficient to
use the couple as a test function we have to introduce a mollification in time. Unfortunately, it was not possible
to use the mollification introduced [142] and we have to introduce a new version. Already here the regularity of
the deformation influences the regularity of the mollification sensitively due to the fact that a change of variables
will be a part of the convolution kernel.

First a technical Lemma. Here we will use a mollifier with respect to time. As is the standard procedure,
choose a function j > Cª

0 �R� which is positive, even, has support in ��1,1� and satifies RR j dt � 1, d
dtj��t� C

0, d
dtj�t� B 0 for t C 0. For δ A 0 define jδ�t� � δ�1j�t~δ�. Then jδ has support in ��δ, δ� and otherwise the

same properties as j.
Let �H, ��, ��� be a Hilbert space, T A 0. Let u > Lª�0, T ;H� be continues w.r.t. the weak topology on H

and assume that the limits u�0� �� limt�0 u�t�, u�T � �� limt�T u�t� exist in the weak topology of H . In the
following we will call the space of all such functions Cw�0, T ;H�. Define the extension ū > Lª�R,H� by

ūT �t� � ¢̈̈̈̈¦̈̈̈̈¤
u�t�, t > �0, T �,
u�0�, t > ��ª,0�,
u�T �, t > �T,ª�. (4.2.1)

Now for all δ A 0, t > �0, T � set

uTδ �t� � SR jδ�τ � s�ūT �s�ds.
It is well known that uTδ > Cª��0, T �,H� and limδ�0 uδ � u in Lp�0, T ;H� for all 1 B p @ ª. Furthermore
the following holds

Lemma 4.2.5. Let u, v > Cw�0, T ;H� and t > �0, T �. Then for all t > �0, T �
lim
δ�0
S

t

0
�u, vTδ � � �uTδ , v�dτ � 0 (4.2.2)

and

lim
δ�0
S

T

0
�u, d

dt
vTδ � � � ddtuTδ , v�dτ � �u�T �, v�T �� � �u�0�, v�0��

Proof. In the following we omit the superscript T . The first assertion holds since

�u, vδ� � �uδ, v� � �u, vδ � v� � �v, u � uδ�.
and the weak continuity in time.

To prove the second assertion note that ∂tjδ is an odd function and therefore

S
T

0
S

T

0

d

dτ
jδ�τ � s��v�s�, u�τ�� dsdτ � �S T

0
S

T

0

d

dτ
jδ�τ � s��u�s�, v�τ�� dτds.

Hence

S
T

0
�u, d

dt
vδ� � � d

dt
uδ, v�dτ

� S
T

0
�u�τ�,S 0

�ª

d

dτ
jδ�τ � s�v̄�s�ds� dτ � S T

0
�u�τ�,S ª

T

d

dτ
jδ�τ � s�v̄�s�ds�dτ

� S
T

0
�v�τ�,S 0

�ª

d

dτ
jδ�τ � s�ū�s�ds� dτ � S T

0
�v�τ�,S ª

T

d

dτ
jδ�τ � s�ū�s�ds�dτ

�� R1�δ� �R2�δ� �R3�δ� �R4�δ�.
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By symmetry it suffices to prove R1�δ� � �
1
2�u�0�, v�0�� and R2�δ� � 1

2u�t�v�t�. As v̄�s� � v�0� for all
s @ 0 and jδ has support in ��δ, δ� we get

R1�δ� � S T

0
�v�0�, u�τ��S ª

τ

d

ds
jδ�s� dsdτ � S δ

0
�v�0�, u�τ��S δ

τ

d

ds
jδ�s� dsdτ

� S
δ

0
�v�0�, u�τ���jδ�δ� � jδ�τ�� dτ � �1

δ
S

δ

0
�v�0�, u�τ��j �τ

δ
� dτ

� �S
1

0
�v�0�, u�δτ��j�τ�dτ.

By weak continuity we get
lim
δ�0

�v�0�, u�δτ��j�τ� � �v�0�, u�0��j�τ�.
As u > Lª�0, T ;H� we get by dominated convergence

lim
δ�0

R1�δ� � ��v�0�, u�0��S 1

0
j�τ� dτ � �1

2
�v�0�, u�0��.

The convergence of R2�δ� is analogous.

Here and in the following we will always consider the extension u introduced above implicitly. Meaning,
that when ever necessary we extend any function to a global in (positive and negative) time object. In order to
treat distributional time derivatives we will use the notation of the dual product over a variable domain by

S
T

0
`f, φeη dt �� S T

0
`f�t�, φ�t�eΩη�t� dt,

where `f, φeΩη�t� is the dual product over function spaces over Ωη�t� which are assumed to be bilinear mappings
that map into measurable functions in time.

For our case of moving boundaries we will need the following convolution result that allows to con volute
with respect to the moving geometry by keeping the solenoidality.

Lemma 4.2.6. Let η > VK , such that η is bounded uniformly from below. Let φ > Lκ�0, T ;Lq�Ωη�� 9
Lα�0, T ;W 1,a�Ωη�� for some a A 1 and α,κ, q C 1. Let b > L2�0, T ;L1�ω�� with φ�t, x, η�x�� � �0, b�t, x��
on �0, T � � ω (in the sense of traces).

Set K � �0, T � � �0, T � �R � ω � R3�3

K�s, t, y, x� � �����
η�s,x�
η�t,x� 0 0

0
η�s,x�
η�t,x� 0

�y∂x1�η�s,x�η�t,x� � �y∂x2�η�s,x�η�t,x� � 1

�����
For each δ A 0 define bδ � b � jδ and

φδ�t, x, y� � S T

0
K�s, t, y, x�φ�s, x, y η�s, x�

η�t, x� � jδ�t � s� ds.
Then it holds for κ @ª that

dφδ � 0, φδ�t, x, η�x�� � bδ�t, x�
and φδ � φ strongly Lκ�0, T ;Lp�Ωη�t��� for all p > �1, κ�.

Moreover,

1. if φ > L2�0, T ;W 1,a�Ωη�� for all a > �1,2�, then φδ � φ converges weakly in L2�0, T ;W 1,p�Ωη�t�� for
all p > �1,2�.

2. if φ > L2�0, T ;W 1,a�Ωη�� for a A 3 than φδ � φ converges weakly in L2�0, T ;H1�Ωη�t��.
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3. if φ >H1�0, T ; W̃ �1,p��Ωη��9L2�0, T ;W 1,a�Ωη�� for some a A 3 and some p > �1,2� then ∂tφδ � ∂tφ
converges weakly in L2�0, T ; W̃ �1,p��Ωη���.

Proof. We define

φ�s, t, x, y� �K�s, t, x, y�φ�s, x, y η�s, x�
η�t, x� �

If we show that dφ�t, s, x, y� � 0 then clearly also dφδ � 0. We get

dφ � �η�s, x�
η�t, x� �φ1

�
η�s, x�
η�t, x�dxφ

1
� y∂yφ

1
©�η�s, x�

η�t, x� �η�s, x�η�t, x� �©�η�s, x�
η�t, x� �φ1

� y©�η�s, x�
η�t, x� � η�s, x�η�t, x� ∂yφ1

�
η�s, x�
η�t, x� ∂yφ2

�
η�s, x�
η�t, x� �∂yφ2

� dxφ
1� � 0,

where we used in the last line that dφ � 0. Now as φ�t, x, η�t, x�� � �0, b�t, x�� we get

φ�s, t, x, η�t, x�� � φ�s, x, η�s, x�� � �0, b�s��.
Thus

φδ�t, x, η�t, x�� � S T

0
b�s�jδ�t � s�ds � bδ�t, x�.

For the convergence result we introduce the function on the reference domain

φ0 � �0, T � � ω � �0,1�� R3, �t, x, y�( φ�t, x, yη�t, x��.
Let p > �1, κ�. First we estimate φ1

δ � φ
1 in Lκ�0, T ;Lp�Ωη�t���. We have

�φ1
δ � φ

1��t, x, y� � S T

0
�η�s, x�
η�t, x�φ1�s, x, y η�s, x�

η�t, x� � � φ1�t, x, y��jδ�t � s�ds
Hence (by a change of variables) we find

S
T

0
�S

Ωη�t� S�φ1
δ � φ

1��t, x, y�Spdxdy�κp dt
� S

T

0
�S

ω��0,1� VS T

0
�η�s, x�φ1�s, x, yη�s, x�� � η�t, x�φ1�t, x, yη�t, x���jδ�t � s�dsVp dz�κp dt

� Yϕδ � ϕYLκ�0,T ;Lp�ω��0,1���

for ϕ�t, x, y� � η�t, x�φ1
0�t, x, y�. As η > Lª�0, T ;Lª�ω�� and φ > Lκ�0, T ;Lq�Ωη�� this converges to 0 by

standard convolution estimates. Next note by a similar argument that

S
T

0
�S

Ωη�t� WS T

0
�φ2 �s, x, y η�s, x�

η�t, x� � � φ2�t, x, y��jδ�t � s� dsWp dz�κp dt
B YηYLªt �0,T ;Lª�ω��Yφ2

0,δ � φ
2
0YLκ�0,T ;Lp�ω��0,1���,

which also converges to 0. Lastly

S
T

0
�S

Ωη�t� WS T

0
y©�η�s�

η�t� �φ1 �s, x, y η�s�
η�t� � jδ�t � s�dsWp dz�

κ
p

dt

� S
T

0
�S

ω��0,1� WS T

0
yη�t�©�η�s�

η�t� �φ1
0�s, x, y�jh�t � s�dsWp dz� sp dt
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As jδ has unit integral we can compute

S
T

0
η�t�©�η�s�

η�t� �φ1
0�s�jδ�t � s�ds � S T

0
φ1

0�s�jδ�t � s��©η�s� �©η�t�� � ©η�t�
η�t� �η�t� � η�s��� ds

� S
T

0
jδ�t � s��φ0�s�©η�s� � φ0�t�©η�t�� � jδ�t � s�©η�t�

η�t� �φ0�s�η�s� � φ0�t�η�t��
� 2jδ�t � s�©η�t��φ0�t� � φ0�s�� ds

Thus

S
T

0
�S

Ωη�t� WS T

0
y©�η�s�

η�t� �φ1 �s, x, y η�s�
η�t� � jδ�t � s�dsWp dz�

κ
p

dt

B Y�©ηφ1
0�δ �©ηφ1

0YL2�0,T ;Lp�Ωη�� � S
T

0
�S

ω��0,1�
S©η�t�SpSη�t�Sp S�ηφ1

0�δ�t� � η�t�φ1
0�t�Spdz�κp dt

� S
T

0
�S

ω��0,1� S©η�t�SpSφ1
0,δ�t� � φ1

0�t�Spdz�κp dt
The first term converges to 0 by standard convolution. The third term we can estimate as p @ q

S
T

0
�S

ω��0,1� S©ηSpSφ1
0 � jδ � φ

1
0Sp dz� vp dt B Y©ηYLª�0,T ;Lq��ω��Yφ1

0,δ � φ
1
0YLκ�0,T ;Lq�ω��0,1���.

Hence this term converges to 0 as well. The third term can be estimated analogously using the assumed uniform
lower bounds on η.

As we have shown strong convergence in L2�0, T ;Lp�Ωη�t��� it suffices to show that ©φδ is bounded in
L2�0, T ;Lp�Ωη�t��� to prove weak convergence. The estimate on the gradient is a standard exercise combining
the bounds of η and φ via Hölder’s inequality. For that reason we omit here most of the details and only mention
the critical terms that appear in the estimates. One critical term appearing in the estimates for (1), (2), (3) can
be estimated using S©φSS©ηS > L2�0, T ;Lp�Ωη� for all p > �1, a�.
Moreover, one needs

for (1) SφSS©2ηS > L2��0, T �;Lp�Ωη�� for all p > �1,2� by Lemma 4.2.3.

for (2) SφSS©2ηS > L2��0, T �;L2�Ωη�� as φ > L2�Lª� by Sobolev embedding.

Next let us consider the weak time derivative. Let us take ψ > W̃ 1,p���0, T ��ω�R��, such that ψ�t, x, y� � 0
for all x > Bc and YψYW 1,p���0,T ��ω�R� B 1 to find that

S
T

0
`∂tφδ, ψe � S T

0
S

T

0
`∂tK�s, t, y, x�φ�s, x, y η�s�

η�t� �jδ�t � s�, ψ�t, z�edsdt
� S

T

0
S

T

0
S

Ωη
K�s, t, y, x�φ�s, x, y η�s�

η�t� �∂tjδ�t � s� � ψ�t, z�dz dsdt
� S

T

0
S

T

0
S

Ωη
K�s, t, y, x�∂yφ�s, x, y η�s�

η�t� �y η�s�η2�t�∂tη�t�jδ�t � s� � ψ�t, z�dz dsdt
� �I� � �II� � �III�
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The expression �I� can be transferred into an integral by using partial integration in xi and the fact that
φi�t, x, η�t, x�� � 0 for i > �1,2� and �t, x� > �0, T � � ω:

�I� � 2

Q
i�1
S

T

0
S

T

0
� � `y∂t∂xi�η�s, x�η�t, x� �φi�s, x, y η�s�η�t� �, ψ3�t�edsdt

� S
Ωη�t�

∂t�η�s, x�
η�t, x� �φi�s, x, y η�s�η�t� � � ψi�t, z�dz�jδ�t � s�dsdt

�

2

Q
i�1
S

T

0
S

T

0
S
ω
∂t�η�s, x�

η�t, x� ��∂xi S η�t,x�
0

yφi�s, x, y η�s�
η�t� � � ψ3�t, x, y�dy

� S
η�t,x�

0
yφi�s, x, y η�s�

η�t� � � ψi�t, x, y�dy�dxjδ�t � s�dsdt
�

2

Q
i�1
S

T

0
S

T

0
S
ω
∂t�η�s, x�

η�t, x� ��S η�t,x�
0

y∂xi�φi�s, x, y η�s�η�t� � � ψ3�t, x, y��dy
� S

η�t,x�
0

yφi�s, x, y η�s�
η�t� � � ψi�t, x, y�dy�dxjδ�t � s�dsdt.

But these expression can be estimated using that p� � 3p
3�p can be assumed to be close enough to 6 such that

�I� B C S T

0
Y∂tηYL2�ω���YφYW 1,s�Ωη�t�� � YS©φSS©ηSYL3��3�s�~2�Ωη��YΨYLp��Ωη� � YΨYW 1,p�Ωη��dt.

This expression is bounded as ∂tη > Lª�0, T ;L2�ω��, S©ηSS©φS > L2�0, T ;Lq�Ωη�� for all q > �3, s�. The
estimate on �III� is analogous (but simpler).

For �II� we use ∂tjδ�t � s� � ∂sjδ�t � s� to find (using the 0-trace of jδ�t � s� that)

�II� � S T

0
S

T

0
∂s`�K�s, t, y, x�φ�s, x, y η�s�

η�t� �jδ�t � s�, ψ�t, z�edsdt
� S

T

0
S

T

0
`∂sK�s, t, y, x�φ�s, x, y η�s�

η�t� �jδ�t � s�, ψ�t, z�edsdt
� S

T

0
S

T

0
S

Ωη
K�s, t, y, x�∂yφ�s, x, y η�s�

η�t� �y∂sη�s�η�t� jδ�t � s� � ψ�t, z�dz dsdt
� S

T

0
S

T

0
`K�s, t, y, x�∂sφ�s, x, y η�s�

η�t� �jδ�t � s�, ψ�t, z�edsdt,
�� II1 � II2 � II3 � II4.

First observe, thatII1 � 0. The estimates on II2, II3 are similar to the estimate of �I� above. Now, finally II4

is estimated using the assumption on ∂tφ. We define K̂T �s, t, y, x� in such a way that

II4 � �S
T

0
S

T

0
`∂sφ�s, x, y η�s�

η�t� �,KT �s, t, y, x�ψ�t, z�e
Ωη�t�

jδ�t � s�dsdt
� �S

T

0
S

T

0
`∂sφ�s, z�, K̂T �t, s, y, x�ψ�s, x, y η�t�

η�s��eΩη�s�jδ�t � s�dsdt.
This implies that

II4 B S
T

0
S

T

0
Y∂tφ�s�YW̃�1,p��Ωη� ]K̂T �t, s, y, x�ψ�s, x, y η�t�

η�s��]W 1,p�Ωη�
jδ�t � s�dsdt,

which is uniformly bounded using S©ψSS©ηS2 > L2�0, T ;Lp�Ωη�� and SψSS©2ηS > L2��0, T �;Lp�Ωη�� for all
p > �1,2�.
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4.2.4 The distributional time derivatives.

En passant we include here a result that is independent of our main result but might be important for further
use. Here a meaning is given to the distributional time derivative of solutions.

Proposition 4.2.7. Let �v, p, η� be a weak solution satisfying (4.1.11), then if v > L2�0, T ;W 1,s�Ωη�� for s C 2,
than

∂tv � �©v�v > L2�0, T ; �W 1,q
0,d�Ωη���,

for any q > �2,ª� if s � 2 and q � 2 if s A 2.
This means3 that for φ > L2�0, T ;W 1,q

0,d�Ωη�� we find that

S
T

0
`∂tv � �©v�v, φeη dt � �S T

0
S

Ωη
©v � ©φdxdt. (4.2.3)

Moreover, �∂tv � �©v�v, ∂2
t η� > L2�0, T ;W�� for

W � ��φ, b� >W 1,q
d �Ωη� �H2�ω� � φ�t, x, η�x�� � b�t, x��

for any q > �2,ª� if s � 2 and q � 2 if s A 2.
In particular, for all �φ, b� >W we find that

S
T

0
`∂tv � �©v�v, φeη � `∂2

t η, bedt � �S T

0
S

Ωη
©v � ©φdxdt � S

T

0
S
ω
©

2η � ©2b dxdt.

Proof. Let φ > L2�0, T ;W 1,q
0,d�Ωη��. First observe, that if (additionally) ∂tφ > L2��0, T � � Ωη� and ©φ >

Lª�0, T ;L2�Ωη��, than (as SvS2 > L1
t �L2

z�) we find

S
T

0
`∂tv � �v � ©�v, φeη � � S

Ωη�T �

v�T � � φ�T �dz � S
Ωη0

v0
� φ�0�dz � S T

0
S

Ωη
v � ∂tφ � v a v � ©φdz dt

� �S
T

0
S

Ωη
©v � ©φdz dt.

Hence, by taking the mollification introduced in Lemma 4.2.6 (here b � 0), we find that

S
T

0
`∂tv � �v � ©�v, φδeη � �S T

0
S

Ωη
©v � ©φδ dz dt,

which implies the result by passing with δ � 0 by the convergence result of Lemma 4.2.6. This allows to give
the left hand side a well defined meaning; hence the domain of the left hand side can accordingly be extended.
The proof of the second identity is analogous.

4.3 Proof of the main result

4.3.1 The set-up

Throughout this section let �v1, η1�, �v2, η2� be weak solutions to FSI for initial conditions v1�0� � v1,0,
v2�0� � v2,0, η1�0� � η1,0 η2�0� � η2,0 and ∂tη1�0� � η�1,0, � ∂tη2�0� � η�2,0. Let v2 satisfy the additional
regularity assumption v2 > Lr�0, T ;W 1,s�Ωη2��, ∂tv2 > L2�0, T ;W �1,r�Ωη2�� for some s A 3, r A 2. Note
that as ∂tη1 � trη1�v1� and ∂tη2 � trη2�v2� we have by the trace theorem for moving boundaries (see [22,
Lemma 6]])

∂tη1 > L
2�0, T ;H l�ω��, ∂tη2 > L

r�0, T ;W
3
2
,3�ω��

3The expression (4.2.3) seems to be the appropriate definition of a weak time derivative in the setting of fluid-structure interaction.
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for all l > �0,1~2�. By Theorem 4.2.2 we find additionally that

η1 > L
2�0, T ;H2�l�ω��, η2 > L

r�0, T ;H2�l�ω��, l > �0,1~2�.
We define the variable in time domains

Ω1 �� Ωη1 and Ω2 �� Ωη2 .

Since most of the computations will be given on the domain of the weak solution Ω1 we introduce for u ��0, T � �Ω1 � R3 the notation

Yu�t�Yk,p �� Yu�t�YWk,p�Ωη1�t��, Yu�t�Y �� Yu�t�YL2�Ωη1�t�� and �u�t�,w�t�� �� `u�t�,w�t�eη1
,

whenever well defined. Recall also, that in case a function b � �0, T � � ω � R we will extend it constantly to
b � �0, T � � ω �R� R without further notice. For such function we use

Yb�t�Yk,p �� Yb�t�YWk,p�ω�, Yb�t�Y �� Yb�t�YL2�ω� and �u�t�,w�t�� �� `u�t�,w�t�eω.
The first step of the proof is to introduce a diffeomorphism ψ � Ω1 � Ω2 to compare the velocity fields on

the same domain. We define such a ψ explicitly by

γ � ω � �0,ª�, x(
η2�x�
η1�x� ,

ψ � �0, T � � ω �R� �0, T � � ω �R �t, x, y�( �t, x, γ�t, x�y�.
Then ψ��t� � Ω1� � �t� � Ω2 for all t > �0, T �. Note however that this transformation does not conserve the
property of vanishing divergence. For that we follow the approach in [92]. Define the 3 � 3 matrix4

J�t, x, y� �Dzψ�t, x, y� � � I2 0
y©γ�t, x� γ�t, x�� ,

J̃ � J X ψ�1
� � I2 0

yγ�1©γ γ�t, x�� .
Now for w � �0, T ��Ω2 � R3 set ŵ � γJ�1�w Xψ� and for u � �0, T ��Ω1 � R3 set ǔ � γ�1J̃uXψ�1. The next
lemma shows that �ŵ, ξ� is an admissible and solenoidal test function for �v1, η1� if �w, ξ� is an admissible
and solenoidal test function for �v2, η2� and �ǔ, ξ� is an admissible and solenoidal test function for �v1, η1� if�u, ξ� is an admissible and solenoidal for �v2, η2�.
Lemma 4.3.1. Let w > L1�0, T ;W 1,q�Ω2;R3��, u � �0, T �� Ω1 (sufficiently smooth). The following holds

1. If dw � du � 0 then dŵ � dǔ � 0.

2. u3�t, x, η2�t, x�� � û3�t, x, η1�x��, u3�t, x, η1�x�� � ǔ3�t, x, η2�x��.
3. �u � ŵ� X ψ�1 � γJ̃�1�ǔ �w� and �ǔ �w� X ψ � γ�1J�u � ŵ�

Proof. We calculate

γJ�1
� � γI2 0

�y©γ 1
� , γ�1J̃ � � γ�1I2 0

yγ�2©γ 1
� � � γ�1I2 0

�y©�γ�1� 1
� .

Thus it is sufficient to prove (1) and (2) for ŵ as for ǔ we just have to replace γ by γ�1 everywhere. We get

ŵ � �γw�
X ψ,�y©γ �w�

X ψ �w2
X ψ�,

4Here and in the following we use �I2,0� for �1 0 0
0 1 0

�.
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As ψ�x, η1� � �x, η2� this directly yields the second assertion. For the divergence we find

dxŵ
�
� ©γ �w�

X ψ � γdx�w�
X ψ� � ©γ �w�

X ψ � γ��dxw�� X ψ � �∂yw�� X ψ� � y©γ�
and using ∂y�w X ψ� � γ�∂yw� X ψ

∂yŵ
2
� �©γ �w�

X ψ � γ��y©γ � �∂yw�� X ψ � �∂yw2� X ψ�.
Thus dw1 � 0 gives dŵ � γ�dxw� X ψ � 0. For (3) note first that

J�1
X ψ�1

� � I2 0
�yγ�2©γ γ�1� � J̃�1

This gives

�u � ŵ� X ψ�1
� u X ψ�1

� γ�J�1
X ψ�1�w � γJ̃�1�γ�1J̃u X ψ�1

�w� � γJ̃�1�ǔ �w�.
Lastly �ǔ �w� X ψ � γ�1Ju �w X ψ � γ�1J��u � ŵ��.

For notational purposes set

η1 � η2 � η, w1 � v1 � v̂2, w2 � v̌1 � v2.

v2 X ψ � ṽ2, v1 X ψ
�1

� ṽ1, w2 X ψ � w̃2, w1 X ψ
�1

� w̃1, f̃2 � f2 X ψ

Note that by Lemma 4.3.1
w̃2 � γ

�1Jw1, w̃1 � γJ̃
�1w2, (4.3.1)

and with a slight missuse of notation.

v̌1,δ � γ
�1J̃v1,δ X ψ

�1, v̂2,δ � γJ
�1v2,δ X ψ, w2,δ � v̌1,δ � v2,δ, w1,δ � v1,δ � v̂2,δ.

Note that by Lemma 4.2.6 dv2,δ � dv1,δ � 0 and v2,δ�x, η2�x�� � �0, ∂tη2,δ�, v1,δ � �0, ∂tη1,δ�. Thus by
Lemma 4.3.1 dv̂2,δ � dv̌1,δ � 0 and v̂2,δ�x, η1�x�� � ∂tη2,δ, v̌1�x, η2�x�� � ∂tη1,δ as well as dw1,δ � dw2,δ � 0
and w1,δ�x, η1�x�� � w2,δ�x, η2�x�� � ∂tηδ.
4.3.2 A-priori estimates

Before we turn to the main argument we collect some results that show that our test-functions are admissible
and that the error terms due to the geometric convolution in time are converging to 0.

Remark 4.3.2. The following estimates we will use frequently in the following. They are consequences of
Hölder’s inequality and the imbeddings H1�ω� 0 Lp�ω� (p > �1,ª�) and in case q @ 3, that W 1,q�Ωi� 0
Lr�Ωi� for all r @ 3q~�3 � q�) (i � 1,2 here and in the following). See [127] for a reference.

1. For all s > �1,ª�, p > �1, s� and f > Ls�Ωi�, g >H1�ω�
YfgYLp�Ωi� B CYfYLs�Ωi�YgYH1�ω�.

2. For all p > �1,2�, q > �6p~�6 � p�,3�, f >W 1,q�Ωi� and g > L2�Ωi�YfgYLp�Ωi� B CYfYW 1,q�Ωi�YgYL2�Ωi�.

3. If p, q, f are as above and g >H2�ω� 1. and 2. give in particular

YfgYW 1,p�Ωi� B CYfYW 1,q�Ωi�YgYH2�ω�.
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Lemma 4.3.3. Let �v1, η1�, �v2, η2� > VS weak solutions of FSI, �v2, η2� satisfying the additional regularity
assumptions. Then

1. γ satisfies the following estimates for a.e. t > �0, T �.
Yγ�t� � 1YH2�ω� B CYη�t�YH2�ω� Y∂tγ�t�YL2�ω� B CY∂tη�t�YL2�ω� �CYη�t�YL2�ω�.

The same estimates hold for γ�1.

2. ©γ > Lª�0, T ;Lq�ω�� for all q > �1,ª�
Y©γ�t�YLq�ω� B CYη�t�YH2�ω�

and the same holds for γ�1.

3. v̂1 > Lª�0, T ;Lp�Ω2�� 9 L2�0, T ;W 1,p�Ω2�� for all p > �1,2� and Yv̂1YW 1,p�Ω2� B CYv1Y1,2 for all
p > �1,2�.

4. ∂tv̂ > L2�0, T ; W̃ �1,p��Ω1�� for all p� > �1, r�,
Proof. (1) and (2):
It holds

γ � 1 �
η2 � η1

η1
B C SηS

γt �
∂tη2η

η2
1

�
η2∂tη

η2
1

B C�S∂tη2SSηS � S∂tηS�,
©γ �

©η2η

η2
1

�
η2©η

η2
1

B C�S©η2SSηS � S©ηS�,
∂2
xixjγ � η

�2
1 �∂2

xixjη2η � ∂xjη2∂xiη � ∂xiη2∂xjη � η2∂
2
xixjη� � 2

∂xiη1

η3
1

∂xjγ

B C�S©2η2SSηS � S©η2SS©ηS � S©2ηS � S©η1S�S©η2SSηS � S©ηS�
(1) and (2) now follow from the embeddings H2�ω� 0W 1,q�ω� 0 Lª�ω� for all q > �1,ª�. The results for
γ�1 follow by replacing the roles of η1 and η2
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Proof of (3):
We calculate

∂xi�γ�1J̃� � � I2∂xi�γ�1� 0
�y∂xi©�γ�1� 0

� , ∂y�γ�1J̃� � � I20 0
�©�γ�1� 0

�
Hence S∂xi�γ�1J̃�S � S∂y�γ�1J̃�S B C�S©�γ�1�S � S©�γ�1�S2 � Sy©2�γ�1�S� (4.3.2)

Observe further, that by Lemma 4.2.4 R η1�t,x�
0 SvSdy > L2�0, T ;Lq�ω�� for all q > �1,ª�, which implies (using

also (2)) that

S©2γSSv1S > L2�0, T ;Lp�Ω1�� and S©2γSSṽ1S > L2�0, T ;Lp�Ω2�� for all p > �1,2� (4.3.3)

Now by (4.3.2)

S∂zi�γ�1Jṽ1�S B C�S©�γ�1�S � S©�γ�1�S � S©2�γ�1�SSṽ1S � S©�γ�1�SS�©v1� X ψ�1S
Thus the assertion for v̂1 follows using also (1), (2) and Remark 4.3.2.
Proof of (4):
This estimate is analogous to (3) in Lemma 4.2.6: Let us take ψ > W̃ 1,p��ω �R�, such that ψ�t, x, y� � 0 for all
x > Bc and YψYW 1,p���0,T ��ω�R� B 1 to find that

S
T

0
�∂tv̂2, ψ�dt � S T

0
�∂t�γJ�1�ṽ2, ψ�dt � S T

0
`J�1∂tv2, ψeη2

dt � S
T

0
S

Ω1

γJ�1∂3v2∂tγ � ψ dz dt

The estimates on the first and the third term are now straight forward using the assumptions on v2. In the first
term it is important to observe that the terms involving ∂t©γ are always coupled to v�2. Using the fact that
v�2�t, x, η2�t, x�� � 0 for all �t, x� > �0, T � � ω, we may use integration by parts in x direction and find

�∂t�γJ�1�ṽ2, ψ� B C S
Ω1

S∂tγS�S©γSS©ṽ2SSψS � Yv2YLª�Ω2�Sṽ2SS©ψS�,
But these expression can be estimated using that p� � 3p

3�p can be assumed to be close enough to 6 such that

S
T

0
�∂t�γJ�1�ṽ2, ψ�dt

B C S
T

0
Y∂tγY�YS©ṽ2SS©γSY3��3�s�~2YψYp� � Yv2YW 1,s�Ω2�YψY1,p�dt.

This expression is bounded since ∂tη > Lª�L2� and S©γSS©ṽ2S > L2�0, T ;Lq�Ω1�� for all q > �3, s�.
At this point we choose t > �0, T � such that all involved quantities do have a Lebesgue point at this time

instance. Without any further notice we extend all quantities via (4.2.1) constant on ��ª,0� and �t,ª�.
Next we take the convolution introduced in Lemma 4.2.6 on w2 and v̂2. We will need the following conver-

gences:

Lemma 4.3.4. The following expressions are all well defined and convergence to zero with δ � 0:

S
t

0
`∂tv2,w2 �w2,δeη2

� `�©v2�v2,w2 �w2,δeη2
� `εv2, εw2 � εw2,δ�eη2

dt0 (4.3.4)

S
t

0
�v1 a v1,©v̂2 �©v̂2,δ� dt (4.3.5)

�v1�t�, v̂2�t� � v̂2,δ�t�� � S t

0
�v1, ∂tv̂2 � ∂tv̂2,δ� � �εv1, εv̂2 � εv̂2,δ� dt. (4.3.6)

Moreover, �∂tηδ, v̂2,δ� is a valid testfunction for the weak formulation of �η1, v1� and the terms`∂tv2,w2,δeη2
, `εv2, εw2,δeη2

, `�©v2�v2,w2,δeη2
> L1�0, T � uniformly in δ.
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Proof. For (4.3.4) we know that w2 > L2�0, T ;W 1,p�Ω2� for all p > �1,2� by Lemma 4.3.3. Hence by
Lemma 4.2.6 w2 � w2,δ � 0 weakly in L2�0, T ;W 1,p�Ω2�� for all p > �1,2�. Since it is a valid argument
for ∂tv2 > L2�0, T ; W̃ �1,p��Ω2�� and since ©v2 > L2�0, T ;W 1,s�Ω2�� for s A 3 it yields the convergence of
the first and third term. Moreover, it was shown in Lemma 4.3.3 (6) that �©v2�v2 > L

2�0, T ;Lq�Ω2� for some
q A �6~5�. Since we may assume p > �1,2� such that W 1,p�Ω2� 0 Lq

�

the convergence of the second term
follows again from the weak convergence of w2,δ in L2�0, T ;W 1,p�Ω2��.

In (4.3.5) we will show that all involved terms are uniformly bounded. The uniform bounds imply that all
weakly converging sub-sequences converge to 0, by the uniqueness of the weak limits. The critical term here
is R T0 RΩη1 Sv1 a v1 � ©�∂xiγṽ2,δ�Sdz dt. All other terms can be estimated in a straight forward manner and we

skip the details. Using the uniform bounds on η1, η2,
1
η1
, 1
η2

we find

S
Ω1

Sv1 a v1 � ©�∂xiγṽ2�Sdz dt
B C S

ω
S

η1�t,x�
0

Sv1S2Sṽ2Sdy��S©η1S � S©η2S��1 � S©η2S � S©2η2S� � S©η2SS©2η1S�dx
�C S

Ω1

Sv1S2S©ṽ2Sdy�1 � S©η1S2 � S©η2S2�dz �� I1 � I2.

Using Lemma 4.2.4 and Hölder’s inequality in space we can estimate

I1 B CYv2YLª�Ωη2�Sω S
η1�t,x�

0
Sv1S2 dy�S©η1S � S©η2S��1 � S©2η1S � S©2η2S�dx

B CYv2YLª�Ωη2��Yη1Y1,ª � Yη2Y1,ª��Yη1Y2,2 � Yη2Y2,2 � 1�]S η1�t,x�
0

Sv1S2 dy]
B CYv2YLª�Ωη2��Yη1Y1,ª � Yη2Y1,ª��Yv1Y2

� Yv1YY©v1Y � Y∂tη1YY©η1Yª�
B C�Yv2YW 1,s�Ω2� � 1�2�Yη1Y1,ª � Yη2Y1,ª � 1�2�Yv1Y2

� Y∂tη1Y2� �CYv1Y2
1,2

Since v2 > L
r�0, T ;W 1,s�Ωη2�� for some r A 2 and η1, η2 > L

q�0, T ;W 1,ª�ω�� for all q @ª (Theorem 4.2.2)Yv2YLª�Ωη2��Yη1Y1,ª � Yη1Y1,ª > L2��0, T ��. As additionally v1 > Lª�0, T ;L2�Ω1�� 9 L2�0, T,H2�Ω1��
and ∂tη1 > L

ª�0, T ;L2�ω�� the last term is bounded in time.
To estimate I2 note that as v1 > L2�0, T ;H1�Ω1�� 0 L2�0, T ;Lα�Ω1�� for all α > �1,6� we find for all

a @ 3~2 (i.e. � 2
a�� @ 4) Yv1Ya B Yv1Y2Yv1Y� 2

a
�� B Yv1YYv1Y1,2

Now choose p A 1, q A 3 such that qp @ s and pq� @ 3~2.

I2 B C�1 � Y©η1Y2p� � Y©η2Y2p��YS©ṽ2SSv1S2Yp
B C�Yη1Y2,2 � Yη2Y2,2�Y©ṽ2YpqYSv1S2Ypq� B CYv2YW 1,s�Ω2�Yv1YYv1Y1,2

which is bounded in time due to the regularities on v2 and v1. We continue with (4.3.6). We write

S
t

0
�v1, ∂tv̂2 � ∂tv̂2,δ�dt � S t

0
�γJ�T v1, ∂tṽ2 � ∂t ˜v2,δ�dt � S t

0
�v1, ∂t�γJ�1��ṽ2 � ṽ2,δ��dt

� S
t

0
`J�T ṽ1, ∂tv2 � ∂tv2,δeη2

dt �
2

Q
i�1
S

t

0
�vi1, ∂tγṽi2 � ṽi2,δ��dt

�

2

Q
i�1
S

t

0
�y∂xi∂tγ, vi1�ṽ3

2 � ṽ
3
2,δ��dt �� �i� � �ii� � �iii�

The term �i� converges to 0 by Lemma 4.2.6 using that by an analogous estimate to Lemma 4.3.3, (3) we
find that J�T ṽ1 > L2�W 1,p�Ω2� for all p > �1,2�. The term �ii� converges directly by Lemma 4.2.6 and
Lemma 4.3.3. On the term �iii� we integrate by parts to find that

S�iii�S B S t

0
S

Ω1

S∂tγSS©�v1�ṽ3
2 � ṽ

3
2,δ�Sdz dt
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which can be bounded uniformly (using Lemma 4.2.6 and Lemma 4.3.3 again) and therefore converges to 0.
The estimate on the part involving symmetric gradients is straight forward using the bounds in Lemma 4.2.6
and Lemma 4.3.3. It remains to show that the first term in (4.3.6) converges. For that we simply use the fact
that we chose t to be a Lebesgue point of all involved quantities. Hence by the very definition of v̂2,δ, we find
that

lim
δ�0

�v1�t�, v̂2,δ�t�� � �v1�t�, v̂2�t��.
For the last statement observe that for all p > �1,2� by the calculations in Lemma 4.3.3 that w2 � v2 � v̂1 >

L2�0, T ;W 1,p�Ω2�� and therefore by Lemma 4.2.6 w2,δ > L
2�0, T ;W 1,p�Ω2��. This holds in particular for

p � r� which yields that the first two terms are in L1�0, T �. Further, since ©v2 > L
2�0, T ;Ls�Ω2�� for s A 3

Hölder’s inequality implies for some q A 6
5Y�©v2�v2YLq�Ω2� B Yv2YL2�Ω2�Y©v2YL2q��Ω2�.

Choosing q A 6~5 such that �2~q�� @ s bounds the right hand side in L2��0, T ��. As by embedding w2,δ >

L2�0, T ;La�Ω2� for all a > �1,6� we find that �©v2�v2 �w2 > L
1�0, T ;L1�Ω2��.

4.3.3 The stability estimate (Proof of Theorem 4.1.5)

We have collected all the necessary notations and estimates to start the stability estimate. The estimate is
derived by testing first the equation of �v2, η2� by �w2,δ, ∂tηδ�, second the energy inequality for �v1, η1� and
finally testing �v1, η1� with �v̂2,δ, ∂tη2,δ�.

Testing the equation of �v2, η2� by �w2,δ, ∂tηδ�, integration by parts and Reynold’s transport theorem give

S
t

0
`∂tv2 � �©v2�v2,w2,δeη2

� `εv2, εw2,δeη2
� `f2,w2,δeη2

dt

� �∂tη2, ∂tηδ� � �∂tη2,0, ∂tη0� � S t

0
�∂tη2, ∂

2
t ηδ� � �∆η2,∆∂tηδ� � �g2, ∂tηδ�dt � 0.

(4.3.7)

We can write this

S
t

0
`∂tv2 � �©v2�v2,w2eη2

� `εv2, εw2eη2
� `f2,w2eη2

dt

� �∂tη2, ∂tηδ� � �∂tη2,0, ∂tη0� � S t

0
�∂tη2, ∂

2
t ηδ� � �∆η2,∆∂tηδ� � �g2, ∂tηδ�dt �K1,δ

(4.3.8)

where

K1 δ �� S
t

0
`∂tv2 � �©v2�v2,w2 �w2,δeη2

� `εv2, ε�w2 �w2,δ�eη2
� `f2,w2 �w2,δeη2

Then K1,δ � 0 for δ � 0 by Lemma 4.3.4.
The next step is to transform the equation for v2, η2 to the domain Ω1. In particular we want to prove an

estimate for

S
t

0
�∂tv̂2 �©v̂2v̂2,w1� � �©v̂2,©w1� � �f̃2,w1�dt

First compute

�∂tv̂2,w1� � �γJ�1∂tṽ2 � ∂t�γJ�1�ṽ2�,w1��
� `J̃�1��∂tṽ2� X ψ�1�, w̃1eη2

� �∂t�γJ�1�ṽ2,w1�.
By chain rule we get �∂tṽ2� X ψ�1

� ∂tv2 � yγ
�1∂tγ∂yv2,
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Also using w2 � γ
�1J̃ w̃1 (cf. (4.3.1)) this gives

J̃�1�∂tṽ2� X ψ�1
� w̃1 � ∂tv2 �w2 � ∂tv2 � �J̃�tw̃1 �w2� � yγ�1∂tγJ̃

�1∂yv2 � w̃1

� ∂tv2 �w2 � ∂tv2 � �J̃�t � γ�1J̃�w̃1 � yγ
�1∂tγJ̃

�1∂yv2 � w̃1,

which yields

`∂tv2,w2eη2
� �∂tv̂2,w1� � �∂t�γJ�1�ṽ2,w1� � `∂tv2, �J̃�t � γ�1J̃�w̃1eη2

� `yγ�1∂tγJ̃
�1∂yv2, w̃1eη2

�� �∂tv̂2,w1� �R1.
(4.3.9)

Estimate of R1. With similar estimates as in the proof of Lemma 4.3.3 we get

SJ̃�t � γ�1J̃ S B C�S1 � γS � S©γS�, S©�J̃�t � γ�1J̃�S B C�S©γS � S©2γS� (4.3.10)

Hence as in the proof of Lemma 4.3.3 (1) we have (using also Lemma 4.3.3 (1))

Y�J̃�t � γ�1J̃�w̃1YW 1,q�Ω2� B CYηY2,2Yw1Y1,2

for all q > �1,2�. This yields for p� > �2, r�
`∂tv2, �J̃�t � γ�1J̃�w̃1eη2

B Y∂tv2YW̃�1,p��Ω2�Y�J̃�t � γ�1J̃�w̃1YW 1,p�Ω2�
B CεY∂tv2Y2

�1,rYηY2
2,2 � εYw1Y2

1,2.

By Remark 4.3.2 we have for p > �1,3~2�, q > �p,3~2� and a > �6q~�6 � q�,2�
YS∂tγSS©γSSw̃1SYLp�Ω2� B Y©γY1,2Y∂tγYYw̃1YLq�Ω2� B Y©γY1,2 Y∂tγY2Yw̃1YW 1,a�Ω2�

Thus by (4.3.10) and Lemma 4.3.3, we get for p � s� > �1,3~2�
`yγ�1∂tγJ̃

�1∂yv2, w̃1eη2
B CYv2Y1,sY YS∂tγSS©γSSw̃1SSY1,p

B CεY∂tηY2
2YηY2,2Yv2Y2

W 1,s�Ω2� � εYw1Y2
1,2.

Next compute

∂t�γJ�1� � � ∂tγ 0
�y∂t©γ 0.

� .
By Hölder’s inequality we get for all p > �3, s� and q � 2�p~2�� @ 6

YS©ṽ2SSw1SY B Y©ṽ2YpYw1Yq B Yv2YW 1,s�Ω2�Yw1Y1,2,

also YSṽ2SS©w1SY2 B Yṽ2YªYw1Y1,2 B Yv2YW 1,s�Ω2�Yw1Y1,2

This yields

�∂t�γJ�1�, ṽ2,w1� B CY∂tγYYṽ2YªYw1Y1,2 � Y∂t©γY�1,2Yṽ1
2w

2
1Y1,2

B CεY∂tηY2Yv2Y2
W 1,s�Ω2� � εYw1Y2

1,2.

In conclusion SR1S B Cε�YηY2
2,2 � Y∂tηY2��Yv2Y2

W 1,s�Ω2� � Y∂tv2Y2
W̃�1,r�Ω2�� � εYw1Y2

1,2. (4.3.11)
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To symplify Notation in the next step, for a Matrix A > R3�3 we denote the symmetric part of it as As �
1
2�A �At�. We get by transformation and chain rule

`εv2, εw2eη2
� �γ�©ṽ2J

�1�s, �©w̃2J
�1�s�

By (4.3.1)

γ©w̃2J
�1

� γ©�γ�1Jw1�J�1
� J©w1J

�1
� γ©�γ�1J�w1J

�1

� ©w1 �©w1�J�1
� I� � �J � I�©w1J

�1
� γ©�γ�1J�w1J

�1.

and using v̂2 � γJ
�1v2

©ṽ2J
�1

� ©ṽ2 �©ṽ2�J�1
� I� � ©v̂2 �©��I � γJ�1�ṽ2� �©ṽ2�J�1

� I�
� ©v̂2 � �I � γJ�1�©ṽ2 �©�γJ�1�ṽ2 �©ṽ2�J�1

� I�
Hence �γ�©ṽ2J

�1�s � �©w̃2J
�1�s�

� ��©ṽ2J
�1�s, εw1 � �©w1�J�1

� I� � �J � I�©w1J
�1
� γ©�γ�1J�w1J

�1�s�
� �εv̂2, εw1� � ��©ṽ2J

�1�s, �©w1�J�1
� I� � �J � I�©w1J

�1
� γ©�γ�1J�w1J

�1�s�
� ���I � γJ�1�©ṽ2 �©�γJ�1�ṽ2 �©ṽ2�J�1

� I��s , εw1�
�� �εv̂2 � εw1� �R2.

(4.3.12)

Estimate of R2. By the definition of J it is straightforward to see that

SJ�1S B C�1 � S©γS�,SJ�1
� I S � SJ � I S � SγJ�1

� I S B C�Sγ � 1S � S©γS�.
By Hölder’s inequality we get YS©ṽ2SS©w1SY6~5 B Y©ṽ2Y3Y©w1Y2 and thus for p � 6~5

��©ṽ2J
�1�s, �©w1�J�1

� I� � �J � I�©w1J
�1�s� � ���I � γJ�1�©ṽ2 �©ṽ2�J�1

� I��s , εw1�
B CY©γY3p� YS©ṽ2S S©w1SYp B YηY2,2�Y©v2YsY©w1Y�

B CεYηY2
2,2Yv2Y2

W 1,s�Ω2� � εY©w1Y2

Furthermore as in the proof of Lemma 4.3.3 we get for p > �3, s� (i.e. p� > �s�,3~2�)
��©ṽ2J

�1�s � �©�γ�1J�w1J
�1�s� B CY�1 � S©γS � S©γS2 � S©γS3�S©ṽ2SYpYS©2γSSw1SYp�

B CYηY2,2Y©v2Y1,sYw1Y1,2 B CεYηY2
2,2Yv2Y2

W 1,s�Ω2� � εYw1Y2
1,2

and ��©�γJ�1�ṽ2�s, εw1� B CY�S©2γS � S©γS�Sṽ2SY Y©w1Y B CεYv2Y2
W 1,s�Ω2�YηY2

2,2 � εYw1Y2
1,2

In conclusion SR2S B CεYηY2
2,2Yv2Y2

W 1,s�Ω2� � εYw1Y2
1,2 (4.3.13)

Next by chain rule and (4.3.1) we get

`�©v2�v2,w2eη2
� ��©ṽ2�γJ�1ṽ2, γ

�1Jw1� � ��©ṽ2�γJ�1ṽ2, γ
�1Jw1�

� ��©ṽ2�v̂2,w1� � ��©ṽ2�v̂2, �γ�1J � I�w1�
� ��©v̂2�v̂2,w1� � ��©��I � γ�1J�ṽ2��v̂2,w1� � ��©ṽ2�v̂2, �γ�1J � I�w1�
�� ��©v̂2�v̂2,w1� �R3

(4.3.14)
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Estimate on R3. With similar estiamtes as above we can conclude

��©ṽ2�v̂2, �γ�1J � I�w1� B CYv̂2YªY�γ�1
� J t�©ṽ2YYw1Y

B CYηY2,2Yv2Y2
W 1,s�Ω2�Yw1Y B CYv2Y2

W 1,s�Ω2��YηY2
2,2 � Yw1Y2�

Additionally

��©��I � γ�1J�ṽ2��v̂2,w1� B CYv̂2YLªYw1Y�Yṽ2YªY©�γJ�1�Y � Y�I � γJ�1�©ṽ2Y
B CYv2Y2

W 1,s�Ω2��YηY2
2,2 � Yw1Y2�

Thus SR3S B CYv2Y2
W 1,s�Ω2��YηY2

2,2 � Yw1Y2� (4.3.15)

Lastly by transformation rule and (4.3.1)

`f2,w2eη2
� �f̃2, γw̃2� � �f̃2,w1� � �f̃2, �I � J�w1� � �f̃2,w1� �R4. (4.3.16)

We find for all p > �1,ª�
R4 B CY�1 � γ�Yp�YSf̃2SSw1SYp B CεYf2Y2

L2�Ω2�YηY2
2,2 � εYw1Y2

1,2 (4.3.17)

Adding (4.3.9), (4.3.12), (4.3.14), (4.3.16) and integrating over �0, t� we get

S
t

0
�∂tv̂2 � �©v̂2�v̂2,w1� � �εv̂2, εw1� � �f̃2,w1� dt
� S

t

0
`∂tv2 � �©v2�v2,w2eη2

� `εv2, εw2eη2
� `f2,w2e dt �R, (4.3.18)

where R � R t0 R1 �R2 �R3 �R4 dt. By (4.3.11), (4.3.13), (4.3.15), (4.3.17) we get

SRS B S t

0
h1�t��YηY2

2,2 � Y∂tηY2
2 � Yw1Y2

2� � εYw1Y2
1,2 dt,

h1�t� � Cε�Yv2Y2
W 1,s�Ω2� � Y∂tv2Y2

W�1,s�Ω2� � Yf2Y2
L2�Ω2�� > L1��0, T ��. (4.3.19)

We can now estimate the differences of the solutions, namely we estimate

I � �
1

2
Yw1Y2

�
1

2
�Y∂tηY2

� Y∆ηY2� � S t

0
Yεw1Y2dt

�
1

2
Yv1Y2

�
1

2
�Y∂tη1Y2

� Y∆η1Y2�
� �v1�t�, v̂2�t�� � �∂tη1, ∂tη2� � �∆η1,∆η2�
�

1

2
�Yv̂2Y2

� Yη2Y2
� Y∆η2Y2�

� S
t

0
Yεv1Y2

� �εv1, εv̂2� � �εv̂2, εw1� dt.
The energy inequality for �v1, η1� gives

I B
1

2
�Yv1,0Y2

� Yη�1,0Y2
� Y∆η1,0Y2� � S t

0
�f1, v1�η1 � �g1, ∂tη1� dt

� �v1�t�, v̂2�t�� � S t

0
�εv1, εv̂2�dt � �∂tη1, ∂tη2� � �∆η1,∆η2�

�
1

2
�Yv̂2Y2

� Y∂tη2Y2
� Y∆η2Y2� � S t

0
�εv̂2, εw1� dt

(4.3.20)
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By (4.3.8) and (4.3.18) we get

�S
t

0
�εv̂2, εw1� dt � S t

0
�∂tv̂2 � ��©v̂2�v̂2,w1� � �f̃2,w1� dt � �∂tη2, ∂tηδ� � �η�2,0, η�0�

� S
t

0
S
ω
∂tη2∂

2
t ηδ � �∆η2,∆∂tηδ� � �g2, ∂tηδ�dt �K1

δ �R.

Reynold’s transport theorem and v̂2�x, η1�x�� � ∂tη2�x� gives

S
t

0
�∂tv̂2,w1� dt � S t

0
�∂tv̂2, v1 � v̂2� dt

� �
1

2
�Yv̂2Y2

� Yv̂2,0Y2
� �∂tη1, �∂tη2�2�� � S t

0
�∂tv̂2, v1� dt

Inserting this calculation in (4.3.20) yields

I B
1

2
��Yv1,0Y2

� Yv̂2,0Y2� � �v1�t�, v̂2�t�� � S t

0
�v1, ∂tv̂2� � �εv1, εv̂2� � �f1, v1� � �f̃2,w1�dt

�
1

2
�Yη�1,0Y2

� Y∆η1,0Y2
� Y∂tη2�t�Y2

� Y∆η2�t�Y2� � �∂tη1�t�, ∂tη2�t�� � �∆η1�t�,∆η2�t��
� �∂tη2�t�, ∂tηδ�t�� � �η�2,0, η�0� � S t

0
�∂tη2, ∂

2
t ηδ� � �∆η2,∆∂tηδ� � �g1, ∂tη1� � �g2, ∂tηδ� dt

� S
t

0
��©v̂2�v̂2,w1� � 1

2
�∂tη1, �∂tη2�2� �K1

δ �R

We denote the first line of the right hand side as I1 the second and third line as I2 and the fourth line as I3. We
calculate that

1

2
�Yv1,0Y2

�Yv̂2,0Y2��S t

0
�f1, v1���f̃2,w1� dt � �v1,0, v̂2,0�� 1

2
Yv1,0� v̂2,0Y2

�S
t

0
�f1, v̂2���f1� f̃2,w1� dt.

Thus

I1 � �v1,0, v̂2,0� � �v1�t�, v̂2�t�� � S t

0
�v1, ∂tv̂2� � �©v1,©v̂2� � �f1, v̂2� dt

�
1

2
Yv1,0 � v̂2,0Y2

2 � S
t

0
�f1 � f̃2,w1� dt

We write the first line as

�v1,0, v̂2,0� � �v1�t�, v̂2�t�� � S t

0
�v1, ∂tv̂2� � �©v1,©v̂2� � �f1, v̂2� dt

� �v1,0, v̂2,0� � �v1�t�, v̂2,δ�t�� � S t

0
�v1, ∂tv̂2,δ� � �©v1,©v̂2,δ�� � �f1, v̂2,δ� dt �K2,δ,

with

K2,δ � ��v1, v̂2 � v̂2,δ� � S t

0
�v1, ∂tv̂2 � ∂tv̂2,δ� � �©v1,©v̂2 �©v̂2,δ� � �f1, v̂2 � v̂2,δ� dt,

which converges to zero for δ � 0 by Lemma 4.3.4. We divide I2 into the parts that depend solely on η2 and
the rest:

I2 �
1

2
�Y∆η2Y2

� Y∂tη2Y2� � Yη�2,0Y2
� S

t

0
�∂tη2, ∂

2
t η2,δ� � �∆η2, ∂t∆η2,δ� dt

�
1

2
�Yη�1,0Y2

� Y∆η1,0Y2� � �∂tη1�t�, ∂tη2�t�� � �∆η1�t�,∆η2�t��
� �∂tη2�t�, ∂tη1,δ�t�� � �η�2,0, η�1,0� � S t

0
�∂tη2, ∂

2
t η1,δ� � �∆η2,∆∂tη1,δ� � �g1, ∂tη1� � �g2, ∂tηδ� dt
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We denote the first line by I21 and find that

I21 �
1

2
�Yη2,0 � Y2

� Y∆η2,0Y2�
�

1

2
�Yη�2,0Y2

� Y∂tη2Y2
� Y∆η2Y2

� Y∆η2,0Y2� � S t

0
�∂tη2, ∂

2
t η2,δ� � �∆η2, ∂t∆η2,δ� dt

��
1

2
�Yη�2,0Y2

� Y∆η2,0Y2� �K3,δ

where K3,δ � 0 for δ � 0 by Lemma 4.2.5.
Collecting the above we arrive at

I B �v1,0, v̂2,0� � �v1�t�, v̂2,δ�t�� � S t

0
�v1, ∂tv̂2,δ� � �εv1, εv̂2,δ�� � �f1, v̂2,δ� dt

�
1

2
�Yη�1,0Y2

� Yη�2,0Y2
� Y∆η1,0Y2

� Y∆η2,0Y2� � �∂tη1,δ�t� � ∂tη1�t�, ∂tη2�t�� � �∆η1�t�,∆η2�t��
� �η�2,0, η�1,0� � S t

0
�∂tη2, ∂

2
t η1,δ� � �∆η2,∆∂tη1,δ� � �g1, ∂tη1� � �g2, ∂tηδ� dt

�
1

2
Yv1,0 � v̂2,0Y2

2 � S
t

0
�f1 � f̃2,w1� dt � I3 �K2,δ �K3,δ.

(4.3.21)

Now we use the equation vor �v1, η1� and test it with v̂2,δ:

�v1,0, v̂2,0� � �v1�t�, v̂2,δ�t�� � S t

0
�v1, ∂tv̂2,δ� � �εv1, εv̂2,δ� � �f1, v̂2,δ� dt

� �S
t

0
�v1 a v1,©v̂2,δ� dt � �∂tη1�t�, ∂tη2,δ�t�� � �η�1,0, η�2,0�

� S
t

0
�∂tη1, ∂

2
t η2,δ� � �∆η1,∆∂tη2,δ� � �g1, ∂tη2,δ� dt

(4.3.22)

Note that

1

2
�Yη�1,0Y2

� Yη�2,0Y2
� Y∆η1,0Y2

� Y∆η2,0Y2�
� �η�1,0, η�2,0� � �∆η1,0,∆η2,0� � 1

2
�Yη�1,0 � η�2,0Y2

� Y∆η1,0 �∆η2,0Y2�
and

�g1, ∂tη1� � �g2, ∂tηδ� � �g1, ∂tη1� � �g2, ∂tη� � �g2, ∂tη � ∂tηδ�
� �g1, ∂tη2� � �g1 � g2, ∂tη� � �g2, ∂tη � ∂tηδ�.

This gives

I B �S
t

0
��©v̂2�v1, v1� dt � 1

2
�Yv1,0 � v̂2,0Y2

2 � Yη�1,0 � η�2,0Y2
� Y∆η1,0 �∆η2,0Y2�

�S
t

0
�f1 � f̃2,w1� � �g1 � g2, ∂tη� dt �K2,δ �K3,δ �K4,δ � I3

(4.3.23)

where

K4,δ � �∆η1,0,∆η2,0� � �∆η1�t�,∆η2�t�� � S t

0
�∆η2, ∂t∆η1,δ� � �∆η1, ∂t∆η2,δ� dt � �∂tη1,δ � ∂tη1, ∂tη2�

� �∂tη1�t�, ∂tη2,δ�t�� � �η�1,0, η�2,0� � S t

0
�∂tη2, ∂

2
t η1,δ� � �∂tη1, ∂

2
t η2,δ� dt

� S
t

0
�g1, ∂tη2 � ∂tη2,δ� � �g2, ∂tη � ∂tηδ� dt
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Proof that K4,δ � 0. The first and third line of K4,δ converge to 0 again by Lemma 4.2.5. We write the second
line as

�∂tη1�t�, ∂tη2,δ�t�� � �η�1,0, η�2,0� � S t

0
�∂tη2, ∂

2
t η1,δ� � �∂tη1, ∂

2
t η2,δ� dt

� �∂tη1�t�, ∂tη2,δ�t� � ∂tη2�t�� � �∂tη1�t�, ∂tη2�t�� � �η�1,0, η�2,0� � S t

0
�∂tη2, ∂

2
t η1,δ� � �∂tη1, ∂

2
t η2,δ� dt,

which also converges to 0 for δ � 0 by Lemma 4.2.5. Thus K4,δ � 0 for δ � 0.

We continue by writing

�S
t

0
�v1 a v1,©v̂2,δ� dt � �S t

0
�v1 a v1,©v̂2� dt � S t

0
�v1 a v1,©v̂2 �©v̂2,δ� dt

�� �S
t

0
�v1 a v1,©v̂2� dt �K5,δ,

where K5,δ � 0 by Lemma 4.3.4. Inserting this and the definition of I3 in (4.3.23) finally yields

I B S
t

0
��v1 a v1,©v̂2� � ��©v̂2�v̂2,w1� � 1

2
�∂tη1, �∂tη2�2� dt

�
1

2
�Yv1,0 � v̂2,0Y2

2 � Yη�1,0 � η�2,0Y2
� Y∆η1,0 �∆η2,0Y2� � S t

0
�f1 � f̃2,w1� � �g1 � g2, ∂tη� dt

�R �K1,δ �K2,δ �K3,δ �K4,δ �K5,δ

(4.3.24)

The first line can be estimated as follows. As dv1 � 0 we get by Gaußintegral formula

��©v̂2�v1, v̂2�η1 �
1

2
��∂tη2�2�, ∂tη1�ω

Hence

�v1 a v1,©v̂2� � ��©v̂2�v1, v1 � v̂2� � ��©v̂2�v1, v̂2� � ��v̂2�v1,w1� � 1

2
��∂tη2�2�, ∂tη1�

Thus we get

S
t

0
��v1 a v1,©v̂2� � ��©v̂2�v̂2,w1� � 1

2
�∂tη1, �∂tη2�2� dt � �S t

0
��©v̂2�w1,w1� dt

We can estimate this term the same way as (4.3.5) in Lemma 4.3.4 by replacing v1 by w1 and ∂tη1 by ∂tη. We
find

��©v̂2�w1,w1� B Cε�Yv2YW 1,s�Ω2� � 1�2�Yη1Y1,ª � Yη2Y1,ª � 1�2�Yw1Y2
� Y∂tηY2� � εYw1Y2

1,2

Thus

S
t

0
��©v̂2�w1,w1� dt B S t

0
h2�t��Y∂tηY2

� Yw1Y2� � εY©w1Y2
2 dt,

h2�t� � �Yv2YW 1,s�Ω2� � 1�2�Yη1Y1,ª � Yη2Y1,ª � 1�2.

As v2 > L
r�0, T ;W 1,s�Ω2�� (r A 2) and η1, η2 > L

p�0, T ;W 1,ª�ω�� for all p > �1,ª� (by Theorem 4.2.2 and
interpolation) we get h2 > L

1��0, T ��.
Thus recalling the estimate on R (4.3.19) we get

S
t

0
��©v̂2�w1,w1� dt �R B S

t

0
h�t��YηY2

2,2 � Y∂tηY2
� Yw1Y2� � εY©w1Y2

2 dt,

h � h1 � h2 > L
1��0, T ��.
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Since Ki,δ � 0 for δ � 0 (i � 1, . . . ,5) the last estimate leads to

1

2
�Yw1Y2

� Y∂tηY2
� Y∆ηY2� � S t

0
Yεw1Y2dt

B
1

2
�Yv1,0 � v̂2,0Y2

2 � Yη�1,0 � η�2,0Y2
� Y∆η1,0 �∆η2,0Y2� � S t

0
Yf1 � f̃2Y2 � Yg1 � g2Y2

2 dt

� S
t

0
h�t��YηY2

2,2 � Y∂tηY2
� Yw1Y2� � εYw1Y2

1,2 dt

As η is 0 on the boundary YηY2,2 � Y∆ηY. Korn’s inequality and the 0 trace of w1 on Bc implies that Yw1Y1,2 �Yεw1Y2. Hence choosing ε @ 1 small enough we can apply Gronwall’s Lemma. this implies a stability estimate
in terms of w1. In order to change to v1 � ṽ2 one uses

Yw1Y2 B Yv1 � ṽ2Y2 � Yṽ2 � v̂2Y B Yv1 � ṽ2Y2 �CYηY1,2;

the estimate on the gradients is analogous. This finishes the proof of Theorem 4.1.5.

Proof of Theorem 4.1.2. Let �v1, π1, η1� be a weak solution (with η A 0) on �0, T � for any T A 0. Then the
stability estimate implies that Yw1Y � Y∂tηY � YηY2,2 � 0 a.e. in �0, T �. As η � η1 � η2 � 0 we have Ω1 � Ω2

and in particular the transformation ψ is the identitiy, γ � 1, J � I. Thus v̂2 � v2 and w1 � 0 gives v1 � v2. This
proves Theorem 4.1.2.
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Chapter 5

A variational approach to fluid-structure
interactions

Within this chapter, we provide existence of weak solutions to the parabolic fluid-structure interaction prob-
lem, i.e. the inertia-less balances (1.2.4)-(1.2.6) together with the coupling conditions (7.1.4)-(7.1.5) as well as
Dirichlet boundary conditions for the deformation and a Navier boundary condition stemming from the higher
gradients in the energy. This has the interesting difficulty that in fluid structure interaction a naturally La-
grangian solid needs to be coupled with a naturally Eulerian fluid on a variable domain. We will do so without
fixing a reference fluid domain and instead use a variational approach to deal with the fluid directly on a varying
domain.

The assumption on the solid are done in an axiomatic fashion as this allows for the most free applicability.
We introduce them in the next section. In Section 5.4 we will show that the example energy and dissipation
does indeed satisfy the required assumptions.

5.1 Mechanical and analytical restrictions on the energy/dissipation functional

As introduced in Section 7.1.1, we consider solid materials for which the stress tensor can be determined
by prescribing two functionals; the energy and dissipation functional. Materials admitting such modeling
are called generalized standard materials [95, 155, 119] and many available rheological models fall into this
frame [119]. Nonetheless, the two functionals cannot be chosen completely freely, but have to comply with
certain physical requirements. We summarize these at this point.

As in examples (1.2.8) and (1.2.9), we will for the sake of discussion assume that the energy and dissipation
functional have a density, i.e.

E�η� � S
Q
e�©η,©2η�dx R�η, ∂tη� � S

Q
r�©η, ∂t©η�dx, (5.1.1)

for all smooth vector fields η � Q� Rn.
Here, the energy density depends on the first and second gradient1 of the deformation which puts us into the

class of so-called non-simple (or second grade) materials (see the pioneering work [180] as well as [173, 66]
for later development). In fact, allowing for the energy density to depend on higher order gradients puts us
beyond the standard theory of hyperelasticty but allows us to bring along more regularity to the problem.

Any admissible e�F,G� in (5.1.1) should satisfy the frame-indifference

e�RF,GR� � e�F,G� ¦F > Rn�n,G > Rn�n�n,

1The formalism of our proofs naturally also allow for dependence on material and spatial positions x and η�x�, but the latter
dependence is non-physical and the former does not add much to the discussion. Nevertheless we emphasize that our results hold also
for inhomogeneous materials.

127



SCHWARZACHER VARIATIONAL FSI ANALYSIS FOR FSI

for any proper rotation R. In other words, the energy remains unchanged upon a change of observer. Moreover,
any physical energy will blow up if the material is to be extended or compressed infinitely i.e.

e�F,G��ª if SF S�ª or detF � 0

and it should prohibit change of orientation for the deformations i.e.

e�F,G� �ª if detF B 0.

From an analytical point of view these basic requirement have the following consequences: e�F,G� cannot be
a convex function of the first variable and e�F,G� cannot be bounded. As a result considering the variational
approach in the parabolic fluid-structure interaction as well as the two-scale approximation in the hyperbolic
case are essential.

Going even further, while these conditions lead to non-convexities, they are at the same time beneficial.
Assuming appropriate growth conditions, in particular for detF � 0, we will be able to deduce a uniform
lower bound on the determinant of ©η in the style of [96]. This will not only result in a meaningful boundary
for the fluid domain, but also help us to readily switch between Lagrangian and Eulerian descriptions of the
solid velocity.

As for the dissipation potential, we will also need it to be independent of the observer, i.e. for all smoothly
time-varying proper rotations R�t�, and all smooth time-dependent F � �0, T �� Rn

r�RF,∂t�RF �� � r�F,∂tF �.
This restriction implies [6] that r cannot depend only on ∂tη but needs to depend on η, too. This in turn, will
require us to use fine Korn type inequalities [154, 160] to deduce a-priori estimates (as already in [137]). We
also note that both for physical as well as for analytic reasons, r should be non-negative and convex in the
second variable. We additionally require R to be a quadratic form in its second variable.2

Taking into account these, as well as some analytical requirements, we will now detail our set-up for the
deformation. Throughout the paper, for the elastic energy potential we impose the following assumptions.

Assumption 5.1.1 (Elastic energy). We assume that Q,Ω ` Rn, q A n and E �W 2,q�Q; Ω�� R satisfies:

S1 Lower bound: There exists a number Emin A �ª such that

E�η� C Emin for all η >W 2,q�Q; Ω�
S2 Lower bound in the determinant: For any E0 A 0 there exists ε0 A 0 such that det©η C ε0 for all

η > �η >W 2,q�Q; Ω� � E�η� @ E0�.

S3 Weak lower semi-continuity: If ηl @ η in W 2,q�Q; Ω� then E�η� B lim inf l�ªE�ηl�.
S4 Coercivity: All sublevel-sets �η > E � E�η� @ E0� are bounded in W 2,q�Q; Ω�.
S5 Existence of derivatives: For finite values E has a well defined derivative which we will formally denote

by
DE � �η > E � E�η� @ª�� �W 2,q�Q;Rn���

Furthermore on any sublevel-set of E, DE is bounded and continuous with respect to strong W 2,q-
convergence.

S6 Monotonicity and Minty type property: If ηl @ η in W 2,q�Q; Ω�, then

lim inf
l�ª

`DE�ηl� �DE�η�, �ηl � η�ψe C 0 for all ψ > Cª

0 �Q; �0,1��.
If additionally lim supl�ª `DE�ηl� �DE�η�, �ηl � η�ψe B 0 then ηl � η in W 2,q�Q; Ω�.

2See Theorem 6.2.4 for possible relaxations of the assumptions on the dissipation potential.
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Let us shortly elaborate on the above stated assumptions. As elastic energies are generally bounded from
below, assumption S1 is a natural one. Similarly, assumption S5 is to be expected as we need to take the
derivative of the energy to determine a weak version of the Piola-Kirchhoff stress tensor. Assumptions S3 and
S4 are standard in any variational approach as they open-up the possibility for using the direct method of the
calculus of variations. Assumption S6 effectively means that the energy density has to be convex in the highest
gradient (but of course not convex overall) and allows us to get weak solutions and not merely measure valued
ones (as in the case of a solid material in [51]). Finally, assumption S2 is probably the most restricting one and,
to the authors’ knowledge, necessitates the use of second-grade elasticity, combined with an energy density e
which blows up sufficiently fast as detF � 0 (see [96]). This is, in particular, the case for the model energy
(1.2.9).

Definition 5.1.2 (Domain of definition). The set of functions inW 2,q�Q; Ω� (and satisfying the Dirichlet bound-
ary condition) used for minimization in (1.2.13) can be expressed as

E �� �η >W 2,q�Q; Ω� � E�η� @ª, Sη�Q�S � S
Q

det©η dx, ηSP � γ�x�  . (5.1.2)

Here, the finite energy guarantees local injectivity (see Assumption S2) and the equality Sη�Q�S � RQ det©η dx
is termed the Ciarlet-Nečas condition which has been proposed in [40] and, as has also been proved there, it
assures that any C1-local homeomorphism is globally injective except for possible touching at the boundary.
Working with this equivalent condition bears the advantage that it is easily seen to be preserved under weak
convergence in W 2,q�Q; Ω�.
Remark 5.1.3. Of particular interest is the topology of E . It is easy to see that the set is a closed subset of
the affine space W 2,q

γ �Q; Ω� i.e. W 2,q�Q; Ω� with fixed boundary conditions. As a subset of this topological
space it has both interior points (denoted by int�E�) and a boundary ∂E . As we construct our approximative
solutions by minimization over E , it is crucial to know if ηk > int�E� as only then we are allowed to test in all
directions and have the full Euler-Lagrange equation we need.

Luckily however int�E� and ∂E are easily quantifiable. As long as det©η A 0, which is true for finite
energy, we are able to vary in all directions, if and only if ηSM is injective and does not touch ∂Ω. Thus the
relevant part of ∂E , i.e. the deformations with finite energy consists precisely of the η which have a collision.

Finally for the dissipation functional we have the following assumption:

Assumption 5.1.4 (Dissipation functional). The dissipation R � E �W 1,2�Q;Rn�� R satisfies

R1 Weak lower semicontinuity: If bl @ b in W 1,2 then

lim inf
l�ª

R�η, bl� C R�η, b�
R2 Homogeneity of degree two: The dissipation is homogeneous of degree two in its second argument , i.e.

R�η, λb� � λ2R�η, b� ¦λ > R

In particular, this implies R�η, b� C 0 and R�η,0� � 0.

R3 Energy-dependent Korn-type inequality: Fix E0 A 0. Then there exists a constant cK � cK�E0� A 0 such
that for all η >W 2,q�Q;Rn� with E�η� B E0 and all b >W 1,2�Q;Rn� with bSP � 0 we have

cKY�YW 1,2�Q��b2 B R�η, b�.
R4 Existence of a continuous derivative: The derivative D2R�η, b� > �W 1,2�Q;Rn��� given by

d

dε
Sε�0R�η, b � εφ� �� `D2R�η, b�, φe

exists and is weakly continuous in its two arguments. Due to the homogeneity of degree two this in
particular implies `D2R�η, b�, be � 2R�η, b�.
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Again some remarks are in order. As above assumption R4 is natural as we need do be able to evaluate
the actual stress. Assumption R2, on the other hand, reflects the fact that we are considering viscous dissipa-
tion. Assumption R1 is again important from the point of view of calculus of variations. Assumption R3 is a
coercivity assumption in a sense and needs to be stated in this rather weak form to satisfy frame indifference.
Indeed, our model dissipation (1.2.8) satisfies this assumption as shown in, e.g., [137] relying on quite general
Korn’s inequalities due to [154, 160].

We shall work with the following weak formulation:

Definition 5.1.5 (Weak solution to the parabolic problem). We call the pair �η, v� a weak solution to the
parabolic fluid structure interaction problem, if it satisfies

η > Lª��0, T �;E�, ∂tη > L
2��0, T �;W 1,2�Q;Rn��,

v > L2��0, T �;W 1,2�Ω�t�;Rn��, divv�t� � 0 for a.a. t > �0, T �,
as well as v�t, η�t, x�� � ∂tη�t, x� for a.a. t > �0, T � and x > ∂Q and there exists a p > D���0, T � � Ω� with
suppp ` �0, T � �Ω�t�, such that they satisfy the weak equation

S
T

0
`DE�η�, φe � `D2R�η, ∂tη�, φe � `εv, εξeΩ�t� � `p,divξe dt

� S
T

0
ρf `f, ξeΩ�t� � ρs `f X η, φeQ dt (5.1.3)

for all φ > L2��0, T �;W 2,q�Q;Rn��, with φSP � 0 and ξ > C0��0, T �;W 2,q
0 �Ω;Rn�� such that φ � ξ X η on Q

where, as before, we set Ω�t� �� Ω � η�t,Q�. Moreover, the initial condition for η is satisfied in the sense that

lim
t�0

η�t� � η0 in L2�Q;Rn�.
The main goal of this section is to prove existence of weak solutions to the parabolic fluid-structure inter-

action problem. In particular, we show the following theorem:

Theorem 5.1.6 (Existence of a parabolic fluid structure interaction). Assume that the energy E fulfills Theo-
rem 5.1.1 and the dissipationR fulfills Theorem 5.1.4. Further let η0 > E and f > Lª�Ω;Rn�. Then there exists
a maximal time Tmax A 0 such that on the interval �0, Tmax� a weak solution to the parabolic fluid-structure
interaction problem in the sense of Theorem 5.1.5 exists.

For the maximal time, we have Tmax � ª, or lim inft�Tmax E�η�t�� � ª, or Tmax is the time of the first
collision of the solid with either itself or the container, i.e. the continuation η�Tmax� exists and η�Tmax� > ∂E .
Furthermore we have p > L2��0, T �;Lª�Ω�t��� �Lª��0, T �;L2�Ω�t��� for all T @ Tmax.

In order to prove Theorem 5.1.6, we shall exploit the natural gradient flow-structure of the parabolic fluid-
structure evolution. Indeed, at the heart of the proof is the construction of time-discrete approximations via
variational problems inspired by DeGiorgi’s minimizing movements method [49] given in (5.3.1). We refer to
Section 5.3 for a detailed proof of Theorem 5.1.6 and to Section 5.2 for the preliminary material.

Remark 5.1.7 (Maximal existence time). The maximal existence time in Theorem (5.1.6) is not only given by
possible collisions but also by a possible blow-up of the energy due to the acting forces. It is quite notable,
that such a situation cannot appear in the full (hyperbolic) model Theorem 7.3.3. The reason is that the acting
forces can be compared to the intertial term instead of the dissipative one.

5.2 Preliminary analysis

We will start this section with discussing the relevant geometry of the fluid-solid coupling and derive some nec-
essary properties for the coupled system that will also be of use for the full Navier-Stokes system in chapter 7.
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Lemma 5.2.1 (Closedness of E). Let �ηl�l>N ` E be a sequence such that ηl @ η in W 2,q�Q;Rn� and
supl>NE�ηl� @ª. Then η > E .

Proof. The boundary condition holds as W 2,q�Q;Rn� has a continuous trace operator. Similarly the lower
semicontinuity of E guarantees E�η� @ª. For the Ciarlet-Nečas-condition we refer to [40], but note that, due
to the higher regularity we employ, a more direct proof would be feasible as well.

5.2.1 Injectivity and boundary regularity of the solid

Further, we discuss the injectivity of deformations in E up-to-the boundary. In fact, any η > E is injective on
Q but not necessarily on Q̄, so collisions are in principle possible. Nonetheless, we can exclude them for short
times as shown via the following two lemmas as well as Corollary 5.3.8.

Lemma 5.2.2 (Local injectivity of the boundary). For any E0 @ª there exists a δ0 A 0 such that all η > E with
E�η� @ E0 are locally injective with radius δ0 at the boundary, i.e.

η�x0� x η�x1� for all x0, x1 > ∂Q, Sx0 � x1S @ δ0.

Proof. Assume that there are two points x0, x1 > ∂Q such that η�x0� � η�x1�. Now using embedding theorems
and Theorem 5.1.1, S2 and S4, E�η� @ E0 implies that ©η is uniformly continuous and there exists a uniform
lower bound on det©η. This also results in a uniform continuity of �©η��1 �

cof©η
det©η .

Let A denote the contact plane spanned by ©η�x0�v, v tangential to ∂Q in x0 and denote the projection
onto this plane using PA. Then for any x > ∂Q, the linear map φx � v ( PA©η�x�v maps the tangential
space Tx∂Q to A. In particular for x0, we have PA©η�x0� � ©η�x0� and thus φx0 is an isomorphism with
determinant bounded from below. Now from the regularity of ∂Q (Tx∂Q does not change fast depending
on x) and uniform continuity of ©η, we get that the same has to hold in a δ0 neighborhood of x0. Here, δ0

is given just by the uniform continuity function of ©η�x0� and thus controlled by E0. Further, if we orient
the tangential spaces through the exterior normal and A through the orientation inherited from ©η�x0�, then
φx has to be orientation preserving in this neighborhood. So x1 cannot lie in this neighborhood, as a simple
geometrical argument shows that the orientation imparted on A through ©η�x1� is opposite to the one chosen
though ©η�x0�.
Remark 5.2.3. The preceeding proof is much easier to formulate in the case n � 2 as one can deal with
tangential vectors directly: Consider the positively oriented unit tangentials τx at x > ∂Q. Then ©η�x0�τx0

and ©η�x1�τx1 point in opposite directions and their length is bounded from below. But if x0 and x1 are close,
then so are the τxi and the ©η�xi�, which leads to a contradiction.

Lemma 5.2.4 (Short time global injectivity preservation). Fix E0 @ ª and ε0 A 0 and let δ0 be given by the
previous lemma. Then there exists a γ0 A 0 such that for all η0 > E with E�η0� @ E0 andSη0�x0� � η0�x1�S A ε0 for all x0, x1 > ∂Q, Sx0 � x1S C δ0 (5.2.1)

we have that for all η > E with E�η� @ E0 and Yη0 � ηYL2�Q� @ γ0 it holds that

Sη�x0� � η�x1�S A ε0

2
for all x0, x1 > ∂Q, Sx0 � x1S C δ0

Proof. Let η0 be as prescribed and pick η > E , E�η� @ E0 with Sη�x0� � η�x1�S B ε0
2 for two points x0, x1 withSx0 � x1S C δ0. But then

Sη0�x0� � η�x0�S � Sη0�x1� � η�x1�S C Sη0�x0� � η0�x1�S � Sη�x0� � η�x1�S A ε0

2

So, without loss of generality, we can assume that Sη0�x0� � η�x0�S C ε0
4 . But then since η0 and η are uniformly

continuous with the modulus of continuity depending just onE0, there exists an r A 0 such that Sη0�x� � η�x�S C
ε0
8 for all x > Br�x0� 9Q. Thus

Yη0 � ηYL2�Q� C
¾�ε0

8
�2 SBr�x0� 9QS �� γ0 A 0

131



SCHWARZACHER VARIATIONAL FSI ANALYSIS FOR FSI

Since we are concerned with variable in-time-domains for the fluid flow, we recall here the quantification of
uniform regular domains. Later we will use several analytical results which will be used uniformly with respect
to these quantifications.

Definition 5.2.5. For k > N and α > �0,1�. We call Ω ` Rn a Ck,α�domain with characteristics L, r, if for
all x > ∂Ω there is a Ck,α-diffeomorphismn φx � B1�0� � Br�x��, such that φx � B�

1 �0� � Br�x� 9 Ω,
φx � B�

1 �0� � Br�x� 9 Ωc and φx�0� � x. We require that it can be written as a graph over a direction
ex > S

n�1. This means that for �z�, zn� > B1�0� we may write φx�z� � φx��z�,0���rexzn. And that it satisfies
the bound: YφxYCα,k�B1�0�� � Zφ�1

x Z
Cα,k�Br�x�� B L.

Collecting the regularity that comes from the energy bounds lead to an important (locally) uniform estimate
on the C1,α regularity of the fluid domains.

Corollary 5.2.6 (Uniform C1,α domains). Fix E0 @ª, η0 > E with E�η0� @ E0 and satisfying (5.2.1) for some
ε0 A 0. Then for all η > E with E�η� @ E0 and Yη0 � ηYL2�Q� @ γ0 for γ0 from Theorem 5.2.4 we have that
Ωη �� Ω � η�Q� is a C1,α-domain with characteristics L, r depending only on E0, η0 and ε0.

5.2.2 Global velocity and a global Korn inequality

A useful tool when dealing with fluid structure interaction in the bulk is the global Eulerian velocity field, which
is defined on the unchanging domain Ω. In particular this will allow us to circumvent the problem of talking
about convergence on a changing domain.

Definition 5.2.7 (The global velocity field). Let η > E be a given deformation. Let v > W 1,2�Ω;Rn� be a
divergence-free fluid velocity and b >W 1,2�Q;Rn� a solid velocity satisfying the coupling condition, v X η � b
on ∂Q � P . Then the corresponding global velocity u >W 1,2

0 �Ω;Rn� is defined by

u�y� �� ¢̈̈¦̈̈¤v�y� if y > Ωη �� Ω � η�Q�
b X η�1�y� if y > η�Q�.

Note that this definition does not involve a reference time-scale directly. The solid velocity b is equally
allowed to be a time derivative b �� ∂tη or a discrete derivative b �� ηk�1�ηk

τ . Furthermore this definition is
invertible. Given u and knowing η, both v and b can be reconstructed and those reconstructed velocities will
satisfy the coupling condition as above.

When deriving a-priori estimates, the only bounds on the velocities that will be available to us are in form
of a bounded dissipation. As this dissipation is given in form of a symmetrised derivative, we will need to use a
Korn-type inequalities, the constants of which generally depend on the domain. However, another benefit of the
global velocity and its constant domain is that the Korn-inequalities for the solid and the fluid can be merged
into one global Korn-inequality.

Lemma 5.2.8 (Global Korn inequality). Fix E0 A 0. Then there exists cgK � cgK�E0� A 0 such that for any
η > E with E�η� @ E0 and any b >W 1,2�Q;Rn� and u >W 1,2�Ω;Rn� with uS∂Ω � 0 and bSP � 0 and satisfying
the coupling condition

u X η � b in Q,

we have that

cgK YuYW 1,2�Ω� B
ν

2
YεuYΩη

�R�η, b�.
where we define Ωη � Ω � η�Q�.
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Proof. On the reference domain Q we have per chain rule ©b � ©�u X η� � �©u� X η � ©η. Using this, we can
estimate in analogy to Theorem 5.5.4, as η is a diffeomorphism:

S
Ω�Ωη

S©uS2dy � S
Q
S�©u� X ηS2 det©ηdx � S

Q
S�©b� � �©η��1S2 det©ηdx

B S
Q
S©bS2 Scof©ηS2

det©η
dx B

YηY2n�2
C1

ε0
S
Q
S©bS2dx B YηY2n�2

C1

ε0
cKR�η, b�

where ε0 A 0 is the uniform lower bound on det©η as given in Assumption S2, YηYC1 is uniformly bounded by
embeddings and we use the Korn-type inequality from Assumption R3.

But now we can apply Korn’s inequality to the fixed domain Ω to get a constant cΩ, for which

cΩ YuY2
W 1,2�Ω� B YεuY2

Ω � YεuY2
Ωη

� YεuY2
Ω�Ωη

B YεuY2
Ωη

�
YηY2n�2

C1

ε0
cKR�η, b�.

Collecting all the constants then proves the lemma.

5.3 Proof of Theorem 5.1.6

As mentioned before, we will show Theorem 5.1.6 in several steps using a time-discretisation in the form of a
minimizing movements iteration.

5.3.1 Step 1: Existence of the discrete approximation

For this we will fix a time-step size τ . Setting η�τ�0 �� η0 and assuming η�τ�k > E given we define �η�τ�k�1, v
�τ�
k�1� as

solutions to the following problem

Minimize E�η� � τR��η�τ�k ,
η � η

�τ�
k

τ

�� � τ ν2 YεvY2

Ω
�τ�
k

(5.3.1)

� ρsτ df X η�τ�k ,
η � η

�τ�
k

τ
i
Q

� ρfτ `f, veΩ�τ�
k

subject to η > E , v >W 1,2�Ω�τ�
k ;Rn� with divv � 0, vS∂Ω � 0

and
η � η

�τ�
k

τ
� v X η

�τ�
k in M.

We then repeat this process until we reach kτ A T .
Notice that in formulating the coupling condition in (5.3.1), we implicitly assumed that the solid is free

of collisions, i.e. ηk ¶ ∂E or in other words that ηkSM is injective and does not map to ∂Ω. We will show in
Theorem 5.3.8 that for small enough T this will always be the case. In principle though, it is possible to extend
the coupling condition to situations including contact by using the global velocity field u � Ω� Rn instead.

We will now show that this problem has a (not necessarily unique) solution and that the sought minimizer
satisfies an Euler-Lagrange equation which already is a discrete approximation of our problem.

Remark 5.3.1. In (5.3.1) we minimize over the sum of the energy and the dissipation needed to reach the
current step from the last one. In this context, we understand the Stokes potential as dissipative damping on
the solid. Now, as far as the deformation (that we would consider the single state variable of the system) is
concerned, the scheme is implicit in the energy and implicit-explicit in the dissipation. Since in the Stokes
potential the dependence on the deformation manifests itself through the explicitly given domain and implicitly
through the coupled boundary values.The implicit/explicit use of state can be motivated from the point of view of
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the Euler-Lagrange equations; as they are, with regards to the dissipation, exactly the Fréchet derivatives with
respect to the rate variables that appear there. Explicit-implicit schemes are commonly used in fluid-structure
interactions (see e.g. [145]). Moreover, it is the common way to produce solutions in solid mechanics if the
dissipation depends on the state variables [119]. Within the proposed variational approach, it is important that
we impose a coupling condition as equality of approximate velocities also in an implicit-explicit fashion; i.e.
we keep the geometry explicit while the rates are implicit. An equality of tractions then needs not be imposed
but follows automatically from the variational approach.

Proposition 5.3.2 (Existence of solutions to (5.3.1)). Assume that η�τ�k > E . Then the iterative problem (5.3.1)

has a minimizer, i.e. η�τ�k�1 and v�τ�k�1 are defined. Furthermore if η�τ�k�1 ¶ ∂E (i.e. η�τ�k�1 is injective on Q) the
minimizers obey the following Euler-Lagrange equation:

bDE�η�τ�k�1�, φg � dD2R
��η�τ�k ,

η
�τ�
k�1 � η

�τ�
k

τ

�� , φi � ν bεv�τ�k�1,©ξgΩ
�τ�
k

� ρf `f, ξeΩ�τ�
k

� ρs bf X η�τ�k , φg
Q
.

for any φ >W 2,q�Q;Rn�, φSP � 0 and ξ >W 1,2�Ω�τ�
k ;Rn�, divξ � 0, ξS∂Ω � 0 such that ξ X η � φ in ∂M .

Proof. First we investigate existence using the direct method. The class of admissible functions is non-empty,
since �η�τ�k ,0� is a possible competitor with finite energy. Next we show that the functional is bounded from
below. As energy and dissipation have lower bounds per assumption, the only problematic terms are those
involving the force f . For those we note that per the weighted Young’s inequality and using Assumption R3 it
holds that

Sdf X η�τ�k ,
η � η

�τ�
k

τ
i
Q

S B δ
2

XXXXXXXXXXXX
η � η

�τ�
k

τ

XXXXXXXXXXXX
2

Q

�
1

2δ
[f X η�τ�k [2

Q

B
δ

2cK
R
��η�τ�k ,

η � η
�τ�
k

τ

�� � 1

2δ
[f X η�τ�k [2

Q

and equally, using Theorem 5.2.8

S`f, ve
Ω

�τ�
k

S B δ
2
YvY2

Ω
�τ�
k

�
1

2δ
YfY2

Ω
�τ�
k

B
δ

2cgK

��YεvY2

Ω
�τ�
k

�R
��η�τ�k ,

η � η
�τ�
k

τ

���� � 1

2δ
YfY2

Ω
�τ�
k

.

Now if we choose δ small enough, e.g. δ �� min�cK ,cgK�
2 , all v and η-dependent terms can be absorbed to get

the lower bound

E�η� � τR��ηk, η � η
�τ�
k

τ

�� � τ ν2 YεvY2

Ω
�τ�
k

� ρfτ `f, veΩ�τ�
k

� ρsτ df X η�τ�k ,
η � η

�τ�
k

τ
i
Q

(5.3.2)

C E�η� � τ
2
R
��η�τ�k ,

η � η
�τ�
k

τ

�� � τ ν4 YεvY2

Ω
�τ�
k

� τ
max�ρf , ρs�

2δ
�[f X η�τ�k [2

Q
� YfY2

Ω
�τ�
k

�
C Emin � τ

max�ρf , ρs�
2δ

�[f X η�τ�k [2

Q
� YfY2

Ω
�τ�
k

�
Thus a minimizing sequence η̃l, ṽl exists and along that sequence, energy and dissipation are bounded. So

by coercivity of the energy we know that η̃l is bounded in W 2,q�Q; Ω� and using the Banach-Alaoglu theorem
along with compact embeddings we may extract a subsequence (not relabeled) and a limit ηmin for which
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η̃l @ ηmin in W 2,q�Q; Ω�
η̃l � ηmin in C1,α��Q; Ω� for 0 @ α� @ α �� 1 �

n

q
.

By Theorem 5.2.1 we know that ηmin > E . We also know that E and R are lower semicontinuous with respect
to the above convergence by Assumptions S3 and R1 respectively.

Next we pass to the limit with the fluid velocity. With no loss of generality, we may assume ṽl to be the
minimizer of the functional in (5.3.1) holding the deformation η̃l fixed. As the functional in (5.3.1) is convex
with respect to the velocity, minimizing is equivalent to solving the appropriate Euler-Lagrange equation, in
other words, it is equivalent to finding a weak solution to the following classical Stokes boundary value problem:¢̈̈̈̈̈̈̈

¦̈̈̈̈̈̈̈
¨̈¤

�ν∆ṽl �©p � ρff in Ω
�τ�
k

divṽl � 0 in Ω
�τ�
k

ṽl � gl ��
�η̃l�η�τ�k

�X�η�τ�
k

��1

τ in ∂Ω
�τ�
k 9 ∂η

�τ�
k �Q�

ṽl � 0 in ∂Ω

Now since η�τ�k is a fixed diffeomorphism, and η̃l converges uniformly, the boundary data gl in this problem

converges uniformly to g �� �ηmin�η
�τ�
k

�X�η�τ�
k

��1

τ as well. Furthermore, the solution operator L2�∂Ω
�τ�
k ;Rn� �

W 1,2�Ω;Rn� associated with this boundary value problem is continuous, which implies the existence of a limit
vmin > W 1,2�Ω�τ�

k ;Rn� with ṽl � vmin in W 1,2�Ω�τ�
k ;Rn�. Then per construction �ηmin, vmin� satisfy the

compatibility condition and since YεvY
Ω

�τ�
k

is lower semicontinuous and all terms involving f are continuous,
the pair η, v is indeed a minimizer to the problem.

Next let us derive the Euler-Lagrange equation. Let �η�τ�k�1, v
�τ�
k�1� be a minimizer and φ > Cª�Q;Rn� as

well as ξ >W 1,2�Ω�τ�
k ;Rn�. We require the perturbation �η�τ�k�1 � εφ, v

�τ�
k�1 � εξ~τ� to also be admissible3 for all

small enough ε. From this we immediately get the conditions divξ � 0, ξS∂Ω � 0, φP � 0 and for the coupling
we require

�v�τ�k�1 � ε
ξ

τ
� X η�τ�k �

η
�τ�
k�1 � εφ � η

�τ�
k

τ

on M which reduces to ξ X η�τ�k � φ.

Now since we assume η�τ�k�1 ¶ ∂E , for small enough ε, we have η�τ�k�1 � εφ > E . Thus we are allowed to take
the first variation with respect to �φ, ξ~τ� which immediately results in the weak formulation.

Now let us give some a-priori estimates on the solutions (5.3.1). Here, we will crucially use that the
approximants are constructed as minimizers of an appropriate functional.

Lemma 5.3.3 (Parabolic a-priori estimates). We have

E�η�τ�k�1� � τR��η�τ�k ,
η
�τ�
k�1 � η

�τ�
k

τ

�� � τν [εv�τ�k�1[2

Ω
�τ�
k

B E�η�τ�k � � τρf bf, v�τ�k�1gΩk
� τρs df X η�τ�k ,

η
�τ�
k�1 � η

�τ�
k

τ
i
Q

Furthermore take a number E0 such that E0 A E�η0�. Then there exists a time TE0 A 0 depending only on
E0 and the difference E0 �E�η0� as well as YfYLª�Ω�, such that for all τ A 0, and all N > N with Nτ B TE0

3The different scaling of φ and ξ~τ with respect to τ used here allows us to remove most occurrences of τ in the Euler-Lagrange
equation. This does not matter as long as τ is fixed, but it turns out to be the correct scaling when we take the limit τ � 0.
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we have

E�η�τ�N � � τ
2

N

Q
k�1

<@@@@>ν2 [εv�τ�k [2

Ω
�τ�
k�1

�R
��η�τ�k�1,

η
�τ�
k � η

�τ�
k�1

τ

��
=AAAA? B E0

Proof. As before, for fixed k, we may compare the value of the cost functional in (5.3.1) at the minimizer with
its value for the pair �η�τ�k ,0�. As R�η�τ�k ,0� � 0 and the terms involving v vanish for v � 0, the comparison
yields the first line.

Now we proceed by induction over N . Assume that E�η�τ�N�1� B E0 and let cgK be the Korn-constant
corresponding to E0 from Theorem 5.2.8. Using (5.3.2) again, we end up with

E�η�τ�k�1� � τ2R��η�τ�k ,
η
�τ�
k�1 � η

�τ�
k

τ

�� � τ ν4 [εv�τ�k [2

Ω
�τ�
k

(5.3.3)

B E�η�τ�k � � τ 1

2δ
�[f X η�τ�k [2

Q
� YfY2

Ω
�τ�
k

� B E�η�τ�k � � τmax�ρf , ρs�
2δ

YfY2
Lª�Ω�

where for all k > �1, ...,N� the δ does only depend on cgK and cK and thus only on E0.
Hence we may sum this estimate over k, yielding

E�η�τ�N � � τ
2

N

Q
l�1

<@@@@>ν2 [εv�τ�k [2

Ω
�τ�
k�1

�R
��η�τ�k�1,

η
�τ�
k � η

�τ�
k�1

τ

��
=AAAA?

B E�η0� �Nτmax�ρf , ρs�
2δ

YfY2
Lª�Ω� B E0

assuming that Nτ B TE0 for TE0 A 0 given by T max�ρf ,ρs�
2δ YfY2

Lª�Ω� � E0 � E�η0�. But then in particular

E�η�τ�N � B E0 and we can continue the induction until Nτ reaches TE0 .

Remark 5.3.4. Clearly, the maximal length of the time-interval on which the a-priori estimates are true depends
on the choice of E0 and could be, thus, optimized. However, we do not enter this investigation here, since, later
we may prolong the solution to the maximal existence time.

Let us also mention that a slightly better single-step estimate could have been gotten by comparing with�ηk, ṽ�, where ṽ is the minimizer of ν2 YεvY2
� `f, ve under divv � 0 and zero boundary conditions.

5.3.2 Step 2: Time-continuous approximations and their properties

Now as a next step, we use these iterative solutions to construct approximations of the continuous problem. At
this point, we will completely switch over to the global velocity u. We will also approximate the deformation
η in two different ways, a piecewise constant approximation, which we will need to keep track of the fluid-
domain, and a piecewise affine approximation, which will give us the correct time derivative ∂tη. To be more
precise, we define:

Definition 5.3.5 (Discrete parabolic approximation). For some E0 A E�η0� fix TE0 A 0 as given by Theo-
rem 5.3.3. We now define the piecewise constant τ -approximation as

η�τ��t, x� �� η�τ�k �x� for t > �τk, τ�k � 1��, x > Q
u�τ��t, y� �� v�τ�k �y� for t > �τk, τ�k � 1��, y > Ω

�τ�
k

u�τ��t, y� �� �η�τ�k�1 � η
�τ�
k � X �η�τ�k ��1�y�

τ
for t > �τk, τ�k � 1��, y > ηk�Q�

Ω�τ��t� �� Ω
�τ�
k for t > �τk, τ�k � 1��
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where �η�τ�k , v
�τ�
k � is the iterative solution for timestep τ . We also define the piecewise affine approximation for

η as

η̃�τ��t, .� �� ��k � 1� � t~τ�η�τ�k � �t~τ � k�η�τ�k�1 for t > �τk, τ�k � 1��, x > Q.
Note that η̃�τ� is Lipschitz-continuous in time, η̃�τ��kτ� � η�τ��kτ� for all k > �0, ...,N� and

∂tη̃
�τ��t� � 1

τ
�η�τ�k�1 � η

�τ�
k � � u�τ��t� X η�τ��t�

for all t > �τk, τ�k�1��. Also from this point on, we will only work with the global velocity field u�τ� as given
in Theorem 5.2.7

Lemma 5.3.6 (Basic a-priori estimates). For any fixed E0 and the resulting time TE0 from Theorem 5.3.3 there
exists a constant C independent of τ such that

E�η�τ��t�� � S t

0
R�η�τ��t�, ∂tη̃�τ��t�� � ν

2
[εu�τ�[2

Ω�τ��t� dt B E0.

for all t > �0, TE0� as well as

sup
t>�0,TE0

�
[η�τ��t�[

W 2,q�Q� B C, S
TE0

0
[∂tη̃�τ�[2

W 1,2�Q� dt B C, and S
T

0
[u�τ�[2

W 1,2�Ω� dt B C.

Proof. The first statement is a direct translation of Theorem 5.3.3 while the latter ones follow from this. In
particular, since E�η�τ��t�� @ E0 on any of its constant intervals and thus on all of �0, TE0� its supremum is
bounded. Similarly the two integral inequalities follow from the boundedness of the dissipation combined with
the Korn-inequalities R2 and Theorem 5.2.8.

Lemma 5.3.7 (Energy and Hölder-estimates). For anyE0 and the resulting time TE0 from Theorem 5.3.3, there
exists a constant C independent of τ @ 1 such that we have the following estimates:

1. For all t > �0, TE0� [η�τ��t� � η̃�τ��t�[
W 1,2�Q� B C

º
τ

2. E�η�τ��t�� is nearly monotone, i.e. for any t A t0, t, t0 > �0, TE0� with t � t0 C τ we have

E�η�τ���t� �E�η�τ���t0� B C�t � t0�
3. η�τ��t� is nearly Hölder-continuous in W 1,2�Q�, i.e. for any t A t0, t, t0 > �0, TE0� with t � t0 A τ we

have [η�τ��t� � η�τ��t0�[
W 1,2�Q� B C

º
t � t0

Proof. Consider the lower bound on a single step given in (5.3.3). Singling out the dissipation of the solid
material, and dropping some terms with compatible sign, we get using the Korn’s inequality R3

cK
1

τ
[η�τ�k�1 � η

�τ�
k [2

W 1,2�Q� B τR
��η

�τ�
k�1 � η

�τ�
k

τ

�� B 2�E�η�τ�k � �E�η�τ�k�1� � τmax�ρf , ρs�
2δ

YfY2
ª
�

Now as the energy is bounded uniformly from above and from below, we can derive that

[η�τ�k�1 � η
�τ�
k [

W 1,2�Q� B C
º
τ
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for some constant C depending only on E0 and f . In particular, due to the definition of η̃�τ��t� and η�τ��t� this
implies (1).

Equally, reordering the terms in a different way, we get

E�η�τ�k�1� �E�η�τ�k � B τmax�ρf , ρs�
2δ

YfY2
ª
.

Now fix T C t A t0 C 0 and let M �� 
 tτ �,N �� 
 t0τ �. Summing up the inequality yields

E�η�τ��t�� �E�η�τ��t0�� B τ�M �N�max�ρf , ρs�
2δ

YfY2
ª

Now either τ B t � t0 @ 2τ , in which case τ�M �N� @ 2τ @ 2�t � t0� or t � t0 C 2τ and thus τ�M �N� @�t � t0� � τ @ 3
2�t � t0�, so this estimate proves (2).4

Finally we again use the first estimate and Hölder’s inequality to sum up the distances:

[η�τ��t� � η�τ��t0�[
W 1,2�Q� B

M�1

Q
k�N

[η�τ�k�1 � η
�τ�
k [

W 1,2�Q�

B

¿ÁÁÀM�1

Q
k�N

τ

¿ÁÁÀM�1

Q
k�N

1

τ
[η�τ�k�1 � η

�τ�
k [2

W 1,2�Q�

B
»
τ�M �N�¿ÁÁÀM�1

Q
k�N

2�E�η�τ�k � �E�η�τ�k�1� � τmax�ρf , ρs�
2δ

YfY2
ª
�

B c
º
t � t0

¾
E�η�τ��t0�� �E�η�τ��t�� � �t � t0�max�ρf , ρs�

2δ
YfY2

ª

which proves (3).

A direct consequence of the last estimate is that the solid cannot move much in a short time. In particular,
this implies the following result on injectivity:

Corollary 5.3.8 (Short-time collision exclusion). If η0 > E is injective (i.e. η0 ¶ ∂E) then there exists Tinj A 0
such that for all τ small enough and all t > �0, Tinj�, the deformations η�τ��t� and η̃�τ��t� are injective (i.e. not
in ∂E).

Proof. If we choose Tinj small enough, then the near Hölder continuity from Theorem 5.3.7 implies that[η0 � η
�τ�
k [

Q
is uniformly small. In particular we can choose it to be smaller than the constant γ0 from Theo-

rem 5.2.4 which then results in injectivity.

In the following, we take, for η0, E0 fixed, T B min�Tinj, TE0�. In this way, both the a-priori estimates
Theorem 5.3.3 hold and we may assume injectivity.

5.3.3 Step 3: Existence and regularity of limits

As a next step, we will derive limiting objects for τ � 0 for the deformation and the global velocity, as well as
their mode of convergence.

Proposition 5.3.9 (Convergence of the time-discrete scheme). There exists a (not relabeled) subsequence τ � 0
and a limit

η > C1~2��0, T �;W 1,2�Q;Rn�� 9Cw��0, T �;W 2,q�Q;Rn�� 9C0��0, T �;C1,α��Q;Rn��
4The lower bound on t0 � t is somewhat arbitrary and is only due to the jumps in the piece-wise constant approximation. As we are

generally interested in τ � 0 for fixed t, t0, this will not represent an issue.
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for α � 1 � n
q and u > L2��0, T �;W 1,2�Ω;Rn��, such that

η̃�τ� � η in C�1~2����0, T �;W 1,2�Q;Rn��
η�τ�, η̃�τ� @� η in Lª��0, T �;W 2,q�Q;Rn��

u�τ� @ u in L2��0, T �;W 1,2�Ω;Rn��
∂tη̃

�τ�
@ ∂tη in L2��0, T �;W 1,2�Q;Rn��.

Furthermore we have
∂tη � u X η in �0, T � �Q

and that η�τ� converges uniformly to η in the following sense: For all r A 0, there exists a δr A 0, such that for
all τ @ δr and all Sx1 � x2S � St1 � t2S 1

α�n B rα
�

we haveS©�η�τ��t1, x1� � η�t2, x2��S � Sη�τ��t1, x1� � η�t2, x2�S B Crα� ,
for all 0 @ α� @ 1 � n

q . Finally, we obtain that

η̃�τ� � η > C0��0, T �;C1,α��Q;Rn�� and η�τ� � η > Lª��0, T �;C1,α��Q;Rn��. (5.3.4)

Proof. We proceed with a weak version of the Arzela-Ascoli theorem. Let �ti�i>N ` �0, T � be a countable
dense set. By the upper bound on the energy and its coercivity, we have a uniform bound on Zη�τ��t�Z

W 2,q�Q�;
thus, by a diagonalization argument we can pick a subsequence of τ ’s (not relabeled) and limits η�ti� such
that η�τ��ti� @ η�ti� in W 2,q�Q;Rn� and uniformly strongly in W 1,2�Q;Rn� for all i > N. Then by the
convergence of norms, the Hölder-continuity from Theorem 5.3.7 (3) carries over toYη�ti� � η�tj�YW 1,2�Q� B C

»Sti � tj S ¦i, j > N.

This means that η has a unique extension onto �0, T � in the space C1~2��0, T �;W 1,2�Q;Rn��.
By the compactness arguments one gets

η̃τ � η > C1~2���0, T �;W 1,2�Q;Rn��.
Now pick t > �0, T � and a new sequence �ti�i>N ` �0, T �, ti � t. Due to the uniform W 2,q�Q;Rn�-

bounds resulting from the bounded energy, the sequence �η�ti��i>N has a weakly converging subsequence
which, by the uniqueness of limits, must converge to η�t� weakly in W 2,q�Q;Rn�. As the original sequence�ti�i>N was arbitrary this means that η is weakly continuous in W 2,q�Q;Rn�. By the same argument, for any
subsequence of τ ’s there exists a sub-subsequence such that η�τ��t�@ η�t� in W 2,q�Q;Rn� and thus η�τ� @ η
in W 2,q�Q;Rn� pointwise. By Theorem 5.3.7 (1), we know that η̃�τ��t� converges to the same limit as η�τ��t�
in a W 1,2�Q;Rn�-sense. Since η̃�τ��t� satisfies the same W 2,q�Q;Rn� bounds, we can then also prove weak
W 2,q�Q;Rn� convergence by the same argument.

Next we interpolate in order to prove that η > C0��0, T �;C1,α�Q;Rn��. Actually we show more, namely
that ©η is Hölder continuous in time-space.5 For that we take �s1, x1�, �s2, x2� > �0, T � �Q with Br ? x1, x2

(i.e. Sx1 � x2S B r) and Ss1 � s2S B r2α�n.

S©η�s1, x1� �©η�s2, x2�S
B S©η�s1, x1� � �S

Br

©η�s1�dxS � S�S
Br

©�η�s1� � η�s2��dxS � S©η�s2, x2� � �S
Br

©η�s2�dxS
B Crα � Ss2 � s2SSs2�S

s1

�S
Br

∂t©η dxdsS B Crα � Ss2 � s2S ���
s2

�S
s1

�S
Br

S∂t©ηS2 dxds���
1~2

B Crα �
Ss2 � s2S1~2

rn~2 �S s2

s1
S
Br

S∂t©ηS2 dxds�1~2
B Crα �C Ss1 � s2

rn
S 12 B Crα.

(5.3.5)

5Note that due to the zero boundary values on P the estimates on the continuity of η follow directly by the gradient estimates.
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Thus, we proved the uniform Hölder regularity of the gradient.
By similar arguments, we can also prove that η�τ� � η. To this end, recall that let 0 @ α� @ α � 1 � n

q .
For r A 0 we may choose a finite subset �ti�mri�1 such that for every t > �0, T � there exists a ti such thatSti � tS B r2α��n. Using the compactness result of Arzela-Ascoli we may choose a subsequence of τ ’s and a
δr A 0 such that for all τ B δr

max
i>�1,...,mr� [η�τ��ti� � η�ti�[C1,α��Q� B 1;

without loss of generality, we may assume that δτ @ r2α��n.
Now for all �s1, x1�, �s2, x2� > �0, T ��Q with Sx1 � x2S B r, a ball Br of radius r such that x1, x2 > Br andSs1 � s2S B r2α��n there is a ti > �s1, s2� and by an analogous calculation to (5.3.5) we obtain

S©η�τ��s1, x1� �©η�s2, x2�S B S©η�τ��s1, x1� � �S
Br

©η�τ��s1�dxS � S�S
Br

©�η�τ��s1� � η�τ��ti��dxS
� S�S

Br

©�η�τ��ti� � η�ti��dxS � S©η�s2, x2� � �S
Br

©η�ti�dxS B Crα,
by using the already obtained Hölder continuity of η.

Having the uniform convergence of η�τ� at hand, we finally deduce the convergence of the global ve-
locity field u�τ�. To do so, we use the uniform L2��0, T �;W 1,2�Ω;Rn�� bound on u�τ� derived through
Theorem 5.3.3 and Theorem 5.2.8 to extract another subsequence of τ ’s such that u�τ� converges weakly in
L2��0, T �;W 1,2�Ω;Rn�� to some limit u. Equally, the uniform L2��0, T �;W 1,2�Q;Rn�� bound on ∂tη̃τ im-
plies that up to a subsequence ∂tη̃τ converges weakly to ∂tη in L2��0, T �;W 1,2�Q;Rn��.

Directly from the definition, we see that

∂tη̃
τ�t� � uτ�t� X ητ�t�

for almost all times t. So in particular for all φ > Cª

0 ��0, T � �Q;Rn�
S

T

0
`∂tη̃, φeQ dt� S T

0
b∂tη̃�τ�, φg

Q
dt � S

T

0
bu�τ� X η�τ�, φg

Q
dt

� S
T

0
bu�τ� X η, φg

Q
dt � S

T

0
bu�τ� X η�τ� � u�τ� X η, φg

Q
dt

Now the first integral on the last line converges to R T0 `u X η, φeQ dt as η is a diffeomorphism, while the second
vanishes in the limit by the following argument: Let πs�t, x� �� sη�τ��t, x� � �1 � s�η�t, x��. Then

Su�τ��t, η�τ��t, x�� � u�τ��t, η�t, x��S2 � SS 1

0

∂

∂s
u�τ��t, πs�t, x��dsS2

B S
1

0
S©u�τ��t, πs�t, x�� � �η�τ��t, x� � η�t, x��S2ds

B S
1

0
S©u�τ��t, πs�t, x��S2ds sup

t>�0,T �,x>Q
Sη�τ��t, x� � η�t, x�S2.

Now, as η�τ��t� and η�t� are both diffeomorphisms with lower bound on the determinant and uniformly close
gradients, the linear interpolation πs also has to be a diffeomorphism. So integrating the equation yields

S
T

0
S
Q
Su�τ��t, η�τ��t, x�� � u�τ��t, η�t, x��S2dxdt

B S
T

0
S
Q
S

1

0
S©u�τ��t, πs�t, x��S2dsdxdt sup

t>�0,T �,x>Q
Sη�τ��t, x� � η�t, x�S2

B cS
T

0
S

Ω
S©u�τ�S2dxdt sup

t>�0,T �,x>Q
Sη�τ��t, x� � η�t, x�S2.
140



SCHWARZACHER VARIATIONAL FSI ANALYSIS FOR FSI

Here the first term is uniformly bounded and the second converges to 0, by the uniform convergence of η�τ�
outlined above.

Thus we have ∂tη � u X η almost everywhere in Q.

5.3.4 Step 4: Convergence of the equation

Using the convergences we derived in Proposition 5.3.9, we proceed by showing that the discrete Euler-
Lagrange equations from Theorem 5.3.2 converge to the equation satisfied by the weak solution. This is not a
straightforward task, as we have to deal with coupled pairs of test functions with the coupling being non-linearly
dependent on the deformation. We will deal with this issue by focusing on a global test function ξ on Ω from
which we derive the test functions on the discrete level. In order to do so, we need to be able to approximate
the test functions smoothly while also maintaining the coupling condition. This is shown in Proposition 5.3.11.

For the approximation of test-functions we make use of a Bogovskiı̆-type theorem.

Theorem 5.3.10 (Bogovskiı̆-Operator [16, Theorem 2.4]). Let Ω be a bounded Lipschitz domain, then there is
a linear operator B � �g > Cª

0 �Ω� S RΩ g dy � 0�� Cª

0 �Ω�, such that

divB�g� � g.
Moreover, for k > �0,1,2, ...� and a > �1,ª� the operator extends to Sobolev-spaces in the form of B � �g >
W k�1,a

0 �Ω� S RΩ g dy � 0��W k,a
0 �Ω�, such that

YB�g�Y
Wk,a

0 �Ω� B c YgYWk�1,a
0 �Ω� ,

where the constant just depending on k, a, n and Ω.

Next we introduce the sought approximation result. It is introduced in order to approximate test-functions
and later in chapter 7 in order to extend the Aubin-Lions lemma to the variable domain set up. The proof is
quite involved and for that reason put in the appendix (see Subsection 5.5.2).

Proposition 5.3.11 (Approximation of test functions). Fix a function

η > Lª��0, T �;E� 9W 1,2��0, T �;W 1,2�Q;Rn�� with sup
t>T

E�η�t�� @ª,
such that η�t� ¶ ∂E for all t > �0, T �. As before we set Ω�t� � Ω � η�t,Q�. Let Tη be the set admissible test
functions, which is defined as

Tη �� ��φ, ξ� >W 1,2��0, T �;W 1,2�Q;Rn�� �L2��0, T �;W 1,2
0 �Ω�;Rn���

s.t. φ � ξ X η on �0, T � �Q and divξ�t� � 0 in Ω�t��.
Then the set

T̃η �� ��φ, ξ� > Tη, ξ > Cª��0, T �;Cª

0 �Ω;Rn�� Sdivξ�t, y� � 0 for all t > �0, T � and all y

with dist�y,Ω�t�� @ ε for some ε A 0�
is dense in Tη in the following sense:

For every ε sufficiently small there exists a linear map �φ, ξ�( �φε, ξε� > T̃η such that

div�ξε�t, y�� � 0 for all y > Ω with dist�y,Ω�t�� B ε.
Moreover, if ξ > Lb��0, T �;W k,a�Ω��, for k > N, a > �1,ª� and b > �1,ª�, then

ξε � ξ in Lb��0, T �;W k,a�Ω��.
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If additionally η > Lb��0, T �;W k,a�Q;Rn��, with a � 2, if k C 3, then

φε � φ in Lb��0, T �;W k,a�Q;Rn�� 9W 1,2��0, T �;W 1,2�Q;Rn��.
Further in case, ∂tξ > L2��0, T �;W 1,2�Ω��, we find that ∂tξε � ∂tξ in L2��0, T �;W 1,2�Q��. If addition-
ally ξ > Lª��0, T �;W 3,a�Ω�� with a A n and ∂tξ > L2��0, T �;W 1,2�Ω��, we find that ∂tφε � ∂tφ in
L2��0, T �;W 1,2�Q��.

Moreover, the following bounds are satisfied at every time-instant where the right hand side is bounded:

Yξε�t�YW 1,2�Ω� B c Yξ�t�YW 1,2�Ω;Rn��Yξε�t� � ξ�t�YL2�Ω� B cε
2
n�2 Yξ�t�YW 1,2�Ω� ,Yξε�t�YWk,a�Ω� B c�ε� Yξ�t�YL2�Ω;Rn�Yφε�t�YWk,a�Q� B c Yξ�t�YCk�Ω� Yη�t�YWk,a�Q� B c�ε� Yξ�t�YL2�Ω� Yη�t�YWk,a�Q� ,

where the constant c depends on the bounds of η > Lª��0, T �;E� 9W 1,2��0, T �;W 1,2�Q;Rn�� and the lower
bound on the Jacobian of η only. The constant c�ε� depends additionally on ε.

Having Theorem 5.3.11 at hand, we now pass to the limit in the Euler-Lagrange equation.

Proposition 5.3.12 (Limit-equation). The limit pair �η, v� as obtained in Proposition 5.3.9 satisfies the follow-
ing:

0 � S
T

0
`DE�η�t��, φeQ � `D2R�η�t�, ∂tη�t��, φeQ � ν `εv, εξeΩ�t� (5.3.6)

� ρf `f, ξeΩ�t� � ρs `f X η, φeQ dt
for all pairs φ > L2��0, T �;W 2,q�Q;Rn��, ξ > L2��0, T �;W 1,2�Ω;Rn�� which satisfy φ�t, .� � ξ X η�t� on Q
and divξ�t� � 0 on Ω�t�.
Proof. First, we use the Minty method to show that `DE�ητ�t��, φτ eQ � `DE�η�t��, φeQ. Fix t > �0, T �
and pick ψ > Cª

0 �Q; �0,1��. Then, the pair ��η�τ� � η�ψ,0� fulfills the coupling condition for the discrete
Euler-Lagrange equation and we have

bDE�η�τ�� �DE�η�, �η�τ� � η�φg
� � bDE�η�, �η�τ� � η�φg � bD2R�η�τ�, ∂tη̃�τ��, �η�τ� � η�φg � bf, �η�τ� � η�φg

As η�τ��t� � η�t� weakly in W 2,q�Q;Rn� and strongly in C1,α��Q;Rn� and moreover as ∂tη̃�τ��t� is uni-
formly bounded in L2��0, T � � Q;Rn� all three terms on the right hand side converge to 0 when integrated
in time and thus for almost all t > �0, T � by Theorem 5.3.9. Hence Theorem 5.1.1, S6 implies the strong
convergence of η�τ��t�� η�t� in W 2,q�Q;Rn� for almost all t > �0, T �.

By Theorem 5.3.11, it is enough to show the limit equation for ξ > Cª

0 ��0, T ��Ω;Rn�, which is divergence
free on a slightly larger set than the fluid domain. Fix such a ξ. Then since η�τ� converges uniformly to η,
divξ � 0 on Ω�τ��t� for all τ small enough.

Now we construct the matching φ�τ��t, x� �� ξ�t, η�τ��t, x�� and φ�t, x� �� ξ�t, η�t, x��. Then by Theo-
rem 5.5.2 and Theorem 5.5.4, φ�τ� > Lª��0, T �;W 2,q�Q;Rn�� with uniform bounds. Thus we get by com-
pactness and uniqueness of limits φ�τ��t�@ φ�t� in W 2,q�Rn�.

As constructed, the pairs �φ�τ��t�, ξ�t�� are admissible in the respective Euler-Lagrange equations from
Theorem 5.3.2 and we have

0 � bDE�η�τ��t��, φ�τ��t�g � bD2R �η�τ��t�, ∂tη̃�τ��t�� , φ�τ��t�g
� ν bεu�τ��t�,©ξ�t�g

Ω�τ��t� � ρf `f, ξ�t�eΩ�τ��t� � ρs bf X η�τ��t�, φ�τ��t�gQ
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for all t > �0, T � and τ small enough.
Now we integrate this equation in time and check each of the terms for convergence. For the first term

we note that by the strong convergence of η�τ� in W 2,q�Q;Rn� and Theorem 5.1.1, S5 that DE�η�τ��t��
converges strongly in W �2,q�Q;Rn� for every fixed t. Since φ�τ��t� converges weakly and both terms are
uniformly bounded in their respective spaces, we get

S
T

0
bDE�η�τ��t��, φ�τ��t�g dt� S T

0
`DE�η�t��, φ�t�e dt.

For the next term we find by Theorem 5.3.9 and the continuity ofR in Theorem 5.1.4, R1 thatD2R �η�τ�, ∂tη̃�τ��
converges weakly inL2��0, T �;W �1,2�Q;Rn�� and φ�τ� converges strongly inL2��0, T �;W 1,2�Q;Rn��which
implies that

S
T

0
bD2R �η�τ��t�, ∂tη̃�τ��t�� , φ�τ��t�g dt� S T

0
`D2R �η�t�, ∂tη�t�� , φ�t�e dt.

For the next terms, let us first deal with the variable domain by rewriting the terms using characteristic
functions. Denoting the symmetric difference by AQB �� A �B 8B �A we have

S
T

0
[χΩ�τ��t� � χΩ�t�[2

L2�Ω� dt � S
T

0
SΩ�τ��t�QΩ�t�Sdt� 0

by the uniform convergence of the boundary and can thus conclude

S
T

0
b©u�τ��t�,©ξ�t�g

Ω�τ��t� dt � S
T

0
S

Ω
χΩ�τ��t�©u�τ��t� � ©ξ�t�dydt

� S
T

0
S

Ω
χΩ�t�©u�t� � ©ξ�t�dydt � S T

0
b©u�τ��t�,©ξ�t�g

Ω��� dt.

as u converges weakly in L2��0, T �;W 1,2�Ω;Rn��.
The same approach also works for the forces on the fluid, where the domain is the only variable in τ and

thus

S
T

0
ρf `f, ξ�t�eΩ�τ��t� dt� S

T

0
ρf `f, ξ�t�eΩ�t� dt

Finally we have the forces acting on the solid. Here both sides converge uniformly:

S
T

0
ρs bf X η�τ��t�, φ�τ��t�g

Q
dt� S

T

0
ρs `f X η�t�, φ�t�eQ dt

Collecting all the terms then concludes the proof.

5.3.5 Step 5: Construction of the pressure

Take some arbitrary s > �0, T �. Since we have excluded collisions on �0, T �, we know that Ω�t� is a uniform
Lipschitz domain with bounds in the sense of Theorem 5.2.6 for all t B s. Taking ψ > Cª

0 �Ω�t��, such that
RΩ�t�ψdy � 0, we can use the Bogovskiı̆-operator Bt defined on Ω�t� via Theorem 5.3.10 to define

P̃ �t��ψ� � ν `εu, εBtψeΩ�t� � ρf `f,BtψeΩ�t� .
This then gives the estimate

SP̃ �t��ψ�S � C YBtY YψYL2�Ω�t��
where YBtY is the operator-norm of Bt � �ψ > L2�Ω�t�� � RΩ�t�ψ dy � 0� �W 1,2�Ω�t�� which is bounded by
the Lipschitz constants of Ω�t� by Theorem 5.3.10. Now since �ψ > L2�Ω�t�� � RΩ�t�ψ dy � 0� is a Hilbert

space we find a p̃�t� in that space such that p̃�t� � P̃ �t�.
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We can extend the operator to L2�Ω�t�� in the following way: Take ϕ�t� > Cª

0 �Ω�t�� and ϕ̃�t� > Cª

0 �Ω�

Ω�t�� fixed, such that RΩϕ�t�dy � RΩ ϕ̃�t�dy � 1 for all t > �0, s�. Since the change of domain in time is
uniformly continuous, we may assume further that ϕ, ϕ̃ are C1 smooth in time. Next we define B to be the
operator of Theorem 5.3.10 with respect to the full domain Ω.

By taking the fixed pair of test functions

ξ0�t� �� B�ϕ�t� � ϕ̃�t��, φ0�t, x� �� ξ0�t, η�t, x��,
we may define

p̂�t, y� � � `DE�η�t��, φ0�t�eQ � `D2R�η�t�, ∂tη�t��, φ0�t�eQ � ν `εu�t�, εξ0�t�eΩ�t�
� ρf `f�t�, ξ0�t�eΩ�t� � ρs `f�t� X η�t�, φ0�t�eQ �ϕ�t, y�

which satisfies Yp̂YL2��0,s�;Lª�Ω�t�� B C with C depending on the energy estimates only. But this allows to
introduce the pressure. We define for ψ > L1�Ω�t��, cψ�t� � RΩ�t�ψ�t�dy. Now, if ψ > L2��0, T �, L1�Ω�t���
we find that cψ > L2��0, s��. Hence we may define

P �ψ� � S T

0
ap̃, ψ � cψϕf dt � S T

0
S

Ω�t� p̂ dycψ dt

Thus p > Lª�0, s;L2�Ω�t�� �L2�0, s;Lª�Ω�t�� is well defined via that operator

S
T

0
`©p, ξe dt �� P �divξ�,

and satisfies the proposed regularity.
One can now check that it fulfills the right equations. For that it suffices to see that

ξ � Bt�div�ξ� � cdiv�ξ�ϕ� � cdiv�ξ�B�ϕ � ϕ̃� � ξ � Bt�div�ξ� � cdiv�ξ�ϕ� � cdiv�ξ�ξ0

is divergence free over Ω�t�. Hence (5.1.3) is satisfied by (5.3.6) using the test-function

�φ � cdiv�ξ�φ0, ξ � Bt�div�ξ� � cdiv�ξ�ϕ� � cdiv�ξ�ξ0�.
This finally allows us to conclude the Theorem:

Proof of Theorem 5.1.6. For any injective η0 there is a short interval �0, T � such that for all τ small enough
all η�τ�k are injective according to Theorem 5.3.8. Passing to the limit in the sequence of the accordingly
constructed �η�τ�, v�τ��’s we find by Theorem 5.3.2 �η, v� that is a weak solution to the parabolic fluid-structure
interaction problem.

Now let �0, Tmax� be a maximal interval on which a solution �η, v� constructed in the previous way exists.
If Tmax � ª there is nothing to be shown. The same holds if Tmax @ ª and lim inft�Tmax E�η�t�� � ª or if
a self-intersection is approached. Now assume that all of that is not the case. Then there exists a sequence of
times ti � Tmax such that E�η�ti�� is bounded and there exists a limit, which we will denote η�Tmax�.

Now take E0 �� lim inft�Tmax E�η�t�� C E�η�Tmax�� due to lower semicontinuity. Following Theo-
rem 5.3.3 and Theorem 5.3.7, there exists a minimal time T on which the solution any solution starting with
energy below 2E0 stays below energy 3E0 and is Hölder-continuous in time in that time interval. Due to
the convergence, we can pick ti with Tmax � ti B T and E�η�ti�� B 2E0, which makes the solution Hölder-
continuous right until Tmax and thus limt�Tmax η�t� � η�Tmax�. But then we can use the short-term existence
to construct a solution starting from η�Tmax� and appending this to the previous solution yields a contradiction
as Tmax cannot be maximal.
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5.4 The example energy-dissipation pair

Let us now consider the prototypical example we stated in the introduction in the form of (1.2.8) and (1.2.9).
In particular, we will prove that this energy-dissipation pair fulfills Assumptions 5.1.1 and 5.1.4. While doing
so, we comment in a bit more detail on the meaning of those assumptions and on how they come into play in
the course of the construction. Effectively we will prove the following proposition.

Proposition 5.4.1. The example energy and dissipation given in (1.2.8) and (1.2.9) fulfill the assumptions S1-
S6 and R1-R4 respectively. In particular the resulting fluid-structure interaction problem has a weak solution,
under the additional conditions given in Theorem 5.1.6.

Instead of proving the assumptions in ascending order or order of convenience, we will try to tackle them
in the order as they appear in the proof of Theorem 5.1.6. Furthermore, we will roughly group them by some
relevant subtopics.

5.4.1 The minimization problem (S1,S3-S4,R1-R2)

We start with the definition of η�τ�k�1 in the minimizing movements-scheme in (5.3.1). In order to prove existence
of minimizers, we need to invoke the direct method of the calculus of variation. Given a minimizing sequence,
we find a converging subsequence and then show that the resulting limit has indeed a minimal value. In other
words, we need to show compactness and lower semicontinuity, as well as a lower bound for the functional.

The last one seems to be directly stated in S1 together with the quadratic homogeinity in R2. Of course
for our example energy S1 immediately holds, as all terms are non-negative and R2 is similarly obvious, as
∂tη occurs as a quadratic factor. There is however some hidden difficulty in order to find a lower bound for
the whole functional, which does not only include energy and dissipation, but also the force terms, which can
indeed be negative. To counteract these, we actually use the proper quadratic growth of the dissipation, which
is immediate for the fluid through Korn’s inequality and a result of the similar Korn-type inequality R3 for the
solid. At this point though, as the first argument of the dissipation and the fluid domain are still fixed, there is
no need yet, to use R3 to its full extent.

Once a lower bound for our minimizing sequence is established, we need to consider compactness. Here
the relevant topology for η is the weak W 2,q�Q; Ω� topology and the relevant assumption for compactness
is coercivity, in the form of S4. As we have bounded the other terms in the functional from below without
involving the energyE, we know that this energy needs to be bounded from above and thus the coercivity allows
us to use the Banach-Alaoglu theorem to extract converging subsequences. In our example, the coercivity is
obtained in the most simple way, as Z©2ηZq

Lq�Q� is part of the energy.
As for (weak) lower semicontinuity, we need to verify assumptions S3 and R1 for the example case. First,

note that the highest order term in the energy Z©2ηZq
Lq�Q� is weakly lower semi-continuous as it is a convex

function of the norm. Second, we find that q A n allows us to pick another subsequence converging in C1,α

for some α @
q�n
q . This allows us to pass to the limit in the terms RQ 1

8 S©ηT©η � I SCdx as well as in the terms
of R. Finally we can either use polyconvexity or the lower bound on det©η to similarly show convergence of

1�det©η�a in (1.2.9).

5.4.2 Converting between Lagrangian and Eulerian setting (S2)

Note that as long as we were only discussing the minimization over the solid, the specific choice ofW 2,q�Q;Rn�
as a space was unimportant and choosing different terms in the integrand might as well have led us to a differ-
ent space. It however becomes important when adding in the fluid, since it is prescribed w.r.t. Eulerian setting
which is again determined by the solid deformation η. The key here is the assumption S2, on the determinant.
Not only does this result in physically reasonable injectivity (in conjunction with the Ciarlet-Nečas condition),
but it also allows us to convert between Eulerian and Lagrangian quantities as it actually implies that η is a
diffeomorphism with uniform bounds. In particular, this will then imply that the fluid domain has a regular
enough boundary, which will play an important role in the hyperbolic case.
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To prove this property we follow the ideas of [96] where a similar energy was studied. Define f�x� ��
det©η. If E�η� is bounded, then f is bounded in W 1,q�Q� and Cα�Q�. Now for a fixed ε0 assume that there
is x0 > Q with f�x0� � 2ε0. Then

E�η� C S
Bδ�x0�9Q

1

f�x�adx C SBδ�x0�9Q
1�f�x0� � Sf�x� � f�x0�Sdx�a C c δn�2ε0 �Cδα�a

However if aα A n, the right hand side can be arbitrarily large if ε0 and δ are choosen small enough, which is a
contradiction.

5.4.3 Uniform bounds (R3)

It has been long known that there is a certain mismatch between physically reasonable and mathematically
expedient dissipation functionals (see e.g. [6]). Mathematicians would prefer the dissipation potential to be
of the form Y∂tηY2

W 1,2�Q� and YuY2
W 1,2�Ω�. This would then lead directly to L2��0, T �;W 1,2�Q;Rn�� and

L2��0, T �;W 1,2�Ω;Rn��-bounds respectively for ∂tη and v as well as their approximations. Instead, for physi-
cal reasons we have to considerR�η, ∂tη� and YεvY2

Ω�t�, which are independent of the observer. Thus Korn-type
inequalities are required to convert the bounds for latter into bounds for the former.

As the Korn inequality for the fluid is the classic one and the added difficulties due to the changing domain
are overcome by Theorem 5.2.8, we only need to focus at the solid. For our example, this inequality and thus
R3 follows from the main theorems in [154, 160]. See also the discussion in [137], where these results are
coupled with an energy similar to ours in the context of a thermoviscoelastic solid (but without a fluid).

Observe that these inequalities require a certain regularity of the deformation ©η itself. In fact we need the
same properties that allow us to switch between Lagrangian and Eulerian settings, i.e. a uniform lower bound
on the determinant det©η and continuity of ©η, as otherwise there are known counterexamples for which the
inequality fails.

5.4.4 Weak equations (S5, R4)

Combined, the assumptions so far are enough to construct iterative minimizers and even to have a subsequence
converge to a limit object �η, v� in space-time by weak compactness. We are left to show that these function
do satisfy a weak coupled PDE. This is where the assumptions S5 and R4 come in. Both of them are two-
part in nature, requiring both the existence of a derivative as well as some form of continuity. Both are also
immediately shown for the example by just doing the calculation. Let us start with the dissipation, namely

`D2R�η, b�, φe � S
Q

2�©bT©η �©ηT©b� � �©φT©η �©ηT©φ�dx.
Since we have C1,α�Q;Rn�-bounds on ©η, the L2�Q�-regularity of ©b�� ©∂tη� is enough to make sense of
D2R��, b� as an operator in W �1,2�Q;Rn�. Similarly, the uniform convergence in some Hölder space for ©η
is enough to give this derivative the required continuity with respect to both b and η.

The calculation for the energy is a bit more involved. Restricting ourselves to deformations η of finite
energy and thus positive determinant, we get by a short calculation

`DE�η�, φe � S
Q

1

4
C�©ηT©η � I� � �©φT©η �©ηT©φ�

� a
cof©η�det©η�a�1

� ©φ � S©2ηSq�2
©

2η � ©2φdx

where the scalar products are to be understood over all tensorial dimensions.
Again in order to pass to the limit with the energy, we need to make use of the uniform Hölder-continuity of

©η to see that the first two terms in DE�η� are well defined and continuous with respect to the corresponding
convergence. Finally, the last term is well defined since η >W 2,q�Q;Rn� uniformly, but to show that it is also
continuous we need to show strong convergence using the convexity of the quantity. This then leads to the final
assumption.
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5.4.5 Improved convergence (S6)

As the usual compactness methods will only result in weak compactness, and S5 requires strong convergence
we need a way to improve upon this. For this we rely on an idea that is most commonly attributed to Minty.
While it is certainly not true that our energy is convex, the critical, second order term in its derivative DE�η�
is monotone and this allows us to improve convergence as desired.

Assume that as stated ηl @ η inW 2,q�Q;Rn�. Then after possibly extracting another subsequence ηl � η in
C1,α�Q;Rn� the first two terms ofDE�ηl� already converge to their respective limits (using the lower bound on
det©η given through S2). As a result, the stated conditions on convergence of `DE�ηl� �DE�η�, �ηl � η�ψe �
0 for all cutoffs ψ > Cª

0 �Q; �0,1�� are equivalent to those for

bS©2ηlSq�2
©

2ηl � S©2ηSq�2
©

2η,©2��ηl � η�ψ�g
Here the cutoff complicates things slightly, but expanding the right hand side yields terms of lower order
(�ηl�η�a©2ψ and ©�ηl�η�a©ψ) which already converge strongly to 0 and one term of second order, which
leaves us with

bS©2ηlSq�2
©

2ηl � S©2ηSq�2
©

2η, �©2ηl �©
2η��ψg

where we now can send ψ � 1 by approximation. Now η ( S©2ηSq�2
©2η is a classic example of a monotone

operator. Thus the term is bounded from below by 0 and its convergence to 0 implies strong convergence ηl � η
in W 2,q�Q;Rn�, by the fact that for q C 2 and a, b > Rn3

�SaSq�2a � SbSq�2b� � �a � b� C cSa � bSq.
5.5 Appendix of the chapter

5.5.1 Some technical lemmata

Here we gather the proofs of some technical lemmata.

Lemma 5.5.1 (Expansion of the determinant). Let A > Rn�n. Then

det�I � τA� � 1 � τtrA �

n

Q
l�2

τ lMl�A�
where Ml�A� is a homogeneous polynomial of degree l in the entries of A. Note that this is a finite sum.

Proof. Consider the Leibniz formula

det�I � τA� � Q
π>Sn

sgn�π� n

M
i�1

�δi,π�i� � τAi,π�i��
where Sn is the set of permutations of �1, ..., n�. We expand the product and order the terms by the exponent
of the factor τ l and thus by the number of terms τAi,π�i� that are taken while expanding the product. This will
directly yield the homogeneous polynomial Ml�A�.

For τ0 and τ1, the only non-zero terms occur for π � id, otherwise there will be at least one factor δi,π�i�
for i x π�i�. For τ0 this means we only choose the δi,i terms and for τ1 we can choose any one τAi,i-term.
Thus M0�A� � 1 and M1�A� � trA.

Lemma 5.5.2 (Invertible maps). Let η > W 2,q�Q;Rn� be injective, such that det©η A ε0 A 0 for some ε0 @ 1

and ηSP � γ. Then η�1 >W 2,q�η�Q�;Rn� and Y�YW 2,q�η�Q���η�1 B c
Y�YW 2,q�Q��η2n�1

ε20
where c depends only

on q,Q, γ and n.
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Proof. Due to the condition on the determinant ©η is invertible and furthermore, we have the well known
formula

©�η�1� � �©η��1
X η�1

�
�cof©η�T

det©η
X η�1

Now we take the derivative of ©�η�1� X η to get

�©2�η�1�� X η � ©η � © �©�η�1� X η� � ©�cof©η�T
det©η

�
�cof©η�T a �cof©η��det©η�2

� ©
2η

Integrating then yields

S
η�Q� S�©2�η�1��Sqdy � S

Q
S�©2�η�1�� X ηSq det©ηdx

� S
Q
S©�cof©η�T

det©η
�
�cof©η�T a �cof©η��det©η�2

� ©
2ηSq det©ηdx

Now the determinants in the denominators can be estimated by ε0, while the numerators all consist of one
second derivative multiplied with a number of first derivatives, which we can estimate by their supremum.

B S
Q
C
��S©2ηSY�Yª�©ηn�2

ε
1�1~q
0

�
Y�Yª�©η2n�2S©2ηS

ε
2�1~q
0

��
q

dx B C
Y�YLq�η�Q���©2η

qY�Yª�©ηq�2n�2�
ε2q

Using the Morrey embedding Y�Yª�©η B Y�YCα�©η B CY�YW 2,q�Q��η and collecting the terms then shows

Y�YLq�η�Q���©2�η�1� B C Y�YW 2,q�Q��η2n�1

ε20
.

Finally, as we have partially known boundary values η�1Sγ�P � � γ�1, the lower order estimates follow from a
Poincaré-inequality.

For the next result we an interpolation. We begin by recalling the following result, which follows for
instance from the interpolation estimate in [182, Theorem 2.13] which implies combined with the usual Sobolev
embeddings [194, Theorem 2.5.1 and Remark 2.5.2] that for all m > �0,ª�, α > �1,ª� and all Lipschitz
domains Ω satisfy

m B l and
1

α
�
m

n
C

1

γ
�
l

n
�
k � l

ka
�
l

2k
�
l

n

the estimate

Y�YWm,α�g B CY�YW k,2�g lk Y�YLa�g k�lk . (5.5.1)

Lemma 5.5.3. Let Q ` Rn be a bounded Lipschitz domain, q A n and the number k > N be defined as

k � 2 �
n � 1

2
if n is odd, k � 3 �

n

2
if n is even. (5.5.2)

For every η >W 2,q�Q� 9W k,2�Q�, there is a constant c depending on Q,n, k and Y�YW 2,q�Q��η such that

k

Q
l�1

Q
a>�1,...,n�l

Y©k�lΠl
i�1∂aiηY B cY�YW k,2�Q��η.
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Proof. Observe, that since ©η is uniformly bounded by the W 2,q�Q;Rn� norm, we find that

Q
a>�1,...,n�l

Y©k�lΠl
i�1∂aiηY B c Q

β>Nl0, SβS�k�l
YΠl

i�1S©βi©ηSY.
The estimate for l � 1 is direct. Next assume, that l C 2 and β > Nl0, SβS � k � l such that all βi x 1. Now by
Hölder’s and Young’s inequality

Πl
i�1Y©βi©ηY B c Q

βiA1

Y�Y2�k � l�
βi

�©βi�1
©

2η
k�l
βi

Next we seek to interpolate ©2η in between W 2,q and W k�2,2. For that we wish to use (5.5.1). Hence we have
to prove that

βi
2�k � l� C k � 1 � βi

q�k � 2� �
βi � 1

2�k � 2� . (5.5.3)

Since l C 2 we find (by multiplying (5.5.3) with k � 2) that (5.5.3) holds true whenever

1

2
C
k � βi � 1

n
� n C 2�k � βi � 1�,

which is satisfied by the definition of k as long as βi C 2.
Hence we may use (5.5.3)

Y�Y2�k � l�
βi

�©βi�1
©

2η
k�l
βi B cY�YLq�Q��©2η

k�l
βi

k�1�βi
k�2 Y�YW k�2,2�Q��©2η

k�l
βi

βi�1

k�2 B cY�YW k�2,2�Q��©2η,

using that k�lβi
βi�1
k�2 B 1.

The last case is proved inductively. First with no loss of generality we take β1 � 1. ThenPli�2 βi B k � l � 1
and using Hölder’s inequality and Sobolev embedding implies

YS©2ηSΠl�1
i�1S©βiηSY B Y�Yn�©2ηY�Y 2n

n � 2
�Πl�1

i�1S©βiηS B cY�YW 1,2�Q��Πl�1
i�1S©βiηS.

If now βi x 1 for all i A 1, the estimate follows by the above case for the pair ©k��l�1�Πl�1
i�1∂aiη. If not, we may

assume that β2 � 1 and can repeat the argument again. After at most l steps (in which case k C 2l), we get the
result.

Proposition 5.5.4 (Space isomorphisms). Let η > W 2,q�Q;Rn� such that det©η A ε0 A 0 and ηSP � γ. Then
the map

η#
� ξ ( ξ X η;W 2,q�η�Q�;Rn��W 2,q�Q;Rn�

is a linear vector space-isomorphism with operator-norm Yη#Y B CY�YW 2,q�Q��η2~ε1~q0 where c does only
depend on q,Q, γ and n. Moreover, if q A n and additionally η > W k,2�Q;Rn� and ξ > Ck�η�Q;Rn��, for k
defined in (5.5.2), then Y�YW k,2�Q��ξ X η B cY�YW k,2�Q��ηY�YCk�Q��ξ,
where the constant depends on Ω, n, k and Y�YW 2,q�Q��η only.

Proof. Linearity follows immediately from the definition. Now we calculate

Y�YLq�Q��©2�ξ X η� � Y�YLq�Q����©2ξ� X η � ©η� � ©η � �©ξ� X η � ©2η

B C �Y�Yª�©η2Y�YLq�Q���©2ξ� X η � Y�Yª�©ξY�YLq�Q��©2η� .
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and use

ε0Y�YLq�Q���©2ξ� X ηq B S
Q
S�©2ξ� X ηSq det©η dx � Y�YLq�η�Q���©2ξ

q

to estimate the first term. Then using a Poincaré’s inequality and the usual Morrey’s embeddings we get

Y�YW 2,q�Q��ξ X η B CY�YW 2,q�η�Q��ξ Y�YW 2,q�Q��η2

ε1~q

which proves that η# is a vector space-homomorphism with given operator-norm. Now as �η#��1 � �η�1�#

we conclude that it is also an isomorphism by the previous lemma.
For the second estimate we observe that

Y©k�ξ X η�Y B c k

Q
l�1

Q
a>�1,...,n�l

Y�YC l�η�Q��ξY©k�lΠl
i�1∂aiηY,

which finishes the proof by Theorem 5.5.3

5.5.2 Proof of Theorem 5.3.11

The proof is split in two parts. The first part constructs an extension of the solenoidality. The second part shows
how this extension can than be convoluted. We also will need the following Poincaré type lemma:

Lemma 5.5.5 (Poincaré’s lemma for thin regions). Let S0 ` Rn be an �n � 1�-dimensional rectifiable set and
Φ � S0 � �0, ε0� � Rn a injective L-bi-Lipschitz function such that Φ��,0� � id. Define Sε � Φ�S0, �0, ε�� for
ε > �0, ε0�. Then for all f >W 1,a�Sε� with f SS0 � 0 in the trace sense we have

Y�YLa�Sε��f B cεY�YW 1,a�Sε��f for all f >W 1,a�Sε�t�;Rn� with f SΩ�t� � 0. (5.5.4)

where c is independent of ε.

Proof. By density arguments it is enough to prove the theorem for smooth functions. Now for z > S0 and
s0 > �0, ε0� we find:

Sf�Φ�z, s0��S � Sf�Φ�z, s0�� � f�Φ�z,0��S � SS s0

0
∂sf�Φ�z, s��dsS

B S
s0

0
S�©f��Φ�z, s��SS∂sΦ�z, s�Sds B S s0

0
LS�©f��Φ�z, s��Sds

But then integrating over the whole domain gets us

S
Sε
Sf�y�Sady � S

S0
S

ε

0
Sf�Φ�z, s0��SaSJ�z, s0�Sds0dz

B S
S0
S

ε

0
�S s0

0
LS©f�Φ�z, s��Sds�a SJ�z, s0�Sdsds0dz

B S
S0
S

ε

0

ε

�S
0

εaLaS©f�Φ�z, s��SaSJ�z, s0�Sdsds0dz

� εaLaS
S0
S

ε

0
LaS©f�Φ�z, s��SaSJ�z, s�SY�Yª�JY�Yª�J�1dsdz

� LaεaY�Yª�JY�Yª�J�1S
Sε
S©f�y�Sady

where J�z, s� is the Jacobian of Φ which is bounded from above as well as away from zero because Φ is
bi-Lipschitz.
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Lemma 5.5.6 (Extension of the solenoidal region). Fix a function

η > Lª��0, T �;E� 9W 1,2��0, T �;W 1,2�Q;Rn�� with sup
t>T

E�η�t�� @ª,
such that η�t� ¶ ∂E for all t > �0, T �. As before we set Ω�t� � Ω � η�t,Q�.

Let ξ > L2��0, T �;W 1,2
0 �Ω;Rn�� such that divξ�t� � 0 on Ω�t�. Then there exists ε0 A 0 such that for all

ε A 0, there exists ξε such that divξ�t, y� � 0 for all y > Ω with dist�y,Ω�t� 8 ∂Ω� @ ε and there are constants
c independent of ξ such that for a.e. t > �0, T �

Y�YW 1,2�Ω��ξε B cY�YW 1,2�Ω��ξ and Y�YL2�Ω��ξε � ξ B cε 2
n�2 Y�YW 1,2�Ω��ξ.

Additionally for any k > N and a > �1,ª� such that ξ > L2��0, T �;W k,a�Q;Rn�� we also have

Y�YL2��0, T �;W k,a�Ω���ξε � ξ � 0 for ε� 0

and similarly if ξ >W 1,2��0, T �;W 1,ª�Ω;Rn�� then also

Y�YL2��0, T �;W 1,2�Ω���∂t�ξ � ξε�� 0 for ε� 0. (5.5.5)

Proof. We begin by defining
Sε�t� �� �y > Ω Sdist�y, η�t, ∂Q�� B ε�

and introduce the cutoff function ψε � �0, T � �Ω� �0,1�, such that

χSε�t� B ψε�t� B χS2ε�t� and Y�YC l�ψε�t� B c

εl
for l > N.

Due to the regularity of η, we may assume, that ∂tψε is uniformly bounded, such that

Y�YL2��0, T � �Ω��∂tψε � 0 with ε� 0. (5.5.6)

We also pick ψ̃ > Cª

0 ��0, T ��Ω;Rn� such that suppψ̃�t�9Sε0�t� � g for some ε0 A 0 and RΩ ψ̃�t�dy � 1
for all t. Using this we then define

ξε�t� �� ξ�t� � B �ψε�t�divξ�t� � bε�t�ψ̃�t��
where B is the Bogovskiı̆-operator on Ω and bε�t� �� RΩψε�t�divξ�t�dy is used to keep the mean. Then per
definition

divξε�t� � �1 � ψε�t��divξ�t� � bε�t�ψ̃�t�
has no support on Sε�t�, as required and

Y�YW k,a�Ω��ξ � ξε � Y�YW k,a�Ω��B �ψε�t�divξ�t� � bε�t�ψ̃�t��
B cY�YW k�1,a�Ω��ψε�t�divξ�t� � bε�t�ψ̃�t� B cY�YW k�1,a�Ω��ψε�t�divξ�t� � cSbε�t�S

is the main quantity we need to estimate.
Let us begin with the special case k � 0, a � 2. Here we use that L

2n
2�n �Ω;Rn� `W �1,2�Ω;Rn� and apply

Hölder’s inequality to show that

Y�YL2�Ω��ξ � ξ̃ε B cY�YW �1,2�Ω��ψεdiv�ξ� � cSbεS B cY�YL 2n
n�2 �Ω��ψεdiv�ξ�

B cY�YLn�S2ε�t���ψεY�YL2�Ω��divξ B cSS2εS 1n Y�YW 1,2�Ω��ξ B cε 1
n Y�YW 1,2�Ω��ξ.
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For k C 1 we first note that Sbε�t�S B cY�YL2�Sε�t���divξ � 0 for each fixed ξ and that furthermore

Y�YW k�1,a�Ω��ψε�t�divξ�t� B c k�1

Q
l�0

Y�YCk�1�l�Ω��ψε�t�Y�YLa�S2ε�t���©ldivξ

B c
k�1

Q
l�0

ε��k�1�l�Y�YLa�S2ε�t���©ldivξ.

In particular for k � 1, a � 2 we have k � 1 � l � 0 so this immediately proves that Y�YW 1,2�Ω��ξε B

cY�YW 1,2�Ω��ξ independently of ξ. For k A 1 we will apply the Poincaré’s inequality Theorem 5.5.5. For
this we make use of the fact that Sε0 �Ω�t� is a small neighborhood of an uniform Lipschitz boundary and thus
can be written in the required way using η itself. Furthermore for any l @ k we have©ldivξ � 0 on Ω�t� and thus
also on ∂Ω�t� in the trace sense. Now this then gives us Y�YLa�S2ε�t���©ldivξ B cεk�1�lY�YW k,a�S2ε�t���ξ
which is enough to finish the estimate.

Finally let us consider the time-derivative. As B is a linear operator, we have

Y�YW 1,2�Ω��∂t�ξε � ξ� � cY�YL2�Ω��∂t �ψε�t�divξ�t� � bε�t�ψ̃�t��
B cY�YL2�S2ε�t���∂t�ψε�t�divξ�t�� � cS∂tbε�t�SY�YL2�Ω��ψ̃�t� � cSbε�t�SY�YL2�Ω��∂tψ̃�t�

For the last term we have already shown that Sbε�t�S � 0 and Ψ̃ does not depend on ε. For the second to last
term we note that

S∂tbε�t�S � SS
Ω
∂t�ψε�t�divξ�t��dyS B Y�YL2�Ω��∂t�ψε�t�divξ�t��

which is the same as the first term and for which we use the estimate

Y�YL2�Ω��∂t�ψε�t�divξ�t�� B Y�YL2�Ω��∂tψε�t�Y�YW 1,ª�S2ε�t���ξ�t� � Y�YL2�Ω��ψε�t�Y�YW 1,ª�S2ε�t���∂tξ�t�
which implies (5.5.5) by (5.5.6) and Hölder’s inequality.

Proof of Theorem 5.3.11. First we apply Theorem 5.5.6 to find a function ξ̂ with ξ̂ � 0 on Ω�t� and an ε-
neighborhood of ∂�Ω �Ω�t��. Thus taking a convolution with γε2 does not intervene with the zero boundary
values (if ε is small enough).

We will now apply Theorem 5.5.6 again to ξ̂ε � γε2 and call the result ξε, a function which is smooth
by Theorem 5.3.10. Moreover since all operations are linear we find that ξε > Cª

0 �Ω� is divergence free in
Ω�t� 8 Sε. By collecting all the properties of the approximation, we find that for

Y�YW l,a�Ω��ξ � ξε � 0

for l B k � 1. Moreover,

Y�YW 1,2�Ω��ξ � ξε B cY�YW 1,2�Ω��ξ.
and

Y�YL2�Ω��ξ � ξε B cε 2
n�2 Y�YW 1,2�Ω��ξ

Next we turn to the estimates for
φε �� ξε X η.

They follow by Theorem 5.5.4, and standard convolution estimates. First, for k A 2 we find

Y�YW k,2�Q��φε B cY�YCk�Ω��ξεY�YW k,2�Q��η B c�ε�Y�YL2�Ω��ξY�YW k,a�Q��η.
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Second, in case ξ > Lª��0, T �;W 2,a�Ω��, we find

Y�YW 2,a�Q��φε � φ B cY�YW 2,a�Ω��ξε � ξ � 0 with ε� 0.

Finally, for the time derivative in case ∂tξ > Lª��0, T �;W 1,2�Ω�� and ξ > Lª��0, T �;W 3,a�Ω�� with a A n
we find by Sobolev embedding that:

Y�YW 1,2�Q��∂t�φε � φ� B cY�YW 1,2�Ω��∂t�ξε � ξ� � cY�YW 1,ª�Ω��©�ξε � ξ�Y�YW 1,2�Q��∂tη
B cY�YW 1,2�Ω��∂t�ξε � ξ� � cY�YW 3,a�Ω��ξε � ξY�YW 1,2�Q��∂tη

which implies the assertions for the time-derivatives by (5.5.5).
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Chapter 6

A variational approach to hyperbolic
evolutions

In this section, we will introduce a general method for adding inertial effects to continuum mechanical prob-
lems, thereby turning them from parabolic to hyperbolic. We will demonstrate this in the purely Lagrangian
case of a single viscoelastic solid, but as we will see in the next section, the method turns out to be flexible
enough to allow even for problems which are of a mixed Lagrangian/Eulerian type such as fluid-structure in-
teraction. Also note that while this section can be read independently from the previous one, at some places we
will use a similar reasoning, which will thus be abridged slightly.

In particular we keep the notation from the previous section. Thus η � Q � Rn, η > E is the deformation of
the solid specimen and E and R are its elastic energy and dissipation. For simplicity we will also use the same
set of assumptions (i.e. Assumption 5.1.1 and Assumption 5.1.4, respectively), though many of them could be
relaxed, as they are intended for interaction with the fluid. Furthermore, as the only relevant domain Q is kept
fixed, we will suppress the dependence of the inner products and the resulting L2-norms on Q.

The problem we thus want to solve is to find the deformation of the viscoelastic solid specimen moving
inertially in space subject to an action of forces. In other words, we need to solve the balance of momentum
(Newton’s second law) that reads as

ρ∂2
t η �D2R�η, ∂tη� �DE�η� � f X η in �0, T � �Q. (6.0.1)

where ρ � ρs is a constant density and f some, not necessarily conservative, external force. In addition, we will
require that η > E which implies that it satisfies given Dirichlet boundary conditions on P . On the other parts
of the boundary ∂Q�P we assume here natural Neumann type (free) boundary conditions that will result from
minimization. Finally, we will add appropriate initial conditions to (6.0.1),

η�0� � η0 and ∂tη�0� � η� in Q. (6.0.2)

As usual, we translate this into a notion of a weak solution.

Definition 6.0.1 (Weak solution to the inertial problem for solids). We call η > Lª��0, T �;E�9W 1,2��0, T �;W 1,2�Q;Rn��,
such that ∂tη > C0

w��0, T �;L2��Q;Rn�� and η�0� � η0 a weak solution to the inertial problem of the viscoelas-
tic solid (6.0.1) with initial conditions (6.0.2) if

S
T

0
`DE�η�, φe � `D2R�η, ∂tη�, φe � `f X η, φe � ρ `∂tη, ∂tφe dt � ρ `η�, φ�0�eQ � 0

for all φ > Cª��0, T �;Cª�Q;Rn�� with φS�0,T ��P � 0 such that φ�T � � 0.

Observe, that we restrict the solution to the closed set E and thus will only work with injective deforma-
tions on Q. This will be of particular interest to us as this property is relevant for modelling fluid-structure
interactions.

The main goal of this section will be to prove the following theorem.
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Theorem 6.0.2 (Existence of solutions for solids). Assume that the conditions from Theorem 5.1.1 (with Ω �

Rn) and Theorem 5.1.4 hold. Assume that the initial data η0 > E � ∂E with E�η� @ ª, that η� > L2�Q;Rn�
and that f > C0��0,ª� �Rn;Rn�. Then there exists a weak solution to (6.0.1) according to Theorem 6.0.1 on�0, T �. Furthermore, T A 0 can be chosen in such a way that T �ª or η�T � > ∂E (see also Theorem 6.2.5).

The main goal is to approximate the sought solution of the hyperbolic problem by solutions to suitably
constructed parabolic problems. For us, this concerns particularly the method of minimizing movements. The
key is in discretizing the second time derivative in (6.0.1) by a difference quotient w.r.t. the acceleration scale
h. We will thus first solve what we will call the time-delayed problem:

ρ
∂tη

�h��t� � ∂tη�h��t � h�
h

� �DR2�η�h��t�, ∂tη�h��t�� �DE�η�h��t�� � f X η�h��t� (6.0.3)

For any fixed h, (6.0.3) has the structure of a gradient flow, yet one with a nonlocality in time in form of the
term ∂tη

�h��t � h�. Now the important observation is that on the interval �0, h�, ∂tη�h��t � h� is not part of
the solution but actually given through the initial data. Thus, on this interval, the problem can be solved using
parabolic methods. But then, once we know the solution on �0, h�, we can use this as data for the problem on�h,2h� and iterate. To allow for an iteration process, we in particular need to know that the solution obtained
from the previous step is admissible to play the role of data in the next step. In other words, we need to assure
that that E�η�h��h�� is bounded and that ∂tη�h� possesses the necessary integrability. This is guaranteed by
proving a suitable energy inequality, a key element of the proof. Fundamentally, a gradient flow needs to be
viewed in terms of energy and dissipation. In particular there is always an energy balance, which often only
takes the form of an inequality. In our case, for the time delayed problem on �0, h�, the energy inequality will
have the form

E�η�h��h�� � ρ

2h
S

h

0
[∂tη�h��t�[2

dt � S
h

0
R�η�h��t�, ∂tη�h��t��dt

B E�η�h��0�� � ρ

2h
S

h

0
[∂tη�h��t � h�[2

dt � S
h

0
bf X η�h�, ∂tη�h�g dt

Let us elaborate the terms in this inequality: On the right-hand side, we have the potential energy E of the
initial data, as well as the averaged kinetic energy ρ

2
�R h0 Z∂tη�h�Z2

dt of the “previous step”. On the left hand
side, we have the potential energy at the end of the step, as well as the averaged kinetic energy of the current
step.

So not only have we bounded the initial data for the next step in terms of the initial data of the previous
step which allows for an iterative process, we also have an estimate suitable to employ a telescope argument.
Indeed, by summing up the estimate, over l time intervals of length h, we will gain a uniform bound on the
new endpoint E�η�h��lh�� and ρ

2
�R lh�l�1�h Z∂tη�h�Z2

dt only in terms of the given initial data and forces. These

uniform bounds for η�h� are independent of h, thus they allow us to deduce a-priori estimates and, in turn, to
pass to the limit h� 0 in order to obtain a solution to the hyperbolic problem.

Following this approach, we will show the existence of weak solutions for the time-delayed problem in
detail in Section 6.1 before proving Theorem 6.0.2 in Section 6.2.

6.1 The time-delayed problem

For all of this subsection we will assume h A 0 to be fixed. In order to solve the time-delayed problem, we first
need to give a precise definition of its weak formulation.

Definition 6.1.1 (Weak solutions to the time-delayed equation for solids). Let w > L2��0, h��Q;Rn�. We call
η > Lª��0, h� �Q;E� 9W 1,2��0, h�;W k0,2�Q;Rn�� a weak solution to the time-delayed equation (6.0.3) if
η�0� � η0 and

0 � S
h

0
`DEh�η�, φe � `D2Rh�η, ∂tη�, φe � `f X η, φe � ρ

h
`∂tη �w,φe dt. (6.1.1)

for all φ > Cª��0, h� �Q;Rn� with φS�0,h��P � 0.
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In this definition w will play the role of the given data ∂tη�t � h�. In addition, as we assume h A 0 to be
a given constant throughout this subsection, so we will not highlight the h-dependence for any of the given
quantities. Note that in Definition 6.1.1 we used the regularized forms of the energy and dissipation potentials
that read as

Eh�η� � E�η� � ha0 Z©k0ηZ2
Rh�η, b� �� R�η, b� � h Z©k0bZ2

, (6.1.2)

where we choose k0 large enough, such that k0 �
n
2 C 2 � n

q which implies that W k0,2�Q;Rn� `W 2,q�Q;Rn�
compactly. This actually has no impact on the existence of time delayed solutions. Instead it is a mollifying
strategy which will allow us to test the Euler-Lagrange equation with ∂tη in order to obtain the previously
mentioned energy inequality (See also Theorem 6.2.6). A similar term will also help us with some regularity
issues in the fluid-structure interaction problem later in Theorem 7.3.3.

Remark 6.1.2 (Properties of the regularizing energy and dissipation). For all h A 0, we find that Eh fulfills the
properties given in Theorem 5.1.1, replacing W 2,q�Q;Rn� with W k0,2�Q;Rn� and Rh fulfills the properties
given in Theorem 5.1.4 replacing W 1,2�Q;Rn� by W k0,2�Q;Rn� where we may replace R2 by

c �Y©λY2
� h Z©k0λZ2� B Rh�η, λ� B C �Y©λY2

� h Z©k0λZ2� .
Now the bulk of this subsection will be devoted to proving the following theorem:

Theorem 6.1.3 (Existence of time delayed solutions for solids). Let η0 > E9W
k0,2�Q;Rn��∂E ,w > L2��0, h��

Q;Rn� and f > C0��0, h� �Q;Rn�. Then there exists a weak solution to the time delayed equation (6.0.3) in
the sense of Theorem 6.1.1 or there exists a solution on a shorter interval �0, hmax� such that η�hmax� > ∂E .1

Before we start, let us discuss how the time delayed problem can still be seen as a type of parabolic gradient
flow. In particular, let us compare it to the classical parabolic gradient flow problem at its root, which reads

DEh�η�t�� � �D2Rh�η�t�, ∂tη�t�� � f X η�t�.
This problem consists of three components: energy, dissipation and forces. Our goal is to identify each of the
two additional terms in the time-delayed problem with one of those three in order to show that we are still
solving a similar problem.

Let us start with the delayed time derivative ρ
hw�t� � ρ

h∂tη�t � h�. As we work in the interval �0, h�, this
is just a given function, not depending on the ηS�0,h�. But then any such function plays the role of a force. In
fact, in contrast to the actual forces we consider in the problem, it is a force given in reference configuration
and thus even easier to handle.

The other term, ρh∂tη�t� can be seen as stemming from a quadratic dissipation potential

R̂�η, b� �� R̂�b� �� ρ

2h
YbY2 ,

so that D2R̂�η�t�, ∂tη�t�� � ρ
h∂tη�t�.

By this reasoning, we claim that in general, if there is a method to solve the parabolic gradient flow problem,
then there the same method can solve the corresponding time delayed problem.

Proof of Theorem 6.1.3. The proof essentially follows the same lines as was done in the last section. We start
by a time-discretization; i.e. we fix some time-step size τ by which we discretize the interval �0, h�. Given
η
�τ�
k , we recursively solve the following minimization problem to obtain η�τ�k�1

Minimize Eh�η� � τRh ��η�τ�k ,
η � η

�τ�
k

τ

�� � τ df �τ�k X ηk,
η � η

�τ�
k

τ
i � τ ρ

2h

XXXXXXXXXXXX
η � η

�τ�
k

τ
�w

�τ�
k

XXXXXXXXXXXX
2

(6.1.3)

subject to η > E

1Note that a-posteriori (see Theorem 5.3.8) it will be shown that (in dependence of η0) there is always a minimal time-length hmin

for which it can be guaranteed that η�t� ¶ ∂E for t > �0, hmin�.

157



SCHWARZACHER HYPERBOLIC VARIATIONAL APPROXIMATIONS ANALYSIS FOR FSI

where w�τ�
k � �R �k�1�τ

kτ wdt > L2�Q;Rn� and f �τ�k � �R �k�1�τ
kτ fdt > L2�Q;Rn� are in-time averages.

Note that (6.1.3) is not quite in the form suggested by the previous discussion. Instead we deliberately wrote
the last term as a quadratic difference, to give the problem a bit more structure. Note that when expanded, the
last term is

R̂
��η � η

�τ�
k

τ

�� � ρh dwk, η � η
�τ�
k

τ
i � ρ

2h
[w�τ�

k [2

so these two approaches only differ by a constant, which has no effect on the minimization.
Now using the coercivity of E similar to, but easier as in the proof of Theorem 5.3.2, a (possibly non-

unique) minimizer exists and a short calculation shows that it satisfies (assuming that η�τ�k�1 ¶ ∂E) the Euler-
Lagrange equation

0 � bDEh�η�τ�k�1�, φg � dD2Rh
��η�τ�k ,

η
�τ�
k�1 � η

�τ�
k

τ

�� , φi � bf �τ�k X η
�τ�
k , φg (6.1.4)

�
ρ

2h
dη�τ�k�1 � η

�τ�
k

τ
�w

�τ�
k , φi

for all φ >W 2,q�Q;Rn� with φSP � 0.
Next we follow in the steps of Theorem 5.3.3 (see Theorem 6.2.4 for a discussion of some interesting

differences) and derive a simple initial energy estimate by comparing the value of the functional in (6.1.3) at
the minimizer η�τ�k�1 with its value at η�τ�k :

Eh�η�τ�k�1� � τRh ��η�τ�k ,
η
�τ�
k�1 � η

�τ�
k

τ

�� � τ df �τ�k ,
η
�τ�
k�1 � η

�τ�
k

τ
i (6.1.5)

� τ
ρ

2h

XXXXXXXXXXXX
η
�τ�
k�1 � η

�τ�
k

τ
�w

�τ�
k

XXXXXXXXXXXX
2

B Eh�η�τ�k � � τ ρ
2h

[w�τ�
k [2

.

This estimate is can be summed so that, using the triangle and the weighted Young’s inequality, we can derive
for any N such that τN B h

Eh�ηN� � N�1

Q
k�0

τ

<@@@@@>Rh
��η�τ�k ,

η
�τ�
k�1 � η

�τ�
k

τ

�� � c
XXXXXXXXXXXX
η
�τ�
k�1 � η

�τ�
k

τ

XXXXXXXXXXXX
2=AAAAA?

B Eh�η0� � τC N�1

Q
k�0

�[w�τ�
k [2

� [f �τ�k [2�
B Eh�η0� �C S h

0
YwY2

� YfY2 dt

for some C, c A 0 depending on h but independent of τ . Further, in the last step we used Jensen’s inequality to
show

τ
N�1

Q
k�0

[w�τ�
k [2

� τ
N�1

Q
k�0

XXXXXXXXXXXXXX
�k�1�τ
�S
kτ

wdt

XXXXXXXXXXXXXX
2

B τ
N�1

Q
k�0

�k�1�τ
�S
kτ

YwY2 dt � S
Nτ

0
YwY2 dt

and a similar estimate for f . In particular this also allows us to apply Theorem 5.2.4 to show that η�τ�k is always
injective and the Euler-Lagrange equation is well defined.
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If we now define the piecewise constant and piecewise affine approximations

η�τ��t� � η�τ�k for kτ B t @ �k � 1�τ
η̃�τ��t� � � t

τ
� k�η�τ�k�1 � �k � 1 �

t

τ
�η�τ�k for kτ B t @ �k � 1�τ

where in particular

∂tη̃
�τ��t� � η�τ�k�1 � η

�τ�
k

τ
for kτ @ t @ �k � 1�τ

our energy estimate turns into an uniform (in τ and t) bound on Eh�η�τ��t��, as well as a uniform (in τ )
bound on R h0 Rh�η�τ�, ∂tη̃�τ�� � c Z∂tη̃�τ�Z2

dt. Now using the properties of energy and dissipation from our
assumptions, this gives an uniform Lª��0, h�;W k0,2�Q;Rn�� bound on η�τ� and η̃�τ� as well as a uniform
L2��0, h�;W k0,2�Q;Rn�� bound on ∂tη̃�τ�.

Analogously to Theorem 5.3.9, we may extract a converging subsequence and a single limit η >W 1,2��0, T �;W k0,2�Q��9
C0��0, T �;C1,α�Q��. In particular we get that

η̃�τ� @ η in W 1,2��0, T �;W k0,2�Q;Rn��
η�τ� @� η in Lª��0, T �;W k0,2�Q;Rn��
η̃�τ� � η in Lª��0, T �;C1,α��Q;Rn��
η�τ� � η in Lª��0, T �;C1,α��Q;Rn��

for all 0 @ α� @ α �� 1 � n
q .

This is already enough to pass to the limit in all of the terms in the Euler-Lagrange equation (6.1.4); note
that due to the added regularizing terms we use the strong convergence and the linearity in the highest gradient
to pass to the limit in the DE�η�τ��.
6.1.1 Time-delayed energy inequality

In the proof of Theorem 6.1.3 we already gave an initial, somewhat crude energy estimate on the discrete level.
Now that we have a solution of the time-delayed equation, we can however give the much stronger, “physical”
energy inequality, which will turn out to be crucial in what follows.

Lemma 6.1.4 (Time-delayed energy inequality for the solid). Let the deformation η > Lª��0, h� � Q;E� 9
W 1,2��0, h� �Q;Rn� be a weak solution to the time-delayed equation Theorem 6.1.1. Then for all t > �0, h�,
we have

Eh�η�t�� � ρ

2h
S

t

0
Y∂tηY2 dt � S

t

0
2Rh�η, ∂tη�dt B Eh�η0� � ρ

2h
S

t

0
YwY2 dt � S

t

0
`f X η, ∂tηe dt.

Proof. We use χ�0,t�∂tη as a test function in the weak equation.2 From this we get

0 � S
t

0
`DEh�η�, ∂tηe � `D2Rh�η, ∂tη�, ∂tηe � `f X η, ∂tηe � ρ

h
`∂tη �w,∂tηe dt

� Eh�η�t�� �Eh�η�0�� � S t

0
2Rh�η, ∂tη� � `f X η, ∂tηe � ρ

h
`∂tη �w,∂tηe dt

where we in particular used that `D2Rh�η, ∂tη�, ∂tηe � 2Rh�η, ∂tη� by the quadratic nature of Rh. Finally we
use Young’s inequality on the last term in the form of

`∂tη �w,∂tηe � Y∂tηY2
� `w,∂tηe C Y∂tηY2

�
1

2
Y∂tηY2

�
1

2
YwY2

�
1

2
Y∂tηY2

�
1

2
YwY2 .

Reordering the terms then closes the proof.
2Note that this is the point where we rely on Rh, since to test DE�η�, we need φ > L2��0, T �;W 2,q�Q;Rn��, but bounding

R�η, ∂tη� only gives us a L2��0, T �;W 1,2�Q;Rn�� bound. See also Theorem 6.2.6.
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6.2 Proof of Theorem 6.0.2

We will start the proof of the theorem by directly using its two key ingredients, the two results from the previous
section. First we iteratively use the existence of time-delayed solutions on the short intervals �0, h� to construct
a time-delayed solution on the longer interval �0, T �.
6.2.1 Step 1: Iterated time-delayed solutions and energy estimates

For fixed h we start with given initial deformation η0 > E and we use the initial velocity as a constant right hand
side w0�t� � η� for t > �0, h�. This allows us to find η̃1 as a solution of the time-delayed problem. Then we
continue the constructions iteratively; i.e. when given ηl > E and wl > L2��0, h� �Q;Rn�, we find a solution
η̃l�1 > L

ª��0, h��Q;E�9W 1,2��0, h�;W k0,2�Q;Rn�� to the time-delayed equation using Theorem 6.1.3. We
then set ηl�1 � η̃l�1�h� andwl�1 � η̃l�1 as data for the next step for which they are admissible by Theorem 6.1.4.

From these ingredients we construct η�h� � �0, T � �Q� Rn using

η�h��t, x� �� η̃l�1�t � hl� for hl B t B h�l � 1�.
Thus, directly from the definition we see that η�h� fulfills

0 � S
T

0
bDEh�η�h��t��, φg � bD2Rh�η�h��t�, ∂tη�h��t��, φg (6.2.1)

� bf X η�h��t�, φg � ρ
h
b∂tη�h��t� � ∂tη�h��t � h�, φg dt

for all φ > Cª��0, h� � Q;Rn� with φS�0,h��P � 0. Furthermore, exploiting the energy inequality (Theo-
rem 6.1.4) yields

Eh�η�h���l � 1�h�� � ρ
2

�l�1�h
�S
lh

[∂tη�h�[2
dt � S

�l�1�h
lh

2Rh�η�h�, ∂tη�h��dt
B Eh�η�h��lh�� � ρ

2

lh

�S
�l�1�h

[∂tη�h�[2
dt � S

�l�1�h
lh

bf X η, ∂tη�h�g dt.
Taking t > �lh, �l�1�h�, we find after summing the above over 1, ..., l and adding the energy inequality for η̃l�1

from Theorem 6.1.4 the following crucial estimate:

�E� � � Eh�η�h��t�� � ρ
2

t

�S
t�h

[∂tη�h�[2
dt � S

t

0
2R�η�h�, ∂tη�h��dt (6.2.2)

B Eh�η0� � ρ
2
Yη�Y2

� S
t

0
bf X η, ∂tη�h�g dt

for all t > �0, T �.
Now, as before, we need to estimate the force term using Young’s inequality. This gives

�E� B Eh�η0� �Emin � ρ
2
Yη�Y2

�
t

2δ
YfY2

Lª �
δ

2
S

t

0
[∂tη�h�[2

dt;

here recall that Emin is defined in Assumption (S1). As all terms involving t on the right hand side have a fixed
sign, we extend to t � T and find

�E� B C0 �C1
T

δ
�
δ

2
S

T

0
[∂tη�h�[2

ds
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for some constants C0,C1 resulting from the given data and independent of h. Dropping the positive terms
involving E and Rh on the left-hand side, multiplying by h and adding up implies

ρ

2
S

T

0
[∂tη�h�[2

ds �
N

Q
l�0

ρ

2
S

�l�1�h
lh

[∂tη�h�[2
ds B hN �C0 �C1

T

δ
�
δ

2
S

T

0
[∂tη�h�[2

ds�
for hN � T .3 Now choosing δ �� ρ

2T allows us to absorb the integral on the right hand side to the left and we
end up with an uniform estimate of the form

ρ

4
S

T

0
[∂tη�h�[2

ds B TC0 �C
�

2T
2,

which implies also that �E� B TC0 �C
�

2T
2

Note that in contrast to the parabolic setup from the last section, up to this point there was no need to apply
Korn’s inequality. In particular, as we used the inertial term to estimate the force term, we obtain a uniform
bound on the energy without exploiting the dissipative terms; i.e. we already know that supt>�0,T �E�ηh�t�� B
TC0 �C

�

2T
2. Now, using this estimate, we may apply Theorem 5.2.8 without restrictions on the final time T ,

to find that

sup
t>�h,T �

� h

�S
t�h

[∂tη�h�[2
ds �E�η�h��t�� � ha0 [©k0η�h��t�[2 � B C and (6.2.3)

S
T

0
[∂tη�h�[2

W 1,2�Q� � h [∂tη�h�[2

Wk0,2�Q� ds B C

are uniformly bounded with constant C � C�T � independent of h. Moreover, it allows to conclude that η�h��t�
is always injective by Theorem 5.2.4.

By the same arguments as used in the proof of Lemma 5.3.9, we can now choose a subsequence which con-
verges to a limit function η > Cw��0, T �;W 2,q�Q;Rn��9W 1,2��0, T �;W 1,2�Q;Rn��9C0��0, T �;C1,α�Q;Rn��.
In particular we obtain that

η�h� @ η in W 1,2��0, T �;W 1,2�Q;Rn��
η�h� @� η in Lª��0, T �;W 2,q�Q;Rn��
η�h� � η in C0��0, T �;C1,α��Q;Rn��

for all 0 @ α� @ α �� 1 � n
q . Moreover, the weak lower semi-continuity implies that

sup
t>�0,T �

� Y∂tη�t�Y2
�E�η�t��� B C and S

T

0
Y∂tηY2

W 1,2�Q� ds B C (6.2.4)

with the same constant as before.

6.2.2 Step 2: Improving convergence

Our final goal is to prove convergence of the weak equation (6.2.1), which is satisfied by the time-delayed
approximation η�h�, to the weak hyperbolic inertial equation (Theorem 6.0.1), as this then implies that the
limit η is a weak solution. The crucial term here is DE�η�h�� which requires strong convergence of η�h� in
W 2,q�Q;Rn�. For this we want to use the Minty-type property of the energy, which requires convergence of
the other terms in the equation. We achieve this convergence by the Aubin-Lions lemma, for which in turn we
need another estimate on the discrete difference quotient.

3There is no need to assume that T is a multiple of h, but we will do so for the sake of simplification.

161



SCHWARZACHER HYPERBOLIC VARIATIONAL APPROXIMATIONS ANALYSIS FOR FSI

Lemma 6.2.1 (Length h bounds (solid)). Fix T A 0. Then there exists a constant C depending only on the
initial data and T , such that for k0 A 2 �

�q�2�n
2q the following holds:

S
T

0
]∂tη�h��t� � ∂tη�h��t � h�

h
]2

W�k0,2�Q�
dt B C

where ∂tη is extended by η� for negative times.

Proof. Pick φ > Cª

0 �Q;Rn�. Then, using the time-delayed equation, we have

ρsSd∂tη�h��t� � ∂tη�h��t � h�
h

,φi
Q

S B SbDE�η�h��t��, φgS � ha0 Sb©k0η�h�,©k0φgS
� SbD2R�η�h��t�, ∂tη�h��t��, φgS � hSb©k0∂tη

�h�,©k0φgS � S`f�t�, φeQS
B �[DE�η�h��t��[

W�2,q�Q� � h
a0 [©k0η�h��t�[

Q
� YfY

ª
� YφYWk0,2�Q�

� �[D2R�η�h��t�, ∂tη�h��t��[
W�1,2�Q� � h [©k0∂tη

�h��t�[
Q
� YφYWk0,2�Q�

Now for the first set of terms, we note that they are uniformly bounded by Theorem 5.1.1, S5 and (6.2.3). For
the second set, we note that the quadratic growth of R�η, .� in W 1,2�Q;Rn� implies a linear growth of D2R
thus equally (6.2.3) implies boundedness when integrated in time.

Note that in the previous lemma the h, by which time is shifted, is the same h as the sequence index.
Thus even though ∂tη�h� is already continuous, we can only ever compare at fixed distances in the form of
multiples of h. This is an unavoidable consequence of the way the estimate is obtained, using the equation.
In particular, we cannot use directly the Aubin-Lions lemma to conclude that ∂tη�h� converges strongly in
C��0, T �, L2�Q;Rn��. Instead we will prove the strong convergence for averages ∂tη�h� over time-intervals
of length h, which turn out to be much more natural in this context and are in fact the same averages that also
occur in the energy inequality.

Lemma 6.2.2 (Aubin-Lions (solid)). Let b�h��t� �� �R t�ht ∂tη
�h�ds. We have (for a subsequence h� 0)

b�h� � ∂tη in C0��0, T �;L2�Q;Rn��.
Proof. By the fundamental theorem of calculus we have

∂tb
�h�

�
∂tη

�h��t � h� � ∂tη�h��t�
h

.

Now b�h� is uniformly bounded in Lª��0, T �;W 1,2�Q;Rn�� by the energy estimate and ∂tb�h� is uniformly
bounded in L2��0, T �;W �k0,2

0 �Q;Rn�� by the previous lemma. Thus we can apply the classical Aubin-Lions
lemma [174], yielding the existence of a converging subsequence in C0��0, T �;L2�Q;Rn��. It remains to
associate the limit function with ∂tη. For that take h0 A 0 and φ > Cª

0 ��h0, T � h0� � Q�, we find for all
h > �0, h0� by the weak convergence of ∂tη�h� @ ∂tη (and the Lebesgue point theorem) that

S
T

0
bb�h�, φg

Q
dt �

h

�S
0

S
T

0
b∂tη�h��t � s�, φ�t�g

Q
dt ds �

h

�S
0

S
T

0
b∂tη�h��τ�, φ�τ � s�g

Q
dτ ds

� S
T

0
`∂tη�τ�, φ�τ�eQ dτ.

Finally we will use a Minty-type argument to improve convergence.

Lemma 6.2.3 (Minty-Trick). η�h��t�� η�t� strongly in W 2,q�Q;Rn� for a.a t > �0, T �.
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Proof. As in the last section we will rely on Theorem 5.1.1, S6. Let h0 A 0 and h > �0, h0�. Further take
ψ > Cª

0 ��h0, T � h0� � Q;R�� with dist�supp�ψ�, ∂Q� A h0. Accordingly we define for δh � ha1 @ h0

the approximation ηδh �� �ηχ�0,T ��Q� � γδh , where γδ is the standard convolution kernel in time-space. This
implies that �η�h��ηδh�ψ is a valid test function for (6.2.1). Moreover, we find that by the standard convolution
estimates that

YηδhψYWk0,2�Q� B cha1�2� qn�k0�
2
n
� YηYW 2,q�Q� and (6.2.5)Y∂tηδhψYWk0,2�Q� B ch�1�k0�a1 Y∂tηYW 1,2�Q� .

Also we have ηδh � η strongly as h� 0 in all norms in which η is bounded.
Now we calculate

0 B lim sup
h�0

S
T

0
bDE�η�h��t�� �DE�η�t��, �η�h� � η�ψg dt

� lim sup
h�0

S
T

0
bDE�η�h��t��, �η�h� � ηδh�ψg dt � lim sup

h�0
dDE�η�h��t��´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bd. in W�2,q�Q�

, �η � ηδh�ψ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�0 in W 2,q�Q�

i dt
� lim sup

h�0
S

T

0
bDEh�η�h��t��, �η�h� � ηδh�ψg � 2h

a0
2 bha0

2 ©
k0�η�h��t��,©k0�η�h� � ηδh�ψg dt

B lim sup
h�0

S
T

0
bDEh�η�h��t��, �η�h� � ηδh�ψg dt � 4ha0 S

T

0
[©k0�η�h��t��[ YηδhψYWk0,2 dt

B lim sup
h�0

S
T

0
bDEh�η�h��t��, �η�h� � ηδh�ψg � cha0

2
��2� q

n
�k0�

2
n
�a1dt

� lim sup
h�0

S
T

0
bDEh�η�h��t��, �η�h� � ηδh�ψg dt

by (6.2.5) and by choosing a1 small enough. The final term can be rewritten using (6.2.1) as

S
T

0
bDEh�η�h��t��, �η�h� � ηδh�ψg dt � � bD2Rh�η�h��t�, ∂tη�h��t��, �η�h� � ηδh�ψg

� bf X η�h��t�, �η�h� � ηδh�ψg � ρsh b∂tη�h��t� � ∂tη�h��t � h�, �η�h� � ηδh�ψg dt.
On the right-hand side we may pass to the limit h� 0. In particular observe that

bD2Rh�η�h��t�, ∂tη�h��t��, �η�h� � ηδh�ψg � bD2R�η�h��t�, ∂tη�h��t��, �η�h� � ηδh�ψg
� 2h b©k0∂tη

�h�,©k0��η�h� � ηδh�ψ�g � `D2R�η�t�, ∂tη�t��, �η � ηδh�ψe
by the strong convergence of η�h� in W 1,2�Q;Rn�, the weak convergence of ∂tη�h� in W 1,2�Q;Rn� and since

hSb©k0∂tη
�h�,©k0��η�h� � ηδh�ψ�gS B h 1

2
�
a0
2 [ºh©k0∂tη

�h�[ [ha0
2 ©

k0��η�h� � ηδh�ψ�[
which converges to zero a.e. using the energy estimates and (6.2.5) by choosing a0 @ 1 and a1 @ 1 accordingly.
The term including the right-hand side converges, since all terms involve converge strongly. For the last term,
we use the discrete integration by parts in time (i.e. shift the term involving t � h) to get

S
T

0

ρs
h
b∂tη�h��t� � ∂tη�h��t � h�, �η�h��t� � ηδh�t��ψ�t�g dt

� �ρsS
T

0
d∂tη�h��t�,�η�h��t � h� � η�h��t�

h
�
ηδh�t � h� � ηδh�t�

h
�ψ�t � h�i dt

� ρsS
T

0
d∂tη�h��t�, �η�h��t� � ηδh�t�� ψ�t � h� � ψ�t�h

i dt.
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Now note that the first difference quotient is equal tow�h� as it was defined in Theorem 6.2.2 and thus converges
strongly to ∂tη in L2��0, T � �Q;Rn�, while the other difference quotients only involve constant functions and
their mollifications and thus also converge in the same space. As a result, all the right hand sides converge
strongly to 0 in L2��0, T � � Q;Rn� and the left hand sides are bounded. Thus the total limit is 0 and via
Theorem 5.1.1, S6, we have η�h��t�� η�t� in W 2,q�Q;Rn� for almost all t > �0, T �.
6.2.3 Step 3: Limit equation

With all the necessary ingredients at hand, we can finally consider the weak equation (6.2.1) for arbitrary test
functions. For the first three terms we have, as before

S
T

0
bDEh�η�h��t��, φg � bD2Rh�η�h��t�, ∂tη�h��t��, φg � bf X η�h��t�, φg dt

� S
T

0
`DE�η�t��, φe � `D2R�η�t�, ∂tη�t��, φe � `f X η�t�, φe dt,

where the regularizing terms vanish by the same estimates as the ones used in the proof of Lemma 6.2.3.
This leaves us with the last term, where we shift the discrete derivative to the test function again and get

S
T

0

ρ

h
b∂tη�h��t� � ∂tη�h��t � h�, φg dt � �ρS T

0
d∂tη�h��t�, φ�t � h� � φ�t�

h
i dt

� �ρS
T

0
`∂tη�t�, ∂tφe dt.

From this, we get solutions on the interval �0, T �.
6.2.4 Step 4: Continuation until collision

Using the short term existence, we can now employ a continuation argument: Assume that η � �0, Tmax�� E is
a solution on a maximal interval. Then either Tmax �ª or we can use the energy inequality to show existence
of a unique limit η�Tmax� similar to as we did at the end of Theorem 5.1.6. Then η�Tmax� ¶ ∂E , would allow us
to reapply the short time existence, which would be a contradiction. This finishes the proof of Theorem 6.0.2.

Let us close this section with some remarks on the preceeding proofs.

Remark 6.2.4 (On the need for dissipation). It is noteworthy, that the a-priori estimates (6.2.4) are valid even
in case of a purely elastic solid, which means in case R � 0. In that case, however, no strategy is known to deal
with the non-linearity in DE�η� without resorting to a relaxed concept of the solutions such as measure valued
solutions. Even for the hyperbolic p-Laplacian ∂2

t η � div�S©ηSp�2
©η� � 0 the existence of weak solutions is a

long standing open problem (see e.g. [5] for a discussion). Only in the case p � 2, where the elastic energy is
quadratic in highest order (and its derivative thus linear) existence of solutions is known.

Remark 6.2.5 (On collisions and continuation afterwards). Let us note that understanding self-collisions of a
elastic body in detail is a long-standing open problem in the mathematical continuum mechanics of solids [9].

For the evolution of the solid including inertia we face a similar difficulty as in the previous section when
approaching collisions. While the limit object η can be constructed by the above methodology, such that it
exists for all times independently of any collision, to get to a limit equation, we need to have an appropriate
Euler-Lagrange equation for all η�τ�k . This we only have if η�τ�k ¶ ∂E , i.e. if there is no self-touching of the
solid.

We wish to mention that some recent progress for the stationary and quasi-stationary analogue of the above
problem has been made by [96] and [118] respectively. The approach is different. Instead of a variational
inequality, the authors consider the associated Lagrange-multiplyier and its physical significance.

Remark 6.2.6 (On the proof of the energy inequality). In the proof of the energy inequality Theorem 6.1.4
we used a regularization term in the dissipation to simplify the proof. Since we will need that term later on
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in the fluid-structure interaction, this only seemed natural, but it should be noted that strictly speaking, it was
not necessary. The same result is still true, if we only ever use R. To show this directly, one can use some
techniques from the theory of minimizing movements, specifically the so called Moreau-Yosida approximation.
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Chapter 7

Bulk elastic solids interacting with
Navier-Stokes fluids

7.1 Introduction

We will now combine the methods developed in the last two sections to show existence of weak solutions (in
the sense of Definition 7.1.1) for a general fluid-structure interaction problem. In contrast to previous works
(see [90, 145, 146, 148, 150, 128, 33] as well as the discussion in the introduction) we work in arbitrary
dimension and consider a bulk solid that can undergo large elastic deformations. But most importantly, we
consider the full nonlinear equation, both for the fluid in form of the incompressible Navier-Stokes equation
with its transport-term as well as full nonlinear elasticity of the solid.

7.1.1 Setup

We consider the following set-up for the fluid-structure interaction problem: The fluid together with the elastic
structure are both confined to a container Ω ` Rn that is fixed in time. The deformation of the solid is at any
instant of time t described via the deformation function η�t� �� η�t, .� � Q � Ω. Here Q is a given reference
configuration of the solid. We assume that both Q,Ω ` Rn are Lipschitz-domains. Here, n C 2 is the dimension
of the problem with n � 2 corresponding to the planar case and n � 3 to the bulk case. The fluid variables are

Figure 7.1: A scheme of the geometry of the fluid-structure interaction. The reference configuration is at the
left while at the right we depict the situation in a given time instant t (the actual configuration).

defined in the time-dependent domain Ω�t� �� Ω � η�t,Q�. The flow of the fluid is determined by its velocity
v�t� � Ω�t� � Rn and its pressure p�t� � Ω�t� � R. Thus, the solid is described in Lagrangian and the fluid in
Eulerian coordinates. Observe, that a similar configuration has already been studied for linear elasticity in [54].

For setting up the evolution equation, we will need the basic physical balances to be fulfilled. As we are
not modeling any thermal effects, this reduces to the balance of momentum for both the fluid and the structure
together with suitable conditions on their mutual boundary, as well as conservation of mass. In the interior
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these balance equations read in strong formulation as

ρs∂
2
t η � divσ � ρsf X η in Q, (7.1.1)

ρf�∂tv � �©v�v� � ν∆v �©p � ρff on Ω�t�, (7.1.2)

divv � 0 on Ω�t�. (7.1.3)

Here, σ is the first Piola–Kirchhoff stress tensor of the solid, ν is the viscosity constant of the fluid, ρs and ρf
are the densities of the solid and fluid respectively and f is the actual applied force in the current (Eulerian)
configuration. Thus, the fluid is assumed to be Newtonian with the Navier-Stokes equation modeling its behav-
ior. For the solid, we will restrict ourselves to materials for which the first Piola–Kirchhoff stress tensor σ can
be derived from underlying energy and dissipation potentials; i.e.

divσ ��DE�η� �D2R�η, ∂tη�
with E being the energy functional describing the elastic properties while R is the dissipation functional used
to model the viscosity of the solid. Here D denotes the Fréchet derivative and D2 the Fréchet derivative with
respect to the second argument. Such materials are often called generalized standard materials [95, 155, 119].
For the analysis performed in this paper, quite general forms of E and R can be admitted (see Section 5.1
below).

From an analytical point of view, the potentials (1.2.8)-(1.2.9) already carry the full difficulty that we will
need to cope with. Namely, any deformation η of finite energy will necessarily be a local diffeomorphism; in
fact we will even strengthen this condition in the presented analysis and construct weak solutions to (7.1.1)-
(7.1.3) for which η is globally injective. This geometrical restriction is necessary not only from the point of
view of physics of solids per se but also essential to properly set-up the fluid-structure interaction problem.
Moreover, E�η� from (1.2.9) is neither convex nor quasi-convex. And for physical reasons explained below the
dissipation potential R has to depend on the state η and cannot depend just on ∂tη. We discuss the modeling
issues in Section 5.1 while we explain the mathematical difficulties in Subsection 7.1.2 below.

Additionally, we impose coupling conditions between η and v on their common interface; namely, we
will assume the continuity of deformation (i.e. no-slip conditions adapted to the moving domain) as well as
traction on the boundary between the fluid and the solid. We denote by M the portion of the boundary of
Q that is mapped to the contact interface between the fluid and the solid. While Q is only assumed to be
a Lipschitz-domain, we assume that the pieces of its boundary that belong to M are additionally C2. The
boundary conditions read

v�t, η�x�� � ∂tη�t, x� in �0, T � �M, (7.1.4)

σ�t, x�n�x� � �νεv�t, η�t, x�� � p�t, η�t, x��I�n̂�t, η�t, x�� in �0, T � �M, (7.1.5)

where n�x� is the unit normal to M while n̂�t, η�t, x�� �� cof�©η�t, x��n�x� is the normal transformed to the
actual configuration and εv �� ©v � �©v�T is the symmetrized gradient. Additionally, there are second order
Neumann-type zero boundary conditions for the deformation η arising from the second order gradient in its
energy.1

Finally, we will prescribe Dirichlet boundary conditions on P �� ∂Q �M , i.e.

η�x, t� � γ�x� in �0, T � � P (7.1.6)

for some fixed boundary displacement γ � P � Ω. Together with the injectivity of deformations, we will encode
this condition in the set of admissible deformations E (See Theorem 5.1.2 for the precise definition).

1Specifically, these naturally occur while minimizing the elastic energy and not prescribing boundary values for ©η. It can also be
seen as a kind of integrability condition for σ. I.e. for σ to be defined as a measure, we need that `DE�η�, φδe � 0 (for δ � 0) ,
where φδ is a regularized version of ξδ�1�dist�., ∂Q�~δ�� with ξ > Cª

0 �M� extended constantly along the normal direction. For our
example energy (1.2.9) this simply reduces to ∂2η

∂n2 � 0 on M .
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We close the system by prescribing initial conditions for v, η, ∂tη:

η�0, x� � η0�x� for x > Q

∂tη�0, x� � η��x� for x > Q

Ω�0� � Ω � η0�Q�
v�0, y� � v0�y� for all y > Ω�0�.

(7.1.7)

7.1.2 Main result

The final objective of this paper is to prove existence of weak solutions to the system (7.1.1)-(7.1.3) subject
to the coupling conditions (7.1.4)-(7.1.5) and the remaining boundary and initial conditions detailed in the
previous subsection.

As is customary in fluid-structure interaction problems (see e.g. [85, 128]), the weak formulation is designed
in such a way that the coupling conditions are realized by choosing well-fitted test functions. Indeed, we have
the following definition:

Definition 7.1.1. Let f > C0��0,ª� � Ω�, v0 > L
2�Ω�, η� > L2�Q� and η0 > E with E be given as defined in

(5.1.2), such that v0 X η0 � η�. We call2 η � �0, T � �Q � Ω, v � �0, T � �Ω�t� � Rn and p � �0, T � �Ω�t� � R,
where Ω�t� �� Ω � η�t,Q�, a weak solution to the fluid-structure interaction problem (7.1.1)–(7.1.2) and
(7.1.4)–(7.1.7), if the following holds:

The deformation satisfies η > L2��0, T �;W 2,q�Q;Rn�� 9W 1,2��0, T �;W 1,2�Q;Rn��, η�0� � η0 such that
∂tη > Cw��0, T �;L2�Q;Rn��. The velocity satisfies v > L2��0, T �;W 1,2

div�Ω���;Rn�� and the pressure satisfies3

p >D���0, T � �Ω� with supp�p� ` �0, T � �Ω�t�.
For all

�φ, ξ� > L2��0, T �;W 2,q�Q;Rn�� 9W 1,2��0, T �;W 1,2�Q;Rn�� �Cª��0, T �;Cª

0 �Ω;Rn��
satisfying ξ�T � � 0, φ�t� � ξ�t� X η�t� on Q, φ�t� � 0 on P for all t > �0, T �, we require that

S
T

0
�ρs `∂tη, ∂tφeQ � ρs `v, ∂tξ � v � ©ξeΩ�t� � `DE�η�, φe � `D2R�η, ∂tη�, φe � ν `εv, εξeΩ�t� dt

� S
T

0
`p,divξeΩ�t� � ρs `f X η, φeQ � ρf `f, ξeΩ�t� dt � ρs `η�, φ�0�eQ � ρf `v0, ξ�0�eΩ�0�

and that ∂tη�t� � v�t� X η�t� on M , η�t� > E and v�t�S∂Ω � 0 for almost all t > �0, T �.
We can then formulate our main theorem as follows:

Theorem 7.1.2 (Existence of weak solutions). Assume that E satisfies Assumption 5.1.1 and R satisfies As-
sumption 5.1.4 given in Section 5.1. Then for any η0 > int�E� � E � ∂E (see Theorem 5.1.2) with E�η0� @ª,
any η� > L2�Q;Rn�, v0 > L

2�Ω�0�;Rn� and any right hand side f > C0��0,ª� �Ω;Rn� there exists a T A 0
such that a weak solution to (7.1.1)-(7.1.7) according to Theorem 7.1.1 exists on �0, T �. Here either T � ª

or the time T is the time of the first contact of the free boundary of the solid body either with itself or ∂Ω (i.e.
η�T � > ∂E).

Moreover, the solution satisfies the energy inequality (7.1.8); for additional regularity of the pressure
see (7.3.10).

2We use standard notation for Bochner spaces over Lebesgue spaces and Sobolev spaces with time changing domains. By the
subscript div we mean the respective solenoidal subspace: W 1,2

div �Ω�t�;Rn� � �v >W 1,2�Ω�t�;Rn�Sdivv � 0�.
3From the given weak formulation one can deduce some more regularity of the pressure. However as is known from the non-variable

theory, regularity of the pressure in time can be obtain merely in a negative Sobolev space. See the estimates in Section 7.3, Step 3b,
which show that the pressure is in the respective natural class.
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Let us remark that the assumptions on the energy and dissipation functional are in particular satisfied by the
model case energies (1.2.8)-(1.2.9) (see Section 5.4).

The coupled system possesses a natural energy inequality which reads

E�η�t�� � ρsS
Q

S∂tη�t�S2
2

dx � ρf S
Ω�t�

Sv�t�S2
2

dy

� S
t

0
2R�η�s�, ∂tη�s�� � ν S

Ω�s� Sεv�s�S2 dy ds
B E�η0� � ρsS

Q

Sη�S2
2
dx � ρf S

Ω�0�
Sv0S2

2
dy

� S
t

0
ρsS

Q
f�s� X η�s� � ∂tη�s�dx � ρf S

Ω�s� f�s� � v�s�dy ds.
(7.1.8)

As is usual in evolution-equations, this inequality holds as an equality for sufficiently regular solutions, i.e. if�∂tη, v� can be used as a pair of test functions.
Before embarking on the technical discussion let us highlight some aspects regarding the convective term

in the Navier-Stokes equation. Indeed, the very presence of this term necessitates the use of techniques beyond
those presented in the previous two sections. At this point, it is illustrative to recall some of the arguments
behind the derivation of the Navier-Stokes equation. The natural way to deal with inertia in a moving fluid is
to transport it along the flow of the fluid; usually by employing the well known concept of a flow-map.

A flow-map is the the fluid counterpart of the deformation of the solid. Indeed, let, as before, Ω�t� denote
the fluid domain at a given time t. Now for a fixed t0, a flow map is a family Φs � Ω�t0�� Ω for s > �0, T � t0�,
which we say is generated by v if Φ0�y� � y and ∂sΦs�y� � v�t0 � s,Φs�y��.

If it exists and has some regularity, it has to be a volume preserving diffeomorphism, which allows us to
validly compare v�t0 � h,Φh�y�� and v�t0, y� for any y > Ω�t0�. From this we are able to obtain the material
derivative via the chain rule:

lim
h�0

v�t0,Φh�y�� � v�t0, y�
h

� ∂tv�t0, y� �©v�t0, y� � v�t0, y�.
This kind of difference quotient will be the Eulerian counterpart to the ordinary difference quotient for ∂tη

in the previous section.
Having explained the idea, we immediately have to note that the existence of such a flow map is not guar-

anteed, even in the case of the Navier-Stokes equation without additional interaction. We will thus additionally
use the fact that we no longer need such a flow map in the limit h � 0. This allows us to add a h-dependent
regularisation term for the fluid flow, similar to those already introduced for the solid.

Additionally we note that in turn to obtain the proper weak equation, we already need to construct a dis-
cretized version of Φ along with our minimization procedure. As an added benefit of this, as we send τ � 0,
we are able to prove convergence of this discretization, directly giving us a flow map for any h A 0, without
having to resort to additional ODE-arguments.

7.2 An intermediate, time delayed problem

As in the previous section, let us start with deriving a time-delayed equation, similar to Section 6.1.

Definition 7.2.1 (Time-delayed solution). Let f > C0��0, h� � Ω;Rn�, w > L2��0, h� � Ω;Rn� and Ω0 �

Ω�η0�Q�. We call the pair η � �0, h��Q� Ω, u � �0, h��Ω� Rn a weak solution to the time-delayed inertial
equation if it satisfies

0 � `DEh�η�, φeQ � `D2Rh�η, ∂tη�, φeQ � dρs∂tη �w X η�1
0

h
,φi

Q

� ρs `f X η, φeQ (7.2.1)

� ν `εu, εξeΩ�t� � h a©k0u,©k0ξf
Ω�t� � cρf u XΦ �w

h
, ξ XΦh

Ω0

� ρf `f, ξeΩ�t�
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for almost all t > �0, h� and all φ > C0��0, h�;W k0,2�Q;Rn��, ξ > C0��0, h�;W k0,2�Ω;Rn�� satisfying
divξSΩ�t� � 0, ξS∂Ω � 0, φSP � 0 and the coupling conditions

ξ X η � φ and u X η � ∂tη in Q.

Here we define Ω�t� � Ω � η�t,Q� and Φ � �0, h� �Ω0 � Ω solves ∂tΦ � u XΦ and Φ0�y� � y.

The construction of the time-delayed solution shares many similarities to that of the weak solution defined
in Theorem 5.1.5 combined with ideas from the construction of the time-delayed solutions for solids in Theo-
rem 6.1.1. However an important addition here is the flow map Φ. Note that in this subsection, the map will
always start at t � 0. This allows us to take a temporary Lagrangian point of view, as Ω0 will play the role of a
reference configuration for the fluid.

As in chapter 6, we will construct the time-delayed solutions by time-discretization. Notice that, in the way
that Φ is linked with the equation, we already need to begin its construction in the discrete setting. Here, we
make use of the additional regularizing dissipation terms for v, as they will allow us to construct Φ in the limit.

In this subsection we will prove the following existence theorem:

Theorem 7.2.2 (Existence of time delayed solutions). Let η0 > E 9W k0,2�Q;Rn� � ∂E , w > L2��0, h� �
Q;Rn� and f > C0��0, h� �Q;Rn�. Then there exists a solution �η, v� to the time delayed equation as given
in Theorem 7.2.1 on the interval �0, h�, or there exists a solution on a shorter interval �0, hmax� such that
η�hmax� > ∂E .4 Furthermore Φ�t, .� is a volume preserving diffeomorphism between Ω0 and Ω�t�.

Let us now begin with the proof of this theorem. Parts that are identical to one of the previous proofs will
only be sketched.

7.2.1 Proof of Theorem 7.2.2, step 1: Constructing an iterative approximation

Fix a step-size τ A 0. We again proceed iteratively, this time constructing both the pair (η, v) as well as Φ.
We start with the given η�τ�0 �� η0 and Φ

�τ�
0 �� id. Assuming η�τ�k > E and Φ

�τ�
k � Ω0 � Ω

�τ�
k given, we define�η�τ�k�1, v

�τ�
k�1� as solution to the following problem

Minimize Eh�η� � τRh ��η�τ�k ,
η � η

�τ�
k

τ

�� � τρs2h

XXXXXXXXXXXX
η � η

�τ�
k

τ
�w

�τ�
k X η0

XXXXXXXXXXXX
2

� τ df X η, η � η�τ�k

τ
i (7.2.2)

τ
ν

2
YεvY2

Ωk
�
τh

2
Z©k0vZ2

Ω
�τ�
k

�
τρf

2h
[v XΦ

�τ�
k �w

�τ�
k [2

Ω0

� τ bf XΦ
�τ�
k , v XΦ

�τ�
k g

Ω0

subject to η > E , v >W 1,2�Ω�τ�
k ;Rn� with divv � 0, vS∂Ω � 0

and
η � η

�τ�
k

τ
� v X η

�τ�
k in P.

Here, as before Ω
�τ�
k � Ω � η

�τ�
k �Q� and we define w�τ�

k �y� � �R �k�1�τ
kτ w�t, y�dt for all y > Ω.

Finally we update Φk to Φk�1 using

Φ
�τ�
k�1 �� �id � τv�τ�k�1� XΦ

�τ�
k .

Note that at this point using the coupling condition, we can immediately derive Φ
�τ�
k�1�∂Ω0� � ∂Ω

�τ�
k�1 but we

still need to show that a similar property holds in the interior. This will be done in step 2a of the proof. For now
we can simply assume v�τ�k�1 to be extended by 0 in the definition of Φ

�τ�
k�1.

4Note that a-posteriori (see Theorem 7.3.4) it will be shown that (in dependence of η0) there is always a minimal time-length hmin

for which it can be guaranteed that η�t� ¶ ∂E for t > �0, hmin�.
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Proposition 7.2.3 (Existence of iterative solutions). The iterative problem (7.2.2) has a solution, i.e. η�τ�k�1 and

v
�τ�
k�1 are defined. Furthermore the minimizers obey the following equation:

bDEh �η�τ�k�1� , φg � dD2Rh
��η�τ�k ,

η
�τ�
k�1 � η

�τ�
k

τ

�� , φi � ρsh dη�τ�k�1 � η
�τ�
k

τ
�w

�τ�
k X η0, φi

Q

� ν bεv�τ�k�1, εξgΩτ
k

� h b©k0v
�τ�
k�1,©

k0ξg
Ω

�τ�
k

�
ρf

h
bv�τ�k�1 XΦ

�τ�
k �w

�τ�
k , ξ XΦ

�τ�
k g

Ω0

� ρf bf XΦ
�τ�
k , ξ XΦ

�τ�
k g

Ω0

� ρs df X η�τ�k ,
η
�τ�
k�1 � η

�τ�
k

τ
i
Q

where φ >W 2,q�Q;Rn�, φSP � 0 and ξ >W 1,2
0 �Ω;Rn� such that

φ � ξ X ηk on Q and divξSΩk � 0.

Proof. The proof differs from the quasistatic case in Theorem 5.3.2 only in the occurrence of the additional
terms for the effects of inertia. As both are non-negative, we still have a minimizing sequence �η̃l, ṽl� bounded
in the same spaces as in the proof of Theorem 5.3.2. In particular due to the compact embeddings, we can
assume that for a sub-sequence both converge strongly in L2�Q;Rn� and L2�Ω�τ�

k ;Rn� respectively. As the
inertial terms are continuous with respect to this convergence, this minimizing sequence will again converge
to a minimizer. In fact establishing the lower bound on the sequence is easier in this case, as the two force
terms can now be estimated against the inertial terms directly, without having to resort to a potentially energy
dependent Korn-inequality. (See the corresponding calculations the proof of Theorem 6.1.3 and Theorem 6.2.4
for more details.)

Further, with regards to the Euler-Lagrange equation, we can treat the additional terms individually. Since
both are quadratic functionals of η and v respectively, and neither involve any derivatives, this is straightfor-
ward. Note that again we are able to remove a factor of τ from the final term by scaling φ and ξ differently than
η and v.

Now as before, our minimization yields a discrete energy inequality by comparing minimizers.

Lemma 7.2.4 (Discrete energy inequality and estimates). We have

Eh�η�τ�k�1� � τRh ��η�τ�k ,
η
�τ�
k�1 � η

�τ�
k

τ

�� � τ ρs2h

XXXXXXXXXXXX
η
�τ�
k�1 � η

�τ�
k

τ
�w

�τ�
k X η0

XXXXXXXXXXXX
2

Q

� τ
ν

2
[εv�τ�k�1[2

Ω
�τ�
k

�
τh

2
[©k0v

�τ�
k�1[2

Ω
�τ�
k

� τ
ρf

2h
[v�τ�k�1 XΦ

�τ�
k �w

�τ�
k [2

Ω0

B Eh�η�τ�k � � τ ρs
2h

[w�τ�
k X η0[2

Q
� τ

ρf

2h
[w�τ�

k [2

Ω0

� τρf bf XΦ
�τ�
k , v XΦ

�τ�
k g

Ω0

� τρs df X η�τ�k ,
η
�τ�
k�1 � η

�τ�
k

τ
i
Q

and there exist c,C A 0 independent of τ and N (with N > N satisfying Nτ B h) such that

Eh�η�τ�N � � N

Q
k�1

τ

<@@@@>Rh
��η�τ�k�1,

η
�τ�
k � η

�τ�
k�1

τ

�� � c
XXXXXXXXXXXX
η
�τ�
k � η

�τ�
k�1

τ
�w

�τ�
k X η0

XXXXXXXXXXXX
2

Q

� ν [εv�τ�k [2

Ω
�τ�
k�1

�
τh

2
[©k0v

�τ�
k [2

Ω
�τ�
k�1

� c [v�τ�k XΦ
�τ�
k�1 �w

�τ�
k [2

Ω0

=AAAA?
B Eh�η0� �C �S h

0
Yw X η0Y2

Q dt � S
h

0
YwY2

Ω0
dt � YfY2

ª
� .
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Proof. As in Theorem 5.3.3, we compare the minimizer �η�τ�k�1, v
�τ�
k�1� in (7.2.2) with the pair �η�τ�k ,0� to get the

first inequality. For the second we sum up all those inequalites for k B N � 1 to end up with

Eh�η�τ�N � � N

Q
k�1

τ

<@@@@>Rh
��η�τ�k�1,

η
�τ�
k � η

�τ�
k�1

τ

�� � ρs
2h

XXXXXXXXXXXX
η
�τ�
k�1 � η

�τ�
k

τ
�w

�τ�
k X η0

XXXXXXXXXXXX
2

Q

�
ν

2
YεvkY2

Ω
�τ�
k�1

�
τh

2
[©k0v

�τ�
k�1[2

Ω
�τ�
k

�
ρf

2h
[v�τ�k XΦ

�τ�
k�1 �w

�τ�
k�1[2

=AAAA?
B Eh�η0� � N

Q
k�1

τ

<@@@@> ρs2h
[w�τ�

k�1 X η0[2

Q
�
ρf

2h
[w�τ�

k�1[2

Ω0

� bf, v�τ�k g
Ωk�1

� df X η�τ�k�1,
η
�τ�
k � η

�τ�
k�1

τ
i
Q

=AAAA?
Now using the definition of w�τ�

k we note that

N

Q
k�1

τ [w�τ�
k�1[2

Ω0

�

N

Q
k�1

τ

XXXXXXXXXXXXXX
τk

�S
τ�k�1�

wdt

XXXXXXXXXXXXXX
2

Ω0

B

N

Q
k�1

τ

τk

�S
τ�k�1�

YwY2
Ω0
dt � S

h

0
YwY2

Ω0
dt.

The same can be done to show that PNk�1 τ [w�τ�
k�1 X η0[2

Q
B R h0 Yw X η0Y2

Q dt. We are left to estimate the force
terms.

As in Theorem 6.1.3 we will absorb them in the inertial terms. This allows us to avoid the use of the Korn’s
inequality that was needed in Theorem 5.3.3 and we get

Sbf XΦ
�τ�
k�1, v

�τ�
k XΦ

�τ�
k�1gΩ0

S B 1

2δ
[f XΦ

�τ�
k�1[2

Ω0

�
δ

2
[v�τ�k XΦ

�τ�
k�1[2

Ω0

B
1

2δ
YfY2

ª
�
δ

2
[v�τ�k XΦ

�τ�
k�1[2

Ω0

where now for small δ, the last term can be subsumed into the inertial term. From this the estimate follows.

As before this immediately implies that for h small enough all η�τ�k will be in E � ∂E .

7.2.2 Proof of Theorem 7.2.2, step 2: Constructing interpolations

Now we unfix τ and define the follwing interpolants:

η�τ��t, x� � η�τ�k �x� for τk B t @ τ�k � 1�
η̃�τ��t, x� � τ�k � 1� � t

τ
η
�τ�
k �x� � t � τk

τ
η
�τ�
k�1�x� for τk B t @ τ�k � 1�

u�τ��t, y� � v�τ�k �y� for τk B t @ τ�k � 1�, y > Ω
�τ�
k

u�τ��t, y� � �η�τ�k�1 � η
�τ�
k � X �η�τ�k ��1

τ
for τk B t @ τ�k � 1�, y > Ω �Ω

�τ�
k

Φ�τ��t, y� � Φ
�τ�
k�1�y� for τk B t @ τ�k � 1�

Φ̃�τ��t, y� � τ�k � 1� � t
τ

Φ
�τ�
k�1�x� � t � τkτ Φ

�τ�
k �x� for τk B t @ τ�k � 1�

as well as Ω�τ��t� � Ω
�τ�
k for τk B t @ τ�k � 1�.

Now using the a-priori estimate Theorem 7.2.4, we derive some uniform bounds on those functions.
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Lemma 7.2.5 (Uniform bounds in τ ). The following quantities are bounded independently of τ :

sup
t>�0,h�

Eh�η�τ��t��, sup
t>�0,h�

[η�τ�[
Wk0,2�Q� , sup

t>�0,h�
[η̃�τ�[

Wk0,2�Q�

S
h

0
[∂tη̃�τ�[2

Wk0,2�Q� dt, S
h

0
[u�τ�[2

Wk0,2�Q� dt S
h

0
[u�τ� XΦ�τ�[2

Ω0

dt.

Furthermore we have per definition
∂tΦ̃

�τ�
� u�τ� XΦ�τ�

whenever Φ�τ��t, y� > Ω�τ��t� and t ¶ τN.

Proof. First we note that the right hand side of the second estimate in Theorem 7.2.4 only depends on the initial
data η0 and w as well as the force f . Then this gives us uniform bounds on Eh�ηk� and thus an Lª bound
on Eh�η�τ��t, .��. By the properties of the energy, Theorem 5.1.1 and its regularized version, this also results
in a uniform bound on YηkYWk0,2�Q� and thus in Lª��0, h�;W k0,2�Q;Rn�� bounds on η�τ� and η̃�τ�. By the
properties of the dissipation, Theorem 5.1.4 using the bound on the energy, we get

cK S
h

0
[∂t©η̃�τ�[2

Q
� h [©k0∂tη̃

�τ�[2

Q
dt � S

h

0
R �η�τ�k�1, ∂tη̃

�h��dt � cK S h

0
h [©k0∂tη̃

�τ�[2

Q
dt

B cS
h

0
Rh �η�τ�k�1, ∂tη̃

�h��dt B c N

Q
k�0

τRh
��η�τ�k�1,

η
�τ�
k � η

�τ�
k�1

τ

��
where we know the right hand side to be bounded. Using Poincare’s inequality, as ∂tη̃�τ�SP � 0, this then
extends into an uniform L2��0, T �;W k0,2�Q;Rn�� bound on ∂tη̃�τ�. For the fluid, we use Theorem 5.5.4, as
well as the global Korn inequality Theorem 5.2.8 get a c A 0 such that

S
h

0
CgK [u�τ�[2

W 1,2�Ω� � ch [©k0u�τ�[2

Ω
dt

B S
h

0
R�η�τ�, η̃�τ�� � ν

2
[εu�τ��t�[2

Ω�τ��t� dt � hS
h

0
[∂t©k0 η̃�τ�[2

Q
� [©k0u�τ�[2

Ω�τ��t� dt

which is uniformly bounded using the energy estimate again. The L2��0, h�;W k0,2�Ω;Rn�-estimate then fol-
lows by interpolating the missing intermediate derivatives.

For the last estimate, we have

S
h

0
[u�τ� XΦ�τ�[2

Ω0

dt �
N

Q
k�0

τ [u�τ�k XΦ
�τ�
k [2

B

N

Q
k�0

τ
3

2
�[u�τ�k XΦ

�τ�
k �wk[2

� YwkY2�
which again consists of two bounded sums.

7.2.3 Proof of Theorem 7.2.2, step 2a: Bounds on Φ�τ�

We now arrive at a delicate point in the existence proof for the time-delayed problem; namely establishing the
properties of and suitable bounds on Φ�τ�. The challenge here is that Φ�τ� is defined via concatenation of an
unbounded (for τ � 0) number of functions and thus is highly nonlinear. As any linearizing would break the
coupling properties needed, we will instead rely on using a high enough regularity for the constituting functions.

We start by proving the following:

Proposition 7.2.6 (A higher regularity for the velocity). There is a τ0 A 0 and α A 0, such that for all τ > �0, τ0�,
we have that Φ

�τ�
k � Ω0 � Ωk is a diffeomorphism with 1

2 B det©Φ
�τ�
k B 2 for all k @ h

τ and

N

Q
k�1

τ [v�τ�k [2

C1,α�Ω�τ�
k�1

� B K

for any N @
h
τ where K and τ0 only depend on w,h,E�η0� and f .

174



SCHWARZACHER FSI INVOLVING BULK SOLIDS ANALYSIS FOR FSI

Proof. As k0 is chosen such that k0 �
n
2 C 2 � n

q , we know that W k0,2
0 �Ω;Rn� embeds into C1,α�Ω;Rn� for

some α A 0. Thus

N

Q
k�1

τ [v�τ�k [2

C1,α�Ω�τ�
k�1

� B S
h

0
[u�τ�[2

C1,α�Ω� B cS
h

0
[u�τ�[2

Wk0,2�Ω�

which is uniformly bounded by Theorem 7.2.5.
Now we need to show the properties of ΦN . By chain rule, the multiplicative nature of the determinant and

its expansion (Theorem 5.5.1) we have

det©Φ
�τ�
N �

N

M
k�1

�det �I � τ©v�τ�k �� XΦ
�τ�
k�1

�

N

M
k�1

�1 � τ tr �©v�τ�k �´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�divv

�τ�
k

�0

�

n

Q
l�2

τ lMl �©v�τ�k � 	 XΦ
�τ�
k�1

where Ml are homogeneous polynomials of degree l. By the inequality between the arithmetic and geometric
mean, we then have

det©Φ
�τ�
N B � N

Q
k�1

1

N
�1 �

n

Q
l�2

τ lMl �©v�τ�k XΦ
�τ�
k�1���N B �1 �

1

N

N

Q
k�1

n

Q
l�2

τ lclLip�v�τ�k �l�N
where Lip�v�τ�k � denotes the Lipschitz constant of v�τ�k with respect to its domain Ω

�τ�
k�1. Now as �1�a~N�N �

exp�a� is monotone increasing for a A 0, we can further estimate

B exp� N

Q
k�1

n

Q
l�2

τ lclLip�v�τ�k �l� � exp� n

Q
l�2

clτ
l~2 N

Q
k�1

�τLip�v�τ�k �2�l~2� B exp� n

Q
l�2

clτ
l~2
K
l~2�

where we used that l C 2 and τLip�v�τ�k0
�2 B PNk�1 τLip�v�τ�k �2 B PNk�1 τ [v�τ�k [2

C1,α�Ω�τ�
k�1

� B K.

In a similar fashion, we can give a lower estimate

�det©Φ
�τ�
N ��1

B
�� N

Q
k�1

1

N
�1 �

n

Q
l�2

τ lMl �©v�τ�k XΦ
�τ�
k�1���1��

N

B exp�2
n

Q
l�2

clτ
l~2
K
l~2�

using 1
1�a B

1
1�SaS B 1 � 2SaS for SaS small enough. Thus for τ0 small enough, we have that

1

2
B det�©Φ

�τ�
N � B 2.

Now we know from the boundary condition that Φ
�τ�
N is an orientation preserving diffeomorpism on ∂Ω0 as

it is given by η�τ�N X η�1
0 and id at the respective parts of the boundary. We also know that Ω0 and Ω

�τ�
N are

domains with the same topology as there were no collisions. But then Φ
�τ�
N has to be a diffeomorphism by a

degree argument.

An immediate consequence of the last proof is the following:

Corollary 7.2.7 (Regularity of Φ�τ�). The maps Φ�τ��t, .� are uniformly Lipschitz continuous, i.e. Lipschitz
continuous with respect to x such that the constants are bounded independently of τ and t. Furthermore in the
limit we have that

lim
τ�0

det©Φ�τ�
� 1.

175



SCHWARZACHER FSI INVOLVING BULK SOLIDS ANALYSIS FOR FSI

Proof. By the estimates in the last proof, we find that limτ�0 det©Φ�τ� � 1. What is left, is to prove the
Lipschitz regularity.

Here we proceed in the same fashion as in the preceeding proof:

Lip�Φ�τ�
N � B N

M
l�1

Lip�id�τv�τ�l � B N

M
l�1

�1 � τLip�v�τ�l �� B � 1

N

N

Q
l�1

�1 � τLip�v�τ�l ���N
� �1 �

1

N

N

Q
l�1

τLip�v�τ�l ��N B exp� NQ
l�1

τLip�v�τ�l ��
B exp

���
¿ÁÁÀ N

Q
l�1

τ

¿ÁÁÀ N

Q
l�1

τLip�v�τ�l �2
��� B exp �ºhºK� .

7.2.4 Proof of Theorem 7.2.2, step 3: Convergence of the equation

Relying on the Banach-Alaoglu theorem as well as the classical Aubin-Lions lemma, we pick up subsequence of
τ ’s and find η > W 1,2��0, h�;W k0,2�Q;Rn��, u > L2��0, h�;W k0,2�Ω;Rn��, Φ > C0��0, h�;W 1,ª�Ω0;Rn��
such that

η�τ�, η̃�τ� @� η in Lª��0, h�;W k0,2�Q;Rn��
∂tη̃

�τ�
@ ∂tη in L2��0, h�;W k0,2�Q;Rn��

u�τ� @ u in L2��0, h�;W k0,2�Ω;Rn��
Φ�τ�

� Φ in C0��0, h�;Cα�Ω0;Rn��
and we define Ω�t� � Ω � η�t,Q�. Moreover, due to Theorem 7.2.7 we know that Φ is Lipschitz with constant
exp�ºLh� and that det©Φ � 1 almost everywhere. We also remark that Φ�t, .�S∂Ω0 is injective as long as there
is no collision in the solid (which we already excluded), and that again we thus know that Φ�t, .� � Ω0 � Ω�t�
is a volume preserving diffeomorphism.

Finally we can conclude that

∂tΦ � lim
τ�0

∂tΦ̃
�τ�

� lim
τ�0

u�τ� XΦ�τ�
� u XΦ

almost everywhere.
Then Φ fulfills the requirements in Definition 7.2.1 and v and η are coupled in the right way, as before.

What is left is to show that these functions fulfill the weak equation (7.2.1). This is indeed very similar to the
proofs of Theorem 5.3.9 and Theorem 6.1.3.

As before, we use Theorem 5.3.11 and pick a test function ξ > Cª

0 ��0, h� �Ω;Rn� such that divξ � 0 in a
neighborhood of the fluid domain. From this we can construct matching φ�τ� �� ξ X η�τ� and use those to test
the discrete Euler-Lagrange equation from Theorem 7.2.3.

For most of the terms including all those related to the solid, we have already dealt with in Theorem 5.3.9
and Theorem 6.1.3. What is left are the additional regularization term, the inertial effects of the fluid and the
force term for the fluid which has been slightly modified here.

We start with the latter, where we simply note that Φ�τ� converges uniformly and thus any concatenation
with a uniformly continuous function such as given by f XΦ�τ� converges uniformly as well. Therefore

S
h

0
bf XΦ�τ�, ξ XΦ�τ�g

Ω0

dt� S
T

0
`f XΦ, ξ XΦeΩ0

dt � S
h

0
`f, ξeΩ�t� dt,

where the last equality is true as Φ is volume preserving.
Of greater interest is the inertial term of the fluid, where we have

S
h

0
bu�τ� XΦ�τ�

�w�τ�, ξ XΦ�τ�g
Ω0

dt� S
h

0
`u XΦ �w, ξ XΦeΩ0

dt
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as the right side of the product converges uniformly and the left side at least weakly in L2��0, h� � Ω0;Rn�.
Here, we introduced the notation

w�τ��t� �� w�τ�
k if τk B t @ τ�k � 1�.

Then in particular by the Lebesgue differentiation theorem w�τ�
� w in L2��0, h� �Ω;Rn� and w�τ� X η�1

0 �

w X η�1
0 in L2��0, h� �Q;Rn�.

Finally we note that as used before χΩ�τ��t�©k0ξ � χΩ�t�©k0ξ in L2��0, h�;L2�Ω;Rn�� and thus

S
h

0
b©k0u�τ�,©k0ξg

Ω�τ��t� dt� S
h

0
a©k0u,©k0ξf

Ω�t� dt

by the corresponding weak convergence of u�τ�. This finishes the proof.

7.2.5 A posteriori energy inequality

We close this section with an energy inequality analogous to Theorem 6.1.4. As before, this will be the central
estimate that allows us to take the limit h� 0 and pass to the limit with the equation.

Lemma 7.2.8 (Energy inequality for time delayed solutions). Assume that �η, v� is a weak solution to the time
delayed equation (7.2.1), as constructed in Theorem 7.2.2. Then we have the following energy inequality

Eh�η�h�� � S h

0
2Rh�η, ∂tη� � ν YεvY2

Ω�t� � h Z©k0vZ2

Ω�t� dt �
h

�S
0

ρf

2
YvY2

Ω�t� �
ρf

2
Y∂tηY2

Q dt

B Eh�η�0�� � S h

0
ρf `f, veΩ�t� � ρs `f X η, ∂tηeQ dt � S h

0

ρf

2h
YwY2

Ω0
�
ρf

2h
Zw X η�1

0 Z2

Q
dt.

Proof. We insert �∂tη, v� as test functions in (7.2.1). These have the correct coupling and boundary conditions.
We need to be careful with regularity here and thus have to rely on the added regularizing terms. From these we
know that ∂tη > L2��0, h�;W k0,2�Q;Rn�� and it thus can be used in duality pairing with DEh�η�. We hence
obtain

0 � S
h

0
`DEh�η�, ∂tηe � `D2Rh�η, ∂tη�, ∂tηe � dρs∂tη �w X η�1

0

h
, ∂tηi

Q

� ν `εv, εveΩ�t� � cρf v XΦ �w

h
, v XΦh

Ω0

� ρf `f, veΩ0
� ρs `f X η, ∂tηeQ dt

Now the first term is just the time derivative of the energy and thus its integral is Eh�η�h�� �Eh�η�0�� while
for the second term we remember that due to the 2-homogeneity of the dissipation `D2Rh�η, ∂tη�, ∂tηeQ �

2Rh�η, ∂tη�. Finally we estimate the inertial terms using Young’s inequality in the form of `a � b, ae � SaS2 �`b, ae C 1
2 SaS2 � 1

2 SbS2. Reordering terms according to their sign proves the estimate.

7.3 Proof of Theorem 7.1.2

Similarly to the proof of Theorem 6.0.2 in chapter 6, we will use time-delayed solutions constructed in the
previous subsection to approximate weak solutions to the fluid-structure interaction problem (7.1.1)–(7.1.7).
The main added difficulty, when compared to chapter 6, is in dealing with the inertial effects of the fluid. A
particular problem there is that the flow-map itself will not persist in the limit for h � 0. However since it
is only ever needed for a flow of length h, the goal is simply to find the right reformulation such that limit
quantities still exist. In particular, the material derivative ∂tv � v � ©v will only be obtained in a weak sense.

Furthermore we note that due to the changing domain, we generally use convergence of u instead of v.
With all this in mind, let us begin with the proof.
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7.3.1 Proof of Theorem 7.1.2, step 1: Constructing another iterative approximation

We now iteratively construct an approximative solutions to the to the fluid-structure interaction problem (7.1.1)–
(7.1.7) using time-delayed solutions.

For some fixed h assume that η0 with finite energy Eh�η0�, v0 � Ω0 �� Ω�η0�Q�� Rn satisfying divv0 � 0
and η� � Q� Rn are given. Set w0�t, y� � v0�y� for y > Ω0 and w0 � η� X η

�1
0 otherwise.5

For ηl � Q � Ω, wl � �0, h� � Ω � Rn and Ωl �� Ω � ηl�Q� given, we rely on Theorem 7.2.2 to construct
time-delayed solutions to (7.1.1)–(7.1.7) according to Theorem 7.2.1 on �0, h� with the given data, which we
will denote using η̃l�1, vl�1,Φl�1. Observe in particular, that

Φl�1�s��Ωl� � Ω � η̃l�1�s,Q�.
We then set ηl�1 �� η̃l�1�h, �� and Ωl�1 �� Ω � ηl�1�Q� and construct

wl�1 � �0, h� �Ω� Rn, wl�1�t, �� � ¢̈̈¦̈̈¤vl�1�t, �� XΦl�1�t, �� XΦl�1�h, ���1 on Ωl�1

∂tη�t, �� X η�t, ���1 on Ω �Ωl�1

which will again allow us to find time-delayed solutions according to Theorem 7.2.1. Indeed, Eh�ηl�1� @

ª by the energy inequality Theorem 7.2.8 and since Φl�1 is volume preserving we have R h0 Ywl�1Y2
Ωl�1

dt �

R h0 Yvl�1Y2
Ωk�t� dt @ ª and a similar estimate for the solid. Hence we can iterate until we reach a collision or

until E�ηl� or wl diverge (as we will see by Lemma 7.3.2, neither of the last two can happen in finite time).
Now we construct the h-approximation.

Definition 7.3.1 (h-approximation). For h A 0 and all l > N0 such that lh @ T , let η̃l, vl and Φl be time-delayed
solutions as constructed above. Then we define the approximations η�h� � �0, T ��Q� Ω, u�h� � �0, T ��Ω� Rn

as well as Φ
�h�
s � �0, T � �Ω� Ω for s > ��h,h� by

η�h��t, x� �� η̃l�t � lh, x� for t > �lh, �l � 1�h�
Ω�h��t� �� Ωl�t � hl� for t > �lh, �l � 1�h�

v�h��t, y� �� vl�t � lh, y� for t > �lh, �l � 1�h�, y > Ω�h��t�
u�h��t, y� �� v�h��t, y� for t > �0, T �, y > Ω�h��t�
u�h��t, y� �� ∂tη�h��t, �η�h��t���1�y�� for t > �0, T �, y > η�h��t,Q�
ρ�h��t, y� �� ρf for t > �0, T �, y > Ω�h��t�
ρ�h��t, y� �� ρs

det�©η�h��t, �η�h��t���1�y��� for t > �lh, �l � 1�h�, y ¶ Ω�h��t�
Moreover for y > Ω�h��t� and s > ��h,h� we define for t > �lh, �l � 1�h�

Φ�h�
s �t, .� �� Φl�t � s � lh� X �Φl�t � lh���1 if t � s > �lh, �l � 1�h�

Φ�h�
s �t, .� �� Φl�1�t � s � �l � 1�h� XΦl�h� X �Φl�t � lh���1 if �l � 1�h B t � s @ �l � 2�h

Φ�h�
s �t, .� �� Φl�1�t � s � �l � 1�h� X �Φl�1�h���1

X �Φl�t � lh���1 if �l � 1�h B t � s @ lh.
For y > η�h��t,Q� and s > ��h,h� we define

Φ�h�
s �t� �� η�h��t � s� X �η�h��t���1

5Note that for this first step, v0 and η� do not need to fulfill a coupling condition η� � v0 X η0 on ∂Q � P yet. This is completely
reasonable from a mathematical point of view, as initial values will only ever be taken in an L2-sense, so there is no trace-theorem to
make sense of this condition.
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Note that in contrast to the usage in the proof of Theorem 7.2.2, where the Φ�t, .� always corresponded
to the flow starting from the initial configuration of the fluid, we now use a full flow map Φ

�h�
s �t, .� which

corresponds to the flow from time t to time t � s. In particular Φl�r� maps the fluid at time lh to the fluid at
time lh � r for r > �0, h�, so we always need to use the previous multiples of h as an intermediate steps in
defining Φ

�h�
s .

This being said, what we will use in the coming proofs is not the definition but the fact that Φ
�h�
s is the flow

map of u�h�. In particular we will rely on the resulting properties that are shown in the following lemma.

Lemma 7.3.2 (The global flow map). For all h A 0, the flow-map defined above is continuous in space-time
and satisfies

∂sΦ
�h�
s �t, y� � u�h��t � s,Φ�h�

s �t, y��. (7.3.1)

Moreover, Φ
�h�
s �t, .� is density preserving, i.e.

det�©Φ�h�
s �t, y�� � 1 for y > Ω�h��t� and

det�©Φ�h�
s �t, y�� � ρ�h��t � s,Φ�h�

s �t, y��
ρ�h��t, y� for y > η�h��t,Q�.

The inverse of the flow map is given by �Φ�h�
s �t���1 � Φ

�h�
�s �t � s�.

Proof. For all y > Ω�h��t� 8 η�h��t,Q� we find (by chain rule and Theorem 7.2.2) that that

∂sΦ
�h�
s �t, y� � u�h��t � s,Φ�h�

s �t, y��.
For s � 0 the function Φ

�h�
0 �t� � id is trivially continuous over Ω and by the a-priori estimates also u is

uniformly Lipschitz continuous (in dependence of h). Hence by a standard argument for ordinary differential
equations Φ

�h�
s �t, y� is continuous over Ω.

The identity of the determinant follows by Theorem 7.2.2 for the fluid part and by chain rule and the
definition of ρ�h� for the solid part. Furthermore the inverse of the flow map is given as the respective flow in
the opposite direction, which is verified by considering �Φ�h�

s �t���1 � Φ
�h�
�s �t � s�.

While it would also be possible to define Φ
�h�
s �t� for larger s, for the remainder of the proof we only need

s > ��h,h�. (See also Theorem 7.3.11 with regards to this).
With the h-approximation defined, (7.2.1) translates to

S
T

0
bDEh�η�h��, φg � bDRh�η�h�, ∂tη�h��, φg � ρs d∂tη�h��t� � ∂tη�h��t � h�

h
,φi

Q

(7.3.2)

� bεv�h�, εξg
Ω�h��t� � ρf dv�h��t� XΦ

�h�
h �t � h� � v�h��t � h�

h
, ξ�t� XΦ

�h�
h �t � h�i

Ω�h��t�h�
dt.

�S
T

0
ρs bf X η�h�, φg

Q
� ρf `f, ξeΩ�h��t� dt

for all φ > C0��0, T �;W k0,2�Q;Rn��, ξ > C0��0, T �;W k0,2
0 �Ω;Rn�� satisfying divξSΩ�t� � 0, ξS∂Ω � 0,

φSP � 0 and the coupling conditions ξ X η � φ and u X η � ∂tη in Q.
Observe that by the definition of ρ�h� above, we find by a change of variables the following identity for the
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global momentum:

dρ�h�u�h��t� XΦ
�h�
h �t � h� � ρ�h�u�h��t � h�

h
, ξ�t� XΦ

�h�
h �t � h�i

Ω

� ρf dv�h��t� XΦ
�h�
h �t � h� � v�h��t � h�

h
, ξ�t� XΦ

�h�
h �t � h�i

Ω�h��t�h�

� ρs d∂tη�h��t� � ∂tη�h��t � h�
h

,φi
Q

,

(7.3.3)

which holds for the same set of test functions as (7.3.2).
From Theorem 7.2.8 we deduce the following a-priori estimate:

Lemma 7.3.3 (A-priori estimate (full problem)). We have for any t > �0, T �
Eh�η�h��t�� � t

�S
t�h

ρf

2
[u�h�[2

Ω�h��t� �
ρs
2
[∂tη�h�[2

Q
dt

� S
t

0
Rh�©η�h�, ∂tη�h�� � ν [εu�h�[2

Ω�h��t� � h [©k0u�h�[2

Ω�h��t� dt

B Eh�η0� � 1

2
Yv0Y2

Ω0
� S

t

0
ρf bf, u�h�g

Ω�h��t� � ρs bf X η�h�, ∂tη�h�gQ dt,
and moreover there exist C, c A 0 independent of h such that

Eh�η�h��t�� � c t

�S
t�h

[u�h�[2

Ω�h��t� � [∂tη�h�[2

Q
dt

� S
t

0
Rh�©η�h�, ∂tη�h�� � ν [εu�h�[2

Ω�h��t� � h [©k0u�h�[2

Ω�h��t� dt B C �Ct2

In both these estimates take u�h� and ∂tη�h� to be continued by their initial values for t @ 0.

Proof. Theorem 7.2.8 translates for any l > N0 such that lh @ T to

Eh�ηl�1� � s

�S
0

ρf

2
Yvl�1Y2

Ω̃l�t� �
ρs
2
Y∂tη̃l�1Y2

Q dt

� S
s

0
Rh�©η̃l�1, ∂t©η̃l�1� � ν Yεvl�1Y2

Ω̃l�t� � h Z©k0vl�1Z2

Ω�h��t� dt

B Eh�ηl� � s

�S
0

ρf

2
YwlY2

Ωl
�
ρs
2
Ywl X ηlYQ dt � S s

0
`f, vl�1eΩl � ρs `f X η̃l, ∂tη̃leQ dt

for s > �0, h�. Now per construction Ywl�t, .�YΩl
� Yvl�t, .�YΩ̃l�1�t� and Ywl X ηlYQ � Y∂tη̃lYQ thus we can use a

telescope argument to get the first energy inequality as we did in Theorem 6.1.4.
Next we use Young’s inequality for the two force terms to obtain

S
t

0
ρf bf, v�h�g

Ω�h��t� � ρs bf X η�h�, ∂tη�h�gQ dt
B S

t

0

1

2δ
�ρf YfY2

Ω�h��t� � ρs [f X η�h�[2

Q
� � δ

2
�ρf [v�h�[2

Ω�h��t� � ρs [∂tη�h�[2

Q
�dt

B
C

δ
t YfY2

ª
� S

t

0

δρf

2
[v�h�[2

Ω�h��t� �
δρs
2

[∂tη�h�[2

Q
dt.
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Now dropping all non-negative terms on the left-hand side except those stemming from inertia and extending
the interval to �0, T �, we have

t

�S
t�h

ρf

2
[v�h�[2

Ω�h��t� �
ρs
2
[∂tη�h�[2

Q
dt

B E�η0� �Emin �
1

2
Yv0Y2

Ω0
�
C

δ
T YfY2

ª
� S

T

0

δρf

2
[v�h�[2

Ω�h��t� �
δρs
2

[∂tη�h�[2

Q
dt

and summing over intervals for T � hN thus gives

S
T

0

ρf

2
[v�h�[2

Ω�h��t� �
ρs
2
[∂tη�h�[2

Q
dt B

N

Q
l�1

h

lh

�S
�l�1�h

ρf

2
[v�h�[2

Ω�h��t� �
ρs
2
[∂tη�h�[2

Q
dt

B hN �C �
C

δ
T YfY2

ª
� S

T

0

δρf

2
[v�h�[2

Ω�h��t� �
δρs
2

[∂tη�h�[2

Q
dt�

from which as before in Theorem 6.0.2 choosing δ � 1
2T yields the desired estimate.

Corollary 7.3.4 (Minimal no collision time). Assume that η0 ¶ ∂E . Then there is a T A 0 depending only on
η0, v0 and f such that η�h��s� is injective on Q for all t > �0, T �, h small enough, i.e. we have η�h��t� ¶ ∂E
and thus there is no collision.

Proof. From the final estimate in the proof of Theorem 7.3.3 we get

[η�h� � η0[2

Q
� \S T

0
∂tη

�h�dt\2

Q
B S

T

0
[∂tη�h�[2

Q
dt B TC�1 � T 2�.

Using this bound for small enough T then allows us to apply the short-distance injectivity result Theorem 5.2.4.

As a direct consequence of the uniform bounds of det�©η�h��, the definitions of Eh and Rh as well as
Theorem 5.2.8, we find that

Corollary 7.3.5 (Korn-type estimate). There is a constant just depending on the energy estimate in Theo-
rem 7.3.3, such that

sup
t>�0,T�h�

t�h

�S
t

[u�h��s�[2

Ω
ds � S

T

0
[∂tη�h�[2

W 1,2�Q� dt � S
T

0
[u�h�[2

W 1,2�Ω� dt B C,

sup
t>�0,T �

ha0 [η�h�[2

Wk0,2�Q� � hS
T

0
[∂tη�h�[2

Wk0,2�Q� dt � S
T

0
[u�h�[2

Wk0,2�Ω� dt B C.

7.3.2 Proof of Theorem 7.1.2, step 2: The weak time-derivative

In the following, we may understand ∂tη�h� and u�h� to be extended by their initial values for t > ��h,0�.
Lemma 7.3.6 (Length h bounds (fluid)). Fix T A 0. Then there exists a constant C depending only on the
initial data, such that the following holds:

1. R T0 \∂tη�h��t��∂tη�h��t�h�h \2

W�k0,2�Q�
dt B C

2. [ξ�t� � ξ�t � s0� XΦ
�h�
�s0�t�[Ω

B ChLipt,y�ξ� for all ξ > Cª

0 ��0, T � �Ω�, s0 > ��h,h�
3. [ξ � ξ XΦ

�h�
s0 �t�[

Ω
B ChLipy�ξ� for all ξ > Cª

0 �Ω�, s0 > ��h,h�, t > �0, T �
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Here we use Lipy and Lipt,y to distinguish the Lipschitz-constants with respect to space and space-time re-
spectively.

Proof. The first estimate is shown in almost the same way as Theorem 6.2.1. Indeed, as we only test by
functions that vanish on the boundary, we can afford to set ξ to 0 on the fluid-domain.

For the second estimate, let ξ > Cª

0 ��0, T � �Ω;Rn� and calculate

S
Ω
Sξ�t� � ξ�t � s0� XΦ

�h�
�s0�t�S2dy

� S
Ω
SS 0

�s0
∂s �ξ�t � s� XΦ�h�

s �t��dsS2dy
� S

Ω
SS 0

�s0
�©ξ�t � s� � u�h��t � s� � ∂tξ�t � s�� XΦ�h�

s �t�dsS2dy
B s0S

0

�s0
S

Ω
S�©ξ�t � s� � u�h��t � s� � ∂tξ�t � s�� XΦ�h�

s �t�S2dyds
B h2Lipt,y�ξ�2

t

�S
t�h

S
Ω

det�©Φ
�h�
�s �t � s�� �Su�h��s�S2 � 1� ds

B Ch2Lipt,y�ξ�2

t

�S
t�h

�[u�h��s�[
Ω
� 1�2

ds

using the uniform bounds of det�©Φ
�h�
�s �t � s�� (Theorem 7.3.2) and the velocity Theorem 7.3.5. This implies

(2). The third assertion follows by the very same arguments.

The next proposition estimates the weak time-derivative of the global momentum.

Proposition 7.3.7. There is am C k0 and a constant independent of h, such that for all ξ > C0��0, T �;Wm,2
0 �Ω;Rn��

with divξ � 0 on Ω�t�
S

T

0
Sd�ρ�h�u�h���t� � �ρ�h�u�h���t � h�

h
, ξ�t�i

Ω

Sdt B C YξYL2��0,T �;Wm,2�Ω�� .

Proof. Let ξ > C0��0, T � �Ω;Rn� with divξ�t� � 0 on Ω�h��t� for all t > �0, T � and define φ �� ξ X η�h�. Let
us first split the integrand into two along the flow map.

d�ρ�h�u�h���t� � �ρ�h�u�h���t � h�
h

, ξ�t�i
Ω

� d�ρ�h�u�h���t� � �ρ�h�u�h���t � h� XΦ
�h�
�h �t�

h
, ξ�t�i

Ω

� d�ρ�h�u�h���t � h� � �ρ�h�u�h���t � h� XΦ
�h�
�h �t�

h
, ξ�t�i

Ω

�� J1�t� � J2�t�
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Now we estimate J1�t� by changing variables on the fluid domain and using (7.3.2)

S
T

0
SJ1�t�Sdt � S T

0

RRRRRRRRRRRρs d∂tη
�h��t� � ∂tη�h��t � h�

h
,φi

Q

� ρf du�h��t� XΦ
�h�
h �t � h� � u�h��t � h�

h
, ξ�t� XΦ

�h�
h �t � h�i

Ω�h��t�h�

RRRRRRRRRRRRdt
B S

T

0
SbDE�η�h��, φgS � ha0 Sb©k0η�h�,©k0φg

Q
S � SbD2Rh�η�h�, ∂tη�h��, φgS

� hSb©k0∂tη
�h�,©k0φg

Q
S � νSbεu�h�, εξg

Ω�t�S � hSb©k0u�h�,©k0ξg
Ω�t�S

� ρf S`f, ξeΩ�t�S � ρsS`f X η, φeQSdt
B cS

T

0
[DE�η�h��[

W�2,q�Q� Yξ�t�YW 2,q�Ω� [η�h��t�[W 2,q�Q�
� [D2R�η�h�, ∂tη�h��[

W�1,2�Q� Yξ�t�YW 2,q�Ω� [η�h��t�[W 2,q�Q�
� [η�h��t�[

Wk0,2�Q� �ha0 [©k0η�h�[ Yξ�t�YCk0�Ω� � h [∂tη�h��t�[Wk0,2�Q� Yξ�t�YCk0�Ω��
� h [u�h��t�[

Wk0,2�Q� YξYWk0,2�Q� � [εu�h�[Ω�t� YεξYΩ�t� � YfYª YξYΩ�t� dt

where we used that by Theorem 5.5.4 we have Yφ�t�YW 2,q�Q� B c Yξ�t�YW 2,q�Ω� Zη�h��t�ZW 2,q�Q� and Yφ�t�YWk0,2�Q� B
c Yξ�t�YCk0�Ω� Zη�h��t�ZWk0,2�Q�. From the energy estimate in Lemma 7.3.3 we know that Zη�h��t�Z

W 2,q�Q�
and ha0~2 Zη�h��t�Z

Wk0,2�Q� are uniformly bounded in h and t. Thus every term is a product of a quantity

which has (at least) a uniform L2��0, T ��-bound using the energy estimate and a term which can be estimated
against Yξ�t�YCk0�Ω�. Choosing m such that Wm,2�Ω;Rn� embeds into Ck0�Ω;Rn� then gives us

S
T

0
SJ1�t�Sdt B C YξYL2��0,T �;Wm,2�Ω�� .

For J2�t� we first note that by the density preserving nature of Φ (see Theorem 7.3.2) we can obtain by a change
of variables b�ρ�h�u�h���t � h� XΦ

�h�
�h �t�, ξ�t�gΩ

� b�ρ�h�u�h���t � h�, ξ�t� XΦ
�h�
h �t � h�g

Ω
,

and thus

J2�t� � d�ρ�h�u�h���t � h�, ξ�t� � ξ�t� XΦ
�h�
h �t � h�

h
i

Ω

B [�ρ�h�u�h���t � h�[
Ω
CLipy�ξ�t��

using Theorem 7.3.6 (3) as well as the uniform Lª bounds of ρ�h� and Theorem 7.3.5.

7.3.3 Proof of Theorem 7.1.2, step 3: Convergence to the limit

Now we again use our uniform bounds in h to find a converging sub-sequence and a suitable limit functions to
the approximating sequences:

Lemma 7.3.8 (Weak compactness). There exists a subsequence of h� 0 (not relabeled) and limit functions
η > Cw��0, T �;W 2,q�Q;Rn�� 9W 1,2��0, T �;W 1,2�Q;Rn��, u > L2��0, T �;W 1,2�Ω;Rn�� such that

η�h� @ η in Cw��0, T �;W 2,q�Q;Rn��
∂tη

�h�
@ ∂tη in L2��0, T �;W 1,2�Q;Rn��

u�h� @ u in L2��0, T �;W 1,2�Ω;Rn��
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Proof. Using the estimates from Theorem 7.3.3, we know that E�η�h��t�� is bounded independently of t
and h and that R T0 R�η�h�, ∂tη�h��dt is also uniformly bounded in h. Thus by Assumptions 5.1.1 and 5.1.4,
the sequence �η�h��h is uniformly bounded in Lª��0, T �;W 2,q�Q;Rn��9W 1,2��0, T �;W 1,2�Q;Rn�� which
allows us to pick a subsequence and a limit η in the same space such that the first two assertions hold.

Finally we use the global Korn-inequality Theorem 5.2.8 to show that R T0 Zu�h�Z2

W 1,2�Ω� dt is uniformly
bounded and extract a limit u (after possibly choosing another subsequence) such that the last assertion is
true.

Exactly by the same argument by which we obtained Theorem 6.2.2 and Theorem 6.2.3 we get:

Corollary 7.3.9 (Aubin-Lions & Minty (coupled solid)). Let b�h� � t( �R tt�h ∂tη�h�ds. Then for a subsequence
of h’s (not relabeled) we have that

b�h� � ∂tη in L2��0, T �;L2�Q;Rn�� and η�h� � η in Lq��0, T �;W 2,q�Q;Rn��.
In particular for almost all t > �0, T � we have

DE�η�h��t���DE�η�t�� in W �2,q�Q;Rn�.
We now want to prove a similar result for the Eulerian velocity u�h�. While we have an estimate on the time

derivative of �R 0
�h ρ

�h�u�h��t � s�ds in the form of Theorem 7.3.7, this estimate is in a dual space of functions
which are divergence free on the fluid domain and thus in a time and h-dependent space. As a consequence,
we are no longer in the realm of classic Aubin-Lions type theorems and instead need to prove a similar result
directly.

Lemma 7.3.10 (Aubin-Lions (fluid)). For each t > �0, T �, h A 0 we define Çm�h��t� > L2�Ω;Rn� by

Çm�h��t� �� 0

�S
�h

�ρ�h�u�h���t � s�ds.
For all (sufficiently small) δ A 0 there exists a subsequence of h’s (not relabeled) such that for all A >

Cª

0 ��0, T � �Ω;Rn�n�
S

T

0
b�u�h��δ,AÇmhg

Ω
dt� S

T

0
`�u�δ,AρueΩ dt,

where ���δ is the regularization operator defined in Theorem 5.3.11, as u�h� plays the role of a test function
here.

Proof. We begin the proof with a couple of observations. First, as the operator ���δ introduced in Theo-
rem 5.3.11 is bounded and linear, we find that (for a non-relabeled subsequence) �u�h��δ @ �u�δ with h� 0 in
L2��0, T �;W 1,2�Ω��; cf. also Lemma 7.3.8.

Next, as Çm�h� is uniformly bounded in Lª��0, T �;L2�Ω�� (see Theorem 7.3.5), we find that (after possibly
choosing another subsequence) there exists a Çm > Lª��0, T �;L2�Ω�� such that Çm�h�

@
� Çm in that space. Since

for ξ > Cª

0 ��0, T � �Ω� we have

S
T

0
bÇm�h�, ξg

Ω
dt �

0

�S
�h

S
T

0
b�ρ�h�u�h���t � s�, ξ�t�g

Ω
dt ds

� S
T

0
d�ρ�h�u�h���t�, 0

�S
�h

ξ�t � s�dsi
Ω

dt� S
T

0
`ρu, ξeΩ dt,

we also know that Çm � ρu almost everywhere.
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Take a sequence �hi�i with hi � 0 chosen such that all convergences outlined above, including the one in
Theorem 7.3.9, hold true. Next fix ε A 0. We aim to show that there is aNε, such that for another (non-relabled)
subsequence and all j A i A Nε

SS T

0
b�u�hi��t��δ,A�Çm�hi��t� � Çm�hj��t��g

Ω
dtS B cε, (7.3.4)

which implies the result. Our strategy is based on the approach introduced in [152, Theorem 5.1]. Thus, we will
split the time-interval �0, T � into a finite number of sub-intervals of length σ and depending on ε we will first
choose the regularizing parameter δ and then the length-parameter σ which will finally yield the sought number
Nε. Due to the changing fluid-domain, we first need to assure that �u�hi��t��δ are all divergence free on a fixed
domain in which, for a given t, all Ω�hi� are included. For this, we use the uniform convergence of η�hi� � η
that allows for any given δ A 0 to take hi small enough (Nε large enough), such that Ω̂δ�t� � �iCNε Ω�hi��t�
and Ω̌δ�t� � �iCNε Ω�hi��t� satisfy a small Hausdorff-distance condition

sup
t>�0,T �

sup
iCNε

� sup
y>Ω�hi��t�

dist�y, Ω̂δ�t�� � sup
y>Ω̌δ�t�

dist�y,Ω�hi��t��� B δ. (7.3.5)

Next we may use the approximation introduced in Theorem 5.3.11 for u�hi�. The regularity of the domain
allows to assume that

�div��u�hi��δ�t�� � 0 in Ω̌δ�t�.
Moreover Theorem 5.3.11 implies that for almost every t and every m > N

[�u�hi��t��δ[
Wm,2�Ω� B c�δ,m� [u�hi��t�[

W 1,2�Ω�[�u�hi��t��δ[
L2��0,T �;W 1,2�Ω�� B c [u�hi��t�[L2��0,T �;W 1,2�Ω��[�u�hi��t��δ � u�hi��t�[
L2��0,T �;L2�Ω�� B cδ

2
2�n [u�hi��t�[

L2��0,T �;W 1,2�Ω�� .

(7.3.6)

The parameter δ will be chosen later depending on ε. Furthermore we choose (in dependence of δ) a σ A 0,
N > N such that T � Nσ.

Now for any k > �0, ...,N�
[Çm�hi��σk�[2

Ω
B

kσ

�S
kσ�h

[�ρ�h�u�h���t�[2

Ω
dt B C [ρ�h�[

ª
B Cρmax

by the volume density-preserving nature of Φ and by Theorem 7.3.3. Here, ρmax is a uniform upper bound on
the density in the fluid and the solid, the latter of which can be easily derived from the energy bounds. As usual
we continue v and ∂tη to negative times by their initial data. We can thus use compact embeddings to find a
sub-sequence of hi � 0 such that Çm�hi��σk� converges strongly in �W 1,2�Ω;Rn� 9 �divvSΩ̌δ�t� � 0��� for all
k > �0, ...,N � 1�. In particular we can choose the Nε in such a way that for all i, j C Nε

[Çm�hi��σk� � Çm�hj��σk�[�W 1,2�Ω;Rn�9�divvSΩ̌δ�t��0��� B ε. (7.3.7)

Now we rewrite for t > �σk, σ�k � 1��
b�u�hi��t��δ,A�Çm�hi��t� � Çm�hj��t��g

Ω

� b�u�hi��t��δ,AÇm�hi��t� �AÇm�hi��σk�g
Ω
� b�u�hi��t��δ,A�Çm�hi��σk� � Çm�hj��σk��g

Ω

� b�u�hi��t��δ,AÇm�hj��σk� �AÇm�hj��t�g
Ω
�� I�t� � II�t� � III�t�.
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For i, j C Nε we find using (7.3.7) as well as (7.3.6)

S
T

0
II�t�dt B Cε.

The other two terms are estimated using the continuity in time of Çm�hi�. Indeed we find that

∂θ Çm�hi��θ, y� � ∂θ ���
0

�S
�hi

�ρ�hi�u�hi���θ � s�ds���
�

1

hi
∂θ �S θ

θ�hi
�ρ�hi�u�hi���s�ds� � �ρ�hi�u�hi���θ� � �ρ�hi�u�hi���θ � hi�

hi

and thus

SS T

0
I�t�dtS � SS T

0
c�u�hi��t��δ,S t

σk
A∂θ Çm�hi��θ�dθh

Ω
dtS

BQ
k
S

�σ�1�k
σk

S
t

σk
Sd�u�hi��t��δ,A�ρ�hi�u�hi���θ� � �ρ�hi�u�hi���θ � hi�

hi
i

Ω

Sdθdt
�Q

k
S

σ�k�1�
σk

S
σ�k�1�

θ
Sd�u�hi��t��δ,A�ρ�hi�u�hi���θ� � �ρ�hi�u�hi���θ � hi�

hi
i

Ω

Sdt dθ
BQ

k
S

σ�k�1�
σk

S
σ

0
Sd�u�hi��θ � s��δ,A�ρ�hi�u�hi���θ� � �ρ�hi�u�hi���θ � hi�

hi
i

Ω

Sdsdθ
B YAY

ªS
σ

0
S

T

0
Sd�u�hi��θ � s��δ, �ρ�hi�u�hi���θ� � �ρ�hi�u�hi���θ � hi�

hi
i

Ω

Sdt ds
B YAY

ªS
σ

0
[�u�hi��� � s��δ[

L2��0,T �;Wm,2�Ω�� ds B YAYªCδσ [u�hi�[
L2��0,T �;W 1,2�Ω��

using Theorem 7.3.7.
Using an analogous estimate on III�t�, we find (7.3.4) by choosing σ small enough.

Observe that due to the strong convergence of ∂tη�h� (and consequently u on ηh�t,Q�) we find

S
T

0
b�u�h��δ,AÇmhg

Ωh�t� dt� ρf S
T

0
`�u�δ,AueΩ�t� dt, (7.3.8)

for all A > Cª

0 �Ω�.
7.3.4 Proof of Theorem 7.1.2, Step 3a: Passing to the limit with the coupled PDEs

In the following we assume that T is small enough, such that a sequence of approximate solutions �η�h�, u�h��
exist on the interval �0, T �h�. Later it will be discussed how to prolong the solution up to the point of contact.

As before in the proof of Theorem 5.3.9 and Theorem 7.2.2, we use Theorem 5.3.11 to restrict ourselves to
test functions ξ > Cª

0 �Ω;Rn� with divξ � 0 in a neighborhood of Ω�t�. We then construct φ�h� �� ξ X η�h� and
pass to the limit h� 0. We proceed as in the proof of Theorem 6.0.2 and transfer the difference quotient to the
test function to get

S
T

0
d∂tη�h��t� � ∂tη�h��t � h�

h
,φ�h��t�i dt

� �S
T

0
d∂tη�h��t�, φ�h��t � h� � φ�h��t�

h
i dt� �S

T

0
`∂tη�t�, ∂tφ�t�e dt.
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By the same arguments as in the last sections we find

S
T

0
bDEh�η�h��, φ�h�g � bDRh�η�h�, ∂tη�h��, φ�h�g dt

� S
T

0
`DE�η�, φe � `DR�η, ∂tη�, φe dt,

as well as

S
T

0
ρs bf X η�h�, φ�h�g

Q
� ρf `f, ξeΩ�h��t� dt� S

T

0
ρs `f X η, φeQ � `f, ξeΩ�t� dt,

and

S
T

0
ν bεu�h�, εξg

Ω�h��t� dt� S
T

0
ν `εu, εξeΩ�t� dt.

What is left are the inertial term of the fluid. Again we transfer the difference quotient to the test function.
For that we have to take into account the flow map Φ

�h�
h .

S
T

0
du�h��t� XΦ

�h�
h �t � h� � u�h��t � h�

h
, ξ�t� XΦ

�h�
h �t � h�i

Ω�h��t�h�
dt

� �S
T

0
du�h��t�, ξ�t � h� XΦ

�h�
h �t� � ξ�t�
h

i
Ω�h��t�

dt

� �S
T

0
d�u�h��t��δ, ξ�t � h� XΦ

�h�
h �t� � ξ�t�
h

i
Ω�h��t�

dt

� S
T

0
d�u�h��t��δ � u�h��t�, ξ�t � h� XΦ

�h�
h �t� � ξ�t�
h

i
Ω�h��t�

dt �� �Iδ,h � IIδ,h

where �u�h��t��δ is a regularization in space, as defined in Theorem 5.3.11. Since the right-hand side in the
scalar product of IIδ,h is uniformly bounded in Lª��0, T �;L2�Ω�t�;Rn��, using (7.3.6) we know that IIδ,h

vanishes as δ � 0 (uniformly in h). For the first term we expand

Iδ,h � S
T

0
d�u�h��t��δ, h�S

0

∂s �ξ�t � s� XΦ�h�
s �t��dsi

Ω�h��t�
dt

� S
T

0
d�u�h��t��δ, h�S

0

�∂tξ�t � s� � u�h��t � s� � ©ξ�t � s�� XΦ�h�
s �t�dsi

Ω�h��t�
dt

� S
T

0

h

�S
0

b�u�h��t��δ XΦ
�h�
�s �t � s�, ∂tξ�t � s� � u�h��t � s� � ©ξ�t � s�g

Ω�h��t�s� dsdt

� S
T

0

h

�S
0

b�u�h��t��δ, ∂tξ�t � s� � u�h��t � s� � ©ξ�t�g
Ω�h��t�s� dsdt

� S
T

0

h

�S
0

b�u�h��t��δ, u�h��t � s� � ©�ξ�t� � ξ�t � s��g
Ω�h��t�s� dsdt

� S
T

0

h

�S
0

b�u�h��t��δ XΦ
�h�
�s �t � s� � �u�h��δ�t�, ∂tξ�t � s� � u�h��t � s� � ©ξ�t � s�g

Ω�h��t�s�dsdt.
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Since Y©�ξ�t� � ξ�t � s��YLª�Ω� B Ch Y∂t©ξYLª��0,T ��Ω� the second term in the last sum converges to zero
as h � 0. For the third term in the same sum, we may use Theorem 7.3.6 to see that the L2-norm of
the left-hand side in the scalar product is bounded by ChLipy��u�h��t��δ� which is in turn bounded by
hCδ Zu�h��t�ZW 1,2�Ω� so that this term vanishes for h � 0. For the first term we aim to apply Theorem 7.3.10.

To do so, we take Aδ > C0��0, T �;Cª

0 �Ω̂δ��, such that Aδ�t�� χΩ�t� almost everywhere in Ω. Hence we find
by Theorem 7.3.10 in the form of (7.3.8) that

lim
h�0

Iδ,h � lim
h�0
S

T

0

h

�S
0

b�u�h��t��δ, ∂tξ�t � s� � u�h��t � s� � ©ξ�t�g
Ω�h��t�s� dsdt

� S
T

0
`�u�t��δ, ∂tξ � u � ©ξAδ�t�eΩ�t� dt

� lim
h�0
S

T

0

h

�S
0

b�u�h��t��δ, u�h��t � s� � ©ξ�t��Aδ�t� � χΩ�h��t � s��g
Ω
dsdt.

The last term is estimated by Hölder’s inequality and Sobolev embedding. Indeed, for a @
n
n�2 we find by

(7.3.6)

SS T

0

h

�S
0

b�u�h��t��δ, u�h��t � s� � ©ξ�t��Aδ�t� � χΩ�h��t � s��g
Ω
dsdtS

B S
T

0
[�u�h��t��δ[

L2a�Ω�
h

�S
0

[u�h��t � s�[
La�Ω� Y�Aδ�t� � χΩ�h��t � s��YL2a��Ω� dsdt

B c [�u�h��t��δ[
L2��0,T �;W 1,2�Ω�� sup

t>T
� h

�S
0

[u�h��t � s�[2
ds� 1

2

� � h

�S
0

Y�Aδ�t� � χΩ�h��t � s��Y2
L2��0,T �;L2a��Ω�� ds� 1

2

B c� h

�S
0

Y�Aδ��� � χΩ�h��� � s��Y2
L2��0,T �;L2a��Ω�� ds� 1

2

.

By the uniform convergence of η�h� � η, we find that

lim
h�0

� h

�S
0

Y�Aδ��� � χΩ�h��� � s��Y2
L2��0,T �;L2a��Ω�� ds� 1

2

� Y�Aδ � χΩ��YL2��0,T �;L2a��Ω�� .

Finally, by passing to the limit δ � 0 we have that

lim
δ�0

lim
h�0

��Iδ,h � IIδ,h� � �S T

0
`u, ∂tξ � u � ©ξeΩ�t� dt.

Thus we have shown that we obtain the right equation in the limit:

S
T

0
�ρs `∂tη, ∂tφeQ � ρs `v, ∂tξ � v � ©ξeΩ�t� � `DE�η�, φe � `D2R�η, ∂tη�, φe � ν `εv, εξeΩ�t� dt

� S
T

0
ρs `f X η, φeQ � ρf `f, ξeΩ�t� dt � ρs `η�, φ�0�eQ � ρf `v0, ξ�0�eΩ0

.

(7.3.9)
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7.3.5 Proof of Theorem 7.1.2, Step 3b: Reconstruction of the pressure

As we do not want to consider the time-derivatives of the operator Bt we cannot go along the same lines as in
the proof of Theorem 5.1.6. Instead we have to proceed in a global manner. We construct the pressure as a
distribution.

Let ψ > Cª

0 ��0, T � �Ω�. Take B to be the operator from Theorem 5.3.10 with respect to the domain Ω. To
apply this operator to ψ, we need to normalize its mean by picking a ψ̃ > Cª

0 ��0, T � �Ω� with supp�ψ̃�t�� 9
Ω�t� � g and RΩ ψ̃�t�dy � � RΩψ�t�dy for all t > �0, T �.

Now let ξ�t� �� B�ψ�t� � ψ̃�t��, φ�t, x� �� ξ�t, η�t, x�� and define a linear operator by

P �ψ� �� S T

0
`DE�η�t��, φe � `D2R�η�t�, ∂tη�t��, φe � ν `εu, εξeΩ�t�

� ρf `f, ξeΩ�t� � ρs `f X η, φeQ � ρs `∂tη, ∂tφeQ � ρf `u, ∂tξ � u � ©ξeΩ�t� dt.

Note that P �ψ� is independent of the choice of ψ̃: Assume that ψ̃1 and ψ̃2 are two such choices with corre-
sponding ξ1 and ξ2. Then ξ1 � ξ2 � B�ψ̃1 � ψ̃2� has divergence 0 on Ω�t� and thus the above integral is the
same because of (7.3.9). In particular if supp�ψ�t�� ` η�t,Q� (for all t > �0, T �), we may choose ψ̃ � ψ which
implies (by the linearity of B) that P �ψ� � 0. Hence supp�P � ` �0, T � �Ω�t�.

Furthermore it can be estimated that

S
T

0
`DE�η�t��, φe � `D2R�η�t�, ∂tη�t��, φe � ν `εu, εξeΩ�t� � ρf `f, ξeΩ�t� � ρs `f X η, φeQ dt

B T sup
t>�0,T �

YDE�η�t��YW�2,q�Q� Yφ�t�YL1��0,T �,W 2,q�Q��

� S
T

0
YD2R�η�t�, ∂tη�t��YW�1,2�Q� YφYW 1,2�Q� � YεuYΩ�t� YεξYΩ�t� � c YfYª �YφYQ � YξYΩ�t��dt

B C YφYL1��0,T �,W 2,q�Q�� � YξYL2��0,T �;W 1,2�Ω��
via the known bounds on the terms in the weak equation. Finally using Theorem 5.5.4 we know that YφYW 2,q�Q� B
C YξYW 2,q�Ω�. Consequently by the properties of the Bogovskiı̆-operator we find

C YφYL1��0,T �,W 2,q�Q�� � YξYL2��0,T �;W 1,2�Ω�� B C Zψ � ψ̃Z
L1��0,T �,W 2,q�Q�� �C Zψ � ψ̃Z

L2��0,T �;L2�Ω��
B C YψYL1��0,T �,W 2,q�Q�� �C YψYL2��0,T �;L2�Ω��

where for the last inequality we note that ψ̃�t� can be chosen as a multiple of a fixed Cª

0 -function and thus its
norm only needs to depend on SRΩψ�t�dyS B c Yψ�t�YΩ. Additionally for the other remaining terms we have

SS T

0
`∂tη, ∂tφeQS B Y∂tηYL2��0,T ��Q� YφYW 1,2��0,T �;L2�Q��

SS T

0
`u, ∂tξeΩ�t�S B YuYL2��0,T ��Ω� YξYW 1,2��0,T �;L2�Ω��

SS T

0
`u,u � ©ξeΩ�t�S B Zu2Z

La��0,T �;Lb�Ω�� YξYLa���0,T �;W 1,b��Ω��

where a, b > �1,ª� are chosen in such a way that SuS2 > La��0, T �, Lb�Ω��, which is possible since SuS2 >

Lª��0, T �, L1�Ω�� 9 L1��0, T �, Lp�Ω�� (with p �
n
n�2 for n A 2 or p arbitrarily large for n � 2). Now

bounding the norms of ξ and φ in terms of ψ as before proves that P > D���0, T � �Ω�. Thus p is well defined
via that operator and expanding

S
T

0
`©p, ξe dt � P �divξ�

proves that it fulfills the right equations for ξ > Cª��0, T � �Ω�. Moreover, it can be decomposed into

p > Lª��0, T �,W �1,q�Ω�� �L2��0, T � �Ω� �W �1,2��0, T �,W �1,2�Ω�� 9La���0, T �,W �1,b��Ω��.
(7.3.10)
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7.3.6 Proof of Theorem 7.1.2, Step 4: Energy inequality & maximal interval of existence

Above, we have shown existence of coupled weak solutions u, η on �0, T � for some T A 0. As before we can
now pick a maximal interval �0, Tmax� and use the energy bounds to conclude that either Tmax � ª or there
exists a limit η�Tmax� > ∂E .

Finally, we observe that (7.1.8) follows by Theorem 7.3.3.

Remark 7.3.11 (On Lagrangian and Eulerian formulation). In the preceding proofs, we switched between the
Lagrangian and the Eulerian point of view several times. While in the end, for the final equation we have to
treat the solid as Lagrangian and fluid as Eulerian, we are free to change from one to the other as long as h A 0
during the proof.

We used this prominently in defining the global Eulerian velocity u, as doing so made it easier to talk about
convergence. But it should be noted that the same can be equally done in reverse. In the proof of the time-
delayed problem Theorem 7.2.2, every time we used v, we could have similarly considered ∂tΦ or its difference
quotient respectively. In this way, the whole proof could be rewritten in terms of Φ, eliminating the need for v
and u completely.

As long as h A 0 all the above considerations hold. It is only at the very last moment, where we take the
limit h � 0 that we are no longer guaranteed existence of a flow map Φ and have to introduce an Eulerian
velocity to conclude the proof.
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Chapter 8

Contactless rebound of elastic bodies in
viscous incompressible fluids

8.1 Introduction

The chapter is organized as follows. In Section 8.2 we start by introducing the fluid-structure interaction model
in the classical Eulerian-Lagrangian framework, which we then reformulate fully in the Eulerian setting, as
needed for our numerical experiments. This is followed by the introduction of our reduced model of ODEs.
The section is closed by the derivation of drag-formulas for the family of deformations that we consider for our
numerical experiments and which form the model case for the analysis. Section 8.3 is dedicated to the main
mathematical results of this paper and their proofs. In Subsection 8.3.1 we introduce our general assumptions
and state the main theorems. In particular, we provide conditions that allow to prove or disprove rebound in the
vanishing viscosity limit. Subsection 8.3.2 is dedicated to the proofs of these results. In Section 8.4, we first
provide numerical experiments for the reduced model of ODEs. In the following subsection we introduce the
numerical set up that allows to capture the bouncing behavior of elastic solids for small viscosities and provide
some numerical experiments. We conclude the section with the comparison from a numerical standpoint of the
ODE and PDE solutions (see Figure 8.8). Finally, in Section 8.5 we summarize and discuss our results.

8.2 Modeling of particle-wall approach and rebound in viscous fluids

In this section, we first recall the standard Eulerian-Lagrangian formulation of the fluid-structure interaction
problem, which we then reformulate in a purely Eulerian setting. This is followed by presenting a class of
reduced ODE models for the FSI problem.

8.2.1 The viscous fluid – elastic structure Eulerian-Lagrangian formulation

Consider an incompressible Newtonian fluid filling the region F�t�, which surrounds an elastic particle whose
position, at time t, will be denoted by B�t�. We assume that the system composed by the fluid and the solid
body occupies the region Ω � F�t�8B�t�, where Ω is an open subset of RN ,N � 2 orN � 3. As it is customary
in fluid mechanics, the equations expressing the conservation of mass and the balance of linear momentum for
the fluid are given in the Eulerian reference frame and read as follows:

divxv � 0,

ρf �∂v
∂t

� v � ©xv� � divxσf � ρfb,
in F�t�, (8.2.1)

where v�x, t� is the fluid velocity, ρf is the constant fluid density, and b�x, t� represents (Eulerian) external
bulk forces. Here the variable x denotes a position in the current (Eulerian) configuration, that is, x > F�t�.
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We recall that for Newtonian fluids the Cauchy stress tensor σf�x, t� takes the form

σf � �pf IN � 2µfD�v�, (8.2.2)

where pf�x, t� denotes the fluid pressure, IN is the N -dimensional identity matrix, µf is the constant dynamic
viscosity, and D�v� �� 1

2�©xv � �©xv�T� is the symmetric part of the gradient of v. On the other hand, the
balance equations for the elastic solid are given in the Lagrangian setting and can be written as

ρs
∂2η

∂t2
� divXP � ρsB,

Jρs � ρ
0
s

in B0, (8.2.3)

where ρs and ρ0
s denote the density of the elastic solid at time t and in the reference configuration, respectively,

η�X, t� is the displacement, P�X, t� is the first Piola–Kirchhoff stress,B�X, t� are the (Lagrangian) external
forces acting on the solid, and B0 is the reference configuration of the solid. The variableX denotes a position
in the reference (Lagrangian) configuration, that is,X > B0.

We assume that the structure is an incompressible hyperelastic solid, i.e.,

P �
∂L

∂F
, where L�F , P � ��W�F� � P �J � 1�.

Here L is the Lagrange function corresponding to the strain energy function W under the incompressibility
restriction J � 1 and P is the associated Lagrange multiplier. The symbol F denotes the deformation gradient,
i.e., if we define the deformation mapping y�X, t� ��X � η�X, t�, then

F�X, t� �� ©Xy�X, t� � IN �©Xη�X, t�.
Finally, J denotes the deformation gradient Jacobian, i.e. J �� detF. Let us also mention here that throughout
the following we assume that the deformation mapping y��, t��B0 � B�t� is a sufficiently smooth bijection for
all t.

The choice of the elastic material is determined by specifying the strain energy function W . As a par-
ticular example used later in the numerical computations (see Section 8.4), we consider an incompressible
neo-Hookean solid, for which the elastic strain energy is given by

W ��
Gs
2
�SF S2 �N�, (8.2.4)

where the constant Gs denotes the shear modulus. The Cauchy stress in the solid can be expressed in terms of
the first Piola–Kirchhoff stress P as follows:

σs�x, t� � 1

J�X, t�P�X, t�FT�X, t�W
X�y�1�x,t�

.

As one can readily check, for the strain energy (8.2.4) the Cauchy stress in the solid takes the form

σs�x, t� � �p̃�x, t�IN �GsB�x, t� � �p�x, t�IN �GsB
d�x, t�, (8.2.5)

where p̃�x, t� �� P �y�1�x, t�, t�, B�x, t� is the left Cauchy–Green tensor, which is classically defined via

B�x, t� �� F�X, t�FT�X, t�T
X�y�1�x,t� , (8.2.6)

the symbol Bd �� B � �1~N��trB�IN denotes its deviatoric part, and finally p �� p̃ � �1~N�trB.
The conditions describing the interaction between the fluid and the solid comprise the continuity of the

velocities and of the tractions:

v�x, t� � ∂η�X, t�
∂t

W
X�y�1�x,t�

,

σfn � σsn,

on ∂B�t�, (8.2.7)
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where n is the unit normal to the fluid-solid interface. Finally, we prescribe no-slip boundary conditions on the
boundary of the cavity, that is,

v � 0 on ∂Ω.

Note that the above system is a well posed problem for the unknowns v, p describing the fluid in their variable-
in-time Eulerian domain of definition and the deformation η and the pressure of the solid P given in their steady
Lagrangian coordinates. Moreover, it admits a formal energy equality (derived for the reader’s convenience in
Subsection 8.6.2) of the following form:

K�t� � S
B0

W�X, t�dX � S
t

0
S
F�s� 2µf SD�v�x, s��S2dxds � K�0� � S

B0

W�X,0�dX
�S

t

0
S
F�s� ρfb�x, s� � v�x, s�dxds � S t

0
S
B0

ρs0B�X, s� � ∂η
∂t

�X, s�dXds,

(8.2.8)

where K�t� denotes the kinetic energy of the system at time t, that is

K�t� �� S
F�t�

ρf

2
Sv�x, t�S2 dx � S

B0

ρs0
2
V∂η
∂t

�X, t�V2 dX.

Let us also mention that under the assumption of small deformations, the elastic contribution to the energy
given by (8.2.4) can be approximated as follows:

S
B0

W�X, t�dX � S
B0

Gs
2
S©Xη�X, t�S2 dX.

This approximation is also formally derived in Subsection 8.6.2.

Remark 8.2.1. For simplicity, in this paper we restrict our attention to the case of a homogenous solid interact-
ing with a homogenous fluid, that is, both ρf and ρs0 are assumed to be constant. However, the governing system
of equations can be readily generalized to include the situation in which ρf (transformed into its Lagrangian
counterpart) and ρs0 depend only on the space variableX . Notice that if one defines the (Eulerian) global den-
sity ρ, these conditions correspond to requiring that the material parameter ρ is advected with velocity v, that
is, ρ̇ � 0. Similar considerations apply also to the fluid viscosity µf and to the shear modulus Gs. It is worth
noting that also in this case one can derive a formal energy equality. However, while the theory of bouncing
without contact introduced here relates well to compressible solid materials (see Subsection 8.6.1) considering
compressible fluids might have a more dramatic impact, as topological contact is expected to happen in this
case [58].

In the next subsection we reformulate the mixed Lagrangian-Eulerian problem fully in the Eulerian frame.
This allows for an efficient numerical implementation by finite element methods using a level-set function
approach as described in Section 8.4 (see also [131] and the references therein).

8.2.2 The viscous fluid – elastic structure purely Eulerian formulation

The standard form of the fluid-structure interaction problem, as given in Section 8.2, consists of two sets
of equations — one for the fluid and one for the solid — which are formulated in different configurations.
While the fluid component is described in the physical Eulerian configuration, the equations for the solid are
formulated in the reference (Lagrangian) configuration.

For our purposes, we find it more convenient to solve the whole problem in the Eulerian setting, where the
interaction conditions (8.2.7) are satisfied automatically. In particular the unknowns become the global velocity
in Eulerian coordinates v�Ω � �0, T � � RN , the global pressure p�Ω � �0, T � � R and the left Cauchy–Green
tensor B�Ω� �0, T �� RN�N . We transfer the problem for the solid accordingly and rewrite the Eulerian form
of the momentum balance for the solid as

ρs �∂v
∂t

� v � ©xv� � divxσs � ρsb,
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where the Cauchy stress σs is given by (8.2.5). The evolution equation for the Cauchy–Green tensor B can be
derived directly from the kinematics. Indeed, (8.2.6) can be reformulated as

B�y�X, t�, t� � F�X, t�F�X, t�T, (8.2.9)

and differentiating both sides of (8.2.9) with respect to t yields

d

dt
�B�y�X, t�, t�� � ∂F

∂t
�X, t�F�X, t�T

�F�X, t�∂F
∂t

�X, t�T. (8.2.10)

By an application of the chain rule, the left-hand of (8.2.10) can be readily rewritten as

d

dt
�B�y�X, t�, t�� � ∂B

∂t
�y�X, t�, t� � �v�y�X, t�, t� � ©x�B�y�X, t�, t�. (8.2.11)

For clarity of exposition, we remark that (8.2.11) is merely the computation of the material time derivative of
B. On the other hand, in order to rewrite the right-hand side of (8.2.10), we observe that

Ḟ�X, t� � d

dt
©Xy�X, t� � ©X ∂η

∂t
�X, t� � ©Xv�y�X, t�, t�

� �©xv��y�X, t�, t�©Xy�X, t�
� �©xv��y�X, t�, t�F�X, t�. (8.2.12)

In turn, (8.2.9) and (8.2.12) imply that

∂F

∂t
�X, t�F�X, t�T

�F�X, t�∂F
∂t

�X, t�T
� �©xv��y�X, t�, t�B�y�X, t�, t�

�B�y�X, t�, t��©xv��y�X, t�, t�T. (8.2.13)

Combining (8.2.10), (8.2.11), and (8.2.13), and passing to an Eulerian description of the motion (that is, sub-
stituting x for y�X, t�) finally yields

∂B

∂t
�x, t� � �v�x, t� � ©x�B�x, t� � ©xv�x, t�B�x, t� �B�x, t��©xv�x, t��T,

which enables to close the system of equations. Therefore, the governing equations for the incompressible
neo-Hookean solid in the Eulerian setting read

divxv � 0,

ρs �∂v
∂t

� v � ©xv� � divxσs � ρsb, σs � �pIN �GBd,

∂B

∂t
� �v � ©x�B � �©xv�B �B�©xv�T

� O. (8.2.14)

Here and in the following O denotes the zero matrix; furthermore, we recall that Bd denotes the deviatoric part
of the left Cauchy–Green tensor. Now, since both the fluid and the solid are described in the Eulerian frame
of reference, we distinguish between the two simply by rheology. The formula for the Cauchy stress can be
written in a unifying (essentially visco-elastic) manner as

σ �� �pIN � 2µD�v� �GBd, (8.2.15)

where

µ�x, t� �� � 0 if x > B�t�,
µf if x > F�t�, and G�x, t� �� �Gs if x > B�t�,

0 if x > F�t�.
Moreover, we let

B � IN in F�t� and
∂B

∂t
� �v � ©�B � �©v�B �B�©v�T

� O in B�t�.
194



SCHWARZACHER CONTACTLESS REBOUND ANALYSIS FOR FSI

Thus, the Cauchy stress σ is equal to σf in the fluid and to σs in the solid. Similarly, we define

ρ�x, t� �� �ρs if x > B�t�,
ρf if x > F�t�.

Note that the domains F�t� and B�t� are advected with the velocity v and so do the material parameters ρ, µ,
and G, i.e. their material time derivatives are equal to zero

ρ̇ � µ̇ � Ġ � 0. (8.2.16)

To summarize, the fully Eulerian FSI model is described by the following set of equations:

divxv � 0,

ρ�∂v
∂t

� v � ©xv� � divxσ � ρb, σ � �pIN � 2µD�v� �GBd,

∂B

∂t
� �v � ©x�B � �©xv�B �B�©xv�T

� O.

(8.2.17)

It is worth noting that the fully Eulerian model admits the following formal energy equality:

S
Ω
�ρ�x, t�

2
Sv�x, t�S2 � G�x, t�

2
�trB�x, t� �N��dx � S t

0
S
F�s� 2µf SD�v�x, s��S2 dxds

� S
Ω
�ρ�x,0�

2
Sv�x,0�S2 � G�x,0�

2
�trB�x,0� �N��dx � S t

0
S

Ω
ρ�x, s�b�x, s� � v�x, s�dxds.

For the reader’s convenience, a derivation of this formula is presented in the appendix to this paper (see Sub-
section 8.6.2).

Finally, let us note that for the sake of notational simplicity, we will from now on use the symbols © and
div for the Eulerian operators ©x and divx, respectively, while keeping the notation ©X and divX for the
differential operators in the reference configuration unchanged.

8.2.3 Reduced models

In view of the analytical challenges posed by the full FSI system described in Section 8.2, in this paper we
propose a simplified model which we believe to adequately capture the essential features of the FSI phenomena
under consideration, with special emphasis on the questions of contact and rebound. This is achieved via a
two-step procedure. First, we consider a completely rigid particle and show that, under certain simplifying
assumptions, its dynamics can be replaced by a single ODE. As a next step, we enrich the model by taking
into account possible elastic deformations of the particle, which we approximate by a single scalar internal
degree of freedom. In our simplified framework, this internal variable will be used to parameterize not only the
change in shape of the particle (which will be reflected in the expression for the drag force, see Subsection 8.2.4
below), but also its elastic response. The final reduced model takes the form of two coupled ODEs with a highly
non-linear damping term.

8.2.3.1 Dynamics of a rigid body as a second order ODE with non-linear damping

In this section we show that, under certain assumptions, the dynamics of a rigid body in a viscous incompress-
ible fluid can be reformulated as a second order non-linear ODE, which takes the the form

ḧ � �d�h�ḣ.
To be precise, following the presentation of Hillairet (see Section 3 in [101]), we assume that the system
composed by the fluid and the rigid body occupies the entire half-space RN� , N � 2,3, and that the fluid
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adapts instantaneously to the solid, so that it can be effectively modeled by the quasi-static Stokes equations.
Furthermore, if we suppose that the range of possible motions of the body consists only of translations in the
direction eN , its position is uniquely determined by its distance from the set �xN � 0�, denoted here and in the
following with h. Let B ` RN� denote the bounded region occupied by the rigid body when h � 0 and define

Bh �� B � heN , Fh �� RN� � Bh. (8.2.18)

With these notations at hand, and under the assumption that the fluid is homogeneous with density ρf � 1, our
fluid-structure interaction problem is described by the system of equations¢̈̈̈̈̈̈̈

¨̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈
¤

�µ∆v �©p � 0 in Fh,

divv � 0 in Fh,

v � ḣeN on ∂Bh,

v � 0 on �xN � 0�,
v � 0 at ª,

(8.2.19)

coupled with the continuity of the stresses across the fluid-solid surface, which in the present framework can
be expressed via

Mḧ � �S
∂Bh

�2µD�v� � pIN�ndHN�1
� eN . (8.2.20)

We recall that, as in the previous subsection, we use v and p to denote the velocity field and the pressure of
the fluid, respectively. Moreover, the positive constants µ and M represent the viscosity of the fluid and the
mass of the body, respectively. Finally, throughout the section n is always used to denote the outer unit normal
vector to the fluid domain. The system (8.2.19)–(8.2.20) is further complemented with initial conditions of the
form

h�0� � h0 A 0, ḣ�0� � ḣ0.

It can be noted that in (8.2.19) the steady version of (8.2.1) and (8.2.2) is given, while the PDE for the solid
(8.2.3) is reduced dramatically to (8.2.20).

The next result combines Lemma 4 and Lemma 5 in [101].

Lemma 8.2.2. Let h A 0 be given and assume that ∂B is Lipschitz continuous. Then there exist a unique
velocity field sh and a pressure field πh such that¢̈̈̈̈̈̈̈

¨̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈
¤

�∆sh �©πh � 0 in Fh,

divsh � 0 in Fh,

sh � eN on ∂Bh,

sh � 0 on �xN � 0�,
sh � 0 at ª.

(8.2.21)

Moreover, the following statements hold:�i� sh is the unique global minimizer for the functional

J �u;Fh� �� 2S
Fh

SD�u�S2 dx, (8.2.22)

defined over the class

Vh �� �u >H1
0�RN� ;RN� � divu � 0, and u � eN on ∂Bh� .

In particular, the pressure function πh can be understood as the Lagrange multiplier associated to the
divergence-free constraint in Vh.
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�ii� For every ϕ̃ > Vh and z > R, if we let ϕ �� zϕ̃ we have

2S
Fh

D�sh� � D�ϕ�dx � S
∂Bh

�2D�sh� � πhIN�ndHN�1
� zeN . (8.2.23)

�iii� The function sh depends smoothly on the parameter h, for all h > �0,ª�.
As a consequence of Theorem 8.2.2 we see that the dynamics of the system are fully characterized by an

initial value problem for a second order ODE with a non-linear damping term.

Lemma 8.2.3. Assume that ∂B is Lipschitz continuous. Then, for every h0 A 0 and ḣ0 > R, the solvability of
the fluid-structure interaction problem (8.2.19)–(8.2.20) reduces to that of the initial value problem¢̈̈̈̈¦̈̈̈̈¤

Mḧ � �µJ �sh;Fh�ḣ,
h�0� � h0, ḣ�0� � ḣ0.

(8.2.24)

Proof. Notice that for any given h A 0 and ḣ > R, letting v �� ḣsh and p �� µḣπh yields a solution to (8.2.19).
Moreover, using ϕ �� µḣsh as a test function in (8.2.23), we obtain

2µḣS
Fh

SD�sh�S2 dx � S
∂Bh

�2D�sh� � πhIN�ndHN�1
� µḣeN

� S
∂Bh

�2µD�v� � pIN�ndHN�1
� eN . (8.2.25)

In view of (8.2.25), we can then rewrite (8.2.20) as

Mḧ � �2µḣS
Fh

SD�sh�S2 dx � �µJ �sh;Fh�ḣ.
This concludes the proof.

8.2.3.2 Spring-mass model

In this subsection, we enrich the model described in (8.2.19)–(8.2.20) by considering also elastic deformations
of the particle. It is well known that in the regime of small deformations, the dynamics of an elastic body reduces
essentially to a (vectorial) wave equation (see Subsection 8.6.1). Consequently, as a first approximation, we
will assume that the deformation of the particle can be described by a single scalar parameter ξ, which we can
think of as the deformation of an internal spring with stiffness k carrying internal mass m, enclosed in a shell
of mass M which is rigid with respect to the flow of surrounding fluid, but whose shape may change according
to the value of the internal parameter ξ (the relevant notation is summarized in Figure 8.1; see Figure 8.2 for a
schematic illustration of contactless rebound for the case of a deformable particle).

To be precise, let P denote the class of all admissible particle configurations, that is, P is the family of
all bounded open subsets of RN with Lipschitz continuous boundary and such that the intersection of their
respective closures with the hyperplane �xN � 0� consists of only the origin. Given B > P , we consider a
one parameter family of diffeomorphisms �Gξ �B � Gξ�B� � ξ > R� such that Gξ�B� > P for every ξ > R.
Moreover, for every h A 0 and every ξ > R, we let

Fh,ξ �� RN� � �Gξ�B� � heN�
and consider the energy functional

J �u;Fh,ξ� �� 2S
Fh,ξ

SD�u�S2 dx.
Compare these definitions with their counterparts in the previous subsection, i.e. (8.2.18) and (8.2.22), respec-
tively. In particular, by an application of Theorem 8.2.2, we obtain that for each h A 0 and each ξ > R there
exists a vector field sh,ξ that minimizes J ��;Fh,ξ� over the class

Vh,ξ �� �u >H1
0�RN� ;RN� � divu � 0, and u � eN on Gξ�∂B� � heN� .
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h

M

m

ξ

Figure 8.1: A spherical shell with an inner mass-spring system is surrounded by a viscous incompressible fluid.

Under the assumption that the range of possible motions of the deformable shell consists only of translations
in the direction eN , reasoning as in Theorem 8.2.3 we see that its dynamics can be formulated as a second
order ODE, with the exception that now at each time level t, the shape of the shell may change (depending on
the value of ξ). Consequently, the mechanical force balance for such a system takes the form of the following
system of two coupled ODEs:

Mḧ � �kξ � µJ �sh,ξ,Fh,ξ�ḣ, (8.2.26)

m�ḧ � ξ̈� � kξ (8.2.27)

with initial conditions

h�0� � h0, ḣ�0� � ḣ0,

ξ�0� � ξ0, ξ̇�0� � ξ̇0.

We remark that equation (8.2.26) is the analogue of (8.2.24), where the additional “internal” force is acting
on the outer shell and with a more general drag force term which depends not only h, but also on the internal
deformation ξ, while the second equation (8.2.27) expresses the dynamics of the internal mass-spring system
in the frame accelerating with the outer shell.

Figure 8.2: Schematic representation of contactless rebound for a deformable shell with an inner energy storing
mechanism. The dash-dotted line represents the undeformed surface.
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8.2.4 The drag force

As a consequence of the ODE reformulation of the FSI problem provided in (8.2.24) (resp. (8.2.27)), we see that
the drag force exerted by the fluid on the solid body, i.e. the term �µJ �sh;Fh�ḣ (resp. �µJ �sh,ξ;Fh,ξ�ḣ),
can significantly influence the behavior of the system. Thus, in this section we collect some well known
approximations of this force. In order to obtain a precise understanding of the near-to-contact dynamics, the
focus of the section is on the dependence of J �sh;Fh� on the parameter h, with special emphasis on the case
h� 0�. We recall indeed that h � 0 corresponds to a collision of the body with the boundary of the container.

To be precise, in the following we present estimates of the drag formulas for both the two and three dimen-
sional case. Furthermore, we compare them also with those resulting from the standard lubrication (Reynolds’)
approximation. For the purpose of this section, it is not restrictive to consider rigid particles. Additionally, in
all cases we shall assume the particle is axi-symmetric with respect to the axis xN (N � 2,3) and that the part
of the boundary ∂B that is closer to the wall can be described in a neighborhood of the origin by a graph of the
form

ψ�x1� � γSx1S1�α if N � 2, ψ�x1, x2� � γ�x2
1 � x

2
2� 1�α

2 if N � 3. (8.2.28)

8.2.4.1 Drag force estimates based on the variational formulation

We begin by noticing that, depending on the smoothness of the immersed particle, the drag force exerted by
the viscous fluid can develop a singularity when the distance between the body and the boundary of the cavity
tends to zero. This is made precise in the next result, which is due to Starovoitov (see Theorem 3.1 in [176]).
A proof of the theorem is included in Subsection 8.6.3 for the reader’s convenience.

Theorem 8.2.4. Let B be an open bounded subset of RN� with Lipschitz continuous boundary and such that
∂B 9 �xN � 0� consists of only the origin. For J and sh given as in Theorem 8.2.2, let D� �0,ª�� �0,ª� be
defined via

D�h� �� J �sh;Fh�.
Then D is locally Lipschitz continuous. Furthermore, the following statements hold:

�i� if N � 2 and there are α, γ, r A 0 such that in a neighborhood of the origin ∂B coincides with the graph
of ψ�x1� �� γSx1S1�α, for Sx1S @ r, then there exists a positive constant c1 such that for all 0 @ h B r1�α

D�h� C c1h
�3α
1�α ;

�ii� if N � 3 and there are α, γ, r A 0 such that in a neighborhood of the origin ∂B coincides with the graph
of ψ�x1, x2� �� γ�x2

1 � x
2
2� 1�α

2 , for x2
1 � x

2
2 @ r

2, then there exists a positive constant c2 such that for all
0 @ h B r1�α

D�h� C c2h
1�3α
1�α .

Roughly speaking, Theorem 8.2.4 presents us with the crucial observation that the asymptotic behavior of
D is deeply connected to the regularity of ∂B in a neighborhood of the nearest point to the fixed boundary of
the container. It is worth noting that since for every t > ��1,1� one has that

t2

2
B 1 �

º
1 � t2 B t2,

an application of Theorem 8.2.4 with α � 1 yields that if N � 2 and B is a disk then D�h� à h�3~2, while
if N � 3 and B is a sphere then D�h� à h�1. In particular, as illustrated in Theorem 3.2 in [176] (see
also Theorem 3 in [101]), one can then transform the differential equation obtained in Theorem 8.2.3 into
a differential inequality; this, in turn, can be integrated to show that the rigid body cannot collide with the
boundary of the container in finite time.
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It is worth noting that the proof of the no-collision result in the papers [78, 101, 102], where the fluid is
modeled by the Navier–Stokes equations, relies on the construction of a good (localized) approximation of the
solution to the associated Stokes problem. A particularly interesting corollary of these constructions is that the
asymptotic lower bounds provided by Theorem 8.2.4 are, in most cases, optimal. To be precise, we have the
following theorem (for more information, see also the discussion at the end of Subsection 8.6.3).

Theorem 8.2.5. Under the assumptions of Theorem 8.2.4, there exist two positive constants C1,C2 such that
for all h sufficiently small

D�h� B
¢̈̈̈̈̈̈̈
¨̈̈̈¦̈̈̈̈̈̈
¨̈̈̈̈¤

C1h
�3α
1�α if N � 2,

C2h
1�3α
1�α if N � 3 and α A 1~3,

C2S loghS if N � 3 and α � 1~3,
C2 if N � 3 and α @ 1~3.

(8.2.29)

We conclude the section by observing that, in the present framework, if ∂B is sufficiently regular so that
the body is prevented from colliding in finite time with the boundary of the container, then the system cannot
produce a rebound.

Corollary 8.2.6. Let h be a solution to (8.2.24) with initial conditions h0 A 0 and ḣ0 @ 0, and assume that
h�t� A 0 for every t A 0. Then h is a monotone function.

Proof. Arguing by contradiction, assume that there are τ1 @ τ2 such that ḣ�τ1� � 0 and h�τ2� A h̃ �� h�τ1�.
Since min�h�t� � t > �0, τ2�� A 0 and by recalling that D is locally Lipschitz continuous in �0,ª�, we see that
the initial value problem (8.2.24) admits a unique solution in �0, τ2�, which must therefore agree with h. Notice,
however, that h is also the unique solution to the initial value problem satisfying (8.2.24) on �τ1, τ2� with initial
conditions h�τ1� � h̃ and ḣ�τ1� � 0. Consequently h � h̃ on �τ1, τ2�, which contradicts h�τ2� A h̃.

8.2.4.2 Drag force estimates based on Reynolds’ approximation

Similarly to above, throughout the subsection we consider an axi-symmetric particle B. In particular, if ∂B
satisfies (8.2.28), then in a neighborhood of the nearest-to-contact point ∂Bh (see (8.2.18)) can be conveniently
described as the graph of

g�r� � h � γr1�α, (8.2.30)

where r denotes the distance from the symmetry axis. With this notation at hand and in view of the lubrication
(Reynolds’) approximation (see Subsection 8.6.3), we obtain that the vertical component of the drag force
exerted on the particle can be effectively estimated by

Flub �� �12µḣ

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈

2S
ª

0
S

ª

r

r�

g�r��3
dr�dr if N � 2,

πS
ª

0
S

ª

r

rr�

g�r��3
dr�dr if N � 3.

(8.2.31)

An exact comparison of the drag formulas in (8.2.31) with the resulting expressions derived in subsubsec-
tion 8.2.4.1 is only possible for particular values of α, for which the Reynolds based expression can be inte-
grated analytically. In particular, assuming circular (when N � 2) or spherical (when N � 3) shape of the solid
ball with radius R, we get

g�r� �� h �R �
º
R2 � r2 � h �

r2

2R2
.
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Substituting α � 1 and γ � 1~�2R� into (8.2.31) allows to analytically resolve the integrals, which ultimately
yields Flub � �µDlub�h�ḣ, where

Dlub�h� ��
¢̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤

3
º

2π �R
h
� 3

2

if N � 2,

6π
R2

h
if N � 3;

(8.2.32)

see also eq. (7-270) in [124], eq. (2.18) in [25], and and eq. (1.1) in [45].
On the other hand, in order to compare the expressions for the drag force for other values of α, we compute

numerically the lubrication theory shape factor Dlub from (8.2.31) and compare it with the analytical estimates
in (8.2.29) in Figure 8.3. Note that the match is very good for the case N � 2 and reasonable for the case N � 3
at least in the vicinity of α � 1, corresponding to the sphere.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.000

0.002

0.004

0.006

0.008

0.010

α

h

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.000

0.002

0.004

0.006

0.008

0.010

α

h

2

4

6

8

10

12

14

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.000

0.002

0.004

0.006

0.008

0.010

α

h

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.000

0.002

0.004

0.006

0.008

0.010

α

h

1

2

3

4

5

6

7

8

9

Figure 8.3: Logarithm of the drag force shape factor based on the Reynolds approximation (left) and on the
analytical estimate (right) for N � 2 (top row) and N � 3 (bottom row).

8.3 Global well-posedness and qualitative behavior of solutions to the reduced
model

In this is section, we undertake a rigorous analytical study of the reduced model that was previously introduced
in subsubsection 8.2.3.2. We begin by addressing the question of global well-posedness and we then proceed to
investigate qualitative properties of solutions as we vary the viscosity parameter µ. In this direction, we present
two results which highlight very different behaviors with regard to particle rebound. For clarity of exposition,
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we postpone the proofs to Subsection 8.3.2. In addition, we refer the reader to Subsection 8.4.1 for some
numerical experiments on the model considered in this section.

8.3.1 Statement of the main results

Throughout the section we consider the system of ODEs

¢̈̈̈̈̈̈̈
¨̈̈̈¦̈̈̈̈̈̈
¨̈̈̈̈¤

ḧ � ξ̈ � ab�ξ�,
ḧ � �b�ξ� � µD�h, ξ�ḣ,
h�0� � h0, ḣ�0� � ḣ0,

ξ�0� � ξ0, ξ̇�0� � ξ̇0.

(8.3.1)

Here a and µ are positive constants, while the functions b and D serve as proxies for the elastic response of the
solid and the drag force, respectively. Notice indeed that the system given by (8.2.26)–(8.2.27) is a particular
case of (8.3.1), corresponding to the choices

b�ξ� �� kξ
M
, a ��

M

m
, D�h, ξ� �� J �sh,ξ,Fh,ξ�

M
. (8.3.2)

In our first result, the aim is to identify conditions for which the body is prevented from colliding with
the boundary of the container in finite time. Our analysis is in spirit very close to that of [101] (see also
Theorem 8.2.4 and the subsequent discussion). To this end, we define

B�y� �� S y

0
b�w�dw,

and make the following assumptions:

(B.1) b�R� R is locally Lipschitz continuous;

(B.2) B is coercive, that is, B�y��ª as SyS�ª.

Additionally, onD� �0,ª��R� �0,ª� we require an analogous regularity condition and a singular asymptotic
lower bound that is uniform with respect to the variable ξ. To be precise, throughout the following we always
work under the following set of assumptions:

(D.1) the map �h, ξ�( D�h, ξ� is locally Lipschitz continuous in �0,ª� �R;

(D.2) there exist a constant c A 0 and α > �1,ª� such that for all h A 0 and ξ > R

D�h, ξ� C ch�α.
It is worth noting that the assumptions above are satisfied, for example, by the drag force exerted on a circular
or spherical structure (see in particular (8.2.32)).

We are now ready to state a no-contact result.

Proposition 8.3.1. Let b and D be given in such a way that (B.1), (B.2), (D.1), and (D.2) are satisfied. Then,
for every a, µ, h0, ḣ0, ξ0, ξ̇0 > R with a, µ, h0 A 0 there exists a unique global solution to (8.3.1), denoted by�hµ, ξµ�. In particular, hµ�t� A 0 for all t A 0.

Having established existence of global solutions, the remainder of the section is dedicated to characterizing
the different qualitative behaviors of hµ, as we let µ � 0�. For our next result, in addition to the assumptions
of Theorem 8.3.1, we require that
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(B.3) B C 0,

and furthermore, we restrict our attention to the case where the function D does not depend on the variable ξ
and obeys a power law in h. To be precise, we assume the following:

(D.3) there exist three constants C1,C2 A 0 and α > �1,ª� and a locally Lipschitz continuous function
g� �0,ª�� �C1,C2� such that for all h A 0 and all ξ > R we have

D�h, ξ� � g�h�h�α.
We are now in position to state the first of our main results.

Theorem 8.3.2. Under the assumptions of Theorem 8.3.1, set ξ0 � ξ̇0 � 0 and let H � �0,ª� � �0,ª� be
defined via

H�t� �� max�0, h0 � ḣ0t�.
Then the following statements hold:�i� Assume that b�0� � 0 and that ḣ0 @ 0. Then, as µ � 0�, we have that hµ � H and ξµ � 0 uniformly in�0, t0�, where t0 �� �h0~ḣ0.�ii� Assume that b�0� � 0 and that ḣ0 C 0. Then, as µ � 0�, we have that hµ � H and ξµ � 0 uniformly on

compact subsets of �0,ª�.�iii� Assume that ḣ0 @ 0, that b satisfies (B.3), and that D is given as in (D.3). Let ξ� �0,ª� � R be defined
via ξ�t� � 0 if t B t0, while if t A t0 we let ξ be the unique solution to the initial value problem¢̈̈̈̈¦̈̈̈̈¤

ξ̈ � ab�ξ� � 0,

ξ�t0� � 0, ξ̇�t0� � �ḣ0.

Then, as µ� 0�, we have that hµ�t��H and ξµ � ξ uniformly on compact subsets of �0,ª�.
A few comments are in order. First, let us mention that we are primarily interested in the case ḣ0 @ 0;

the case of a non-negative initial velocity is mainly stated for comparison. Next, observe that (D.3) can be
interpreted as a rigidity condition on the solid body (see Theorem 8.2.4 and Theorem 8.2.5). It is also worth
noting that the function H given in the theorem is monotone. In particular, the conclusions of statement �iii�
in Theorem 8.3.2 can be summarized as follows: in the vanishing viscosity limit, a “rigid” solid (in the sense of
condition (D.3)) moving towards the wall will impact the boundary of the container in finite time (to be precise,
at t � t0) and it won’t separate from the container’s wall thereafter. Thus, rather surprisingly, the reduced model
predicts that, as we let the viscosity parameter go to zero, the system composed of a smooth rigid shell with an
inner mass-spring mechanism (as described in subsubsection 8.2.3.2) approaches a state where the motion of
the shell and that of the spring are perfectly decoupled and the shell cannot move away from the wall after colli-
sion. This trapping effect is readily explained by observing that if we could instantaneously invert the direction
of the velocity, the shell would experience a drag force of equal intensity. More specifically, the resistance of
the fluid to the movement of the body does not distinguish on whether the shell is approaching or receding from
the wall. Notably, for positive (but small) values of the viscosity parameter, the very same phenomenon that
prevents from collision is also the primary obstruction to rebound.

Next, we show that the nearly paradoxical situation described by Theorem 8.3.2 can be partly resolved by
allowing for qualitative changes in the shape of the solid. This has the effect of introducing an asymmetry in the
problem which can potentially prevent the trapping phenomenon illustrated above. These changes, however,
need to be significant enough to be reflected in the asymptotic behavior of D (which we recall should be
understood as an approximation to the drag force exerted on the body by the surrounding fluid environment) as
h approaches zero.

The running assumptions for the last result of the section are the following:
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(B.4) b�y�y A 0 for all y x 0;

(D.4) D is non-decreasing as a function of ξ, that is,

D�h, ξ1� B D�h, ξ2�
for every h A 0 and every ξ1 B ξ2;

(D.5) there exist three constants δ1, c1 A 0 and γ1 > �α,ª� such that for every h A 0 we have

D�h,�δ1� C c1h
�γ1 ;

(D.6) there exist a constant δ2 A 0 and a function γ� �0,ª�� �0,ª� such that

S
h

0
γ�y�y�1 dy � 0

as h� 0� and with the property that for every h A 0 we have

D�h,�δ2� B γ�h�h�γ1 .

Theorem 8.3.3. Under the assumptions of Theorem 8.3.1, let ξ0 � ξ̇0 � 0 and assume that D satisfies (D.4),
(D.5), and (D.6). Furthermore, let b be given satisfying (B.4) so that there exists a unique y� @ 0 with the
property that 2aB�y�� � ḣ2

0. Assume that y� @ �δ2, where δ2 is given as in (D.6). Then, for every subsequence�hn�n ` �hµ�µ there exists T A t0 �� �h0~ḣ0 such that

lim
n�ª

hn�T � A 0.

We remark that although Theorem 8.3.3 holds for every choice of the initial velocity ḣ0, the result is of
particular interest in the case where ḣ0 @ 0. Indeed, since in this case we have that hn�t0� � 0 (see statement�i� in Theorem 8.3.2), the theorem implies that �hn�n converges to a function which is not monotone.

Remark 8.3.4. Notice that (B.4) implies (B.3). Therefore, the main difference between Theorem 8.3.2 and
Theorem 8.3.3 is that condition (D.3) is replaced by (D.4)–(D.6). We mention here that our prototypical exam-
ples for the drag shape factor D are motivated by the drag force estimates obtained in Subsection 8.2.4 �see in
particular (8.2.29) and (8.2.32)� and are given by

D1�h, ξ� �� h�cξ�3~2, D2�h, ξ� �� h�max�ξ,0��1, (8.3.3)

where c is a positive constant. Notice that in view of (8.2.29) and (8.2.32), D1 is modeled in such a way that
positive values of ξ induce a flattening of an (initially) spherical particle in two space dimension, whileD2 does
the same in three space dimensions. Moreover, both allow for adequate choices of δ2 and y�. In particular,
they satisfy (D.1), (D.5), and (D.6). Notice that the monotonicity requirement in (D.4) holds for all h B 1; thus
both examples can be suitably modified to satisfy (D.4). Additionally, as it becomes apparent from the proof of
Theorem 8.3.3 �see in particular (8.3.24)�, it is enough to assume that (D.4) holds for h B h0 � ε, where ε can
be any positive number. Finally, notice that (D.2) is automatically satisfies for d2 and holds for d1 provided
that c is chosen opportunely.

8.3.2 Proofs of the main results

In this section we collect the proofs of the results stated above. Due to the technical nature of the arguments
presented below, we give first a schematic outline of the general principles behind the results. In particular,
let us mention that the proof of Theorem 8.3.2 is based on the key observation that the falling object reaches
a minimum distance from the wall at which escape is no longer possible. Recalling that the leading term in
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the drag coefficient does not distinguish on whether the solid is approaching or receding from the wall, in
this configuration the elastic response of the inner spring is not sufficient to overcome the singular force that
resists motion in the fluid. Conversely, in the proof of Theorem 8.3.3 we exploit the fact that, as the object is
approaching the wall, the change of shape effectively stops the particle at a greater distance than the one that
would be reached by the undeformed configuration. As the deformation parameter reverts these changes, the
symmetry is broken and the elastic response is now sufficient to generate a vertical motion away from the wall.
This effective rebound is physical in the sense that it withstands the vanishing viscosity limit.

Proof of Theorem 8.3.1. In view of the regularity assumptions (B.1) and (D.1), the existence of local solutions
to (8.3.1) follows directly from Peano’s theorem. Let �h, ξ� be a maximal solution defined on the interval �0, T �
and assume by contradiction that T @ª. We divide the proof into two steps.
Step 1: Multiplying the first equation in (8.3.1) by �ḣ � ξ̇�, the second one by aḣ, and adding together the
resulting expressions, we arrive at

�ḧ � ξ̈��ḣ � ξ̇� � aḧḣ � �ab�ξ�ξ̇ � aµD�h, ξ�ḣ2. (8.3.4)

Define the auxiliary function

F �t� �� �ḣ�t� � ξ̇�t��2
� aḣ�t�2

� 2aB�ξ�t��
and notice that integrating (8.3.4) yields the following energy equality

F �t� � 2aµS
t

0
D�h�s�, ξ�s��ḣ�s�2 ds � F �0�. (8.3.5)

This energy equality relates well to the one formally derived for the full fluid-structure interaction (8.2.8).
Indeed, �ḣ�t� � ξ̇�t��2 � aḣ�t�2 resembles the kinetic energy K�t�, while 2aB�ξ�t�� represents the elastic
contribution given by the density W and the dissipation (stemming from the fluid) is the same in both energy
equalities.

Since the integral on the left-hand side is non-negative, in view of (B.2) we conclude that ξ, ḣ, and ξ̇ are
bounded. Consequently, since by assumption T @ª, we obtain that h is also bounded in �0, T �. This implies
that necessarily h�T � � 0, since otherwise the solution would admit an extension, hence contradicting the
maximality of the solution �h, ξ�.
Step 2: Next, we take T1 to be the smallest time instance for which h�T1� � 0. In view of the previous step we
have that T1 B T @ª. We notice that by multiplying the second equation in (8.3.1) by χ�ḣ@0� we get

�ḧ � b�ξ��χ�ḣ@0� � �µD�h, ξ�ḣχ�ḣ@0�
C �µch�αḣχ�ḣ@0�
C �µch�αḣχ�ḣ@0� � µch�αḣχ�ḣA0�
� �µch�αḣ,

where in the first inequality we have used the lower bound given by (D.2). Integrating both sides in the previous
inequality yields

S
t

0
�ḧ�s� � b�ξ�s���χ�ḣ@0��s�ds C �µcS t

0
h�α�s�ḣ�s�ds � �µcS h�t�

h0

y�α dy. (8.3.6)

Notice that since by assumption α C 1, the right-hand side of (8.3.6) tends to infinity as t � T�

1 . Set U �� �s >�0, t� � ḣ�s� @ 0� and observe that if U � �0, t� then

S
t

0
ḧ�s�χ�ḣ@0��s�ds � ḣ�t� � ḣ0, (8.3.7)
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while if this is not the case then we write U as the union of at most countably many disjoint open intervals, i.e.

U �
ª

�
i�1

�si, ti�.
Without loss of generality we assume that si B sj if i B j; furthermore, we notice that ḣ�t1� � 0, ḣ�si� � 0 for
all i C 2, and ḣ�ti� � 0 for all i C 2 provided that ti x t. Consequently, we have

S
t

0
ḧ�s�χ�ḣ@0��s�ds � ª

Q
i�1
S

ti

si
ḧ�s�ds � min�ḣ�t�,0� �min�ḣ0,0�. (8.3.8)

Combining (8.3.7) and (8.3.8) with the bounds obtained in the previous step shows that the left-hand side of
(8.3.6) remains bounded as t� T�

1 , thus yielding a contradiction.
In turn, we obtain that h A 0 in �0, T � and the existence of a global solution follows by Step 1. Moreover,

the uniqueness of solutions is now direct consequence of the Picard–Lindelöf theorem and (D.1).

In the remainder of this section, we study the asymptotic behavior of solutions as the viscosity parameter
µ approaches zero. To be precise, in the following we fix a sequence µn � 0� and denote with �hn, ξn� the
solution to (8.3.1) (given by Theorem 8.3.1) relative to the choice µ � µn.

Lemma 8.3.5. Under the assumptions of Theorem 8.3.1, let �hn, ξn� be solutions as above. Then there exist
two Lipschitz continuous functions h, ξ�R � R, with h non-negative, such that (up to the extraction of a
subsequence, which we do not relabel) hn � h and ξn � ξ uniformly on compact subsets of �0,ª�.
Proof. As a consequence of the energy estimate (8.3.5), we see that

sup�YξnYLª��0,ª�� � YḣnYLª��0,ª�� � Yξ̇nYLª��0,ª�� � n > N� @ª. (8.3.9)

Since the sequence �hn�n is equi-Lipschitz continuous and hn�0� � h0 for every n, it is also equi-bounded
in �0, T � for every T A 0. The desired result then follows by the Arzelà–Ascoli theorem.

Lemma 8.3.6. Assume that b�0� � 0, ξ0 � 0, ξ̇0 � 0, and let �h, ξ� be given as in Theorem 8.3.5. Then, the
following hold:�i� if ḣ0 C 0 we have that h�t� � h0 � ḣ0t and ξ�t� � 0 for every t C 0;

�ii� if ḣ0 @ 0 we have that h�t� � h0 � ḣ0t and ξ�t� � 0 for every t B t0 �� �h0~ḣ0.

Proof. Since by assumption h�0� � h0 A 0, there exists t1 A 0 such that h�t� A 0 in �0, t1�. For any t2 @ t1, let
ε �� min�h�t� � t > �0, t2��. Then, for t > �0, t2� we have

Sḧn�t�S B Yb�ξn�YLª � µnYḣnYLª max�D�y, ξn� � y > �ε, YhnYLª�� .
Thus, �hn�n is bounded in C1,1��0, t2�� and by the Arzelà–Ascoli theorem we find for that for a subsequence
ḣn � ḣ uniformly.

Next, notice that by integrating the second equation in (8.3.1) we arrive at

ḣn�t� � ḣ0 � �S
t

0
b�ξn�s��ds � µnS t

0
D�hn�s�, ξn�s��ḣn�s�ds.

Letting n�ª in the previous identity yields

ḣ�t� � ḣ0 � �S
t

0
b�ξ�s��ds. (8.3.10)

Subtracting the second equation in (8.3.1) to the first one we obtain

ξ̈n � ��1 � a�b�ξn� � µnD�hn, ξn�ḣn. (8.3.11)
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Therefore, reasoning as above, we conclude that ξ > C1��0, t2�� and that eventually extracting a subsequence
we also have ξ̇n � ξ̇. Integrating the equation in (8.3.11) and passing to the limit with respect to n we see that

ξ̇�t� � ��1 � a�S t

0
b�ξ�s��ds.

In turn, ξ is of class C2 in �0, t2� and solves the initial value problem¢̈̈̈̈¦̈̈̈̈¤
ξ̈ � �1 � a�b�ξ� � 0,

ξ�0� � ξ̇�0� � 0.

Since by assumption b�0� � 0, we readily deduce that ξ is identically equal to zero in �0, t2�. This, together
with (8.3.10), implies that ḣ�t� � ḣ0 and therefore that h�t� � h0 � ḣ0t for every t > �0, t2�.

Finally, assuming first that ḣ0 @ 0, we notice that if we can choose t1 C t0 then there is nothing else to do.
If this is not the case, then we can assume without loss of generality that t1 @ t0 is such that h�t1� � 0. In this
case, letting t2 � t�1 would then imply that h�t1� � h0 � ḣ0t1 A 0, thus leading to a contradiction. On the other
hand, if ḣ0 C 0 the proof is similar, but simpler; thus we omit the details. This completes the proof.

In the following proposition we address the more delicate case in which ḣ0 @ 0 and t C t0.

Proposition 8.3.7. Under the assumptions of Theorem 8.3.2, let hn, ξn, h, and ξ be given as in Theorem 8.3.5.
Then, if ḣ0 @ 0 we have that h�t� � 0 in �t0,ª�.
Proof. Assume first that α A 1 and fix ε A 0. We claim that there exists N�ε� > N such that if n C N�ε� then

hn�t�α�1
B ε (8.3.12)

for every t C t0. The desired result then follows by the arbitrariness of ε. We begin by observing that adding
the first equation in (8.3.1) to a multiple of the second equation yields

�1 � a�ḧn � ξ̈n � �aµng�hn�h�αn ḣn.

Let t C t0 be such that hn�t� @ h0. Then, integrating the previous identity and by means of a change of variables
we obtain

�1 � a�ḣn�t� � �1 � a�ḣ0 � ξ̇n�t� � �aµnS t

0
g�hn�s��hn�s��αḣn�s�ds

� �aµnS
hn�t�

h0

g�y�y�α dy
B �

C2aµn
1 � α

�hn�t�1�α
� h1�α

0 �.
Rearranging the terms in the previous inequality yields

hn�t�α�1
B
C2aµn
α � 1

��1 � a�ḣn�t� � �1 � a�ḣ0 � ξ̇n�t� � C2aµn
α � 1

h1�α
0 ��1

.

Therefore, to prove (8.3.12) it is enough to show that

C2aµn
α � 1

B ε��1 � a�ḣn�t� � �1 � a�ḣ0 � ξ̇n�t� � C2aµn
α � 1

h1�α
0 � ;

in the following it will be convenient to rewrite this condition as

�1 � a�ḣ0 �
C2aµn
α � 1

�ε�1
� h1�α

0 � B �1 � a�ḣn�t� � ξ̇n�t�. (8.3.13)
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Let us remark here that since by assumption ḣ0 @ 0, it is possible to choose n large enough so that the left-hand
side in (8.3.13) is negative. Consequently, if arguing by contradiction we assume that (8.3.13) does not hold,
we obtain that V�1 � a�ḣ0 �

C2aµn
α � 1

�ε�1
� h1�α

0 �V @ S�1 � a�ḣn�t� � ξ̇n�t�S. (8.3.14)

Squaring both sides in (8.3.14) and by Young’s inequality we see that

��1 � a�ḣ0 �
C2aµn
α � 1

�ε�1
� h1�α

0 ��2

@ ��1 � a�ḣn�t� � ξ̇n�t��2

B �1 �
1

δ
� �ḣn�t� � ξ̇n�t��2

� �1 � δ�a2ḣn�t�2 (8.3.15)

holds for every δ A 0. In particular, if we let δ � 1~a, the right-hand side in (8.3.15) can be rewritten as

�1 �
1

δ
� �ḣn�t� � ξ̇n�t��2

� �1 � δ�a2ḣn�t�2
� �1 � a� ��ḣn�t� � ξ̇n�t��2

� aḣn�t�2� ,
and therefore, from the energy equality (8.3.5), we see that

�1 � a� ��ḣn�t� � ξ̇n�t��2
� aḣn�t�2� � �1 � a�2ḣ2

0 � 2a�1 � a�B�ξn�t��
� 2a�1 � a�µnS t

0
g�hn�s��hn�s��αḣn�s�2 ds. (8.3.16)

Further, expanding the square on the left-hand side of (8.3.15) we obtain the quantity

�1 � a�2ḣ2
0 �

2C2a�1 � a�µn
α � 1

�ε�1
� h1�α

0 � ḣ0 �O�µ2
n�. (8.3.17)

Thus, combining (8.3.16) and (8.3.17) with (8.3.15) for δ � 1~a and rearranging the terms in the result inequal-
ity, we arrive at

B�ξn�t�� � µnS t

0
g�hn�s��hn�s��αḣn�s�2 ds B

C2µn
α � 1

�ε�1
� h1�α

0 � ��ḣ0� �O�µ2
n�.

Let t1 @ t0 be such that

h1�α
0 �

C2

C1
�ε�1

� h1�α
0 � @ �h0 � ḣ0t1�1�α. (8.3.18)

Then, since by assumption t C t0, we have

C1S
t1

0
hn�s��αḣn�s�2 ds B

B�ξn�t��
µn

� S
t

0
g�hn�s��hn�s��αḣn�s�2 ds

B
C2��ḣ0�
α � 1

�ε�1
� h1�α

0 � �O�µn�.
We claim that letting n �ª in the previous inequality leads to a contradiction to the definition of t1. Indeed,
since in �0, t1� we have that hn and ḣn converge uniformly to h and ḣ, respectively. Moreover, since (B.3)
implies that b�0� � 0, we are in a position to apply Theorem 8.3.6 and conclude that

C1��ḣ0�
α � 1

��h0 � ḣ0t1�1�α
� h1�α

0 � � C1S
t1

0
h�s��αḣ�s�2 ds

B
C2��ḣ0�
α � 1

�ε�1
� h1�α

0 � . (8.3.19)

As one can readily check, (8.3.19) is in contradiction with (8.3.18) and the claim is proved. Thus, we have
shown that if t C t0 and hn�t� @ h0 for every n sufficiently large then hn�t�α�1 B ε. Assume for the sake
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of contradiction that there exists t A t0 such that hn�t� � h�t� C h0. Since h�t0� � 0, there must be a point
τ > �t0, t� such that h�τ� � h0~2. Let N > N be such that

Vhn�τ� � h0

2
V @ h0

4

for all n C N . Notice that for every such n we have that hn�τ� @ h0 and therefore hn�τ� B ε, provided n is
large enough. This implies that 0 @ h0~2 � h�τ� B ε. Letting ε� 0 leads to a contradiction.

If α � 1, the argument presented above can be suitably modified to prove that

1Sloghn�t� � logh0S B ε
rather than (8.3.12). Since the proof requires only minimal changes, we omit the details.

Lemma 8.3.8. Under the assumptions of Theorem 8.3.1, let hn, ξn, h, and ξ be given as in Theorem 8.3.5.
Then, if ḣ0 @ 0, b�0� � 0, and h�t� � 0 for t C t0 we have that ξ is the unique solution to the initial value
problem ¢̈̈̈̈¦̈̈̈̈¤

ξ̈ � ab�ξ� � 0,

ξ�t0� � 0, ξ̇�t0� � �ḣ0.

Proof. We begin by noticing that if we let zn �� hn � ξn, we have that z̈n � ab�ξn�. Therefore, the sequence�zn�n is bounded in C1,1. In turn, by Arzelá-Ascoli, we see that there exists a function z such that, up to the
extraction of a subsequence (which we do not relabel), zn � z and żn � ż uniformly on compact subsets of�0,ª�. Integrating the equation for zn and passing to the limit in n yields

ż�t� � ż�0� � S t

0
ab�ξ�s��ds.

Therefore z > C2�0,ª� and satisfies z̈ � ab�ξ�. Since by assumption we have that h�t� � 0 for every t C t0, in
view of Theorem 8.3.6 we are left to show that ξ̇�t0� � �ḣ0. This follows by observing that

ḣ0 � lim
t�t0

ḣ�t� � ξ̇�t� � ż�t0� � lim
t�t0

ż�t� � lim
t�t0

�ξ̇�t�.
This concludes the proof.

Proof of Theorem 8.3.2. Combining the results of Theorem 8.3.6, Theorem 8.3.7 and Theorem 8.3.8, we obtain
that for every sequence µn � 0�, the corresponding sequences of solutions, i.e. �hn�n and �ξn�n, admit a
subsequence with the desired convergence properties. As one can readily check with a standard argument by
contradiction, this implies that the convergence holds for the entire family. Hence, the proof is complete.

We conclude the section with the proof of Theorem 8.3.3.

Proof of Theorem 8.3.3. We present the proof for the case that γ1 A 1, where γ1 is the constant given in (D.5).
The case that γ1 � α � 1 follows by the same arguments (replacing powers by logarithms at the relevant places).

We divide the proof into several steps.
Step 1: Arguing by contradiction, assume that hn�t��max�h0 � ḣ0t,0� for all t C 0. Then, an application of
Theorem 8.3.8 yields that eventually extracting a subsequence we have that ξn � ξ, where ξ is the solution to

ξ̈ � ab�ξ� � 0, (8.3.20)

with initial conditions ξ�t0� � 0 and ξ̇�t0� � �ḣ0. Furthermore, from (B.2) and (B.4) we see that there are
exactly two points y�, y�, with y� @ 0 @ y�, such that 2aB�y�� � ḣ2

0. Let

t� �� 2 WS y�

0
�ḣ2

0 � 2aB�y���1~2
dyW .
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Observe that t� are finite by the positivity assumption of (B.4), since (by Taylor expansion) ḣ2
0 � 2aB�y� �

2ab�y���y��y��O��y��y�2�. Further notice that the points y� are turning points for the non-linear oscillator
(8.3.20), whose period is given by t� � t�. We then define t1 �� t0 � t� and t2 �� t0 � t� � t�. With this notation
at hand, we have that

y� B ξ�t� B y� for t C 0,

ξ�t� A 0 for t > �t0, t1�,
ξ�t� @ 0 for t > �t1, t2�.

Step 2: In this step we prove that for every ε A 0 with 6ε @ t2 � t1 there exists N�ε� such that if n C N�ε� then
ḣn�t� C 0 in �t1 � 3ε, t2 � 3ε�. To this end, observe that by the uniform convergence of ξn to ξ, there exists a
positive δ such that

ξn�t� B �δ (8.3.21)

for all t > �t1 � ε, t2 � ε� and all n sufficiently large. Arguing by contradiction, suppose that for a subsequence
of �hn�n (which we do not relabel) we can find points τn > �t1 � 3ε, t2 � 3ε� with the property that ḣn�τn� @ 0.
Observe that necessarily ḣn�t� B 0 in �t1 � ε, τn�. Indeed, if this was not the case then hn would admit a local
maximum at a point σn in this interval. This leads to a contradiction since (8.3.21), together with (B.4), implies
that ḧn�σn� � �b�ξn�σn�� A 0. Let tε,n > �t1 � ε, t1 � 2ε� be such that

hn�t1 � ε� � hn�t1 � 2ε� � ḣn�tε,n�ε.
Letting n � ª we see that ḣn�tε,n� � 0. Integrating the second equation in (8.3.1) between tε,n and t >�tε,n, t1 � 3ε�, using the fact that hn is non-increasing in this interval, and (8.3.21) we arrive at

ḣn�t� � ḣn�tε,n� C �S t

tε,n
b�ξn�s��ds C β�t � tε,n�,

where β �� min��b�y� � y > �y�,�δ��. Integrating the previous inequality between t1 � 2ε and t1 � 3ε we then
conclude that

hn�t1 � 3ε� � hn�t1 � 2ε� � ḣn�tε,n�ε C βε2

2
,

which in turn implies

hn�t1 � 3ε� � hn�t1 � ε� C βε2

2
.

Letting n�ª leads to a contradiction, since the left hand side was assumed to converge to zero.
Step 3: Let tn be such that

hn�tn� � min�hn�t� � t > �0, t1 � t2
2

�  .
The purpose of this step is to prove that there exists a constant K A 0 such that for every n sufficiently large we
have

Khn�tn�γ1�1
C µn. (8.3.22)

To see this, fix ε A 0 such that ξ�t� A �δ1~2 in �0, t1 � 3ε�, where δ1 is given as in (D.5). Using the fact that
ξn � ξ uniformly in �0, t2� and the result of the previous step it is possible to find a number N�ε� such that if
n C N�ε� then the following properties are satisfied:

ξn�t� C �δ1 in �0, t1 � 3ε�,
ḣn�t� C 0 in �t1 � 3ε, t2 � 3ε�. (8.3.23)
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Notice that by (8.3.23) it follows that tn > �0, t1�3ε�. Moreover, in view of (D.4), (D.5), and (8.3.23), for every
t > �0, t1 � 3ε� we have

�ḧn�t� � b�ξn�t���χ�ḣnB0��t� � �µnD�hn�t�, ξn�t��ḣn�t�χ�ḣnB0��t�
C �µnD�hn�t�,�δ1�ḣn�t�χ�ḣnB0��t�
C �µnc1hn�t��γ1 ḣn�t�χ�ḣnB0��t�
C �µnc1hn�t��γ1 ḣn�t�. (8.3.24)

Reasoning as in (8.3.8) (see also (8.3.9)), we conclude that there exists a constant k A 0 such that

k C S
tn

0
�ḧn�t� � b�ξn�t���χ�ḣnB0��t�dt C µnc1

γ1 � 1
�hn�tn�1�γ1 � h1�γ1

0 � , (8.3.25)

where the second inequality is obtained by integrating the estimate in (8.3.24). Notice that (8.3.25) can be
rewritten as �γ1 � 1�k

c1
hn�tn�γ1�1

C µn �1 � h1�γ1

0 hn�tn�γ1�1� ,
and that the right-hand side can be further estimated from below by µn~2, provided n is large enough. In
particular, we have show that (8.3.22) holds for K � 2�γ1 � 1�k~c1.
Step 4: With this estimate at hand can proceed as follows. Since by assumption y� @ �δ2, where δ2 is the
constant given as in (D.6), eventually replacing ε with a smaller number, we can find T1, T2 such that T1 @ T2,
4ε @ T2 � T1, �T1, T2� ` �t1 � 3ε, t2 � 3ε�, and with the property that ξn�t� B �δ2 for every t > �T1, T2�.
Reasoning as in Step 2 of the proof, for every n we can find a point τε,n > �T1, T1 � ε� in such a way that

hn�T1� � hn�T1 � ε� � ḣn�τε,n�ε.
Notice that for every t > �T1, T2�, (8.3.22) and (D.5) imply that

ḧn�t� � �b�ξn�t�� � µnD�hn�t�, ξn�t��ḣn�t�
C �b�ξn�t�� �Khn�tn�γ1�1γ�hn�t��hn�t��γ1 ḣn�t�
C �b�ξn�t�� �Kγ�hn�t��hn�t��1ḣn�t�.

Integrating the previous inequality between τε,n and t > �τε,n, T2� we obtain

ḣn�t� � ḣn�τε,n� C �S t

τε,n
b�ξn�s��ds �K S t

τε,n
γ�hn�s��hn�s��1ḣn�s�ds

� �S
t

τε,n
b�ξn�s��ds �K S hn�t�

hn�τε,n� γ�y�y�1 dy

C �S
t

τε,n
b�ξn�s��ds �K S hn�T2�

0
γ�y�y�1 dy, (8.3.26)

where in the last inequality we have used the fact that hn is non-decreasing in �T1, T2�. Integrating (8.3.26)
from τε,n to T2 yields

hn�T2� � hn�τε,n� � ḣn�τε,n��T2 � τε,n� C �S T2

τε,n
S

t

τε,n
b�ξn�s��dsdt

�K�T2 � τε,n�S hn�T2�
0

γ�y�y�1 dy.

In view of (D.6), by letting n�ª in the previous inequality we obtain

0 � lim
n�ª

hn�T2� � hn�τε,n� � ḣn�τε,n��T2 � τε,n� C lim
n�ª

�S
T2

τε,n
S

t

τε,n
b�ξn�s��dsdt. (8.3.27)
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To conclude, it is enough to notice that the right-hand side of (8.3.27) is positive. Indeed, if we set β̃ ��

min��b�y� � y > �y�,�δ2�� A 0, we get

�S
T2

τε,n
S

t

τε,n
b�ξn�s��dsdt C 1

2
�T2 � T1 � ε�2β̃ A 0.

We have thus arrived at a contradiction and the proof is complete.

8.4 Numerical results

In this section, we present some numerical experiments in order to further strengthen our main conjecture,
which was previously formulated in the introduction. We begin by illustrating that the “effectively deformable”
reduced model, for which the internal spring deformation is coupled with the damping term representing the
drag force, does indeed produce a physical rebound. We conclude the section with the comparison from a
numerical standpoint of the ODE and PDE solutions. The striking similarities that we observe suggest the
relevance of the reduced model for the description of the rebound phenomenon.

8.4.1 Reduced model

In the numerical simulations we shall consider a particular variant of the reduced model (8.3.1). To be precise,
we take

D�h, ξ� �� c1h
�c2ξ�3~2 � c3

M
,

where the first term on the right-hand side is in accordance with (8.3.3) and reflects the change of flatness pa-
rameterized by ξ, and the second constant term describes the standard Stokes drag in the absence of geometrical
constraints. Furthermore, if a and b are given as in (8.3.2), then the system of governing equations for h and ξ
can be written as

Mḧ � �kξ � µ �c1h
�c2ξ�3~2

� c3� ḣ,
m�ḧ � ξ̈� � kξ,

with initial conditions

h�0� � h0, ḣ�0� � ḣ0,

ξ�0� � ξ0, ξ̇�0� � ξ̇0.

8.4.1.1 Numerical results

In order to demonstrate the critical effect of the change of flatness for the reduced model, we compare the two
situations in which c2 � 0 and c2 x 0. In both cases an internal energy storage mechanism is present in the
form of a mass-spring element. In the first case the elongation of the spring does not affect the drag force
(rigid shell model). For this model we proved that a physical rebound is not possible, see Theorem 8.3.1 and
Theorem 8.3.2. In the other case, the elongation of the spring does affect the drag force (effectively deformable
model); in this setting a physical rebound can be expected in view of Theorem 8.3.3.

The qualitative different behaviors that the two settings can exhibit are summarized in Figure 8.4, where
we plot the evolution of h, that is, the distance to the wall, as a function of time t for several values of the fluid
viscosity µ for the rigid shell model (left column) and for the effectively deformable model (right column).
The top row shows the larger time interval �0,2� s, while on the bottom row we zoom into the vicinity of
the supposed rebound instant. The figure clearly demonstrates the severe effect of the inclusion of a coupling
between the internal deformation parameter ξ and the drag force on the dynamics of the system. For the
rigid shell model, the response converges with decreasing viscosity to the “hit-and-stick” solution, i.e., to
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the piecewise affine function H�t� � max�0, h0 � ḣ0t� (see Theorem 8.3.2). Note that as a result of the
presence of the internal spring, the solutions for the rigid shell model are non-monotone, but as the amplitude of
these oscillations diminishes with decreasing fluid viscosity, this bouncing does not correspond to the physical
rebound as we defined it (that is, it doesn’t withstand the vanishing viscosity limit).
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Figure 8.4: Physical rebound is not possible for the rigid shell model (left). The effectively deformable model
can produce a rebound (right). The graphs in the bottom row are close-ups in the vicinity of the supposed
rebound instant.

The situation is very different for the effectively deformable model. For the highest values of viscosity (red
line), the body bounces off very mildly and its motion is rather quickly slowed down due to friction in the fluid.
But with decreasing viscosity, the rebound becomes more and more pronounced and the solutions appear to be
converging to an expected frictionless limit. Note how oscillations of the internal spring manifest themselves
in the motion of h, becoming less and less damped as µ goes to zero. Interestingly, our simulations indicate
that the kinetic energy corresponding to the outer shell, i.e. the fraction M~�M �m� of the total kinetic energy
of the system, is lost during the rebound in the vanishing viscosity limit. This suggests that a proper physical
rebound (i.e. a perfectly elastic vacuum situation), would correspond in our reduced model to the caseM � 0�,
that is, to the situation in which the entire mass of the body is carried by the internal mass and the outer shell is
massless.

The values of the parameters used in the depicted simulations are as follows: k � 10000, c1 � 0.1, c2 � 20
for the effectively deformable model (and it is set equal to zero in the rigid case), c3 � 7.4, M � 1, and
finally m � 8.2. It is worth noting that this particular choice of the parameters is in accordance with the
assumptions of Theorem 8.3.3 (see also Theorem 8.3.4). Indeed, since the energy estimate (8.3.5) implies that
supt Sξ�t�S B Sḣ0S~ºk � 1~200, we have that ξ�t� @ 1~�2c2� � 1~40 for all t A 0. Moreover, the choice is
motivated by our effort to match the solutions to the reduced model with the finite element solutions to the
full FSI problem described in Subsection 8.4.3. Finally, for the initial conditions we considered the following
values: h0 � 0.3, ḣ0 � 0.5, and ξ0 � ξ̇0 � 0.
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8.4.2 Full FSI model

The standard form of the fluid-structure interaction problem, as presented in Section 8.2, is typically treated by
the so-called arbitrary Lagrangian–Eulerian (ALE) method (see, for example, [57, 170]) where the solid part is
Lagrangian, but the fluid problem is transformed into a certain special configuration which reflects the changes
of the shape of the fluid domain but is not disrupted by the (possibly vigorous) motion of the fluid within the
domain. The ALE method can be used to tackle the problem of contact in fluid-structure interactions, but often
requires the use of sophisticated adaptive remeshing techniques to keep the fluid domain in the contact region
well resolved.

For our specific problem, however, we find it more convenient to pass to a fully Eulerian description. This
formulation was derived in Subsection 8.2.2, and revolves around the system of equations

divv � 0,

ρ�∂v
∂t

� v � ©v� � divσ, σ � �pIN � 2µD�v� �GBd,

where viscosity µ is positive in the fluid and zero in the solid, the elastic modulus G is positive in the solid and
zero in the fluid, the density ρ is equal to ρs in the solid and ρf in the fluid, and

B � IN in F�t� and
∂B

∂t
� �v � ©�B � �©v�B �B�©v�T

� O in B�t�.
For the numerical implementation of the above model, we employ the conservative level-set method with

reinitialization, which facilitates the tracking of the boundary between the fluid and the solid domain. In
particular, we add a new scalar unknown χ, defined via

χ�x, t� �� �1 if x > B�t�,
0 if x > F�t�,

and which is smeared out so that it changes smoothly across an interfacial zone with characteristic thickness ε.
The newly obtained regularized level set function is denoted here by χε. As the elastic solid moves in the fluid,
the level set function χε is advected by the fluid velocity, i.e.

∂χε
∂t

� v � ©χε � 0, (8.4.1)

and, in order to ensure stability of the method and a good resolution of the interfacial zone, the level set must
also be reinitialized during the simulations (see for example [156]). This is done by solving the following
equation:

div �χ̄ε�1 � χ̄ε� ©χεS©χεS 	 � ε∆χ̄ε � 0,

where χε is the solution of the advection equation (8.4.1) at the reinitialization time. The solution χ̄ε is then
assigned to χε and the evolution of χε is then continued according to (8.4.1). Note that the reinitialization
smears out the level set function to the required diffuse profile. In one dimension, this reads

χε�x� � 1

2
�1 � tanh

x

2ε
� , (8.4.2)

so indeed the parameter ε controls the thickness of the diffuse interface. Similarly, the material parameters ρ,µ,
and G are prescribed to change smoothly across the interface by setting

ρ�χε� �� χερs � �1 � χε�ρf , µ�χε� �� χεµs � �1 � χε�µf , G�χε� �� χεGs � �1 � χε�Gf .
In order to reduce the complexity of the problem, which is further enhanced by the necessity to solve for the
evolution of the tensor B, we simplified the model by assuming that both the elastic deformations and the
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velocities are small. Consequently, we omit all convective terms, including the one in the evolution equation
for B. In the same spirit, we also assume that �©v�B � ©v in the solid, while in the fluid the equation is
regularized in such a way that the evolution equation for B can be solved easily.1 In particular, due to the
regularized level set function we introduce a global left Cauchy-Green tensor B�Ω � �0, T � � RN�N , where
B � �1�χε�Bf �χεBs, with Bf being a canonical approximation of the identity. All together we arrive at the
following set of equations that we solved numerically

divv � 0,

∂χε
∂t

� v � ©χε � 0, div �χ̄ε�1 � χ̄ε� ©χεS©χεS 	 � ε∆χ̄ε � 0,

ρ�χε�∂v
∂t

� divσ, σ � �pIN � 2µ�χε�D �G�χε�Bd,
∂Bs

∂t
� 2D,

∂Bf

∂t
�Bf � IN � O, B � �1 � χε�Bf � χεBs,

which is optimized for the performance of the numerical simulations. The problem is implemented with the
finite element method in the open source finite element library FEniCS (see [4]) and discretized on a regular
triangular mesh. Finally, the equations for Bs and Bf are solved locally and their solutions then inserted im-
mediately into the balance equation of linear momentum. In the numerical implementation, the time derivatives
are approximated with the backward Euler time scheme, that is,

∂B

∂t
�

B �B0

∆t
,

where B0 represents the value of B at the previous time step. The time step ∆t, in turn, is chosen adaptively
according to the speed of the fluid from the previous time step in such a way that the CFL condition holds, i.e.

vmax∆t

hmin
�

1

2
.

Here vmax denotes the maximum value of the velocity magnitude and hmin is the minimum size of the element.
The local integration of B gives

Bs � B0 � 2D∆t, Bf �
IN �B0∆t

1 �∆t
, B � �1 � χε�Bf � χεBs.

Thus, the only global unknowns are the velocity v, the pressure p, and the level-set function χε. While velocity
and pressure are approximated by the classical P2/P1 Taylor–Hood element, the level-set function is approxi-
mated with the P2 element. The non-linearities are treated with the exact Newton method and the resulting set
of linear equations is then solved with the direct solver MUMPS.

8.4.2.1 Numerical results

We have numerically investigated the rebound of an elastic ball in a viscous fluid environment. The radius of
the ball considered is 0.2 m and its center is initially located 0.5 m from the bottom wall in a square container
of size 0.8 m. At the boundary of the container, no-slip boundary conditions are prescribed. As mollification
parameter we used ε � 0.0011.

The initial velocity of the ball is 0.5 m/s (downwards) and the fluid is initially at rest. Throughout the
simulation, body forces have been switched off. The following material parameters have been prescribed:

ρf � 1.0 kg/m3, ρs � 1001.0 kg/m3,

µf � 0.1 Pa s, µs � 0.0 Pa s,

Gf � 0.0 Pa, Gs � 50 000.0 Pa.
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(a) (b) (c)

Figure 8.5: Velocity (left side) and level-set (right side) at (a) moving down (b) rebound (c) moving up. The
white contour depicts the interface where the value of the level-set function is equal to 0.5.

Figure 8.6: Pressure in the fluid at the time of rebound.

Figure 8.5 shows the snapshots of the velocity and level-set fields at three time instances: moving down
(panel a), during the rebound (panel b) and moving up (panel c). Since the viscosity considered is relatively
high, the process is dissipative and the velocity magnitude is gradually decreasing with time. We remark that
contact between the elastic ball and the wall never takes place – it is indeed prevented by the development
of a high-pressure region around the point where contact would normally be expected, see Figure 8.6. The
formation of this hydrodynamic pressure spike then facilitates the rebound.

It is also worth noting how, in Figure 8.6, the ball gets deformed, with the “impacting” face becoming very
flat during the rebound phase. We fitted the shape of the interface at the bottom of the ball with the function

y � d1 � d2SxSa,
where, for simplicity, we fixed d2 � 1~�2R� � 2.5. This choice of d2 is optimal for a circle of radius R. The
dependence of the exponent a on h is shown in Figure 8.7, which demonstrates the significant flattening during
the rebound, that is, we observe larger values of a as the distance h approaches its minimal value.

8.4.3 A comparison of the two models

Let us now compare in detail the numerical simulations performed for the reduced (effectively deformable)
ODE model with the finite element solutions obtained for the full FSI problem. Throughout the section, we refer
in particular to Figure 8.8, where we display the distance to the wall h as a function of time for both models and
for several values of the viscosity parameter. It is worth noting that for the FSI model h is defined as the distance
between the wall and 0.5-level set. Observe that with the choice of parameters made in subsubsection 8.4.1.1,

1Note that the set of equations obtained through these reductions (that is, in the regime where deformations and velocities are
small) was compared to the full (large strain, large velocities) model. The difference turned out to be negligible, which implies that the
simplifications are admissible.
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Figure 8.7: The dependence of the exponent a on h.

the match between the two sets of solutions is satisfactory in terms of the duration of the rebound phase and
also regarding the mean body velocity after the rebound.
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Figure 8.8: Comparison of numerically obtained solutions to the reduced model of ODEs (a) and FEM solutions
(b).

A comment on the oscillatory behavior of h after rebound in the ODE solutions is in order. While the
oscillations are unmistakably due to the internal spring-mass system, which is effectively undamped for low
viscosity values, it is worth mentioning that somewhat similar “free oscillations” were also observed in the
simulations performed for the full FSI model for sufficiently small values of the shear modulus G (not included
in this paper). This can be seen as an indication that this particular feature of the ODE model should not be
a-priori regarded as completely non-physical.

Next, we note that the vertical offset of the solutions from the x-axis suggests that the finite element solu-
tions bounce off at greater distances from the wall when compared to solutions of the ODE model. To some
extent, this can be attributed to the effect of the level set approximation, i.e., to the diffuse interface between
the ball and the fluid in the FSI model. Indeed, the fact that the material parameters are “smeared” over the
diffuse interface of thickness ε (see (8.4.2)) poses certain limitations on the minimal distance that (the 0.5-level
set of) the deformable structure may reach. Despite this issue, we are confident that for our choices of ε, spatial
resolution, and high-enough viscosity µ, the rebound due to the pressure singularity is not a mere artifact of the
diffuse interface approach.
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8.5 Summary and concluding remarks

In this paper, we investigate how serious and physically relevant is the so called no-contact paradox, that is,
the absence of body-body and body-wall topological contact for elastic particles in an incompressible Stokes
fluid with no-slip boundary conditions imposed on all boundaries. We were driven partially by the question
whether the no-slip boundary condition in fluid-structure interaction problems must be avoided and branded as
non-physical, or whether it can be redeemed somehow. We believe that we have provided an affirmative answer
to the latter question, as we have shown that even in the absence of topological contact between an elastic body
in motion towards a rigid wall, an effective rebound can be achieved, which is physical in the sense that it
withstands the vanishing viscosity limit.

It is known and it has been proved rigorously that neither topological contact nor rebound are possible
for perfectly rigid bodies (for a demonstration of this phenomenon see, for example, Figure 1.2; see also
subsubsection 8.2.3.1 and Theorem 8.2.6). On the other hand, the inclusion of elastic deformations of the
solid bodies has been hypothesized as a promising ingredient towards obtaining a physical rebound. We tried
to follow this path, yet, to simplify the notoriously difficult fluid-structure interaction problem, we devised a
simplified ODE model (see subsubsection 8.2.3.2) which captures the features that we believe to be essential.

The model comprises a ball (immersed in an incompressible Stokes fluid with no-slip boundary conditions
prescribed both on the boundary of the container and on the fluid-solid interface) which is moving towards a
rigid wall. As a simplified model of elasticity, we introduced a single scalar internal parameter ξ, which can be
visualized as the elongation of a spring attached to a certain mass within the ball (see Figure 8.1). In this setting,
when the ball is subjected to the drag and internal push-and-pull from the spring, we have proved that contact
cannot happen in finite time for any value of the viscosity parameter, and moreover that there is no rebound in
the vanishing viscosity limit (see subsubsection 8.2.3.1; see also Theorem 8.3.2 and Theorem 1.3.1). In view
of this fact, we conjectured that the internal mechanical energy storage alone is not a sufficient mechanism to
ensure particle rebound.

As a next step in our analysis, we have investigated how allowing for deformations of the solid body
changes the picture. This was achieved by coupling the internal deformation parameter with the drag formula.
As a model case, we considered a one-parameter family of graphs describing the near-to-contact shape of the
solid body by a general power function of the form

y � h � cSxSα,
where h is the distance of the closest point to the wall, while c and α are parameters possibly depending on the
elastic deformation, i.e., we take c � c�ξ� and α � α�ξ�. We have derived the corresponding parameterization
of the drag force exerted by the fluid on the ball for such “deformed” configurations as they approach the wall
(see Subsection 8.6.3). These formulas are consistent with the standard lubrication (Reynolds’) theory (see
subsubsection 8.2.4.2 and Subsection 8.6.3) and read

D�h, ξ� � h� 3α�ξ�
1�α�ξ� if N � 2, D�h, ξ� � h 1�3α�ξ�

1�α�ξ� if N � 3.

It is worth noting that in the context of the standard Hertz theory of contact, the shape of the solid body does
not change dramatically in the sense that “spheres deform to ellipses”, so that the shape exponent α remains
unaltered. Inspired however by real-world observations, where much more dramatic changes in the “flatness”
of an impacting body are often observed, we relaxed the assumption of the Hertz theory that α is constant and
allowed it to change according to the elastic deformation described by ξ.

Surprisingly, this appears to be the key missing ingredient – the feature that allows to reproduce a physically
meaningful rebound. Indeed, in Section 8.3 we have proved the possibility of a rebound that withstands the
vanishing viscosity limit. Furthermore, our proofs are supplemented with numerical simulations of the ODE
system (see Figure 8.4). It is worth noting that the reduced model can predict rebound while incorporating at
the same time the defining feature of our problem, that is, the lack of topological contacts. This is a direct
consequence of the fact that, in view of the imposed no-slip boundary conditions, the drag force exerted by the
fluid blows up as the distance of the body from the wall approaches zero.
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Not only the ODE model admits a rigorous analysis of the effective rebound process, but, despite its appar-
ent simplicity, it also shows a striking capability to reproduce qualitative characteristics of the rebound process
when compared to finite element simulations of the full fluid-structure interaction problem (see Figure 8.8).
This gives us the confidence to consider the rigorously proved result for the ODE model as a reliable proof-of-
concept for the general fluid-structure interaction problem outlined in Section 8.2 and to strengthen our main
conjecture from the introduction, i.e., the claim that a qualitative change in the flatness of the solid body as
it approaches the wall, together with some elastic energy storage mechanism within the body, allows for a
physically meaningful rebound even in the absence of topological contact.

8.6 Appendix of the chapter

8.6.1 Reduction of the full elastic dynamics to the wave equation

In this appendix, we motivate the design of the reduced model from subsubsection 8.2.3.2; in particular, we
formally justify the reduction of the elastic structure to a spring-mass model. To simplify the derivation, let us
for a moment replace the incompressible neo-Hookean material with a compressible one, for which the elastic
strain energy is given by

Wcomp ��
G

2
�SF S2 �N � 2 lnJ�.

Then the resulting first Piola–Kirchhoff stress tensor reads

P �
∂Wcomp

∂F
� G �F �F

�T� . (8.6.1)

Let us assume that the deformations are small, i.e., S©XηS P 1. By performing Taylor expansions around the
identity readily obtain

F
�T

� �IN � �©Xη�T��1
� IN � �©Xη�T

�O �S©XηS2� , (8.6.2)

J � det�IN �©Xη� � 1 � tr�©Xη� �O �S©XηS2� � 1 � divXη �O �S©XηS2� . (8.6.3)

Notice that upon inserting (8.6.2) into (8.6.1) and neglecting all terms of order O �S©XηS2� we recover the
well-known formula of the stress for small strains, that is

P � G �©Xη � �©Xη�T� �� 2GDX�η�. (8.6.4)

Under the assumption that the material is nearly incompressible, that is ρs � ρ0
s, combining the balance of mass

(8.2.3)2 with (8.6.3) and neglecting all terms of order O �S©XηS2�, we obtain

ρ0
s � Jρ

0
s � J � 1� divXη � 0.

Moreover, inserting (8.6.4) in the balance of linear momentum (8.2.3)1 yields the classical wave equation for
η, that is

ρ0
s

∂2η

∂t2
� G∆Xη � ρ

0
sB.

8.6.2 Formal energy equality for the FSI problem

We begin this appendix with the formal derivation of an energy equality for the fully Eulerian model (8.2.17).
To this end, we multiply the balance of linear momentum by the velocity v and integrate the resulting relation
over Ω. Then, by the Gauss theorem and (8.2.16) we get

d

dt
S

Ω

ρ

2
SvS2 dx � �S

Ω
��pIN � 2µD�v� �GBd� � D�v�dx � S

Ω
ρb � v dx

� �S
Ω
�2µSD�v�S2 �GB � D�v��dx � S

Ω
ρb � v dx, (8.6.5)
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where in the last equality we have used the incompressibility condition. Next, we take the trace of the transport
equation for B (see (8.2.14)), we multiply it by G~2, integrate it over Ω, and use again (8.2.16) to obtain

d

dt
S

Ω

G

2
trBdx � S

Ω
GB � D�v�dx. (8.6.6)

Upon adding together (8.6.5) and (8.6.6) we arrive at

d

dt
S

Ω

ρ

2
SvS2 dx � d

dt
S

Ω

G

2
trBdx � S

Ω
2µSD�v�S2 dx � S

Ω
ρb � v dx.

In view of (8.2.16), the second term in the previous equality can be modified in such a way that the energy
balance takes the form

d

dt
S

Ω

ρ

2
SvS2 dx � d

dt
S

Ω

G

2
�trB �N�dx � S

Ω
2µSD�v�S2 dx � S

Ω
ρb � v dx. (8.6.7)

Upon integrating (8.6.7) over the time interval �0, t�, and recalling that µ � 0 in B�t�, finally yields

S
Ω
�ρ�x, t�

2
Sv�x, t�S2 � G�x, t�

2
�trB�x, t� �N��dx � S t

0
S
F�s� 2µf SD�v�x, s��S2 dxds

� S
Ω
�ρ�x,0�

2
Sv�x,0�S2 � G�x,0�

2
�trB�x,0� �N��dx � S t

0
S

Ω
ρ�x, s�b�x, s� � v�x, s�dxds.

One can observe now that the first integral consists of two terms: the kinetic energy, with density Ek � ρSvS2~2,
and the elastic strain energy, with density given by W expressed in the Eulerian framework (see (8.2.4)).
Notice also that the second integral respresents the standard Newtonian dissipation 2µSDS2. Upon transforming
the integrals over B�t� to the reference configuration B0, recalling that G � 0 in F�t�, that J � 1, and by
employing the identity trB � tr �FFT� � SF S2, the energy equality can be recast to a form which is perhaps
more standard in the FSI setting (cf. the energy equality for the reduced model (8.3.5)):

K�t� � S
B0

W�X, t�dX � S
t

0
S
F�s� 2µf SD�v�x, s��S2dxds � K�0� � S

B0

W�X,0�dX
� S

t

0
S
F�s� ρfb�x, s� � v�x, s�dxds � S t

0
S
B0

ρs0B�X, s� � ∂η
∂t

�X, s�dXds,

where K�t� denotes the kinetic energy of the system at time t, that is

K�t� �� S
F�t�

ρf

2
Sv�x, t�S2 dx � S

B0

ρs0
2
V∂η
∂t

�X, t�V2 dX.

Finally, if we now restrict our attention to the regime of small deformations (see Subsection 8.6.1) and therefore
neglect all terms of the second and higher order in S©XηS, we get

SF S2 � SIN �©XηS2 � N � 2divX�η� � S©XηS2 � N � S©XηS2.
This readily implies that

S
B0

W�X, t�dX � S
B0

Gs
2
S©Xη�X, t�S2 dX.

8.6.3 Drag force estimates

The material in this appendix is meant to complement our treatment of the drag force in Subsection 8.2.4 by
providing a proof of the analytical estimates and a derivation of the drag force predicted by the lubrication
approximation theory.

The drag force based on the variational formulation
We begin this first part of the appendix with the proof of Theorem 8.2.4. The argument we present here is

directly adapted from the proof of Lemma 3 in [101].
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Proof of Theorem 8.2.4. We divide the proof into two steps.
Step 1: Assume first that N � 2. Then, by a density argument, it is enough to show that for every v >

Cª
c �R2

�;R2� 9 Vh
c1 B h

3α
1�α Y©vY2

L2 ,

where c1 is a positive constant independent of v. To see this, using the notation introduced in (8.2.30), we
define

Fh�δ� �� ��x1, x2� � Sx1S @ δ,0 @ x2 @ g�Sx1S�� ` Fh
and integrate divv � 0 in Fh�δ� to obtain

S
∂Fh�δ�9∂Bh

v �ndH1
� �S

Fh�δ�9�Sx1S�δ� v �ndH
1.

Since v � e2 on ∂Bh, we see that

L �� S
∂Fh�δ�9∂Bh

v �ndH1
� S

∂Fh�δ�9∂Bh
n2 dH

1
� 2δ,

where the last equality is obtained via a direct computation, parameterizing the domain of integration. Similarly,
but also using the fact that g�δ� � g��δ�, we obtain that

R �� S
Fh�δ�9�Sx1S�δ� v �ndH

1
� S

g�δ�
0

�v1�δ, x2� � v1��δ, x2�� dx2,

and an application of Hölder’s and Poincaré’s inequalities yields

S
g�δ�

0
Sv1�δ, x2� � v1��δ, x2�Sdx1 B g�δ�1~2Yv1�δ, �� � v1��δ, ��YL2��0,g�δ��;R2�

B g�δ�3~2 \∂v1

∂x2
�δ, �� � ∂v1

∂x2
��δ, ��\

L2��0,g�δ��;R2�
.

In turn,

2δ � L B SRS Bº2g�δ�3~2 �S g�δ�
0

�S©v1�δ, x2�S2 � S©v1��δ, x2�S2� dx2�1~2
.

Integrating the previous inequality over δ > �0, r� yields

r2
B
º

2 sup
δ>�0,r�

�g�δ�3~2�S r

0
�S g�δ�

0
�S©v1�δ, x2�S2 � S©v1��δ, x2�S2� dx2�1~2

dδ

B
º

2 sup
δ>�0,r�

�g�δ�3~2� r1~2 �S r

0
S

g�δ�
0

�S©v1�δ, x2�S2 � S©v1��δ, x2�S2� dx2dδ�1~2

�
º

2 sup
δ>�0,r�

�g�δ�3~2� r1~2Y©vYL2 ,

where in the second to last step we have used Hölder’s inequality. Consequently, recalling that g is given as in
(8.2.30), if we let r � h1~�1�α� we obtain

1º
2
B
��sup�h � γδ1�α � δ > �0, r��

r

��
3~2 Y©vYL2 � �1 � γ�3~2h

3α
2�1�α� Y©vYL2 .

The desired result readily follows.
Step 2: Now, assume that N � 3. Reasoning as in the previous step, but with the aid of cylindrical coordinates�δ, θ, z�, we readily deduce that

πδ2
B g�δ�3~2δS

2π

0
�S g�δ�

0
S©vS�δ, θ, z�S2 dz�1~2

dθ
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holds for every v > Cª
c �R3

�;R3� 9 Vh. Thus, integrating the previous inequality over δ > �0, r� and by means
of Hölder’s inequality, we get

πr3

3
B sup
δ>�0,r�

�g�δ�3~2δ1~2�S r

0
δ1~2S

2π

0
�S g�δ�

0
S©vS�δ, θ, z�S2 dz�1~2

dθdδ

B
º

2π sup
δ>�0,r�

�g�δ�3~2δ1~2� r1~2Y©vYL2 .

Therefore, setting once again r � h1~�1�α�, we get

1

3

½
π

2
B sup
δ>�0,r�

�g�δ�3~2� r�2Y©vYL2 B �1 � γ�3~2h
3α�1

2�1�α� Y©vYL2 .

This concludes the proof.

Next, we turn our attention to the proof of Theorem 8.2.5, which we only sketch here. Recalling that
by definition D�h� � min�J �u;Fh� � u > Vh�, the conclusions of Theorem 8.2.5 follow if we can exhibit a
competitor, namely wh > Vh, for which J �wh;Fh� is bounded from above by the right-hand side of (8.2.29).
To achieve this, one has to construct a velocity field which allows for the fluid to escape the aperture in between
the solid body and the boundary of the container in a nearly optimal way. For N � 2, such a construction
was carried out by Gérard-Varet and Hillairet (see Section 4.1 and Proposition 8 in [78]). Their argument is
adapted from the analogous construction for a two-dimensional disk, due to Hillairet (see Section 4 in [101]).
The construction for N � 3 is due to Hillairet and Takahashi (see Section 3.1 in [102]) for a sphere, and can be
suitably modified for the more general shapes that we consider in this paper.

The drag force based on the Reynolds approximation In this second part of the appendix, we are interested
in approximating the drag force exerted on a particle immersed in a Newtonian fluid, which is moving towards
a rigid wall, when both the wall and the fluid-solid interface are subjected to no-slip boundary conditions.
Considering an axi-symmetric situation (as in Figure 8.5), a good approximation can be found by calculating
and integrating the pressure under the solid body, which indeed represents the major contribution to the drag
force [124]. The pressure profile can be estimated using the so-called lubrication, or Reynolds’, approximation.
This yields the following ODE (see eq. (7-256) in [124] for N � 2; see eq. (4.22) in [11] for N � 3):

d

dr
�rN�2g3dp

dr
� � 12µrN�2ḣ N � 2,3,

where r is the distance from the symmetry axis, and g is defined as in (8.2.30). Integrating the previous equation
from 0 to r�, and recalling that by assumption the particle is axi-symmetric, yields

dp

dr
�r�� � 12µḣ

r�

g�r��3�N � 1� N � 2,3.

Integrating now between r and R we obtain

p�r� � p�R� � � 12µḣ

N � 1
S

R

r

r�

g�r��3
dr�. (8.6.8)

Assuming RQ 1 then the pressure difference on the left-hand side corresponds to the actual dynamic pressure,
which constitutes the main contribution to the drag force. Integrating the pressure difference over the surface
of the solid body yields the (pressure contribution) to the drag force

F̃lub �� �S
Γ
�p�r� � p�R��ndHN�1,

where n is the outer unit normal to Γ (pointing inside the fluid). By symmetry, we only need to evaluate the
vertical component of the force, since all other components are zero:

F̃lub �� F̃lub � eN � �S
Γ
�p�r� � p�R��ndHN�1

� eN .
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In view of (8.6.8), letting R �ª in the expression above yields

Flub �� lim
R�ª

F̃lub � �12µḣ

¢̈̈̈̈̈̈̈
¦̈̈̈̈̈̈
¤̈

2S
ª

0
S

ª

r

r�

g�r��3
dr�dr if N � 2,

πS
ª

0
S

ª

r

rr�

g�r��3
dr�dr if N � 3,

which is the desired approximation.
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[39] Philippe G. Ciarlet and Jindřich Nečas. Injectivity and self-contact in nonlinear elasticity. Arch. Rat.
Mech. Anal., 97(3):171–188, Sep 1987.
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[94] T. Hagemeier, D. Thévenin, and T. Richter. Settling of spherical particles in the transitional regime.
preprint, 2020. https://arxiv.org/abs/2009.02250v1.

[95] Bernard Halphen and Quoc Son Nguyen. Sur les matériaux standard généralisés. Journal de Mécanique,
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[106] Richard M Höfer and Jonas Jansen. Fluctuations in the homogenization of the poisson and stokes equa-
tions in perforated domains. arXiv preprint arXiv:2004.04111, 2020.
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[138] Alexander Mielke and Tomáš Roubı́ček. Rate-independent systems. Springer, 2015.
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[183] Srdan Trifunović. Compressible fluids interacting with plates–regularity and weak-strong uniqueness.
arXiv preprint arXiv:2101.00505, 2021.
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[189] Helena Švihlová. Flow of biological fluids pabiel specific geometries. PhD thesis, Faculty of Mathemat-
ics and Physics, Charles University, 2017.

[190] Xu Zhang and Enrique Zuazua. Long-time behavior of a coupled heat-wave system arising in fluid-
structure interaction. Arch. Ration. Mech. Anal., 184(1):49–120, 2007.

[191] H. Ziegler and C. Wehrli. On a principle of maximal rate of entropy production. J. Non-Equilib. Ther-
modyn., 12(3):229–243, 1987.

[192] Hans Ziegler. Some extremum principles in irreversible thermodynamics with application to continuum
mechanics. In Progress in Solid Mechanics, Vol. IV, pages 91–193. North-Holland, Amsterdam, 1963.

[193] Hans Ziegler and Christoph Wehrli. The derivation of constitutive relations from the free energy and the
dissipation function. Adv. Appl. Mech., 25:183–238, 1987.

[194] W. P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.

235

https://arxiv.org/abs/2011.08691
https://arxiv.org/abs/2011.08691

	Introduction
	The setup of fluid-structure interactions
	An overview on the related literature

	Existence, uniqueness and regularity for weak solutions to fluid-structure interactions involving shells or plates chapter 2–chapter 4
	The non-linear Koiter shell
	Existence for non-linear shells and regularity for the shell evolution–chapter 2
	Existence for heat-conducting fluids interacting with non-linear shells–chapter 3
	Weak-Strong uniqueness for fluid-structure interactions involving elastic solids–chapter 4

	Bulk elastic solids. Variational strategies for fluid-structure interactions chapter 5–chapter 7
	Energies and dynamics
	Time-delayed problems for hyperbolic systems–a simple example
	A quasistatic fluid-structure interaction, chapter 5
	Minimizing movements for solids involving inertia, chapter 6
	Bulk elastic solids coupled to Navier-Stokes equations, chapter 7
	Outlook: Variational approaches for shells interacting with fluids
	Further potential applications of the variational method

	Contactless rebound in viscous incompressible fluids, chapter 8
	Acknowledgments

	Existence and regularity of weak solutions for a fluid interacting with a non-linear shell
	Introduction
	Weak solutions
	Fluid and interaction
	The elastic energy
	Weak coupled solutions
	Main results
	Fractional spaces

	Solenoidal extensions and smooth approximations
	The regularity result
	Estimates for the structure
	Closing the estimates–Proof of Theorem 2.2.5

	Compactness rewritten
	The existence result
	The approximate system
	Proof of Theorem 2.2.4.


	Navier–Stokes–Fourier fluids interacting with elastic shells
	Introduction
	Overview of the chapter

	Preliminaries
	Structural and constitutive assumptions
	Function spaces on variable domains
	Extensions on variable domains
	Convergence in variable domains.
	Weak solutions and main theorem
	Mathematical strategy

	Equations for density and temperature in variable domains
	The continuity equation
	The internal energy equation

	Construction of an approximate solution
	Galerkin approximation
	Total energy balance
	Compactness of tN
	Compactness of the shell energy

	Construction of a solution.
	The limit system for 0
	Compactness of the shell energy
	Proof of Theorem 3.2.14.


	Weak-strong uniqueness for an elastic plate interacting with the Navier Stokes equation
	Introduction
	Formulation of the problem
	Main results

	Notation & preliminary results
	Simplifications
	Identities & Estimates
	Convolution
	The distributional time derivatives.

	Proof of the main result
	The set-up
	A-priori estimates
	The stability estimate (Proof of Theorem 4.1.5)


	A variational approach to fluid-structure interactions
	Mechanical and analytical restrictions on the energy/dissipation functional
	Preliminary analysis
	Injectivity and boundary regularity of the solid
	Global velocity and a global Korn inequality

	Proof of Theorem 5.1.6
	Step 1: Existence of the discrete approximation
	Step 2: Time-continuous approximations and their properties
	Step 3: Existence and regularity of limits
	Step 4: Convergence of the equation
	Step 5: Construction of the pressure

	The example energy-dissipation pair
	The minimization problem (S1,S3-S4,R1-R2)
	Converting between Lagrangian and Eulerian setting (S2)
	Uniform bounds (R3)
	Weak equations (S5, R4)
	Improved convergence (S6)

	Appendix of the chapter
	Some technical lemmata
	Proof of Theorem 5.3.11


	A variational approach to hyperbolic evolutions
	The time-delayed problem
	Time-delayed energy inequality

	Proof of Theorem 6.0.2
	Step 1: Iterated time-delayed solutions and energy estimates
	Step 2: Improving convergence
	Step 3: Limit equation
	Step 4: Continuation until collision


	Bulk elastic solids interacting with Navier-Stokes fluids
	Introduction
	Setup
	Main result

	An intermediate, time delayed problem
	Proof of Theorem 7.2.2, step 1: Constructing an iterative approximation
	Proof of Theorem 7.2.2, step 2: Constructing interpolations
	Proof of Theorem 7.2.2, step 2a: Bounds on ()
	Proof of Theorem 7.2.2, step 3: Convergence of the equation
	A posteriori energy inequality

	Proof of Theorem 7.1.2
	Proof of Theorem 7.1.2, step 1: Constructing another iterative approximation
	Proof of Theorem 7.1.2, step 2: The weak time-derivative
	Proof of Theorem 7.1.2, step 3: Convergence to the limit
	Proof of Theorem 7.1.2, Step 3a: Passing to the limit with the coupled PDEs
	Proof of Theorem 7.1.2, Step 3b: Reconstruction of the pressure
	Proof of Theorem 7.1.2, Step 4: Energy inequality & maximal interval of existence


	Contactless rebound of elastic bodies in viscous incompressible fluids
	Introduction
	Modeling of particle-wall approach and rebound in viscous fluids
	The viscous fluid – elastic structure Eulerian-Lagrangian formulation
	The viscous fluid – elastic structure purely Eulerian formulation
	Reduced models
	The drag force

	Global well-posedness and qualitative behavior of solutions to the reduced model
	Statement of the main results
	Proofs of the main results

	Numerical results
	Reduced model
	Full FSI model
	A comparison of the two models

	Summary and concluding remarks
	Appendix of the chapter
	Reduction of the full elastic dynamics to the wave equation
	Formal energy equality for the FSI problem
	Drag force estimates


	References

