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In response to the request of Prof. Zdeněk Doležal dated February 7, 2022,
I present this report on Jan Kynčl’s Habilitation Thesis. I will begin with
some general remarks, then some comments on each of the seven presented
papers, and conclude with my summary of the Turnitn check.

I have met Jan Kynčl once at a conference, have corresponded with him a
few times, and he served as external examiner for one of my recent doctoral
students. My desire to have him be the external examiner is a result of the
very high regard that I and my colleagues have for him and his work. As a
young researcher, he has already been a very influential force in the graph
drawing community, covering quite a broad range of topics. As witnessed
by the prestigious journals in which his works appear, he is esteemed as one
bringing novel ideas into a challenging field.

In the last decade or so there have been several successful efforts to: (a)
characterize classes of planar drawings of graphs in combinatorial ways; and
(b) comparing different ways of counting “crossings”. There have been many
people providing examples of such theorems, but there is little doubt that
few have been as successful as Kynčl on both topics.

In the context of crossing number problems, a drawing of the graph G
(usually in the plane, but other surfaces have been considered) consists of
distinct points in the plane, one for each vertex of G, and a simple arc for
each edge e of G that has as its ends the two points representing the vertices
of G incident with e, but the arc does not contain any other vertex point.
Normal requirements include that any two arcs representing edges intersect
only finitely often and that there are no points of tangency between such
arcs. The arcs may be chosen as smooth or piecewise linear, but this point
is rarely explicitly mentioned.

A drawing is simple if any two edges intersect in at most one point, either
a common incident vertex or a crossing point. The drawing is x-monotone,
or simply monotone, if the x-coordinates of the vertices are all different and
every edge-arc α can be described by a function f : [0, 1]→ α that is (strictly)
monotonic in the x-coordinate.

The crossing number cr(D) of a drawing D of a graph G is the number of
crossings of pairs of edges. (In particular, three edges crossing at the same



point counts as three crossings as there are three pairs of edges. Also, if two
edges cross multiple times, each crossing is counted separately.) The crossing
number is

cr(G) := min{cr(D) : D is a drawing of G} .

An important long-standing conjecture is that of Hill on the crossing
number of the complete graph Kn, namely:

cr(Kn) =
1
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It is usual to set H(n) (the “Hill number”) to be the right-hand side of the
above equation.

It is an easy theorem to see that any drawing D of G for which cr(D) =
cr(G) is simple. Thus, the “simple crossing number” is the same as “the
crossing number”. A more difficult question that has been answered by Pach
and Tóth is that “monotone crossing number” can be strictly larger than
“crossing number”.

On the other hand, if one allows edges to cross multiple times, the “pair
crossing number” counts only the number of pairs of edges that cross instead
of all the crossings of all the pairs. It is known (and was somewhat surprising
at the time) that pcr(G) can be strictly smaller than cr(G).

The Hanani–Tutte Theorem asserts that if there is a drawing of G in
which every pair of edges crosses an even number of times, then cr(G) = 0.
(The converse is obvious.) This result may be expressed differently. The
“odd pair crossing number” counts only the number of pairs of edges that
cross an odd number of times. Thus, Hanani–Tutte asserts that opcr(G) =
0⇔ cr(G) = 0.

These represent the main topics of the papers involved in this Habilitation
Thesis. I will now turn to remarks on the individual papers.

(1) Crossing numbers and combinatorial characterization of mono-
tone drawings of Kn, with M. Balko and R. Fulek

This work characterizes several variations of monotone drawings of
complete graphs and using that characterization to prove that the
monotone crossing number of Kn is equal to H(n). This improves
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an earlier result that the 2-page crossing number of Kn is H(n): every
2-page drawing is homeomorphic to a monotone drawing.

Here, more is proved: the “monotone odd-crossing number” of Kn is
also equal to H(n).

The characterization of monotone drawings of the complete graphs is
quite interesting. There has long been studies of “ordered point sets”,
in which every triple {x, y, z} is assigned one of its two cyclic orderings
(x, y, z) and (x, z, y). For example, in a simple drawing of Kn, every
three vertices induce a 3-cycle in Kn, which in turn corresponds in the
drawing to a simple closed curve consisting of the vertices and edges of
the 3-cycle. Traversing the boundary of the bounded side of this curve
in a clockwise orientation provides one of the two cyclic triples, giving
the ordered point set.

The question is: which ordered point sets correspond to monotone
drawings of Kn? This question is very fully answered here for “semisim-
ple” monotone drawings and for simple monotone drawings. The very
satisfying answer is in terms of the natures of the orderings of the 3-
subsets of each 4-subset of the original n points and the 3-subsets of
each 5-subset.

Going to an important even more restricted class of graphs, they sim-
ilarly characterize when an ordering can be realized by a pseudolinear
drawing (each edge arc can be extended to a 2-way infinite curve in the
plane so that any two such curves intersect exactly once).

This is a lovely paper proving results that are very interesting to the
general graph drawing community.

(2) Simple realizability of complete abstract topological graphs
simplified

This paper is arguably the most important paper about simple drawings
of the complete graphs that has ever been written.

This work and its “unsimplified” predecessor were the ones that really
brought Professor Kynčl to my attention. A rotation system on n
symbols is a family of n cyclic permutations, the ith one being on the
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symbols {1, 2, . . . , n} \ {i}. These arise naturally for drawings of the
complete graph in the plane: at the ith vertex, the n− 1 edges coming
out from i form a cyclic sequence according to the label at the other
end. A rotation system arising from a simple drawing is realizable.

The main theorem is: if R is a rotation system on n ≥ 6 points such
that, for every 6 points from the n the corresponding subrotation is
realizable as a simple drawing, then R is realizable as a simple drawing.

About 10 years ago, I was asked about the possibility of such a theorem
and my response was, “It surely is not true.” Therefore, I was quite
surprised that Kynčl was able to prove this theorem. Moreover, the
proof in the included paper introduces a beautiful new homotopy tool
to apply to planar drawings of Kn.

(3) Saturated simple and k-simple topological graphs, with J. Pach,
R. Radoičić, and G. Tóth

Janós Pach and Geza Tóth have been long-time collaborators in the
graph drawing community, proving many interesting theorems and rais-
ing important questions. It is natural that they would be interested in
collaborating with a very strong young researcher such as Kynčl.

Here the topic is: can we add an edge to a drawing of a graph to get
a drawing of a larger graph? If we allow arbitrary drawings, then the
answer is trivially yes. For simple drawings, it has recently been shown
by Arroyo, Derka, and Parada that it is NP-complete to determine if a
particular edge can be added to the drawing.

For Kynčl et al, the question is a little different: are there examples for
which none of the missing edges can be added? These are the “satu-
rated” examples and their existence follows from the long-known fact
that sometimes some edge cannot be added. That there are saturated
graphs on n vertices with as few as O(n) edges is the principal result.

Moreover, such examples exist for each k, with k being the limit to the
number of times two edges can cross. In this context, they prove that,
in such a circumstance, any missing edge can be added with at most
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2k crossings of any other edge and that 2k is the best possible upper
bound.

As one might expect, the methods involve finding appropriate clever
building blocks and putting them together in clever ways.

This article is not going to be the final word on this topic, but is a very
substantial advance over previous work.

(4) Clustered planarity testing revisited, with R. Fulek, I. Malinović,
and D. Pálvölgyi

I really don’t know anything about clustered planarity. It looks like a
very interesting topic, but I am unable to evaluate the significance of
this work.

(5) Unified Hanani–Tutte theorem, R. Fulek and D. Pálvölgyi

The Hanani–Tutte Theorems (weak and strong) have been getting a
lot of useful attention lately. The earlier works of Pelsmajer, Schaefer,
and Štefankovič reopened this topic with some very interesting results.
In one version, they proved that if D is a drawing in which every
pair of edges crossed an even number of times, then there is a planar
embedding in which the rotations at the vertices is the same as in D.
Their proof was relatively simple.

Despite the adjectives “weak” and “strong”, neither version of Hanani–
Tutte implies the other. This elegant paper starts with that observa-
tion, and then takes the Pelsmajer et al proof and makes it somewhat
easier by turning it into an induction that proves a generalization that
contains both the weak and strong versions as special cases.

This is the version that will be taught well into the future.
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(6) Counterexample to an extension of the Hanani–Tutte theorem
on the surface of genus 4, with R. Fulek

See the next paper for comments.

(7) The Z2-genus of Kuratowski minors, with R. Fulek

I will take these last two papers together, as they make a very nice pair
that provide a wonderful contribution to the Hanani–Tutte problems.
Up to this point, we have been discussing only planar drawings. In
these two works, the ambient space becomes a surface (such as the
torus or Klein bottle).

Each graph G has three different different values that represent the
simplest surface upon which G has an embedding: the orientable genus
γ(G); the non-orientable genus γ̃(G); and the Euler genus γ(G). Not
surprisingly:

• γ(G) is the smallest number of handles needed to add to the sphere
in order for G to have an embedding in the resulting orientable
surface;

• γ̃(G) is the smallest number of crosscaps needed to add to the
sphere in order for G to have an embedding in the resulting non-
orientable surface; and

• γ(G) = min{2γ(G), γ̃(G)}.

Likewise, we can define the Z2-genera γ2(G), γ̃2(G), and γ2(G) as the
smallest genus surfaces in with G has a drawing in which two indepen-
dent edges cross an even number of times.

The fundamental question is: for each δ ∈ {γ, γ̃, γ} and for each graph
G, is δ2(G) = δ(G)? Evidently, δ2(G) ≤ δ(G). The sphere (= the
plane) has all genera equal to 0 and Pelsmajer, Schaefer, and Stasi
proved the strong version (independent edges cross an even number of
times) for the projective plane (non-orientable γ̃(G) = 1).

Pelsmajer, Schaefer, and Šefankovič have proved the weak version of
these questions: if EVERY pair of edges cross an even number of times,
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then the corresponding genera are equal and the embedding preserves
the “combinatorial type” of the drawing (rotations and 1- or 2-sidedness
of each cycle).

Fulek and Kynčl’s two papers combine nicely to provide very interesting
bookends towards the general situation. In “Counterexample” they
give an example of a graph G for which γ2(G) = 4 < 5 = γ(G), and,
with an easy extension, that, for every integer k ≥ 1, there is a graph
Gk such that γ2(Gk) = 4k < 5k = γ(Gk).

Like most examples, this involves a clever construction that, once ex-
plained, is quite easy to understand. The proof involves standard ideas
for the area, but one needs the very bright idea to get going.

A principal take-away from this work is that, if there is a function f(n)
such that, for every graph G, γ(G) ≤ f(γ2(G)), then f(n) ≥ 5

4
n.

In “The Z2-genus” article, Fulek and Kynčl provide (modulo an old
unpublished result) a function f as in the preceding paragraph. One
can easily obtain graphs of growing (in t) genus by piecing together t
copies of either K3,3 or K5 by identifying 0, 1 or 2 vertices in each copy.
Additionally, the complete bipartite graph K3,t has genus that grows
with t.

Robertson and Seymour long ago announced that they proved that if
{Gn} is any set of graphs such that γ(Gn) →n ∞, then the largest
tn such that Gn contains one of the above graphs for t = tn goes to
infinity as well. There have been related results published, but this
specific result does not appear anywhere.

Essentially, in this last paper, Fulek and Kynčlshow that these special
graphs have equal genera and Euler genera. Together with the Robert-
son and Seymour “result”, one sees that there is a function f such that
γ(G) ≤ f(γ2(G)) and γ(G) ≤ f(γ2(G)).

The arguments for the equality of the genera are homological and quite
non-trivial. Although they make use of earlier similar discussions, there
is a wealth of useful techniques developed here for future use. From
my own experience, I know that these arguments are quite subtle and
difficult to express accurately.

I am very impressed with this work, which superficially seems very spe-
cialized. Anyone interested in the interplay between homology theory
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and graph drawings will benefit from carefully reading this work.

Comments on TURNITIN report

The “TURNITIN” report has found many sources that contain similar
or the same content. This is hardly surprising, as many of the highlighted
paragraphs are occurring in the papers that are included with the thesis.
The rest are simply the natural use of common symbols, words, and phrases
in the particular area of mathematics covered by these works. There is no
question in my mind that the seven presented works are completely original
and carefully make appropriate reference to previous works whose results are
mentioned and/or used.
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