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Preface

This thesis is based on the following collection of papers, studying topological
drawings of graphs in the plane and on surfaces. It is a selection of the results
obtained since 2013 in Prague and during my postdoctoral stays at Alfréd Rényi
Institute of Mathematics in Budapest and at École Polytechnique Féderale de
Lausanne.
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In Chapter 1 we briefly introduce the topic of the thesis and give basic def-
initions related to drawings of graphs. In Chapters 2, 3 and 4 we overview the
main results obtained in [P1–P7].
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1. Introduction

1.1 Graphs

A graph is a finite combinatorial structure representing networks and various
relations between objects, people or abstract notions. Real-world examples in-
clude transportation networks with cities and roads or airline connections between
them, computer networks including the Internet, social networks of friends, rela-
tives or coauthors, phylogenetic trees in biology, hierarchical structures of words
within a language or a scientific field, patterns of stars in the sky forming abstract
figures, and many others.

A graph may sometimes be defined as a relational structure over a finite
set with a single antireflexive symmetric binary relation, or, as a certain 1-
dimensional topological space. In combinatorics, the following set-theoretic defi-
nition is most common.

A graph G is an ordered pair (V,E) where V is a finite set and E is a set of
unordered pairs of distinct elements from V ; equivalently, E is a set of 2-element
subsets of V . Sometimes we also write V (G) for V and E(G) for E, especially
if the graph is not clear from the context. The elements of V (G) are called
the vertices and the elements of E(G) the edges of G. The motivation for this
terminology comes from geometry, from vertices and edges of convex polytopes.
For simplicity, an edge {u, v} is often written as uv. The vertices u, v of an
edge uv are often called its endpoints. Two vertices u, v are called adjacent or
neighbors in G if uv is an edge of G. In this case we also say that u and v
are connected or joined by the edge uv. A graph H is a subgraph of G, written
H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). A graph H is a complement of
G if V (H) = V (G) and E(H) = {uv; {u, v} ⊆ V (G), u 6= v, uv /∈ E(G)}; in
other words, the edges of H are those pair of vertices of G that are not edges of
G. The degree of a vertex v in a graph G is the number of neighbors of v in G;
equivalently, it is also the number of edges of G containing v.

We refer to Diestel’s textbook [19] for the basics of graph theory.

1.2 Drawings of a graph

Graphs often need to be visualized, not just in applications but also for their
theoretical investigation. The most common visualization approach is drawing
the graph in the plane, and such drawings come in many flavors. Some real-world
graphs, such as road netwoks, already have a natural drawing in the plane, while
others, such as social networks, do not, and various techniques are used to find a
suitable drawing. We now give basic mathematical definitions related to drawings
of graphs. See Figure 1.1 for an illustration of some of the notions.

The plane is defined as the 2-dimensional Euclidean space R2. A simple curve,
also called a Jordan arc, is a continuous injective map γ : [0, 1] → R

2. We say
that γ connects two points u, v ∈ R

2 if γ(0) = u and γ(1) = v. The curve γ is
often identified with its image in the plane.

A drawing of a graph G = (V,E) in the plane consists of a set of |V | dis-
tinct points, each representing one vertex of G, and a set of |E| simple curves,
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Figure 1.1: Three representations of the same graph: a) an abstract graph G, b)
a drawing of G in the plane with three crossings, c) a planar embedding of G,
also a geometric graph.

each representing one edge of G, and such that a curve representing the edge
uv connects the two points representing the vertices u and v. If no confusion is
likely to occur, we often talk about the points and curves in the representation
as vertices and edges, respectively, and we denote them by the same labels as the
vertices and the edges of the graph G. We are mostly interested in combinatorial
properties of the representation rather than precise positions of the points and
the curves. For this reason, we usually require that a drawing of a graph satisfies
the following conditions:

(1) the edges pass through no vertices except their endpoints,

(2) every pair of edges has only a finite number of intersection points,

(3) every intersection point of two edges is either a common endpoint or a
proper crossing (“touching” of the edges is not allowed), and

(4) no three edges pass through the same crossing.

A proper crossing, shortly a crossing, of two edges e, f in a drawing is a common
intersection point of e and f that is not their common endpoint, and where e
passes from one “side” of f to the “other side”. A formal definition of a crossing is
almost never precisely formulated in the literature on graph drawings. The reason
is that general simple curves may be very “wild”, which makes defining the two
“sides” of a simple curve in a neighborhood of its interior point rather nontrivial,
and may require using the Jordan curve theorem or similar topological facts.
The Jordan curve theorem states that every simple closed curve (an image of an
injective continuous map from the circle) in the plane divides the plane into two
conected components, one bounded and the other one unbounded. Although the
theorem looks intuitive and almost obvious, all known proofs are quite nontrivial
and technically involved. Practically, almost no generality is lost by considering
drawings that use only smooth curves or piecewise linear curves, in which case
the notion of a crossing may be expressed by requiring the tangent vectors of the
two curves at the crossing point be linearly independent. Also the Jordan curve
theorem for smooth or piecewise linear curves is significantly easier to prove.

In the literature, a drawing of a graph is also called a topological graph. A
drawing is called rectilinear, straight-line, or a geometric graph, if every edge is
drawn as a straight-line segment. A drawing or a topological graph is called
simple if every pair of edges have at most one common point, which is either
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Figure 1.2: Reducing the number of crossings in a drawing where two edges e
and f have more than one common point. A portion of e or f between two of
their common intersections is redrawn along the other curve. If self-crossings are
created, they can be removed easily by another local redrawing; see Figure 1.3

their common endpoint or a proper crossing. Clearly, every straight-line drawing
is simple. Moreover, every drawing of a graph with minimum possible number
of crossings is simple: if two edges have more than one point in common, one of
the edges can be redrawn to decrease the number of crossings; see Figures 1.2
and 1.3.

A large part of the research on graph drawings is motivated by the goal of
producing visually pleasing drawings, satisfying various aesthetic criteria. The
number of crossings in a drawing is perhaps the most important parameter af-
fecting the readability of a drawing, and thus minimizing the number of crossings
in a drawing is one of the central problems in the area. In this sense, the best
outcome one can hope for is a drawing with no crossings, which is called a (pla-
nar) embedding, a plane drawing, or a plane graph. A graph that has a planar
embedding is called a planar graph.

In Chapters 2 and 3 we study drawings with crossings. In Chapter 4 we
investigate how drawings with crossings relate to embeddings in the plane, and
also on other surfaces.

1.3 Basic graphs and graph classes

Given a k-element set V = {v1, v2, . . . , vk}, the graphs Pk and Ck defined by

V (Pk) = V, E(Pk) = {v1v2, v2v3, . . . , vk−1vk},

V (Ck) = V, E(Ck) = {v1v2, . . . , vk−1vk, vkv1}

are called a path of length k−1 and a cycle of length k, respectively; see Figure 1.4
a) and b). Obviously Pk is a subgraph of Ck.
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or

Figure 1.3: Removing a self-crossing of a curve. Exactly one of the two possibili-
ties produces a curve with fewer crossings; the other possibility would produce a
curve and a closed curve.
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P5 C5 K5 K3,3

Figure 1.4: Drawings of a few basic graphs: a) the path P5, b) the cycle C5, c)
the complete graph K5, d) the complete bipartite graph K3,3.

The graph Kk defined by

V (Kk) = V, E(Kk) =

(

V

2

)

= {vivj; 1 ≤ i < j ≤ k}

is called a complete graph with k vertices; it contains all
(

k

2

)

possible edges con-
necting pairs of vertices in V . See Figure 1.4 c).

Let W = {w1, w2, . . . , wl} be an l-element set disjoint with V . The graph Kk,l

defined by

V (Kk,l) = V ∪W, E(Kk,l) = {viwj; 1 ≤ i ≤ k, 1 ≤ j ≤ l}

is called a complete bipartite graph with parts of size k and l; it contains all
k · l possible edges with one endpoint in V and the other endpoint in W . See
Figure 1.4 d).

A graph G is connected if every pair of its vertices is contained in a subgraph
isomorphic to a path; in other words, for every pair u, w ∈ V (G), there is a
positive integer k and a sequence of distinct vertices v1, v2, . . . , vk ∈ V (G) such
that v1 = u, vk = w, and for every i ∈ {1, 2 . . . , k − 1}, the vertices vi and vi+1

are joined by an edge in G. Maximal connected subgraphs of a graph are called
its components.
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a)
b)

Figure 1.5: a) Examples of trees. b) A connected graph with two of its spanning
trees (in bold).

A graph that has no cycle as a subgraph is called acyclic, or also a forest. A
connected acyclic graph is called a tree. Clearly, the components of each forest
are trees. The paths Pk and complete bipartite graphs K1,l are examples of trees.
Every connected graph G has a tree T that contains all the vertices of G; such a
tree T is called a spanning tree of G. See Figure 1.5. A vertex of T of degree 1
is called a leaf. Often a tree T is considered rooted, which means that a single
vertex of T is distinguished as the root of T .

1.4 Planar graphs

Examples of planar graphs include all forests, cycles, complete bipartite graphs
K2,l, or the complete graph K4; it is an easy observation that all of them have
an embedding in the plane. Moreover, the graphs of all convex 3-dimensional
polytopes are planar as well: this can be seen by projecting the vertices and
edges of the polytope on a sphere and then using a stereographic projection to
the plane. On the other hand, not all graphs are planar: K5 and K3,3 are two
such examples, but it is not so straightforward to prove this. Again, a precise
argument needs a variant of the Jordan curve theorem.

Besides their aesthetic appeal, planar graphs form an important class in struc-
tural graph theory, and have several interesting combinatorial, algebraic or geo-
metric characterizations and properties. We overview some of them here.

1.4.1 Faces, Euler’s formula and duals

The edges of a planar embedding E of a graph G divide the plane into several
regions, called faces. Exactly one of the regions is unbounded, and it is called the
outer face of E . For example, every planar embedding of a tree has exactly one
face—the outer face, every planar embedding of a cycle has exactly two faces, and
the two embeddings in Figure 1.5 b) have three faces. In general, a given planar
graph may have many different planar embeddings, but the number of their faces
is always the same; this follows from Euler’s formula for planar graphs.

Theorem 1.1 (Euler’s formula). If G is a connected planar graph with v vertices
and e edges, and a planar embedding of G has f faces, then

v − e+ f = 2.

If G is not connected and has k components, then the formula changes to

v − e+ f = k + 1.
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Figure 1.6: Two planar embeddings of a planar graph G, and its dual multigraphs
G′

1 and G′
2.

A graph G′ = (V ′, E ′) is a dual of G = (V,E) if there is a one-to-one corre-
spondence between E and E ′ such that a subgraph H of G is a spanning tree of
G if and only if the complement of the subgraph H ′ ⊆ G′ corresponding to H
is a spanning tree of G′. More generally, the notion of a dual must be extended
to multigraphs, which allow more than one edge with the same pair of endpoints
and also loops, which may be regarded as generalized edges whose both endpoints
are equal. We do not give a formal definition of multigraphs and refer instead to
Figure 1.6, where a graph and its dual multigraph are drawn. A planar graph
G has a planar dual G′ whose vertices correspond to the faces of a planar em-
bedding of G, and G′ has a planar embedding where every edge of G′ crosses
the corresponding edge of G. In general, a planar graph may have several differ-
ent duals, corresponding to different planar embeddings. Whithey showed that
planar graphs are the only graphs with a dual.

Theorem 1.2 (Whitney, 1932 [65]). A graph is planar if and only if it has a dual
multigraph.

1.4.2 Structural characterization

Let G be a graph and let e = uv be an edge of G. The operation of subdividing
the edge e is defined as replacing e with a path uwv where w is a new vertex.
This can also be visualized by placing the new vertex w on an interior point
of the edge e in a drawing of G; see Figure 1.7. A graph obtained from G by
several operations of subdividing an edge is called a subdivision of G. It is an easy
observation that for every subdivision H of a graph G, the graph G is planar if
and only H is planar. In particular, all subdivisions of K5 and K3,3 are nonplanar.
Kuratowski’s theorem shows that these graphs are sufficient to characterize all
planar graphs.

Theorem 1.3 (Kuratowski, 1930 [35]). A graph G is planar if and only if G
contains no subdivision of K5 or K3,3 as a subgraph.

Let G be a graph and let e = uv be an edge of G. The operation of contracting
the edge e is defined as removing the edge e and replacing the vertices u and v
with a single vertex w joined by an edge to each neighbor of u and v in G (except
u and v); see Figure 1.8. A graph G contains H as a minor if H can be obtained
from G by several operations of deleting vertices, deleting edges, and contracting

12
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u v

u vw

Figure 1.7: a) Subdividing an edge uv. b) A subdivision of K5.

u v w

Figure 1.8: Contracting an edge uv to a vertex w.

edges. We also say that H is a minor of G. The following result related to
Kuratowski’s theorem characterizes planar graphs in terms of forbidden minors.

Theorem 1.4 (Wagner, 1937 [64]). A graph G is planar if and only if G contains
none of K5 or K3,3 as a minor.

1.4.3 Geometric characterization

In general, drawings or embeddings of graphs in the plane may use arbitrarily
complicated curves for their edges. For example, it is known that a drawing of K8

minimizing the number of crossings cannot have all its edges drawn as straight-
line segments. The following theorem might be a bit surprising if seen for the
first time.

Theorem 1.5 (Fáry, 1948 [20]). Every planar graph has a straight-line embedding
in the plane.

Fáry’s theorem is also a consequence of an even stronger result, known as
Koebe–Andreev–Thurston theorem or the circle packing theorem.

Theorem 1.6 (Koebe, 1936 [31]; Andreev, 1970 [8]; Thurston, 1980 [61]). The
vertices v ∈ V (G) of any planar graph G can be represented by closed disks Dv

in the plane such that Du and Dv are tangent to each other if uv ∈ E(G), and
disjoint otherwise.

Fáry’s theorem also follows from Steinitz’s theorem characterizing planar 3-
connected graphs. For k ≥ 2, we say that a graph is k-connected if it is connected,
has at least k + 1 vertices, and by removing an arbitrary subset of at most k − 1
vertices the resulting graph is still connected. For example, the graph of an
arbitrary convex 3-dimensional polytope is 3-connected and planar. Steinitz’s
theorem shows that the converse is true as well.
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Figure 1.9: An independently even drawing of K4 (left) and its planar embedding
guaranteed by the strong Hanani–Tutte theorem (right).

Theorem 1.7 (Steinitz, 1922 [59]). Every 3-connected planar graph is a graph
of a convex 3-dimensional polytope.

1.4.4 Algebraic characterization

Various algebraic characterizations of planar graphs exist; here we introduce just
one of them, which we study in more detail in Chapter 4.

Two edges ab and cd of a graph are called independent, also nonadjacent, if
{a, b} ∩ {c, d} = ∅; that is, if they do not share any vertex. A drawing of a
graph where every pair of independent edges crosses an even number of times is
called an independently even drawing ; see Figure 1.9. Clearly, every planar graph
has an independently even drawing in the plane, since every embedding has this
property. The strong Hanani–Tutte theorem shows that the converse is true as
well.

Theorem 1.8 (The strong Hanani–Tutte theorem, 1934 [27], 1970 [62]). A graph
G is planar if and only if G has an independently even drawing in the plane.

Planarity testing is the decision problem of determining whether a given graph
G is planar. Many algorithms for planarity testing exist; the first linear-time
algorithm was published by Hopcroft and Tarjan [30]. However, most of the
algorithms are rather complicated. Using the strong Hanani–Tutte theorem, pla-
narity testing can be reduced to solving a system of linear equations over Z2 [54,
Section 1.4.1]. The resulting algorithm is asymptotically slower than the one by
Hopcroft and Tarjan, but conceptually very simple.

A drawing of a graph where every pair of edges crosses an even number of
times is called an even drawing. The rotation of a vertex v in a drawing of a graph
is the clockwise cyclic order in which the edges incident to v leave the vertex v
in the drawing in a small neighborhood of v. The collection of the rotations of
all vertices in a drawing D is called the rotation system of D.

Theorem 1.9 (The weak Hanani–Tutte theorem, 2000+ [15, 45, 48]). If a graph
G has an even drawing D in the plane, then G has an embedding in the plane
with the same rotation system as D.

The weak Hanani–Tutte theorem was discovered later than the strong variant,
and earned its name because of its stronger assumptions, requiring that all pairs
of edges cross evenly rather than just independent pairs. However, the weak
variant does not directly follow from the strong variant since its conclusion is
stronger.

The strong and weak Hanani–Tutte theorems have many variants; we highly
recommend Schaefer’s surveys [54, 55] for a comprehensive overview.
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2. Drawings of complete graphs

2.1 Crossing numbers

The crossing number of a graph G, denoted by cr(G), is the minimum possible
number of crossings in a drawing of G in the plane. The crossing number is
an important graph parameter, which has been extensively studied in the lit-
erature [63]. Many variants and flavors of the crossing number exist; they are
thoroughly explored by Schaefer in his dynamic survey [56]. We mention a few
of them in this section.

Despite the popularity and several decades of research on crossing numbers,
it may seem surprising that the crossing number of the complete graph Kn is
still not known, apart for small values of n. According to a famous conjecture by
Guy, Harary and Hill [24, 28], which is usually referred to as Hill’s conjecture,
the crossing number of the complete graph Kn satisfies cr(Kn) = Z(n) where

Z(n) =
1

4

⌊

n

2

⌋⌊

n− 1

2

⌋⌊

n− 2

2

⌋⌊

n− 3

2

⌋

.

This conjecture has been verified for n ≤ 10 by Guy [25], for n ≤ 12 by Pan and
Richter [46], and very recently for n ≤ 14 by Aichholzer [7]. The conjecture was
motivated by two constructions of drawings of Kn with exactly Z(n) crossing: a
cylindrical and a 2-page book drawing [12, 24, 28, 29]; see Figure 2.1. Recently,
Ábrego et al. [9] constructed a new family of drawings of Kn with Z(n) crossings,
obtained by a small modification of the cylindrical drawings. A large family of
drawings of Kn with Z(n) + O(n3) crossings is obtained by placing the vertices
randomly on the sphere and drawing the edges as shortest arcs. Moon [41] showed
that the expected value of the number of crossings in such a random spherical
drawing is 1

2

(

n
2

)(

n−2
2

)

.
For a relatively long time, the best published asymptotic lower bound has

been cr(Kn) ≥ 0.8594Z(n), which follows from the lower bound on the crossing
number of the complete bipartite graph [32] by an elementary double-counting
argument [53]. Very recently, Balogh, Lidický and Salazar [10] improved this
to cr(Kn) ≥ 0.985Z(n). All these lower bounds rely on extensive computer
calculations.

For rectilinear drawings of Kn, Lovász et al. [39] were first to show that their

Figure 2.1: A cylindrical and a 2-page book drawing of K8 with Z(8) = 18
crossings.
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number of crossings is asymptotically strictly larger than Z(n), thus separating
the so-called rectilinear crossing number of Kn from its crossing number. Deter-
mining the rectilinear crossing number of Kn has a rich history, which is explored
in a survey by Ábrego, Fernández-Merchant and Salazar [6].

Hill’s conjecture has been verified for several special classes of drawings. In
a 2-page book drawing of a graph, the vertices are placed on a line l and each
edge is fully contained in one of the half-planes determined by l. Ábrego et al. [2]
proved that the number of crossings in every 2-page book drawing of Kn is at
least Z(n), matching the upper bound given by the construction of Blažek and
Koman [12].

A curve α in the plane is x-monotone if every vertical line intersects α in at
most one point. A drawing of a graph G is called x-monotone or just monotone
if every edge is represented by an x-monotone curve and no two vertices share the
same x-coordinate. Clearly, every 2-page book drawing can be transformed into
a monotone drawing without creating new crossings, thus the class of monotone
drawings is more general. The monotone crossing number mon-cr(G) of a graph
G is the minimum number of crossings in a monotone drawing of G.

In our paper “Crossing numbers and combinatorial characterization of
monotone drawings of Kn” (with M. Balko and R. Fulek) [P1, Appendix A],
we show that Hill’s conjecture is true also for monotone drawings of Kn. This
was also proved independently by Ábrego et al. [3, 4]. In fact, we show a slightly
stronger result, for two other notions of the crossing number.

We call a drawing of a graph semisimple if adjacent edges do not cross but
independent edges may cross more than once. The monotone semisimple odd
crossing number of G (called monotone odd + by Schaefer [56]), denoted by
mon-ocr+(G), is the smallest number of pairs of edges that cross an odd number
of times in a monotone semisimple drawing of G. We call a drawing of a graph
weakly semisimple if every pair of adjacent edges cross an even number of times,
and independent edges may cross arbitrarily. The monotone weakly semisimple
odd crossing number of G, denoted by mon-ocr±(G), is the smallest number of
pairs of edges that cross an odd number of times in a monotone weakly semisimple
drawing of G. Clearly, mon-ocr±(G) ≤ mon-ocr+(G) ≤ mon-cr(G).

Our main result from [P1] is the following.

Theorem 2.1 ([P1]). For every n ∈ N, we have

mon-ocr±(Kn) = mon-ocr+(Kn) = mon-cr(Kn) = Z(n).

Ábrego et al. [4] further extended the class of drawings for which Hill’s con-
jecture is true to so-called shellable drawings; we omit their precise definition,
but we note that they are better suited to the method used to show the result
for monotone drawings. In [P1] we also verify that the results of Theorem 2.1 are
still true for shellable drawings and even a slightly more general class of so-called
weakly shellable drawings.

After the publication of our paper [P1], Hill’s conjecture has been verified for a
few more classes of drawings further generalizing shellable drawings, including so-
called bishellable drawings [5], seq-shellable drawings [43] and semi-pair-shellable
drawings [44].
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2.2 Combinatorial characterization

2.2.1 Monotone drawings

In [P1] we also give a combinatorial characterization of several types of mono-
tone drawings of Kn in terms of orientations of their triangles, called signature
functions, and show that the signature functions of these drawings can be charac-
terized by a finite list of forbidden configurations. In particular, we characterize
simple, semisimple and pseudolinear classes of monotone drawings of Kn, where
pseudolinear drawings are those whose edges can be extended to unbounded sim-
ple curves that cross each other exactly once, thus forming an arrangement of
pseudolines.

Theorem 2.2 ([P1]). A collection of triangle orientations is realizable as a sig-
nature function of

1) a simple monotone drawing of Kn if and only if every subcollection corre-
sponding to a subgraph with 5 vertices is realizable in this way.

2) a semisimple monotone drawing of Kn if and only if every subcollection
corresponding to a subgraph with 4 vertices is realizable in this way (and
also as a simple monotone drawing of K4).

3) a pseudolinear monotone drawing of Kn if and only if every subcollection
corresponding to a subgraph with 4 vertices is realizable in this way (and
also as a rectilinear drawing of K4).

2.2.2 Simple drawings

The results on monotone drawings motivated further research on a similar charac-
terization of general simple drawings of Kn. In the paper “Simple realizability
of complete abstract topological graphs simplified” [P2, Appendix B], we
show that such a characterization is indeed possible. However, instead of triangle
orientations we use a different combinatorial representation of the drawings.

An abstract topological graph (briefly an AT-graph), a notion introduced by
Kratochvíl, Lubiw and Nešetřil [34], is a pair (G,X ) where G is a graph and
X ⊆

(

E(G)
2

)

is a set of pairs of its edges. We require, in addition, that X consists
only of independent pairs of edges. For a simple topological graph T that is a
drawing of G, let XT be the set of pairs of edges having a common crossing. A
simple topological graph T is a simple realization of (G,X ) if XT = X . We say
that (G,X ) is simply realizable if (G,X ) has a simple realization.

An AT-graph (G,X ) is complete if G is a complete graph. An AT-graph
(H,Y) is an AT-subgraph of an AT-graph (G,X ) if H is a subgraph of G and
Y = X ∩

(

E(H)
2

)

. Clearly, a simple realization of (G,X ) restricted to the vertices
and edges of H is a simple realization of (H,Y).

The main result of [P2] is the following.

Theorem 2.3 ([P2]). A complete AT-graph is simply realizable if and only if
each of its AT-subgraphs with at most six vertices is simply realizable.
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We also show that AT-subgraphs with five vertices are not sufficient to char-
acterize simple realizability, thus Theorem 2.3 is tight.

Theorem 2.3 implies a straightforward polynomial algorithm for testing the
simple realizability of complete AT-graphs, running in time O(n6) for graphs with
n vertices. It is likely that this running time can be improved relatively easily.
Compared to the first polynomial algorithm for simple realizability of complete
AT-graphs [37], the new algorithm may be more suitable for implementation and
for practical applications, such as generating all simply realizable complete AT-
graphs of given size or computing the crossing number of the complete graph [16,
42]. On the other hand, the new algorithm does not directly provide the drawing
itself, unlike the original algorithm [37]. The explicit list of 102 simply realizable
AT-graphs on six vertices was given by Rafla [51], under the assumption that
they contain a noncrossing Hamiltonian cycle. Ábrego et al. [1] verified that the
assumption is always satisfied and thus the list is complete, and also generated a
database of small simple complete topological graphs up to 9 vertices.

2.2.3 Parity of crossings in general drawings

In [P2] we also show an analogous characterization for general drawings of com-
plete graphs where only the parity of the number of crossings for each pair of
independent edges is specified.

A topological graph T is an independent Z2-realization of an AT-graph (G,X )
if X is the set of pairs of independent edges that cross an odd number of times in
T . We say that (G,X ) is independently Z2-realizable if (G,X ) has an independent
Z2-realization.

Clearly, every simple realization of an AT-graph is also its independent Z2-
realization. The converse is not true, since every simple realization of K4 has at
most one crossing, but there are independently Z2-realizable AT-graphs (K4,X )
with |X | = 2 or |X | = 3. Thus, independent Z2-realizability is only a necessary
condition for simple realizability. However, independent Z2-realizability of arbi-
trary AT-graphs can be tested in polynomial time since it is equivalent to the
solvability of a system of linear equations over Z2. In contrast, testing simple
realizability of arbitrary AT-graphs is an NP-complete problem [33, 37].

Independent Z2-realizability has been usually considered only in the special
case when X = ∅; we explore this problem more in Chapter 4. A related concept,
the independent odd crossing number of a graph G, denoted by iocr(G), measuring
the minimum cardinality of X for which (G,X ) has an independent Z2-realization,
has been introduced by Székely [60]. The asymptotic value of iocr(Kn) is not
known, and computing iocr(G) for a general graph G is NP-complete [50]. See
Schaefer’s survey [56] for more information.

We call an AT-graph (G,X ) even (or an even G) if |X | is even, and odd (or an
odd G) if |X | is odd. By 2K3 we denote the graph that is a disjoint union of two
triangles. The following theorem is an analogue of Theorem 2.3 for independent
Z2-realizability.

Theorem 2.4 ([P2]). A complete AT-graph is independently Z2-realizable if and
only if it contains no even K5 and no odd 2K3 as an AT-subgraph.

Theorem 2.4 again implies a straightforward O(n6)-time algorithm for testing
the independent Z2-realizability of complete AT-graphs with n vertices.
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3. Simple and k-simple drawings

A considerable amount of knowledge has been obtained about the structure of
simple drawings of complete graphs, including the results discussed in the previous
chapter. A natural approach for studying simple drawings of general graphs would
be extending the simple drawing of a graph to a simple drawing of a complete
graph with the same vertex set and applying the results for complete graphs.
Unfortunately, such an extension is not possible in general, as shown by the
drawing of in Figure 3.1 [36, Figure 1.3], [38, Figure 9].

In the paper “Saturated simple and k-simple topological graphs” (with
J. Pach, R. Radoičić and G. Tóth) [P3, Appendix C], we study the extension
problem more broadly and deeply.

We call a simple drawing of a noncomplete graph saturated if no edge can
be added to the drawing while keeping it simple. The drawing in Figure 3.1 is
not saturated, because it can be extended to a simple drawing by adding all the
missing edges except uv. We are interested in the following question: how few
edges can a saturated simple drawing with n vertices have?

We also generalize the concept of a simple drawing as follows. We call a
drawing of a graph k-simple if every pair of edges has at most k points in common;
one of them can be their common endpoint, the remaining common points are
proper crossings of the two edges. In particular, a 1-simple drawing is a simple
drawing. Similarly, we call a k-simple drawing of a noncomplete graph saturated
if no edge can be added to the drawing while keeping it k-simple.

As our first main result we show that there exist saturated simple and k-simple
drawings with only a linear number of edges. We also show that a linear number
of edges is necessary.

Theorem 3.1 ([P3]). For any positive integers k and n ≥ 4, let sk(n) be the
minimum number of edges that a saturated k-simple topological graph on n vertices
can have. Then

1) we have 1.5n ≤ s1(n) ≤ 17.5n, and

2) for k ≥ 2 we have n ≤ sk(n) ≤ 16n.

We have slightly better upper bounds for k ≥ 3; for example, we show that
sk(n) ≤ 7n for k ≥ 11. The upper bounds for k = 1 and k = 2 have been
improved by Hajnal et al. [26] to s1(n) ≤ 7n and s2(n) ≤ 14.5n, respectively.

u
v

Figure 3.1: A simple drawing of 2P3 that cannot be extended by an edge uv while
keeping the drawing simple: no face contains both u and v on its boundary, so
the edge uv would have to cross some other edge incident with u or v, which is
forbidden in a simple drawing.
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Since there are saturated k-simple drawings of noncomplete graphs, it is nat-
ural to ask whether a particular missing edge can be added to a given k-simple
drawing so that it crosses every other edge only f(k) times where f is some func-
tion. We show that this is indeed the case, with f(k) = 2k, and also that this
cannot be improved to 2k − 1.

Theorem 3.2 ([P3]). Let k be a positive integer.

1) If D is a k-simple drawing of a graph and u, v are vertices of D not connected
by an edge, then a curve joining u and v can be added to the drawing such
that the resulting drawing is 2k-simple.

2) There is a k-simple drawing D of a graph with vertices u, v not connected
by an edge such that every curve connecting u and v crosses some edge of
D at least 2k times.

We also have a saturation result for the case when we can choose which missing
edge to add to a given k-simple drawing. Let k and l be positive integers such
that k < l. A drawing D of a noncomplete graph is (k, l)-saturated if D is
k-simple and any curve joining any pair of nonadjacent vertices has at least l
points in common with at least one edge of D. Obviously, every saturated k-
simple drawing is (k, k + 1)-saturated. Thus, Theorem 3.1 implies the existence
of (k, k + 1)-saturated drawings, while Theorem 3.2 1) shows that (k, 2k + 1)-
saturated drawings do not exist. We can show the following.

Theorem 3.3 ([P3]). For every positive integer k, there exists a (k, ⌈3k/2⌉)-
saturated drawing of a noncomplete graph.
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4. Hanani–Tutte theorems and

Z2-embeddings

The strong and weak Hanani–Tutte theorems, stated in the Introduction as The-
orem 1.8 and Theorem 1.9, respectively, have many variants and extensions, for
drawings in the plane and also on other surfaces. We explore some of the variants
in this chapter.

4.1 Clustered planarity

Clustered planarity is a variant of the planarity problem for which no polynomial
algorithm is known, and it is not known to be NP-hard either. Roughly speaking,
an instance of clustered planarity is a graph whose vertices are partitioned into a
nested hierarchy of clusters, and the question is whether the graph can be drawn
in the plane so that the vertices in the same cluster belong to the same topological
disc and no edge crosses the boundary of a particular disc more than once.

More precisely, a clustered graph is a pair (G, T ) where G = (V,E) is a graph
and T is a rooted tree whose set of leaves is V . The non-leaf vertices of T represent
the clusters, in the following way. Let C(T ) be the set of non-leaf vertices of T .
For each ν ∈ C(T ), the cluster V (ν) is the set of leaves of the subtree of T rooted
at ν. Clearly, every pair of clusters are either disjoint or one contains the other. If
ρ is the root of T , the root cluster V (ρ) contains all the vertices of G. A clustered
graph (G, T ) is flat if all non-root clusters are children of the root cluster; that
is, if every root-leaf path in T has at most three vertices.

A clustered graph (G, T ) is clustered planar (or briefly c-planar) if G has an
embedding in the plane such that

(i) for every ν ∈ C(T ), there is a topological disc ∆(ν) containing all the
vertices in Vν and no other vertices of G,

(ii) if V (µ) ⊆ V (ν) then ∆(µ) ⊆ ∆(ν),

(iii) if V (µ1) and V (µ2) are disjoint, then ∆(µ1) and ∆(µ2) are internally disjoint,
and

(iv) for every ν ∈ C(T ), every edge of G intersects the boundary of the disc
∆(ν) at most once.

A clustered drawing (or embedding) of a clustered graph (G, T ) is a drawing (or
embedding, respectively) of G satisfying (i)–(iv). The word “cluster” is often used
for both the topological disc ∆(ν) and the subset of vertices V (ν).

In the paper “Clustered planarity testing revisited” (with R. Fulek, I.
Malinović and D. Pálvölgyi) [P4, Appendix D], we extend the Hanani–Tutte
theorem to several cases of the clustered planarity problem.

We call a clustered graph (G, T ) two-clustered if the root of T has exactly two
children, A and B, and every vertex of G is a child of either A or B in T . In
other words, A and B are the only non-root clusters and they form a partition
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of the vertex set of G. Obviously, two-clustered graphs form a subclass of flat
clustered graphs.

First we extend both the weak and the strong variant of the Hanani–Tutte
theorem to two-clustered graphs.

Theorem 4.1 ([P4]). If a two-clustered graph (G, T ) has an even clustered draw-
ing D in the plane then (G, T ) is c-planar. Moreover, (G, T ) has a clustered
embedding with the same rotation system as D.

Theorem 4.2 ([P4]). If a two-clustered graph (G, T ) has an independently even
clustered drawing in the plane then (G, T ) is c-planar.

Theorem 4.1 has been recently generalized by Fulek to the case of strip pla-
narity [22].

A clustered graph (G, T ) is c-connected if every cluster of (G, T ) induces
a connected subgraph of G. We prove a strong Hanani–Tutte theorem for c-
connected clustered graphs.

Theorem 4.3 ([P4]). If a c-connected clustered graph (G, T ) has an indepen-
dently even clustered drawing in the plane then (G, T ) is c-planar.

Similarly to other variants of the Hanani–Tutte theorem, as a byproduct of
Theorem 4.2 and Theorem 4.3 we immediately obtain a polynomial-time algo-
rithm for testing c-planarity in these special cases. Faster but more complicated
algorithms were known before.

On the other hand, we show examples of clustered graphs with more than two
disjoint clusters that are not c-planar, but admit an even clustered drawing. This
shows that a straightforward extension of Theorem 4.1 and Theorem 4.2 to flat
clustered graphs with more than two clusters is not possible.

Theorem 4.4 ([P4]). For every k ≥ 3 there exists a flat clustered cycle with k
clusters that is not c-planar but has an even clustered drawing in the plane.

After the publication of our paper [P4] we have learned that the same example
as the one in Theorem 4.4 was found earlier by Repovš and Skopenkov [52] in the
related context of approximations of maps by embeddings.

4.2 Unified Hanani–Tutte theorem

In the paper “Unified Hanani–Tutte theorem” (with R. Fulek and D. Pálvöl-
gyi) [P5, Appendix E], we introduce a common generalization of the strong
Hanani–Tutte theorem and the weak Hanani–Tutte theorem, which seems to
have been overlooked in the literature.

Theorem 4.5 (Unified Hanani–Tutte theorem [P5]). Let G be a graph and let
W ⊆ V (G). Let D be a drawing of G where every pair of edges that are indepen-
dent or have a common endpoint in W cross an even number of times. Then G
has a planar embedding where the rotations of vertices from W are the same as
in D.
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By setting W = ∅ in Theorem 4.5 we obtain the strong Hanani–Tutte theorem,
while W = V (G) gives the weak variant.

Theorem 4.5 directly follows from the proof of the strong Hanani–Tutte theo-
rem by Pelsmajer, Schaefer and Štefankovič [48]. We give a new, slightly simpler
proof by induction, based on case distinction of the connectivity of G and us-
ing the weak Hanani–Tutte theorem as a base case. Our proof of Theorem 4.5
also gives an alternative proof of the strong Hanani–Tutte theorem, by reducing
it to the weak variant for 3-connected graphs. We also show an extension of
Theorem 4.5 to multigraphs.

The unified Hanani–Tutte theorem became an important tool in our further
research. For example, it may be used to simplify the proof of Theorem 4.2. It
also found an unexpected application to drawings of graphs on surfaces, which
we discuss in the next section.

4.3 Drawings on surfaces

We recommend the monograph by Mohar and Thomassen [40] for a detailed intro-
duction into surfaces and graph embeddings. By a surface we mean a connected
compact 2-dimensional topological manifold. Every surface is either orientable
(has two sides) or nonorientable (has only one side). Every orientable surface S
is obtained from the sphere by attaching g ≥ 0 handles, and this number g is
called the genus of S. Similarly, every nonorientable surface S is obtained from
the sphere by attaching g ≥ 0 crosscaps, and this number g is called the (nonori-
entable) genus of S. The simplest orientable surfaces are the sphere (with genus
0) and the torus (with genus 1). The simplest nonorientable surfaces are the
projective plane (with genus 1) and the Klein bottle (with genus 2). We denote
the orientable surface of genus g by Mg and the nonorientable surface of genus g
as Ng.

The Euler characteristic of a surface S of genus g, denoted by χ(S), is defined
as χ(S) = 2− 2g if S is orientable, and χ(S) = 2− g if S is nonorientable. The
Euler genus eg(S) of S is defined as 2 − χ(S). In other words, the Euler genus
of S is equal to the genus of S if S is nonorientable, and to twice the genus of S
if S is orientable.

A drawing and an embedding of a graph G on a surface S are defined analo-
gously as a drawing and an embedding in the plane. The embedding scheme of a
drawing D on a surface S consists of a rotation at each vertex and a signature +1
or −1 assigned to every edge, representing the parity of the number of crosscaps
the edge is passing through. If S is orientable, the signature of every edge is +1,
thus the embedding scheme is determined by the rotation system in this case.

The genus g(G) of a graph G is the minimum g such that G has an embedding
on Mg. The Z2-genus of a graph G is the minimum g such that G has an
independently even drawing on Mg. The Euler genus eg(G) of G is the minimum
g such that G has an embedding on a surface of Euler genus g. The Euler Z2-
genus eg0(G) of G is the minimum g such that G has an independently even
drawing on a surface of Euler genus g.

Cairns and Nikolayevsky [15] extended the weak Hanani–Tutte theorem to
every orientable surface. Pelsmajer, Schaefer and Štefankovič [49] extended it
further to every nonorientable surface.
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Theorem 4.6 (The weak Hanani–Tutte theorem on surfaces [15, Lemma 3], [49,
Theorem 3.2]). If a graph G has an even drawing D on a surface S, then G has
an embedding on S that preserves the embedding scheme of D.

Pelsmajer, Schaefer and Stasi [47] extended the strong Hanani–Tutte theorem
to the projective plane, using the list of forbidden minors. Colin de Verdière et
al. [18] recently provided an alternative proof, which does not rely on the list of
forbidden minors.

Theorem 4.7 (The (strong) Hanani–Tutte theorem on the projective plane [18,
47]). If a graph G has an independently even drawing on the projective plane,
then G has an embedding on the projective plane.

Whether the strong Hanani–Tutte theorem can be extended to some other
surface than the plane or the projective plane has been an open problem. Schaefer
and Štefankovič [57] showed that a minimal counterexample to the strong Hanani–
Tutte theorem on any surface must be 2-connected.

In the paper “Counterexample to an extension of the Hanani–Tutte
theorem on the surface of genus 4” (with R. Fulek) [P6, Appendix F], we
give a negative answer to the problem for the orientable surface of genus 4.

Theorem 4.8 ([P6]). There is a graph of genus 5 that has an independently even
drawing on M4.

Theorem 4.8 disproves a conjecture of Schaefer and Štefankovič [57, Conjec-
ture 1] that the Z2-genus of a graph is equal to its genus; but the question whether
the Euler Z2-genus of a graph is equal to its Euler genus remains open.

As a base step in the construction, we use a counterexample to the extension
of the unified Hanani–Tutte theorem on the torus.

Theorem 4.9 ([P6]). There is a graph G with the following two properties.

1) The graph G has an independently even drawing D on the torus, with a set
W of four vertices such that every pair of edges with a common endpoint in
W crosses an even number of times.

2) There is no embedding of G on the torus with the same rotations of the
vertices in W as in D.

In our proof of Theorem 4.9 the graph G is isomorphic to K3,4. The graph in
Theorem 4.8 is obtained by attaching three stars K1,4 to a sufficiently large grid.

Using the additivity of the genus [11] and the Z2-genus [57] of a graph over
its components, by taking the disjoint union of the graph from Theorem 4.8
with k copies of K5 we obtain a counterexample to an extension of the strong
Hanani–Tutte theorem on an arbitrary orientable surface of genus larger than 4.
Moreover, by taking k disjoint copies of the graph from Theorem 4.8, we obtain
a separation of the genus and the Z2-genus by a multiplicative factor of 5/4.

Corollary 4.10 ([P6]). For every positive integer k there is a graph of genus 5k
and Z2-genus at most 4k.

Very recently, Fulek, Pelsmajer and Schaefer [23] proved that the strong
Hanani–Tutte theorem extends to the torus.
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a) b) c) d) e)

f) g) h)

Figure 4.1: The eight 3-Kuratowski graphs.

4.3.1 Genus and Z2-genus of graphs

Schaefer and Štefankovič [57] asked whether the genus of a graph can be bounded
by a function of its Z2-genus, which may be considered as an “approximate”
version of the strong Hanani–Tutte theorem for orientable surfaces. They also
posed an analogous question for the Euler genus.

Problem 1 ([57]). Is there a function f such that g(G) ≤ f(g0(G)) for every
graph G? Is there a function f such that eg(G) ≤ f(eg0(G)) for every graph G?

In the paper “The Z2-genus of Kuratowski minors” (with R. Fulek) [P7,
Appendix G], we give a conditional positive answer, following from an unpub-
lished Ramsey-type result.

A graph is called a t-Kuratowski graph if it is one of the following: K3,t, or t
copies of K5 or K3,3 sharing at most 2 common vertices. See Figure 4.1 for an
illustration.

The following Ramsey-type statement for graphs of large Euler genus is a
folklore unpublished result.

Claim 4.11 (Robertson–Seymour [13, 58], unpublished). There is a function g
such that for every t ≥ 3, every graph of Euler genus g(t) contains a t-Kuratowski
graph as a minor.

For 7-connected graphs, Claim 4.11 follows from the result of Böhme, Kawara-
bayashi, Maharry and Mohar [13], stating that for every positive integer t, every
sufficiently large 7-connected graph contains K3,t as a minor. Böhme et al. [14]
later generalized this to graphs of larger connectivity and Ka,t minors for every
fixed a > 3. Fröhlich and Müller [21] gave an alternative proof of this generalized
result.

Christian, Richter and Salazar [17] proved a similar statement for graph-like
continua.

For a positive integer n we denote the set {1, . . . , n} by [n]. Let r, s ≥ 3. The
projective r × s grid is the graph with vertex set [r]× [s] and edge set

{{(i, j), (i′, j′)}; |i− i′|+ |j − j′| = 1} ∪ {{(i, 1), (r + 1− i, s)}; i ∈ [r]}.

In other words, the projective r×s grid is obtained from the planar r×(s+1) grid
by identifying pairs of opposite vertices and edges in its leftmost and rightmost
column. See Figure 4.2, left.
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Figure 4.2: Left: a projective 5× 5 grid. Right: a projective 5-wall.

For an odd t ≥ 3, a projective t-wall is obtained from the projective t×(2t−1)
grid by removing edges {(i, 2j), (i+1, 2j)} for i odd and 1 ≤ j ≤ t−1, and edges
{(i, 2j − 1), (i+ 1, 2j − 1)} for i even and 1 ≤ j ≤ t. Similarly, for an even t ≥ 4,
a projective t-wall is obtained from the projective t× 2t grid by removing edges
{(i, 2j), (i+1, 2j)} for i odd and 1 ≤ j ≤ t, and edges {(i, 2j− 1), (i+1, 2j− 1)}
for i even and 1 ≤ j ≤ t. The projective t-wall has maximum degree 3 and
can be embedded on the projective plane as a “twisted wall” with inner faces
bounded by 6-cycles forming the “bricks”, and with the “outer” face bounded by
a (4t− 2)-cycle for t odd and a 4t-cycle for t even. See Figure 4.2, right.

As an almost direct consequence of Claim 4.11, we obtain an analogous
Ramsey-type statement for graphs of large genus.

Theorem 4.12 ([P7]). Claim 4.11 implies that there is a function h such that
for every t ≥ 3, every graph of genus h(t) contains, as a minor, a t-Kuratowski
graph or the projective t-wall.

As our main result in [7] we complete a proof that the Z2-genus of each
t-Kuratowski graph and the projective t-wall grows to infinity with t; in fact,
the Z2-genus of each of these graphs is equal to their genus. Analogously, we
also show that the Euler Z2-genus of each t-Kuratowski graph is equal to its
Euler genus. Schaefer and Štefankovič [57] proved this for those t-Kuratowski
graphs that consist of t copies of K5 or K3,3 sharing at most one vertex. For the
projective t-wall, the result follows directly from the weak Hanani–Tutte theorem
on orientable surfaces [15, Lemma 3] (Theorem 4.6): indeed, all vertices of the
projective t-wall have degree at most 3, therefore pairs of adjacent edges crossing
oddly in an independently even drawing can be redrawn in a small neighborhood
of their common vertex so that they cross evenly, and the weak Hanani–Tutte
theorem can be applied. Thus, the remaining cases are K3,t and t copies of K5

or K3,3 sharing 2 vertices; we refer to them as t-Kuratowski graphs of type a), f),
g) and h) as in Figure 4.1.

Theorem 4.13 ([P7]). For every t ≥ 3, the Z2-genus of each t-Kuratowski graph
of type a), f), g) and h) is equal to its genus, and also its Euler Z2-genus is equal
to its Euler genus. In particular,

a) g0(K3,t) ≥ ⌈(t− 2)/4⌉, eg0(K3,t) ≥ ⌈(t− 2)/2⌉, and

b) if G consists of t copies of K5 or K3,3 sharing a pair of adjacent or nonad-
jacent vertices, then g0(G) ≥ ⌈t/2⌉ and eg0(G) ≥ t.
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Combining Theorem 4.13 with the result of Schaefer and Štefankovič [57] and
the simple argument for the projective t-wall we obtain the following result.

Corollary 4.14 ([P7]). For every t ≥ 3, the Z2-genus of each t-Kuratowski graph
and the projective t-wall is equal to its genus, and the Euler Z2-genus of each t-
Kuratowski graph is equal to its Euler genus.

Combining Corollary 4.14 with Theorem 4.12 we get the following implication.

Corollary 4.15 ([P7]). Claim 4.11 implies a positive answer to both parts of
Problem 1.
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