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Abstract: Collisions of low-energy electrons with molecules lead to excitation of
vibrational degrees of freedom or even to bond dissociation. Such phenomena
are not fully understood in the case of polyatomic targets since the theoretical
treatment is complicated by the multidimensionality of the vibrational dynamics
and the interaction of multiple short-lived electronic states. In this thesis, we
extend the nonlocal theory of these processes by considering the vibronic coupling
through the electron continuum. In particular, we study vibrational excitation of
carbon dioxide and dissociation of the N-H bond of pyrrole. For carbon dioxide,
the dynamics includes all vibrational modes and three electronic states. The
model explains the long-time puzzling shape of the observed energy-loss spectra
as well as the origin of a fine structure revealed in a recent experiment. In the
case of pyrrole, we study the effect of the motion of distant parts of the molecule
on the dissociation.
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Introduction

Excitation of molecules, their ionization or bond dissociation induced by collisions
with low-energy electrons (< 20 eV) play an important role in nature, ranging
from interstellar media and planetary atmospheres to living cells and cancer
treatment [1–3]. During the collisions, temporary states of the molecular anion
are formed by the electron capture, which mediate the processes and manifest
themselves by sharp structures in the cross sections [4]. The existence of these
compound states or resonances was experimentally proven by Schulz in elastic
scattering in helium [5]. The compound states may interact upon the vibrational
motion of the nuclei, known as vibronic coupling, which often leads to interesting
phenomena observed in the cross sections. The dynamics of the temporary
molecular anion in the case of inelastic electron scattering can be well probed by
the two-dimensional (2D) energy-loss spectroscopy developed by Reddish et al. [6]
and improved by Allan [7].

In this thesis, we focus on the description of vibrational excitation (VE) and
dissociative electron attachment (DEA) with polyatomic molecules in the nonlocal
theory. Using the projection formalism, the many-electron problem is effectively
transformed to a potential scattering problem with energy-dependent and nonlocal
potentials [8]. However, the theory has to include not only the electron interaction
but also the motion of the nuclei, which renders the treatment challenging even
in the case of small molecules. The VE and DEA processes are generally well
understood in the case of diatomic molecules but the construction of the nonlocal
models is still no routine task even for one nuclear degree of freedom. Therefore,
to study polyatomic systems, a simpler local approximation has been preferentially
used and typically no more than three vibrational modes have been considered.

In 1986, Estrada, Cederbaum and Domcke [9] extended the vibronic coupling
model originally developed for bound states [10] to short-lived anionic states.
This nonlocal model is ideal for studying multidimensional effects of the nuclear
dynamics in the presence of interacting electronic states at least on a qualitative
level, but its full potential has not yet been exploited. We were about to conduct
such a qualitative study of the 2D dynamics when Juraj Fedor and his collaborators
from the Heyrovský Institute of the Czech Academy of Sciences asked us for a help
in interpreting their experimental 2D spectrum of the CO2 molecule. Although this
system received a lot of attention from experimentalists as well as theoreticians in
the past, its behavior in the highly inelastic regime was not understood. Motivated
by the new observations, we have further extended the model of Estrada et al. [9]
in order to study the e+ CO2 system by taking into account all four vibrational
modes, together with the 2Σ+

g virtual state and both Renner-Teller components
of the 2Πu shape resonance. Most of this thesis is devoted to these nonlocal
calculations that qualitatively reproduce the 2D spectrum, explain the origin of
various observed structures, and reveal the importance of the vibronic coupling in
this system. The presentation is based on three papers. Two of these papers [11,
12], which focus on our primary results and the model construction, have been
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published in Physical Review Letters and Physical Review A and even selected
as Editors’ Suggestions. The third paper [13] recently submitted to Physical
Review A concludes the work on CO2 by a detailed discussion of the results and
their comparison with experiments.

Due to the vibronic coupling, cleavage of a molecular bond can be affected
by a movement of distant parts of the molecule. Recently, Kumar et al. [14]
have observed that such an effect plays a significant role in the DEA to pyrrole
(C4H4NH). The original model of Estrada et al. [9] and our treatment of CO2 do
not include dissociation of the molecular anion. Therefore, we introduce a simple
two-dimensional model where the anion can dissociate in one coordinate. This
approach is applied to the e + pyrrole system to study the direct and indirect
mechanisms of the N-H dissociation. Apart from the N-H stretching, we include
the out-of-plane movement of carbon-bonded hydrogens that couples a σ∗ virtual-
like state with a π∗ resonance. The N-H bond can dissociate via both mechanisms
but the results suggest that the out-of-plane movement of the detaching hydrogen,
which is missing in the current model, needs to be considered to fully explain the
observations.

The thesis is organized as follows. In Chapter 1, we briefly review the theoretical
description of the VE and DEA processes including the most important applications
to polyatomic systems. The original model of Estrada et al. [9] is also discussed
in more detail there. Chapter 2 presents our calculations of the VE of CO2. We
incorporate 1D dissociation into 2D nuclear dynamics in Chapter 3. Finally, we
employ this simple model to study the e+ pyrrole system in Chapter 4.

If not stated otherwise, we use the atomic units (ℏ = e = me = 1) throughout
this thesis.
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Chapter 1

Electron-molecule collisions

1.1 Theory of VE and DEA processes
When a low-energy electron (< 20 eV) collides with a molecule, the electron is
often captured to one or a few unoccupied molecular orbitals [2, 4]. The formed
molecular anion has typically a finite lifetime (10−12–10−15 s) because the electron
can autodetach back to the continuum at least for some nuclear configurations.
The electron capture can lead to the vibrational excitation (VE) process

e+M(νi) → e+M(νf ), (1.1)

where energy is transferred between the electron and molecule M changing the
initial molecular vibrational state νi to a final state νf . In some cases, when the
molecular anion lives long enough, the anion can split into fragments A− and B
known as the dissociative electron attachment (DEA) process

e+M(νi) → A− +B. (1.2)

Both these processes have received a lot of scientific attention in the last
hundred years because of their fundamental role in many areas of physics and
chemistry including astrophysical and atmospheric applications or radiation chem-
istry used in medicine [2]. For example, Boudäıffa et al. [15] reported in 2000
that secondary low-energy electrons that are produced in living cells exposed to
ionizing radiation cause a significant amount of single- and double-strand breaks
in plasmid DNA via the DEA process. These observations sparked an intensive,
mostly experimental, research of the DEA to biologically relevant molecules such
as DNA bases or so-called radiosensitizers, molecules that enhance the effect
of radiation therapy in tumor treatment [3, 16]. In the following text we limit
ourselves to a brief overview of the achieved theoretical results in the description
of the VE and DEA collisions. For more details we recommend excellent reviews
by Hotop et al. [17], Bald et al. [3], and Fabrikant et al. [2], the book [18] edited
by Čársky and Čuŕık, and references therein.

To model the VE and DEA processes, both electronic and nuclear degrees of
freedom have to be considered. The description is usually divided into two steps.
The electronic problem is solved first using the approximation of fixed nuclei to
provide data for an effective parametrization of the electronic Hamiltonian in the
subsequent treatment of the nuclear dynamics. Because the electron can leave
to the continuum, standard quantum chemistry methods are not sufficient in the
first step and the information about the quasistable states of the molecular anion
has to be obtained from fixed-nuclei electron scattering calculations. There are

9



many well-established ab initio methods for treating the electron scattering off
molecules with fixed nuclei, such as the R-matrix method [19], the complex Cohn
method [20, 21] or the Schwinger variational principle [22]. For other methods
and more details see, e.g., the overview in Ref. [18, ch. 2] and references therein.

The electron-molecule complex formed during the collision can be represented
by one or a few so-called discrete states that characterize bound states, resonances
or virtual states. As a result, the nuclear dynamics is described as an effective
motion of the nuclei on one or a few coupled complex potential energy surfaces
(PESs), where the imaginary part is related to the decay of the temporary
anion by the autodetachment. There are also several methods with various
complexity developed for the treatment of the nuclear motion. Probably the most
straightforwardly applicable approach is the boomerang model also known as the
local complex potential (LCP) approximation [23], where the anionic potential is
only a function of the nuclear geometry. The energy dependence of the electron-
molecule interaction is not considered, which restricts the LCP model mostly for
narrow resonances and electron energies somewhat above the threshold [24].

Effective nonlocal and energy-dependent potentials have to be taken into
account for treating especially broad resonances, virtual states and their analogs
in dipolar systems [25]. The effective-range potential model was developed by
Gauyacq and Herzenberg [26] for virtual states and extended by Vanroose et
al. [27] to be more suitable for polyatomic systems. Fabrikant [28–30] utilized
the R-matrix approach with a single-pole expansion, the resonance R-matrix
method, for the nuclear motion. In this thesis, we use and extend the nonlocal
resonance model also known as the model of discrete state in continuum, which was
developed by works of Chen [31], O’Malley [32], Bardsley [33], and Nakamura [34]
and thoroughly reviewed by Domcke [8].

The mentioned methods have been used to study various molecular systems.
Overall, the VE and DEA processes that involve diatomic molecules, e.g., H2, N2,
O2, NO, CO, HX (X = F, Cl, Br, I), are well understood and the theory is in
a very good agreement with experimental observations [2, 17]. Halogen halides
HX were of a particular interest because of their rich threshold structures (Wigner
cusps and vibrational Feshbach resonances) related to the long-range dipolar and
polarization interactions between the electron and molecule [17]. In such systems
the nonlocal approach proved to be essential.

The extension of the nuclear dynamics to polyatomic systems presents a signif-
icant challenge even in the LCP approximation, and for this reason, the nonlocal
methods have been mostly restricted to systems that are dominated by one-
dimensional (1D) dynamics. The production of X− anions in the DEA to methyl
halides CH3X (X = F, Cl, Br, I), which behave similarly to the halogen halides,
can be well described by the C–X stretching motion [2, 35]. Similarly, the dis-
sociation of HNCO to H and NCO− fragments takes place dominantly in the
N–H stretching [36, 37]. Multimode effects in CF3Cl were studied within the
LCP model by Tarana et al. [38, 39], who considered two vibrational modes: the
C–Cl stretching and the “umbrella” mode. Using the resonance R-matrix method,
Ambalampitiya and Fabrikant [40] extended the 2D local dynamics into the 2D
nonlocal variant for molecules of the type CY3X (Y = H, F and X = F, Cl, Br, I).
Vanroose et al. [41] employed the effective-range model to study the 2D dynamics
for near threshold energies in the VE of CO2.
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The description of polyatomic systems is further complicated by the interaction
of multiple electronic states of the temporary molecular anion, which leads to
conical intersections of the PESs in the continuum. The time-dependent variant
of the LCP model [42] in combination with the multiconfiguration time-dependent
Hartree (MCTDH) method [43, 44] for the wave packet propagation was success-
fully employed for several such systems. McCurdy et al. [45] performed calculations
of the VE process of CO2, where they included symmetric stretching and bending
as well as the Renner-Teller coupling of 2A1 and 2B1 states of CO −

2 . An impressive
work was done on the VE and DEA processes with the H2O molecule by Haxton
et al. [46–52], who took into account the full vibrational dimensionality and the
rich topology of the potentials including the Renner-Teller coupling of 2B1 and
2A1 states and the conical intersection of 2A1 and 2B2 states. The dissociation
is naturally multidimensional because it does not proceed along one vibrational
mode. Chourou and Orel studied 3D dynamics on the lowest adiabatic PES of
acetylene (C2H2) [53, 54], HCN and HNC [55, 56] including the isotopic effect.
Lowering of the molecular symmetry by distorting the geometry is necessary either
to bypass a potential barrier on the path to dissociation or because the symmetry
of the temporary anionic state is not in correspondence with the products. It
can be viewed as a result of the interaction of two anionic states. The incoming
electron is captured into a π∗ resonant state but the dissociation proceeds via
a σ∗ state that is coupled to the π∗ resonance upon appropriate distortion of the
molecular symmetry.

The nature of the DEA process in formic acid (HCOOH) and the importance
of the π∗/σ∗ coupling received a lot of attention because this molecule can be
used as a simplified model of amino acids. Based on fixed-nuclei calculations,
Rescigno et al. [57] argued that the O-H dissociation is dominantly affected by
the π∗ resonance localized on the C=O bond in combination with the symmetry
breaking caused by the out-of-plane movement of the hydrogen attached to the
carbon atom. On the other hand, the 1D nonlocal calculations of Gallup et
al. [58], who considered a reaction path close to the O-H stretching, reproduced
well the experimental cross section without the need of the π∗/σ∗ coupling. The
further discussion [59, 60] was settled by measurements of the DEA cross sections
for H/D isotopomers of HCOOH by Janečková et al. [61], who showed that the
direct σ∗ mechanism dominates. Gallup and Fabrikant [62] reported that the σ∗
mechanism leads to a qualitative agreement with experimental observations in
the DEA to uracil but they concluded that for a quantitative agreement the π∗
state should be included as well. Recent observations by Kumar et al. [14] have
shown that the movement of hydrogens attached to carbons is heavily involved in
the dissociation of the N-H bond of pyrrole (C4H4NH).

Estrada et al. [9] generalized the discrete-state-in-continuum model and studied
nonlocal 2D dynamics of a model system with p- and d-wave shape resonances
coupled through a nontotally symmetric vibrational mode. Feuerbacher et al. [63,
64] further studied the topology of the complex PESs for this model and its
generalization and showed that the model can reproduce ab initio PESs for σ∗
and π∗ states of the chloroethane anion. Šarmanová et al. [65–67] have recently
investigated the effective numerical solution of the dynamics using Krylov subspace
iterative methods.

As far as we know, the model of Estrada et al. [9] has not been applied to the
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dynamics of any realistic system nor further utilized in qualitative studies of the
dynamics in the presence of interacting anionic states. In the next chapters, we
make use of this approach for the VE of CO2 and our first attempt to tackle the
DEA to pyrrole with the π∗/σ∗ coupling. In the remaining part of this chapter,
we introduce the equations for the nuclear dynamics within a general discrete-
states-in-continuum model and discuss the insight that two-dimensional electron
energy-loss spectra provides to the dynamics of the temporary anion.

1.2 Model of discrete states in continuum
Let us consider a temporary molecular anion that can be described by Nd discrete
states labeled by d = 1, . . . , Nd. These diabatic discrete states belong to the
electronic Hilbert space of the electron-molecule system and can represent bound
states, resonances or virtual states. The Feshbach projection operators [68] are
used to split the Hilbert space into the background scattering continuum and the
discrete-state subspace. Consequently, effective equations for the motion of the
nuclei are derived only within the small discrete-state subspace. The incoming
electron with energy ϵi is represented by partial waves µ ≡ (l,m). Then, for each
incoming partial wave µi and total energy E, the nuclear dynamics is described
by the scattered wave function |Ψµi⟩ that satisfies the time-independent and
inhomogenous Schrödinger equation

(E −H)|Ψµi⟩ = |Φµi⟩, (1.3)

where H is the effective Hamiltonian and |Φµi⟩ is the initial state. More details
about the derivation is given in Sec. 2 II or Ref. [9] and the full derivation for the
case of one discrete state can be found, e.g., in Refs. [8, 18].

The initial state of the anion |Φµi⟩ is given by the vertical attachment of the
incoming partial wave to the molecule that is in an initial vibrational state |νi⟩:

|Φµi⟩ =

⎛⎜⎜⎜⎜⎝
V µi

1ϵi |νi⟩
V µi

2ϵi |νi⟩...
V µi
Ndϵi

|νi⟩

⎞⎟⎟⎟⎟⎠ , (1.4)

where the energy-dependent coupling amplitudes V µ
dϵ control the electron capture

to the discrete states. The wave functions |Φµi⟩ and |Ψµi⟩ thus have Nd vibrational
components corresponding to the Nd discrete states. The |νi⟩ state is an eigenstate
of the neutral vibrational Hamiltonian H0 = TN + V0:

H0|ν⟩ = Eν |ν⟩, (1.5)

where TN is the kinetic energy operator of the nuclei and V0 is typically the PES
of the ground electronic state of the molecule. We consider only one neutral
electronic state, that is, we do not describe electronic excitation of the molecule
by electron impact.

The effective Hamiltonian H of the anion expressed in the basis of the discrete
states is a Nd ×Nd matrix

H = H0I + U + F (E −H0), (1.6)
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where I is the unit operator in the discrete-state subspace, U and F (E −H0) are
two additional potential terms that couples the discrete states. Note that we work
in the diabatic representation where the kinetic energy operator is diagonal [10].
Diagonal elements of the matrix U describe diabatic discrete-state potential
energies measured with respect to the threshold given by V0, while off-diagonal
elements characterize the so-called direct vibronic coupling, that is, the direct
interaction of the electronic states through vibrational degrees of freedom.

The F (E−H0) potential matrix describes the interaction of the discrete states
with the electron continuum. Its elements are complex, energy-dependent, and
nonlocal operators given by

Fdd′(E −H0) =
∑︂
µ

∫︂ ∞
0

dϵ V µ
dϵ(E −H0 − ϵ+ iη)−1V µ∗

d′ϵ , (1.7)

where the sum runs over all electron partial waves included in the model and η is
a positive infinitesimal. The real part of F modifies the discrete-state PESs and
the imaginary part effectively describes the decay of the anion by the electron
autodetachment to the continuum.

The structure of the integral above helps us imagining the action of the F
term. The nuclei move on the anionic potentials but an electron with energy ϵ can
be released as a partial wave µ from a discrete state d′ into the continuum [V µ∗

d′ϵ

term in Eq. (1.7)]. Then, the system evolves for some time as the free electron
and neutral molecule (Green’s function in the middle of the integral) but before
the electron can leave sufficiently far away from the molecule, it can be recaptured
in a different nuclear geometry to a discrete state d controlled by V µ

dϵ. Therefore,
this interaction also indirectly couples the discrete states. Due to the neutral
Hamiltonian H0 in Eq. (1.7), the anion “feels” the vibrational structure of the
molecule, which results in Wigner cusps at openings of vibrational channels in
the cross sections for the VE and DEA processes.

The integral cross sections for the VE process νi → νf can be calculated from
T matrix TVE

νfµf←νiµi
:

σνf←νi
(ϵi) = 2π3

ϵi

∑︂
µi,µf

|TVE
νfµf←νiµi

|2, (1.8)

TVE
νfµf←νiµi

=
∑︂
d,d′

⟨νf |V
µf∗
d′ϵf

(E −H)−1
d′dV

µi
dϵi

|νi⟩, (1.9)

where νf and µf denote the final vibrational state and partial wave of the outgoing
electron, respectively. The total energy E, which is conserved during the process,
is given by

E = ϵi + Eνi
= ϵf + Eνf

, (1.10)
where ϵf is final (residual) electron energy. In the study of the e+ CO2 system,
we also consider the differential cross sections, see Sec. 2 VI. A formula for the
integral cross section of the DEA process is derived for 2D dynamics with one
dissociative coordinate in Sec. 3.4.

To summarize, the model of the nuclear dynamics is defined by the neutral
potential V0, the Nd ×Nd matrix U , and the Nd ×Np matrix Vϵ, where Np is the
number of included electron partial waves. Their dependence on the molecular
geometry cannot be arbitrary but is restricted by the molecular symmetry [9,
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69]. To fix the unknown functions, fixed-nuclei quantities obtained within the
model are typically compared with the same quantities from ab initio fixed-nuclei
scattering calculations. We discuss the model construction in detail for the cases
of CO2 and pyrrole in Chapters 2 and 4.

The effective Hamiltonian H is expressed in the diabatic representation, where
the potential term in not diagonal [10]. To obtain adiabatic PESs, which can be
compared to ab initio calculations and also easily visualized in contrast to the
nonlocal potential, we first have to diagonalize the fixed-nuclei variant of H where
TN = 0. Then, the dependence on energy has to be self-consistently replaced
by a coordinate-dependent function typically defined in terms of K-matrix or
S-matrix poles [8]. As a result, we get Nd adiabatic PESs, each of form

Wd = V d
loc − i

2Γdloc, (1.11)

where the real part V d
loc and the resonance width Γdloc are functions only of the

vibrational coordinates. More details is also given in Sec. 2 III C.

1.3 Two-dimensional energy-loss spectra
Two-dimensional electron energy-loss spectra provide a great insight into the
nuclear dynamics of temporary molecular anions [7]. The 2D spectroscopy was
developed by Reddish et al. [6] to study the e + N2 system and later apply to
CO2 by Currell and Comer [70, 71]. Thanks to Michael Allan and the spectrom-
eter he constructed in Fribourg (see, e.g., Ref. [72] and references therein), the
2D technique has been further utilized for studying larger molecules, such as
acrylonitrile and methacrylonitrile [73, 74], pyrazine [7], Fe(CO)5 [75], methyl
formate [76], butadiene [77], nitrobenzene [78], C3F7CN [79], and pyrrole [14].
Note that 2D spectra for many benzene-like compounds have been presented by
Allan on conferences but not yet published.

The signal measured by the electron spectrometer is plotted as a function of
electron energy loss ∆ϵ (horizontal axis) and incident electron energy (vertical
axis), which may reveal many aspects that are not apparent from one-dimensional
information: either 1D energy-loss spectra (for fixed incident ϵi or residual ϵf
electron energies) or the VE cross sections (dependence on incident energy for
a fixed energy loss).1

The conservation of the total energy [Eq. (1.10)] implies that features in the
spectra along vertical lines (fixed ∆ϵ) correspond to individual final vibrational
states of the molecule since ∆ϵ = ϵi− ϵf = Eνf

−Eνi
. The residual electron energy

has to be positive resulting in the threshold line ϵi = ∆ϵ. On the other hand, the
energy loss can be negative when the molecule is initially in an excited vibrational
state and the final state is energetically below the initial one, that is, the outgoing
electron gains energy from the vibrations of the molecule. In contrast, horizontal
structures are related to the initial vibrational states of the anion populated by the
electron capture. Diagonal patterns are harder to interpret. They can correspond
to boomerang oscillations (see below) or to de-excitation of particular vibrations,

1The 2D spectra are sometimes plotted with respect to the residual electron energy instead
of the energy loss.
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Table 1.1: Parameters of harmonic model for nuclear dynamics of diatomic systems
inspired by H2, N2, O2, and HF molecules.

V0 Vd Γ(ϵ)
molecule anion ω0 (eV) k (eV) h c (eV) a (eV) l β (eV−1)
H2

1Σ+
g H −

2
2Σ+

u 0.548 0.0736 6.77 3.77 10.3 1 0.246
N2

1Σ+
g N −

2
2Πg 0.292 0.183 2.09 2.17 0.812 2 0.562

O2
3Σ−g O −

2
2Πg 0.201 0.0856 5.14 1.18 9.83 2 0.164

HF 1Σ+ HF− 2Σ+ 0.513 0.167 5.24 7.98 31.6 0 0.008

see Ref. [7], where the multidimensional dynamics is also illustrated using the
Fribourg countryside representing the PES.

We are not aware of any calculated 2D spectra of polyatomic molecules that
have been published except the spectrum for the model of Estrada et al. [9] and its
generalization showed by Šarmanová et al. [65–67]. To further motivate the work
presented in the following chapters, we next show and briefly discuss 2D spectra
for four diatomic molecules calculated within a simple harmonic model and also
the spectrum for the original model of Estrada et al. [9] with two vibrational
degrees of freedom and two resonances.

1.3.1 Diatomic molecules
In the case of diatomic molecules (or for 1D nuclear dynamics), the 2D spectrum
is not as revealing because we have only one vibrational quantum number and
the same information can be easily plotted as a series of the VE cross sections.
Nevertheless, it can be interesting to see how diatomic systems vary.

Let us consider one discrete state and the harmonic approximation for the
neutral potential and the diabatic discrete-state potential:

H0 = TN + V0 = −1
2ω0

∂2

∂Q2 + 1
2ω0Q

2, (1.12)

Vd ≡ V0 + U = 1
2k(Q− h)2 + c, (1.13)

where the dimensionless coordinate Q describes the displacement of the nuclei
from the neutral equilibrium position and ω0, k, h, and c are model parameters.
Furthermore, we consider one electron partial wave with angular momentum l
and the discrete-state-continuum coupling V µ

dϵ given by

Γ(ϵ) ≡ 2π|V µ
dϵ|2 = a(bϵ)(2l+1)/2e−bϵ, (1.14)

where Γ(ϵ) is the energy-dependent resonance width and its parameters a and b
are kept constant, that is, the width is geometry independent.

We discuss four cases inspired by H2, N2, O2, and HF molecules, for which
the potentials behave rather differently. Values of the model parameters listed in
Table 1.1 were chosen to approximate realistic nonlocal models constructed for
these systems by Horáček et al. [80, 81], Berman et al. [82], Alt and Houfek [83],
and Č́ıžek et al. [84], respectively. We solved the Schrödinger equation Eq. (1.3)
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using the iterative matrix method described in Sec. 2 VI and we considered only
the ground neutral vibrational state as the initial state |νi⟩. To calculate the 2D
spectrum, the obtained integral cross sections for VE νi → νf are placed along
vertical lines with energy loss ∆ϵ = Eνf

− Eνi
and convolved with a Gaussian

distribution with the full width at half maximum of 20 meV to take into account
a finite experimental resolution.

Figure 1.1 shows the resulting potentials and 2D spectra. For the H2-like case,
we have a broad p-wave resonance that leads to the broad resonance peak in the
cross sections superimposed with boomerang oscillations. These oscillations result
from interference of two contributions [80, 81]. First, the electron can autodetach
very quickly after the attachment and so the nuclei have no time to perform almost
any vibrational motion. Second, the anion survives long enough in order for the
nuclei to perform at least one vibration and then it decays. The oscillations are
even more pronounced for N2 because the anion possesses a moderately wide
resonance resulting in a longer lifetime [82].

In contrast, the structures in the spectra for O2 and HF do not originate from
the boomerang mechanism. The O −

2 anion has a very narrow d-wave resonance
and the cross sections are comprised of narrow peaks at the positions of vibrational
levels of O −

2 [83]. Finally, Wigner cusps and vibrational Feshbach resonances
significantly affect the cross sections for HF [84]. In our simple model, the
structures are not as sharp because we omitted the dipole interaction between the
electron and the molecule and took into account only the pure s-wave behavior [85].

1.3.2 Model of Estrada, Cederbaum, and Domcke
The 2D energy-loss spectra from multidimensional dynamics are far more interest-
ing but also harder to interpret. Here, we discuss the vibronic coupling model
of Estrada, Cederbaum, and Domcke [9], who were the first to solve 2D nonlocal
dynamics. They considered a model system with two vibrational modes: a totally
symmetric gerade mode and a nontotally symmetric ungerade mode described by
dimensionless coordinates Qg and Qu, respectively. The neutral PES is described
within the harmonic approximation:

H0 = TN + V0 = −1
2ωg

∂2

∂Q2
g

− 1
2ωu

∂2

∂Q2
u

+ 1
2ωgQ

2
g + 1

2ωuQ
2
u, (1.15)

where ωg and ωu are the corresponding vibrational frequencies.
Furthermore, they took into consideration two shape resonances of different

symmetries (d- and p-waves) that are coupled through the ungerade mode. In
order for the Hamiltonian H given by Eq. (1.6) to be invariant with respect to the
molecular symmetry group, the diagonal elements can contain only even powers
of Qu whereas the off-diagonal elements can dependent only on odd powers of Qu.
We discuss this approach in detail in Chapter 2. For simplicity, they expanded
elements of the matrix U around the equilibrium geometry to the first order:

U =
(︄
E1 + κ1Qg λQu

λQu E2 + κ2Qg

)︄
, (1.16)

where E1, E2, κ1, κ2, and λ are constant. Moreover, they considered the resonance
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Figure 1.1: Potential energy curves (left column, legend on the top) and two-
dimensional electron energy-loss spectra (right column) for diatomic systems inspired by
H2, N2, O2, and HF molecules. The shaded areas represent the local resonance widths
and dotted horizontal lines indicate positions of neutral vibrational levels. The spectra
are independently normalized to unity.

17



widths to be geometry independent, which results in a diagonal matrix Vϵ

Vϵ =
(︄
V l=2

1ϵ 0
0 V l=1

2ϵ

)︄
, (1.17)

where V l=2
1ϵ and V l=1

2ϵ are parametrized analogically to Eq. (1.14). Actually, their
form of Γ(ϵ) does not contain the parameter b in the threshold term, and thus, the
parameter a does not have the dimension of energy. We prefer the parametrization
given by Eq. (1.14) and we list the parameter values in Table 1.2 for completeness.2

Table 1.2: Parameters of model constructed by Estrada et al. [9].

Parameters
ωg 0.258 eV κ1 -0.212 eV a1 0.136 eV
ωu 0.091 eV κ2 0.254 eV b1 0.833 eV−1

E1 2.45 eV l1 2 a2 0.810 eV
E2 2.85 eV l2 1 b2 0.375 eV−1

Cuts through the 2D PESs along coordinates Qg and Qu are shown in Fig. 1.2.
For Qu ≠ 0, the resonances are vibronically coupled, which results in the double-
well shape of the lower adiabatic potential W−, and moreover, the adiabatic
surfaces W− and W+ conically intersect for Qg = −0.68, see Fig. 1.3. Because of
the conical intersection, it is problematic to label the adiabatic surfaces in the
left part of Fig. 1.2. Dividing the cut through the 2D manifold into the upper
(W+) and lower (W−) parts result in a non-smooth transition of the potentials
at Qg = −0.68. However, this non-smoothness is artificial since the resonances
are not coupled at all for Qu = 0. Therefore, we prefer to show the smooth
adiabatic curves labeled by W̃− and W̃+ because they respect the topology of the
intersection, which should be apparent from Fig. 1.3 (the widths are given by the
color).

The imaginary part of the adiabatic surfaces causes that the PESs do not
intersect at only one point as for bound states but the complex energies are
degenerate at two points (Qg, Qu) = (−0.68,±0.14). These points are connected
by a straight line where the real parts coincide but the widths differ, which is
partially visible in Fig. 1.3. Such topology was further investigated by Feuerbacher
et al. [63, 64] including the effect of geometry-dependent widths.

To calculate the VE cross sections, we again used the iterative approach that
will be explained in Chapter 2. In contrast to the diatomic systems discussed
above, the 2D spectrum for the 2D dynamics is much more filled-in because there
are many more final vibrational states available, see Fig. 1.4. The number of
vibrational states grows quadratically with energy loss. For higher energy losses
the states form a vibrational pseudocontinuum, see vertical lines in Fig. 1.4 that
indicate the positions of the states given by ∆ϵ = Eνf

− Eνi
= νgωg + νuωu,

νg, νu = 0, 1, . . . for final states νf ≡ (νg, νu). We again consider only the ground
state as the initial vibrational state. Note that Estrada et al. [9] limited their
analysis only up to one excited quantum in each mode.

2Note that Estrada et al. [9] discuss the dynamics for several sets of parameter values. Here,
we focus on their most complex model whose results are shown in their Fig. 7.
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Figure 1.4: Two-dimensional electron energy-loss spectrum for the vibronic coupling
model of Estrada et al. [9] with two vibrational modes. Vertical lines indicate positions
of all neutral vibrational levels and vibrational levels only in the ωg progression.

We can observe two peaks corresponding to the positions of the two resonances
for low-lying states (∆ϵ < 0.4 eV) in the spectrum. For higher energy losses there
is a qualitative difference in the shape of the cross sections for excitation of the
pure gerade mode, that is, excitation of final states νf = (νg, 0), whose positions
are also shown in Fig. 1.4. These excitation profiles have one peak at the position
of the higher resonance. They are excited by the process where the electron
attaches to the upper adiabatic surface. Then, the nuclei can substantially move
only in the Qg direction because the upper potential is repulsive in the Qu mode.
If the wave packet does not move pass the conical intersection, only the Qg mode
can be excited. On the other hand, if the wave packet starts on the lower surface
or it goes through the intersection from the upper to the lower surface, it can easily
move along the Qu direction because it initially moves along the potential ridge,
and as a result, significantly excites the Qu mode. Moreover, the width of the
lower surface is rather narrow and the wave packet can survive for a substantial
amount of time leading to the distinct boomerang oscillations.

Even though this model is limited only to two vibrational modes, we have
observed that it can reproduce features of 2D spectra of larger polyatomic molecules
measured by Allan and others (see above), especially when one discrete state
couples to an s wave. Therefore, this model is well suited for a qualitative
study of the multidimensional dynamics to provide a better insight into systems
where the vibronic coupling seems to play an important role. To focus on such
a systematic study of the 2D dynamics was our original plan, but as we explained
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in Introduction, we devote most of this thesis to the e+ CO2 system, which we
look into in the next chapter. In Chapter 3, we generalize the model of Estrada et
al. [9] to allow dissociation of the molecular anion in one vibrational coordinate,
which is applied to the e+ pyrrole system in Chapter 4.
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Chapter 2

Vibrational excitation of CO2

In this chapter, we study the vibrational excitation of the CO2 molecule by electron
impact. We performed extensive calculations of the nuclear dynamics taking into
account three interacting electronic states and all four vibrational modes. The
presentation of our work is based on three papers. We start on page 25 by
summarizing our primary results given in Ref. [11] published by Physical Review
Letters. Next, we describe in detail the mathematical model, its construction from
ab initio fixed-nuclei data, and the method for solving the dynamics using Ref. [12]
published by Physical Review A and presented here starting on page 31. Finally,
our theoretical results and their comparison with experimental observations are
thoroughly analyzed and discussed in Ref. [13] submitted to Physical Review A
(page 59). In all three cases authors’ versions of the papers are presented.
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Vibronic coupling through the continuum in the e + CO2 system

Jan Dvořák,1 Miloš Ranković,2 Karel Houfek,1 Pamir Nag,2 Roman Čuŕık,2 Juraj Fedor,2, ∗ and Martin Č́ıžek1, †

1Charles University, Faculty of Mathematics and Physics, Institute of Theoretical Physics,
V Holešovičkách 2, 180 00 Prague 8, Czech Republic

2J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences,
Doleǰskova 2155/3, 182 23 Prague 8, Czech Republic

We report two-dimensional electron energy-loss spectra of CO2. The high-resolution experiment
reveals a counterintuitive fine structure at energy losses where CO2 states form a vibrational pseu-
docontinuum. Guided by the symmetry of the system, we constructed a four-dimensional nonlocal
model for the vibronic dynamics involving two shape resonances (forming a Renner-Teller Πu dou-
blet at the equilibrium geometry) coupled to a virtual Σ+

g state. The model elucidates the extremely
non-Born-Oppenheimer dynamics of the coupled nuclear motion and explains the origin of the ob-
served structures. It is a prototype of the vibronic coupling of metastable states in continuum.

The most striking phenomena in the electron-molecule
scattering are often related to the formation of compound
anionic states [1, 2]. These states can have a mixed char-
acter combining bound states with resonances or virtual
states [3]. The vibrational dynamics of such states can
be represented by the familiar motion of nuclei on a po-
tential energy surface (PES). The resonant PESs have,
however, an imaginary component due to the embedding
in the continuum and become nonlocal and energy de-
pendent in the full form. This approach is well estab-
lished for the theoretical treatment of the electron scat-
tering from diatomic molecules including the understand-
ing of the importance of the nonlocality for reproduction
of many features observed in the cross sections [2, 3].
In polyatomic molecules a local complex potential ap-
proximation has almost exclusively been applied [4–7].
The intersection of multiple electronic states in the con-
tinuum has a specific topology due to the presence of
the imaginary part [8–11]. Unlike in the case of bound
states [12], the vibronic interaction of short-lived states
is relatively unexplored. Estrada et al. [13] performed a
full nonlocal dynamical calculation for a model system
with two vibrational degrees of freedom and two states
vibronically coupled (pseudo-Jahn-Teller effect). Their
model assumes discrete-state-continuum amplitudes in-
dependent of vibrational coordinates, which prohibits an
indirect coupling of electronic states of different symme-
tries through the continuum. We extend this approach
by considering the indirect coupling in a model for mul-
tiple discrete states and up to four vibrational degrees
of freedom, which opens the possibility to treat the non-
local dynamics of metastable states for a larger class of
polyatomic molecular anions.

The e + CO2 system is well suited to test the the-
oretical approach. First, the neutral molecule has an
intriguing vibrational-level structure. Those (ν1, ν

ℓ
2, ν3)

harmonic levels that are nearly degenerate and have
the same symmetry are strongly Fermi-coupled and dis-
tributed in polyads [14]. Second, there are many experi-
mental data available [15]. Several aspects of the system
are already well understood including the boomerang os-

cillations [16], threshold peaks in vibrational excitation
[17], and sharing of excitation between members of the
Fermi dyad [4, 18]. On the other hand, some experi-
mental data are still puzzling, especially those related to
high vibrational excitation. Allan [19] reported a reap-
pearance of structure in the spectra (with ∼ 160 meV
spacing) at nearly complete energy losses where Fermi-
coupled polyads overlap and should form a dense struc-
tureless continuum (he termed it ’spectroscopic order out
of spectroscopic chaos’). Currell and Comer explained
their data [14, 20, 21] as a result of excitation of very high
bending modes and hypothesized that it is a signature of
the quantum friction [22] in the CO −2 nuclear motion.
Up to this point, there have been no calculations that
would provide an insight into the highly inelastic region.
The Fermi coupling requires the inclusion of at least sym-
metric stretching and bending modes [23] and the most
advanced treatment by McCurdy et al. [4] focused on ex-
citation of low-lying vibrational states. In addition, the-
ory has not addressed the sharing of excitation energies
among nontotally symmetric vibrational states, such as
odd quanta of bending or asymmetric stretching, which
are clearly observed in experiments [15, 24]. In this Let-
ter, we interpret our new and also previously unexplained
experimental observations of the e+CO2 system based on
nonlocal calculations of the nuclear dynamics, demon-
strating the predictive power of our theoretical approach
and at the same time the feasibility of the calculations.

We have experimentally probed the CO2 vibrational
excitation using the 2D electron energy-loss spectroscopy
(EELS) [25, 26] [Fig. 1a]. The incident electron energy
(vertical axis) covers the region of the 2Πu resonance.
The spectrum agrees well with previous reports, both
classical 1D EELS studies [16, 19, 27–29] and early vari-
ants of 2D EELS [14, 20, 21]. However, the improved
characteristics of the current experiment (energy reso-
lution of 18 meV, sensitivity to electrons with residual
energies down to 20 meV, high dynamic range) reveal
new aspects. First, the “reappearing order” in 1D EELS
spectra [19] corresponds to the lowest diagonal ray, which
extends to complete energy losses. Second, the broad
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FIG. 1. (a) Experimental and (b) calculated 2D electron energy-loss spectra of CO2 at a scattering angle of 135◦. The main
plots have the same logarithmic color scale shown at the top. The insets are in a linear scale from 0 to 1.

peaks in the high energy-loss region show a previously
unreported fine structure (inset in Fig. 1a). The spacing
of this progression empirically determined from 1D EELS
spectrum, Fig. 2a is ∼ 29 meV. Such a progression is sur-
prising since first it is very different from the fundamen-
tal vibrational frequencies [30] (168 meV, 83 meV, and
297 meV for symmetric stretching, bending, and asym-
metric stretching, respectively), and second, it appears in
the region with a high vibrational level density. There-
fore, there has to be some kind of selective mechanism.
These results create an additional need for a proper mul-
tidimensional model of the vibrational excitation.

Our model is described in the companion paper [31].
Briefly, we consider three electronic states of CO −2 : the
2Σ+

g virtual state and the 2Πu shape resonance, which
splits due to the Renner-Teller effect into 2 2A1 and 2B1

states as the molecule bends [32]. The 2Σ+
g and 2Πu

states were previously treated separately [4, 18] and the
topology of the PESs was unclear [33, 34]. Sommerfeld
et al. [34] argued that the virtual state and the 2 2A1

Renner-Teller component mix upon bending, which cou-
ples all the three states together. We represent them by
three diabatic discrete states |d⟩ that are coupled directly
through a potential matrix Vd1d2 = ⟨d1|Hel|d2⟩, where
Hel is the electronic Hamiltonian, and indirectly through
the continuum by matrix elements V µ

dϵ = ⟨d|Hel|ϵµ⟩,
which depend on electron energy ϵ. We consider the
coupling to four electron partial waves µ ≡ (l,m) with
l = 0, 1 for s, p waves, respectively. The coupling ele-

ments are functions of vibrational normal coordinates Q
of all the modes but their form is restricted by the molec-
ular symmetry [13, 35]. To determine the model param-
eters we performed ab initio fixed-nuclei R-matrix cal-
culations of eigenphase sums and PESs for thousands of
molecular geometries using the UKRmol+ [36] suite of
codes. The cuts of adiabatic PESs obtained within our
model are shown in Fig. 3. All the anionic states come
close together and become bound as the molecule sym-
metrically stretches. The 2B1 component is not much
affected by the bending whereas the 2 2A1 component
rapidly moves to the threshold and its width significantly
increases due to a strong coupling to the s wave. On top
of that, this s-wave coupling gives rise to the local mini-
mum in the 1 2A1 potential but the minimum is connected
with the 2Σ+

g virtual state while the 2 2A1 state remains
unbound.

The dynamics of CO −2 for total energy E is described
by the inhomogeneous Schrödinger equation [E − T −
V −F (E)]|Ψ⟩ = V µi

ϵi |νi⟩, where T is the kinetic energy of
the vibrations, V is the potential matrix Vd1d2

, and the
nonlocal level-shift operator matrix F (E) is calculated
by an integral transformation from V µ

dϵ [3]. The scat-
tering wave function |Ψ⟩ has three vibrational compo-
nents Ψd(Q), which are expressed in a four-dimensional
oscillator basis. This transforms the Schrödinger equa-
tion into a (large) system of linear equations, which
we solved by the iterative COCG method [37] based
on Krylov subspaces. Finally, the vibrational excita-
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FIG. 2. (a) Experimental and (b) calculated 1D electron energy-loss spectra at a scattering angle of 135◦ and incident electron
energy of 3.8 eV. We show the positions of the Σ+

u asymmetric stretching peak (0, 00, 1) and vibrational states within Σ+
g

polyads (n, 2m0, 0) and Πu polyads [n, (2m+1)1, 0] for n+m = 0, 1, . . . , 6. Panel (b) also shows calculated total contributions
of Σ+

g and Πu symmetries and the (0, 00, 1) peak.

tion cross sections are calculated from T -matrix elements
Tνfµf←νiµi =

∑︁
d⟨νf |V

µf†
dϵf

|Ψd⟩, where ϵi and ϵf are the
initial and final electron energies, µi and µf the incoming
and outgoing electron partial waves, and νi and νf the
initial and final vibrational states, respectively.

Although anharmonic terms are included for the dy-
namics of the anion, the neutral molecule is only approx-
imated by harmonic vibrations in order to keep the mul-
tidimensional calculations feasible. Thus, the dynamics
does not include the Fermi resonance effect. Employing
the anharmonic potential of Chedin [38], we calculated
the expansion |νFR⟩ =

∑︁
ν cν |ν⟩ of the Fermi-coupled vi-

brational states |νFR⟩ into harmonic states |ν⟩. By mix-
ing the calculated harmonic T matrices using the coeffi-
cients cν , we partially incorporated this (crucial) effect.

To calculate the 2D spectrum shown in Fig. 1b, we con-
voluted the cross sections with a Gaussian distribution
to simulate the finite experimental resolution. First, we
should explain a well-understood drawback of our model
that influences the direct comparison with the experi-
ment: the shrinking of the calculated energy-loss spec-
tra towards lower energies. The used R-matrix model
produces the vibrational frequencies about 30% larger
than the experimental ones. Therefore, when we project
the calculated population of the harmonic states after
the collision to more precise Fermi-coupled levels (with
lower energies), the spectrum shrinks towards lower en-
ergy losses. Apart from this quantitative difference, the
model qualitatively reproduces the observed features and
allows for their interpretation:

(i) Boomerang rays. Perhaps the most visually domi-
nant features in the 2D spectrum are the diagonal rays.
These are the boomerang oscillations [27] that originate
from interference due to the back and forth motion of the
nuclei in symmetric stretching [16]. They are known to
be somewhat weakened but not destroyed by the bend-
ing motion [23]. Calculated positions of boomerang peaks

are also influenced by the above mentioned distortion and
they do not directly correspond to the experimental data
but the general character is reproduced.

(ii) Excitation of all modes. The dependence of the
continuum coupling V µ

dϵ on the vibrational coordinates
allows excitation of nontotally symmetric vibrational
states [39], which was not possible in previous calcula-
tions [4, 18]. The excitation of the fundamental bending
mode (0, 11, 0) (marked in Fig. 2), which is of the Πu

symmetry, requires an electron that changes its angu-
lar momentum projection on the molecular axis. In our
model, the electron has to come in as the px or py waves
and leave as the s wave or vice versa, which is controlled
by V µ

dϵ proportional to the bending coordinate. Similarly,
the excitation of the asymmetric stretching (0, 00, 1) (also
marked in Fig. 2) of the Σ+

u symmetry requires a change
from pz wave to s or from s to pz.

(iii) “Spectroscopic order out of spectroscopic chaos”.
Allan [19] pointed out that the experimental 1D EELS
spectrum (such as the one in Fig. 2a) shows a very reg-
ular character at low energy losses (here up to some
1.3 eV), then the spectrum is seemingly structureless
(1.3–2.5 eV), and above 2.5 eV a new regular peak
progression appears (the resolution in [19] was insuf-
ficient to resolve the fine structure). Our model ex-
plains this behavior by selectivity of different polyads
(Fig. 2b). Overall, the dominantly populated vibrational
states |νFR⟩ are even polyads composed of harmonic ba-
sis states ν = (n, 2m0, 0) of the Σ+

g symmetry and odd
polyads composed of [n, (2m + 1)1, 0] of the Πu symme-
try, where n + m = N = constant identifies individ-
ual polyads. For example, states within the Πu polyad
with N = 12 are linear combinations of ν = (12, 11, 0),
(11, 31, 0), . . . , (0, 251, 0) and the corresponding ampli-
tudes cν are typically non-negligible for all the states.
At first, Σ+

g and Πu peaks are well distinguishable since
the Πu peaks are shifted by one bending quantum. At
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FIG. 3. Adiabatic potential energy curves of CO2 (the
ground state 1Σ+

g ) and CO −
2 (2Σ+

g ,
2Πu) within our model

upon (a) symmetric stretching and (b) bending described by
normal coordinates. The shaded areas represent the reso-
nance widths.

intermediate energy losses, energy ranges of the polyads
start to overlap and create seemingly chaotic patterns be-
cause of the similar magnitude of the excitation. In the
high energy-loss region, the Πu excitation dominates and
the order is partially restored. This behavior is related
to a change of the electron angular momentum from p to
s discussed above. The incoming electron is dominantly
of the p-wave character due to the existence of the 3.8 eV
resonance. At high electron losses, the outgoing p-wave
contribution with a small residual energy is suppressed
due to the threshold law of Wigner [40]. The electron
thus preferably leaves as an s wave forcing the change of
angular momentum in the vibrational state leading dom-
inantly to Πu states.

(iv) Fine structure at high energy losses. Figure 4 de-
picts a detail of the 1D EELS spectra in the region dom-
inated by the Πu contribution as indicated by frames in
Fig. 2. From the calculation we know which individ-
ual state is responsible for each peak in the theoretical
spectrum. To understand it more, we characterize the
Fermi-coupled states |νFR⟩ by the mean value of number
of symmetric stretching quanta ⟨ν1⟩ =

∑︁
ν ν1|cν |2. In

Fig. 4a, the horizontal positions of the symbols show the
theoretical energies of the states within the Πu polyads
with N = 12, 13, 14 and vertical positions represent the
⟨ν1⟩ values. Even though the polyads significantly over-
lap, only one polyad is responsible for each broad peak
and the fine structure is given by the excitation of con-
secutive states somewhat below the maximum of ⟨ν1⟩.
These fairly linear states are dominantly localized in the
vibrational space along the symmetric stretching axis.
Highly bent states, which are located at both ends of the
polyads, are not significantly populated because the rapid
broadening of the 2 2A1 state causes a fast decay of the
anion in highly bent nuclear configurations, see Fig. 3b.
To verify this mechanism, we plot the same quantity ⟨ν1⟩
for Πu polyads with N = 18, 19, 20 to the experimental
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FIG. 4. (a) Theoretical and (b) experimental fine structures
at high energy losses. The symbols represent the mean value
of number of symmetric stretching quanta ⟨ν1⟩, see the text,
for members of Πu polyads [n, (2m + 1)1, 0] with n + m =
12, 13, 14 for the theoretical spectrum and n+m = 18, 19, 20
for the experimental result. Panel (a) also shows contribu-
tions of Σ+

g and Πu vibrational states and the vertical lines at
the bottom indicate energies of all relevant vibrational states
included in our model.

spectrum in Fig. 4b. We found out that the positions
of the predicted peaks follow very well the experimental
peaks not only in the showed energy-loss interval but also
in the spectra for other incident electron energies.

(v) Alternating excitation pattern in diagonal rays.
Currell and Comer [14, 21] observed two types of ex-
citation, which they labeled by A and B, alternating in
the diagonal rays of the 2D spectrum for intermediate en-
ergy losses at a small scattering angle. We also observe
the same patterns in our spectra at 135◦. They correctly
assigned the type A excitation to excitation of linear vi-
brational states of the Σ+

g polyads (n, 2m0, 0). However,
they argued that the type B excitation is caused by de-
cay to highly bent states of the same polyads via the
quantum friction effect [22]. Our calculations show that
this is not the case and that fairly linear states of the Πu

symmetry are responsible for the type B excitation.
In conclusion, the present nonlocal model qualitatively

explains the observed features of the e + CO2 system.
The high energy-loss region is primarily influenced by the
change of the incoming resonant p wave into the outgoing
s wave, which leads to excitation of vibrational states of
the Πu symmetry. The model also singles out the states
that are responsible for the emergence of the fine struc-
ture from the pseudocontinuum of available states. The
theoretical approach, presented here on the example of
the CO2 molecule, can provide the explanation of the
behavior of other polyatomic systems as well since the
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change of the electron symmetry and the consequential
excitation of nontotally symmetric vibrational modes ap-
pear to be an important phenomenon [39, 41–46].
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Vibrational excitation in the e + CO2 system:
Nonlocal model of ΣΠ vibronic coupling through the continuum
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We present our model of the e+CO2 system that has been used to calculate the two-dimensional
electron energy-loss spectrum of CO2 for incoming electron energies up to 5 eV reported in our
Letter [Phys. Rev. Lett. 129, 013401 (2022)]. We derive the effective Hamiltonian that describes
the nonlocal dynamics of CO −

2 within the full vibrational space and in the presence of the 2Σ+
g

virtual state and the Renner-Teller coupled 2Πu shape resonance. The electronic states are repre-
sented by three discrete states that interact directly with each other and also indirectly through
the electronic continuum that consists of s and p partial waves. Based on our ab initio fixed-nuclei
R-matrix calculations, parameters of the model are determined using a fitting procedure that uti-
lizes the high symmetry of the system. The topology of the resulting complex potential energy
surfaces is discussed. The model is constructed in such a way that the Hamiltonian expressed in
a harmonic vibrational basis of the neutral molecule is a sparse matrix which enabled us to solve
the multidimensional dynamics of vibrational excitation using iterative methods based on Krylov
subspaces.

I. INTRODUCTION

The model of the discrete state in continuum has been
used for the description of inelastic electron-molecule col-
lisions for a long time [1]. The most natural applica-
tion of the model is to narrow resonances where the fi-
nite lifetime of a compound electron-molecule state is
directly related to the negative imaginary part of the
potential [2]. In such cases, the model is known as
the local-complex-potential (LCP) approximation or the
boomerang model [3]. However, a more elaborate form of
the theory with a nonlocal and energy-dependent effec-
tive potential is necessary in systems where a bound an-
ionic state disappears in the continuum when the molec-
ular geometry is deformed without becoming a clear res-
onance [4]. The importance of nonlocal effects has been
recognized by Cederbaum and Domcke [5], who were also
the first to solve the full nonlocal version of the dynamics
for harmonic molecular potentials using the continuous
fraction method [6]. Later, the nonlocal dynamics was
numerically solved also for realistic ab initio potentials
of diatomic molecules leading to a good correspondence
with experimental data; see, for example, Ref. [7] and
references therein.

In the application of the nonlocal approach to poly-
atomic molecules, we face numerous challenges including
the presence of much more parameters for the construc-
tion of such models and a more difficult treatment of
the dynamics. The interaction of multiple anionic states
is also more often involved in polyatomics. Triatomic
molecules already represent a very challenging problem,
for which, however, a nearly complete solution of the dy-
namics may be hoped for. A large step in this direction

∗ Jan.Dvorak@utf.mff.cuni.cz
† Karel.Houfek@mff.cuni.cz
‡ Martin.Cizek@mff.cuni.cz

within the LCP approximation has been done for the
electron scattering from CO2 [8, 9], H2O (see Haxton et
al. [10, 11] and references therein), and HCN [12, 13].
In the case of water and carbon dioxide molecules, au-
thors even treated the nonadiabatic coupling of multi-
ple metastable states. Although the LCP approxima-
tion correctly captures many features, its limitations in
the case of the H2O molecule have been pointed out in
Ref. [11]. To the best of our knowledge only two works
extend the calculations for polyatomic molecules beyond
the LCP approximation and take into account more than
one vibrational degree of freedom. Recently, Abalampi-
tiya and Fabrikant [14] treated the dissociative attach-
ment to the CF3Cl molecule through a single discrete
anionic state within the nonlocal theory with two rele-
vant vibrational degrees of freedom. The full nonlocal
vibronic dynamics of two discrete states and two vibra-
tional modes was discussed for a model Hamiltonian by
Estrada et al. [15]. Further generalization of this model
with examples for specific molecules were discussed by
Feuerbacher et al. [16, 17], but they focused only on static
aspects of the potential energy surfaces and made no at-
tempts to solve the dynamics.
We extend the approach of Estrada et al. [15] to

the case of three electronic states of a linear triatomic
molecule and four vibrational coordinates. We apply it to
vibrational excitation of the CO2 molecule by slow elec-
trons. Since our work is rather extensive, we discuss it in
three papers. Main results of our calculations together
with new experimental data measured by our colleagues
are presented in Ref. [18], where we propose our interpre-
tation of the two-dimensional electron energy-loss spec-
trum of CO2. Here, we describe the theoretical model,
its construction from ab initio data, and a procedure how
to solve the dynamics. The third paper (a follow-up to
of this one) will focus on a detailed comparison and dis-
cussion of the theoretical and experimental results.
There is an extensive literature on theoretical descrip-
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tion of vibrational excitation of the CO2 molecule. We
will review the previous works in more detail in a follow-
up to this paper. Here, we would like to mention few
works that affected our choice of the particular form of
the model. The electron scattering off CO2 up to about
2 eV is dominated by the 2Σ+

g virtual state [19–21]. For
energies around 4 eV Boness and Schulz [22] observed a
boomerang structure in their vibrational excitation cross
sections, which they attributed to a 2Πu shape resonance.

The near threshold region was studied by Whitten
and Lane [23] and Mazevet et al. [24]. Estrada and
Domcke [25] performed one-dimensional (1D) calcula-
tions in symmetric stretching using the discrete-state-in-
continuum model to study the effect of the virtual state.
The most advanced treatment of the near threshold re-
gion so far has been the effective-range-potential model of
combined excitation of symmetric stretching and bending
by Vanroose et al. [26]. The theoretical treatment of the
2Πu shape resonance also involves works of different com-
plexity. We would like to mention the 1D description of
the origin of boomerang oscillations by Čadež et al. [27]
and 2D LCP studies by Kazansky and Sergeeva [28, 29]
and Rescigno et al. [8] who included both the symmetric
stretching and bending, even based on ab initio fixed-
nuclei data in the latter case. Finally, McCurdy et al. [9]
improved the description even further by considering the
Renner-Teller splitting of the 2Πu resonance.

The 2Σ+
g and 2Πu states have been treated separately

in all previous theoretical works. It is well known that
the potential of the ground state of CO −2 possesses a
minimum in C2v geometry [30, 31] and ab initio calcula-
tions of Resigno et al. [32] indicated that the minimum is
connected to the 2Πu shape resonance through the lower
Renner-Teller component. On the other hand, R-matrix
calculations of Morgan et al. [21, 33] showed that the
virtual state becomes bound upon bending too, see also
the discussion in the introduction of Vanroose et al. [34],
who tried to provide an insight into this problem using an
analytically solvable scattering model. Sommerfeld [35]
reported that when a very diffuse basis is used, the poten-
tial energy of the ground state of CO −2 behaves qualita-
tively differently than the earlier calculations [30, 31] had
shown. The potential does not monotonically rise along
the trajectory from the minimum to the autodetachment
region but it drops before reaching the crossing point
with the neutral potential, and then, it crosses or rather
merges with the neutral potential. On top of that, Som-
merfeld et al. [36] argued that the minimum is connected
to the virtual state which mixes with the lower Renner-
Teller component as the molecule bends [37]. Hence, they
suggested that the low-energy scattering off CO2 should
be treated as a coupled nonlocal problem of the 2Σ+

g and
2Πu states. In this paper we present our attempt to con-
struct such a model.

The paper is organized as follows. In Sec. II, we re-
view basic ideas of the nonlocal model for the description
of vibrational excitation by electron impact in the case
of multiple interacting discrete states and several vibra-

tional degrees of freedom. Then, we apply the approach
to the 2Σ+

g and 2Πu states of CO −2 taking into account
all vibrational modes. We show how the D∞h symmetry
of the system restricts the model structure. Section III
represents a preparation stage for the model construction
from ab initio data. We describe there the relation of dia-
batic and adiabatic representations within the model and
the effect of gradual lowering of the molecular symmetry
on fixed-nuclei scattering quantities. In Sec. IV, we first
describe our ab initio fixed-nuclei R-matrix calculations
and then we focus on obtaining model parameters from
these data using a least-squares fitting procedure. The
quality and interpretation of the resulting model is dis-
cussed in Sec. V. Finally, Sec. VI is devoted to numerical
details considering the evaluation of the nonlocal Hamil-
tonian and solution of the dynamics. We conclude in
Sec. VII by summarizing the results and discussing pos-
sible future improvements of the present concept for the
application to other molecular systems.

II. VIBRONIC COUPLING MODEL

The model is based on work by Estrada et al. [15]
who generalized the original vibronic coupling model for
bound states [38] to the case of short-lived states. They
described a polyatomic system with two anionic discrete
states of different symmetries and two vibrational degrees
of freedom. The discrete states were coupled only di-
rectly through a nontotally symmetric vibrational mode
since the coupling with the electronic continuum was con-
sidered independent of vibrational coordinates. Here,
we extend their approach in two ways. The general vi-
bronic coupling scheme in linear molecules as discussed
by Köppel et al. [37] is used for the direct coupling of
three discrete electronic states considering all vibrational
modes of a linear triatomic molecule. Moreover, we apply
the same scheme to the vibronic coupling of the discrete
states with the continuum.

A. General discrete-states-in-continuum model

The key assumption of the model is that vibrational
excitation of a molecule is mediated by a small number
of metastable anionic discrete states that are formed by
the attachment of an incoming electron to the neutral
molecule. The effective Hamiltonian for the dynamics
within the discrete-state space is then derived using the
projection-operator formalism of Feshbach [39].
The electronic Hilbert space of the electron-molecule

system is separated into a discrete-state (or resonant)1

1 Since the discrete states involved in the context of electron-
molecule collisions are not limited to resonances, this term caused
some confusion in the past. We will mostly use the term discrete
state instead of resonance.
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subspace and a background continuum subspace. We de-
fine the projection operator on the discrete-state sub-
space by

Q =
∑︂

d

|d⟩⟨d|, (1)

where d runs over all included discrete states. The com-
plementary operator

P = I − Q, (2)

where I is the identity operator, then projects on the
background continuum part. The discrete states |d⟩ thus
form a basis in the discrete-state part of the electronic
Hilbert space. The basis |ϵµ⟩ of the continuum part is
chosen to diagonalize the fixed-nuclei electronic Hamil-
tonian Hel projected on the background space

PHelP|ϵµ⟩ = [V0 + ϵ]|ϵµ⟩, (3)

where ϵ and µ denote energy and additional quantum
numbers identifying the electronic states in the contin-
uum. As a result, Hel can be formally written as the
following infinite matrix

Hel = V0 I +

⎛
⎜⎜⎜⎜⎝

U Vϵ
. . .

V †ϵ ϵ
. . .

⎞
⎟⎟⎟⎟⎠
, (4)

where V0 is the potential energy surface of the neutral
molecule, U = Q(Hel−V0I)Q is a matrix describing the
discrete-state energies relative to the threshold V0 (diag-
onal elements) and also the direct interaction among the
discrete states (off-diagonal elements), and Vϵ = QHelP
represents the interaction of the discrete states with the
electronic continuum states.

The potential energy V0(q⃗ ) and all matrix elements
Udd′(q⃗ ) = ⟨d|U |d′⟩, V µ

dϵ(q⃗ ) = ⟨d|Vϵ|ϵµ⟩ depend on nu-
clear coordinates q⃗. The vibrational motion is included
into the dynamics by adding the kinetic energy opera-
tor TN for nuclei to Hel. The electronic continuum is
eliminated by the projection-operator formalism of Fesh-
bach [39], which assumes the diabaticity of the full basis
|d⟩, |ϵµ⟩. It means that all sharp features in the depen-
dence on the molecular geometry q⃗ such as resonances or
virtual states have to be eliminated from the continuum
|ϵµ⟩ by the choice of the discrete states. As a consequence
of the diabaticity, the projection operators Q and P com-
mute with the kinetic energy operator TN . Then, the vi-
brational dynamics of the electron-molecule collision pro-
cess is reduced to the electronic discrete-state subspace
Q only. For details we refer the reader to reviews [40, 41]
which treat the system with only one discrete state but
the generalization to more states is straightforward.

The effective Hamiltonian for the vibrational motion
of the molecular anion reads

H = H01 + U + F (E −H0), (5)

whereH0 = TN+V0 is the vibrational Hamiltonian of the
neutral molecule, 1 is the unit operator in the discrete-
state subspace, U is the same matrix as in Eq. (4),
F (E −H0) is the level-shift operator resulting from the
interaction with the continuum, and E denotes total en-
ergy of the system that is conserved during the process.
Throughout this paper, we reserve the symbol E only for
the total energy. Electron energy will be denoted by ϵ.
The elements of the level-shift operator matrix are de-
fined by the integrals

Fdd′(E−H0) =
∑︂

µ

∫︂
V µ
dϵ(E−H0−ϵ+ iη)−1V µ∗

d′ϵdϵ, (6)

where η is a positive infinitesimal. This operator is a
matrix in the discrete-state indices d, d′ and is also a
nonlocal operator in the nuclear coordinates q⃗.
The discrete-state (resonant) contribution to the T ma-

trix for vibrational excitation from the initial vibrational
state νi to the final state νf is given by

Tνfµf←νiµi
= ⟨νf |V µf†

ϵf (E1 −H)−1V µi
ϵi |νi⟩, (7)

where µi and µf denote the initial and final electron par-
tial waves. The initial ϵi and final ϵf electron energies
satisfy the conservation law

E = Eνi
+ ϵi = Eνf

+ ϵf (8)

with internal vibrational energies Eνi
, Eνf

of the neutral
molecule given by H0|ν⟩ = Eν |ν⟩. By solving the vibra-
tional dynamics of the collision we mean the application
of the matrix inversion (E1 −H)−1 on the initial state.
Details are given in Sec. VI, where the integral and dif-
ferential cross sections obtained from the T matrix are
also discussed.

B. Coordinates and states for e + CO2 model

The discussion of the dynamics of the electron-
molecule collision within the framework of the nonlocal
model has been completely general so far. At this point
we introduce details specific for the low-energy e+CO2

collisions.

1. Normal vibrational coordinates

We describe nuclear configurations q⃗ of the molecule
in terms of normal vibrational coordinates q⃗ = {Qi}.
The CO2 molecule is linear and symmetric in its equi-
librium geometry. Thus, it has four vibrational modes:
symmetric stretching, antisymmetric stretching and two-
dimensional bending. We denote the corresponding di-
mensionless normal coordinates by Qg, Qu, Qx and Qy,
respectively, which are defined in accordance with Wit-
teman [42] in Appendix A. It is convenient to describe
bending in terms of complex coordinates Q± = Qx±iQy.
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Moreover, it also becomes useful to use polar bending co-
ordinates (ρ, φ) defined by

Qx = ρ cosφ, Qy = ρ sinφ, (9)

so that Q± = ρe±iφ and ρ2 = Q2
x +Q2

y = Q+Q−.
We prefer to use normal coordinates measured in bohrs

when we compare ab initio data with fixed-nuclei quan-
tities obtained within the model. These coordinates are
denoted by Sg, Su, Sx, and Sy and are also defined in Ap-
pendix A. Finally, we denote the magnitude of bending
by Sb which is defined by S2

b = S2
x + S2

y .

2. Discrete electronic states

As discussed in the introduction, to capture the phe-
nomena in the low-energy electron scattering with CO2

we include both Renner-Teller components of the 2Πu

shape resonance and the 2Σ+
g virtual state of CO −2 in our

discrete-state space. In the following discussion we sim-
plify the notation and use d ∈ {Π+,Σ,Π−} to identify the
individual discrete states. These states are eigenstates of
the projection of the electronic angular momentum oper-
ator on the molecular axis corresponding to eigenvalues
ℏ, 0,−ℏ, respectively. Sometimes it is useful to work with
real Cartesian components Πx, Πy, which are given by

the relations Π± = (Πx ± iΠy)/
√
2.

Note that there is one more state of 2Πg symmetry in
the energy window of interest, which connects to the O−

+ CO dissociative attachment channel [43]. We do not
consider this state for two reasons. First, it would be very
difficult to include the dissociative channel in our calcu-
lation with four vibrational degrees of freedom. Second,
this channel is connected through a conical intersection
that is not much permeable since the magnitude of the
dissociative attachment cross section [44] is at least one
order of magnitude smaller then the vibrational excita-
tion cross section even at high-energy loss [22].

3. Continuum electronic states

In general, the projection operators Q and P defined
by Eqs. (1) and (2) are totally symmetric. The back-
ground scattering problem (3) is therefore solved in the
same symmetry as the original neutral molecule and we
can label the background continuum states according to
the irreducible representations of the D∞h point group.

In order to describe primary features of the e+CO2 dy-
namics, we have to include at least all four components of
s and p electron partial waves. The 2Σ+

g virtual state at
the equilibrium molecular geometry is observed in fixed-
nuclei eigenphases of the Σ+

g symmetry. This includes
partial waves (l,m) for even values of l and m = 0. We
consider only the lowest partial wave of this symmetry,
(l,m) = (0, 0), in our model and we denote the respective
continuum states by |ϵµ⟩ with µ = s. Similarly, the 2Πu

shape resonance at the equilibrium geometry is observed
in the Πu symmetry, which corresponds to partial waves
with odd l and m = ±1. We again limit the model to
the lowest allowed l, that is l = 1, and the continuum
states are denoted by |ϵµ⟩ with µ = p+ and µ = p−.
Finally, we want to describe excitation of one quantum
of asymmetric stretching, which is of the Σ+

u symmetry.
Since the molecule is originally in the totally symmetric
state, the product of representations of the incoming and
outgoing electrons have to contain the Σu representation.
The lowest partial waves allowing for this possibility is
the combination of an s-wave and pz-wave electron, i.e.
(l,m) = (1, 0). Therefore, we include continuum states
|ϵµ⟩ with µ = pz of the Σ+

u symmetry. To summarize, the
continuum coupling matrix Vϵ = {V µ

dϵ} is a 3× 4 matrix
in our model for three values of d ∈ {Π+,Σ,Π−} and
four values of µ ∈ {s, pz, p+, p−}. Once again, we also
sometimes use Cartesian components px, py defined by

the relations p± = (px ± ipy)/
√
2.

C. Symmetry restrictions on U and Vϵ matrices

Up to now, we have considered an arbitrary depen-
dence of the U and Vϵ matrices on the normal coordi-
nates. At the equilibrium geometry, the CO2 molecule
has the symmetry given by the D∞h point group, and
therefore, the full Hamiltonian (4) and consequently also
the effective Hamiltonian (5) and the matrices U and Vϵ
have to be invariant with respect to symmetry operations
of the D∞h group. This imposes strong restrictions on
the possible dependence of individual matrix elements on
the vibrational coordinates.
The discrete state Σ, symmetric stretching coordinate

Qg, and |ϵs⟩ continuum states transform according to the
Σ+

g representation of D∞h, the antisymmetric stretching
coordinate Qu and |ϵpz⟩ continuum states transform as
Σ+

u , and the discrete states Π±, bending coordinates Q±
and |ϵp±⟩ continuum states as Πu. Let us denote ei-
ther states or coordinates that transform according to
the Σ+

g , Σ
+
u , and Πu representations by σg, σu, and π±,

respectively. The rotation Cα by an angle α around the
molecular axis then gives [45]

Cα σg = σg, Cα σu = σu, Cα π± = e±iαπ±. (10)

Similarly, the reflection σvα through the plane that con-
tains the molecular axis (z axis) and is inclined by angle
α with respect to the x axis acts as

σvα σg = σg, σvα σu = σu, σvα π± = e±2iαπ∓, (11)

and finally, under the inversion i the states transform in
the following way

iσg = σg, iσu = −σu, iπ± = −π±. (12)

On top of that, the D∞h group also contains rotations by
180◦ about lines that are perpendicular to the molecular
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axis and improper rotations around the molecular axis,
but we do not need these operations to derive the form
of the U and Vϵ matrices.

We explicitly derive the dependence of the UΠ+Σ =
⟨Π+|U |Σ⟩ element on the normal coordinates. Under the
rotation we get

Cα(|Π+⟩UΠ+Σ⟨Σ|) = eiα|Π+⟩(Cα UΠ+Σ)⟨Σ|. (13)

To compensate the factor exp(iα), the UΠ+Σ element
has to transform as the Q− bending coordinate, that is
UΠ+Σ = λ1Q− where λ1 can be a function of Qg, Qu, and
totally symmetric combination Q+Q− = ρ2. Similarly,
we find out that UΠ−Σ = ⟨Π−|U |Σ⟩ = λ2Q+. Under the
reflection we have

σvα(|Π+⟩UΠ+Σ⟨Σ|) = e−2iα|Π−⟩(σvα UΠ+Σ)⟨Σ|, (14)

which leads to the following condition

e−2iα(σvα UΠ+Σ) = UΠ−Σ, (15)

which implies λ1 = λ2 ≡ λ. Finally, the Q− coordinate
also compensates the sign change under the inversion

i(|Π+⟩UΠ+Σ⟨Σ|) = −|Π+⟩(iUΠ+Σ)⟨Σ|, (16)

hence, the function λ can not depend on odd powers of
Qu. In the end, we have UΠ+Σ = λQ− and UΠ−Σ = λQ+,
where λ is an arbitrary function of totally symmetric
combinations of the normal coordinates, that is, a func-
tion of Qg, Q

2
u, and Q+Q−.

By performing the symmetry analysis for the remain-
ing elements of U , we get

U =

⎛
⎝

Π+ Σ Π−
Π+ EΠ λQ− ξQ2

−
Σ λQ+ EΣ λQ−
Π− ξQ2

+ λQ+ EΠ

⎞
⎠, (17)

where EΠ, EΣ, λ, and ξ are in general arbitrary functions
of Qg, Q

2
u, and ρ2. We are going to discuss a different

basis for the discrete-state subspace in the next section,
thus for clarity, we label the matrix rows and columns
by the corresponding discrete states in Eq. (17) and in
similar expressions that will follow.

The continuum coupling matrix Vϵ depends not only
on the vibrational coordinates but also on electron en-
ergy ϵ. However, the energy dependence does not change
the symmetry properties and we can derive the Vϵ ele-
ments in the same way as for U . We obtain

Vϵ =

⎛
⎝

s pz p+ p−
Π+ vΠsQ− vΠzQ−Qu vΠp wΠpQ

2
−

Σ vΣs vΣzQu vΣpQ+ vΣpQ−
Π− vΠsQ+ vΠzQ+Qu wΠpQ

2
+ vΠp

⎞
⎠, (18)

where vΠs, vΣs, vΠz, vΣz, vΠp, vΣp, and wΠp are again
arbitrary functions of totally symmetric coordinates Qg,
Q2

u, ρ
2 and of the energy ϵ.

The nonlocal potential matrix F (ϵ) can be obtained
directly from Eq. (6). Note that when the E − H0 op-
erator is substituted for the argument of F (ϵ), a spe-
cial attention has to be paid to the evaluation of the
operator since the normal coordinates do not commute
with H0. We return to this problem in Sec. VI but for
the discussion here and in the next section it is suffi-
cient to consider only F (ϵ) with ϵ being a positive real
number (electron energy). This level-shift potential ma-
trix F (ϵ) enters the description of the electron scattering
from the molecule with fixed positions of nuclei. Now,
we can split the integral in Eq. (6) into Hermitian and
anti-Hermitian components using the well-known for-
mula (x + iη)−1 = v.p. x−1 − iπδ(x) from theory of dis-
tributions, where v.p. is the Cauchy principal value and
δ(x) is the Dirac δ distribution, and we get

Fdd′(ϵ) = ∆dd′(ϵ)− (i/2)Γdd′(ϵ), (19a)

Γdd′(ϵ) = 2π
∑︂

µ

V µ
dϵV

µ∗
d′ϵ , (19b)

∆dd′(ϵ) =
v.p.

2π

∫︂
dx

Γdd′(x)

ϵ− x
. (19c)

Then, the nonlocal matrix F is as follows

F (ϵ) =

⎛
⎝

Π+ Σ Π−
Π+ FΠ(ϵ) fΣΠ(ϵ)Q− fΠ(ϵ)Q

2
−

Σ fΣΠ(ϵ)Q+ FΣ(ϵ) fΣΠ(ϵ)Q−
Π− fΠ(ϵ)Q

2
+ fΣΠ(ϵ)Q+ FΠ(ϵ)

⎞
⎠, (20a)

where imaginary parts multiplied by −2 (the widths) of
the FΠ, FΣ, fΣΠ, and fΠ terms are given from Eq. (19b)
by

ΓΠ = 2π(v2Πsρ
2 + v2Πzρ

2Q2
u + v2Πp + w2

Πpρ
4), (20b)

ΓΣ = 2π(v2Σs + v2ΣzQ
2
u + 2v2Σpρ

2), (20c)

γΣΠ = 2π[vΣsvΠs+vΣzvΠzQ
2
u+vΣp(vΠp+wΠpρ

2)], (20d)

γΠ = 2π(v2Πs + v2ΠzQ
2
u + 2vΠpwΠp), (20e)

and real parts are given by the Hilbert transform (19c).
In formulas above we for simplicity assumed that func-
tions vdµ, wΠp are real.

Before we continue to the fixed-nuclei approximation
and static properties of our model, the derived Hamilto-
nian deserves a few comments. Potential energy surfaces
of the Σ and Π± discrete states in the diabatic represen-
tation are given by V0 + EΣ and V0 + EΠ, respectively.
The discrete states are shifted and broadened by the elec-
tronic continuum via the FΣ(ϵ) and FΠ(ϵ) terms, and in
addition, they directly interact with each other via off-
diagonal elements of the matrix U and also indirectly
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through the continuum via off-diagonal elements of F (ϵ).
The mutual interaction of the discrete states vanishes
not only at the equilibrium geometry, which is the conse-
quence of the definition of the diabatic basis we work in,
but also for any linear geometry because the asymmetric
stretching can not change the angular momentum of the
electronic states. The ξ and fΠ(ϵ) terms are responsi-
ble for the Renner-Teller splitting of the shape resonance
upon bending. The λ and fΣΠ(ϵ) terms cause the inter-
action of one Renner-Teller component with the virtual
state as discussed by Sommerfeld et al. [36]. We also see
that the continuum coupling Vϵ (18) is consistent with
our initial discussion in Sec. II B 3, that is, at the equilib-
rium the virtual state is coupled only to the s wave and
the Πu resonance to the p+ and p− (or equivalently to px
and py) waves (p orbitals perpendicular to the molecular
axis). However, when the molecule is bent, the Π states
can interact with the s wave through the vΠs term, which
as we will see is important in understanding of a rather
peculiar behavior of the lower Renner-Teller state [8]. A
deformation of the geometry in Qu is necessary for the
interaction with the pz wave. The mentioned effects will
become more apparent in the fixed-nuclei approximation
discussed in the next section and in the discussion of the
constructed model in Sec V.

III. FIXED-NUCLEI PROBLEM

We obtain the fixed-nuclei Hamiltonian HFN by omit-
ting the kinetic-energy operator TN from Eq. (5)

HFN = V01 + U + F (ϵ), (21)

where the argument ϵ = E − V0 (electron energy) of the
level-shift function F is no longer an operator. It is im-
portant to discuss the electron scattering and eigenen-
ergies of this operator since they will be compared to
ab initio data to fix the unknown functions Ed, λ, ξ,
vdµ, wΠp in the model. While the whole vibronic dy-
namics of our problem respects the full D∞h symme-
try, the symmetry of the fixed-nuclei problem is low-
ered by deformations of the geometry. The full sym-
metry is preserved for deformations by pure symmet-
ric stretch q⃗ = (Qg, 0, 0, 0). The addition of the asym-
metric stretch q⃗ = (Qg, Qu, 0, 0) removes the symmetry
plane perpendicular to the molecular z axis and reduces
the symmetry to C∞v, while pure bending deformations
q⃗ = (Qg, 0, Qx, Qy) remove the rotational axis and re-
stricts the symmetry to C2v. The molecule deformed in
all directions q⃗ = (Qg, Qu, Qx, Qy) still has one nontriv-
ial symmetry element (reflection through the molecular
plane), i.e. Cs symmetry group. Depending on the ge-
ometry the matrix of the fixed-nuclei Hamiltonian (21)
changes its form. As discussed above the matrix is diag-
onal in the linear D∞h and C∞v cases. The structure of
the matrix is not completely general even if the molecule
is bent. To see this we have to transform the discrete

states to obtain a symmetry-adapted basis, which is the
same for both the C2v and Cs cases.

A. Transformation to symmetry-adapted basis for
deformed geometries

In bent geometries the molecular plane is given by the
z axis and the line pointing in the direction of the bend-
ing vector (Qx, Qy, 0) ∼ (cosφ, sinφ, 0). The symmetry-
adapted components Π and Π⊥ of the 2Πu resonance
are obtained by rotating the Cartesian components Πx,
Πy around the z axis by angle φ:

Π = cosφΠx + sinφΠy, (22a)

Π⊥ = − sinφΠx + cosφΠy. (22b)

By expressing Π and Π⊥ in terms of Π±, we get

Π = (e−iφΠ+ + eiφΠ−)/
√
2, (23a)

Π⊥ = (e−iφΠ+ − eiφΠ−)/
√
2. (23b)

Similarly, (e−iφ|ϵp+⟩ ± eiφ|ϵp−⟩)/
√
2 give the continuum

electron partial waves |ϵp ⟩ and |ϵp⊥⟩ adapted to the C2v

and Cs symmetries.
When Qu = 0, the in-plane component Π transforms

according to the same A1 representation of the C2v group
as the Σ virtual state. On the other hand, the Π⊥ state,
which is perpendicular to the molecular plane, transforms
according to the B1 representation. Using these new
basis states the Hamiltonian HFN (21) splits into two
blocks. A 2×2 block that consists of the Σ and Π states
and a 1×1 block for the Π⊥ state. The same structure
is obtained in the general Cs case. The Σ and Π states
transform according to the same A′ representation and
lead to a 2×2 block in HFN, while Π⊥ transforms ac-
cording to the A′′ representation giving a 1×1 block. We
performed all ab initio calculations discussed later in the
Cs group, therefore, we use the nomenclature of the Cs

group for the decoupled problems even in the C2v case.
The same reasoning can be applied to the 3×4 discrete-
state-continuum coupling matrix Vϵ. It splits into a 1×1
component V A′′

ϵ that couples the Π⊥ state to the p⊥ par-

tial wave and a 2×3 block V A′
ϵ that couples the Σ, Π

discrete states to the s, pz and p partial waves.
For the A′′ block describing the upper Renner-Teller

component we have

HA′′ = V0 + UA′′ + FA′′(ϵ) (24a)

with

UA′′ = EΠ − ξρ2, (24b)

FA′′(ϵ) = FΠ(ϵ)− fΠ(ϵ)ρ
2. (24c)
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Alternatively, we can calculate the nonlocal potential
FA′′(ϵ) using Eq. (19) with the coupling amplitude

V A′′
ϵ = vΠp − wΠpρ

2. (25)

For the A′ problem comprising of the virtual state in-
teracting with the lower Renner-Teller component the
Hamiltonian reads

HA′ = V012 + UA′ + FA′(ϵ), (26a)

where 12 is the 2×2 unit matrix and

UA′ =

(︃ Σ Π

Σ EΣ

√
2λρ

Π
√
2λρ EΠ + ξρ2

)︃
, (26b)

FA′(ϵ) =

(︃ Σ Π

Σ FΣ(ϵ)
√
2fΣΠ(ϵ)ρ

Π
√
2fΣΠ(ϵ)ρ FΠ(ϵ) + fΠ(ϵ)ρ

2

)︃
, (26c)

In this case, the coupling amplitudes are given by

V A′
ϵ =

(︃ s pz p

Σ vΣs vΣzQu

√
2vΣpρ

Π
√
2vΠsρ

√
2vΠzρQu vΠp + wΠpρ

2

)︃
. (27)

The results of this section are important for the under-
standing of a very different behavior of the two Renner-
Teller components upon bending of the CO2 molecule [9].
Let us repeat that the originally degenerate 2Πu reso-
nance splits into 2A1 and

2B1 states (in the nomenclature
of the C2v group) as the molecule bends, which are de-
scribed within our model by the diabatic discrete states
Π and Π⊥, respectively. The 2A1 state (Π ) is totally
symmetric which has two consequences. First, it couples
to the electronic s-wave continuum through the vΠs term
in the nonlocal potential FΠ(ϵ)+ fΠ(ϵ)ρ

2, see Eqs. (26c),
(20b), and (20e). Second, it can also interact with the
virtual state Σ either directly through λ, see Eq. (26b),
or indirectly through the electronic continuum via the
fΣΠ(ϵ) nonlocal potential, see Eqs. (26c) and (20d). On
the other hand, the 2B1 (Π⊥) state is not totally sym-
metric, and thus, it interacts only with the p⊥ continuum
in the nonlocal potential FΠ(ϵ)− fΠ(ϵ)ρ2, see Eqs. (24c),
(20b) and (20e). The low-energy dependence of the res-
onance width for s and p waves is fundamentally differ-
ent [46] but we return to this problem in Sec. V.

In the end, we should emphasize that the splitting of
the Hamiltonian into the 1×1 and 2×2 blocks occurs only
in the fixed-nuclei limit. In the vibronic dynamics the
change of the symmetry of the electronic states is com-
pensated by the respective change of the symmetry of
the vibrational wave function. The dynamics is truly a
three-state problem. Similarly, the fixed-nuclei problem
depends only on ρ and not on φ, which is hidden in the
basis definition, but the dynamics takes place in the full
four-dimensional vibrational space.

B. Eigenphase sums

The fixed-nuclei eigenphase sums for each irreducible
representation of the symmetry group are decomposed to
background and discrete-state (resonant) contributions

δ(ϵ) = δbg(ϵ) + δdisc(ϵ). (28)

The background is assumed to be a slowly varying func-
tion in both electron energy and nuclear coordinates.
The discrete-state term in the case of one discrete

state, as we have in the A′′ symmetry, is given by the
generalized Breit-Wigner formula [41]

δµdisc(ϵ) = − arctan

(︃
Γµ(ϵ)/2

ϵ− Uµ −∆µ(ϵ)

)︃
(29a)

with

∆µ(ϵ) = Re[Fµ(ϵ)], (29b)

Γµ(ϵ) = −2 Im[Fµ(ϵ)], (29c)

where for the irreducible representation µ = A′′ the UA′′

and FA′′ terms are given by Eqs. (24b) and (24c). The
same formula can be used for linear geometries (both
D∞h and C∞v cases) where the operator HFN consists
only of the diagonal 1×1 blocks corresponding to Σ+

g and
Πu irreducible representations. In these cases we substi-
tute Uµ = EΣ and Fµ = FΣ for µ = Σ+

g and Uµ = EΠ

and Fµ = FΠ for µ = Πu, see Eqs. (17) and (20).
In the case of the A′ symmetry, there are two nontrivial

discrete-state eigenphases. Their sum δA
′

disc can be com-
puted using the following formula derived in Appendix B:

exp[2iδA
′

disc(ϵ)] =
(ϵ− a∗)(ϵ− b∗)− c2∗

(ϵ− a)(ϵ− b)− c2
, (30)

where a = ⟨Σ|UA′ +FA′(ϵ)|Σ⟩, b = ⟨Π |UA′ +FA′(ϵ)|Π ⟩,
c = ⟨Σ|UA′ + FA′(ϵ)|Π ⟩.

C. Adiabatic potential energy surfaces

Up to this point we have worked in the diabatic rep-
resentation. To obtain adiabatic potential energy sur-
faces we need to diagonalize the fixed-nuclei Hamilto-
nian HFN (21). We have already partially diagonalized
HFN by transforming it to the symmetry-adapted ba-
sis, and thus, the adiabatic surface of the A′′ state is
directly given by Eq. (24). However, this quantity still
parametrically depends on the electron energy ϵ, which
has to be replaced by a function in the vibrational co-
ordinates ϵdisc(q⃗ ). For a narrow resonance, the position
of the anionic state can be determined from K-matrix
poles [41, 47], however, as far as broad resonances or
virtual states are concerned, the position should be de-
fined via S-matrix poles [41], that is, by finding ϵdisc =
ER − (i/2)ΓR as a complex selfconsistent solution of

ϵdisc − Uµ −∆µ(ϵdisc) + (i/2)Γµ(ϵdisc) = 0 (31)
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for each geometry. Then, the adiabatic surface is

V µ
adiab = V0 + ER − (i/2)ΓR. (32)

Not only for the A′′ problem but also in linear geome-
tries we can use the approach just described. In the case
of the A′ adiabatic surfaces, we have to first diagonalize
the 2×2 Hamiltonian HA′ (26). Its eigenvalues are

V±(ϵ) = V0 + [ẼΣ(ϵ) + ẼΠ(ϵ)]/2

±(1/2)

√︂
[ẼΣ(ϵ)− ẼΠ(ϵ)]2 + 4λ̃(ϵ)2 (33a)

with

ẼΣ(ϵ) = EΣ + FΣ(ϵ), (33b)

ẼΠ(ϵ) = EΠ + FΠ(ϵ) + [ξ + fΠ(ϵ)]ρ
2, (33c)

λ̃(ϵ) =
√
2[λ+ fΣΠ(ϵ)]ρ. (33d)

Note that ẼΣ, ẼΠ, and λ̃ defined above are identical with
the constants a, b and c in Eq. (30). Complex solutions ϵ
of V±(ϵ) = ϵ give the position of S-matrix poles since
they correspond to zeros of the denominator of Eq. (30)
in the complex plane.

Locating the S-matrix poles requires to analytically
continue the nonlocal potential for complex-valued mo-
menta, see Appendix B of Berman et al. [48]. To solve the
implicit equations we used Python package cxroots [49]
that implements methods for finding roots of complex an-
alytical functions described by Kravanja and Barel [50].
The calculation can be simplified when we are interested
only in the position of the bound anionic states. Then,
the imaginary parts in formulas above vanish and we can
solve the equations for real (and negative) values of ϵdisc
by the bisection method.

IV. MODEL CONSTRUCTION FROM
AB INITIO DATA

In this section, we determine the model parameters
from ab initio data. Up to now, we have considered the
functions that define the matrix elements of the effective
Hamiltonian (5) to be arbitrary functions of totally sym-
metric combinations of the normal coordinates. Because
computational demands of solving the four-dimensional
and nonlocal vibronic dynamics are high, we had to make
several simplifications which influenced the parametriza-
tion of the model functions. As we discuss in Sec. VI, by
expressing the vibrational part of the anionic wave func-
tion in a suitable basis, we can rewrite the Schrödinger
equation as a system of linear equations. If the Hamil-
tonian is represented by a sparse matrix, then the lin-
ear system can be effectively solved by iterative meth-
ods based on Krylov subspaces. By limiting the de-
scription of the neutral molecule only to the harmonic

approximation, we can effectively evaluate the nonlocal
potential F (E −H0) in a four-dimensional oscillator ba-
sis. Note that the evaluation of F (E − H0) is the most
time-consuming step of the calculation. In addition, by
restricting the model functions to low-order polynomials
in the vibrational coordinates, the Hamiltonian matrix is
sparse in the oscillator basis.
The harmonic approximation for the neutral molecule

is rather limiting. First, it does not allow for the descrip-
tion of the Fermi resonance which couples nearly degen-
erate vibrational states of CO2 [45]. Second, we will see
that it is not sufficient for a good quantitative descrip-
tion of the potentials in symmetric stretching. Therefore,
our goal is to study qualitative features of the multidi-
mensional and nonlocal vibronic dynamics of the e+CO2

system. We start the model construction by discussing
our ab initio calculations.

A. Ab initio data

With the above mentioned goal of our work in mind,
we approximated the ground electronic state of CO2

only within the Hartree-Fock approximation with the cc-
pVTZ basis [51]. This target description was used as
a starting point for fixed-nuclei scattering calculations
which were performed using the R-matrix method [52]
implemented in the UKRmol+ suite of codes [53]. As
a scattering model we chose a static-exchange plus po-
larization (SEP) model [52] in which one of target va-
lence electrons and an incoming electron are allowed
to occupy several lowest unoccupied orbitals above the
highest-occupied molecular orbital which are called vir-
tual orbitals. The number of used virtual orbitals in the
final scattering SEP calculations was chosen in such a
way to reproduce approximately the autodetachment re-
gion for symmetric stretch as was obtained by Sommer-
feld et al. [36].
We tried several models with 10–20 virtual orbitals and

optimal results for symmetric stretch were obtained for
18 virtual orbitals. The L2 configurations [52] used in
the final SEP model were of the type

(core)6(valence)16(virtual)1 (34)

and

(core)6(valence)15(virtual)2. (35)

Thus, 3 lowest (core) molecular orbitals were kept frozen
and one of valence electrons from other 8 occupied or-
bitals was allowed to excite to one of 18 virtual orbitals
to take into account polarization of the target. The R-
matrix sphere radius was set to 13 bohrs which was suf-
ficient for the SEP scattering calculations (all used tar-
get orbitals were well-contained in the R-matrix sphere).
The same model was also used to calculated energies of
the anionic states in the regions where these states are
bound to have additional information for construction of
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Construction of the model from ab initio data

Fitting procedure in A′′ symmetry

Fitting procedure in A′ symmetry

Start with A′′ symmetry

I) Fit the model to ab initio eigenphase sums by gradual
lowering of the molecular symmetry for several values of
symmetric stretch Qg separately:
• start with Qg = 0,
• for the next Qg use the obtained parameters from the

previous Qg as the initial guess and keep β parameters
fixed.

II) Now, we have a dependence of each parameter on Qg

(except for βs, which are kept constant). Approximate
these dependencies by low-order polynomials.

III) Refine the polynomial coefficients and βs by repeating
the fitting procedure for all the values of Qg at the same
time.

Repeat the process for A′ symmetry.
Parameters E0

Π, E2u
Π , v0

Πp, and v2u
Πp are

already determined from the A′′ sym.

Molecular symmetry Obtained parameters

D∞h E0
Π, v0

Πp, abg, bbg

C∞v E2u
Π , v2u

Πp, b
2u
bg

C2v E2b
Π −g, E4b

Π −κ, v2b
Πp−wΠp, b

2b
bg

Molecular symmetry Obtained parameters

D∞h E0
Σ, v0

Σs, cbg, dbg

C∞v E2u
Σ , E4u

Σ , v2u
Σs, vΣz , c

2u
bg , d

2u
bg

+ potential data for 12A1 state

C2v
E2b

Σ , E4b
Σ , E2b

Π + g, E4b
Π +κ, v2b

Σs,

v2b
Πp + wΠp, vΣp, v

0
Πs, c

1b
bg, d

1b
bg

Cs E4bu
Σ , v2u

Πs, vΠz , d
3bu
bg

+ potential data for 12A1 state

C∞v, C2v , Cs
all parameters for these
geometries from above

FIG. 1. Illustration of the construction of the model from ab initio R-matrix eigenphase sums and potential energies.

the model for the nuclear dynamics. We performed the
above described fixed-nuclei calculations for more than
2000 nuclear configurations around the equilibrium ge-
ometry of CO2 varying all three normal coordinates.

B. Parametrization of the model functions

Our model is determined if we know twelve functions
V0, Ed, λ, ξ, vdµ, wΠp of totally symmetric combinations
of the normal coordinates, i.e. the potential energy sur-
face of the neutral molecule and the functions entering
the matrices U and Vϵ. Considering the simplifications
discussed at the beginning of this section, we use

V0 =
1

2
ωgQ

2
g +

1

2
ωbρ

2 +
1

2
ωuQ

2
u, (36)

where ωg, ωb, and ωu are vibrational angular frequen-
cies of symmetric stretching, bending and asymmetric
stretching of CO2, respectively. We specify their numer-
ical values based on our quantum chemical calculations
later. The other model functions were chosen as low-
order polynomials in Qg, Q

2
u, and ρ

2 and the number of
terms in each polynomial was carefully chosen to get a
reasonable agreement with the ab initio data. We explic-
itly show only the expansion of the functions into Q2

u and
ρ2. The remaining parameters are polynomials in Qg up
to the fourth order.

The parameters EΠ and EΣ on the diagonal of the
matrix U , see Eq. (17), are the most important. They
describe the energy of the discrete states relative to the
threshold V0. Thus, we included more terms than in
other cases and we have

EΠ = E0
Π + E2b

Π ρ
2 + E2u

Π Q2
u + E4b

Π ρ
4, (37)

EΣ = E0
Σ + E2b

Σ ρ
2 + E2u

Σ Q2
u + E4b

Σ ρ
4

+E4u
Σ Q4

u + E4bu
Σ ρ2Q2

u. (38)

In the case of the Renner-Teller coupling ξ, which is mul-
tiplied by Q2

± in the matrix U , we added one extra term
in bending

ξ = g + κρ2. (39)

The ΣΠ coupling λ is assumed to be only a polynomial
in Qg.
In the case of the continuum coupling Vϵ given by

Eq. (18), we parametrized the coupling between the Π±
discrete states and the p± partial waves in the following
way

vΠp = v0Πp + v2bΠpρ
2 + v2uΠpQ

2
u (40)

and similarly for the coupling of the Σ discrete state to
the s wave

vΣs = v0Σs + v2bΣsρ
2 + v2uΣsQ

2
u. (41)
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FIG. 2. Eigenphase sums in the A′′ symmetry; solid lines, model; dashed lines, R-matrix data. Panel (a): symmetrically
stretched geometries for Sb = 0, Su = 0, and Sg = −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, and 0.8 bohrs (from right to left).
Panel (b): bent geometries for Sg = 0, Su = 0, and Sb = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 bohrs (from right to left). Panel (c):
asymmetrically stretched geometries for Sg = 0, Sb = 0, and Su = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 bohrs (from left to right).
Panel (d): bent and asymmetrically stretched geometries for Sg = 0, Su = 0.2, and Sb = 0.2, 0.4, and 0.6 bohrs (from right to
left).

We can expect that these terms are going to be the most
important since only these couplings are non-zero at the
equilibrium geometry and the incoming electron is cap-
tured to the CO2 molecule in its ground vibrational state.
For the coupling of the Π± states to the s wave, we used

vΠs = v0Πs + v2uΠsQ
2
u. (42)

The remaining terms

vΣz, vΣp, vΠz, wΠp (43)

are assumed to be only polynomials in Qg.
The continuum coupling terms depend not only on

the normal coordinates but primarily on electron en-
ergy. Each coefficient in Eqs. (40)–(43) is independently
parametrized by the Wigner threshold law [46] multiplied
by an exponential cut-off function [41]

v(ϵ) = a(βϵ)(2l+1)/4e−βϵ, (44)

where l = 0 for the s-wave coupling, l = 1 for pz or
p± waves, a is a polynomial in Qg, and β is a constant.
Using the parametrization above, we can calculate the
integral that appears in the shift operator ∆dd′(ϵ) (19c) in
terms of the incomplete Gamma function and confluent
hypergeometric function, see Eq. (24) in Ref. [54]. By
considering the threshold exponent (2l + 1)/4 and the
β parameter constant, v(ϵ) is separable in the energy

and normal coordinates which simplifies the evaluation
of F (E −H0). However, a constant threshold exponent
prevents the description of a geometry-dependent dipole
moment [55]. The CO2 molecule does not possess any
dipole moment in its equilibrium geometry but it acquires
one in bent or asymmetrically stretched geometries. This
deficiency of our model may be important especially in
the threshold region.

Finally, we used the following parametrization of the
background eigenphase sums

δA
′′

bg (ϵ) = abgϵ+ bbg + b2bbgρ
2 + b2ubgQ

2
u, (45)

δA
′

bg (ϵ) = (cbg + c1bbgρ+ c2ubgQ
2
u)ϵ+ dbg

+d1bbgρ+ d2ubgQ
2
u + d3bubg ρQ

2
u (46)

in fitting the ab initio fixed nuclei data.

C. Fitting procedure

In the case of the neutral potential V0, our original idea
was to use experimental values of the vibrational frequen-
cies, which are [56] ωexp

b = 83.3 meV, ωexp
g = 167.5 meV,

and ωexp
u = 297.1 meV. However, we found that the

description of the neutral molecule within our R-matrix
model is not ideal in comparison with the spectroscopic
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FIG. 3. Eigenphase sums in the A′ symmetry; solid lines, model; dashed lines, R-matrix data. Panel (a): symmetrically
stretched geometries for Sb = 0, Su = 0, and Sg = −0.2, 0.0, 0.2, 0.4, 0.6, and 0.8 bohrs (from right to left). Panel (b):
bent geometries for Sg = 0, Su = 0, and for Sb from 0.0 to 0.45 bohrs with step 0.05 bohrs (from right to left). Panel (c):
asymmetrically stretched geometries for Sg = 0, Sb = 0, and Su = 0.0, 0.1, 0.2, 0.3, and 0.4 bohrs (from left to right). The
inset shows a detail of the threshold region. Panel (d): bent and asymmetrically stretched geometries for Sg = 0, values of Sb

and Su are in the figure.

data. In order to have the consistent description of the
potentials and eigenphase sums, we decided to deter-
mine the vibrational frequencies by fitting the quadratic
form to the potential energies of the CO2 target ob-
tained within the R-matrix scattering calculations, see
Sec. IVA. The fit of the data close to the equilibrium
geometry provided ωb = 110 meV and ωu = 308 meV.
The agreement on the asymmetric stretching is reason-
able but the bending frequency in our model is about
30 % higher than the experimental value. In the case of
the symmetric stretching we obtained 196 meV from the
fit but we decided to use ωg = 2ωb = 220 meV instead
to preserve the ωexp

b /ωexp
g ratio important for the Fermi

resonance [45].
We determined numerical values of the model func-

tions Ed, λ, ξ, vdµ, wΠp by a least-squares fit to the ab
initio eigenphase sums and potential energy surfaces for
electron energies up to about 5 eV relative to the mini-
mum of the neutral potential. Although the number of
parameters is large, the splitting into the A′ and A′′ sym-
metries and gradual lowering of the molecular symmetry
make the fitting feasible because only subsets of param-
eters contribute at different molecular symmetries.
The construction process illustrated in Fig. 1 has three

main steps. In step I, we performed separate fits to the
R-matrix eigenphase sums in the A′′ symmetry for sym-
metric stretches Sg ∈ {0.0,±0.2,±0.4, 0.6} bohrs. The
fitting was divided into the D∞h, C∞v, and C2v symme-

tries as it is indicated in the top right-hand part of Fig. 1,
where the sequence in which the parameters are obtained
is also shown. We did not consider Cs geometries in the
A′′ case since there are no parameters appearing exclu-
sively in this symmetry and the prediction of the model
constructed in other symmetries was good enough. For
each symmetry we included the eigenphase sums for sev-
eral geometries at the same time. The A′′ results depend
on E2b

Π − g, that is we can not obtain values for the in-
dividual terms E2b

Π and g. On the other hand, the A′

results depend on their sum, therefore, we can obtain
values of E2b

Π and g afterwards. We dealt with E4b
Π , κ,

v2bΠp, and wΠp in the same way.
The result of step I is the Sg-dependence of the pa-

rameters given by series of six values. We approximated
them by polynomials up to the fourth order in step II. We
performed the fitting procedure from step I once again
to improve the polynomial coefficients and the β param-
eters in step III, but this time we included data for all
the values of Sg at the same moment. We did not include
the position of the 2B1 state where it is bound since its
energy in this region is too high.
We repeated the three steps for the A′ symmetry. The

fitting procedure is more elaborate, see bottom right-
hand part of Fig. 1, because there are two A′ states. We
included the R-matrix position of the 1 2A1 bound state
in the fitting of the C2v symmetry. We also performed a
fit of Cs geometries since there are parameters that ap-
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pear exclusively for these configurations in this case. The
model constructed from these fits did not reproduce the
eigenphase sums sufficiently well. To improve the agree-
ment further, we performed one more fit where we varied
all parameters that depend either on bending or asym-
metric stretch for the C∞v, C2v, and Cs geometries used
in the previous fits.

We list the resulting values of all parameters in Ap-
pendix C. A comparison of the ab initio eigenphase
sums of the A′′ symmetry with their reproduction by
our model is shown in Fig. 2 for a selected set of geome-
tries. The moderately wide resonance corresponds to the
2A′′ Renner-Teller component of the 2Πu shape resonance
(2B1 in the C2v nomenclature). It moves closer to the
threshold and its width decreases as the molecule sym-
metrically stretches and it eventually becomes bound, see
Fig. 2a. Although the eigenphase sums for Sg = −0.6
and 0.8 bohrs were not included into the fitting process,
the agreement with the R-matrix data is very good even
for these geometries. The resonance also becomes bound
upon bending, see Fig. 2b. Note that upon change of Sb,
the angle changes simultaneously with the bond length.
This does not allow for the direct comparison with eigen-
phase sums of Morgan [21]. However, our results are in
agreement with hers when recalculated for varying only
the bending angle. Our model reproduces the resonance
position well but there is some disagreement in its width.
The width is described by the v2bΠp−wΠp parameter, which

depends on ρ2. Adding another term of the fourth order
in ρ did not significantly improved the agreement and we
were reluctant to increase the complexity of the model
even more with regard to the feasibility of the dynam-
ics. For asymmetric stretches the resonance moves fur-
ther from the threshold, see Fig. 2c, and finally, Fig. 2d
shows the data for general, both bent and asymmetrically
stretched, geometries. The results shown in Fig. 2d are
solely predictions of the model since the Cs geometries
were not included to the fitting process.

Figure 3 shows the A′ model eigenphase sums in com-
parison with the R-matrix data. The Renner-Teller
states are degenerate for symmetrically stretched ge-
ometries, thus, the eigenphase sums exhibit the same
resonance behavior as in the A′′ symmetry, compare
Fig. 3a with Fig. 2a. The virtual state manifests itself
in the behavior near the threshold and it also becomes
bound for Sg between 0.6 and 0.8 bohrs. The data for
Sg = 0.8 bohrs were not included into the fitting pro-
cedure again, but the agreement is still reasonable. A
dramatically different behavior of the A′ Renner-Teller
component in contrast to the A′′ component is observed
upon bending, see Fig. 3b. The A′ state moves towards
the threshold and its width is substantially increased,
which agrees with Morgan [21]. For Sb > 0.35 bohrs the
state becomes so wide that it is not observable in the
eigenphases any more. Moreover, the threshold region
and the resonance are not separated as for pure symmet-
ric stretches since the states interact with each other.

For asymmetric stretches the model is not able to re-

produce the low-energy behavior well, see Fig. 3c. The
CO2 molecule acquires a dipole moment which becomes
supercritical for Su > 0.22 bohrs. As a result, the eigen-
phase sums logarithmically diverge at the threshold for
these geometries [57]. The threshold behavior is con-
trolled by the threshold exponent that becomes geome-
try dependent [55] and vanishes at the critical value of
the dipole moment. Such behavior is not reflected in our
model where the threshold exponent is given by the pure
s and p-wave behavior, see Eq. (44). In addition, the fact
that the exponential parameters β in Eq. (44) are kept in-
dependent of the vibrational coordinates reduces the flex-
ibility of the model as well. We expect that this model
limitation will influence the low-energy behavior of the
cross sections. The CO2 molecule also acquires a dipole
moment upon bending but it becomes critical for very
large deviations (Sb = 1.0 bohrs) from the equilibrium
geometries. Finally, the agreement for geometries that
are simultaneously bent and asymmetrically stretched is
reasonable, see Fig. 3d.
We showed only the comparison of the R-matrix and

model eigenphase sums for a relatively small subset of
calculated geometries. In total, R-matrix data for about
400 geometries were used to construct the model, which
overall reproduces the data well.

V. DISCUSSION OF THE RESULTING MODEL

The fitting process described above is ambiguous in
determination of the parameters. Since the model con-
struction involves nonlinear least-squares fits with many
parameters, we have no guarantee that the resulting pa-
rameters correspond to the global minimum of the least-
squares cost function. Furthermore, the cost function
itself is sensitive to the exact data set (energy and ge-
ometry ranges) included in the fitting procedure and the
relative importance of different subsets of data (differ-
ent symmetries, eigenphase sums versus potentials) is
not clearly given. We therefore constructed a second
model that reproduces the ab initio data with a simi-
lar accuracy as the model with the parameters listed in
Appendix C. Although some parameters of the second
model differ quite considerably (about up to a factor of
5), the dynamics based on these two models lead to simi-
lar electron energy-loss spectra which will be discussed in
a follow-up to this paper. In what follows we discuss the
properties of the first model. The behavior of the second
model is qualitatively the same.

A. Adiabatic potentials

Cuts through the model adiabatic potential energy sur-
faces calculated from the S-matrix poles as described in
Sec. III C are shown in Fig. 4. Potential energies V with
a nonzero imaginary part −Γ/2 are plotted as shaded
areas between V ± Γ/2. There is no resonance width as-
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FIG. 4. Adiabatic potential energy curves of CO2 and CO −
2 within our model; solid lines, geometries where states are bound;

dashed lines, geometries where states are not bound. The shaded areas represent the resonance width of the Renner-Teller
states. Panel (a): symmetric stretching geometries Sg, Sb = 0, Su = 0. Panel (b): bending geometries Sb, Sg = 0, Su = 0.
Panel (c): asymmetric stretching geometries Su, Sg = 0, Sb = 0.

sociated with the virtual state since the corresponding
S-matrix poles are located on the negative real axis on
the unphysical sheet in the energy complex plane [58]. In
Fig. 4, we indicate geometries where the anionic states
are not bound by dashed lines. The picture in linear ge-
ometries is rather simple since the degenerate 2Πu shape
resonance and the Σ+

g virtual state do not interact with
each other. The shape resonance becomes bound first
at symmetric stretch Sg = 0.7 bohrs, which corresponds
to the C–O distance RCO = 2.55 bohrs, and the virtual
state merges with the neutral potential at Sg = 0.8 bohrs
(RCO = 2.6 bohrs), see Fig 4a. In the case of the asym-
metric stretching, the shape resonance is in the contin-
uum for all relevant geometries, see Fig 4c. The R-
matrix calculations do not show that the virtual state
should become bound at any asymmetric stretch, how-
ever, it becomes very weakly bound for Su > 0.37 bohrs

(R
(1)
CO < 1.83 bohrs and R

(2)
CO > 2.57 bohrs) in our model.

The disagreement is caused by the absence of the dipole
moment induced by deformation of the molecule in our
model as discussed in Sec. IVB.

The situation is very interesting upon bending of the
molecule, see Fig. 4b. The upper Renner-Teller com-
ponent 2B1 is not much affected by the bending and it
becomes bound at Sb = 1.25 bohrs (RCO = 2.53 bohrs
and the O–C–O angle ∡OCO = 121◦). On the other
hand, the lower component 2 2A1 quickly moves to the
threshold and its width rapidly increases. The vir-
tual state becomes bound at Sb = 0.45 bohrs (RCO =
2.24 bohrs, ∡OCO = 157◦) and posseses a minimum at
Sb = 0.83 bohrs (RCO = 2.35 bohrs, ∡OCO = 139◦),
which is in good agreement with Sommerfeld et al. [36].
The lower Renner-Teller component gets very close to
the virtual state 1 2A1 and also crosses the neutral curve,
however, it does not become bound. This behavior is
more easily understandable in terms of the movement
of the S-matrix poles shown in Fig. 5. The pole rep-
resenting the virtual state is located at k = −0.3i a.u.
at the equilibrium geometry of CO2, which quite differs
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FIG. 5. Movement of S-matrix poles of the CO −
2 states in

(a) momentum and (b) energy complex planes upon bending
(Sg = 0, Su = 0). The bending normal coordinate Sb in-
creases from the equilibrium geometry in the direction of the
arrows. Selected geometries Sb are labeled by the numbers.
Pluses, 2 2A1 Renner-Teller state; crosses, 2B1 Renner-Teller
state; circles, 1 2A1 virtual state.

from values k = −0.16i and −0.2i reported by Moris-
son [19] and Morgan [21], respectively. The pole moves
along the imaginary axis up as Sb increases and it be-
comes a bound state at Sb = 0.45 bohrs. The poles
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representing the Renner-Teller components coincide at
the equilibrium geometry at k = (0.507 − 0.007i) a.u.
The 2B1 component moves closer to the origin and it
becomes bound at Sb = 0.7 bohrs while the 2 2A1 com-
ponent rapidly moves further away from the real axis. It
gets on the imaginary axis for geometries Sb > 1.0 bohrs
where two poles emerge. One of them moves down along
the imaginary axis and the other up and becomes bound
for Sb > 1.5 bohrs. However, the 2 2A1 state is not con-
trolled well in the fitting procedure for Sb ≳ 0.35 bohrs
because the state is so wide that it does not manifest it-
self in the eigenphase sums, see Fig. 3b. Therefore, we
expect that the behavior for highly-bent configurations
is the result of extrapolation of the model and probably
is not physically relevant, see below.

When we plot the poles in the energy complex plane,
see Fig. 5b, the 2 2A1 poles have a negative real part,
which is measured relative to the threshold, for large val-
ues of Sb. Thus, the potential energy surface crosses the
neutral surface V0 but it does not become a true bound
state. In fact, the state is so far away in the complex
plane that it should not probably be called a resonance
any more and its position is not well defined. For clarity,
we do not show the 1 2A1 poles in Fig. 5b. They move
on the negative real axis on the unphysical sheet towards
the origin where they emerge on the physical sheet.

In reality, the 1 2A1 state is affected by the dipole mo-
ment acquired upon bending [59], which is not included
in our model, and the corresponding pole moves along
a parabolic trajectory as shown in the R-matrix calcula-
tions of Morgan [21]. Nevertheless, the avoided crossing
of the 1 2A1 and 2 2A1 states within our model is in agree-
ment with findings of Sommerfeld et al. [35, 36], see also
our discussion in the introduction.

In Fig. 6, we compare our potentials (solid lines) with
the ab initio model of McCurdy et al. [9] (dashed lines),
who treated the nuclear dynamics of both the Renner-
Teller components upon symmetric stretching and bend-
ing in the LCP approximation. In fact, their 2 2A1 surface
was constructed in the earlier work by Rescigno et al. [8].
Unfortunately, they do not report their neutral potential
and we suspect that there is an inconsistency in the def-
inition of the bend angle throughout Refs. [8, 9], where
potential plots state that the data are shown with respect
to the bend angle θ = π −∡OCO but then the potential
minimum corresponds to ∡OCO = 152◦ which is in a dis-
agreement with other works [30, 31, 35, 36] which place
the minimum at 135–140◦. This notable difference is not
discussed in Refs. [8, 9], and thus, we believe that their
data are actually shown with respect to θ/2 since then
the minimum is at 134◦ and it is consistent with their
definition of normal coordinates, see Sec. III in Ref. [8].
We took this into considerations when we plotted their
potentials with respect to our bending normal coordi-
nate Sb in Fig. 6. The width of the 2B1 state in our
model is somewhat smaller because of our imperfect fit,
see Fig. 2b, but the position agrees very well. Since the
model of McCurdy et al. [9] does not include the vir-
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FIG. 6. (a) Real parts and (b) widths of the adiabatic po-
tential energy curves upon bending (Sg = 0, Su = 0) for the
1 2A1 virtual state and 2 2A1 and 2B1 Renner-Teller compo-
nents of the 2Πu resonance. Solid lines, our model; dashed
lines, model of McCurdy et al. [9]; crosses, our R-matrix data
for positions of bound states. The 2B1 resonance width in
Panel (b) is multiplied by factor 5.

tual state, the potential minimum connects to the 2Πu

resonance but the 2 2A1 widths are in a qualitative agree-
ment. The authors of Ref. [8] faced the same difficulties
during the construction of the model from ab initio data
as we did: the 2 2A1 state gets so wide as CO2 bends that
there are no longer any observable effects in the fixed-
nuclei eigenphase sums or cross sections, see Sec. III A of
Ref. [8]. They smoothly interpolated results of their fit
and energies of the ground state of CO −2 . In our case the
decrease of the width is the result of extrapolation of the
model beyond Sb = 0.4 bohrs. Although the topology of
the anionic surfaces of CO −2 is interesting, it does not
seem to affect the vibrational excitation of CO2 in the
energy region of the 2Πu resonance (2–5 eV). Rescigno et
al. [8] reported that the cross sections are insensitive to
the interpolation of the width at highly-bent geometries
since the molecular anion CO −2 is formed by the verti-
cal electron attachment at the equilibrium geometry of
CO2 and with high probability the anion decays before
reaching highly-bent configurations. Our nonlocal calcu-
lations support this conclusion at these energies and we
will discuss it more in a follow-up to this paper.

The quantitative description of the potential energy
surfaces is limited by the harmonic approximation of the
neutral molecule used in order to keep the dynamics fea-
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FIG. 7. Harmonic approximation to the neutral CO2 poten-
tial and its influence on the adiabatic potential energy surfaces
of CO −

2 ; solid lines, our model; dashed lines, our R-matrix
data; dotted lines, data of Sommerfeld et al. [36]. The neutral
potentials are shown by thicker lines and anionic states are
labeled by numbers: 1, 2Σ+

g ; 2,
2Πu; 3, 1

2A1; 4,
2B1; 5, 2

2A1.
Panels (a) and (b) show cuts through the neutral and anionic
surfaces for symmetric stretches with fixed O-C-O angles of
180◦ and 170◦, respectively. Panels (c) and (d) show electron
attachment energies of the anionic states for the same bond
angles as above.

sible. The model reproduces the R-matrix neutral poten-
tial in the direction of pure bending very well, see Fig. 6,
since we fitted the bending vibrational frequency to these
data. There is a similarly good agreement for pure an-
tisymmetric stretches. However, the agreement is rather
poor in the symmetric stretching direction. The ab initio
neutral potential is anharmonic in its shape, and futher-
more, we did not use the frequency corresponding to the
potential itself but we used the double of the bending
frequency in this case, see Sec. IVC.

Figure 7 shows a comparison of the model potentials
(solid lines) with our R-matrix data (dashed lines) and
with calculations of Sommerfeld et al. [36] (dotted lines).
When comparing these three data sets, we observe a simi-
lar behavior on the qualitative level but there are notable
quantitative differences. The description of the neutral
molecule at the Hartree-Fock level within our SEP scat-
tering calculations does not fully describe the electron
correlation energy and produces the bending vibrational
frequency of CO2 about 30 % larger than the experi-

mental value, see Sec. IVC. We therefore expect that
the equation-of-motion coupled-cluster potentials [36] are
more accurate. For linear geometries the order of states
in the R-matrix calculation is reversed (2Πu state below
2Σg) compared to Ref. [36], but both the calculations are
consistent in this respect when the molecule is bent, i.e.
the anion states are bound in the order 1 2A1,

2B1, 2
2A1.

The harmonic approximation for V0 causes the vertical
discrepancy between the model and the R-matrix poten-
tials but the electron attachment energy (energy differ-
ence between anionic and neutral states) agrees well for
potential energies up to about 5 eV above the ground
vibrational state of CO2.
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FIG. 8. Effect of model parameters describing the ΣΠ cou-
pling on the 1 2A1 virtual state and 2 2A1 Renner-Teller com-
ponent of the 2Πu resonance. Solid lines, full model; dotted
lines, model with λ = 0; dashed lines, model with vΠs = 0;
dot-dashed lines, model without the Σ state (all relevant pa-
rameters are set to zero). Panels (a) and (b) show real part
and width of the adiabatic potential energy surfaces upon
bending (Sg = 0, Su = 0). Panel (c) shows the A′ model
eigenphase sums for geometries Sg = 0, Su = 0, Sb = 0.0, 0.1,
0.2, 0.3, 0.4, 0.45, and 0.5 bohrs.
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B. Role of individual terms in the model

Let us now focus on examining the effect of model
parameters on the behavior of the anionic states upon
bending. The origin of the 1 2A1 state potential mini-
mum at nonlinear, i.e. bent geometries (we will use the
term nonlinear minimum below for short) is related to
the square root that appears in the formula for the adia-
batic surfaces in Eq. (33) since the discrete-state poten-
tials V0 + EΣ and V0 + EΠ do not possess any nonlin-
ear minima. The first term in the square root depends
on the Renner-Teller coupling through the ξ and fΠ(ϵ)
functions and the second on the ΣΠ coupling through λ
and fΣΠ(ϵ). In principle both coupling mechanisms can
lead to the formation of a nonlinear minimum, see also
the discussion of Köppel et al. [37]. We found that the
direct ΣΠ coupling given by λ has a minor effect, see
Fig. 8 where dotted lines are calculated from our model
but with λ = 0. The coupling of the 2 2A1 Renner-Teller
state to the s wave represented by the vΠs function is
responsible not only for the rapid broadening of the res-
onance width but also for the nonlinear minimum, see
dashed lines in Fig. 8 which are calculated with vΠs = 0.
Finally, dot-dashed lines in Fig. 8 show results if we set
all parameters related to the virtual state to zero. Even
in this case the minimum does not disappear. The direct
Renner-Teller term ξ affects the potential curves quite
significantly, see Fig. 9, but the nonlinear minimum still
exists. On the other hand, the indirect coupling through
the wΠp functions is rather negligible.

To summarize, the twofold degenerate 2Πu resonance
splits into the 2 2A1 and 2B1 states upon bending of the
CO2 molecule partly due to the Renner-Teller effect but
especially because of the coupling of the 2 2A1 compo-
nent to the s wave. Because of this coupling the 2 2A1

state tends to become bound and connect to the nonlin-
ear minimum but the presence of the 1 2A1 virtual state
leads to the avoided crossing of the corresponding poten-
tial energy surfaces in the adiabatic representation. Nev-
ertheless, we expect that the character of the adiabatic
electronic wave functions changes along the bending co-
ordinate. In other words, there is a diabatic electronic
state that connects the 2Πu resonance with the nonlinear
minimum.

C. Contribution of individual partial waves

Our R-matrix calculations include electron partial
waves up to l = 4 while the model for the dynamics takes
into account only l = 0, 1. There are no principal obsta-
cles to include all the partial waves into the model but
it would immensely increase its complexity. By fitting
the model to the full eigenphase sums we also included
the information on higher partial waves into the model
but the splitting of this information into partial waves
is not captured correctly. We expect that this deficiency
will have a small influence on the integral cross sections
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FIG. 9. Effect of the model parameter ξ describing the
Renner-Teller coupling of the 2Πu shape resonance upon
bending. Solid lines, full model; dashed lines, model with
ξ = 0. Panels (a) and (b) show the real part and the width of
the adiabatic potential energy surfaces upon bending (Sg = 0,
Su = 0). Panel (c) shows the A′ model eigenphase sums for
geometries Sg = 0, Su = 0, Sb = 0.0, 0.1, 0.2, 0.3, 0.4, and
0.45 bohrs. Panel (d) shows the A′′ model eigenphase sums
for geometries Sg = 0, Su = 0, Sb = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, and 1.4 bohrs.

but it may harm the differential cross sections. To assess
the possible effect of this approximation, we here dis-
cuss individual contributions of partial waves to ab initio
K-matrices. In what follows we refer to arctan[Kµµ(ϵ)]
where Kµµ is the diagonal K-matrix element for a partial
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eigenphase sums; dashed lines, contribution of the p⊥ partial
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contributions for geometry Sg = 0, Su = 0, Sb = 0.4 bohrs.
Panel (b): s and pz-wave contributions for geometry Sg = 0,
Sb = 0, Su = 0.3 bohrs.

wave µ as to partial-wave phase.

In the A′′ contribution, the model K matrix has just
one element Kp⊥p⊥(ϵ) since the model includes only the
Π⊥ state coupled to the p⊥ electron partial wave. On the
other hand, the ab initio K matrix contains ten contribu-
tions. The p⊥ partial-wave phase dominantly contributes
to the A′′ ab initio eigenphase sums but there is also a
considerable contribution of one f -wave component and
for nonzero bending a d wave is involved too, see Fig. 10,

which is consistent with Morgan [21].
In the A′ problem, the discrete-state (resonant) K ma-

trix within our nonlocal model is a 3×3 matrix labeled
by the partial waves s, pz, p . It can be calculated using
the Cayley transform [58] from the following T matrix

TA′(ϵ) = (V A′
ϵ )T (ϵ−HA′)−1V A′

ϵ , (47)

where HA′ and V A′
ϵ are given by Eqs. (26) and (27), re-

spectively. Upon bending, the s wave dominates and the
model partial-wave phase is in a very good agreement
with the ab initio phase, see Fig. 11a. The discrepancy
between the p -wave contributions is again caused by the
fact that the model effectively describes also the higher
partial waves. Figure 11b shows that the s-wave again
dominates the ab initio data in the asymmetric stretch-
ing while pz rather contributes to the background. The
model s wave is not able to describe the ab initio data
because of the limitations in our parametrization of the
model, see Sec. IVB and IVC. By fitting the model to
the eigenphase sums, it is difficult to get the behavior of
the pz wave consistent with the R-matrix data because of
the background-like contribution and the model pz wave
tries to compensate the s-wave behavior. Therefore, we
can not expect a very good agreement of our cross sec-
tions with experimental data for asymmetric stretching.

VI. VIBRONIC DYNAMICS

The final purpose of the theoretical treatment is to
obtain the cross sections that can be compared to ex-
periments or used in simulations of the inelastic electron
scattering. The differential cross section for vibrational
excitation can be computed by averaging the T matrix
over molecular orientations [9]

dσνf←νi

dΩ
(ϵ, θ) =

8π4

ϵ2
|Tνfkf←νiki

|2, (48)

where the horizontal bar denotes the averaging and θ is
a scattering angle. The T matrix Tνfµf←νiµi

given by
Eq. (7) and the T matrix Tνfkf←νiki

are related through
partial-wave expansions

Tνfkf←νiki
=

∑︂

µi,µf

Y ∗µf
(k̂f )Tνfµf←νiµiYµi(k̂i), (49)

where k̂i and k̂f denote the directions of the incoming
and outgoing electrons in the molecular frame, respec-
tively. To calculate the cross sections we consider only
the discrete-state (resonant) T matrix, that is we neglect
the background contribution to all inelastic processes.

Since most experiments are conducted at room tem-
perature where only the ground vibrational state of CO2

is significantly populated, we consider only the ground
state as the initial state νi in our calculations. Then,
the initial state of the CO2 molecule (including the elec-
tronic degrees of freedom) is totally symmetric which im-
plies that the symmetry of the initial asymptotic state of
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the e+CO2 system is solely given by the symmetry of
the incoming electron partial wave µi = (li,mi). Conse-
quently, the scattering wave function |Ψ⟩, which satisfies
the inhomogeneous Schrödinger equation

(E1 −H)|Ψ⟩ = V µi
ϵi |νi⟩, (50)

also has the symmetry of the incoming wave. The T ma-
trix Tνfµf←νiµi

given by Eq. (7), which can be written
as the following integral

Tνfµf←νiµi = ⟨νf |V µf†
ϵf |Ψ⟩, (51)

is thus nonzero only when the product of representations
of the final vibrational state νf and the final electron par-
tial wave µf = (lf ,mf ) contains the irreducible represen-
tation of the initial partial wave, which restricts possible
symmetries of the final vibrational states. Alternatively,
we can determine the possible final states from conserva-
tion laws of angular momentum and parity. In our model,
we take into account only rotations around the molecular
axis associated with bending of the molecule. We denote
the corresponding angular momentum quantum number
by ℓb. Its values are then restricted by mi = mf + ℓb
and we find out that vibrational states of the Σ+

g , Σ
+
u ,

Πg, Πu, and ∆g symmetries can be excited in our model.
The resulting formulas for the differential cross sections
are derived in Appendix D, where the averaging of the
T matrix over molecular orientations is explicitly per-
formed for each symmetry of the final vibrational states.

The integral cross section for vibrational excitation is
obtained by integrating over the solid angle Ω

σνf←νi
(ϵ) =

2π3

ϵ

∑︂

µi,µf

|Tνfµf←νiµi
|2. (52)

In our model, the vibrational states |νf ⟩ are deter-
mined within the harmonic approximation (A8). How-
ever, anharmonic terms in the neutral potential of CO2

cause a strong mixing between symmetric stretching and
bending modes, the so-called Fermi resonance effect [45].
This effect is thus not included in our dynamics but can
be incorporated to a good approximation by replacing
the T matrix in the formulas for the cross sections by a
proper linear combination of T -matrices obtained using
harmonic states [8], see our Letter [18]. We will discuss
this problem more in our follow-up paper.

A. Expansion of the dynamics in the oscillator
basis

To obtain the T matrix given by Eq. (51) we solve the
Schrödinger equation (50) for each µi independently with
total energy E given by the conservation law (8). The
vibronic wave function |Ψ⟩ of the anion has three vibra-
tional components |ψd⟩, one for each discrete electronic

states Σ and Π±,

|Ψ⟩ =

⎛
⎝

|ψΠ+⟩
|ψΣ⟩
|ψΠ−⟩

⎞
⎠ . (53)

Note that the dynamics reflects the full molecular sym-
metry group D∞h. The vibrational wave functions |ψd⟩
compensate the symmetry of the discrete states so that
|Ψ⟩ has the total symmetry given by the incoming partial
wave.
To solve the Schrödinger equation (50) we expand the

components |ψd⟩ into the four-dimensional oscillator ba-
sis that consists of eigenfunctions |νg, νb, ℓb, νu⟩ of the
neutral molecule Hamiltonian H0 (the explicit form is
given in Appendix A)

|ψd⟩ =
∑︂

νg,νb,ℓb,νu

ψd(νg, νb, ℓb, νu)|νg, νb, ℓb, νu⟩, (54)

where ψd(νg, νb, ℓb, νu) are the expansion coefficients.
The basis expansion is truncated in the individual dimen-
sions. We have νg = 0, . . . , Ng − 1, νu = 0, . . . , Nu − 1,
and νb = 0, . . . , Nb − 1 for symmetric stretching, asym-
metric stretching, and bending, respectively. The incom-
ing electron brings utmost one quantum of the angular
momentum but intermediate and final vibrational states
can have up to ℓb = ±2. For that reason, it is sufficient
to consider ℓb = 0,±1,±2.

By expressing the effective Hamiltonian H and the
right-hand side V µi

ϵi |νi⟩ in Eq. (50) in the same basis, we
get a system of linear equations Ax = b for x representing
the unknown coefficients ψd(νg, νb, ℓb, νu). Although the
number N ∝ NgNuNb of the unknowns is large (typically
∼106, see below), the resulting matrix A is sparse due to
the restriction of the model functions to low-order poly-
nomials in the normal coordinates. Thus, the linear sys-
tem is, at least in principle, solvable by iterative matrix
methods. Algorithms of these methods depend only on
matrix-vector multiplications, that is, the explicit knowl-
edge of the coefficient matrix A is not necessary. Hence,
we implemented only the action of the Hamiltonian (5)
on the nuclear wave function |Ψ⟩. The action of the first
term H0 is trivial since the basis functions are the eigen-
states of H0. The action of the second term U given by
Eq. (17) can be expressed in a straightforward way if we
can act with operators Qg, Qu, Q±, ρ2 on the compo-
nents |ψd⟩. The first two operators are represented by
tridiagonal matrices acting only on one index νg or νu,
respectively. Similarly, operators Q± and ρ2 act in a
simple manner only on indexes νb and ℓb. For details see
Appendix A.

On the other hand, the third term F (E − H0) is an
operator function ofH0 and its action via Eq. (6) deserves
to be explained in more detail. The continuum coupling
elements V µ

dϵ were constructed to be separable in space
and energy variables

V µ
dϵ(q⃗ ) = Aµ

d (q⃗ )ζ
µ
d (ϵ), (55)
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where ζµd (ϵ) = (βϵ)(2l+1)/4 exp(−βϵ) depends only on en-
ergy, see Eq. (44), Aµ

d (q⃗ ) includes the polynomial a from
Eq. (44) and in some cases also Q± or Qu, see Eq. (18).
By substituting the separated form (55) into Eq. (19), we
get

Fdd′(E −H0) =
∑︂

µ

Aµ
d (q⃗ )f

µ
dd′(E −H0)Aµ

d′(q⃗ ), (56a)

where

fµdd′(E −H0) = v.p.

∫︂ ∞

0

dϵ
ζµd (ϵ)ζ

µ
d′(ϵ)

E −H0 − ϵ

−iπζµd (E −H0)ζ
µ
d′(E −H0). (56b)

The order of the operators in the sum above is important
since the normal coordinates do not commute with H0.
Some V µ

dϵ terms are given by several separable terms, for
example, see Eq. (40). The generalization of the formulas
above for such cases is straightforward.

The Fdd′(E −H0) operators act on a vibrational wave
function |ψ⟩ in the oscillator basis in the following way

⟨ν|Fdd′(E −H0)|ψ⟩ =∑︂

µ,ν′,ν′′

⟨ν|Aµ
d |ν′′⟩f

µ
dd′(E − Eν′′)⟨ν′′|Aµ

d′ |ν′⟩ψ(ν′), (57)

where ν, ν′, and ν′′ are multiindices (νg, νb, ℓb, νu). The
action of Fdd′ corresponds to a multiplication of a vector
by three matrices. The energy matrix fµdd′(E − Eν′′) is
diagonal because of the harmonic approximation for the
neutral molecule and the multiplication by matrices Aµ

d
can be decomposed to action of the coordinate operators
Qg, Qu, Q± which significantly simplifies the evaluation.

In total, the action of the sparse matrix A that repre-
sents E1−H on a vector v requires cN operations rather
then N2 operations required for a general matrix of the
same size, where c is a small number depending on the
complexity of our model but independent of the basis
size N .

B. Numerical solution

The matrix A representing the E1−H operator is com-
plex symmetric but not Hermitian, and thus, the con-
jugate gradient method [60] can not be used. Instead,
we used its generalization, the conjugate orthogonal con-
jugate gradient method (COCG), proposed by van der
Vorst and Melissen [61].

The COCG method converges rather quickly for small
electron energies but not even 105 iterations were suf-
ficient for achieving the convergence above 2.5 eV. We
found that the COCR [62], BiCG [63], and BiCGStab [64]
methods exhibit a similar behavior. Finding a suit-
able preconditioner that improves the rate of convergence
is thus necessary. Physically motivated preconditioners
based on freezing some of the vibrational modes did not
turn out to be viable. In the end, we came up with a

TABLE I. Basis sizes used in the dynamics for given ranges
of electron energies; Ng, Nu, and Nb give the number of basis
functions in symmetric stretching, asymmetric stretching, and
bending, respectively; Ne is the number of calculated electron
energies.

energies (eV) Ng Nb Nu Ne

0.001− 1.0 30 60 20 500
1.0− 2.0 30 80 20 400
2.0− 3.0 30 100 20 300
3.0− 4.0 35 120 25 200
4.0− 5.0 40 140 30 100

rather standard preconditioner using the LU decomposi-
tion which significantly improves the rate of convergence.
Let us write the matrix A in the following form

A =
∑︂

d,d′,ν,ν′

|ν⟩|d⟩Adν,d′ν′⟨d′|⟨ν′|, (58)

where d, d′ run over the discrete states, ν, ν′ run over
vibrational quantum numbers νg, νb, ℓb, and νu. Then,
we consider only diagonal blocks in the stretching modes
for the matrix P of the preconditioner

P =
∑︂

d,d′,ν,ν′

|ν⟩|d⟩δνgν′
g
δνuν′

u
Adν,d′ν′⟨d′|⟨ν′|. (59)

In the other words, P is block diagonal with the blocks
including the discrete-state space in combination with
only the bending mode. Applying the preconditioner to
a vector v corresponds to solving a linear system Py = v,
which can be done for each block separately using the LU
decomposition.
The construction of the matrix P is somewhat chal-

lenging since we have to explicitly evaluate the matrix A.
The action of A on the i-th basis vector provides the i-th
column of A. To act by A on all basis vectors is very time
consuming, however, it can be greatly optimized when we
realize the Hamiltonian spreads the nonzero basis com-
ponent to only nearby components because of the poly-
nomial structure of H. Therefore, we can act by A on a
small section of basis vectors and speed up the calcula-
tion.
In total, we solved the vibrational dynamics for each

incoming electron partial wave for 1500 electron energies
from 0.001 eV up to 5 eV. The basis size has to be in-
creased for larger energies since the anion can probe more
of the potential energy surfaces, which is especially true
in the bending dimension, see Fig. 4. The final basis sizes
used are listed in Table I. The iterations were stopped
when the ratio of norms of the residua and right-hand
side b was smaller than a tolerance τ = 10−3. The con-
vergence of the cross sections with respect to both the
basis size and tolerance τ was tested. The calculations
can be easily parallelized over electron energies. The cal-
culation for 1 eV took approximately 600 seconds on one
CPU core and the convergence without the precondition-
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ing was achieved after about 1000 iterations. The precon-
ditioning was essential above 2.5 eV. For 3 eV we needed
200 iterations and an hour of computational time, and fi-
nally, 1800 iterations were necessary for 5 eV with around
9 hours of the elapsed time, from which the construction
of the preconditioner took a half of the time.

VII. CONCLUSION

In this paper, we have presented our nonlocal model
describing the nuclear dynamics of the vibrational exci-
tation of the CO2 molecule by low-energy electrons. The
model includes the mutually interacting 2Σ+

g virtual state

and the Renner-Teller coupled 2Πu shape resonance of
the CO −2 in combination with all four vibrational modes.
The general form of the direct discrete-state coupling ma-
trix and discrete-state-continuum coupling matrix result-
ing from theD∞h symmetry group has been derived. The
construction of the model from our R-matrix eigenphase
sums and potential energies has been described in detail.
Although the model contains a large number of param-
eters, the symmetry considerations significantly simplify
the fitting process. We have shown that the explicit inclu-
sion of the coupling of the lower Renner-Teller component
to the electronic s-wave continuum explains the peculiar
behavior of this state. Moreover, we have discussed the
origin of the nonlinear potential minimum of the ground
state of CO −2 . We have proposed the numerical treat-
ment of the dynamics based on preconditioned Krylov
subspace methods suitable for a large class of nonlocal
discrete-state-in-continuum models and we have demon-
strated its feasibility for the four-dimensional dynamics
within the present model.

In order to be able to solve the multidimensional dy-
namics, we have made several approximations. Most no-
tably, we have used only the harmonic approximation for
the neutral molecule (description of the molecular an-
ion includes anharmonic terms) and constant threshold
exponents, which prevent the description of a geometry-
dependent dipole moment. Despite the fact that the har-
monic approximation leads to a quantitative disagree-
ment between the model and ab initio potentials in the
symmetric stretching vibrational mode, the model cap-
tures primary features of the system and provides an in-
terpretation of unexplained observations in the electron
scattering off CO2, see the outlined discussion in our Let-
ter [18]. In our follow-up to this paper, we will extend
the discussion of our results and their comparison with
experimental data including also effects of model param-
eters described here.

The application of the present theoretical treatment
to other polyatomic systems is rather straightforward.
The model structure is the consequence of the symmetry
of the involved discrete electronic states and vibrational
modes, and the dynamics allows excitation of nontotally
symmetric vibrations. Such vibrations have been known
to be excited by resonant processes for a long time, at

least since measurements of Wong and Schulz [65], who
also formulated selection rules based on symmetry con-
siderations. These rules were later thoroughly discussed
by Gallup [66, 67] but actual dynamical calculations are
scarce. Čuŕık et al. [68, 69] studied vibrational exci-
tation of diacetylene and cyclopropane molecules using
the ab initio discrete momentum representation method
and they even reported breaking of the selection rules
in the case of the cyclopropane. We thus hope that
the presented approach can bring additional insight into
the multimode vibronic dynamics and explain spectra of
other polyatomic systems. However, the model construc-
tion from ab initio data and solution of the dynamics
remain to be challenging.
Several improvements of the model are possible. First,

the approximations we have made can be lifted at the
cost of a more complicated evaluation of the nonlocal po-
tential F (E −H0). In the case of a geometry-dependent
dipole, the Bateman approximation [70] has been suc-
cessfully used to simplify the nonlocal dynamics [55, 71].
Second, our model does not allow for the description
of the dissociative electron attachment process. The
form of discrete-state potentials based on polynomials
in vibrational coordinates, which is essential for produc-
ing the sparse linear system for the dynamics, prevents
straightforward implementation of a dissociative attach-
ment channel. On the other hand, the incorporation of
at least one dissociative channel is desirable for future
development of the present approach.
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Appendix A: Vibrational coordinates and harmonic
oscillator basis

Here, we define normal coordinates Sg, Su, Sx, and Sy

of symmetric stretching, antisymmetric stretching, and
two-dimensional bending, respectively. We used Witte-
man’s definition [42] with one minor modification. We
changed the sign of Sg so that positive values correspond
to the lengthening of the C-O bond and not to its short-
ening. The molecular axis at the equilibrium geometry
coincides with the z axis with the carbon atom being
at the origin. The Cartesian coordinates of the atoms
expressed in terms of the normal coordinates are

R⃗C ≡ (xC, yC, zC) = −2mO

M
(Sx, Sy, Su) , (A1)

R⃗O1 =

[︃
Sg

2
+RCO

]︃
(0, 0,−1) +

mC

M
(Sx, Sy, Su) , (A2)
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R⃗O2 =

[︃
Sg

2
+RCO

]︃
(0, 0, 1) +

mC

M
(Sx, Sy, Su) , (A3)

where mC = 21874.66 me is the mass of the carbon atom
in the electron mass, mO = 29156.95 me is the oxygen
mass, M = mC + 2mO is the total mass of CO2, and
RCO = 2.1961 bohr is the experimental equilibrium dis-
tance of the carbon-oxygen bond. The dimensionless nor-
mal coordinates are given by [42]

Qg =

√︃
µ1ωg

ℏ
Sg, Qu =

√︃
µ2ωu

ℏ
Su, (A4)

Qx =

√︃
µ2ωb

ℏ
Sx, Qy =

√︃
µ2ωb

ℏ
Sy, (A5)

where ωg, ωu, and ωb are the angular frequencies of
the symmetric stretching, antisymmetric stretching and
bending, respectively, µ1 = mO/2, and µ2 = 2mOmC/M .

The neutral molecule Hamiltonian in the harmonic ap-
proximation is then written as H0 = TN + V0 with

TN = −1

2
ωg

∂2

∂Q2
g

− 1

2
ωu

∂2

∂Q2
u

−1

2
ωb

(︃
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2

)︃
, (A6a)

V0 =
1

2
ωgQ

2
g +

1

2
ωbρ

2 +
1

2
ωuQ

2
u, (A6b)

where cylindrical coordinates ρ and φ are defined in
Eq. (9).

To solve the vibronic dynamics we expand each
discrete-state component ψd(q⃗ ) in the basis of vibrational
eigenfunctions of the neutral molecule, see Eq. (54), and
implement the action of the Hamiltonian (5) on the ex-
pansion coefficients. The basis is thus defined by relation
H0|ν⟩ = Eν |ν⟩ with

Eν = ωg(νg + 1/2) + ωb(νb + 1) + ωu(νu + 1/2), (A7)

where we use a shorthand notation ν ≡ (νg, νb, ℓb, νu).
The basis wave functions ⟨q⃗ |ν⟩ are given by the product
of wave functions of one-dimensional harmonic oscilla-
tors in the stretching modes and two-dimensional har-
monic oscillator in the bending motion which read in x-
representation [72]

⟨q⃗ |νg, νb, ℓb, νu⟩ = ϕνg (Qg)Φνbℓb(ρ, φ)ϕνu(Qu) (A8a)

with

ϕn(q) =

(︃√︂
2nn!

√
π

)︃−1
Hn(q)e

−q2/2, (A8b)

Φnℓ(ρ, φ) =
1√
2π

√︄
2nr!

(nr + |ℓ|)!ρ
|ℓ|L|ℓ|nr

(ρ2)eiℓφe−ρ
2/2,

(A8c)

where n = νg or νu, q = Qg or Qu, Hn(q) are the Her-

mite polynomials, L
|ℓ|
nr (ρ

2) are the generalized Laguerre
polynomials, nr = 1

2 (n− |ℓ|), and ℓ = −n,−n+ 2, . . . , n.
For evaluation of the action of operators U and F we

need to act with operators of the normal coordinates Qg,
Qu, and Q± on the wave functions. The coordinates Qg

and Qu are represented in the one-dimensional oscillator
basis by the well-known matrix

⟨n′|Qg,u|n⟩ =
(︁√
n δn′n−1 +

√
n+ 1 δn′n+1

)︁
/
√
2, (A9)

where n = νg and νu, respectively. For the coordinates
Q± and ρ2 = Q+Q−, we have in the two-dimensional
basis [37]

⟨n′, ℓ′|Q±|n, ℓ⟩ = ± 1√
2
δℓ′ℓ±1s±(ℓ)×

[︁√
n± ℓ+ 2 δn′n+1 −

√
n∓ ℓ δn′n−1

]︁
, (A10)

where

s+(ℓ) =

{︄
+1 for ℓ ≥ 0

−1 for ℓ < 0
, s−(ℓ) =

{︄
+1 for ℓ > 0

−1 for ℓ ≤ 0
,

(A11)

⟨n′, ℓ′|ρ2|n, ℓ⟩ = δℓ′ℓ(n+ 1) δn′n − 1
2δℓ′ℓ ×[︁√︁

n2 − ℓ2 δn′n−2 +
√︁
(n+ 2)2 − ℓ2 δn′n+2

]︁
.(A12)

The formulas above can be derived using creation and an-
nihilation operators for right and left circular quanta [72].
Higher powers of the coordinates are obtained in terms
of matrix multiplication.

Appendix B: Eigenphase sum for two-state problem

Let us consider two discrete states that belong to
the same irreducible representation of a molecular point
group and are coupled to an arbitrary number of elec-
tron partial waves. In general, the fixed-nuclei Hamilto-
nian within the discrete-states-in-continuum model then
reads

H = U + F (ϵ) =

(︃
U11 + F11(ϵ) U12 + F12(ϵ)
U12 + F12(ϵ) U22 + F22(ϵ)

)︃
, (B1)

where Fdd′(ϵ) are calculated analogically to Eq. (6). Note
that we shifted the Hamiltonian with respect to, for ex-
ample, Eq. (26) by subtracting V0 so that it corresponds
to the electron energy ϵ = E−V0 relative to threshold at
given geometry. The fixed-nuclei T -matrix element for
incoming µi and outgoing µf partial waves is given by

Tµf←µi
=

2∑︂

d,d′=1

V
µf∗
dϵf

(ϵ12 −H)
−1
dd′ V

µi

d′ϵi
. (B2)

We observe that T matrix is a rank-two operator in the
space of partial waves µ. By denoting the vector of V µ

dϵ
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amplitudes in the partial wave index µ by |vd⟩, we can
write the S matrix in the form

S = I − 2πi
2∑︂

d,d′=1

|vd⟩ (ϵ12 −H)
−1
dd′ ⟨vd′ |, (B3)

which implies that the S matrix has only two nontriv-
ial eigenvalues s = e2iδ ̸= 1, that is, there are only
two nontrivial eigenphases δ ̸= 0. Thus, we can write
eigenvectors as a linear combination of vectors |vd⟩, |s⟩ =∑︁

d cd|vd⟩. By projecting ⟨vd| on the eigenproblem

S|s⟩ = s|s⟩, (B4)

we get the following equation for the coefficients cd

2∑︂

d′=1

(︂
S̃dd′ − sΓdd′

)︂
cd′ = 0, (B5)

where Γdd′ = −2 ImFdd′ = 2π
∑︁

µ V
µ
dϵV

µ
d′ϵ = 2π⟨vd|vd′⟩

and (after some algebraic manipulations and realization
that Hdp + iΓdp = H∗dp)

S̃dd′ =
2∑︂

p,q=1

(︁
ϵδdp −H∗dp

)︁
(ϵ12 −H)

−1
pq Γqd′ . (B6)

The condition for the existence of a nontrivial solution of
Eq. (B5) is

det(S̃ − sΓ) = 0, (B7)

which leads to a quadratic equation for the eigenvalues s1
and s2 and we can obtain the eigenphase sum δ1+δ2 from

the constant coefficient of the quadratic equation

s1s2 = e2i(δ1+δ2) =
(ϵ−H∗11)(ϵ−H∗22)− (H∗12)

2

(ϵ−H11)(ϵ−H22)−H2
12

, (B8)

which is equivalent to Eq. (30).

Appendix C: Model parameters

Here, we list numerical values of the model parameters
obtained from our fitting of the model to the R-matrix
data. The parameter values of the matrix U , which is
given by Eqs. (17), (37), (38), and (39), are listed in
Table II.

The continuum-coupling matrix Vϵ is given by
Eqs. (18), (40), (41), and (42) and the parameters are
of the form v(ϵ) (44). Actually, the parameter v2bΠp that

appears in Eq. (40) is given by the sum of two terms
v(ϵ), v2bΠp = v2b1Πp + v2b2Πp , and similarly, wΠp in Eq. (18) is

given by wΠp = w1
Πp +w2

Πp. The reason is the following.

The model was constructed in the A′′ and A′ symmetries
which depend on v2bΠp −wΠp and v2bΠp +wΠp, respectively.
These terms were independently parametrized by func-
tions of the form v(ϵ). Thus, when we express v2bΠp and
wΠp, we get two v(ϵ) terms. The obtained parameter
values of the Vϵ matrix are listed in Table III.

Finally, the parameter values of the background eigen-
phase sums, which are given by Eqs. (45) and (46), are
listed in Table IV.

Appendix D: Differential cross sections

The differential cross section for vibrational excitation of a molecule from the initial vibrational state νi to final
state νf by an electron with the initial ki and final kf momenta is given by averaging the T matrix over molecular
orientations [9]

dσνf←νi

dΩ
(ϵ, θ) =

8π4

ϵ2
|Tνfkf←νiki

|2, (D1)

where the discrete-state (resonant) contribution to the T matrix within the nonlocal model reads [15]

Tνfkf←νiki
= ⟨νf |V †kf

(E1 −H)−1Vki
|νi⟩. (D2)

The discrete-state-continuum coupling Vk is a vector in the discrete-state index d. By expanding its elements into
partial waves µ = (l,m)

Vdk =
∑︂

µ

V µ
dϵYµ(k̂), (D3)

we get

Tνfkf←νiki
=

∑︂

µi,µf

Y ∗µf
(k̂f )Tνfµf←νiµi

Yµi
(k̂i) (D4)
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TABLE II. Obtained values of the parameters of the matrix U . The parameters are polynomials
∑︁4

i=0 ciQ
i
g in the symmetric

stretching normal coordinate Qg. The notation x(y) means x× 10y and values are in the hartree unit of energy Eh.

c0 (Eh) c1 (Eh) c2 (Eh) c3 (Eh) c4 (Eh)

E0
Π 0.13229(0) −0.20130(−1) 0.40310(−3) 0 0

E2b
Π −0.37108(−3) 0.39684(−3) 0.23170(−4) 0 0

E2u
Π 0.12675(−2) −0.31060(−5) 0.22870(−6) 0 0

E4b
Π 0.17624(−4) 0.12929(−4) 0.42013(−5) 0 0

E0
Σ 0.40000(0) 0 0 0 0

E2b
Σ 0.88740(−2) −0.22622(−2) 0.75278(−3) −0.18248(−3) 0.14277(−4)

E2u
Σ 0.46670(−1) −0.66847(−2) 0.19314(−3) −0.17239(−3) 0.15079(−4)

E4b
Σ −0.31629(−4) 0.11550(−4) −0.86640(−6) 0 0

E4u
Σ 0.19697(−2) −0.67839(−3) 0.62488(−4) 0 0

E4bu
Σ 0.39880(−2) −0.44038(−5) −0.42582(−4) 0 0

λ −0.77277(−2) −0.80054(−5) −0.59084(−3) 0 0

g 0.14523(−2) 0.28492(−3) 0.23170(−4) 0 0

κ 0.12134(−4) 0.13003(−4) 0.42013(−5) 0 0

TABLE III. Obtained values of the parameters of the continuum-coupling matrix Vϵ. The parameters has the form of Eq. (44)
with the parameter a being a polynomial

∑︁2
i=0 ciQ

i
g in the symmetric stretching normal coordinate Qg. The notation x(y)

means x× 10y and Eh is the hartree unit of energy.

c0 (E
1/2
h ) c1 (E

1/2
h ) c2 (E

1/2
h ) l β (E−1

h )

v0Σs 0.15505(0) 0.40072(−1) 0.88177(−3) 0 0.14586(2)

v2bΣs 0.86210(−2) −0.25939(−2) 0.17858(−3) 0 0.28841(2)

v2uΣs 0.50983(−1) −0.85719(−2) 0.17197(−3) 0 0.20000(3)

v0Πs
a 0.62981(−1) 0.27292(−2) −0.18793(−3) 0 0.88654(0)

v2uΠs −0.24927(−3) 0.53192(−4) 0.12654(−4) 0 0.40101(2)

v0Πp 0.10265(0) −0.11894(−1) 0.57839(−3) 1 0.29575(1)

v2b1Πp −0.44586(−2) −0.27871(−2) −0.14301(−5) 1 0.21098(0)

v2b2Πp 0.91958(−4) 0.24018(−4) 0.11016(−5) 1 0.33418(2)

v2uΠp 0.16151(−2) −0.32262(−4) −0.86390(−6) 1 0.33815(1)

w1
Πp −0.44586(−2) −0.27871(−2) −0.14301(−5) 1 0.21098(0)

w2
Πp −0.91958(−4) −0.24018(−4) −0.11016(−5) 1 0.33418(2)

vΠz 0.10947(−1) 0.14344(−2) −0.24540(−3) 1 0.15189(2)

vΣp 0.29400(−1) −0.11984(−2) −0.24803(−2) 1 0.19498(2)

vΣz 0.22929(0) −0.11758(−1) −0.34163(−2) 1 0.41721(2)

a The v0Πs parameter has also terms of the third and fourth order with coefficients c3 = −0.42421(−4) E
1/2
h and

c4 = −0.51748(−5) E
1/2
h .

with

Tνfµf←νiµi = ⟨νf |V µf†
ϵf (E1 −H)−1V µi

ϵi |νi⟩. (D5)

Then, we can perform the averaging over the molecular orientations using Euler angles α, β, γ

dσνf←νi

dΩ
(ϵ, θ) =

f(ϵ)

8π2

∫︂ 2π

0

dα

∫︂ 2π

0

dγ

∫︂ π

0

dβ sinβ
⃓⃓
⃓R(α, β, γ)

∑︂

li,mi

∑︂

lf ,mf

Y ∗lfmf
(k̂f )Tνf lfmf←νilimi

Ylimi
(k̂i)

⃓⃓
⃓
2

, (D6)

where R(α, β, γ) is the corresponding rotational operator and f(ϵ) = π2/(2ϵ). The rotational operator R acts on the

direction vectors k̂i and k̂f of the initial and final electron momenta via the rotational matrix R

R(α, β, γ) =

⎛
⎝

cosα sinα 0
− sinα cosα 0

0 0 1

⎞
⎠

⎛
⎝

cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎞
⎠

⎛
⎝

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞
⎠ , (D7)
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TABLE IV. Obtained values of the parameters of the background eigenphase sums. The parameters are polynomials
∑︁4

i=0 ciQ
i
g

in the symmetric stretching normal coordinate Qg. The coefficients of the abg, cbg, c
1b
bg, and c2ubg parameters are in units of E−1

h ,
where Eh is the hartree unit of energy, the rest of the parameters are dimensionless. The notation x(y) means x× 10y.

c0 c1 c2 c3 c4

abg −0.11585(1) 0.20994(−1) 0.36453(−3) 0 0

bbg 0.10443(0) −0.10081(−2) −0.11098(−3) 0 0

b2bbg −0.90841(−3) 0.12924(−6) 0.19154(−7) 0 0

b2ubg 0.15270(−2) −0.16398(−3) 0 0 0

cbg −0.63794(1) 0.61145(0) 0.83917(−1) 0

c1bbg −0.11542(−1) −0.62076(−1) −0.16750(−1) 0.46431(−3) 0.49201(−3)

c2ubg 0.72745(−1) 0.50706(−2) −0.78337(−3) 0 0

dbg −0.35235(−1) 0.77574(−2) 0.91983(−3) 0 0

d1bbg 0.16629(−1) −0.51348(−2) 0.11835(−2) 0.27039(−3) −0.567215(−6)

d2ubg −0.16497(−2) 0.61585(−3) 0.17584(−3) 0 0

d3bubg 0.90811(−3) 0.73771(−6) 0.49481(−6) −0.12696(−7) 0

that is, we have

dσνf←νi

dΩ
(ϵ, θ) =

f(ϵ)

8π2

∫︂ 2π

0

dα

∫︂ 2π

0

dγ

∫︂ π

0

dβ sinβ
∑︂

li,mi

∑︂

lf ,mf

Y ∗lfmf
(Rk̂f )Tνf lfmf←νilimi

Ylimi
(Rk̂i )

×
∑︂

l′i,m
′
i

∑︂

l′f ,m
′
f

Yl′fm′
f
(Rk̂f )T

∗
νf l′fm

′
f←νil′im

′
i
Y ∗l′im′

i
(Rk̂i). (D8)

In our model of the e+CO2 system, we consider electron partial waves µ = (l,m) = (0, 0), (1, 0), and (1,±1) for
the s, pz, and p± partial waves in the expansion (D3). The corresponding spherical harmonic functions Yµ are

Y00 = 1/
√
4π, Y10 =

√︁
3/(4π)kz, Y1±1 = ∓

√︁
3/(8π)(kx ± iky), (D9)

where kx, ky, kz are the Cartesian components of the electron momentum direction vector. In addition, we consider
only the initial vibrational state νi to be the ground vibrational state of CO2, and thus, the symmetry of the final
vibrational state νf restricts possible combinations of the incoming and outgoing partial waves, see Sec. VI. Without

loss of generality, we set k̂i = (0, 0, 1)T and k̂f = (sin θ, 0, cos θ)T , where θ is a scattering angle. The integration over
the Euler angles results in the following formulas for Σ+

g , Σ
+
u , Πg, Πu, and ∆g final vibrational states

dσ

dΩ
(ϵ, θ)

⃓⃓
⃓⃓
Σ+

g

= f(ϵ)
{︂
|Tss|2 +

3

5

(︁
1 + 2 cos2 θ

)︁
|Tzz|2 +

3

10

(︁
3 + cos2 θ

)︁ (︁
|T++|2 + |T−−|2

)︁

+2 cos θRe
[︁
Tss

(︁
T ∗++ + T ∗−− + T ∗zz

)︁]︁
− 3

5
(1− 3 cos2 θ)

[︁
2Re

(︁
T++T

∗
−−

)︁
+Re

(︁
Tzz[T

∗
++ + T ∗−−]

)︁ ]︁}︂
, (D10)

dσ

dΩ
(ϵ, θ)

⃓⃓
⃓⃓
Σ+

u

= f(ϵ)
[︁
|Tsz|2 + |Tzs|2 + 2 cos θRe (TszT

∗
zs)

]︁
, (D11)

dσ

dΩ
(ϵ, θ)

⃓⃓
⃓⃓
Πg

= f(ϵ)
3

5

[︁ (︁
2− cos2 θ

)︁ (︁
|Tz+|2 + |T−z|2 + |Tz−|2 + |T+z|2

)︁
+

(︁
1− 3 cos2 θ

)︁
Re

(︁
Tz+T

∗
−z + Tz−T

∗
+z

)︁ ]︁
,

(D12)

dσ

dΩ
(ϵ, θ)

⃓⃓
⃓⃓
Πu

= f(ϵ)
[︁
|Ts+|2 + |T−s|2 + |Ts−|2 + |T+s|2 − 2 cos θRe

(︁
Ts+T

∗
−s + Ts−T

∗
+s

)︁ ]︁
, (D13)

dσ

dΩ
(ϵ, θ)

⃓⃓
⃓⃓
∆g

= f(ϵ)
3

10
(3 + cos θ)

(︁
|T−+|2 + |T+−|2

)︁
, (D14)
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where we suppressed the νi and νf indices and used a shorthand notation for partial waves (l,m): s corresponds to
(0, 0), z to (1, 0), and ± to (1,±1).

Alternatively, we can calculate the differential cross sections by extending the derivation of McCurdy et al. [9] which
leads to the following formula

dσνf←νi

dΩ
(ϵ, θ) =

8π4

ϵ

∑︂

li,mi

∑︂

l′i,m
′
i

∑︂

lf ,mf

∑︂

l′f ,m
′
f

√︁
(2li + 1)(2l′i + 1)

4π
Tνf lfmf←νilimi

T ∗νf l′fm
′
f←νil′im

′
i

×
lf∑︂

M=−lf
Y ∗lfM (k̂f )Yl′fM

(k̂f )

lf+l′i∑︂

j=|lf−l′i|

j∑︂

m=−j
(2j + 1)

(︃
lf l′i j
M 0 −M

)︃(︃
l′f li j
M 0 −M

)︃(︃
lf l′i j
mf m′i m

)︃(︃
l′f li j
m′f mi m

)︃
,(D15)

where the matrices are the Wigner 3-j symbols. We tested that both the approaches provide the same results.
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We present a detailed analysis of two-dimensional electron energy-loss spectrum of CO2, which ex-
tends our recent Letter [Phys. Rev. Lett. 129, 013401 (2022)]. We show that our vibronic coupling
model [Phys. Rev. A 105, 062821 (2022)] captures primary features of the multidimensional dy-
namics of the temporary molecular anion and the calculations qualitatively reproduce the spectrum.
The shape of the spectrum is given by two overlapping contributions that originate in excitation
of vibrational states within Σ+

g and Πu Fermi polyads. Propensity rules in terms of scattered and
vibrational wave functions are also discussed to clarify the selectivity of states from the vibrational
pseudocontinuum that is responsible for the observed fine structure.

I. INTRODUCTION

The low-energy (< 5 eV) inelastic electron scattering
from the CO2 molecule

e+CO2 → CO −2 → e+CO∗2 (1)

is full of interesting phenomena. The experimental ef-
fort to probe this system goes back as early as the 1920s
by Ramsauer [1]. In the 1960s and 1970s, Boness and
Schulz [2–4] and Čadež et al. [5, 6] thoroughly studied
the 3–5 eV region dominated by a 2Πu resonance. Ob-
served peaks in the energy-loss spectra were attributed to
(n, 00, 0) and (n, 11, 0) vibrational progressions. The en-
ergy dependence of the vibrational cross sections revealed
an oscillatory structure, which they correctly recognized
as the boomerang oscillations and even reproduced [6]
by one-dimensional (1D) calculations for the symmetric
stretching using the local complex potential (LCP) model
developed by Herzenberg [7]. They also studied the shift
of the boomerang peaks towards higher incident energies
with energy loss, which explains the diagonal rays later
observed in the 2D energy-loss spectrum, see below. The
LCP nuclear dynamics was further studied by Kazansky
and Sergeeva [8, 9], who also included the bending mo-
tion.

By improving the signal-to-noise ratio, Allan [10] di-
vided the energy-loss spectra into three regions. Region I
was dominated by the (n, 00, 0) progression (for a small
scattering angle). Region II showed a complex struc-
ture. Well distinguishable broad peaks reappeared at
high energy losses (region III) with positions that did
not correspond to the (n, 00, 0) progression. Using the
2D scanning technique developed by Reddish et al. [11],
Currell and Comer [12–14] recorded the first 2D energy-

∗ jan.dvorak@utf.mff.cuni.cz
† martin.cizek@mff.cuni.cz

loss spectrum of CO2. They fully realized the impor-
tance of the Fermi resonance effect on neutral vibrational
states [15, 16] and argued that the excitation of fairly
linear states and highly bent states within Σ+

g polyads
was responsible for the two newly observed structures
(labeled by A and B).

Itikawa et al. [17, 18] and Kochem et al. [19] probed the
increase of the cross sections near the threshold, see also
references therein for earlier works. They showed that
the direct dipole scattering explains well the threshold
peaks of the (0, 11, 0) bending and (0, 00, 1) asymmet-
ric stretching modes whereas the s-wave scattering ef-
fected by a 2Σ+

g virtual state is largely responsible for the

(1, 00, 0) symmetric stretching excitation. The effect of
the virtual state was studied by many theoretical meth-
ods, such as coupled-channel calculations of Morrison et
al. [20, 21], two-state model by Whitten and Lane [22],
discrete-state-in-continuum model by Estrada and Dom-
cke [23] or the energy-modified adiabatic phase matrix
method by Mazevet et al. [24].

From a plethora of ab initio fixed-nuclei calculations,
we emphasize the work of Morgan [25], who located the
S-matrix poles in the complex plane corresponding to the
2Σ+

g virtual state and both Renner-Teller components of

the 2Πu shape resonance. Other works include Morrison
et al. [20], Lee et al. [26], and Rescigno et al. [27]. The
angular dependence of the differential cross sections was
also studied by many groups: Register et al. [28], Kochem
et al. [19], Antoni et al. [29], Cartwright et al. [30, 31],
and Kitajima et al. [32, 33].

Thanks to the improvement of the energy resolution
down to 7 meV, Allan [34, 35] revealed a strong selectivity
in excitation of individual members of the Fermi polyads.
Such a behavior in the 2Πu region was reproduced by
McCurdy et al. [36, 37], who performed time-dependent
2D LCP calculations [38] with both Renner-Teller states.
Shortly after, Vanroose et al. [39] explained the selectiv-
ity at the threshold using a 2D effective-range potential
model [40, 41]. Recently, Laporta et al. [42] have reported
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1D LCP calculations considering each vibrational mode
independently.

Despite the theoretical effort that the e + CO2 sys-
tem have received, the shape of the spectrum for mod-
erate and high energy losses is still not explained. Fur-
thermore, we are not aware of any dynamical calcula-
tions of this system that predict the excitation of non-
totally symmetric vibrational states such as states with
odd quanta of bending or asymmetric stretching. Such
states can be excited due to the vibronic coupling in the
resonant electron-molecule scattering as was investigated
by Gallup [43]. He showed that the first order terms in
the electron-molecule potential give the selection rules
formulated by Wong and Schulz [44] to explain the spec-
trum of benzene. The symmetries of expected excited
vibrational states are those that belong (i) to the sym-
metrized square of the irreducible representation of the
resonance, or (ii) to the irreducible representation of the
resonance, which leads to the outgoing s-wave electron.

The two-state discrete momentum representation
method developed by Čuŕık and Čársky [45] have been
used to study the inelastic electron scattering from poly-
atomic molecules, such as methane [46], diacetylene [47]
and cyclopropane [48]. In the case of cyclopropane, Čuŕık
et al. [48] showed that excitation of the ν4 twist mode
does not follow the selection rules because the incoming
f wave is transformed to a p wave. Gallup [43] concluded
his paper that higher orders cause excitation of additional
symmetries but the relations become too complicated to
be useful.

The present paper concludes our study of vibrational
excitation of the CO2 molecule by slow electrons. Our
joint experimental and theoretical work is summarized
in a recent letter [49], which will be referred to as Let-
ter throughout this paper. The detailed description of
our work is then divided in two parts. The paper [50]
(referred to as Paper I in the following text) discusses
the derivation of the theoretical model dictated by the
symmetry of the system, together with the determina-
tion of the model parameters by fitting the results of
our fixed-nuclei electron-molecule scattering calculations
for a large set of geometries. Paper I also describes the
computational procedure based on Krylov subspace iter-
ation methods to find the wave function of the anion and
the formulae for calculation of the vibrational excitation
cross sections. Here, we focus on a detailed presentation
of the results of our calculations including the compari-
son with our and previous experimental data.

The paper is organized as follows. Section II describes
the experimental setup used to measure the energy-loss
spectra, which are also shown there. Section III discusses
the grouping of neutral vibrational states into polyads.
In Sec. IV, we summarize and emphasize the key theoret-
ical points that are important for the subsequent discus-
sion. The calculated spectra are presented in a similar
way as the experimental data in Sec. V. Then, we analyze
the energy-loss spectra based on various aspects (symme-
try of final states, electron partial waves, angular depen-

dence, etc.) and examine the underlying mechanisms in
terms of wave functions in Sec. VI, where the cross sec-
tions for low-lying states are also shown. In Sec. VII, we
study the sensitivity of the calculations to parameters of
the model and finally our work is concluded in Sec. VIII
by summarizing the results and discussing possible im-
provements and applications of the approach to another
systems.

II. EXPERIMENTAL SPECTRA

The electron energy-loss spectra were recorded on the
electrostatic spectrometer [51, 52]. The electrons were
emitted from a heated iridium filament and energy-
selected by a double-hemispherical electron monochro-
mator. The incident electron energy ϵi was controlled by
floating the monochromator with respect to the poten-
tial of the collision region. The electrons were scattered
on the effusive beam of the CO2 gas and their residual
energy ϵf was analyzed with a double-hemispherical elec-
tron analyzer. The analyzer can be rotated in order to
probe various scattering angles. The energy of the inci-
dent beam was calibrated on the 22S resonance in helium
at 19.365 eV. Electron-energy resolution was 18 meV, as
determined from the width of the elastic peak.
All the spectra presented here were recorded in a con-

stant ϵi mode where the incident energy was fixed, the
residual energy was scanned, and the signal was plot-
ted as a function of the energy loss ∆ϵ = ϵi − ϵf . Fig-
ure 1 shows a two-dimensional (2D) energy-loss spectrum
recorded at the 135◦ scattering angle. It is constructed
from individual 1D energy-loss spectra recorded at 220
incident electron energies with 10 meV increments. Such
color-coded map can reveal complex dynamics of nuclear
motion induced by the electron scattering [53–56]. The
individual features of our 2D spectrum for CO2 are out-
lined in the Letter and further discussed in the following
sections.
To better understand the detailed structure of the

spectrum, Fig. 2 shows the individual electron energy-
loss spectra at four selected incident energies (horizon-
tal sections of 2D spectrum) but separately recorded for
a better signal-to-noise ratio. The spectra in both figures
were recorded at high scattering angle to enhance the
resonance processes with respect to direct-dipole excita-
tions. It is well known that direct excitation processes re-
lated to direct-dipole excitation have cross sections peak-
ing at small scattering angles [10, 57], the resonant pro-
cesses are thus most pronounced in the backscattering
direction. The 135◦ angle is the highest mechanical an-
gle achievable with the present setup.
Before proceeding to the calculated spectra, we dis-

cuss the vibrational states of the neutral CO2 molecule
and their energies since they are directly related to the
energy-loss axis of the spectra.
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FIG. 1. Experimental 2D electron energy-loss spectrum of CO2 for a scattering angle of 135◦. A detail of the spectrum is
shown in a linear scale from 0 to 1 and the fine structure is indicated (average spacing ∼29 meV). Structures A and B observed
by Currell and Comer [12–14] are labeled in the main plot.
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III. VIBRATIONAL STATES OF NEUTRAL CO2

The vibrational states of the CO2 molecule within
the harmonic approximation are identified by four num-
bers [16]

ν ≡ (νg, ν
ℓb
b , νu), (2)

where νg, νb, and νu denote numbers of quanta in
symmetric stretching, bending, and asymmetric stretch-
ing, respectively, and ℓb is the angular momentum of
the bending motion with respect to the molecular axis.
The corresponding experimental vibrational frequencies
are ωg = 167.5 meV, ωu = 297.1 meV, and ωb =
83.3 meV [58].

Although the anharmonic corrections are important for
the understanding of the spectrum of the neutral CO2,
we start with the harmonic basis because it is used in
our numerical treatment of the dynamics as discussed in
Paper I and here below.

For the later discussion it is important to remind
the classification of the states according to the irre-
ducible representations of the molecular symmetry group
D∞h [16]. The angular momentum is determined by ℓb
and the parity is given by the product νuνb. Thus, the
states |ν⟩ correspond to the Σ+

g and Σ+
u representations

for ℓb = 0 with νu even and νu odd, respectively, to Πu

or Πg for ℓb = 1 with νu even or odd, to ∆g or ∆u for
ℓb = 2 with νu even or odd, and so on.

A. Harmonic polyads

The energies of one quantum of symmetric stretching
and two bending quanta are almost degenerate (ωg −
2ωb = 0.9 meV). Therefore, the harmonic states are nat-
urally organized into groups (polyads) with nearly the
same energy. The harmonic energy of the state |ν⟩ reads

Eν = E0 + νgωg + νbωb + νuωu, (3)

where E0 is the ground state energy, νg and νu attain
values 0, 1, 2, . . . and νb = ℓb, ℓb + 2, ℓb + 4, . . .. As a
result, all harmonic states |ν⟩ for

ν = (νg, ν
ℓb
b , νu) = [n, (2m+ ℓb)

ℓb , νu], (4)

where n +m = N = const, have the energy close to the
value

Eν ≃ E0 +Nωg + ℓbωb + νuωu (5)

with a spread of 0.9N meV. For example, the Σ+
g dyad

(N = 1) with νu = 0 contains two harmonic states
(1, 00, 0) and (0, 20, 0) while the harmonic Πu polyad with
N = 10 consists of eleven states (10, 11, 0), (9, 31, 0),. . . ,
(0, 211, 0).

Considering the energy-loss range of the experimen-
tal data (Fig. 1), the maximum N that we need to take

into account is N = 30. The energy spread of the
states within individual harmonic polyads is thus less
then 0.9N ≃ 30 meV. The 2D spectrum in Fig. 1 below
energy loss ∆ϵ < 1 eV is clearly organized into polyads
but the quasi-continuous character of the spectrum at
higher electron energy losses is inconsistent with this es-
timate for the energy spread.

B. Fermi-coupled states

The inconsistency is not surprising since it is well
known that the vibrational states of neutral CO2 are sig-
nificantly influenced by the Fermi resonance effect [15,
16]. Anharmonic corrections to the potential energy sur-
face split the nearly degenerate harmonic states of the
same symmetry and also correlate the vibrational mo-
tion in the symmetric stretching and bending directions
mixing the different states within the polyads.
To calculate these proper final vibrational states, we

employ the Hamiltonian of Chedin [59], which includes
the anharmonic corrections. The Fermi-coupled states
|νFR⟩, for the symmetry given by fixed values of ℓb and
νu, are expanded into linear combinations of harmonic
states:

|νFR⟩ =
∑︂

ν

cν |ν⟩, (6)

where the coefficients cν are obtained by diagonalizing
the anharmonic vibrational Hamiltonian [59]. In princi-
ple, the sum runs over all allowed νg, νb but the results
show that the coupling among polyads with different val-
ues of N is negligible for the range of vibrational ener-
gies considered in this study. We can thus identify the
Fermi-coupled states by specifying numbers ℓb, νu and
N to determine the specific polyad [n, (2m+ ℓb)

ℓb , νu] of
harmonic states. After the diagonalization, the Fermi-
coupled states are sorted by their energy. The individual
state can be referred to by a symbol N(i), which denotes
the i-th state in the polyad N = n +m. Note that the
ground state νi = (0, 00, 0), i. e. the initial vibrational
state νi, is subject to no anharmonic corrections and thus
belongs to both, the harmonic and the Fermi-coupled sets
of states.
The anharmonic energies ϵFR emerging from the Σ+

g

(n, 2m0, 0) and Πu [n, (2m + 1)1, 0] polyads are shown
in Fig. 2 by a grid of small vertical lines displayed in the
upper part of the figure. The positions of the low energy-
loss peaks correspond approximately to the middle of the
polyads, but above ∆ϵ ≈ 0.9 eV the energy ranges of the
individual polyads start to overlap. At high energy losses,
the spectrum of the Fermi-coupled states is dense and
rather erratic and so there is no obvious connection be-
tween individual experimental peaks and the vibrational
energies. We conclude that either polyads with nonzero
νu have to be involved or there is some selective mech-
anism that allows excitation of only certain states from
the pseudocontinuum.
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FIG. 3. Fermi-coupled vibrational wave functions upon symmetric stretching and bending (asymmetric stretching coordinate
is set to zero). The first two columns show states N(i) for i = 1, 5, 6, 11, 14 (from top), belonging to the Σ+

g (n, 2m0, 0) and Πu

[n, (2m + 1)1, 0] Fermi polyads with N = n +m = 13, respectively. The third column shows states N(i) for i = 1, 7, 8, 11, 20
(from top), within the Πu polyad with N = n + m = 19. The energy loss ∆ϵ and the mean value of number of symmetric
stretching quanta ⟨νg⟩ are also shown for each state. The wave functions are independently normalized.

To gain more insight into the Fermi coupling and the
correlation of the bending and stretching motion within
the polyads, we plot the wave functions of selected states
in Fig. 3. The first column shows the shape of the lowest
(i = 1) and highest (i = 14) states together with some
states from the middle (i = 5, 6, 11) for the Σ+

g polyad
with N = 13, and similarly, other two columns contain
the wave functions from Πu polyads with N = 13 and
19. The wave functions are plotted with respect to the
normal coordinates used in the dynamics, see Sec. IV and
Note 1.

Small bending correlates to positive symmetric stretch-
ing (prolongation of the C-O bonds) for the lowest states

within each polyad (first row in Fig. 3) while the highest
states are more spread in the bending direction (highly
bent states) with negative stretching values at small
bending. The middle states have rather intriguing shapes
but overall the probability density is localized in the
vicinity of the stretching axis (linear states). Note that
the harmonic states would have nodal planes parallel
with the coordinate axes since there is no correlation be-
tween stretching and bending, in contrast to the behavior
seen here for the coupled states.

To somehow quantify the shape of the wave functions,
we characterize each Fermi-coupled state by a simple
quantity, the mean value of the number of symmetric
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stretching quanta

⟨νg⟩ =
∑︂

ν

νg|cν |2, (7)

where the sum runs over all harmonic states within the
particular polyad, cν are the expansion coefficients in the
harmonic basis [Eq. (6)], and νg is the symmetric stretch-
ing coordinate of the ν vector [Eq. (2)]. The mean value
⟨νg⟩ therefore describes the amount of symmetric stretch-
ing.

Similarly, we can define the mean value for bending
quanta

⟨νb⟩ =
∑︂

ν

νb|cν |2, (8)

but the two values are not independent due to the relation
n + m = N . Larger values of ⟨νb⟩ thus corresponds to
smaller ⟨νg⟩ and vice versa. The quantity ⟨νg⟩ is also
shown in Fig. 3 together with the energy loss ∆ϵFR for
each state (when excited by an electron from the ground
vibrational state).

IV. THEORY

Our theoretical model is discussed in detail in Paper I.
For convenience, we summarize the basic aspects of the
theory used in the discussion of the results in this paper.

A. Nonlocal model of vibronic dynamics

The model is designed to treat the vibronic dynamics of
vibrational excitation of the CO2 molecule in its ground
electronic 1Σ+

g state by low-energy electrons, see Eq. (1).
The process is mediated by three states of the temporary
molecular anion CO −2 : the 2Σ+

g virtual state and the

double-degenerate 2Πu shape resonance.
These anionic states are assumed to be diabatic with

respect to the vibrational motion described by normal co-
ordinates Qg, Qu, and Q± = Qx± iQy. We refer to these
states as discrete electronic states |d⟩, d ∈ {Π+,Σ,Π−}.

The vibronic dynamics of the CO −2 is described by
a three-component wave function

|Ψ⟩ =

⎛
⎝

|ψΠ+
⟩

|ψΣ⟩
|ψΠ−⟩

⎞
⎠ =

∑︂

d

|ψd⟩|d⟩, (9)

where the components |ψd⟩ are functions of the vibra-
tional coordinates expanded in the basis of neutral har-
monic vibrational states, see Appendix A of Paper I. The
wave function |Ψ⟩ is found by solving the inhomogenous
Schrödinger equation

[(E −H0)1 − U − F (E −H0)]|Ψ⟩ = |Φ⟩, (10)

where E is total energy conserved during the collision
[Eq. (8) in Paper I ], H0 is the vibrational Hamiltonian
of the neutral molecule in the harmonic approximation,
U = {Udd′} is the 3×3 matrix describing the diabatic po-
tential energy surfaces and the direct vibronic coupling of
the discrete states, and F (E−H0) is the nonlocal opera-
tor matrix giving the indirect vibronic coupling through
the electron continuum [Eq. (6) in Paper I ].

The right-hand side of the Schrödinger equation

|Φ⟩ =

⎛
⎝
V µi

Π+ϵi
|νi⟩

V µi

Σϵi
|νi⟩

V µi

Π−ϵi |νi⟩

⎞
⎠ . (11)

describes the vertical attachment of the incoming elec-
tron with energy ϵi to CO2 in its ground vibrational
state |νi⟩, where the energy-dependent amplitudes V µi

dϵ
control the coupling between the discrete states |d⟩ and
the partial-wave components µi ≡ (l,m) of the incoming
electron.

To obtain the energy-loss spectra discussed below we
solved the Schrödinger equation Eq. (10) for 1500 inci-
dent energies ϵi ∈ [0.001, 5.0] eV and for each included
incoming electron partial wave µi. An example of these
wave functions for ϵi = 3.8 eV and µi = s and p+ is
shown in Fig. 4, where the absolute value of |ψd⟩ is plot-
ted as a function of symmetric stretching and bending
coordinates.1

The electron autodetachment from CO −2 into neutral
CO2 in the vibrational state |νf ⟩ is controlled by the
amplitude (an element of T matrix)

Tνfµf←νiµi
=

∑︂

d

⟨νf |V µf∗
dϵf

|ψd⟩. (12)

The exact relation of this quantity to the cross sections
and spectra was derived in Paper I and will be discussed
in the text below. We calculated the T matrix for all 1500
values of the incident energy ϵi, all partial waves and all
accessible harmonic final states |νf ⟩ (about 8000 states).
These values are stored and both integral and differential
cross sections for all final states and angles, as well as 2D
electron energy-loss spectra for any scattering angle can
be obtained from these matrices in a fast post-processing
procedure, see below.

1 The two-dimensional bending can be described by the Carte-
sian normal coordinates Qx and Qy , their complex combinations
Q± = Qx ± iQy , or by polar coordinates (ρ, φ), where ρ rep-
resents the magnitude of the bending and φ the orientation of
the molecular plane, see Sec. II B 1 in Paper I. We plot the wave
functions (anionic or vibrational shown above) with respect to
the magnitude of the bending measured in bohrs and we set
φ = 0. The dependence on φ gives only an overall phase fac-
tor exp(iℓbφ) because ℓb is fixed for any given vibrational state
of CO2 or one vibrational component |ψd⟩ of the anionic wave
function.
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FIG. 4. Vibrational components ⟨Q|ψd⟩ of the scattering wave function |Ψ⟩ that belongs to the discrete states |d⟩, d = Π+, Σ,
and Π− upon symmetric stretching and bending (asymmetric stretching coordinate is set to zero). The shown wave function |Ψ⟩
is the solution of Eq. (10) for incident electron energy of 3.8 eV and for incoming electron partial waves p+ (first row) and
s (second row). The components are all normalized with respect to the global maximum. The contours in the top-left panel
represent the lowest adiabatic potential energy surface of CO −

2 for geometries where it is bound and the energies are given
with respect to the minimum of the neutral potential.

B. Symmetry considerations for the dynamics and
final states

Before proceeding to the actual discussion of the calcu-
lated spectra, we would like to comment on the symmetry
in the process of vibrational excitation of CO2, which is
closely related to conservation of angular momentum and
parity. These principles have already been discussed in
Paper I since they are important in the construction of
the model, but we need to add a few remarks important
for the following discussion of the results.

The total electron and nuclear symmetry of the e+CO2

system is conserved during the collision. Since the neu-
tral molecule is initially in the ground electronic and
ground vibrational states, which are both totally sym-
metric, the total symmetry is exclusively given by the
incoming electron. Its wave function can be decomposed
into partial waves µ ≡ (l,m). As explained in Paper I,
there are four electron partial waves, µ = s, pz, and
p± = px±ipy considered in our model, which are coupled
to the discrete states |d⟩ through the energy-dependent
amplitudes V µ

dϵ organized into the following 3×4 matrix
[Eq. (18) in Paper I]

Vϵ =

⎛
⎝

s pz p+ p−
Π+ vΠsQ− vΠzQ−Qu vΠp wΠpQ

2
−

Σ vΣs vΣzQu vΣpQ+ vΣpQ−
Π− vΠsQ+ vΠzQ+Qu wΠpQ

2
+ vΠp

⎞
⎠ (13)

with row index d and column index µ. In this matrix we
explicitly show the dependence on the vibrational coor-
dinates Qi that are not totally symmetric. Symmetric

combinations of coordinates are still hidden in the coef-
ficients vdµ and wdµ (Sec. IVB of Paper I).

For example, the first column of the matrix Vϵ de-
scribes the attachment of an s-wave electron to the
molecule given by the right-hand side |Φ⟩ Eq. (11) of
the Schrödinger equation. Its vibrational parts |ϕd⟩ have
the same symmetry as the coordinates in the first col-
umn of the matrix Vϵ, i. e. Πu, Σ+

g , and Πu, in order
for the product of |ϕd⟩ and electronic part |d⟩ to have
the same symmetry as the incoming electron s wave, i. e.
Σ+

g . Since the symmetry is respected by the model quan-
tities H0, U , and F (E), the same discussion applies for
the components of the solution |Ψ⟩ Eq. (9). The resulting
symmetries of |ψd⟩, |ϕd⟩ are listed in the first block of Ta-
ble I. These symmetries can be observed in Fig. 4. The
wave functions in the top row of the figure have sym-
metries Σ+

g , Πu and ∆g as apparent from their shape
since the probability close to the zero axis of the bending
coordinate is being pushed to higher bending values for
a larger angular momentum projection.

Due to the vibronic coupling built in the Q-dependence
of the matrix Vϵ, the symmetry of the outgoing electron
can differ from the symmetry of the incoming electron.
This change has to be compensated by the final vibra-
tional state of CO2, that is, the product of the vibrational
and electronic parts of the final e+CO2 wave function has
to have the same symmetry as the incoming electron. In
our model, the final states of the Σ+

g , Σ
+
u , Πg, Πu, and

∆g symmetries can be excited, see the second block of
Table I.
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FIG. 5. Calculated 2D electron energy-loss spectrum of CO2 for harmonic final vibrational states and for a scattering angle
of 135◦. Positions of some harmonic vibrational levels of CO2 within our model are shown, see the legend (n+m = 0, 1, . . .).

V. CALCULATED SPECTRA

Finally, we present the results of our calculations. We
start with the spectrum calculated directly using har-
monic basis as final states and then we describe the re-
sults of the transformation of the final states into Fermi-
coupled basis, which could be more directly compared to
experiments.

A. Spectrum with harmonic final states

The differential cross section dσνf←νi
/dΩ(ϵi) for the

vibrational excitation of the CO2 molecule from the ini-
tial state |νi⟩ to the final state |νf ⟩ is calculated from the
T -matrix elements Eq. (12) by summing over initial µi

and final µf partial waves including the proper angular
factors for each symmetry of the final state. The formulae
are given in Appendix D of Paper I and they also include
the averaging over the orientation of the molecule.
The final 2D spectrum intensity S(ϵi,∆ϵ) is obtained

by identifying the energy loss ∆ϵ = ϵi−ϵf = Eνf
−Eνi

for
each final state and adding a Gaussian profile f(x) with
the full width at half maximum of 18 meV to the electron-
loss lines to simulate the finite experimental resolution

S(ϵi,∆ϵ) =
∑︂

νf

dσνf←νi

dΩ
(ϵi)f(∆ϵ−∆ϵνf

). (14)

Note that we also convolve the spectra with the incident

TABLE I. Correlation of the symmetry of the electronic and
vibrational parts of the wave function resulting from the con-
servation of angular momentum and parity. Rows correspond
to partial waves of the incident electron. The first block
(columns 2–4) gives the symmetry of the vibrational parts
|ψd⟩ for the three discrete states |d⟩. The second block shows
the vibrational symmetry of the resulting CO2 when the elec-
tron leaves as partial wave µf .

|ψd⟩ for d: |νf ⟩ for µf :

µi Π+ Σ Π− s pz p+ p−

s Πu Σ+
g Πu Σ+

g Σu Πu Πu

pz Πg Σ+
u Πg Σ+

u Σ+
g Πg Πg

p+ Σ+
g Πu ∆g Πu Πg Σ+

g ∆g

p− ∆g Πu Σ+
g Πu Πg ∆g Σ+

g

electron energy resolution function but it does not effect
significantly the results since the cross sections are rather
smooth in ϵi.

Figure 5 shows the 2D energy-loss spectrum for har-
monic final vibrational states of CO2 and a scattering
angle of 135◦, where the Fermi resonance effect is not in-
cluded. The harmonic spectrum is dominated by energy-
loss peaks at positions of Σ+

g and Πu harmonic states

that belong to polyads (n, 2m0, 0) and [n, (2m + 1)1, 0],
respectively. Their energy losses are given by ∆ϵ = Nωg

and Nωg + ωb, N = n + m = 0, 1, . . ., respectively. In
the case of asymmetric stretching mode, only (0, 00, 1)
and (0, 00, 2) states are significantly populated, especially
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near the threshold. The higher Σ+
g and Πu polyads de-

rived from the (0, 00, 2) state are also clearly seen in the
spectrum although the magnitude of the signal is about
three orders of magnitude smaller. Higher values of νu
are not populated significantly but are included in the
presented data.

The harmonic spectrum of Fig. 5 reproduces qualita-
tively the general shape of the spectrum seen in the cur-
rent and previous experiments [13, 14]. At low energy
losses the signal starts directly at the threshold. In the
2Πu resonance region (incident energies 3–4 eV), the sig-
nal extends to the complete energy loss. The hint of the
boomerang oscillations [4, 60], which creates the diagonal
rays in the spectrum, is also visible but their positions
do not correspond to the experimental positions because
of the substantial difference of our potentials along the
symmetric stretching direction due to the harmonic ap-
proximation of the neutral molecule, see the discussion
in Sec. VA of Paper I.

The most obvious difference between the experimental
(Fig. 1) and theoretical (Fig. 5) spectra is the contrast be-
tween continuous character of the experimental spectrum
and the discrete lines at specific energy losses dominating
the theoretical spectrum. This is the effect of using the
harmonic polyads (and their energies) as the final states
in our calculations instead of the Fermi-coupled states.
Let us also remind that the model vibrational frequencies
are ωb = 110 meV, ωg = 2ωb, and ωu = 308 meV, which
originate from the ab initio R-matrix data (Sec. IVC
in Paper I). The frequencies in the case of bending and
symmetric stretching are about 30% larger than the ex-
perimental values and one symmetric stretching quantum
is exactly degenerate with two quanta of bending. The
difference of the frequencies ωs − 2ωb = 0.9 meV does
not explain the continuous character of the experimen-
tal spectrum since the highest polyads N = 30 fitting in
the energy window still have energy spread comparable
to the experimental resolution (Sec. III A). The Fermi
coupling that mixes the states and splits their energies
(Sec. III B) is responsible for the quasi-continuous char-
acter of the spectra. Note that in the energy range of
interest the spectrum comprises of about 8000 states.

B. Spectrum with Fermi-coupled final states

As discussed in Sec. IV and VI of Paper I, we restricted
the model only to harmonic vibrations of the neutral
molecule. The anharmonic terms are included in the dy-
namics of the temporary molecular anion through the de-
pendence of the vibronic coupling matrices U and Vϵ on
the polynomials of the vibrational coordinates. However,
the harmonic states of the neutral CO2 enter the nonlo-
cal term F (E −H0) and the calculation of the T matrix
Eq. (12) through the projection on the final harmonic
vibrational state |vf ⟩.

The first of these two approximations is important in
order for the four-dimensional nonlocal dynamics to be

manageable but the latter one is rather easily corrected
by projecting the anionic wave function on the Fermi-
coupled states |νFR⟩, which are given by the expansion
into the harmonic basis with the coefficients cν [Eq. (6)].
In practice, such a projection to the Fermi-coupled state
leads to the linear combinations of the harmonic T ma-
trices

TνFRµf←νiµi
=

∑︂

ν

cν Tνµf←νiµi
. (15)

The differential cross sections dσνFR←νi
/dΩ(ϵi), given

in Appendix D of Paper I for the harmonic final states,
are then obtained by the same procedure in which the
T matrices Eq. (15) replace the harmonic T matrices
Eq. (12). Note that Rescigno et al. [37] used a simi-
lar procedure with mixing coefficients derived by Denni-
son [58] to compute the excitation of the members of the
Σ+

g Fermi dyad from their population of harmonic states.
The 2D spectrum with the corrected final states is cal-

culated in a straightforward manner using Eq. (14) with
the cross sections dσνFR←νi

/dΩ(ϵi), the anharmonic en-
ergy losses ∆ϵFR, and summed over all νFR. The remain-
ing harmonic approximation inside F (E − H0) should
have a smaller effect since the action of the nonlocal po-
tential contains an average over many states in the har-
monic approximation of H0. The exception will be the
threshold region as discussed below.
Figure 6 shows the calculated 2D spectrum at 135◦ for

the Fermi-coupled final vibrational states. As expected,
the most obvious effect compared to the harmonic spec-
trum (Fig. 5) is the disappearance of the vertical bands
associated with polyads in the deeply inelastic region.
The spectrum also considerably shrinks in the energy-
loss direction because of the 30 % difference of the model
and experimental vibrational frequencies. The vibra-
tional Hamiltonian of Chedin [59] produces energies of
the Fermi-coupled states that are in a very good agree-
ment with spectroscopic data. The employed procedure
corrects only the energy of the final electron. The depen-
dence on the incoming electron is not effected. Therefore,
the corrected 2D spectrum does not respect the thresh-
old diagonal line, which is approximately 30% more steep
and also broken. Also the Wigner cusps seen in some
channels [35] do not have the correct position in our cal-
culation, see the discussion below.
Despite these distortions, the spectrum in Fig. 6 qual-

itatively reproduces the measured spectrum in Fig. 1.
We observe the boomerang rays although their exact po-
sitions are influenced by the distorted shape of the po-
tentials. Both structures of type A and B discovered by
Currell and Comer [13, 14] are present and the fine struc-
ture at high energy losses has the correct shape, see also
the comparison in Fig. 1 in Letter.
The qualitative agreement is even more apparent when

1D spectra are compared, see Fig. 7, where the spectra
for incident energies 3.2, 3.5, 3.8, and 4.1 eV are plotted
in the similar way as the experimental ones in Fig. 2.
The spectra clearly follow the same pattern. At small
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FIG. 6. Calculated 2D electron energy-loss spectrum of CO2 for Fermi-coupled final vibrational states and a scattering angle
of 135◦. The magnified section of the signal (right – shown in linear scale from 0 to 1) focuses on a detail of the high energy
loss features where the fine structure with spacing 25–33 meV is indicated. Structures A and B observed by Currell and
Comer [12–14] are labeled in the main plot.
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FIG. 7. Calculated 1D electron energy-loss spectra for Fermi-coupled final vibrational states and for a scattering angle of 135◦

and incident electron energies 3.2, 3.5, 3.8, and 4.1 eV. The spectra are shown in the logarithmic scale but lines for different
incident energies are arbitrarily shifted with respect to each other. Calculated energies of states within Σ+

g (n, 2m0, 0) and
Πu [n, (2m + 1)1, 0] Fermi polyads (n +m = 0, 1, . . .) are shown. Regions of order, chaos, and order observed by Allan [10]
are labeled by I, II, and III for the 3.8 eV spectrum. The very end of the spectra near the threshold line (dashed parts) is an
artifact of the anharmonic correction of final state energies, see the text.
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energy losses we observe well distinguishable peaks of the
Σ+

g and Πu symmetries, then, a seemingly chaotic region
(region II) occurs at intermediate energy losses, which is
not as pronounced in the theory as it is in the experiment,
and finally, there are broad peaks modulated by the fine
structure with spacing of 25–33 meV at the end of the
spectra. The analysis that reveals the origin of these
features is deferred to the next section. The very end of
the spectra (dashed parts in Fig. 7) is an artifact caused
by the above mentioned inconsistency of the energies in
the dynamics and the corrected energies of the Fermi-
coupled levels. It only affects the near threshold region,
i. e. high energy losses for incident energies in the region
of the 2Πu resonance.

Although the fundamental asymmetric stretching
mode (0, 00, 1) is excited in our model (Figs. 5 and 6),
it is excited by about one order of magnitude less in the
region of the 2Πu resonance than experimental observa-
tions show [35] and is barely not visible in the 1D spec-
tra. Our calculations only include the resonant (discrete-
state) contribution to the vibrational excitation T matrix
but we expect a considerable contribution of the back-
ground scattering to the elastic peak. It would also ex-
plain why the elastic cross section for a high scattering
angle is less excited than the (0, 11, 0) peak.

Before going to the detailed analysis of the spectra, we
also look closer to the region of small initial electron en-
ergies (ϵi < 2.8 eV), which is not covered by the current
experimental data. The threshold region dominantly in-
fluenced by the 2Σ+

g virtual state of CO −2 is visible in
both calculated 2D spectra (Figs. 5 and 6). We would
also like to remind a deficiency of our model that influ-
ences this region. The CO2 molecule acquires a dipole
moment upon bending or asymmetric stretching, which
is not included in our model because the geometry depen-
dence of the threshold exponent of the coupling ampli-
tudes V µ

dϵ would substantially increase the computational
cost of the dynamics. As a result, threshold peaks are not
as sharp and pronounced as in the experiments [34, 35].
The cross sections will be discussed in Sec. VID.

In Fig. 8, we show 1D spectra for fixed final electron
energy (residual energy) of 0.12 and 3.8 eV (diagonal cuts
through the 2D spectrum). The intensity of the excited
peaks does not match perfectly with the experimental
observations of Allan [34, 35] but the calculations quali-
tatively reproduce the selectivity of the low-lying Fermi-
coupled states near the threshold and in the region of
the 2Πu resonance. Compare our Fig. 8 with Fig. 1 in
Ref. [34] and Fig. 2 in Ref. [35]. Allan in Refs. [34, 35]
reached an astonishing resolution of 7 meV. Therefore,
we used the same value in Eq. (14) to produce Fig. 8.
To avoid the above mentioned artifacts near the main
diagonal in the spectrum, we chose slightly higher final
energy (0.12 eV) in Fig. 8 in comparison to 0.05 eV of
Allan [34, 35]. The top members of the polyads are dom-
inantly excited at the threshold because the vibrational
wave function of these members reaches the closest to the
region where the anionic and neutral potentials cross, see
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FIG. 8. Calculated 1D electron energy-loss spectra for fixed
final electron energy of 0.12 eV (lower line) and 3.8 eV (upper
line) and for a scattering angle of 135◦. Some peaks are, for
clarity, cut off. Compare it with experimental results of Allan
shown in Fig. 1 of Ref. [34] and Fig. 2 of Ref. [35].

Vanroose et al. [39], who reproduced such a behavior for
the Σ+

g polyads. The Πu polyads follow the same mech-

anism. At small incident energies, our (0, 11, 0) peak is
suppressed in comparison to the experiment due to the
missing dipole in our model.

VI. ANALYSIS OF THE RESULTS

In Secs. II and V, we have presented the obtained ex-
perimental and theoretical results. Here, we focus on
a further analysis of the calculations to understand the
underlying mechanisms. We start by decomposing the
spectra based on vibrational state symmetries and elec-
tron partial waves. Then, we examine which states within
the vibrational pseudocontinua are dominantly excited
and we describe propensity rules in terms of wave func-
tions. We use the obtained insight to interpret the exper-
imental data and also discuss the angle dependence. We
conclude this part by discussing the energy dependence
of cross sections for low-lying final vibrational states.

A. Dominant vibrational state symmetries

We can decompose the 1D energy-loss spectrum based
on final state symmetries included in our model (Σ+

g , Σ
+
u ,

Πg, Πu, and ∆g), see Fig. 9. The spectrum is almost com-
pletely described by excitation of Σ+

g and Πu vibrational

states, from which the Fermi polyads (n, 2m0, 0) and
[n, (2m + 1)1, 0] dominate. States within Σ+

g (n, 2m0, 2)
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FIG. 9. Decomposition of the calculated 1D electron energy-loss spectrum for a scattering angle of 135◦ and incident electron
energy of 3.8 eV to contributions of individual symmetries of final vibrational states. Panel (a): contributions of Σ+

g , Σ
+
u , and

∆g symmetries. Panel (b): contributions of Πu and Πg symmetries.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Electron energy loss (eV)

10−5

10−3

10−1

S
p
e
c
tr
u
m

(a
rb

.
u
n
it
s)

TheoryCO2

all p± → p± s→ s p± → s s→ p±

FIG. 10. Decomposition of the calculated integral 1D electron energy-loss spectrum for incident electron energy of 3.8 eV
to contributions of individual incoming and outgoing partial waves. Processes p± → p± and s → s leads to excitation of Σ+

g

vibrational states while Πu states are excited when p± → s and s→ p±.

and Πu [n, (2m+1)1, 2] polyads are included in the con-
tributions shown in Fig. 9 but they are negligible as is ap-
parent from the harmonic 2D spectrum in Fig. 5. States
of the ∆g symmetry are moderately excited throughout
most of the spectrum but they are masked by similar
energy dependence of the Σ+

g states. The Σ+
u and Πg

states, containing at least one excitation of the asym-
metric stretching, do not contribute substantially.

The selection rules [43, 44, 61] predict strong excita-
tion of Σ+

g and ∆g vibrational states since they belong
to the symmetrized square of the Πu representation of
the 2Πu resonance2 and the excitation of the Πu symme-
try because the electron leaves as an s wave, see Sec. I.
Overall, the results in Fig. 9 are in accordance with the
selection rules. The mutual ratio of the Σ+

g and ∆g is
the result of the dynamics.

The decomposition of the spectrum to symmetries of
the final states is straightforward since it is just a sepa-
ration of different symmetries in the sum over all states
in Eq. (14). The contributions of the individual electron

2 Characters of the symmetrized square of a representation are
given by [χ2](R) = [χ(R)2 + χ(R2)]/2, where R denotes the
symmetry operation [43].

partial waves are more easily identified in the spectrum
integrated over all scattering angles, which we can cal-
culate also from Eq. (14) by replacing the differential
cross sections dσνFR←νi

/dΩ(ϵi) with the integrated ones

σνFR←νi
(ϵi). This quantity is simply a sum over all com-

binations of the initial and final partial waves µi, µf [see
Eq. (52) in Paper I] while the differential cross sections
also contain interference terms.

Figure 10 shows the dominant contributions to the in-
tegral energy-loss spectrum in terms of incoming and out-
going partial waves. As shown in Table I, to excite the
totally symmetric Σ+

g states, the electron symmetry does
not change during the process and we have four contri-
butions: s → s, pz → pz, p+ → p+, and p− → p−. The
pz → pz process is negligible and p+ → p+ and p− → p−
give the same contribution. In the case of Πu states, there
has to be a change of the angular momentum, thus, they
can be excited via p± → s or s→ p± processes.

The attaching s wave contributes almost equally to the
elastic peak and the (0, 11, 0) peak as the p± waves. The
p± attachment is expected to be dominant since p± are
the principal partial waves of the 2Πu shape resonance.
As we will see below, the Σ+

g virtual state does not sig-
nificantly affect the dynamics at incident energies around
3.8 eV, therefore, the s wave also substantially populates
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the 2Πu resonance. The s wave cannot populate the res-
onance at the equilibrium linear geometry but due to the
delocalized nature of the initial vibrational state |νi⟩, it
attaches through the exponential tails to the Π± discrete
states. Such a weaker attachment is compensated by the
prefactor function vΠs [Eq. (13)], which is also respon-
sible for the rapid broadening of the resonance width of
the lower Renner-Teller component upon bending, see
potentials in Fig. 4(b) and Sec. VB in Paper I.

In Fig. 10, we can also observe a selectivity of the out-
going electron. Independently of the incoming partial
wave, the outgoing s electron dominates over p± electrons
at high energy losses, which is the consequence of Wigner
threshold law [62]. The partial resonance widths 2π|V µ

dϵ|2
behave near the threshold as ϵ(2l+1)/2 with l = 0, 1 for
s, p electrons. Thus, the electron preferentially detaches
from the molecular anion as the s wave at small final
energies.

B. Excitation of individual states and fine structure

We have seen that the Σ+
g (n, 2m0, 0) and Πu [n, (2m+

1)1, 0] Fermi polyads dominate the spectrum. Now, we
pinpoint the states responsible for the observed struc-
tures emerging from the vibrational pseudocontinua.

We can analyze the contribution of individual final
states to the theoretical spectrum in terms of the quantity
⟨νg⟩, see Eq. (7). Figure 11 shows the calculated cross
sections dσνFR←νi

/dΩ(ϵi) entering the sum in Eq. (14)

for the spectrum with the Fermi-coupled states |νFR⟩
grouped into the polyads (full symbols) in combination
with the ⟨νg⟩ values (open symbols). In the case of the
Σ+

g (n, 2m0, 0) polyads [Fig 11(a)], the states from the
end of the polyads are dominantly excited for the lowest
polyads but as the energy loss increases we observe a shift
to excitation of the most linear states (largest ⟨νg⟩). Typ-
ically only two to three states from one polyad are excited
enough to visibly affect the spectrum. The trend is sim-
ilar but to some degree different for the Πu symmetry
[Fig. 11(b)]. The significance of peaks shifts from the
end of the polyads to states at fixed positions (fifth and
sixth states) somewhat in front of the maximum of ⟨νg⟩.

The individual polyads within one symmetry dominate
at different energy-loss ranges and the excitation of the
several consecutive fairly linear states gives rise to the
fine structure, whose energy spacing is not constant but
varies around 25–33 meV. A detail of the fine structure
is also shown in Fig. 4 in Letter.

To understand why only fairly linear states are signif-
icantly excited, we have to look at the wave functions.
In Fig. 4, we have presented the scattered wave func-
tion |Ψ⟩, which illustrates the dynamics even though we
work in the time-independent picture. The initial vibra-
tional state of CO −2 is given by the wave function |Φ⟩
[Eq. (11)], that is, we have Gaussian packets modified
by the coupling amplitude V µi

dϵi
on each potential energy

surface. Then, the wave packets move predominantly

along the symmetric stretching coordinate since only in
this direction there is a nonzero gradient at the equilib-
rium geometry, see the potentials in Fig. 4 in Paper I.
As the anion symmetrically stretches, the wave packets
probe bent geometries too but the anion decays with a
high probability by the electron autodetachment because
of the large resonance width of the lower Renner-Teller
component of the 2Πu resonance. This results in the sig-
nificant suppression of the scattered wave functions at
highly bent configurations in comparison to the vicinity
of the symmetric stretching axis (Fig. 4). But note that
the wave function still fills the energy-allowed region, see
the contours of the lowest adiabatic potential in the top
left panel of Fig. 4 and the potentials in Fig. 4 of Paper I.
The dynamics is also confined in the asymmetric

stretching because the potentials are repulsive in addi-
tion to the missing gradient at the equilibrium geom-
etry. The excitation of vibrational states is controlled
by the T -matrix element Eq. (12), and thus, the states
that have the probability density localized along posi-
tive symmetric stretches are dominantly populated, see
the vibrational wave functions in Fig. 3. Moreover, the
2Σ+

g virtual state has a negligible effect on the spectra
for incident energies above ∼3 eV since the magnitude
of the Σ component |ψΣ⟩ of the anionic wave function
is substantially smaller than the magnitude of the Π±
components (Fig. 4). This was directly confirmed by cal-
culations where the Σ discrete state was absent, see also
Secs. VID and VIIB.
Now, we can confront these findings with the experi-

ment, see Fig. 12 where the full and open symbols rep-
resent the ⟨νg⟩ quantity for states within the Σ+

g and
Πu polyads, respectively. We observe the same trend of
shifting the significance of the states within the polyads.
It is not as clear for the Σ+

g symmetry because the shift
towards the most linear states is somewhat slower and
they soon disappear in the middle ”chaotic” region, but
the Πu states distinctly follow the pattern. This time,
the high energy-loss region (around 3 eV) is dominated
by excitation of states at around the seventh and eighth
positions within the Πu polyads, see the last column in
Fig. 3.
To summarize, the competition of the Σ+

g (n, 2m0, 0)

and Πu [n, (2m+1)1, 0] Fermi polyads explains the shape
of the energy-loss spectra. The peaks are well separated
in region I since the polyads do not overlap (Figs. 2
and 7). The complex region II is given by the overlap-
ping Σ+

g and Πu contributions, which have similar mag-
nitudes. As the energy loss increases the selectivity of the
outgoing s-wave electrons starts to favor the Πu states,
which dominate in region III and are responsible for the
broad peaks. The A and B structures of Currell and
Comer [13, 14] originate from the Σ+

g and Πu contribu-
tions, respectively.
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C. Angular dependence

We also investigated the angular dependence of the
calculated energy-loss spectrum for incident electron en-
ergy of 3.8 eV, see Fig. 13(a). The deeply inelastic region
(above 1.8 eV) is almost independent of the angle, which
is consistent with our interpretation in terms of final Πu

states dominated by the p± → s change of the electron
partial waves, where the outgoing s wave leads to the
isotropic character. To further experimentally verify this
mechanism, we measured the spectrum for the scatter-
ing angles θ = 10◦ and 45◦, see Fig. 13(b). First, we
should explain an experimental artifact with respect to
the data in Fig. 13(b). The analyzer sensitivity for the
recording of slow electrons is very low for small scatter-
ing angles. This is manifested as an artificial cutoff of the
spectrum at near complete energy losses (for θ = 10◦ the
electrons with residual energies below 300 meV are not
recorded, electrons slower than 100 meV are missing for
45◦). The most probable reason for this cutoff is charg-
ing of the analyzer entrance slit by the primary electron
beam. Also note that we normalized the experimental
spectra to coincide at the peak of the Σ+

g Fermi dyad

{(1, 00, 0), (0, 20, 0)}, which is assumed to be relatively
weakly dependent on the angle. The theoretical spectra
are calculated with the same mutual normalization.

Truly, the shape of the experimental broad peaks at
high energy losses (∼3 eV) depends weakly on the scat-
tering angle. For smaller energy losses, the Πu peaks are
suppressed at small angles because the s→ p± transition
contributes while the Σ+

g peaks depend weakly on the an-
gle, which is also consistent with previous measurements
[10, 17–19, 28–33]. The analysis of the experimental spec-
trum for θ = 10◦ in terms of the ⟨νg⟩ quantity, see the
previous section, confirms that the broader peaks at mod-
erate energy losses are of the Σ+

g symmetry centered at
the most linear states.

Overall, we can not expect a good agreement between
our calculations and the experiments for the angular de-
pendence. First, the direct scattering due to the dipole
acquired at distorted geometries, which is not included in
our model, significantly affects the elastic peak (0, 00, 0)
and principal excitation (0, 11, 0) and (0, 00, 1) [17–19].
Second, the R-matrix calculations show (Sec. VC in Pa-
per I) that d- and f -waves strongly contribute to the 2Πu

resonance but we limited the model to the lowest par-
tial waves needed to excite all fundamental modes. As
mentioned in Paper I, our s- and p-wave model includes
higher partial waves in an averaged sense since we fitted
the scattering eigenphase sums and so we expect that
the results will be more accurate for the integral cross
sections rather then the differential ones.

In the experimental spectrum, the fundamental asym-
metric stretching peak (0, 00, 1) is strongly peaked in
the forward direction and we also observe excitation of
the Σ+

u Fermi dyad given by a mixture of harmonic
states (1, 00, 1) and (0, 20, 1). Two quanta of asymmetric
stretching (0, 00, 2) seems to be visible at θ = 10◦ but for

higher angles the (0, 00, 2) peak is hidden under the Πu

triad. On the other hand, we do not observe the (0, 11, 1)
peak of the Πg symmetry for any angle at the incident
energy of 3.8 eV.

D. Cross sections

Hitherto, we have analyzed the 2D spectrum from the
point of view of the electron energy loss. In this section,
we focus on the vibrational excitation cross sections, that
is, 1D profiles along the incident electron energy axis for
fixed energy loss corresponding to energies of individual
final vibrational states of CO2.
Figure 14 shows the differential cross sections for a

scattering angle of 135◦ for excitation of various low-
lying vibrational states of CO2. As expected from the
simplifications used in the model, we find only a qual-
itative agreement with experimental observations [35].
The resonance broad peak at 3–4 eV is modulated by
the boomerang oscillations [4, 60]. As was shown by
Rescigno et al. [37] and we will see it here in Sec. VII,
these oscillations originate from the symmetric stretching
and are dampen by the bending motion. In our calcula-
tions, the oscillations are more pronounced because they
are sensitive to the shape of the potential, which substan-
tially differs from the ab initio potential in our model due
to the employed harmonic approximation for the neutral
molecule, see Fig. 7 in Paper I. The elastic cross section is
about order of magnitude less excited due to the missing
direct background scattering in our calculations.
The excitation and selectivity of the members of the

low-lying Σ+
g Fermi polyads (dyad, triad, . . .) observed

by Allan [34, 35] and discussed here in Sec. V is already
well reproduced by the theory thanks to the work of Mc-
Curdy et al. [36] and Vanroose et al. [39], who treated
the threshold and resonance regions separately. We can
provide a further insight, see Fig. 15, where the cross
sections for the lower (I, ∆ϵ = 0.159 eV) and upper (II,
∆ϵ = 0.172 eV) members of the Σ+

g dyad are shown
[Fig. 15(a)], in combination with the harmonic states
(1, 00, 0) and (0, 20, 0) that these members comprise of
[Fig. 15(b)]. Except for the missing sharp threshold peak
of the upper member, the general shape is well repro-
duced. The process s → s (dashed lines) overall dom-
inates over p± → p± (the difference between full and
dashed lines) and it contributes to the cross sections to
both harmonic states, which results in the observed can-
cellation of the cross section for the lower member in the
low to middle region [34] in comparison to Refs. [36, 37].
Despite the interesting topology of the 1 2A1 and 2 2A1

potentials upon bending (Sec. V in Paper I), we do not
observe any related effects in the region of the 2Πu reso-
nance, see dotted lines in Fig. 15, which were calculated
without the Σ discrete state (all relevant parameters were
set to zero). Without the Σ state, the lower Renner-Teller
component is connected with the nonlinear minimum and
the surfaces behave similarly to the model of McCurdy

73



16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Electron energy loss (eV)

10−4

10−2

100

S
p
ec
tr
u
m

(a
rb

.
u
n
it
s)

CO2 ϵi = 3.8 eV Theory
(a)

θ = 10◦ θ = 45◦ θ = 135◦

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Electron energy loss (eV)

10−4

10−2

100

S
p
ec
tr
u
m

(a
rb

.
u
n
it
s)

CO2 ϵi = 3.8 eV Experiment

(
0
,
0
0
,
0
)

(
0
,
1
1
,
0
)

(
0
,
0
0
,
1
) (0, 0

0
, 2)

(0, 1
1
, 1)

{

{(1, 00, 1), (0, 2
0
, 1)}

(b)
θ = 10◦ θ = 45◦ θ = 135◦

FIG. 13. Dependence of the electron energy-loss spectra at incident electron energy of 3.8 eV on the scattering angle θ for the
calculations (Panel a) and the experiment (Panel b).

et al. [36] (Figs. 6 and 8 in Paper I). The region where
the 1 2A1 potential crosses (or rather merges with) the
neutral potential is important at very low incident ener-
gies (Fig. 15). For higher polyads n+m ≥ 2, oscillatory
structures appear in the cross sections [35, 39]. In our
calculations, we also observe such structures (visible in
the 2D spectra in Figs. 5 and 6) but again their precise
position is not reproduced due to the missing dipole and
too large vibrational frequencies in the dynamics.

VII. SENSITIVITY OF THE RESULTS TO
MODEL PARAMETERS

A. Sensitivity to values of parameters and fitting

Here, we conclude the discussion from Paper I (Sec. V)
about the model construction and sensitivity of the cal-
culations to the model parameters.

The construction of a discretes-state-in-continuum
model is inherently ambiguous because the discrete states
are not uniquely defined. The ambiguity remains even
though we have not constructed the model directly using
the projection-operator approach [63], but we obtained
the model parameters from ab initio eigenphase sums
and potential energies. To validate the calculations, we
constructed three models (Models 1, 2, 3) with the same
parameter form but with different values. All presented
results were calculated using Model 1, whose parame-
ter values are given in Appendix C of Paper I. Model 2
behaves in the same way as Model 1, that is, the role of
individual model parameters is analogous to Model 1, for
which we discussed it in Sec. V of Paper I.

In these two models, the direct coupling λ of the Σ and
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FIG. 14. Differential cross sections for vibrational excitation
of CO2 from initial state (0, 00, 0) to final states: (0, 00, 0),
(0, 11, 0), (0, 00, 1), (0, 22, 0), (0, 11, 1), and (0, 00, 2).

Π± states have a small effect on the potential energy sur-
faces (Fig. 8 in Paper I). The primary effects upon bend-
ing (broadening of the lower Renner-Teller state, forma-
tion of the nonlinear minimum) are related to the indi-
rect coupling through the s-wave continuum described by
the parameter vΠs. Since we can not distinguish between
these two types of the coupling, we managed to construct
Model 3 where the role of the parameters λ and vΠs is
to a large degree interchanged. Model 3 does not repro-
duce the ab initio eigenphase sums as well as Models 1
and 2 but still it reproduces them to a satisfactory level.
However, we found that Model 3 is not consistent with
the ab initio K matrix because the role of partial waves
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g
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(0, 20, 0) in Panel (b). Solid lines, full 4D calculations; dashed
lines, contribution of incoming s wave for 4D dynamics; dot-
ted lines, calculations without the Σ+

g virtual state and with-
out asymmetric stretching motion.

s and p is interchanged, see Sec. VC in Paper I for the
case of Model 1.

Models 1 and 2 produce very similar spectra at the
region of the 2Πu resonance, see Fig. 16. There is some
quantitative difference for smaller incident energies but
qualitatively both models behave the same. In the case
of Model 3, the spectra for all final states do not look
too different but contributions of individual final state
symmetries differ more substantially. Because of the in-
consistency with the R-matrix data, we do not consider
Model 3 to be physically relevant.

B. Dimensionality and electronic states

It is interesting to investigate the effect of freezing some
of vibrational modes, which can be easily achieved in our
model by reducing the basis in the corresponding dimen-
sion only to one state and setting appropriate parameters
to zero. Such a reduction of the dimensionality is demon-
strated for the elastic scattering in Fig. 17 and for the
excitation of (1, 00, 0), (0, 20, 0), (0, 11, 0), and (0, 22, 0)
harmonic states in Fig. 18, where also contributions of
the individual incoming partial waves are shown when
nonzero. The excitation of (0, 22, 0) can only proceed via
p± → p∓. We cannot perform 1D dynamics for pure
asymmetric stretching motion, see below.

Upon pure symmetric stretching the threshold and res-
onance regions are well separated because the s wave
cannot interact with the resonance. The boomerang os-

cillations originate in the symmetric stretching motion
and are dampen by the broad resonance as the anion
bends [36, 37]. Moreover, the oscillations only occur if
the electron comes in as p+ or p−. When the incom-
ing electron is of the s-wave character, the formation of
the 2Πu state forces the molecule to bend and the wave
packet traveling along the symmetric stretch axis is a
subject of the broader decay width. As a consequence,
the oscillations of the anionic wave function along this
axis are significantly suppressed (Fig. 4).
The whole dynamics is driven by the symmetric

stretching vibrations because of the nonzero gradient.
The pure bending motion leads to the cross sections with
a structureless 2Πu peak, which is typically narrower and
higher than the one in the case where the symmetric
stretching is present. These results are similar to results
of Laporta et al. [42] who performed 1D LCP calcula-
tions in each vibrational mode separately. In our model,
we cannot perform 1D dynamics of the 2Πu doublet for
pure asymmetric stretching motion because the pz wave
couples to the Π± discrete states only at combined asym-
metrically stretched and bent geometries, see Eq. (13).
Such 1D calculations are possible for an incoming d-wave
electron, which is not included in our model.
Nevertheless, we do not expect 1D calculations of the

vibrational motion in nontotally symmetric modes of
polyatomic molecules to be appropriate in general. For
such modes, potentials are even functions of the corre-
sponding vibrational coordinates, that is, they possess
no gradients at the equilibrium. They can play a key
role as the bending does in the case of CO2 but the dy-
namics in these modes alone is probably not sufficient.
Moreover, if neutral and anionic potentials are close to
being parallel and there is no symmetry breaking mech-
anism, the cross sections are strongly influenced by the
fact that the neutral and anionic vibrational states for
different quanta are almost orthogonal to each other. We
are convinced that this is the origin (not the boomerang
effect) of structures in the cross sections upon asymmet-
ric stretching presented in Ref. [42].

VIII. CONCLUSION

In conclusion, we summarize our join experimental and
theoretical work on the vibrational excitation of CO2 by
slow electrons and we also discuss possible future im-
provements. The study comprises of our Letter [49] that
outlines the primary results, the description of the the-
oretical model Ref. [50], and the detailed analysis of the
results presented in this paper.
The theoretical work was motivated by three open

challenges in the low-energy electron-molecule scatter-
ing. The first of them was the unexplained shape of the
energy-loss spectra and the discovery of the fine structure
with ∼30 meV spacing in our high-resolution 2D spec-
trum. The second challenge was the absence of the the-
oretical treatment of the interaction of the near thresh-
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old 2Σ+
g virtual state with the 2Πu resonance pointed

out by Sommerfeld et al. [64] and hinted in experiments
by Allan [34, 35]. The last challenge was posed by the
lack of development in the treatment of electron-molecule
scattering by the nonlocal discrete-state-in-continuum
model for polyatomic molecules including the vibronic
coupling. The importance of the direct and indirect
(through electron continuum) vibronic coupling was an-
alyzed by Gallup [43]. However, only the direct vibronic
coupling was previously included in the model study of
2D nonlocal dynamics by Estrada et al. [65] and in LCP
calculations, e.g., by McCurdy et al. [36] for the e+CO2

system (see also the introduction of Ref. [50]).

On the experimental side, we have presented the 2D
energy-loss spectrum measured at the scattering angle of
135◦ with the energy resolution of 18 meV and to almost
complete energy loss, in combination with additional 1D
cuts for fixed incident energies at 10◦, 45◦, and 135◦. The
nuclear dynamics of the CO −2 anion was modeled in the
full vibrational dimensionality and in the presence of the
2Σ+

g virtual state and the 2Πu shape resonance coupled
upon bending. We also included the vibronic coupling of
these states to four electron partial waves s, pz, p±, which
is the minimum set needed to explain the symmetries of

all observed energy-loss peaks in the region up to 5 eV.

The inclusion of the vibronic coupling of the 2Πu res-
onance to the s-wave electron continuum is the most im-
portant aspect of the current model in comparison with
previous calculations. It allows excitation of 2Πu vibra-
tional states of CO2, which have been found to dominate
the highly inelastic region of the spectrum and their com-
petition with 2Σ+

g states explains the shape of the spec-
trum. Only vibrational states that are localized in the
vicinity of the symmetric stretching axis are significantly
excited because the s-wave coupling causes an effective
decay of the molecular anion at highly bent geometries.
This selective mechanism gives rise to the observed fine
structure with ∼30 meV spacing.

The interpretation of the fine structure by identifica-
tion of the specific states from the quasi-continuum of
energetically available final states is one of the primary
successes of our model. Another achievement is the vi-
brationally complete description of the dynamics, which
allows the prediction of all vibrational transitions experi-
mentally observed. Moreover, the anionic wave functions
(apart from giving aesthetic pictures) provide a further
insight and interpretation for the results. The calcula-
tion also gives access to splitting of the dynamics based
on irreducible representations of the molecular symmetry
group and electron partial waves. Moreover, the possibil-
ities of simplifying the dynamics were tested. This aspect
may be important for treatment of larger molecules. In
the case of CO2, we have seen that the dynamics is driven
by the symmetric stretching but the bending is important
as well since it couples the states and partial waves. On
the other side, the asymmetric stretching motion can be
left out unless we are specifically looking into excitation
of the energy-loss peaks associated with excitation of this
motion. We have also discussed energy regions where the
2Σ+

g state or the 2Πu doublet can be omitted.

To achieve not only a qualitative but also quantitative
agreement with the experimental data, several improve-
ments of the model should be considered in the future.
The most straightforward step is improving the quality
of the potential energy surfaces. However, it is difficult
to reach a better correlation in the fixed-nuclei electron
scattering to have a consistent set of data for the con-
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FIG. 18. Effect of the dimensionality of the dynamics on the integral cross sections for vibrational excitation of CO2

from (0, 00, 0) to four final harmonic states: (1, 00, 0), (0, 20, 0), (0, 11, 0), and (0, 22, 0) (in rows). First column, full 4D
dynamics; second column, 1D dynamics in pure symmetric stretching for (1, 00, 0) and 2D dynamics in pure bending for
(0, 20, 0), (0, 11, 0), and (0, 22, 0); third column, 3D dynamics without asymmetric stretching and without the Σ discrete state.
Solid lines, contribution of all incoming electron partial waves; dashed lines, contribution of incoming s wave; dotted lines,
contribution of incoming p± waves; dot-dashed lines, contribution of incoming pz wave.

struction of the model. The harmonic approximation for
the neutral vibrations should also be lifted to include
the Fermi resonance directly into the dynamics. Fur-
thermore, the inclusion of the dipole moment emerging
upon bending and asymmetric stretching is necessary to
precisely reproduce the threshold region and probably d-
and f -waves are needed to improve the dependence on
the scattering angle. The incorporation of the O− + CO
dissociation channel that opens around 4 eV into the nu-
clear dynamics is the ultimate but computationally chal-
lenging goal since the dissociation proceeds via a conical
intersection of the 2Πu resonance with another state of

the 2Πg symmetry that is connected to the dissociation
asymptote [66].
In the future the present approach can also be applied

to other linear molecules, for example CS2, N2O or to
larger molecules with fixing some degrees of freedom.
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latory structures in resonant vibrational excitation cross-
sections in diatomic molecules, Chem. Phys. 347, 250
(2008), ultrafast Photoinduced Processes in Polyatomic
Molecules.

[61] G. A. Gallup, Selection rules for vibrational energy loss
by resonant electron impact in polyatomic molecules,
Phys. Rev. A 34, 2746 (1986).

[62] E. P. Wigner, On the Behavior of Cross Sections Near
Thresholds, Phys. Rev. 73, 1002 (1948).

[63] W. Domcke, Theory of resonance and threshold effects
in electron-molecule collisions: The projection-operator
approach, Phys. Rep. 208, 97 (1991).

[64] T. Sommerfeld, H.-D. Meyer, and L. S. Cederbaum, Po-
tential energy surface of the CO −

2 anion, Phys. Chem.
Chem. Phys. 6, 42 (2004).

[65] H. Estrada, L. S. Cederbaum, and W. Domcke, Vibronic
coupling of short-lived electronic states, J. Chem. Phys.
84, 152 (1986).

[66] A. Moradmand, D. S. Slaughter, D. J. Haxton, T. N.
Rescigno, C. W. McCurdy, T. Weber, S. Matsika, A. L.
Landers, A. Belkacem, and M. Fogle, Dissociative elec-
tron attachment to carbon dioxide via the 2Πu shape
resonance, Phys. Rev. A 88, 032703 (2013).

79



80



Chapter 3

Vibronic dynamics with
dissociative channel

In the previous chapter, we presented the feasibility of the vibronic dynamics
for three discrete states and all vibrational modes of a triatomic linear molecule.
However, as we mentioned in Sec. 1.3.2, even 2D vibronic dynamics can produce
some features observed in 2D energy-loss spectra of larger polyatomic molecules,
where we cannot hope for the inclusion of all vibrations at least in the near future.
The geometry-dependent coupling of the discrete states to electron partial waves
showed to be a crucial aspect of the model for the e+ CO2 system, but its general
importance is not clear. Similarly, the interaction of multiple electronic states
contributing to the DEA process is worth investigating because it seems to affect
biological systems in a significant way [2, 3].

We present a model for 2D vibronic dynamics with an arbitrary number of
discrete states and electron partial waves. The implementation of the e + CO2
dynamics is tailored to the constructed model and is not easily modifiable for other
cases. Our goal is to have a rather simple model that can qualitatively describe
a broad class of systems, therefore, we consider only two vibrational modes but
lift some approximations made for CO2. Potentials tend to be anharmonic or even
dissociative along coordinates of totally symmetric modes. On the other hand, the
potentials are even functions of nontotally symmetric vibrational coordinates and
often times they can be well approximated by the harmonic potential. We thus
consider one general mode, in which the anion will be allowed to dissociate, and
one harmonic mode. Further, we do not a priori assume any particular symmetry
of the vibrations nor the discrete states. The implementation is general and the
symmetry is introduced for specific applications of the model by the dependence
of the Hamiltonian elements on the vibrational coordinates. In this chapter we
describe the general model, which is applied to the pyrrole molecule in Chapter 4,
but a systematic study of the 2D vibronic dynamics goes beyond the scope of this
thesis.

The description of the dynamics still follows the general discrete-states-in-
continuum model outlined in Sec. 1.2. Here, we define the parametrization of
the model functions, that is, we define the neutral vibrational Hamiltonian H0,
the matrix U of the direct coupling of the discrete states and their energies with
respect to the threshold V0, and the matrix Vϵ describing the coupling between
the discrete states and electron partial waves.
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3.1 Hamiltonian H0 and basis for the anion
We consider a two-dimensional motion of nuclei described by coordinates Q1
and Q2. The shape of the neutral potential in Q1 [V (1)

0 (Q1) below] can be
arbitrary (anharmonic, dissociative) but we limit the Q2 coordinate to describe
only a harmonic mode. In order to reduce computational demands, we further
assume that the neutral 2D Hamiltonian H0 is a sum of 1D Hamiltonians:

H0 = H
(1)
0 +H

(2)
0 = − 1

2µ1

∂2

∂Q2
1

+ V
(1)

0 (Q1) − 1
2ω2

∂2

∂Q2
2

+ 1
2ω2Q

2
2, (3.1)

where µ1 is the reduced mass of mode 1, and ω2 is the vibrational angular frequency
of the harmonic mode (mode 2).

Consequently, neutral vibrational wave functions |χn⟩ [n ≡ (n1, n2)] given as
solutions of Eq. (1.5) are separable:

|χn⟩ = |χ(1)
n1 ⟩|χ(2)

n2 ⟩ (3.2)

with energies
En = E(1)

n1 + E(2)
n2 = E(1)

n1 + ω2

(︃
n2 + 1

2

)︃
, (3.3)

where |χ(2)
n2 ⟩ are the familiar oscillator functions [86] and we can find the |χ(1)

n1 ⟩
states using the discrete variable representation (DVR) method with a Fourier
sine basis [87].

In the case of CO2, we restricted the molecule only to harmonic vibrations
and expressed the anionic Hamiltonian and wave functions in the oscillator basis.
However, the oscillator basis is not convenient for the description of the dissociation.
We could use the |χ(1)

n1 ⟩ states, which include the discretized continuum [87],
as a basis for mode 1 and rewrite the Schrödinger equation Eq. (1.3) to the
corresponding Lippmann-Schwinger equation as in the case of 1D dynamics, see
Ref. [18, ch. 4]. Then, the Green’s function for the local problem enforces the
outgoing boundary condition. We decided for another approach. We employ the
grid method developed by Rescigno and McCurdy [88] that is based on the finite
element method (FEM) and the DVR method in combination with the exterior
complex scaling (ECS) to deal with the boundary condition.

In the FEM DVR method [88], the interval where the wave function is to be
found is divided into elements (subintervals). In each element we have a basis of
linearly independent local functions, Lobatto shape functions, which are associated
with DVR grid points generated by the Gauss-Lobatto quadrature. Adjacent
elements are connected by so-called bridge functions. In total, we have a set of
orthonormal functions |ϕ(1)

n1 ⟩ that correspond to grid points xn1 . Thanks to the
finite elements, such a grid is very flexible since various density of points can
be easily achieved for different parts of the grid. In addition, we also have the
property of the DVR methods that local potentials are represented by diagonal
matrices:

⟨ϕ(1)
n1 |g(Q1)|ϕ(1)

m1⟩ ∼= g(xn1)δn1m1 . (3.4)
The matrix of the kinetic energy operator expressed in this basis is almost block
diagonal (i.e. sparse) because blocks for two adjacent elements overlap only at
one point thanks to the bridge functions.
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Dissociative channels in the DEA process are described by asymptotes of the
discrete-state potentials V0 +Udd. Then, the corresponding vibrational components
|ψd⟩ of the scattered wave function |Ψ⟩, which satisfies the Schrödinger equation
Eq. (1.3), are purely outgoing waves

ψd(Q1, Q2) ∼
Q1→∞

eikQ1 , (3.5)

where k is the channel momentum. We discuss the boundary condition more
precisely in Sec. 3.4. In the ECS approach, a part of the FEM DVR grid for large
distances is rotated to the upper half of the complex plane, which results in an
exponential decrease of the wave function and we do not have to explicitly enforce
the boundary condition. Note that anionic potentials that dissociate either as
Q1 → −∞ or even Q1 → ±∞ can also be used. For Q1 → −∞, we rotate the
beginning of the grid to the lower half of the complex plane. The implementation
of the FEM DVR ECS method was provided by Karel Houfek [89] and further
details can be found in Ref. [88].

To summarize, we expand the vibrational components |ψd⟩ of |Ψ⟩ in the basis
of the FEM DVR ECS functions |ϕ(1)

n1 ⟩ for mode 1 and in the basis of the harmonic
oscillator functions |χ(2)

n2 ⟩ for mode 2:

|ψd⟩ =
∑︂
n1,n2

ψdn1n2 |ϕ(1)
n1 ⟩|χ(2)

n2 ⟩, d = 1, . . . , Nd, (3.6)

where ψdn1n2 are the expansion coefficients.
The Hamiltonian H0 given by Eq. (3.1) acts in a simple way on the vibrational

components |ψd⟩:

(H0ψd)m1m2
≡ ⟨ϕ(1)

m1|⟨χ(2)
m2|H0|ψd⟩ =

∑︂
n1n2

⟨ϕ(1)
m1|⟨χ(2)

m2|H0|ϕ(1)
n1 ⟩|χ(2)

n2 ⟩ψdn1n2

=
∑︂
n1n2

(︂
⟨ϕ(1)

m1|H(1)
0 |ϕ(1)

n1 ⟩δm2n2 + δm1n1⟨χ(2)
m2|H(2)

0 |χ(2)
n2 ⟩

)︂
ψdn1n2

=
∑︂
n1

T (1)
m1n1ψ

d
n1m2 + V

(1)
0 (xm1)ψdm1m2 + ω2

(︃
m2 + 1

2

)︃
ψdm1m2 ,

(3.7)

where T (1)
m1n1 is the matrix of the kinetic energy operator for mode 1 in the FEM

DVR ECS basis [88] and we used the DVR property Eq. (3.4) for the V (1)
0 (Q1)

potential.

3.2 Matrices U and Vϵ

In the model for CO2, we restricted all elements of the Hamiltonian to low-order
polynomials in the vibrational coordinates. Here, we lift this restriction for mode 1.
We parametrize the elements of the matrix U in the following way

Udd′(Q1, Q2) =
∑︂
j

u jdd′(Q1)Q
p j

dd′
2 , d, d′ = 1, . . . , Nd, (3.8)

where u jdd′ can be arbitrary functions of the Q1 coordinate and p jdd′ are integers.
In other words, the elements are polynomials in Q2 with arbitrary Q1-dependent
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coefficients. If Q2 does not describe a totally symmetric mode, the molecular
symmetry typically restricts the polynomials to be even or odd.

The elements of the discrete-state-continuum coupling Vϵ are also functions of
electron energy ϵ. The coordinate dependence is parametrized in the same way as
above:

V µ
dϵ(Q1, Q2) =

∑︂
j

gµdj(Q1)Q
pµ

dj

2 ξµdj(ϵ), (3.9)

and we assume the Wigner threshold behavior [90] with an exponential cutoff for
the energy parts [8]:

ξµdj(ϵ) = (βµdjϵ)
αµ

dj exp(−βµdjϵ). (3.10)
Threshold exponents αµdj and exponential parameters βµdj are still kept constant to
simplify the evaluation of F (E −H0).

When the molecule has a dipole moment, the threshold exponent α becomes
coordinate dependent [85]. Thus, the current parametrization does not allow
the inclusion of the dipole moment unless the corresponding term in V µ

dϵ is in
advance approximated by a sum of separable terms in coordinates and energy.
For the critical dipole moment, the threshold exponent becomes zero resulting
in a finite resonance width at the threshold [8]. Moreover, the width oscillates
with increasing frequency as ϵ → 0 for supercritical dipoles reflecting the fact that
there is an infinite number of dipolar bound states of the electron-molecule system
with energies exponentially converging to the threshold [8, 91]. However, α = 0
can be a good approximation even for supercritical dipoles because the oscillatory
character primarily affects a very close vicinity of the threshold comparable to the
energy of the rotational splitting [91], see also Refs. [36, 37] where the authors
considered α = 0 for HNCO. Without a dipole we have α = (2l + 1)/4 for the
electron partial wave µ = (l,m) [90].1

Considering the U term as an operator, it acts on the full wave functions |Ψ⟩
as follows

(UΨ)dm1m2
≡ ⟨d|⟨ϕ(1)

m1 |⟨χ(2)
m2|U |Ψ⟩ =

∑︂
d′

∑︂
n1n2

⟨ϕ(1)
m1|⟨χ(2)

m2 |Udd′ |ϕ(1)
n1 ⟩|χ(2)

n2 ⟩ψdn1n2

=
∑︂
d′

∑︂
n2

∑︂
j

u jdd′(xm1)⟨χ(2)
m2 |Qp j

dd′
2 |χ(2)

n2 ⟩ψd′

m1n2 ,
(3.11)

where the DVR property Eq. (3.4) was used again. The Q2 coordinate is given in
the oscillator basis by the tridiagonal matrix [86]

⟨χ(2)
m2|Q2|χ(2)

n2 ⟩ = 1√
2
(︂√

n2 δm2n2−1 +
√
n2 + 1 δm2n2+1

)︂
, (3.12)

which are multiplied to get higher powers of Q2.
To calculate the right-hand part of the Schrödinger equation Eq. (1.3) and the

VE T matrix Eq. (1.9), we need to act by the elements of Vϵ on the vibrational
components |ψd⟩. Similarly to U we get

(V µ
dϵψd)m1m2

≡ ⟨ϕ(1)
m1|⟨χ(2)

m2|V µ
dϵ|ψd⟩ =

∑︂
n1n2

⟨ϕ(1)
m1|⟨χ(2)

m2|V µ
dϵ|ϕ(1)

n1 ⟩|χ(2)
n2 ⟩ψdn1n2

=
∑︂
n2

∑︂
j

gµdj(xm1)⟨χ(2)
m2|Q

pµ
dj

2 |χ(2)
n2 ⟩ξµdj(ϵ)ψdm1n2 .

(3.13)

1Note that resonance widths depend on V µ
dϵV

µ
d′ϵ, see Eq. (19b) in Sec. 2 II C, resulting in the

threshold behavior ϵ(2l+1)/2.
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3.3 Nonlocal operator F (E − H0)
The evaluation of the action of the nonlocal operator F (E −H0) on the full wave
function |Ψ⟩

(FΨ) dm1m2 ≡ ⟨d|⟨ϕ(1)
m1|⟨χ(2)

m2 |F (E −H0)|Ψ⟩
=
∑︂
d′

∑︂
n1,n2

⟨ϕ(1)
m1|⟨χ(2)

m2|Fdd′(E −H0)|ϕ(1)
n1 ⟩|χ(2)

n2 ⟩ψd′

n1n2
(3.14)

is the most complicated step. The discrete-state elements of F (E −H0) are given
by Eq. (1.7). By substituting the spectral decomposition [see Eqs. (3.2) and (3.3)]

H0 =
∑︂
k1k2

|χ(1)
k1 ⟩|χ(2)

k2 ⟩Ek1k2⟨χ(1)
k1 |⟨χ(2)

k2 | (3.15)

into Eq. (1.7), we obtain

Fdd′(E −H0) =
∑︂
µ

∑︂
k1,k2

∫︂
dϵ V µ

dϵ|χ
(1)
k1 ⟩|χ(2)

k2 ⟩ (E − Ek1k2 − ϵ+ iη)−1 ⟨χ(1)
k1 |⟨χ(2)

k2 |V µ∗
d′ϵ .

(3.16)
When Eq. (3.16) is substituted into Eq. (3.14), the resulting formula contains
matrix elements of V µ

dϵ and V µ
d′ϵ, which can be written using the general form of

the V µ
dϵ functions [see Eq. (3.9)] as

⟨ϕ(1)
m1|⟨χ(2)

m2|V µ
dϵ|χ

(1)
k1 ⟩|χ(2)

k2 ⟩ =
∑︂
j

gµdj(xm1)⟨ϕ(1)
m1|χ(1)

k1 ⟩⟨χ(2)
m2|Q

pµ
dj

2 |χ(2)
k2 ⟩ξµdj(ϵ), (3.17)

⟨χ(1)
k1 |⟨χ(2)

k2 |V µ
d′ϵ|ϕ(1)

n1 ⟩|χ(2)
n2 ⟩ =

∑︂
j′
gµd′j′(xn1)⟨χ(1)

k1 |ϕ(1)
n1 ⟩⟨χ(2)

k2 |Q
pµ

d′j′
2 |ϕ(2)

n2 ⟩ξµd′j′(ϵ), (3.18)

where we also assumed that V µ
dϵ are real.

In total, we get

(FΨ) dm1m2 =
∑︂
µ

∑︂
j

gµdj(xm1)
∑︂
k1

⟨ϕ(1)
m1|χ(1)

k1 ⟩
∑︂
k2

⟨χ(2)
m2|Q

pµ
dj

2 |χ(2)
k2 ⟩

×
∑︂
d′

∑︂
j′
fµdd′jj′(E − Ek1k2)

×
∑︂
n1

⟨χ(1)
k1 |ϕ(1)

n1 ⟩gµd′j′(xn1)
∑︂
n2

⟨χ(2)
k2 |Q

pµ

d′j′
2 |χ(2)

n2 ⟩ψ d′

n1n2 ,

(3.19)

where the energy-dependent term fµdd′jj′(E − Ek1k2) is given by

fµdd′jj′(E − Ek1k2) =
∫︂

dϵ ξµdj(ϵ)(E − Ek1k2 − ϵ+ iη)−1ξµd′j′(ϵ)

=
(︂
βµdj
)︂αµ

dj
(︂
βµd′j′

)︂αµ

d′j′

[︄
v.p.

∫︂ ∞
0

dϵϵ
αe−βϵ

t− ϵ
− iπe−βt

]︄ (3.20)

with α ≡ αµdj + αµd′j′ , β ≡ βµdj + βµd′j′ , t ≡ E −Ek1k2 , and η is positive infinitesimal.
In the formula above, we split the integrand into the real and imaginary parts
using the relation (x+iη)−1 = v.p. x−1 −iπδ(x), where v.p. is the Cauchy principal
value and δ(x) is the Dirac δ distribution.
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The integral

I(t, α, β) ≡ v.p.
∫︂ ∞

0
dϵϵ

αe−βϵ

t− ϵ
(3.21)

can be calculated [18, 92] in terms of the exponential integral Ei(x), the gamma
function Γ(x), the upper incomplete gamma function Γ(s, x), and the confluent
hypergeometric function 1F1(a, b, x), see Abramowitz and Stegun [93, p. 227, 255,
260, 504] and also Ref. [18, p. 149]:

I =

⎧⎪⎨⎪⎩
e−βt Ei(βt) for α = 0,
−Γ(1 + α)(−t)αΓ(−α,−βt)e−βt for α > 0, t < 0,
tαe−βt [π cotαπ − Γ(α)(βt)−α1F1(−α, 1 − α, βt)] for α > 0, t > 0.

(3.22)
The action of F (E −H0) on |Ψ⟩ via Formula (3.19) can be viewed as a mul-

tiplication of the coefficient vector ψd′
n1n2 by three sparse matrices (and summed

over the partial waves µ). The first and third matrices [first and third lines in
Eq. (3.19)] originate in coordinate-dependent parts of the coupling terms V µ

dϵ and
the transformation between the FEM DVR basis and the basis of the H(1)

0 states
for mode 1. This transformation matrix ⟨ϕ(1)

m1|χ(1)
k1 ⟩ can be easily obtained using

⟨ϕ(1)
m1|χ(1)

k1 ⟩ =
∫︂
ϕ(1)
m1(x)χ(1)

k1 (x)dx ∼=
∑︂
j

ϕ(1)
m1(xj)χ(1)

k1 (xj)wj = χ
(1)
k1 (xm1)√wm1 ,

(3.23)
where we approximate the integral by the Gauss-Lobatto quadrature with weights
wj and use the property of the basis functions evaluated at the grid points
ϕ(1)
m1(xj) = δm1j/

√
wj [88]. Note that this matrix is in general full within the

one-dimensional subspace for mode 1.
The middle matrix [second line in Eq. (3.19)] is energy dependent and it can

be calculated once for each incident electron energy and stored for all iterations.
Also note that the third matrix is independent of indices d, j, and especially,
m1 and m2. As a result, the asymptotic complexity of the action of F (E −H0)
and also of the full Hamiltonian H is O(N2

dNpN1N2N
0
1 ), where Nd, Np, N1, N2,

and N0
1 are numbers of the discrete states, electron partial waves, basis functions

for modes 1 and 2, and vibrational states of H(1)
0 , respectively. The size of the

coefficient vector is N = NdN1N2. In comparison with CO2, where we achieved the
complexity O(N), we have here O(N1

0N) because the basis functions for mode 1
are not eigenfunctions of H(1)

0 . Possible improvements for the evaluation of the
Hamiltonian are discussed in Sec. 3.7.

To numerically check the implementation of F (E −H0), we also implemented
its action in the x-representation (arbitrary grids for both modes). Analogically
to the derivation above, we find

(FΨ)d(Q1, Q2) =
∑︂
µ

∑︂
j

gµdj(Q1)Q
pµ

dj

2
∑︂
k1

χ
(1)
k1 (Q1)

∑︂
k2

χ
(2)
k2 (Q2)

×
∑︂
d′

∑︂
j′
fµdd′jj′(E − Ek1k2)

×
∫︂

dQ′1
∫︂

dQ′2 g
µ
d′j′(Q′1)Q

pµ

d′j′
2 χ

(1)
k1 (Q′1)χ

(2)
k2 (Q′2)ψd′(Q′1, Q′2),

(3.24)

which can be compared with the result of Eq. (3.19) evaluated at some point
(Q1, Q2). The integrals above can be calculated by the trapezoidal rule.
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3.4 Cross section for dissociative electron attach-
ment

The integral cross sections for the VE process are given by Formula (1.8). The
differential cross sections could be calculated analogically to the CO2 case, see
Sec. 2 VI. Here, a formula for the integral DEA cross section is derived. We
proceed similarly to Houfek et al. [94, 95] by considering the flux projected on
final channels.

The discrete-state potentials V0 + Udd (d = 1, . . . , Nd) that are bound as
Q1 → ∞ describe different electronic states of the DEA fragments A− +B. Thus,
we can have up to Nd open electronic channels. Furthermore, we have to still
consider vibrations within the Q2 mode, which is nondissociative. As a result, the
boundary condition for the scattered wave function ψd of each open electronic
channel reads

ψd(Q1, Q2) −→
Q1→∞

∑︂
ν̃f

fDEA
dν̃f←νi

χ̃dν̃f
(Q2)

√︄
2µ1Kdν̃f

π
Q1h

(1)
0 (Kdν̃f

Q1), (3.25)

where the energy normalization is used, h(1)
0 (x) is a spherical Hankel function of

the first kind [93], Kdν̃f
is the relative momentum of the fragments, fDEA

dν̃f←νi
is the

scattering amplitude (νi describes the initial vibrational state of the molecule),
and χ̃dν̃f

(Q2) are vibrational states within the asymptotic anionic potential, that
is, they satisfy{︂

T
(2)
N + lim

Q1→∞
[V0(Q1, Q2) + Udd(Q1, Q2)]

}︂
χ̃dν̃f

(Q2) = Edν̃f
χ̃dν̃f

(Q2), (3.26)

where the kinetic energy operator for mode 2 T (2)
N is defined in Eq. (3.1). The

momentum Kdν̃f
is given by the conservation of the total energy E

E = ϵi + Eνi
= Edν̃f

+
K2
dν̃f

2µ1
. (3.27)

Depending on the angular momenta of the incoming electron partial wave and
the electronic states of the molecule and fragments, we should also consider higher
partial waves h(1)

l in Eq. (3.25) to conserve the total angular momentum. For
simplicity, we here neglect the rotational motion of the fragments and we consider
only the s wave h(1)

0 in the boundary condition.
The integral DEA cross section can be calculated by integrating the outgoing

flux [94]

σDEA
dν̃f←νi

(ϵi) = π2

ϵi
lim

Q1→∞

∫︂ ∞
−∞

F⃗ dν̃f
(Q1, Q2) · n⃗Q1dQ2, (3.28)

where n⃗Q1 is a unit vector in the direction of the Q1 coordinate and F⃗ f is the flux
projected on a final state f :

F⃗ f = 1
2i
[︂
(PfΨ)∗∇(PfΨ) − (PfΨ)∇(PfΨ)∗

]︂
(3.29)

with the gradient operator

∇ =
⎛⎝ 1
µ1

∂
∂Q1

1
µ2

∂
∂Q2

⎞⎠ . (3.30)
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In our case, Pf projects on electronic channel d and final vibrational state ν̃f

Pdν̃f
Ψ = χ̃dν̃f

(Q2)
∫︂ ∞
−∞

χ̃dν̃f
(Q2)∗ψd(Q1, Q2)dQ2 ≡ χ̃dν̃f

(Q2)ψdν̃f
(Q1), (3.31)

where the integral was denoted by ψdν̃f
(Q1), and we get

F⃗ dν̃f
· n⃗Q1 = 1

2iµ1

[︂
(Pdν̃f

Ψ)∗ ∂

∂Q1
(Pdν̃f

Ψ) − (Pdν̃f
Ψ) ∂

∂Q1
(Pdν̃f

Ψ)∗
]︂
. (3.32)

Using the asymptotic behavior Eq. (3.25) we can easily evaluate the derivative
of Pdν̃f

Ψ since xh(1)
0 (x) = −i exp(ix) [93]:

lim
Q1→∞

∂

∂Q1
ψdν̃f

(Q1) = lim
Q1→∞

iKdν̃f
ψdν̃f

(Q1) (3.33)

and we obtain

lim
Q1→∞

F⃗ dν̃f
· n⃗Q1 =

Kdν̃f

µ1
|χ̃dν̃f

(Q2)|2 lim
Q1→∞

|ψdν̃f
(Q1)|2. (3.34)

Finally, the vibrational states χ̃dν̃f
are normalized, and thus, the integral cross

section reads
σDEA
dν̃f←νi

(ϵi) = π2

ϵi

Kdν̃f

µ1
lim

Q1→∞
|ψdν̃f

(Q1)|2. (3.35)

In practice, the limit above is calculated by evaluating the wave function at the
end of the real part of the FEM DVR ECS grid.

3.5 Implementation and numerical solution
The implementation for mode 2 is straightforward since we deal only with the
oscillator basis and it follows the treatment of CO2. The case of mode 1 is more
complicated because we have the FEM DVR ECS grid, whose part is complex
(when the anion can dissociate), and furthermore, we have another DVR grid used
to find the eigenstates of H(1)

0 . When the molecular anion can dissociate via one
or more discrete states, the potentials Vd ≡ V0 + Udd should tend to constants
in Q1 as Q1 → ∞ and the corresponding coupling elements Udd′ and V µ

dϵ should
vanish in order to satisfy the assumptions of the scattering theory [96].

It is not necessary to evaluate every term of the effective Hamiltonian H
Eq. (1.6) on the full complex grid. The kinetic energy operator has to be evaluated
on the full grid to enforce the outgoing boundary condition. We evaluate the
neutral potential V0 and elements of U on the full grid as well because they may
contain long-range terms. On the other side, it is convenient to restrict the H(1)

0
grid to geometries where V µ

dϵ are nonzero and choose the FEM DVR ECS grid in
such a way that the H(1)

0 grid either coincides with the real part of the complex
grid or is its subinterval. Then, F (E −H0)|Ψ⟩ is nonzero only in grid points that
are in the interval of geometries defined by the H(1)

0 grid.
To solve the Schrödinger equation Eq. (1.3) rewritten to a system of linear

equations, we again use the Conjugate Orthogonal Conjugate Gradient (COCG)
method [97] as in the case of CO2, see Sec. 2 VI B. We found that the rate of
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convergence is slow when the dissociation channel is open. Thus, we, analogically
to CO2, implemented a preconditioner based on the inversion of blocks comprised
of the discrete states and one of the vibrational modes (Sec. 2 VI B). Details about
the iterative solution are also given by Šarmanová et al. [65–67].

We verified the implementation of this dynamics by calculating the VE cross
sections for the model of Estrada et al. [9] (Sec. 1.3.2) and its generalization studied
by Šarmanová et al. [67]. The results are in agreement with the cross sections
obtained using the harmonic bases for both vibrational modes. Furthermore,
the dissociative dynamics was tested on a 1D model for the e+ pyrrole system
(Chapter 4), which we are also able to solve by the Schwinger-Lanczos approach
used before for 1D nonlocal calculations [18, ch. 4].

3.6 Structure of Hamiltonian matrix
In this section, we focus on the structure of the effective Hamiltonian H Eq. (1.6)
expressed in the |ϕ(1)

n1 ⟩|χ(2)
n2 ⟩|d⟩ basis. We consider two cases: the original system of

Estrada et al. [9] (Sec. 1.3.2) and the e+ pyrrole system that will be investigated
in Chapter 4.

Figure 3.1 shows the Hamiltonian for the model of Estrada et al. [9]. The
order of the basis indices is as follows. The inner index n1 (changes the fastest)
runs over the FEM DVR functions describing the Qg mode. Then, the Qu mode
is expressed in the harmonic basis indexed by n2 while the outer index d runs
over the two discrete states. For the illustration purposes, we used two elements
with seven DVR points in each element and three oscillator functions. Since there
is no dissociation in this model, all FEM DVR grid points are real.

The structure of the neutral Hamiltonian H0 given by Eq. (3.1) is mostly
affected by the matrix of the kinetic energy operator expressed in the FEM DVR
basis. This matrix is full within individual elements, which overlap at outer
points [88]. Other terms of H0 are diagonal, see Eq. (3.7).

In the case of the U matrix given by Eq. (1.16), the blocks that are diagonal in
the discrete states (U11 and U22) depend only on the Qg coordinate, and thus, are
diagonal due to the DVR basis. The U12 and U21 blocks are proportional to the
Qu coordinate that is represented by the tridiagonal matrix (with empty diagonal)
in the harmonic basis, see Eq. (3.12). The F (E −H0) operator is independent of
the nuclear coordinates, which results in a block-diagonal structure. The blocks
within the FEM DVR basis are full because of the full transformation matrices
between the H(1)

0 eigenstates and the FEM DVR functions, see Eq. (3.19).
The model of the e+ pyrrole system constructed in Sec. 4.2 is more elaborate,

which results in a more complicated structure of the Hamiltonian, see Fig. 3.2.
The dissociation is allowed in this case, which leads to complex grid points. For
the illustration, we considered three elements for the Q1 mode, where the third
element is rotated to the complex plane, and eight harmonic functions for the
Q2 mode. The imaginary part of the (E − H0)I matrix is nonzero for complex
grid points but the real part is analogous to the case in Fig. 3.1. The U12 and U21
blocks are again tridiagonal but U11 is pentadiagonal with empty first off-diagonals
due to a term proportional to Q2

2 while U22 is enneadiagonal2 (first and third
2Ennea- is a Greek prefix for number nine.
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(E −H0)I U

ReF (E −H0) ImF (E −H0)

Re (EI −H) Im (EI −H)

−15 −10 −5 0
log10(|Mij |) (arb. units)

Figure 3.1: Structure of matrices (E − H0)I, U , F (E − H0), and EI − H for the
model of Estrada et al. [9] and incoming electron energy of 3 eV. Matrix elements Mij

are normalized with respect to the maximum of EI − H and the elements that are
strictly zero are shown by white color for clarity. The order of indices from inner to
outer is n1 (FEM DVR basis for q1 mode), n2 (harmonic basis for q2 mode), and d
(discrete states). The 2 × 2 discrete-state blocks are indicated.
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Im (E −H0)I ReU

ReF (E −H0) ImF (E −H0)

Re (EI −H) Im (EI −H)

−15 −10 −5 0
log10(|Mij |) (arb. units)

Figure 3.2: Structure of matrices (E − H0)I, U , F (E − H0), and EI − H for the
e + pyrrole system and incoming electron energy of 2.5 eV. Matrix elements Mij are
normalized with respect to the maximum of EI −H and the elements that are strictly
zero are shown by white color for clarity. The order of indices from inner to outer is n1
(FEM DVR basis for q1 mode), n2 (harmonic basis for q2 mode), and d (discrete states).
The 2 × 2 discrete-state blocks are indicated.
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off-diagonals are empty) because of a Q4
2 term.

This time, the F (E −H0) is also coordinate dependent and is no longer block
diagonal. The F11 and F22 elements are again enneadiagonal since they depend
on Q4

2 whereas we have a heptadiagonal structure for F12 and F21 because of Q3
2.

We remind that the F (E −H0) operator is evaluated only at those FEM DVR
grid points that are also in the interval where the H(1)

0 eigenstates are constructed
(Sec. 3.5). For this reason, the F (E−H0) blocks for the Q1 mode are full matrices
only within this subpart of the complex grid. Here, the H(1)

0 grid coincides with
the real part of the FEM DVR grid, that is, with the first two elements.

3.7 Possible improvements for the implementa-
tion of the dynamics

We implemented only the action of the EI − H operator on the anionic wave
function in all dynamical calculations presented in this thesis. Such an approach
allows a rather straightforward implementation even of the 4D Hamiltonian of the
e+CO2 system. On the other hand, the explicit knowledge of the matrix elements
is needed to construct the preconditioner. In our calculations we acted on all basis
vectors to evaluate the Hamiltonian, which can be optimized in the case of the
harmonic basis by acting only on a small part of the basis vector (Sec. 2 VI B).
However, this trick cannot be used for the FEM DVR grid because, as shown
above, the Hamiltonian within this dimension is a full matrix (or considerably full
if the dissociation is allowed), which harms the performance. Solving the dynamics
took about 110 seconds on one CPU core and for one electron energy (with open
dissociative channel) in the case of pyrrole, where about 100 seconds is spent on
the evaluation of the Hamiltonian. The 2D calculations are thus manageable but
the calculation of the preconditioner could become quickly problematic if more
vibrational dimensions described by the FEM DVR grids are taken into account.

This limitation could be overcome if we explicitly construct the Hamiltonian
matrix. We could follow the same formulae used to evaluate the action on a vector
but instead the action itself, we could gradually multiply the matrices to build
H0, U , and F (E −H0). The calculation should be efficient if all involved matrices
are represented in suitable sparse formats. The F (E − H0) potential has the
form of three multiplied matrices [see Eq. (3.14)], where the outer ones are energy
independent. Thus, the H0, U , and the coordinate-dependent parts of F (E −H0)
could be built only once for all electron energies.

The explicit construction of the Hamiltonian would somewhat increase demands
on computer memory. On the other hand, we could speed up the iterations (and
lower memory demands) by neglecting very small elements of the Hamiltonian
(Figs. 3.1 and 3.2), which would be especially significant when the FEM DVR grid
is employed for more vibrational modes. Some of the negligible elements originate
from the transformation matrices between the grid and the H0 eigenstates, whose
elements are proportional to the eigenstates evaluated on the grid, see Eq. (3.23).
It did not turn out to be beneficial in the current implementation to represent
only the transformation matrices in the compressed sparse row format because
the related overhead outweighs the speed up gained by neglecting some of the
elements.
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Chapter 4

Dissociative electron attachment
to pyrrole

Recently, Kumar et al. [14] have observed that the out-of-plane movement of
carbon-bonded hydrogens significantly influences the breaking of the N-H bond in
the dissociative electron attachment (DEA) to the pyrrole molecule

e+ C4H4NH → H + C4H4N−. (4.1)

Pyrrole is a ring molecule belonging to the C2v point group with the ring
consisting of four carbon atoms and one nitrogen atom. When only the hydrogens
attached to the carbons were deuterated, they observed the DEA signal to drop to
about a half of the original signal with five undeuterated hydrogens. When all five
hydrogens were deuterated, the signal decreased more than ten times, as expected
from the increase of the reduced mass for the N-H motion. The deuteration of the
four carbon-bonded hydrogens has a negligible effect on the N-H reduced mass
and it does not explain the decrease of the signal. Based on ab initio fixed-nuclei
R-matrix calculations, they reasoned that the dissociation is significantly mediated
by a nondissociative π∗ resonance, which couples to the dissociative σ∗ state upon
the out-of-plane movement of the carbon-attached hydrogens. In what follows, we
study this system within the two-dimensional model that was introduced in the
previous chapter.

4.1 Ab initio fixed-nuclei data
We start by discussing ab initio fixed-nuclei calculations of the e+pyrrole scattering.
All ab initio data presented here were calculated by Zdeněk Maš́ın [14, 98] using
the UKRmol+ implementation [99] of the R-matrix method [19]. Similarly to
CO2 (Sec. 2 IV A), the target was described by the Hartree-Fock approximation
with the cc-pVDZ basis [100] and a static-exchange plus polarization model was
employed as a scattering model within the R-matrix method. In particular, five
lowest orbitals were kept frozen resulting in 13 active orbitals from which one
electron could be additionally excited to one of 40 virtual orbitals. The R-matrix
sphere with a radius of 20 bohrs was used and all calculations considered here
were performed in the C1 group, that is, without any symmetry.

The calculations reveal two low-lying π∗ resonances, 2B1 at 2.3 eV and 2A2 at
3.7 eV, which do not dissociate as the N-H bond stretches in the energy window
of interest (0–4 eV), see also the calculations of de Oliveira et al. [101]. The
2A2 resonance does not contribute to the DEA [14] (no peak in the experimental

93



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Electron energy (eV)

−1

0

1

2

3

4
Ei

ge
np

ha
se

q1 = −0.3 Å
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Figure 4.1: Ab initio R-matrix eigenphase sums of e+ pyrrole scattering for stretched
N–H geometries (ν1 mode): sums over all irreducible representations (solid), only B1
representation of C2v (dotted), A1 + A2 +B2 representation (dashed), where A2 and
B2 contribute only to the background.

cross section) and is not considered further for the nuclear dynamics. In addition,
a 2A1 valence bound state, which is connected with the H+C4H4N− dissociation
asymptote, appears for stretched N-H geometries. For smaller bond lengths the
2A1 state does not become a σ∗ resonance. It behaves like a virtual state but the
corresponding S-matrix pole quickly disappears in the complex plane due to the
supercritical dipole moment of pyrrole [14, 102].

Since the 2A1 state and the 2B1 resonance have different symmetries, they can
not be coupled to each other upon pure N-H stretching, which respects the C2v
molecular symmetry. They can interact if the planar symmetry is distorted by
displacements of the nuclei that follows the B1 symmetry. The pyrrole molecule
has ten atoms resulting in 3N−6 = 24 vibrational modes, out of which four modes
belong to the B1 irreducible representation. For an illustration of the normal
modes, see Fig. 2 of Mellouki et al. [103] or Davies et al. [104]. Based on the
shape of the potentials from the R-matrix calculations, Kumar et al. [14] argued
that the ν13 mode (predominantly out-of-plane movement of carbon-attached
hydrogens) should play a prominent role in the dynamics. Therefore, our model
includes the 2A1 and 2B1 electronic states of the pyrrole anion, together with the
ν1 (N-H stretching) and ν13 modes described by coordinates q1 and q2 (measured
in ångström) or by dimensionless coordinates Q1 and Q2, see below.

By examining the vibrational modes (Fig. 2 of Refs. [103, 104]), it is not
surprising that the higher-lying 2A2 resonance does not contribute to the DEA
cross section. It can couple to the 2A1 state via vibrational modes of the A2
symmetry but neither of these modes affects the N-H bond.

Figure 4.1 shows ab initio eigenphase sums for purely N-H stretched geometries
calculated in the C1 group (solid lines). Because the C2v symmetry is still
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Figure 4.2: Ab initio R-matrix phases of e+pyrrole scattering for geometries distorted
in ν1 and ν13 modes (coordinates q1 and q2 in ångström, respectively): total eigenphase
sums (solid) and s-wave K-matrix phases arctanKss (dashed).

preserved, we can manually separate the contributions of individual irreducible
representations, which helps us to understand the rather peculiar behavior of the
eigenphase sums. The 2B1 resonance slowly moves further away from the threshold
as the N-H bond length increases (dotted lines). As mentioned above, no resonant
behavior is observed for the 2A1 state (dashed lines). Note that we use these
data below to construct the model, where it is convenient to have a consistent
background for all geometries. Therefore, we included the contributions of A2 and
B2 representations in the dashed lines in Fig. 4.1 since they contribute only to the
background in this energy interval. For q1 > −0.2 Å, the dipole moment of pyrrole
is supercritical, which results in the logarithmic divergence of the eigenphase
sums at the threshold [102, 105]. Furthermore, the 2A1 state becomes bound
around q1 = 0.3 Å (potentials are shown in the next section) that is reflected by
the vertical shift of π radians in the eigenphases in accordance with Levinson’s
theorem [102].

The behavior of the eigenphase sums upon distortion of the geometry along
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the ν13 mode (q2 coordinate) is shown in Fig. 4.2 for four N-H stretches q1 = 0.0,
0.2, 0.3, and 0.6 Å. The higher-lying 2A2 resonance is visible for larger values of q2.
Both resonances move closer to the threshold as q2 increases and eventually become
bound. The symmetry of the molecule is lowered to the Cs group for q2 ̸= 0 and
both the 2A1 and 2B1 states transform according to the A′ representation of Cs,
that is, they can mix. The 2A2 resonance transforms as A′′ and could be separated
off the data in Fig. 4.2. The mixing of the 2A1 and 2B1 states is much more subtle
than what we observed upon bending in the case of CO2. Here, the resonance is
still well recognizable. It gets somewhat wider for N-H stretches where the 2A1
state is about to become bound or is weakly bound (q1 = 0.2–0.4 Å).

To investigate the mixing further, we examined the energy dependence of the
s-wave element Kss of the fixed-nuclei K matrix (dashed lines in Fig. 4.2), see
also Sec. 2 V C. Because of the symmetry lowering, the 2B1 resonance can interact
with the s wave for q2 ̸= 0 resulting in the resonance step by π radians that also
appears in arctanKss. The width of this resonance step reflects the amount of
mixing between the states, which primarily occurs at geometries where the states
get close to each other, that is, most dominantly at geometries where the 2A1
becomes bound.

4.2 Model
In this section, the two-dimensional approach described in Chapter 3 is applied to
the e + pyrrole system and model parameters are obtained by fitting the fixed-
nuclei data. As explained above, our simplified dynamics takes into account only
the N-H stretching (ν1 normal mode) and the out-of-plane movement of carbon-
attached hydrogens (ν13 model) described by coordinates q1 and q2, respectively.
The molecular anion can dissociate in the ν1 mode, therefore, we describe it within
the FEM DVR ECS basis. The ν13 mode is restricted to be harmonic.

4.2.1 Form of Hamiltonian elements
The neutral potential along the q1 coordinate can be well approximated by a Morse
potential and we have a harmonic potential along q2:

V
(1)

0 (q1) = D(e−aq1 − 1)2, (4.2)

V
(2)

0 (q2) = 1
2kq

2
2. (4.3)

We obtained D = 0.29511 hartree, a = 1.0381 bohr−1, and k = 0.065265 a.u. from
the fit to ab initio potential energies of the 1A1 ground electronic state of pyrrole.

We define dimensionless coordinates Q1 and Q2 by

Q1 = q1

x
(1)
0
, x

(1)
0 = 1

a
, (4.4)

Q2 = q2

x
(2)
0
, x

(2)
0 =

√︄
1

µ2ω2
, ω2 =

√︄
k

µ2
, (4.5)

where the reduced masses µ1 = 1.0811 Da (see below) and µ2 = 1.2586 Da were
obtained by Kumar et al. [14, 98] from calculations of the vibrational structure
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using the Gaussian software [106]. The neutral vibrational Hamiltonian H0 has
the following form in the dimensionless coordinates

H0 = −1
2
D

λ0

∂2

∂Q2
1

− 1
2ω2

∂2

∂Q2
2

+D(e−Q1 − 1)2 + 1
2ω2Q

2
2, (4.6)

where λ0 = µ1D/a
2.

For the vibrational frequencies, we get ω1 = a
√︂

2D/µ1 = 489 meV and
ω2 = 145 meV. In comparison, the experimental values are [107]1 ωexp

1 = 438 meV
and ωexp

2 = 102 meV, that is, the disagreement is quite substantial for the ν13 mode.
More elaborate quantum chemical calculations could be affordable for the target
and geometries where anionic states are bound, however, it is difficult to ensure
consistency (positions where potentials cross each other) between these data and
data for the scattering in the case of multiple nuclear dimensions. Therefore, we
prefer to use all data from the same electron-molecule scattering calculations even
thought the agreement for the vibrational frequencies is not ideal.

For the electron in the continuum, we consider the lowest partial waves that
couples to the 2A1 and 2B1 states in the equilibrium symmetry, that is, s and
px waves (molecular plane is the yz plane), respectively. The dependence of the U
and Vϵ matrices on the vibrational coordinates can be derived analogically to the
CO2 case, see Sec. 2 II C. This time the derivation is simpler since the C2v point
group is a smaller and also Abelian group and we obtain

U =
(︄ A1 B1

A1 EA λQ2
B1 λQ2 EB

)︄
, (4.7)

Vϵ =
(︄ s px

A1 vAs vApQ2
B1 vBsQ2 vBp

)︄
, (4.8)

where EA, EB, λ, vAs, vBp, vBs, and vAp are in general arbitrary functions of
totally symmetric combinations of the coordinates, that is, they can depend on
Q1 and Q2

2. To reiterate, V0 + EA and V0 + EB give the diabatic potentials that
are directly coupled via λ and both partial waves can attach or detach from or to
both discrete states for Q2 ̸= 0.

We expand the parameter functions to low-order polynomials in Q2:

EA = E0
A + E2

AQ
2
2, (4.9)

EB = E0
B + E2

BQ
2
2 + E4

BQ
4
2, (4.10)

vAs = v0
As + ṽ0

As + v2
AsQ

2
2, (4.11)

vBp = v0
Bp + v2

BpQ
2
2, (4.12)

vBs = v1
Bs + ṽ1

Bs, (4.13)

vAp = v1
Ap, (4.14)

1Note that Ref. [107] uses a different numbering of the vibrational modes. Modes ν1 and ν13
used here correspond to modes ν24 and ν6 in Ref. [107], respectively.
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where the energy-dependent terms vidµ of the continuum coupling are of the form

vidµ = a(Q1)(βϵ)αe−βϵ. (4.15)

The coefficients Ei
d and prefactors a are so far unspecified functions of Q1 and

αs with βs are constant. The parameter λ is considered to depend only on Q1
without other terms in Q2.

The pyrrole molecule possesses a supercritical dipole moment along the ν1 and
ν13 modes. Thus, we set the threshold exponent α = 0 for the terms ṽ0

As and
ṽ0
Bs, see also the discussion about α in Sec. 3.2. However, we found that such

a parametrization is not flexible enough to describe the widths further away from
the threshold, therefore, we added purely s-wave terms v0

As and v0
Bs, which have

α = (2l+ 1)/4 = 1/4. For completeness, v2
As behaves as an s wave as well and the

remaining terms v0
Bp, v2

Bp, and v1
Ap, have a p-wave character, that is, α = 3/4.

4.2.2 Obtaining model parameters from ab initio data
We utilized the molecular symmetry to obtain the parameter functions by fitting
the model to the ab initio fixed-nuclei data. The fitting strategy was similar to
the CO2 case discussed in Sec. 2 IV C. In the first step, we considered only C2v
geometries (q2 = 0), where the 2A1 and 2B1 states can be treated separately as
shown above in Fig. 4.1. Once again, we compared the corresponding ab initio
eigenphase sums with model eigenphase sums of the form

δ(ϵ) = δdisc(ϵ) + δbg(ϵ), (4.16)

where the formula for the discrete-state contribution δdisc(ϵ) is given by Eq. (29a)
in Sec. 2 III B. The background for the 2A1 and 2B1 states is considered as follows

δAbg(ϵ) = aAlog log ϵ+ aAϵ+ bA, (4.17)

δBbg(ϵ) = aBlog log ϵ+ aBϵ+ bB. (4.18)

The log ϵ terms related to the supercriticality of the dipole have to be included
even in the background, see below.

We fitted the model to the data for q1 ∈ {−0.3, -0.2, -0.1, 0.0, 0.2, 0.3, 0.4, 0.6,
and 0.8} Å, and then, we approximated the obtained data points for Q1-dependent
coefficients by suitable functions. We also included 2A1 bound energies into the fit.
This way we fixed E0

A, E0
B, v0

As, ṽ0
As, and v0

Bp. The resulting comparison of the
model and R-matrix eigenphase sums at the equilibrium configuration is shown
in the left part of Fig. 4.3.

The log ϵ term is necessary in the A1 background [see Eq. (4.17)] because the
discrete-state-continuum coupling should vanish as q1 → ∞ since the 2A1 state
is bound for large N-H stretches. However, the separation of the eigenphases
into the discrete-state contribution and the background becomes ambiguous. We
regarded the eigenphases for q1 = −0.3 and 0.8 Å as a pure background but the
increase by π radians was subtracted from q1 = 0.8 Å. The coefficients aAlog, aA,
and bA for other geometries were obtained by linear interpolation. This way the
discrete-state part contains the change by π radians as the 2A1 state becomes
bound and the coupling vanishes as q1 → ∞, see the right panel of Fig. 4.3.
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model discrete-state part (dotted), and model background part (dot-dashed).
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Figure 4.4: Comparison of model (solid) and ab initio (dashed) eigenphase sums of
e+ pyrrole for geometries along the q2 coordinate (in ånström, legend on the top) and
for q1 = 0.0, 0.2, 0.3, 0.6 Å (different panels).
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1 2 3
Electron energy (eV)

q1 = 0.6 Å

Figure 4.5: Comparison of model (solid) and ab initio (dashed) s-wave K-matrix
phases arctanKss of e+ pyrrole for geometries along the q2 coordinate (in ångström,
legend on the top) and for q1 = 0.0, 0.2, 0.3, 0.6 Å (different panels).

Since the resonance behavior is well separated from the threshold, we can easily
determine the background aBlog term for the 2B1 state [Eq. (4.18)].

At this point, the model was constructed along the N-H stretching. In the
second step of the fitting procedure, we considered the ν13 mode. First, we
preformed fits with a fixed q1 and for q2 ∈ {0.00, 0.15, 0.25, 0.35, 0.45, 0.50, 0.55,
0.65, 0.75, 0.85, 0.95, 1.00, 1.05, 1.15, 1.25, and 1.50} Å. Since the mixing between
the 2A1 and 2B1 states is rather subtle, we fitted not only the eigenphase sums
but also the s-wave K-matrix phases arctanKss(ϵ). The background parts for the
eigenphase sums and the s-wave K-matrix elements were assumed in the following
forms

δbg(ϵ) = δAbg(ϵ) + δBbg(ϵ) + (a1ϵ+ b1)Q2, (4.19)

δKbg(ϵ) = δAbg(ϵ) + aKϵ+ aKsqrt
√
ϵ+ bKQ2. (4.20)

Moreover, we took into consideration R-matrix potential energies of the 2A1 and
2B1 states for geometries where they are bound. We again obtained a series of
points for each Q1-dependent parameter. We typically approximated one or two
parameters by suitable functions and we refitted the model to get a smoother
series of points for the remaining parameters. This process was repeated until
all parameters were fixed. Then, a final global fit was performed for all used
geometries to vary parameters of the Q1-dependent functions and the exponential
parameters β. The resulting model parameters are listed in Appendix A. The
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agreement between the ab initio data and the model is satisfactory, see Figs. 4.4
and 4.5, with a notable disagreement in the background of the s-wave phase for
larger N-H stretches.

4.2.3 Potential energy surfaces
One-dimensional cuts through the constructed 2D bound PESs are shown in
Fig. 4.6 including the comparison with the ab initio energies from the R-matrix
calculations. Note that the neutral potential is the sum of 1D potentials along
q1 and q2 [see Eq. (3.1)] and we fitted the difference between bound neutral and
anionic energies instead of absolute positions. The anionic states are very weakly
bound for many geometries due to the supercritical dipole.

Figure 4.7 shows the full 2D bound PESs as contours calculated within the
model. The resonance becomes bound as q2 increases for all q1 but the virtual-like
state remains in the continuum for N-H stretches around the equilibrium. As
a result, we observe an avoided crossing between the anionic potentials, see cut
along q1 for q2 = 1.5 Å in Fig. 4.6. However, it occurs at high energies. The
discrete-state potentials Vd ≡ V0 +Udd are shown in Fig. 4.8 for pure N-H stretches,
together with the 2B1 LCP potential defined by K-matrix poles (Sec. 2 III C).
Since the 2A1 virtual-like state is very broad, S-matrix poles should be used to
define the local potential for this state and for both states when q2 ̸= 0 because of
their mutual mixing. The complex adiabatic potentials are worth investigating but
we will not focus on it here. It requires an analytic continuation of the exponential
integral to the complex plane, see Eq. (3.22).

4.3 Results
Before discussing the results for the VE and DEA processes with pyrrole, let us
briefly comment on the numerical solution. We considered a FEM DVR ECS
grid from -0.7 Å to 20.0 Å with 293 points for the N-H stretching. The part
of the grid for q1 > 5.0 Å was rotated to the complex plane under an angle of
30◦. For the calculation of the nonlocal potential, we took into account 50 lowest
neutral vibrational states within the N-H mode (including states of the discretized
continuum), which were calculated on a DVR grid from -0.7 Å to 3.0 Å with
300 sine basis functions [index k1 in Eq. (3.19)]. In the case of the ν13 mode, the
harmonic basis contained 60 lowest states. The iterations were stopped when the
ratio of the norms of the residuum and the right-hand side was below 10−10. We
tested that the results are converged with respect to the numerical parameters.

4.3.1 Vibrational excitation
The calculated integral 2D energy-loss spectrum reproduces the basic shape of the
experimental spectrum measured at a scattering angle of 135◦ [14], see Fig. 4.9,
but we should keep in mind that we include only 2 out of 24 vibrational modes
in the model and the 2A2 resonance at 3.5 eV is not considered. The threshold
peaks for excitation of the N-H stretching are not as pronounced and they are
completely missing for excitation of ν13 quanta, see also Fig. 4.10, where the VE
cross sections are shown for several low-lying final vibrational states.
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2

4

6

8

10

12

P
ot

en
ti

al
en

er
gy

(e
V

) q1 = −0.2 Å
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Figure 4.6: Cuts through the two-dimensional bound potential energy surfaces of the
ground state of pyrrole (V0) and two lowest states of pyrrole− (V1, V2): model (lines),
ab initio data (symbols), see the legend on the top.
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To understand the behavior of the cross sections, we can decompose them into
contributions of processes of individual incoming and outgoing electron partial
waves. These contributions are given by the square of the corresponding T -matrix
element, see Eq. (1.8). Moreover, a particular combination of the incoming and
outgoing partial waves determines the symmetry of the final vibrational state
since the total symmetry is conserved during the VE process, see Table 4.1. We
should also realize that the partial-wave contributions still contain effects of both
electronic states since they are the sum of processes that the electron attaches
to a discrete state d and detaches from d′, see Eqs. (1.8) and (1.9). For the
interpretation purposes, it is helpful to consider the situation when the electron
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Figure 4.9: Integral two-dimensional electron energy-loss spectrum of pyrrole within
the 2D model. Positions of final vibrational states (ν1, ν13) are indicated.

attaches only either to the 2A1 or 2B1 state, that is, to exchange the order of the
sum over d and the square in Eqs. (1.8) and (1.9). The sum of such quantities
does not give the total cross section but provides an insight into the dynamics.2
Furthermore, we can learn about the multidimensional effects and the interaction
of the electronic states by reducing the complexity of the model. Figure 4.11 shows
the VE cross sections when we omit the ν13 mode and/or one of the electronic
states.

First, we discuss the excitation of pure N-H stretching, that is, νf = (ν1, 0).
In this case the cross sections are almost entirely described by the sum of the
cross sections from 1D calculations of the N-H stretching with the 2A1 and 2B1
states considered separately (Fig. 4.11). In other words, the (ν1, 0) excitation is
almost unaffected by the ν13 mode. The threshold region influenced by the 2A1

2 The contributions of the individual initial discrete states cannot be obtained from the
solution of the Schrödinger equation Eq. (1.3) with the initial state given by Eq. (1.4) that
contains the electron attached to all the discrete states. Thus, we have to solve the Schrödinger
equation separately for each right-hand side with the population of a single discrete state if we
are interested in these quantities.
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Table 4.1: Symmetry considerations for VE of pyrrole. The electron partial wave s,
vibrational mode ν1, and initial state of the molecule are totally symmetric (A1 symme-
try). The px wave and mode ν13 are of the B1 symmetry.

in electron µi out electron µf final vibrational state (ν1, ν13)
s s ν13 even
s px ν13 odd
px s ν13 odd
px px ν13 even

virtual-like state is similar to the cross sections for hydrogen halides, see Refs. [17,
18] and references therein. We observe abrupt changes known as Wigner cusps at
the openings of higher vibrational channels (ν1, 0). Their shape is given by the
energy dependence of the resonance width near the threshold, which is heavily
influenced by the large dipole moment of pyrrole (width is finite at the threshold).
The (2, 0) cusp in the excitation of the (1, 0) state (top right panel in Figs. 4.10
and 4.11) reproduces well the experimental data [14].

The shape of the 2B1 contributions to the cross sections is the result of
the fact that the neutral and anionic potentials along Q1 are to a large extent
parallel (Fig. 4.8). We can rewrite Eq. (1.9) for the T matrix using the spectral
decomposition for the Green’s function

⟨νf |V
µf

dϵf
(E −H)−1

dd V
µi
dϵi

|νi⟩ =
∑︂
ν′

1
E − Eν′

⟨νf |V
µf

dϵf
|ν ′⟩⟨ν ′|V µi

dϵi
|νi⟩, (4.21)

where |ν ′⟩ are vibrational states of the anion with energies Eν′ . The shape of
the potentials implies that the neutral and anionic states are almost orthogonal.
The coordinate dependence of the coupling amplitudes V µ

dϵ does not influence the
overlaps as much, therefore, depending on the initial and final neutral states, only
few anionic states contribute, which explains the observed peaks. However, the
experimental data for the ν1 = 1 excitation reveal only one resonance peak in
contrast to two peaks in the calculations. It may indicate that other modes not
included in our dynamics affect the N-H stretching.

The multidimensionality of the dynamics and the interaction of the electronic
states play an important role for the excitation of odd quanta of the ν13 mode (last
rows Figs. 4.10 and 4.11). The cross sections are given by the s → px and px → s
contributions, which correlates well with the situation when only the 2A1 state or
the 2B1 resonance is populated by the incoming wave. Thus, in the s → px case,
the s wave dominantly attaches to the 2A1 state but there are still two pathways
to the excitation: either the px wave detaches (s → 2A1 → px) or the resonance
is involved (s → 2A1 → 2B1 → px). We found that the coupling of the 2A1 state
to the px-wave continuum (vAp term) has a negligible effect in our model, that
is, the latter pathway is responsible for the s → px process. Figure 4.11 confirms
this conclusion because the s → px contribution is basically zero when the 2B1
resonance is excluded from the dynamics. Similarly, there are also two pathways
for px → s: px → 2B1 → s and px → 2B1 → 2A1 → s, which are both operational.
The px → 2B1 → s process dominates for the (0, 1) excitation but the 2A1 state
significantly enhances the excitation in the case of (1, 1).
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Figure 4.10: Integral cross sections for vibrational excitation (0, 0) → (ν1, ν13) of
pyrrole within the 2D model. The electron energy loss ∆ϵ and contributions of individual
in → out partial-wave processes are also shown (legend on the top). For ν13 = 1 (second
row), we also show the contribution when the electron attaches only to the 2A1 or 2B1
discrete state (din). Their sum does not give the total cross section, see the text.

The peak in the s → px contribution is shifted towards higher energies by the
number of excited quanta in comparison to the peak in px → s, which appears
at the energy of the 2B1 ground vibrational state (Fig. 4.10. Our interpretation
is as follows. During the s → 2A1 → 2B1 transition, the 2B1 anion is formed
vibrationally excited while the px → 2B1 process predominantly populates the
ground state because of the similarity of the potentials discussed above.

Sharp threshold peaks are observed in the experimental cross sections for the
fundamental excitation of the ν11–ν15 modes (out-of-plane bending motions of the
hydrogen atoms) [14]. Such peaks are completely missing in our calculations for
the ν13 mode. We would expect them in the s → 2A1 → px process in our model.
When the vAp coupling is substantially increased, we observe rather broad peaks
at the threshold but such values of vAp are not compatible with the fixed-nuclei
data. It is possible that these peaks originate in the direct-dipole scattering not
included in our model, similarly to the excitation of the fundamental bending
(0, 11, 0) and asymmetric stretching (0, 00, 1) peaks in the case of CO2.
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Figure 4.11: Integral cross sections for vibrational excitation (0, 0) → (ν1, ν13) of
pyrrole within reduced models where we consider both modes (2D) or only the N-H
stretching (1D), in combination with one or both electronic states, see the legend on
the top (2D, 2A1, 2B1 denotes the full model).

4.3.2 Dissociative electron attachment

Let us now focus on the dissociation of the N-H bond of pyrrole. Within our
2D model the produced ring fragment still has one vibrational degree of freedom
described by the asymptotic form of the 2A1 potential along the Q2 coordinate
given by [see Eqs. (3.26) and (4.7)]

lim
Q1→∞

[V0(Q1, Q2) + EA(Q1, Q2)]. (4.22)
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Figure 4.12: Integral cross sections for the dissociation of the N-H bond of pyrrole
within our 2D model for the ring fragment left in vibrational states with ν̃13 = 0, 1, 2,
and 3. Contributions of the electron attaching only to the 2A1 or 2B1 discrete state (din)
are also shown. Their sum does not give the total cross section, see the text.

We denote the corresponding vibrational quantum number by ν̃13. The total
symmetry is conserved during the DEA process, and therefore, the parity of the
final vibrational state ν̃13 restricts the symmetry of the incoming electron. When
the electron comes in as the s wave, only states with even ν̃13 can be excited while
ν̃13 has to be odd for the incoming px wave. The resulting integral cross sections
calculated using Eq. (3.35) for ν̃13 = 0, . . . , 3 are shown in Fig. 4.12. The total
DEA cross section is then given by the sum over ν̃13. To gain more insight into
the processes, we also plot the contributions when the incoming electron either
populates only the 2A1 or 2B1 discrete state (din), but note that the sum of these
quantities does not give the total cross section since we exchange the order of the
sum and square in Eq. (3.35).3

The direct dissociation via the 2A1 state after the s-wave attachment is almost
entirely responsible for the cross section to the lowest channel ν̃13 = 0 (top left
panel of Fig 4.12) and closely resembles the DEA to hydrogen halides [17, 18] or
formic acid [58]. The 1D dynamics gives practically the same result for the direct
mechanism as the 2D calculations. We also observe a negligible contribution from
the process when the s wave attaches to the 2B1 resonance and then dissociate

3The wave function ψd in Sec. 3.4, where d denotes the outgoing DEA channel, implicitly
contains the sum over initial discrete states, see also Note 2.
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Figure 4.13: Effect of model parameters on the integral cross section for the disso-
ciation of the N-H bond of pyrrole when the ring fragment is left in vibrational state
ν̃13 = 1. Left panel: the 2B1 resonance is vertically shifted upwards with respect to
the original model. Right panel: dependence on the strength of the direct coupling
λ and indirect coupling through the s-wave continuum vBs between the 2A1 and 2B1
electronic states, the 2B1 resonance is vertically shifted by 0.4 eV.

via the 2A1 state (s → 2B1 → 2A1).
The primary indirect contribution of the dissociation is given by the process

where the 2B1 resonance is populated by the incoming px wave and the resulting
ring fragment is left with ν̃13 = 1 (px → 2B1 → 2A1). The calculated cross section
rather differs from the expected Gaussian-like profile that would reflect the ground
vibrational state (top right panel of Fig. 4.12). However, the explanation of the
shape is simple. The energy of the ground vibrational state of the 2B1 resonance
is 2.24 eV (based on the position of the resonance peak in the elastic VE cross
section), which is below the DEA thresholds at 2.26 eV for ν̃13 = 0 and 2.39 eV
for ν̃13 = 1. In comparison, the experimental DEA threshold is at ∼1.9 eV [14].
The discrepancy is probably caused by the use of the N-H normal coordinate for
the fixed-nuclei calculations even for large displacements out of the equilibrium
geometry. In the normal mode, the nitrogen atom moves closer to the neighboring
carbons and their mutual repulsion increases the potential energy. The proper
but computationally demanding approach would be fixing the N-H bond length
and letting the ring relax to a new equilibrium geometry.

We examined the effect of the mutual position of the 2B1 ground vibrational
state and the DEA threshold by shifting the 2B1 resonance upwards, see the left
panel of Fig. 4.13. The calculations with a suitable shift produce a shape similar
to a Gaussian profile, which is in an agreement with the experiment [14], however,
the calculated magnitude is too small. The peak maximum of the experimental
absolute DEA cross section is 2 pm2 [14], which is around 40 times larger than our
indirect contribution via the 2B1 resonance. In contrast, our direct contribution
has the maximum at 1.7 pm2, which appears to be too large. The experimental
signal drops to about a half after the deuteration of the four carbon-bonded
hydrogens, which does not affect the direct mechanism, and the cross section
retains a Gaussian profile, that is, a pronounced threshold behavior is not apparent
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Figure 4.14: Initial wave function |Φµi⟩ of the e + pyrrole system given by the
attachment of the incoming electron with energy 2.5 eV and partial wave µi = s or px
(columns). The wave function has two vibrational components |ϕµi

d ⟩ that belong to the
discrete states 2A1 and 2B1 (rows). The 2B1 resonance was vertically shifted by 0.4 eV.
The components are normalized with respect to the overall maximum.

in the experiment but note that the energy resolution was 70 meV [14].
The 2B1 resonance considerably influences the DEA cross section to ν̃13 = 2.

When the s wave populates the 2A1 state (dashed line in Fig. 4.12), the anion
does not immediately dissociate. From the reduced models we found that the
dissociation occurs via a pathway like s → 2A1 → 2B1 → 2A1 and the peaks
appear at the positions of vibrational states within the 2B1 potential. The second
contribution (dotted line) is given by s → 2B1 → 2A1. The cross section for ν̃13 = 3
is again cut off by the too high dissociation limit.

Furthermore, we investigated the influence of the coupling strength between
the electronic states on the indirect mechanism of the dissociation, see the right
panel of Fig. 4.13. After forming the 2B1 resonance by the px-wave attachment,
the system can transit to the 2A1 state either directly thanks to the λ term or
indirectly through the s-wave continuum, which is controlled by the vBs term, see
Eqs. (4.7) and (4.8). Both these paths are operational but the direct coupling
dominates, compare λ = 0 with vBs = 0 in Fig. 4.13. Doubling the coupling
strength enhances the DEA but not nearly enough to be comparable with the
experiment (λ× 2 and vBs × 2 in Fig. 4.13). On the other hand, the VE process
competes with the dissociation and the excitation of the (0, 1) state increases six
times when λ is doubled. As for the VE process, the effect of the px-wave coupling
to the 2A1 state is negligible.

For illustration, Figs. 4.14 and 4.15 show the vibrational components of the
initial wave function given by the attachment of the electron to the neutral ground
vibrational state [see Eq. (1.4)] and the scattered wave function that satisfies the
Schrödinger equation Eq. (1.3). The 2B1 diabatic component of the scattered
wave for the incoming px wave dominates but the coupling to the 2A1 state is too
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Figure 4.15: Scattered wave function |Ψµi⟩ of the e+ pyrrole system for incoming
electron with energy 2.5 eV and partial wave µi = s and px (columns). The wave
function has two vibrational components |ψµi

d ⟩ that belong to the discrete states 2A1
and 2B1 (rows). The 2B1 resonance was vertically shifted by 0.4 eV. The components
are normalized with respect to the overall maximum.
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ν̃13 = 1, 0.025 Å
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weak resulting in an order of magnitude smaller tail of the wave function, which
determines the DEA, in comparison with the direct mechanism.

The fixed-nuclei data (Fig. 4.5) show that the electronic states mix the most for
N-H bond lengths where the 2A1 state becomes bound (q1 = 0.2–0.4 Å). However,
the anion in the 2B1 state does not efficiently probe these geometries (Fig. 4.15).
Therefore, we horizontally shifted the 2B1 potential towards larger N-H separations
to examine if it increases the DEA, see Fig. 4.16. The DEA cross section to the
ν̃13 = 1 state is quite sensitive to this modification. There is an increase by a factor
of two for the shift by 0.015 Å. But as the shift increases, the anionic and neutral
potentials start to be less parallel. As a result, multiple anionic vibrational states
are populated by the incoming px-wave, which leads to the additional peaks in
the cross section that are not observed in the experiment [14].

4.4 Discussion
Before discussing the results further, let us summarize the e+pyrrole problem. The
dissociation of the N-H bond is predicted to occur via two mechanisms [14]. The
additional electron can occupy the antibonding σ∗ orbital (2A1 state of the anion)
localized along the N-H bond that leads to the dissociation without being affected
by a movement of distant parts of the molecule (direct σ∗ mechanism). On the other
side, the electron can be captured to the π∗ orbital (2B1 resonance) predominantly
localized on the nitrogen and two neighboring carbons [14]. Distorting the C2v
geometry allows the transition of the system from the 2B1 resonance to the 2A1 state
and towards the dissociation (indirect π∗/σ∗ mechanism). Both pathways are
included in our calculations, which, to the best of our knowledge, are the first
nonlocal calculations of this kind, but the indirect contribution is at least by an
order of magnitude smaller than is needed to explain the experimental DEA cross
section [14].

Since pyrrole has 24 vibrational degrees of freedom, we employed a simplis-
tic approach and considered only the N-H stretching in combination with the
out-of-plane movement of carbon-attached hydrogens described by the normal
mode ν13. However, the hydrogen produced during the DEA process can leave
along a trajectory with a nonzero angle with respect to the molecular plane,
which is not captured in our model. The anionic potential does not become
asymptotically flat as the N-H bond length increases (Fig. 4.7) because of the
use of the normal coordinate, which properly describes the molecular geometry
only near the equilibrium. We expect that the incorporation of this out-of-plane
movement strengthens the coupling between the electronic states because it in-
creases the overlap between the π∗ and σ∗ orbitals. The fixed-nuclei calculations
reported by Kumar et al. [14] show that the 2B1 resonance significantly broadens
along the ν16 mode, which predominantly describes the out-of-plane movement of
the nitrogen-bonded hydrogen. The authors argued that the broadening would
increase the electron autodetachment, and thus, they favored the ν13 mode as the
dominant coupling mode. In the view of the present calculations, the broadening
may indicate a strong mixing of the resonance with the broad virtual-like state
that also enhances the dissociation. On the other hand, the deuteration of the
carbon-bonded hydrogen, which significantly influences the experiment, is not
expected to affect the out-of-plane motion of the nitrogen-bonded hydrogen, that
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is, a three-dimensional model that includes the N-H stretching in combination with
the out-of-plane motions of the nitrogen-bonded hydrogen and the carbon-bonded
hydrogens seems to be necessary to understand the N-H dissociation in pyrrole.

The suggested extension of the model is nontrivial and it goes beyond this
thesis. We leave the DEA in pyrrole and the study of the isotopic effect, which
we have not investigated at all here, as an open problem for future research.
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Conclusion

In conclusion, we summarize the results and address open problems and possible
directions for future research.

Our primary result is the calculation and interpretation of the two-dimensional
electron energy-loss spectrum of CO2 presented in Chapter 2 based on two papers
in Physical Review Letters [11] and Physical Review A [12] and one submitted
manuscript [13]. To explain the experimental observations, we constructed a rather
elaborate discrete-states-in-continuum model of the vibrational excitation of CO2
by slow electrons. Considering all four vibrational modes, we modeled the nuclear
motion of the molecular anion with its electronic structure represented by three
low-lying states: the 2Σ+

g virtual state and twofold degenerate 2Πu shape resonance.
All these states interact through the vibronic coupling as the anion bends because
the Renner-Teller effect splits the 2Πu doublet into 2A1 and 2B1 components, from
which the 2A1 component mixes with the virtual state. Furthermore, the electron
in the continuum was described by s and p partial waves that allows excitation
of nontotally symmetric vibrational states of CO2, which was not included in
previous models.

The vibronic coupling of the resonance to the s-wave continuum turned out to
be the key for understanding the behavior of the e+ CO2 system. Its inclusion
clarifies not only the topology of the anionic potentials but especially the puzzling
shape of the experimental energy-loss spectrum. We interpret the spectrum in
terms of two overlapping contributions that result from excitation of Σ+

g and Πu

vibrational states of CO2. The Πu states prevail at high energy losses because the
electron captured to the 2Πu resonance preferentially leaves as the s wave due to
the energy dependence of the interaction. While the bending is important, the
whole dynamics is driven by the symmetric stretching because the anion effectively
decays by the autodetachment at highly bent geometries. Consequently, only
fairly linear vibrational states are significantly excited, which gives rise to the fine
structure superimposed to the spectrum.

The calculations reproduce the behavior of the system on a qualitative level and
so there is a room for future improvements of the model. To achieve a quantitative
agreement, the harmonic approximation for the neutral molecule has to be lifted
in order to properly describe the potentials in the symmetric stretching and to
include the Fermi resonance effect directly into the dynamics. It will complicate the
evaluation of the nonlocal potential but it could be easier than we had originally
anticipated since we found that the coupling between different Fermi polyads
can be neglected. In addition, CO −

2 can dissociate to the O− + CO fragments
for electron energy around 4 eV, which we have not considered in the presented
model. The dissociation proceeds through 2Πu and 2Πg states that are connected
via a conical intersection [108], that is, the inclusion of the dissociation into the
4D nonlocal dynamics poses a significant challenge.

We made a step in this direction by incorporating one-dimensional dissociation
into two-dimensional nuclear dynamics with an arbitrary number of discrete states
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in Chapter 3. Our primary motivation was to study the e + pyrrole system
because the experimental observations of Kumar et al. [14] suggest that the
vibronic interaction of 2A1 and 2B1 electronic states plays an important role in the
dissociation of the pyrrole anion into the C4H4N− and H fragments. In our nuclear
calculations of this system, we took into account only two out of twenty-four
vibrational modes: the N-H stretching and out-of-plane movement of carbon-
bonded hydrogens. We found that the coupling between the electronic states is
too weak in the current model and it does not fully reproduce the observations.
We expect that the out-of-plane movement of the detached hydrogen will increase
the coupling between the states, that is, 3D dynamics with 2D dissociation is
probably needed to explain the experiment, which is unfortunately beyond the
scope of this thesis.

The dissociation of the pyrrole anion is thus left as an open problem that is
worth investigating further. Similarly, it would be interesting to extend the 1D
calculations of Gallup et al. [58, 62] by including the π∗ resonance to study the
π∗/σ∗ coupling in the cases of formic acid and uracil.

We face two challenges in studies of the nuclear dynamics of inelastic electron-
molecule collisions: the construction of the model from ab initio data and solving
the multidimensional and nonlocal dynamics with multiple anionic states. We
showed that finding the solution by the iterative methods based on Krylov sub-
spaces works well and more than two nuclear dimensions should be reachable
even in the case of the dissociation. To construct the models, we fitted model
parameters to ab initio eigenphase sums and potential energies. However, it is not
easy to properly extract the information about the model partial waves from the
eigenphase sums. Therefore, we also included the s-wave phase from the ab initio
K matrix in the case of pyrrole. A question remains how to use the information
about the full K matrix in the construction of the models since the fixed-nuclei
calculations consider many partial waves (typically up to l = 4) while the model
for the dynamics is limited to a few lowest waves. It is also problematic to fully
automatize the fitting process, which makes the construction of multidimensional
models laborious.

To conclude, the approach to the nuclear dynamics of the vibrational excitation
and dissociative electron attachment extended throughout this thesis is very
convenient especially for qualitative studies of multidimensional effects in the
presence of coupled short-lived anionic states. These effects include the change of
the symmetry of the incoming and outgoing electrons that leads to excitation of
nontotally symmetric vibrational states or the π∗/σ∗ coupling that is expected to
substantially influence bond cleavage upon electron impact in biologically relevant
molecules. We thus hope that the presented progress will be utilized in further
studies of such phenomena.
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Appendix A

Model parameters for the
e + pyrrole system

Here, we list Q1-dependent functions of the two-dimensional two-state model for
the e+ pyrrole system described in Sec. 4.2. The coefficients are in atomic units
and the coordinate Q1 of the N-H stretching is dimensionless.

A.1 Discrete-state potentials and direct coupling
The diabatic potentials of the discrete states and their direct coupling are given
by Eqs. (4.7), (4.9), and (4.10) with the following parameter functions

E0
A(Q1) = V 0

A(Q1) − V0(Q1, 0), (A.1)

where

V 0
A(Q1) = 0.64928 exp[−1.170(Q1 + 0.15063)] 1

1 + exp[2(Q1 − 1.45)]

× 1
1 + exp[3(Q1 − 2.4)]

− 0.093230 exp(−1.972Q1) + 0.091873,

(A.2)

E2
A(Q1) = 0.001494 exp[−11.07(Q1 − 0.18799)2] − 0.00020468, (A.3)

E0
B(Q1) =

⎧⎨⎩−0.00584(0.642 −Q1)1.697 + 0.09319, Q1 < 0.642,
0.09319, Q1 ≥ 0.642,

(A.4)

E2
B(Q1) = 0.00027411 exp[−5.531(Q1 + 0.295)2] − 0.0014107, (A.5)

E4
B(Q1) = 8.44 × 10−6, (A.6)

λ(Q1) = 0.019814 exp[−1.341(Q1 + 0.429)2]. (A.7)

A.2 Coupling to the continuum
The discrete-state-continuum coupling is given by Eqs. (4.8), (4.11)–(4.15) with

v0
As(ϵ, Q1) = 0.10094 exp[−1.519(Q1 + 0.0626)2] exp(−0.339ϵ), (A.8)

ṽ0
As(ϵ, Q1) = 0.33903 exp[−0.6438(Q1−0.675)2](0.3387ϵ)1/4 exp(−0.3387ϵ), (A.9)

v2
As(ϵ, Q1) = 0.00083871 exp(−0.6863Q1) exp(−2.663ϵ), (A.10)
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v1
Ap(ϵ, Q1) = 0.00083732 exp[−6.389(Q1 + 0.554)2](11.71ϵ)3/4 exp(−11.71ϵ),

(A.11)
v0
Bp(ϵ, Q1) = {−0.00217 exp[−1.309(Q1 + 0.0453)2] + 0.12968}

× (3.241ϵ)3/4 exp(−3.241ϵ),
(A.12)

v2
Bp(ϵ, Q1) = f(Q1)(0.9526ϵ)3/4 exp(−0.9526ϵ), (A.13)

where

f(Q1) =

⎧⎨⎩−0.00058125(1.16 −Q1)1.763 + 0.0032510, Q1 < 1.16,
0.0032510, Q1 ≥ 1.16,

(A.14)

v1
Bs(ϵ, Q1) = 0.0031880 exp[−1.509(Q1 + 0.683)2] exp(−12.73ϵ), (A.15)

ṽ1
Bs(ϵ, Q1) = 0.0093164 exp[−3.851(Q1 + 0.0625)2](0.3989ϵ)1/4 exp(−0.3989ϵ).

(A.16)

A.3 Background phases
Finally, the coefficients of the background phases (in radians) given by Eqs. (4.17)–
(4.20) are

aAlog(Q1) = −0.10797 − 0.083738Q1, (A.17)

aA(Q1) = −12.961 − 2.4351Q1, (A.18)

bA(Q1) = −0.49381 − 0.52605Q1, (A.19)

aBlog(Q1) = −0.041916 − 0.0070866Q1 − 0.0019281Q2
1, (A.20)

aB(Q1) = −5.6354 + 0.026100Q1 + 0.12297Q2
1, (A.21)

bB(Q1) = −0.32103 − 0.026983Q1 − 0.017198Q2
1, (A.22)

a1(Q1) = −1.1603 − 0.51672Q1 + 0.63540Q2
1, (A.23)

b1(Q1) = 0.014376 − 0.019647Q1, (A.24)

aK(Q1) = 4.7929 + 1.75019Q1 + 14.850Q2
1, (A.25)

aKsqrt(Q1) = −1.28072 + 1.4822Q1 − 2.5141Q2
1, (A.26)

bK(Q1) = 0.0044722 − 0.084373Q1 − 0.10791Q2
1 + 0.18265Q3

1. (A.27)
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