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SUMMARY 

 

Introduction: Diagnostic imaging has a crucial role in the diagnosis and therapeutic 

management of acute ischemic stroke (AIS). Within the framework of AIS, computed 

tomography (CT) is still the most widespread and used imaging modality. Despite the known 

applications of CTA (occlusion detection, collateral assessment) and wide use of CT perfusion 

(CTP) as a part of the standard stroke management protocol, the main aim of this thesis was to 

further evaluate the utilization of these imaging modalities in the diagnosis and treatment 

decision in patients with acute ischemic stroke caused by the occlusion of the middle cerebral 

artery. 

 

Methods: Study in Chapter 2 retrospectively evaluated the automatically derived CT perfusion 

lesion volumes (PLV) defined as Tmax>10s, >8s, >6s, >4s, CBF<30% and hypoperfusion 

intensity ratio (HIR) with collateral score using multiphase CTA (mCTA). PLV and 

hypoperfusion intensity ratio (HIR) were compared across collateral score categories using 

Kruskal-Wallis and Wilcoxon rank-sum test. Correlation coefficients were calculated using 

Spearman’s rho. In study in Chapter 3, the assessment of ischemic changes by expert reading 

and available automated software for non-contrast CT (NCCT) and CTP on baseline 

multimodal imaging was compared (retrospective analysis, the sensitivity, specificity, positive 

predictive value, and negative predictive value were calculated). The accuracy for the final 

infarct prediction was evaluated using Bland-Altman plots. In Chapter 4, the performance of 

StrokeSENS, an automated tool utilizing a machine learning algorithm, in detection of anterior 

large vessel occlusions (LVO) on CTA was tested using receiver operator characteristics 

analysis, reporting area under the curve, sensitivity and specificity. Study in Chapter 5 aimed 

to determine whether mCTA-based prediction of clinical outcome and final infarct volume can 

be improved by assessing collateral status on time-variant mCTA color maps (retrospective 

analysis, multivariable logistic regression was used). The aims in Chapter 6 were to determine 

if mCTA-derived tissue maps can accurately detect medium vessel occlusions (MeVOs), and 

predict infarction on 24h follow-up imaging with comparable accuracy to CTP maps 

(retrospective analysis, sensitivity, specificity, and AUC for MeVO detection were calculated, 

concordance correlation coefficient and intraclass correlation coefficient for volumetric and 

spatial agreement between predicted infarcts on mCTA and CTP, Cohen’s Kappa analysis). 

 



 

Results: In Chapter 2, we demonstrated that mCTA collateral score corresponds well with 

automatically-derived perfusion lesion volumes with significant difference of PLV between 

good and poor collaterals. High accuracy for the assessment of ischemic changes by different 

CT modalities with the best accuracy for CBF<30% and Tmax>10s was demonstrated in 

Chapter 3. We showed in Chapter 4 StrokeSENS LVO machine learning algorithm detected 

anterior LVO with high accuracy from a wide range of scans in a large dataset. Chapter 5 

demonstrated that collateral extent assessment on time-variant mCTA maps improved 

prediction of good outcome and was comparable to conventional mCTA in predicting follow-

up infarct volume. Study in Chapter 6 showed that mCTA tissue maps can be used to reliably 

detect MeVO stroke and predict tissue fate, with good interrater agreement for the MeVO 

presence. 

 

Conclusion: The correlation of mCTA collateral status and CTP-derived PLV suggests that 

PLV can be estimated by collateral grade in AIS patients presenting during first 6 hours from 

the symptom onset. High accuracy of early ischemic changes assessment using automated 

software analysis encourages its use in clinical practice, especially by less experienced readers. 

The reliable performance of the software tool in anterior LVO detection further supports the 

use of machine learning based software tools in acute care to quickly and accurately identify 

patients presenting with suspected AIS who can benefit from timely treatment. Time-variant 

mCTA display format represents a suitable alternative to facilitate interpretation of the 

collateral status. mCTA-derived tissue maps can be used to detect MeVO and estimate the 

volume of potentially salvageable tissue, particularly in centers in which CTP is not available. 

 

Key words: acute ischemic stroke, stroke imaging, multiphase CTA, CT perfusion, automatic 

software analysis, collateral score 

 

 

 



 

SOUHRN 
 

Úvod a cíle: Diagnostické zobrazování má zásadní roli v diagnostice a terapeutickém 

managementu akutní ischemické cévní mozkové příhody (AIS). V rámci AIS je stále 

nejrozšířenější a nejpoužívanější zobrazovací modalitou počítačová tomografie (CT). 

Navzdory běžnému využití CTA (k detekci uzávěru, posouzení stavu kolaterál) a rozšiřujícímu 

se užití CT perfúze (CTP) jako součásti standardního protokolu v managementu pacientů s 

AIS, bylo hlavním cílem této práce zhodnotit další možnosti využití těchto zobrazovacích 

modalit u pacientů s AIS způsobenou uzávěrem střední mozkové tepny. 

 

Metodika: Studie v Kapitole 2 retrospektivně hodnotila automaticky odvozené objemy CT 

perfúzních lézí (PLV) definované jako Tmax>10s, >8s, >6s, >4s, CBF<30% a hypoperfúzní 

koeficient (HIR) s kolaterálním skóre pomocí multifázické CTA (mCTA). PLV a HIR byly 

porovnány napříč kategoriemi kolaterálního skóre pomocí Kruskal-Wallisova a Wilcoxonova 

rank-sum testu. Korelační koeficienty byly vypočteny pomocí Spearmanova rho. Ve studii v 

Kapitole 3 bylo porovnáno hodnocení ischemických změn na vstupním multimodálním 

zobrazení hodnoceného experty a pomocí dostupného automatizovaného software na nativním 

CT (NCCT) a CTP (retrospektivní analýza, stanovení senzitivity, specificity, pozitivní 

prediktivní hodnoty a negativní prediktivní hodnoty). Dále byla zhodnocena přesnost 

hodnocení pro predikci výsledného infarktu pomocí Bland-Altman analýzy. V Kapitole 4 byl 

testován StrokeSENS, automatizovaný nástroj využívající machine learning algoritmus, v 

detekci uzávěru velkých cév (LVO) v přední mozkové cirkulaci na CTA s využitím receiver 

operating characteristics, [stanovení area under the curve (AUC), senzitivity a specificity]. 

Cílem studie v Kapitole 5 bylo zjistit, zda lze zlepšit predikci klinického výsledku a konečného 

objemu infarktu na základě posouzení stavu kolaterál na barevně kódovaných time-variant 

mCTA (retrospektivní analýza, použita multivariabilní logistická regrese). Cílem v Kapitole 6 

bylo určit, zda tkáňové mapy generované z mCTA umožňují přesnou detekci uzávěrů středních 

cév (MeVO) a predikovat infarkt na kontrolním zobrazení za 24 hodin se srovnatelnou 

přesností jako CTP (retrospektivní analýza, stanovení senzitivity, specificity a AUC pro 

detekci MeVO, koeficientu konkordanční korelace a koeficientu vnitrotřídní korelace pro 

objemovou a prostorovou shodu predikovaných infarktů na mCTA a CTP, Cohenova Kappa). 

 

Výsledky: V Kapitole 2 jsme prokázali, že mCTA kolaterální skóre dobře koreluje s 

automaticky odvozenými objemy perfúzních lézí s významným rozdílem velikosti PLV u 



 

dobrých a chudých kolaterál. Vysoká přesnost pro hodnocení ischemických změn různými CT 

modalitami byla prokázána v Kapitole 3 s nejvyšší přesností pro CBF<30% a Tmax>10s. V 

Kapitole 4 jsme ukázali, že software StrokeSENS LVO detekoval LVO v přední cirkulaci s 

vysokou přesností na velkém souboru dat s širokou škálou skenů. Kapitola 5 demonstrovala, 

že hodnocení rozsahu kolaterálu na time-variant mCTA mapách zlepšilo predikci dobrého 

výsledku a mělo obdobnou hodnotu pro predikci následného objemu infarktu ve srovnání s 

konvenčním hodnocením kolaterál na mCTA. Studie v Kapitole 6 ukázala, že tkáňové mapy 

mCTA lze použít ke spolehlivé detekci MeVO a k predikci infarktu, s dobrou shodou mezi 

hodnotiteli v detekci MeVO. 

 

Závěr: Korelace kvality kolaterál na mCTA a PLV odvozené z CTP značí, že velikost PLV 

může být odhadnuta podle stavu kolaterál u pacientů s AIS přicházejících během prvních 6 

hodin od začátku symptomů. Vysoká přesnost hodnocení časných ischemických změn pomocí 

automatizované softwarové analýzy vybízí k jeho využití v klinické praxi, a to zejména méně 

zkušenými uživateli. Spolehlivý výkon automatického softwaru v detekci LVO dále podporuje 

využití softwarových nástrojů založených na machine learning v akutní péči pacientů s 

podezřením na AIS k rychlé a přesné identifikaci těch, kteří mohou mít prospěch z včasné 

léčby. Formát zobrazení time-variant mCTA představuje vhodnou alternativu k usnadnění 

interpretace stavu kolaterál. Tkáňové mapy odvozené z mCTA lze spolehlivě využít k detekci 

MeVO a k odhadu objemu potenciálně zachranitelné tkáně, zejména v centrech, kde není k 

dispozici CTP. 

 

Klíčová slova: akutní ischemická cévní mozková příhoda, zobrazení u cévní mozkové příhody, 

multifázická CTA, CT perfúze, automatická softwarová analýza, kolaterální skóre  
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1. Chapter 1 - Introduction 

 

Acute ischemic stroke (AIS) remains a worldwide major cause of disability and mortality. 

Approximately 7-8 million people suffer from AIS every year, out of which almost one half 

dies and about 25-30% of stroke survivors remain disabled in basic activities (1,2). 

 The two treatment options for AIS are medical treatment with intravenous tissue 

plasminogen activator (alteplase or tenectaplase) and endovascular thrombectomy (EVT) (3). 

While the former is quite effective at opening smaller vessel occlusions, recanalizing medium-

sized and large vessel occlusions almost always requires mechanical recanalization, i.e. EVT 

(4).  

 

1.2 PATHOPHYSIOLOGY OF ACUTE ISCHEMIC STROKE 

Acute occlusion of cerebral artery leads to immediate decrease in arterial blood flow in 

particular vessel territory resulting in alteration of cellular function. Interruption of arterial flow 

rich in oxygen and glucose results in disruption of the basal functions of electrically active 

neurons and supporting glial cells (5). 

The normal cerebral blood flow (CBF) in adults is on average 50ml/min per 100g with 

lower values in the white matter (∼20ml/min/100g) and greater values in the grey matter 

(∼80ml/min/100g) (6). If the blood flow is above 20 ml/min/100g (40% of a normal flow), the 

cerebrovascular autoregulation leads to increased oxygen extraction (7). Below this level, the 

neurotransmission will cease and neurologic symptoms according to ischemia localization 

occur (8). 

Immediately after the acute occlusion, the cerebrovascular and systemic compensatory 

mechanisms such as vasodilatation, blood pressure increase, collateral circulation recruitment 

etc., are activated in order to maintain the sufficient perfusion within the affected territory. 

First, the decline of blood perfusion pressure and an increase in CO2 blood level causes an 

autoregulatory dilation of the resistance vessels. Subsequently, the stimulation of anaerobic 

metabolism results in lactacidosis  and  further  pH-mediated vasodilation. Once the resistance 

vessels are fully dilated, CO2 reactivity disappears and any further reduction of blood supply 

cannot be compensated (9). Neuron cells are able to survive for minutes, but unless the vessel 

is rapidly re-opened and the sufficient blood flow restored, the compensatory mechanisms fail. 

Together with the critical decrease in arterial perfusion, progression of hypoxia into ischemia 
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occurs, followed by neuronal death (1.9 million nerve cells per minute in average), infarct 

evolution and infarct growth (10). 

   

1.1.1 Ischemic cascade 

At the cellular level, more than 70% of all energy in the brain is used for the maintenance of 

the ionic gradient via facilitated transport of Na+/K+ that is fundamental for electrical and 

chemical signalling (11). During ischemia, oxygen insufficiency completely disrupts 

mitochondrial oxidative phosphorylation (the synthesis of ATP by phosphorylation of ADP in 

the mitochondria during aerobic respiration) and leads to intracellular ATP depletion within 

minutes. The lack of ATP hinder the physiological function of ion cell pumps causing the 

aberrant influx of sodium (Na+) and calcium ions (Ca2+) into the cell and efflux of potassium 

ions (K+) out of the cell, resulting in the neuronal depolarization (12). The neuronal 

depolarization and the increase in intracellular Ca2+ triggers the release of glutamate, a 

neurotransmitter and a major contributor to ischemia-induced excitotoxicity in neurons and 

glial cells (13). 

Glutamate binds to glutamate receptors, which opening leads to additional Ca2+ entry 

into the cell lumen. A sustained activation of Ca2+-permeable channels due to an impaired 

glutamate uptake by astrocytes leads to a pathological increase in intracellular Ca2+. The 

overexcited cells in turn release enzymes involved in the lysis of proteins, lipids and nucleic 

acids. This state of cellular excitation eventually leads to neuronal apoptosis, accompanied by 

formation of free radicals, edema, and inflammation (12). 

 
1.1.2 Ischemic core and penumbra 

The ischemic core is defined as irreversibly damaged tissue, consisting of apoptotic and/or 

necrotic cells. The threshold for irreversible neuronal death was identified as CBF of 8-10 

ml/min/100g across the species (11,14–16), with grey matter demonstrating more vulnerability 

to ischemia than white matter (with a drop of CBF below ∼10-12ml/min/100g in grey matter 

and below ∼5ml/min/100g in white matter) (14). Nevertheless, even the brain tissue with CBF 

of 5-15ml/min/100g can regain function if the blood flow is restored within 30min (17,18). 

The ischemic core is surrounded by electrically silent but still viable tissue of various 

extent – ischemic penumbra. Due to the decrease in the blood flow within this tissue, neurons 

are unable to transmit signals and clinical symptoms occur. However, the function of 

membrane cell pumps and therefore the retention of ionic gradients is preserved (11,19). The 

upper threshold for electrical silence and neuronal dysfunction was determined as CBF of ∼22-
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25 ml/min/100g (11,20). The ischemic penumbra eventually progresses into infarction if  the 

blood flow is not restored. Opposite to that, with the prompt reperfusion, the tissue completely 

recovers and regains its function (10). Therefore, the duration of ischemia determines the brain 

tissue fate. 

In contrast to the ischemic core and penumbra, benign oligemia represents the tissue 

that maintains its normal function regardless of reperfusion (21). 

 

1.1.3 Role of leptomeningeal collaterals in acute ischemic stroke 

Leptomeningeal collaterals, representing pial anastomoses between major cerebral arteries 

plays a pivotal role in sustaining the cerebral blood flow within the stroke affected territory, 

e.g. beyond the arterial occlusion.  

Leptomeningeal vessels together with the ophthalmic arteries constitute the secondary 

brain collaterals, while the Circle of Willis represents the primary collateral pathway. The 

number and size of these anastomotic vessels are greatest between anterior cerebral artery 

(ACA) and middle cerebral artery (MCA), fewer connections exist between MCA and posterior 

cerebral artery (PCA) and even less terminal anastomoses could be identified between PCA 

and ACA (22). Despite this anatomical consideration, the interterritorial leptomeningeal 

collaterals between the PCA and MCA territory were shown to be functionally better than those 

between the ACA and MCA territory (23). 

 The robustness of the collateral pathways dictates the size of the ischemic core, 

ischemic core growth, and the size of the penumbra (24–26). It is a well-known fact that there 

is a large interindividual variability in the collateral robustness (23,27). The factors associated 

with the collateral morphology have been widely investigated.  Evidence suggests that acute 

and as well as chronic hyperglycemia and diabetes are associated with poor collateral status 

(23,24,28). Variability in size is likely also related to genetic factors or to variability in 

autoregulatory mechanisms or myogenic tone of pial arteries (23). 

Based on findings related to collateral recruitment during the ischemic stroke, 

leptomeningeal collaterals became an important prognostic factor in patients with AIS and the 

evaluation of their extent gained significant attention in acute stroke imaging. 

 

1.3 CT IMAGING IN ACUTE ISCHEMIC STROKE 

Diagnostic imaging has an irreplaceable role in the diagnosis and therapeutic management of 

AIS. Within the framework of AIS, computed tomography (CT) of the brain is still the most 
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widespread and used imaging method. CT represents a fast, simple, available and relatively 

inexpensive tool. 

In contrary, magnetic resonance in the acute phase of stroke diagnostics is used only by 

the small number of stroke centres compared to CT (only one comprehensive stroke centre in 

the Czech Republic uses MR in the acute stroke setting). The main limitation of the routine 

MR use in the acute stroke management is a difficulty to maintain its availability in a 24/7 

regime without restricting the remaining acute and/or routine care. 

For the purpose of this thesis, the following chapters are dedicated to CT imaging in 

AIS. 

 

1.2.1 Non-contrast CT 

Non-contrast CT is a crucial imaging modality in all patients with suspected AIS. It helps to 

rule out other pathology, such as intracranial haemorrhage or mass lesion as well as to assess 

the presence and extent of ischemic changes. Early ischemic changes are manifested by the 

loss of grey-white differentiation on the basis of the developing cytotoxic edema. In some 

cases, these early changes can be expressed only as cortical swelling or sulcal effacement at 

the brain convexity (29). 

In routine practice, the most common way of quantifying the extent of early ischemic 

changes is the ASPECTS score (Alberta Stroke Program Early CT Score) (30). Briefly, 

ASPECTS is a standardized quantitative scale assessing the extent of early ischemic changes 

in the brain parenchyma within the MCA territory, which distinguishes 10 anatomical areas (7 

at the ganglionic and 3 at the supra-ganglionic level). Out of 10 points, one point is subtracted 

for each affected area, Figure 1.1. 

Although ASPECTS shows greater inter-rater reliability for assessing early ischemic 

changes in the MCA territory than the previously used method of <1/3 or >1/3 MCA territory 

involvement (30), the ASPECTS score is still prone to subjective error and varies among 

readers (31,32). 

The automatic assessment of the ASPECTS is nowadays available (i.e. e-ASPECTS 

Brainomix, iSchemaView RAPID ASPECTS) demonstrating high reliability when compared 

to the experienced readers (33,34). The main benefit of the use of automatic software tools in 

clinical practice is the possibility of fastening the patient triage (34). 

Another characteristics that can help in the differential diagnosis of a sudden 

neurological deficit is so-called “dense artery sign” which may reflect acute arterial occlusion 

by thrombus. On the non-contrast CT head, a higher density is detected within the arterial 
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lumen that varies between 60 and 90 HU and is due to the high erythrocyte content in the 

thrombus (35,36). However, the absence of this sign does not rule out the presence of a 

thrombus, therefore a subsequent CT angiography is required to identify the filling defect of 

the cerebral artery. 

 

Figure 1.1. ASPECTS regions. The ten regions of the Alberta Stroke Program Early CT Score 

(ASPECTS) include the M1, M2, M3 territory, internal capsule (IC), caudate nucleus (C), 

lentiform nucleus (L), and insula (I) at the ganglionic level (A), and the M4, M5 and M6 

territory at the supra-ganglionic level (B). 

 

 

 

1.2.2 CT angiography 

The detection of the arterial occlusion confirms the diagnosis of AIS and the thrombus 

localization guide the treatment decisions – occlusions of the large and medium vessels are less 

likely to recanalize with intravenous tPA alone (4). CT angiography (CTA) has a sensitivity 

and specificity of around 97% for large vessel occlusion detection, with high inter-observer 

reliability (37). 
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Vascular imaging of intra- and extracranial vasculature (arch-to-vertex) is routinely 

obtained in AIS patients, providing useful information on extracranial vessel tortuosity, 

atherosclerotic disease, and potential anatomic variants (4). In standard CTA, a bolus of 

iodinated contrast is injected, and a single angiography scan from aortic arch-to-vertex is 

obtained. In multiphase CTA (mCTA), the same contrast bolus is used to obtain two additional 

series during the peak-venous and late venous phase, the latter two phases covering only the 

area from the skull base to the vertex (intracranial vasculature) (38). 

Several automated standalone acute stroke software platforms for detection of large 

vessel occlusion are available in the clinical practice, such as iSchemaView (RAPID CTA), 

Viz.ai (VIZ LVO), Brainomix (e-CTA), Canon (AUTOStroke Solution LVO) or StrokeViewer 

(NICO.LAB). These platforms use different artificial intelligence (AI) including machine-

learning (ML) methods for automatic detection of LVOs. Strategies for computer-aided 

detection of LVO include the direct identification of occlusion site using local vascular features 

(i.e. detect the clot directly by identifying the discontinuity of the contrast-enhanced vessel), 

and the indirect identification of occlusion site based on the regional vessel density asymmetry 

between the affected hemisphere and the unaffected hemisphere (39). 

In addition to localization of the occlusion, CTA also provides important information 

on the morphology of leptomeningeal collaterals. Standard CTA may underestimate the 

collateral extent as the CTA acquisition represents only a single snap-shot and the collateral 

anastomoses may not have been yet sufficiently opacified. The additional two phases of mCTA 

therefore overcomes this limitation and enable the better visualization of collaterals (38), 

Figure 1.2. 

There are different scoring systems for CTA collateral assessment. The Miteff score 

(25) evaluates the degree of retrograde opacification of vessels within the affected MCA 

territory, the score by Tan et al. (40) considers percentage of the collateral filling within the 

affected territory compared to the contralateral hemisphere. Menon et al. first defined the 

collateral score using mCTA taking into account the delayed vessel opacification by one or two 

phases and, their prominence and overall extend compared to the contralateral unaffected 

hemisphere, Table 1.1.  

Currently, various automatic software analysis for the collateral assessment are  

available. Brainomix e-CTA uses a percentage comparison of the collateral extent between the 

affected and healthy side with subsequent color marking (heat map) and a numerical score (0 

= absence of collaterals or <10% collateral filling compared to the contralateral side; up to 3 = 

>90% collateral filling compared to the contralateral side) (41). RAPID e-CTA compares the 
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absolute density of the vasculature between the hemispheres. Based on the percentage 

difference in density, a color code is assigned to the affected territory (red = density <45%; 

yellow = density 45% to 60%; green = 60% to 74%; blue = 75% to 80%) (42). 

 

Figure 1.2. Collateral scoring on multi-phase CT angiography in the axial plane. Top row: 

left-sided M1 middle cerebral artery segment occlusion with good collaterals (collaterals 

backfilling with one phase delay but normal extent); Middle row: left-sided M1 segment middle 

cerebral artery occlusion with intermediate collaterals (collaterals backfilling with one phase 

delay and decreased extent); Bottom row: left-sided M1 segment middle cerebral artery 

occlusion with poor collaterals (no backfilling of collaterals in the first phase and only very 

few collaterals visible in the second and third phases). 
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Table 1.1. Multiphase CTA collateral score 

Multiphase CTA score 

Category Score Definition 

Good 5 There is no delay and normal or increased prominence of pial 

vessels/normal extent within the ischemic territory in the 

symptomatic hemisphere compared to the asymptomatic 

contralateral hemisphere 

 4 There is a one-phase delay in filling in of peripheral vessels, but 

prominence and extent is the same compared to the asymptomatic 

contralateral hemisphere 

Moderate 3 There is a delay of two phases in filling in of peripheral vessels or 

there is a one-phase delay and significantly reduced number of 

vessels in the ischemic territory compared to the asymptomatic 

contralateral hemisphere 

 2 There is a delay of two phases in filling in of peripheral vessels and 

decreased prominence and extent or a one-phase delay and some 

ischemic regions with no vessels compared to the asymptomatic 

contralateral hemisphere 

Poor 1 there are just a few vessels visible in any phase within the occluded 

vascular territory compared to the asymptomatic contralateral 

hemisphere 

 0 There are no vessels visible in any phase within the ischemic 

vascular territory compared to the asymptomatic contralateral 

hemisphere 

 

 

1.2.3 CT perfusion 

CT  perfusion (CTP) is a functional examination of the brain tissue that characterizes the state 

of cerebral perfusion and thus informs about its functional state. The goal of perfusion analysis 

in the clinical use is to quantify tissue with significant hypoperfusion which is likely to infarct 

if reperfusion is not achieved (ischemic penumbra) and identify tissue that is likely irreversibly 

infarcted (ischemic core) (43).  

 

The essential hemodynamic parameters in CTP studies: 

1. Cerebral Blood Flow (CBF) refers to the volume of blood flowing in a unit of brain 

mass during a unit of time, measured in milliliters/100 g/min (mL/100 g/min).  CBF is 

often expressed proportionately (relative CBF) as normalized measure to a presumed 

normal reference region (in the contralateral hemisphere). 
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2. Cerebral Blood Volume (CBV) refers to the fraction of a tissue that is vascularized, 

expressed in the milliliters/100 g  

3. Mean Transit Time (MTT) represents the average time that takes a contrast bolus to 

traverse the capillary bed; MTT is reported as an absolute in seconds. 

4. Time to maximum of the residual function (Tmax) expresses the delay from the start of 

scan acquisition to the maximum intensity of contrast bolus in each voxel. 

 

CBF, MTT, and CBV are mathematically related by the equation: CBF = CBV/MTT, known 

as the central volume principle (44). Therefore, measurement of any 2 of these parameters is 

sufficient to derive the third parameter (45), Figure 1.3. 

 

Figure 1.3. Perfusion time attenuation curve. Time to peak (TTP) represents time it takes 

the contrast to achieve its maximum within the area of interest. Cerebral blood flow (CBF) is 

represented by the slope of the curve as contrast arrives into the brain and the cerebral blood 

volume (CBV) is expressed by the volume/area under the curve. Mean transit time (MTT)is 

then calculated as the ratio of CBV and CBF. 
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1.2.3.1 CT perfusion acquisition and postprocessing 

CTP acquisition represents a dynamic capturing of a passing contrast bolus (its wash-in and 

wash-out) through the brain tissue (45,46). A slab of 8 to 16 cm of the brain is repeatedly 

scanned over 45 to 90 seconds. Based on the derived attenuation-time curves obtained for 

arterial input function (representing arterial flow/wash-in) and venous output function 

(representing venous flout/wash-out), perfusion parameters are calculated for each voxel. The 

results are displayed usually as color-coded maps (45). 

The contrast passage and subsequent attenuation-time curves are dependent on arterial 

flow (expressed as arterial input function) and tissue characteristics. Among factors influencing 

the arterial flow of contrast media through the tissue belong impaired cardiac output, severe 

carotid stenosis or factors related to the contrast bolus injection (injection rate, saline chase). 

These factors may result in delay or dispersion of the contrast bolus which may introduce an 

error in the quantification of CBF (45). 

Raw CTP data can be processed with 2 techniques to generate perfusion maps, non-

deconvolution and deconvolution methods. Non-deconvolution methods are based on first-pass 

iodine extraction measurements resulting in a simplified and less computationally intensive 

processing algorithm. Deconvolution methods account for physiological variations in arterial 

flow, the collateral flow effect, and venous outflow components of cerebral perfusion (45) and 

correct for the inability to deliver a contrast bolus directly into the supplying artery of a tissue 

of interest (11). 

There exist different deconvolution methods: singular value decomposition (SVD) (47), 

delay- and dispersion-corrected singular value deconvolution (dd-SVD) (48), and Bayesian 

methodologies (49). dd-SVD or Bayesian-estimated generate the arterial delay time in contrast 

Tmax derived from SVD model. Use of different deconvolution methods may result in a the 

measurement variability of the core and penumbra based on the deconvolution algorithm (45). 

 

1.2.3.2 Technical pitfalls 

The technical factors influencing reliability of the perfusion maps are CT X-ray tube voltage, 

total duration of scan acquisition, contrast bolus injection, brain coverage, frame rate (time 

between frames in the scans) and scan order (46).  

A well-known limitation of CT perfusion is its low contrast to noise ratio when 

compared to MR perfusion. To optimize contrast-to-noise and keep the radiation dose as low 

as reasonably achievable (ALARA principle), CTP scans are recommended to be acquired at 

70–80 kV (46). 



 29 

Optimization of timing parameters is required to capture the complete contrast passage 

and avoid excessively long scanning before or after the contrast passage. The optimal scan 

should capture a short baseline period (5–10 sec) with no contrast and the complete pass of the 

contrast bolus through a main cerebral vein (which follows the arterial contrast bolus pass) 

(46). This duration varies between patients. Empiric data showed that complete contrast 

passage was captured in >90% of patients with a scan duration of 60 sec (50). Based on this 

finding, an optimal scan duration should be planned for 60 to 70 sec (45). 

The duration of the baseline is determined by the timing of the contrast bolus injection. 

Empiric data showed that a short (5–10 sec) baseline was obtained in most patients when 

acquisition starts 4s after start of the contrast injection. Administration of the contrast bolus 

with a power injector  ensures consistency of acquisition. In general, it is recommend to 

administer 40mL contrast agent at 4–6 ml/s followed by 40 ml saline at 4–6 ml/s (46). 

Z-axis brain coverage is primarily determined by the CT detector width and varies from 

4 to 16 cm on most modern scanners. The minimal brain coverage of 4 cm obtained with narrow 

CT detectors my not be sufficient to capture the lesion with affected perfusion. It is therefore 

recommended obtaining at least 8 cm of z-axis coverage, extending rostrally from above the 

orbits (46). 

The quality of the perfusion maps can be also impacted by low frame rates, and in order 

to generate reliable perfusion studies, frame sampling should be set to less than 2s when 

possible (46).  It is beneficial to scan the patient with the head in a symmetrical position without 

any head tilt. The CTP software uses the contralateral side as reference for perfusion parameters 

calculations and significant asymmetry between the brain hemispheres could lead to incorrect 

results (45). 

 

1.2.3.3 Interpretation of CT perfusion  

There are few pitfalls hidden in the CTP interpretation. A variety of thresholds have been used 

to define ischemic core and penumbra by different software packages. These differences result 

in discrepancies in the size of the core and penumbra, ranging from 50 ml underestimation to 

>50 ml overestimation of core volumes compared to follow-up infarct volume (51). Such a 

differences may subsequently influence patient selection for reperfusion therapy. 

Similarly to the use of automatic assessment of early ischemic changes on non-contrast 

CT or LVO detection on CTA,  the automated perfusion analyses are nowadays used in clinical 

practice allowing for potential reduction of triage times by identifying the patients with 

potentially salvageable tissue who would benefit from treatment (10). 
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Several EVT trials used perfusion thresholds as imaging inclusion criteria (52–55) 

using RAPID-AI automatic software analysis. In this software, the ischemic core is defined as 

relative CBF<30% of the value in the contralateral hemisphere, and ischemic penumbra region 

is defines as Tmax delay of  >6 sec compared to the contralateral hemisphere, Figure 1.4. The 

cut-off value of CBF for the RAPID-AI core was chosen to not significantly overestimate the 

size of the core, which would lead to undesirable patients over-selection. In contrary, a 

significant underestimation of the core would increase the risk of hemorrhagic transformation 

and reduce the probability of a good clinical outcome (56). With the chosen ischemic core 

threshold value of rCBF <30% allows, the expected core underestimation is approximately 10-

15 ml (53). 

There are other automatic software for perfusion analysis, such as Olea Medical 

software (Brainomix) or Viz.ai. Olea software uses the Bayesian algorithm for perfusion 

parameters calculation that results in definition of the ischemic core as CBF<40% together with 

Tmax delay >2 sec, and penumbra as delay Tmax >6s (57).  The potential advantages of using 

the Bayesian algorithm is the use of the half of the standard volume of the contrast media (58). 

It is important to note that the CTP threshold are not absolute. It was shown that 

ischemic core may be overestimated if perfusion imaging is performed very early after the 

symptom onset (16), and the use of more strict thresholds should be considered, especially if 

the baseline imaging was performed within the first hour (“golden hour”) (59). The core 

overestimation was also demonstrated in patients with achieved rapid reperfusion (16).  

Although it is know that the white matter is more resistant to the hypoperfusion and 

therefore more strict thresholds should be applied to distinguish grey and white matter at risk 

of infarction with a higher accuracy (60), this differentiation is not widely used in clinical 

practice and remains to be so far of a research interest. 

The tissue fate prediction is also associated with the severity of hypoperfusion (43,61). 

Severely hypoperfused tissue defined as Tmax delay >10s tends to progress more rapidly that 

the tissue with better residual perfusion through collateral flow. The severity of hypoperfusion 

can be quantified by the hypoperfusion intensity ratio (HIR), which represents the proportion 

of Tmax >6s perfusion lesion with Tmax >10s perfusion lesion. The high HIR was proved to 

predict the poor collaterals and infarct progression (61). 
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Figure 1.4. CT perfusion analysis using RAPID-AI. Exemplary case of the overview 

perfusion map in patient with right MCA occlusion. Ischemic core defined as relative CBF 

<30% is displayed in purple color on the left side of the overview map (the core volume is 

31ml in this particular case). The area in green on the right side of the map represents 

hypoperfused tissue with Tmax delay of > 6 sec compared to the contralateral hemisphere (184 

ml). The difference between these volumes (mismatch volume) represents the penumbra 

volume, the mismatch ratio expresses how many times is the penumbra volume larger than the 

predicted ischemic core volume.  

 

 

1.3. CURRENT STATE OF IMAGING IN ACUTE ISCHEMIC STROKE DIAGNOSIS 

AND TREATMENT DECISION 

The indication of the particular CT modalities is currently based on the time from the symptom 

onset. In order to administer intravenous thrombolysis within 4.5 hours of onset, non-contrast 

CT scan is required to rule out intracranial hemorrhage or other non-vascular pathology (e.g. 

tumor). Beside excluding the hemorrhage, non-contrast scan is used to detect early ischemic 

changes. CTA is used not only to confirm the AIS by detecting the arterial occlusion, but it is 

also highly recommended in patients indicated for mechanical thrombectomy to evaluate the 

extracranial vascular anatomy.  

CTP scan is primarily beneficial in patients presenting between 6 and 24 hours from 

the symptom onset or in cases where the time of onset is unclear. CTP enables to identify 

patients with potentially salvageable ischemic penumbra. In patients with unknown stroke 

onset (unclear time of onset or awakening with symptoms of CMP = “wake-up” stroke), the 

patient care is not strictly determined by the “time window” ("time is brain" concept (10)), but 

by so-called “tissue window” ("imaging is brain" concept (62,63)).  Based on the results of the 

pooled data analysis from the EXTEND, ECASS4-EXTEND, and EPITHET clinical trials 
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(64), the treatment window for the intravenous thrombolysis has been extend beyond 4.5 hours 

in patients with mismatch profile (presence of ischemic penumbra). Another advantage of CTP 

even in early stages is the identification of perfusion lesion (hypoperfused area). This typically 

refers to situations when patients have small neurological deficit or repeated AIS with residual 

neurological deficit after the prior stroke, or when stroke-mimics are suspected. 

 

1.4 FUTURE DIRECTIONS 

The numerous different software solutions for image analysis and different imaging modalities 

are currently used in acute stroke imaging, however, lead to lack of standardization and 

comparability (4). For example, CTP thresholds should be harmonized throughout different 

vendors and software packages.  

The expanding availability of the automatic software analysis enables primarily fasten 

the patients’ triage in the acute management and also reduce the inter-rater variability. For 

example, automated ASPECTS scoring based on machine-learning algorithms was shown to 

be reliable (33,34), and is expected to be soon used routinely in clinical practice.  

Novel visual aids, such as time-variant  mCTA maps or mCTA-derived CTP-like maps 

are promising tools that have been recently introduced and can help less experienced readers 

and thus potentially decrease the interpretation time (65,66). These can be obtained within 

seconds, with little computational effort and with no additional use of contrast or radiation dose 

compared to the CTP acquisition.  

Time-variant (color-coded) mCTA display format encodes vascular information from 

all mCTA phases into a single color-coded map, combining the indicator effect of color with 

the technical advantages of mCTA. The assessment of the pial arterial filling using ColorViz 

is based on visual determination of the predominant vessel color (the color that is present in 

more than 40% of the vessels) in the affected vascular territory. Under standard circumstances, 

predominantly blue vessels indicate a 2-phase delay, green vessels a 1-phase delay and 

predominantly red vessels no delay. Differentiation of veins and arteries is based on their 

distinct flow characteristics (veins usually enhance in the peak venous and late venous phase 

and are therefore displayed in green or blue), filling direction, morphology and anatomical 

location (65). 

mCTA-derived CTP-like maps are based on the machine learning technique to estimate 

infarct core and ischemic penumbra in patients with AIS. It has been shown that mCTA derived 

CTP-like maps demonstrated comparable accuracy to traditional CTP in predicting tissue fate 

(66).   
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1.5 AIMS AND OUTLINE OF THE THESIS 

Despite the known applications of CTA and wide use of CTP as a part of the standard stroke 

management protocol, the main aim of this thesis was to further evaluate the utilization of these 

imaging modalities in the diagnosis and treatment decision in patients with acute ischemic 

stroke caused by the occlusion of the middle cerebral artery. 

Part I of this thesis focuses on the assessment of correlations of different CT modalities. 

The correlation of the leptomeningeal collateral grading using mCTA and perfusion lesion 

volumes derived from the automatic CTP analysis was investigated in Chapter 2. In Chapter 

3, we investigated the accuracy of different CT modalities including also automatically-derived 

CTP maps in the assessment of the early ischemic changes and their accuracy for the final 

infarct prediction.  

Part II explores advanced applications and postprocessing of CTA. The machine 

learning based software tool for automated ICA and MCA occlusion detection in patients with 

suspected acute stroke using was validated and its high accuracy was demonstrated (Chapter 

4). Chapter 5 discusses the utility of time-variant mCTA maps in the prediction of the clinical 

outcome and final infract volume compared to the conventional mCTA collateral grading. In 

Chapter 6 investigates the accuracy of medium vessel occlusions (MeVO) on mCTA-derived 

tissue maps. 

In Chapter 7, the general implications of the findings in this thesis and directions for 

the future research are discussed. 
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2. Chapter 2 - Correlation of the multiphase CTA collateral score and          

the automatically-derived CT perfusion volumes  

 

The contents of this chapter have been adapted from the journal article entitled “Detection 

Correlation of the multiphase CTA collateral score and the automatically-derived CT 

perfusion volumes”, submitted to Journal of Stroke and Cerebrovascular Diseases by P. 

Cimflova, K. Holikova, B.J. Kim, et al.  

 

Background: Previous studies comparing collateral flow on CTA and CTP focused on good 

collaterals. While multiphase CTA (mCTA) enables visualization of delayed filling, 

intermediate collateral should still be considered as sufficient. Therefore, we evaluated the 

automatically-derived CTP lesion volumes (PLV) with mCTA collateral grades. 

 

Methods: Imaging data of consecutive patients from Jan-2016 to Dec-2020 undergoing 

mechanical thrombectomy were retrospectively reviewed. Patients with terminal ICA and 

M1/M2-MCA occlusion and available baseline mCTA and CTP were included. Collaterals 

were assessed as good, intermediate or poor. PLV parameters were defined as Tmax delay >4s, 

>6s, >8s, >10s, CBF<30%. PLV and hypoperfusion intensity ratio (HIR) were compared across 

collateral score categories using Kruskal-Wallis and Wilcoxon rank-sum test. Correlation 

coefficients were calculated using Spearman’s rho. The cut-off values for PLV and HIR 

representing poor collaterals were derived from the receiver operating characteristic curve 

analysis. 

   

Results: Out of 341 patients,147 were included (44% women, mean age 7114  years, median 

NIHSS 16, median ASPECTS 8). The median onset-to-CT time was 82.5 min. Sixty-three 

patients had good, 73 intermediate, and 11 poor collaterals. The PLV significantly differed 

between good and poor collaterals for Tmax>10s, >8s, >6s, CBF<30% and HIR. The highest 

correlation was demonstrated for Tmax >10s (=-50), followed by HIR (=-47) and CBF<30% 

(=-42). The poor collaterals were represented with CBF<30% of 31ml (AUC=0.77;sensitivity 

of 0.82;specificity 0.73), followed by Tmax>10s PLV of 114 ml (AUC=0.75;sensitivity of 

0.64; specificity 0.84). 

 

Conclusion: We demonstrated that mCTA collateral score corresponds to PLV with significant 

difference in PLV between good and poor collaterals .  
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2.1 INTRODUCTION 

The quality of the leptomeningeal collateral flow in the acute ischemic stroke due to the large 

vessel occlusion in the anterior territory is associated with patients’ clinical outcome (1,2), 

infarct growth and final infarct volume (3–5), and hemorrhagic transformation (6).  

Various methods of collateral assessment have been developed over the past years. 

Besides the gold standard imaging of the collaterals on the digital subtraction angiography, 

CT/MR angiography are the most common methods of collateral evaluation, especially in the 

setting of the acute ischemic stroke where fast diagnostic tools are required (7). Multiphase 

CTA (mCTA) is a technique that generates time-resolved cerebral angiograms from skull base 

to vertex with two additional phases enabling evaluation of the delayed filling within the 

affected MCA territory (8). 

Novel approaches suggested the collateral assessment based on the CT perfusion (CTP) 

parameters such as time-to-maximum-of-the-residual-function (Tmax) (9), hypoperfusion 

intensity ratio (HIR) (10,11) or CBV-index (12,13). 

Previously published studies (10,12,14) comparing the collateral flow on CTA and CTP 

were predominantly focused on the associations related to the good collaterals. In the original 

publication by Menon et al. (8), in which the authors introduced mCTA, they highlighted a 

possibility of the underestimation of the leptomeningeal collateral flow on the standard (single-

phase) CTA. That means that also intermediate collaterals (represented by delayed filling of 

the collaterals by 1 phase and some decrease in their extend or 2 phase delay but no decrease 

in extend compared to the unaffected side) should still be considered sufficient rather than poor. 

This assumption was followed by including both good and intermediate collateral flow grades 

into the imaging criteria of the randomized clinical trials such as ESCAPE (15), ESCAPE-NA1 

(16) and currently ongoing ESCAPE-NEXT (NCT0446253). Therefore, the aim of the study 

was to evaluate perfusion lesion volumes (PLV) for each collateral grade and identify 

automatically derived CTP parameters associated with poor collateral flow as defined by 

Menon et al. (8) 

 

2.2 MATERIALS & METHODS 

2.2.1 Patient selection 

Retrospective review of imaging data of consecutive patients who underwent mechanical 

thrombectomy at the comprehensive stroke center during the period from Jan 2016 to Dec 2020 

was performed. Patients with intracranial terminal internal carotid artery occlusion (ICA) and 

middle cerebral artery occlusions (M1 and proximal M2 segments) with available baseline 
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imaging data including mCTA and CTP were included. Multiphase CTA is used as a stroke 

imaging standard at our center since 2013, and all patients with symptoms of AIS and no history 

of contrast allergy routinely undergo NCCT, mCTA and CTP in our institution. 

Ethical approval was obtained from the local Institutional Review Boards (the Boards 

waived the need for patient consent). 

 

2.2.2. Imaging protocol 

The imaging protocol set up in our comprehensive stroke center consisted of NCCT, mCTA 

and CTP. 

Multiphase CTA consists of three scanning phases after the contrast media injection 

(60ml of iodine contrast agent [Iomeron 300; Bracco Imaging, Konstanz, Germany] power-

injected at 5ml/s followed by a saline chase of 40ml at 5ml/s) with a 0.625mm section 

thickness. The first phase from the aortic arch to the cranial vertex was followed by two 

additional phases from the skull base to the cranial vertex with a delay allowing the table 

repositioning between particular scanning phases and resulting in the performance of each 

phase 8s apart (120kv, Auto mA/Smart mA, rotation time 0.6s, pitch 0.98, collimation 

64x0.625mm). Image acquisition was triggered by bolus tracking in the ascending aorta. 

According to the original protocol (8), each phase had increased noise index (13.86-15.84) in 

order to achieve lower total radiation dose.  

For the CTP protocol, 40 ml of contrast agent (Iomeron 300; Mallinckrodt 

Pharmaceuticals; Dublin, Ireland) was power injected at 5 ml/s followed by a saline chase of 

50 ml at 5 ml/s. Sections of 8cm thickness were acquired at 10 mm slice thickness. Scanning 

began after a delay of 5s from contrast injection in every 1.8s for 75s.  

 

2.2.3 Image processing 

CT perfusion studies were post-processed using the RAPID software (iSchemaView, Menlo 

Park, CA, USA) to generate perfusion maps of cerebral blood flow (CBF), cerebral blood 

volume (CBV), mean transit time (MTT), and time to the maximum of the residue function 

(Tmax). The RAPID software also automatically segmented and calculated volumes of the 

presumed ischemic core (defined as a relative regional CBF <30%) (17) and volumes of 

hypoperfused tissue with Tmax delay of  >4s, >6s, >8s, and >10s.  
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2.2.4 Image review 

The quality of leptomeningeal collaterals was assessed according to the original collateral score 

introduced by Menon et al. (8) by an experienced reader (PC, more than 8-year experience with 

stroke imaging evaluation). The collateral score was evaluated blindly to the patients’ history 

and CTP maps. The collaterals were trichotomized into good (score = 4-5), intermediate (score 

= 2-3), and poor (score = 0-1). 

The data regarding particular CTP volumes were extracted independently of the 

imaging and clinical data. Hypoperfusion intensity ratio (HIR), representing the proportion of 

Tmax  delay > 10 s over Tmax delay > 6 s, was calculated (18). 

 

2.2.5 Statistical Analysis 

Clinical and imaging baseline characteristics were summarized using descriptive statistics. 

PLV parameters were defined as Tmax delay >4s, >6s, >8s, >10s, CBF<30%, and HIR. These 

parameters were compared across the collateral score categories using Kruskal-Wallis test and 

Wilcoxon rank-sum test. Spearman’s coefficients were used to quantify correlations between 

the extent of collaterals and PLV or HIR. The cut-off values and their sensitivity and specificity 

for poor collaterals were calculated from area-under-the-curve of receiver operating 

characteristic curve analyses. Sensitivity analysis was performed for a subgroup with terminal 

ICA and M1 MCA occlusions only. All analyses were performed in Stata 16.1 (StataCorp LLC, 

College Station, TX, USA). 

 

2.3 RESULTS 

2.3.1 Baseline Characteristics 

Mechanical thrombectomy was performed in 341 patients during the selected study period. 

Forty patients with the posterior circulation occlusions, 9 patients with isolated cervical ICA 

occlusion or ICA dissection, and 142 patients with no CTP baseline imaging were excluded. 

Additionally, 3 patients with poor CTP quality resulting in uninterpretable CTP maps were 

excluded. Data from 147 were analyzed, out of which 69 (44.2%) were women. The mean age 

was 71  14 years, median baseline NIHSS was 16 [interquartile range (IQR) 12-19] and the 

median baseline ASPECTS was 8 (IQR 7-9). The median time from the onset to CT was 83 

min (IQR 60-169 min), all included patients had the baseline CT <6h from the symptom onset. 

Leptomeningeal collaterals were scored as good in 63 (42.9%), intermediate in 73 patients 

(49.7%), and poor in 11 patients (7.5%). 20 patients had terminal ICA occlusion, 96 patients 
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(65.3%) had M1-MCA occlusion and 31 (21.1%) patients had M2-MCA occlusion. The 

collateral status differed between the occlusion sites (p=0.002) with the better collateral score 

in M2 occlusions [good collaterals in 21/31 (67.7%) in M2-MCA occlusions compared to 38/96 

(39.6) and 4/20 (20%) in M1-MCA and terminal ICA occlusions, respectively]. 

 

2.3.2 Collateral score and hypoperfusion volumes 

The PLVs significantly differed between good and poor collateral status in Tmax >10s, Tmax 

>8s, Tmax >6s, and CBF <30%; between good and intermediate collaterals in all evaluated 

perfusion parameters. The PLVs were similar between intermediate and poor collaterals except 

for the PLV from CBF <30%, Table 2.1 & Figure 2.1. 

Similar to perfusion lesion volumes, HIR was increasing with decreasing collateral 

grade and was significantly different between good and poor collateral grade (p <0.001) and 

between good and intermediate collateral grade (p <0.001). 

The Spearman’s rho demonstrated significant correlations between the collateral score 

and the perfusion lesion volumes and HIR, with the lowest coefficients for Tmax >10s (=-

0.50) and HIR (=-0.47), Table 2.2. 

 

Table 2.1. Hypoperfusion volumes in different collateral grades correlation. 

Perfusion 

parameter 

Hypoperfusion volumes (ml), median (IQR) 

Good collaterals 

n=63 

Intermediate 

collaterals 

n=73 

Poor collaterals 

n=11 

p-value* 

Tmax >10s  36 (11 – 56) 80 (57 – 110) 125 (59 – 149) <0.001 

Tmax >8s 61 (29 – 90) 110 (94 – 138) 156 (81 – 172) <0.001 

Tmax >6s 107 (59 - 141)  152 (127 – 210) 185 (89 – 216) <0.001 

Tmax >4s 187 (126 – 282) 246 (198 – 316) 262 (157–350) 0.002 

CBF <30% 7 (0 – 19) 25 (12 – 40) 65 (33 – 103) <0.001 

HIR 0.33 (0.19-0.49) 0.52 (0.35-0.65) 0.63 (0.48-0.74) <0.001 

* Derived from Kruskal-Wallis test 

Note: HIR – hypoperfusion intensity ratio, IQR – interquartile range 
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Table 2.2. Correlation coefficients for hypoperfusion lesion volumes and collateral score. 

Perfusion 

parameter 

Spearman’s correlation 

Spearman’s 

rho 

p-value 

Tmax >10s  -0.50 <.001 

Tmax >8s -0.48 <.001 

Tmax >6s -0.40 <.001 

Tmax >4s -0.28 <.001 

CBF <30% -0.42 <.001 

HIR -0.47 <.001 

 

Figure 2.1. mCTA collateral score versus CT perfusion lesion volumes. Comparison of 

perfusion lesion volumes defined as Tmax >10s, Tmax >8s, Tmax 6>s, Tmax >4s and CBF 

<30% for different collateral grades (good, intermediate, poor). The values above the graph 

bars represent p-values derived from Wilcoxon rank sum test; * represents p <0.01. 
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2.3.3 Optimal Cut-off values to representing poor collaterals  

The highest AUC=0.75 for the cut-off value representing poor collaterals was shown for CBF 

<30% with the cut-off value of 31ml and sensitivity and specificity of 0.82 and 0.73, 

respectively, followed by Tmax >10s and HIR. The optimal cut-off value for Tmax >10s 

hypoperfusion volume was 114 ml with AUC, sensitivity and specificity of 0.75, 0.64 and 0.86, 

respectively. The optimal cut-off value of HIR associated with poor collaterals was 0.57 with 

AUC, sensitivity and specificity of 0.72, 0.73 and 0.72, respectively, Table 2.3. 

 

Table 2.3. Optimal cut-off values defining poor collaterals  

 Cut-off value sensitivity specificity AUC 

Tmax >10s  114 ml 0.64 0.86 0.75 

Tmax >8s 146 ml 0.64 0.85 0.74 

Tmax >6s 171 ml 0.64 0.76 0.70 

Tmax >4s 229 ml 0.64 0.55 0.59 

HIR 0.57 0.73 0.72 0.72 

CBF <30% 31 ml 0.82 0.73 0.77 

Note: AUC – area under the curve; HIR – hypoperfusion intensity ratio 

 

2.3.4 Sensitivity analysis 

Due to the significant difference in the collateral score based on the occlusion site, the 

sensitivity analysis was performed after excluding patients with M2-MCA occlusions. Baseline 

characteristics of this subgroup are listed in Table 2.4. In this subgroup, the collateral grades 

did not differ based on the clot localization (p=0.24). 

Similar to the primary analysis, the gradual increase in the median perfusion lesion 

volume was observed with decreasing grade of the collateral score in all assessed perfusion 

parameters, Table 2.5. Compared to the main analysis, the significant difference in perfusion 

lesion volumes was also observed between good and poor collateral grades when perfusion 

lesion volume was defined as Tmax >10s, Tmax >8s, and CBF <30%, between good and 

intermediate collaterals in all evaluated perfusion parameters, and between intermediate and 

poor collaterals only when perfusion lesion was defined as CBF <30%, Table 2.6.  

The Spearman’s rho demonstrated direct correlation of the collateral score and the perfusion 

lesion volumes and HIR, with the strongest negative correlation for CBF <30% (=-0.46), 

Tmax >10s (=-0.43) and HIR (=-0.43), Table 2.7. 



 48 

Table 2.4. Baseline characteristics of the whole dataset and dataset used for the sensitivity 

analysis. 

 
All patients 

(n=147) 

Patients with terminal ICA and 

M1-MCA occlusions (n=116) 

Sex, female, n (%) 69 (44.2) 56 (48.3) 

Age, years, mean (SD) 71 (14) 71 (15) 

Baseline NIHSS, median (IQR) 16 (12 – 19) 16 (13 – 20) 

Baseline ASPECTS, median (IQR) 8 (7 – 9) 8 (7 – 9) 

Onset to CT time, min, median (IQR) 83 (60 – 169) 82 (59 – 162) 

Collateral status, n (%)   

Good 63 (42.9) 42 (36.2) 

Intermediate 73 (49.7) 63 (54.3) 

Poor 11 (7.5) 11 (9.5) 

 

Table 2.5. Comparison of hypoperfusion volumes for different collateral grades in patient 

with M1-MCA and terminal ICA occlusion. 

Perfusion 

parameter 

Hypoperfusion volumes (ml), median (IQR) 

Good 

n=42 

Intermediate 

n=63 

Poor 

n=11 

p-value* 

Tmax >10s  41 (23 – 64) 87 (60 – 119) 125 (59 – 149) <0.001 

Tmax >8s 72 (53 – 101) 111 (95 – 147) 156 (81 – 172) <0.001 

Tmax >6s 128 (92 - 147)  154 (131 – 197) 185 (89 – 216) 0.002 

Tmax >4s 196 (160 – 282) 246 (198 – 313) 262 (157–350) 0.049 

CBF <30% 9 (0 – 22) 27 (12 – 41) 65 (33 – 103) <0.001 

HIR 0.33 (0.20-0.49) 0.56 (0.36-0.67) 0.63 (0.48-0.74) <0.001 

* Derived from Kruskal-Wallis test 

Note: HIR – hypoperfusion intensity ratio, IQR – interquartile range 
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Table 2.6. Comparison of p-values derived from Wilcoxon rank sum test for perfusion 

lesion volumes and hypoperfusion intensity ratio.  

 Tmax 

>10s 

Tmax 

>8s 

Tmax 

>6s 

Tmax 

>4s 

CBF 

<30% 

HIR 

Good vs. intermediate collaterals <0.001 <0.001 <0.001 0.02 <0.001 <0.001 

Good vs. poor collaterals 0.004 0.02 0.054 0.22 <0.001 0.001 

Intermediate vs. poor collaterals 0.27 0.39 0.61 0.98 0.03 0.16 

Note: HIR – hypoperfusion intensity ratio 

 

 

Table 2.7. Correlation coefficients for hypoperfusion lesion volumes and collateral score 

in patient with M1-MCA and terminal ICA occlusion. 

Perfusion 

parameter 

Spearman’s correlation 

Spearman’s 

rho 

p-value 

Tmax >10s  -0.43 <.001 

Tmax >8s -0.41 <.001 

Tmax >6s -0.31 <.001 

Tmax >4s -0.21 0.02 

CBF <30% -0.46 <.001 

HIR -0.43 <.001 
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2.4 DISCUSSION 

We demonstrated that decreasing collateral score assessed on multiphase CTA inversely 

correlates with increasing perfusion lesion volumes with significant difference of PLV between 

good and poor collaterals, which is in concordance with the previous studies (10,12,14). As 

majority of smaller hospitals and primary stroke centers do not routinely use CTP, our findings 

suggest that evaluation of the collateral status can also provide estimation of the ischemic core 

volume and severely hypoperfused tissue.  

Patients with poor collaterals had significantly larger ischemic core volumes defined as 

CBF <30% when compared to patient with good and intermediate collaterals and also had 

significantly larger areas of severe hypoperfusion defined as Tmax >10s compared to the 

patients with good collaterals. This association was reflected in the highest Spearman’s rho 

correlation coefficient shown for Tmax >10s  and for HIR, the known factor associated with 

infract growth and worse clinical outcome (18).  

Although CBF <30% did not show the strongest correlation with the collateral grading 

in the whole dataset, the correlation increased when only patients with terminal ICA and M1-

MCA occlusions were involved. This might be explained by the additional collateral flow via 

patent ipsilateral MCA branches in patients with M2 occlusions and therefore smaller areas 

with significantly decreased cerebral blood flow.  

We observed that poor collaterals were best represented by CBF <30% of >31ml 

identifies patients with the sensitivity and specificity of 0.82 and of 0.73, respectively, while 

Potreck et al. (12) reported that CBF <30% perfusion lesion volume of <14ml identified 

patients with good collaterals with sensitivity of 0.72 and specificity of 0.82. Accordingly, the 

cut-off volume of 114ml associated with poor collaterals was identified for Tmax >10s in our 

study with the sensitivity of 0.64 and sensitivity of 0.82, while cut-off value of 53ml for Tmax 

>10s demonstrated association with good collaterals with the sensitivity of 0.64 and specificity 

of 0.80 in the work by Potreck et al. (12) These findings are complimentary to each other and 

provide further insight on the correlation of particular grades of collateral score and perfusion 

parameters.  

Compared to the prior studies evaluating the association of the collateral flow and 

perfusion parameters (10,12,14), we distinguished and evaluated the perfusion volumes in 

intermediate (score = 2-3) and poor collaterals (score = 0-1). Lyndon et al. proposed that HIR 

> 0.45 distinguishes poor collaterals (score = 0-3) from good collaterals with sensitivity of 0.78 

and specificity of 0.76. Similarly, Potreck at al. and Guenego et al. identified HIR = 0.4 as a 

cut-off value distinguishing good (score = 4-5) and poor collaterals (score = 0-3), both merging 
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the subgroups of intermediate and poor collaterals. In our dataset, we found that poor collateral 

flow (score 0-1) was best characterized by HIR > 0.57 with the sensitivity of 0.64 and 

specificity of 0.86. The higher cut-off value in our study therefore likely reflects the higher 

severity of the poor collateral flow in patients with minimal (grade 1) or absent (grade 0) 

leptomeningeal collaterals.  

Findings of this study supports the paradigm that the CT perfusion is not necessary in 

patients presenting during the first 6 hours from the symptom onset while the expected 

ischemic core (standardly defined as CBF <30% (19)) remains relatively small even in patients 

with poor collateral flow. However, the fact that the severely hypoperfused area defined as 

Tmax >10s was larger >100ml in patients with poor collaterals enhances the need for ultrarapid 

treatment in these patients as the large area of the brain is critically hypoperfused in contrast to 

the patients with good or intermediate collaterals, where the median of severely hypoperfused 

volumes were 36ml and 80ml, respectively. 

The strength of our study is more detailed assessment of the collateral score on 

multiphase CTA that was acquired independently of the CTP source data and distinguishing 

poor collaterals from the good and intermediate collaterals. Our institution is one of the few 

centers that routinely performed mCTA and CTP in all patients with suspected AIS. 

Our study has several limitations. This was a single center retrospective study including 

patient who underwent mechanical thrombectomy, therefore there is a potential selection bias 

of patients with higher baseline ASPECTS and better collateral flow. The patients with poor 

collateral flow represented only 7.5% of the dataset which may affect the validity of the results. 

Second, the collateral grades were assessed visually by one reader which may introduce some 

level of subjective bias despite the high expertise of the reader. 

 

2.5 CONCLUSION 

This study demonstrates that mCTA collateral score correlates well with automatically-

derived perfusion lesion volumes with significant difference of PLV between good and poor 

collaterals. These findings suggest that evaluation of the collateral status on mCTA can provide 

estimation of the ischemic core volume and severely hypoperfused tissue. 
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Chapter 3 - Detection of ischemic changes on baseline multimodal computed 

tomography: expert reading vs. Brainomix and RAPID software 

 

The contents of this chapter have been adapted from the journal article entitled “Detection of 

ischemic changes on baseline multimodal computed tomography: expert reading vs. Brainomix 

and RAPID software”, published in J Stroke Cerebrovasc Dis 2020;29:104978 by P. Cimflova, 

O. Volny, R. Mikulik, et al.  

 

Purpose: The aim of the study was to compare the assessment of ischemic changes by expert 

reading and available automated software for non-contrast CT (NCCT) and CT perfusion on 

baseline multimodal imaging and demonstrate the accuracy for the final infarct prediction. 

 

Methods: Early ischemic changes were measured by ASPECTS on the baseline neuroimaging 

of consecutive patients with anterior circulation ischemic stroke. The presence of early 

ischemic changes was assessed a) on NCCT by two experienced raters, b) on NCCT by e-

ASPECTS, and c) visually on derived CT perfusion maps (CBF<30%, Tmax>10s). Accuracy 

was calculated by comparing presence of final ischemic changes on 24-hour follow-up for each 

ASPECTS region and expressed as sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV). The subanalysis for patients with successful recanalization 

was conducted. 

 

Results: Of 263 patients, 81 fulfilled inclusion criteria. Median baseline ASPECTS was 9 for 

all tested modalities. Accuracy was 0.76 for e-ASPECTS, 0.79 for consensus, 0.82 for 

CBF<30%, 0.80 for Tmax>10s. e-ASPECTS, consensus, CBF<30%, and Tmax>10s had 

sensitivity 0.41, 0.46, 0.49, 0.57, respectively; specificity 0.91, 0.93, 0.95, 0.91, respectively; 

PPV 0.66, 0.75, 0.82, 0.73, respectively; NPV 0.78, 0.80, 0.82, 0.83, respectively. Results did 

not differ in patients with and without successful recanalization.  

 

Conclusion: This study demonstrated high accuracy for the assessment of ischemic changes 

by different CT modalities with the best accuracy for CBF<30% and Tmax>10s. The use of 

automated software has a potential to improve the detection of ischemic changes. 
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3.1. INTRODUCTION 

The Alberta Stroke Program Early CT Score (ASPECTS) quantifies the extent of early 

ischemic changes in the middle cerebral artery territory on baseline non-contrast (NCCT) scans 

(1). ASPECTS has been proven to be a significant predictor of clinical outcome in patients 

with acute ischemic stroke (AIS) in the anterior circulation (2,3). It is also used to select patients 

for endovascular therapy (4). It represents a validated grading system (3) but the inter-rater 

variability has been questioned. Even experienced clinicians show only a 39% agreement in 

the identification of ischemic changes on NCCT involving more than one-third of the MCA 

territory(5). Hence, there is a trend to develop reliable software tools to help stroke physicians 

in acute scan reading and subsequent decision making (6,7). 

The e-ASPECTS software (Brainomix, Oxford, UK) is a fully-automated ASPECT 

scoring tool for NCCT, which has previously demonstrated a scoring on expert level (8–10). 

The advantage of e-ASPECTS is its potential to eliminate the inter-rater variability (8,10). CT 

perfusion (CTP) has a potential to discriminate between irreversibly damaged tissue, infarct 

core, and tissue at risk of infarction, penumbra (11,12). It has been demonstrated that visual 

applying of ASPECTS into CTP parametric maps has a strong correlation with good clinical 

outcome (defined as modified Rankin scale/mRS 0-2), with a prognostic value greater than 

NCCT ASPECTS (13–16). All previous studies have shown the highest correlation of good 

clinical outcome with CBV ASPECTS (13–16).  

The most accurate prediction of irreversibly ischemic changes by automatic software 

post-processing with RAPID was shown for relative cerebral blood flow (CBF) less than 30% 

in comparison to the mean CBF of normally perfused brain parenchyma (17,18). This threshold 

was used in the randomized trials with patient selection based on perfusion mismatch (SWIFT-

PRIME, EXTEND-AI, DAWN, DEFUSE III) to define ischemic core (19–22). 

Severe hypoperfusion has been associated with irreversible necrosis of the ischemic 

lesion even after reperfusion (23). In the DEFUSE and EPITHET meta-analysis, large regions 

of severe delay (>10 s) have been associated with poor outcome after reperfusion (24). This 

finding suggests that higher Tmax may identify tissue with more severely reduced cerebral 

blood flow, which may have a substantial impact on the evolution of the acute ischemic lesion 

(23).  

The main aim of our study was to evaluate how accurate the different CT modalities 

with and without software processing (consensus reading, e-ASPECTS, CBF<30%, 

Tmax>10s) assess early ischemic changes at baseline and what is their accuracy for final 

ischemia prediction.  
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3.2 MATERIALS & METHODS 

3.2.1 Patient selection 

Ethical approval was obtained from the local Institutional Review Boards (the Boards waived 

the need for patient consent). All patients with symptoms of AIS and no history of contrast 

allergy routinely underwent NCCT, multiphase CTA (mCTA) from the aortic arch to the vertex 

(25) and CTP in our institution. If the diagnosis of AIS was confirmed by this neuroimaging 

protocol, NCCT was repeated within 24-32 hours to determine the extent and location of 

ischemia and diagnose potential complications such as hemorrhagic transformation. 

Radiological data of consecutive patients from March 2017 to September 2017 presenting with 

symptoms of AIS in the anterior circulation within 6 hours of last seen normal (symptom onset) 

were retrospectively reviewed. This time period was chosen in order to compare the reliability 

of the detection of early ischemic changes while the software for automatic detection of early 

ischemic changes, Brainomix e-ASPECTS, was implemented into our institutional system. 

Inclusion criteria were: 1) availability of baseline NCCT with automatic software analysis, 

baseline CTP and follow-up 24-hour NCCT. Exclusion criteria were: 1) evidence of any 

intracranial hemorrhage or non-ischemic lesion, 2) negative findings on baseline diagnostic 

imaging and no ischemic changes on follow-up CT.  

We defined patients with successful reperfusion/recanalization angiografically as TICI 

2b-3 ( in patients treated with mechanical thrombectomy (MT) or as >40% decrease in the 24-

hour NIHSS score in patients treated with intravenous thrombolysis (IVT) only (26). 

Subanalysis of this subgroup was conducted. 

 

3.2.2 Imaging protocol 

The imaging protocol set up in our stroke center combines NCCT, mCTA and CTP and both 

software programs were available during the study period for automatic analysis (Brainomix 

for NCCT and RAPID for CTP). 

NCCT was acquired on a multi-detector scanner (120kV, 328 mAs (419mAs/slice), 

Brilliance iCT 256; Philips Healthcare, Cleveland, OH) with a section thickness of 0.9mm and 

an image reconstruction of 3mm. 

For the CTP protocol, 40 ml of contrast agent (Iomeron 300; Mallinckrodt 

Pharmaceuticals; Dublin, Ireland) was power injected at 5 ml/s followed by a saline chase of 

50 ml at 5 ml/s. Sections of 8cm thickness were acquired at 10 mm slice thickness. Scanning 

began after a delay of 5s from contrast injection in every 1.8s for 75s. After 24 hours, a NCCT 

was acquired for final infarct delineation in all patients. 
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 3.2.3 Image processing 

NCCT scans were automatically analysed by the e-ASPECTS software (version 6.0, 

Brainomix, Oxford, UK). The e-ASPECTS software is a standardized, fully-automated, 

CE mark-approved ASPECTS scoring tool for NCCT, which has previously demonstrated 

scoring on an expert level (8–10). The e-ASPECTS software is based on a combination 

of advanced image-processing and machine-learning algorithms. Its scoring module operates 

on the standardized 3D images, classifying signs of ischemic damage and assigning them 

to ASPECTS regions (9). 

CT perfusion studies were post-processed using the RAPID software (iSchemaView, 

Menlo Park, CA, USA) to generate perfusion maps of CBF, CBV, MTT, and Tmax. The 

RAPID software also automatically segmented and calculated volumes of the ischemic core 

(relative regional CBF<30%) and the critically hypoperfused tissue (Tmax>6s) (27). 

 

3.2.4 Image review 

Early ischemic changes were assessed on baseline NCCT by two experienced readers (a 

consultant neuroradiologist, PC, and a stroke neurologist, OV)* using the ASPECTS score 

defined by Barber et al. (3) previously, blind to the results of the e-ASPECTS analysis, as well 

as to other baseline imaging modalities and follow-up NCCT.  

Automatic segmentations of ASPECTS regions on e-ASPECTS derived scans were 

visually checked to avoid any severe inaccuracy. Otherwise, the given e-ASPECTS score were 

not modified and the original e-ASPECTS was noted.  

CTP maps were superposed on the CT-ASPECTS template and visually assessed by an 

experienced reader (PC). Ischemic changes on CTP maps were evaluated using the ASPECTS 

as follows: 1) on the CBF map as the area with CBF<30 % when compared to the contralateral 

hemisphere and 2) on the Tmax map as the area with Tmax>10s delay in the maximum contrast 

filling within the region of interest when compared to the contralateral hemisphere, Figure 3.1. 

The reader was blind to findings on NCCT, perfusion baseline scans available in the summary 

of RAPID analysis were visually controlled to exclude any false positive CTP findings (e.g. 

chronic infarction). 

The final infarction was assessed on a 24-hour follow-up NCCT with consensus of the 

two readers, during a different session, one month after the previous assessment of the early 

ischemic changes on baseline NCCT.  

To support the reliability of the consensus reading, two radiologists evaluated 

ASPECTS of 40 random admission NCCT and 40 follow-up scans (of different patients). The 
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inter-rater agreement with the consensus was counted using weighted kappa (w) and 

Krippendorf’s alfa () (28). The moderate agreement between raters was demonstrated for 

baseline NCCT (w=0.53-0.54; =0.72) and good to excellent agreement for follow-up 

imaging (w=0.78-0.88; =0.94). 

 

Figure 3.1. Comparison of CT imaging modalities and evaluation of early ischemic 

changes. Baseline ASPECTS was assessed as follows: 10 points on NCCT by expert reading 

(A), 9 (lentiform) by automatic e-ASPECTS (B), 0 points on CBF <30% CTP map, and 6 (M2, 

M3, insula, lentiform) on Tmax>10s CTP map (C). Follow-up CT (D) shows the ischemic 

changes within insula, lentiform and M5 (ASPECTS 7); and hemorrhagic transformation 

within the right insula. 
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3.2.5 Statistical Analysis 

Clinical and imaging baseline characteristics were summarized using descriptive statistics. 

The accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive 

value (NPV) were calculated for particular ASPECTS regions (81 patients x 10 ASPECTS 

regions) at baseline imaging (e-ASPECTS, expert consensus reading, CBF<30%, Tmax>10s) 

in comparison with ASPECTS regions at the follow-up CT. The Bland-Altman plots were 

calculated to compare the differences between each baseline imaging method and follow-up 

ASPECTS.  

The sensitivity analysis of pooled data for the group with determined successful 

reperfusion/recanalization was conducted; clinical and imaging baseline characteristics were 

summarized using descriptive statistics and compared to the group with non-determined 

recanalization/reperfusion using Wilcoxon rank sum test; the accuracy, sensitivity, specificity, 

PPV, NPV as well as Bland-Altman plots were calculated. To compare the two subgroups, we 

calculated residuals between follow-up ASPECTS and each baseline ASPECT score method 

(e-ASPECTS, expert consensus reading, CBF<30%, Tmax>10) and analysed these residuals 

using Wilcoxon rank sum test. 

This study provides hierarchically structured data with 3 levels: subject ID, imaging 

modalities (e-ASPECTS, expert consensus reading, CBF<30%, Tmax>10s, and follow-up 

ASPECTS); and ASPECTS regions (M1-M6, Insula, Lentiform, Capsula, Caudate). We 

regarded regions as a fixed effect. The generalized estimating equation accommodating 

clustering at the subject ID level was used (PROC GENMOD; SAS Institute Inc, Cary, NC). 

LS-means estimates of fixed effect “region” computed from generalized mixed model were 

graphically illustrated. 

All analyses were performed in Stata 16.1 (StataCorp LLC, College Station, TX, USA) and 

SAS 9.3 (SAS Institute, Cary, NC, USA). 

 

3.3 RESULTS 

Baseline scans of 263 patients were retrospectively reviewed; 16 patients with intracranial 

hemorrhage and 166 patients with either negative findings on all imaging modalities or missing 

follow-up imaging were excluded. Overall, 81 patients met all the criteria and were included 

into the analysis.  

Mean age was 70 years (standard deviation [SD] 14 years, range 30-92 years), 

38 (46,9%) were women. Median baseline NIHSS was 9 (interquartile range [IQR]=4 – 17). 

The median time interval from symptom onset to CT was 156 mins (IQR=71-220); there were 
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12 patients with the unknow time of symptom onset or wake-up stroke. Median baseline 

ASPECTS was 9 for all tested modalities (IQR=8-10 for e-ASPECTS, IQR=7-10 for 

consensus, IQR=7-10 for CBF<30%, IQR 6-10 for Tmax>10s, median ASPECTS on follow-

up NCCT was 8, IQR=5-9), left hemisphere was affected in 44 cases (54.3%). Fifty patients 

received intravenous thrombolysis and 19 patients had mechanical thrombectomy. Reperfusion 

was achieved in 11 patients in the mechanical thrombectomy group and in 22 patients in the 

IVT group, the data from mechanical thrombectomy and intravenous thrombolysis groups were 

pooled for further analysis (as determined recanalization). 

Accuracy of baseline ASPECTS and follow-up ASPECTS was 0.76 for e-ASPECTS, 

0.79 for expert consensus, 0.81 for CBF<30% and 0.8 for Tmax>10s. Sensitivity and 

specificity were 0.41 and 0.91 for e-ASPECTS; 0.46 and 0.93 for expert consensus; 0.49 and 

0.95 for CBF<30%; 0.57 and 0.91 for Tmax>10s respectively. PPV and NPV were 0.66 and 

0.78 for e-ASPECTS; 0.75 and 0.8 for expert consensus; 0.82 and 0.81 for CBF<30%; 0.73 

and 0.83 for Tmax>10s, respectively, Table 3.1, Figure 3.2. 

Bland-Altman plots comparing differences in scores of baseline ASPECTS and follow-

up ASPECTS are demonstrated in Figure 3.3. The mean difference between e-ASPECTS and 

follow-up was -1.16 ± 2.52 (median undercall of ASPECTS was -1), expert consensus and 

follow-up -1.16 ± 2.23 (median undercall was -1), CBF<30% and follow-up -1.15 ± 1.77 % 

(median undercall was -1), and Tmax>10s and follow-up -0.59 ± 1.86 (median undercall was 

0). The ASPECTS was rated as lower on baseline imaging in 15/81 cases for e-ASPECTS, 

11/81 for expert consensus, 6/81 for CBF<30, and in 15/81 cases for Tmax>10s.  
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Table 3.1. Accuracy, sensitivity, specificity, PPV and NPV of baseline ASPECTS (e-

ASPECTS, consensus, CBF<30% and Tmax>10s) vs. follow-up imaging. 

 

 Accuracy Sensitivity Specificity PPV NPV 

e-ASPECTS vs. follow-up  0.76 0.41 0.91 0.66 0.78 

Consensus vs. follow-up 0.79 0.46 0.93 0.75 0.8 

CBF<30% vs. follow-up 0.81 0.49 0.95 0.82 0.81 

Tmax>10 s vs. follow-up 0.80 0.57 0.91 0.73 0.83 

Legend: ASPECTS = Alberta Stroke Program Early CT Score; CBF = cerebral blood flow; NPV = negative 

predictive value; PPV = positive predictive value; Tmax = time to maximum. 

 

 

Figure 3.2. Accuracy, sensitivity, specificity, positive predictive value, negative 

predictive values of baseline ASPECTSs evaluated by e-ASPECTS, consensus (expert 

reading), CBF<30% and Tmax>10s)  

 

Legend: ACC – accuracy; TPR – true positive value/sensitivity, TNR – true negative value/specificity, PPV – 

positive predictive value, NPV – negative predictive value 
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Figure 3.3. Bland-Altman plots. Bland-Altman plots illustrating the level of agreement 

between the baseline and follow-up ASPECTS for different baseline CT modalities and 

means of evaluation (software vs. expert reading). Solid line indicates the mean difference 

between the baseline and follow-up, dashed lines indicate the limits of the agreement. 
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3.3.1 Sensitivity analysis 

Clinical and imaging baseline characteristics for patients with determined successful 

recanalization were not significantly different in comparison to the subgroup of patients with 

non-determined recanalization Table 3.2. The results of the subgroup analysis in patients with 

successful reperfusion/recanalization are graphically demonstrated in Table 3.3, Figure 3.4. 

Accuracy of baseline ASPECTS and follow-up ASPECTS was 0.79 for e-ASPECTS, 0.81 for 

expert consensus, 0.83 for CBF<30% and 0.82 for Tmax>10s. Sensitivity and specificity were 

0.51 and 0.90  for e-ASPECTS; 0.53 and 0.92 for expert consensus; 0.55 and 0.94 for 

CBF<30%; 0.66 and 0.89 for Tmax>10s, respectively. PPV and NPV were 0.67 and 0.82 for 

e-ASPECTS; 0.73 and 0.83 for expert consensus; 0.77 and 0.84 for CBF<30%; 0.7 and 0.87 

for Tmax>10s, respectively. 

Bland-Altman plots for the subgroup analysis comparing differences in scores of 

baseline ASPECTS and follow-up ASPECTS are demonstrated in Figure 3.5. The mean 

difference between e-ASPECTS and follow-up was -0.70 ± 2.48 (median undercall of 

ASPECTS was -1), expert consensus and follow-up -0.79 ± 2.33 (median undercall was 0), 

CBF<30% and follow-up -0.82 ± 1.77 (median undercall was -1), and Tmax>10s and follow-

up -0.21 ± 1.74 (median undercall was 0). The ASPECTS was lower on baseline imaging in 

7/33 cases for e-ASPECTS, 6/33 for expert consensus, 5/33 for CBF<30% , and in 9/33 cases 

for Tmax>10s. 

There was no significant difference between residuals of the follow-up ASPECTS and 

each baseline ASPECTS for the two subgroups (determined recanalization versus non-

determined recanalization group), the median under-call of baseline ASPECT scores was -1 

point in comparison to the follow-up ASPECTS for the baseline methods in the subgroup with 

non-determined recanalization and for CBF<30% and e-ASPECTS in the subgroup with 

determined recanalization. There was a trend observed for Tmax>10s that show a higher 

precision in the subgroup with determined successful recanalization with the median under-

call of 0 points, Table 3.4.  

Results from generalized mixed model are illustrated in Figure 3.6. 
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Table 3.2. Baseline characteristics. Comparison of patient baseline characteristics for the 

whole dataset (n=81) and a subgroup of patients with determined successful recanalization 

(n=33). 

  

 Dataset 

N= 81 

Recanalization 

subgroup N=33 

P-value* 

Female sex – n (%) 38 (46.9) 13 (39.4) 0.26 

Age – median (IQR) 71 (62 – 81) 69 (62 – 80) 0.54 

Affected left side – n (%) 44 (54.3) 18 (54.55) 0.97 

Baseline NIHSS – median (IQR) 9 (4 – 17)1 14 (7 – 17.5)1 0.002 

Baseline ASPECTS – median (IQR) 9 (7 – 10) 9 (6.5 – 10) 0.41 

Onset to baseline CT in min – median 

(IQR) 

156 (71-220)2 

 

110 (67-216)2 0.41 

Note: IQR = interquartile range, NIHSS = National Institutes of Health Stroke Scale, ASPECTS = Alberta Stroke 

Program Early CT Score, EVT = endovascular treatment 

*Derived from Wilcoxon rank sum test for two subgroups – determined successful recanalization versus non-

determined recanalization 

1 computed for n=79 and subgroup n=32; 2 computed for n=69 and subgroup n=31 

 

 

 

Table 3.3. Subgroup analysis of patients with successful reperfusion/recanalization. 

Accuracy, sensitivity, specificity, PPV and NPV of baseline ASPECTSs (e-ASPECTS, 

consensus, CBF<30% and Tmax>10s) vs. follow-up imaging. 

 Accuracy Sensitivity Specificity PPV NPV 

e-ASPECTS vs. follow-up  0.79 0.51 0.93 0.67 0.82 

Consensus vs. follow-up 0.81 0.53 0.92 0.73 0.83 

CBF<30% vs. follow-up 0.83 0.55 0.94 0.77 0.84 

Tmax>10 s vs. follow-up 0.82 0.66 0.89 0.69 0.87 

Note: ASPECTS = Alberta Stroke Program Early CT Score; CBF = cerebral blood flow; NPV = negative 

predictive value; PPV = positive predictive value; Tmax = time to maximum. 
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Figure 3.4. Subgroup analysis of patients with successful reperfusion. Accuracy, 

sensitivity, specificity, positive predictive value and negative predictive value for baseline 

assessment (e-ASPECTS, consensus, CBF<30% and Tmax>10s) and final ischemic changes 

on follow-up NCCT. 

 

Legend: ACC – accuracy; TPR – true positive value/sensitivity, TNR – true negative value/specificity, PPV – 

positive predictive value, NPV – negative predictive value 

 

 

Table 3.4. Comparison of residuals for the follow-up ASPECTS and the baseline 

ASPECTS for the subgroups of patients with determined successful recanalization versus 

non-determined recanalization. 

 Determined 

recanalization 

n=33 

Non-determined  

recanalization 

n=48 

P-value* 

e-ASPECTS – median (IQR) -1 (-3 – 0) -1 (-1 – 0) 0.54 

Consensus – median (IQR) -1 (-2.5 – 0) 0 (-2 – 0) 0.15 

CBF <30% – median (IQR) -1 (-2 – 0) -1 (-2 – 0) 0.26 

Tmax >10s – median (IQR) -1 (-2 – 0) 0 (-1 – 1) 0.03 

    

Note: ASPECTS = Alberta Stroke Program Early CT Score; CBF = cerebral blood flow; Tmax = time to 

maximum. 

*Derived from Wilcoxon rank sum test 
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Figure 3.5. Bland-Altman plots for the subgroup analysis of patients with successful 

recanalization/reperfusion (MT and IVT group pooled data). Bland-Altman plots compare 

the baseline ASPECTS and follow-up ASPECTS for baseline CT modalities and different 

means of assessment. Solid line indicates the mean difference between baseline and follow-up, 

dashed lines indicate the limits of the agreement. 
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Figure 3.6. Least square means estimates of fixed effect “region” computed from 

generalized mixed model. The least square means (Ls-means) estimates were computed from 

a generalized mixed model (fixed effect was ASPECTS region). Follow-up NCCT was used 

as a reference grid. Results expressed on a logit scale demonstrate the highest agreement for 

final ischemia in insula and M5 region regardless the used CT modality and scoring approach. 

The lowest odds were demonstrated for internal capsule, which also showed the highest 

variability in scoring.  
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3.4 DISCUSSION 

In this study we demonstrated high sensitivity and specificity for detection of acute ischemic 

changes for CT imaging modalities including assessment of acute ischemic changes by 

experienced readers and clinically available software. Unlike in previous studies, we have 

focused on CTP parameters representing either ischemic core (CBF<30%) or severely 

hypoperfused tissue (Tmax>10s), parameters that were not analyzed previously in the 

perspective of ASPECT scoring. CBF <30% is nowadays widely accepted to represent the 

ischemic core with the high sensitivity and specificity and with low overestimation of the core, 

that could result in unwarranted exclusion of patients who could benefit from reperfusion (17). 

In contrast to Tmax>6s, which is used to define penumbra, we evaluated a more severe delay,  

Tmax>10s,  representing the critically hypoperfused tissue, which is associated with 

irreversible necrosis of the ischemic lesion even after reperfusion (23). 

The highest specificity was observed for CTP parameter, rCBF<30%, assessed visually 

on CTP maps processed by RAPID software. This CTP parameter also showed the highest 

positive predictive value for final ischemic changes.  

Moreover, the CTP parameter of Tmax delay >10s, representing a severe 

hypoperfusion, showed the highest sensitivity and high accuracy for prediction of final 

ischemic lesion (within the whole dataset as well as in the subgroup analysis of successful 

reperfusion/recanalization). Tmax delay >10s was studied previously – the association of large 

Tmax>10s lesion and malignant MCA profile was showed in previous studies (18,29). Tmax 

volumes at a delay of >8s and >10s were strongly correlated with clinical outcome.(30) Our 

findings support the importance of this parameter in the detection of irreversible ischemic 

changes on baseline neuroimaging. We demonstrated that both CBF <30% and Tmax>10s have 

high accuracy in detection of early ischemic changes as shown previously for CBV (13–16) 

and these changes could be easily assessed on the derived perfusion maps from RAPID 

analysis. 

The Blant-Altman plots showed the lowest difference in baseline ASPECTS and 

follow-up ASPECTS for Tmax>10s. The other baseline methods showed similar differences 

in baseline and follow-up ASPECTS with the median undercall of the baseline score of 1 point 

(these findings did not differ when we analyzed the residuals between follow-up ASPECTS 

and baseline ASPECTS for the subgroups with determined/non-determined recanalization).  

The CBF <30% and Tmax>10s also demonstrated the lowest data dispersion for baseline and 

follow-up ASPECTS. This indicates that these perfusion parameters may represent irreversibly 

affected tissue with higher accuracy in comparison to detectable changes on baseline NCCT. 
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Nevertheless, the semi-automated analysis showed similar results with expert reading. This 

finding suggests a comparable diagnostic value of the software evaluation and expert reading 

in the acute stroke management.  

Although e-ASPECTS showed the lowest accuracy and sensitivity among the tested 

baseline methods, the accuracy of 0.76 could still be considered as good, the sensitivity analysis 

also did not show any significant difference between baseline methods for the tested subgroups. 

The comparable findings for e-ASPECTS and other studied imaging methods implicates the 

benefit of software evaluation for less experienced readers.  

We observed a certain level of variability in assessment of particular ASPECTS 

regions. The highest odds for agreement in evaluation of baseline ischemic changes and final 

ischemia was demonstrated for insula regardless the baseline imaging modality and the way of 

ASPECT scoring. It was demonstrated previously that the insular ribbon sign represented a 

very early ischemic change in the middle cerebral artery strokes (31).  Contrarily, the lowest 

odds for agreement between multimodal baseline and follow-up imaging was observed 

in the internal capsule. That might be explained by difficulties in the visual assessment of 

hypoattenuation within this region as the internal capsule is naturally less hypodense on NCCT 

(32). This small subcortical region might also be challenging to be distinguished on the CTP 

maps as hypoperfused. Additionally, there was low variability demonstrated for all cortical 

ASPECTS regions, caudate and lentiform. It may reflect that early ischemic changes of the 

insula are easy to detect even with the low experience, but assessment of early ischemic 

changes within the internal capsule might be problematic also for experienced readers. 

We are aware of some limitations of this study. First of all, this was a single center 

observational study. The patients were not selected according to the recanalization rate. 

Information about the recanalization status was available only in patients indicated to 

mechanical thrombectomy. Nevertheless, due to a limited (6-months) period when the e-

ASPECTS software was available at our institution, we decided to include all patients meeting 

our inclusion criteria regardless of the treatment or recanalization status. We also did not focus 

on the correlation of ASPECTS and final clinical outcome, as this relationship has been studied 

in other work (33). The main purpose of this work was to evaluate the accuracy of ASPECTS 

assessment on baseline multimodal imaging.  

We are also aware of a possible misinterpretation of particular regions caused by visual 

application of ASPECTS regions into the CTP maps processed by RAPID software. At the 

time of the patient recruitment, the RAPID CTP software presented only the volumes of 

impaired tissue perfusion (not co-registered within the ASPECTS regions). The automatic 
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segmentation of ASPECTS regions on e-ASPECTS scans also has its limitations and beside 

the visual control to avoid any severe inaccuracy we did not tend to correct the automatic 

segmentation and given ASPECTS scoring as we aimed to test the accuracy of commercially 

available version of the software. 

There are a few potential pitfalls in regard of the detection of acute ischemic changes 

with automatic analysis. There might be a false positive finding on CTP maps in patients with 

a subacute or chronic infarction. The RAPID software automatically segments and removes 

areas with very low CBF, such as CSF spaces and other extra-parenchymal tissue, so in most 

cases subacute/chronic infarction is also excluded. Another known pitfall is that CTP maps do 

not display an infarcted area if the reperfusion was achieved ahead of the imaging, even though 

there is evidence of the infarction on NCCT (34). These potential pitfalls highlight the necessity 

of a visual control of CTP derived maps with NCCT or other available imaging as well as a 

control of the correct placement of arterial input function and venous output function. 

 

3.5 CONCLUSION 

Our study demonstrated high accuracy for the evaluation of early ischemic changes by different 

CT modalities with the best accuracy for CBF<30% and Tmax>10s. The use of automated 

software in everyday clinical practice has a potential to improve detection of extent of early 

ischemic changes. 
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4. Chapter 4 - Validation of a machine learning software tool for automated 

large vessel occlusion detection in patients with suspected acute stroke  

 

The contents of this chapter have been adapted from the journal article entitled “Validation of 

a machine learning software tool for automated large vessel occlusion detection in patients 

with suspected acute stroke”, published in Neuroradiology in May 2022 (ahead of print) by P. 

Cimflova, R. Golan, J.M. Ospel, et al. doi:10.1007/s00234-022-02978-x 

Reproduced with permission from Springer Nature 

 
 

Background: CT Angiography (CTA) is the imaging standard for large vessel occlusion 

(LVO) detection in patients with acute ischemic stroke. StrokeSENS LVO is an automated tool 

that utilizes a machine learning algorithm to identify anterior large vessel occlusions (LVO) on 

CTA. The aim of this study was to test the algorithm’s performance in LVO detection in an 

independent dataset. 

 

Methods: A total of 400 studies (217 LVO, 183 other/no occlusion) read by expert consensus 

were used for retrospective analysis. The LVO was defined as intracranial internal carotid 

artery (ICA) occlusion and M1 middle cerebral artery (MCA) occlusion. Software performance 

in detecting anterior LVO was evaluated using receiver operator characteristics (ROC) 

analysis, reporting area under the curve (AUC), sensitivity and specificity. Subgroup analyses 

were performed to evaluate if performance in detecting LVO differed by subgroups namely 

M1 MCA and ICA occlusion sites and in data stratified by patient age, sex, and CTA 

acquisition characteristics (slice thickness, kilovoltage tube peak and scanner manufacturer). 

 

Results: AUC, sensitivity and specificity overall, were as follows: 0.939, 0.894 and 0.874, 

respectively, in the full cohort; 0.927, 0.857 and 0.874, respectively, in the ICA occlusion 

cohort; 0.945, 0.914 and 0.874, respectively, in the M1 MCA occlusion cohort. Performance 

did not differ significantly by patient age, sex or by CTA acquisition characteristics. 

 

Conclusion: The StrokeSENS LVO machine learning algorithm detects anterior LVO with 

high accuracy from a range of scans in a large dataset. 
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4.1 INTRODUCTION 

Patients with acute ischemic stroke due to large vessel occlusions (LVO), on average, may 

account for around 15-20% of all acute ischemic stroke patients (1). However, LVO strokes 

contribute to 90% of stroke mortality and severe clinical disability if left untreated (2). Recent 

advances in endovascular stroke treatment (EVT) have led to significant reduction in disability 

in these patients in comparison to best medical management.(3) Because of the robust evidence 

from clinical trials confirming its efficacy and safety, EVT has become the standard of care in 

patients with anterior circulation stroke due to LVO (3). 

Contrast-enhanced CT Angiography (CTA) has been widely adopted as the imaging 

standard for LVO detection in order to identify eligible patients for endovascular treatment (4–

6). Timely CTA interpretation and LVO detection remains challenging especially in smaller, 

more rural hospitals where physicians with experience in stroke imaging are not always 

available (7). Since any delay in the treatment of patients with LVO directly affects patient 

outcomes (8), automated detection and notification of suspected LVO can help improve patient 

outcomes by directly reducing time to diagnosis and clinical decision making (6).  

StrokeSENS LVO (Circle Neurovascular Imaging, Calgary, Canada) is a computer-

aided triage and notification tool which utilizes machine learning to automatically detect  LVO 

on CTA head images. The automated software is intended to notify clinicians of patients with 

suspicious LVO via pre-determined communication protocols, thus allowing them to get 

involved in the case sooner than they may have been able to if using standard diagnostic 

workflows. The aim of this retrospective cohort study was to evaluate the software’s 

performance in LVO detection, when compared to a neuroradiologist expert consensus 

assessment on imaging data from a large multi-center image database. 

 

4.2 METHODS 

4.2.1 Software development dataset 

The StrokeSENS LVO algorithm was developed using a dataset of 874 CTA cases 

(development dataset) of pooled de-identified imaging data from three clinical trials initiated 

from within the University of Calgary (INTERRSeCT (9), PRove-IT (10), ESCAPE (11)). The 

primary goal for the software development was a reliable detection of the anterior LVO 

including intracranial ICA and M1 MCA occlusions. The subset of data used for development 

was selected from the pooled database according to the following inclusion criteria: age of 

18 years or older who underwent baseline CTA imaging for suspected acute stroke with image 

slice thickness between 0.5 mm to 2.5mm.  



 79 

The imaging data for development were acquired from multiple institutions and 

multiple CT scanners, manufactured by four different CT vendors (GE, Siemens, Philips, 

Toshiba). Scans determined to be technically inadequate (e.g., invalid DICOM image or 

inappropriate head coverage or no contrast) or with significant patient motion were excluded. 

Images in the development dataset included 553 subjects with anterior LVO (ICA and the M1 

MCA segment) and 321 subjects with other/no occlusions [negative cases (non-occlusions), 

distal occlusions (i.e., M2, M3 MCA), and non-anterior circulation occlusions (i.e., occlusions 

in the vertebrobasilar territory)]. There was no scan with intracranial hemorrhage (ICH) in the 

development dataset. The manually labeled data points annotating the occlusion were used for 

the algorithm development. 

 

4.2.2 Image pre-processing and convolutional neural network 

A pre-processing pipeline was used to transform the raw CTA volume into a normalized space 

suitable for using as inputs to a convolutional neural network. This is required so that the 

network is always presented with images of the same resolution, field of view, and range of 

intensity values; and so, does not have to account for these factors of variation as they are 

standardized. To this end,  the volumes were cropped 181 mm from the top of the raw volume 

and then resampled to a voxel spacing of 1.13 mm3, leading to an input shape of 160x192x160 

voxels. Furthermore, the image intensities were clipped to the range of 0 to 1000 Hounsfield 

Units (HU).  

A 3D Convolutional Neural Network (CNN) (12) was used to extract valuable features 

from the normalized volume and to perform the detection of LVO. It was composed of 4 down 

blocks, each of which was composed of 2 convolutional layers with 8 kernels. The activation 

function for each convolutional layer was the rectified linear unit function (13). At the end of 

each down block, a batch normalization operation was performed (14). After the last 

convolutional layer, all nodes were flattened, and a single fully connected layer was applied to 

compute the output layer. The output layer encoded information about both the existence of an 

LVO and the location of the clot from the manually labeled data points on the source scans. 

 The training of the model was performed using an Adam optimizer (15) with a learning 

rate of 1e-3 and a batch size of 16 for 2700 epochs. In each epoch, the entire training set was 

backpropagated through the model. During training, several data augmentation operations were 

performed. These include 1) rotation of up to +-45 degrees on the axial plane, 2) rotation of +-

20 degrees in the coronal/sagittal planes, 3) flipping along the x axis only, and 4) translation of 

up to +-40 voxels in all axes. 
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The loss function was necessary to guide the training process of the model and was not 

used during the deployment of the model. It was based of the softmax cross entropy function 

between the output layer and the reference encoding, both of which contained information 

about the existence of an LVO and the location of the clot. (Of note, the occlusion location was 

used for the software development, but only to a limited extent and the information about the 

occlusion location is not provided to the end-users).  

 

4.2.3 Software validation dataset 

This test data was independent of the development dataset and was retrospectively selected 

from the following studies, namely,  ESCAPE-NA1 (16), ALIAS (17), TEMPO-1 (18) and 

PREDICT (19). Additional inclusion criteria for the test set included subjects aged 18 years or 

older, who underwent baseline CTA imaging for acute stroke with image slice thickness 

between 0.5 mm to 2.5mm. Similar to the derivation dataset, the imaging data for the test set 

were acquired from multiple CT scanner models, manufactured by four different CT scanner 

vendors (GE, Siemens, Philips, Toshiba), as well as from multiple hospital sites and 

geographies. Scans determined to be technically inadequate (e.g., invalid DICOM image or 

inappropriate head coverage or no contrast) or with significant patient motion were excluded.  

Based on data from similar marketed devices, it was determined that a lower bound 

95% confidence interval (CI) of 80% for both sensitivity and specificity is required to 

demonstrate the clinical utility of the device. Using the normal approximation interval, and 

assuming that the sensitivity/specificity point estimates would be at 85% (5% above the 

acceptance criteria), a sample size of 200 LVO and 200 other/no occlusion was deemed 

necessary to meet this performance goal. 

Random selection with purposive sampling was performed to achieve balanced number 

of LVO and other/no occlusion cases, and to ensure representation of cases acquired on 

multiple scanner manufacturers. The sampling was automated and informed by patient-level 

meta data which included only the scanner manufacturer and the clinical reference label (LVO 

yes/no) from the originating clinical study. 

Expert-consensus was used as ground truth to establish the reference dataset labels. 

Three board-certified neuroradiologists (with >5 years of experience in stroke imaging) 

independently read all CTA images. A LVO scan was defined as containing an ICA or M1 

MCA occlusion. A other/no occlusion scan was defined as any scan that does not contain an 

LVO, i.e., it may either had other more distally located intracranial occlusions or no occlusions 

at all. In addition to reporting “LVO” vs “other/no occlusion”, the readers were also asked to 
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report the site of occlusion (anatomical location including any intracranial ICA segment, M1 

MCA segment and/or other  occlusion/distal occlusions; the MCA bifurcation/trifurcation was 

used as the anatomical cut off between M1 and M2 MCA segments) as well as the presence of 

any intracranial hemorrhage (ICH). The readers interpreted the scans blinded to any clinical 

information. Consensus was determined when at least two of three readers agreed on the 

presence or absence of LVO.  This study was approved by the University of Calgary Conjoint 

Health Research Ethics Board. 

 

4.2.4 StrokeSENS LVO detection and notification 

StrokeSENS generates a binary prediction of the presence or absence of LVO on CTA images 

of the brain. CTA head scans were automatically routed to the StrokeSENS LVO processing 

engine where they were processed and analyzed. In the case of a positive finding, i.e., a LVO 

detection by the software, the StrokeSENS user interface stated that a LVO was suspected, 

Figure 4.1. In the case of a positive finding, the system also automatically generates a 

notification which is sent to a prespecified email list. In a typical clinical scenario, the 

notification would be configured to be sent to physicians at a treating hospital parallel to the 

standard of care workflow. In the current setting, the notifications are sent only for suspected 

LVO cases. 
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Figure 4.1. Exemplary cases of StrokeSENS ™ LVO software performance. In case A and 

B StrokeSENS LVO correctly detected a large vessel occlusion (demonstrated as a red circle 

in the upper left corner) in the right M1 middle cerebral artery (A, yellow arrow) and right 

terminal internal carotid artery (B, yellow arrow). In case C, StrokeSENS ™ LVO correctly 

predicted that no large vessel occlusion was present. (Of note, the occlusion sites are marked 

with yellow arrows for clarity, it is not part of the software analysis) 

 

 

 

4.2.5 Statistical analysis 

Baseline characteristics of patients with LVO vs. other/no occlusion were compared using a 

chi-square test or Wilcoxon rank-sum test as appropriate. Expert reads on presence or absence 

of LVO was considered as the ground truth. Software performance for LVO detection was 

assessed using ROC analysis, reporting area under the curve (AUC), sensitivity, and 

specificity. The level of softmax cross entropy was used to calculate the AUC. False negative 

and false positive cases were retrospectively analyzed and the reason for the false negative/false 

positive result was identified. 

Subgroup analyses were performed to evaluate software performance in detection of 

M1 and ICA segment occlusions separately. Software performance was also tested on data 

stratified by patient sex (female versus male), age (<70 years or 70 years or), slice thickness 

(<1.0 mm or 1.0 mm), kilovoltage tube peak (<120 kVp or 120 kVp) of the scan, and scanner 

manufacturer (GE Medical, Siemens, Philips, Toshiba). As no cases with ICH were used for 

the development, a sensitivity analysis to evaluate an impact of the ICH presence on the 

software performance was performed. Separate logistic regression models were used to test if 

the association between software prediction and ground truth (expert reads of LVO vs. not) 
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were modified by either patient age, sex, presence or absence of ICH, slice thickness, kVp or 

scanner manufacturer. Additionally, the mean, the maximum and the minimum processing 

times for positive cases (both true positive and false positive) were reported as a representative 

measure of time-to-notification (representing the time from the moment the scan is received in 

StrokeSENS to the notification send to the end-user). No imputation was performed for missing 

data since there were no missing data. Data analysis was performed using Stata 16.1 (Stata 

LLC Corp). 

The Checklist for AI in Medical Imaging (CLAIM) guidelines were followed (20).  

 

4.3 RESULTS 

Out of 2779 eligible stroke cases, 1205 cases with identified baseline CTA and initial core lab 

reading were included into the preliminary dataset (excluded scans: 1339 cases with no baseline 

CTA, 52 scans with missing age information, and 183 scans with missing initial core lab read).  

Scans with inappropriate head coverage (n=12), no contrast (n=11), or corrupted DICOM (n=4) 

were additionally excluded and 400 cases randomly selected for expert consensus read (200 

scans allocated in the primary LVO cohort and 200 scans allocated to the primary other/no 

occlusion cohort). Seventeen scans were re-classified by the consensus as LVO and a total of 

400 cases (217 allocated to LVO cohort and 183 allocated to other/no occlusion cohort) were 

included in the test set, Figure 4.2. 

Baseline characteristics of patients stratified by presence or absence of LVO are shown 

in Table 4.1. Patients with LVO presented with more severe stroke symptoms (expressed with 

higher NIHSS and had lower ASPECTS on non-contrast CT. The distribution of intracranial 

occlusion site in patients with LVO was terminal ICA (35.5%, n=77) and M1 MCA (64.5%, 

n=140). In the patients without LVO, there were 183 scans with either no occlusion (21.3%), 

a more distally located MCA occlusion (15.8%), or an occlusion in the posterior circulation 

(2.7%). The intracranial haemorrhage was present in 110 cases (60.1% of other/no occlusion 

cohort).  

Of the 217 LVO cases evaluated, 194 (89.4%) were correctly identified as LVO by the 

software. Of 23 falsely negative cases, there were seven cases with ICA occlusion but normally 

opacified terminal ICA through the circle of Willis, six cases with short-segment M1 MCA 

occlusions and good collaterals, three with M1 MCA occlusion and one case with ICA 

occlusion demonstrated good collaterals and also early venous opacification that may 

contributed to “richer” vasculature beyond the occlusion, four cases demonstrated a distal M1 

MCA occlusion with a prominent anterior temporal artery, one case had a nonocclusive M1 
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MCA thrombus. Poor contrast opacification was present in one case. 

Of the 183 other/no occlusion cases, 23 (12.6%) were incorrectly identified as LVO by 

the software. A review identified multiple possible reasons for the false positive findings: scan 

asymmetry at the level of the circle of Willis was present in six cases; four cases had an M2 

segment occlusion and either relatively short M1 MCA segment or a dominant M2 MCA 

branch occlusion; three cases had M1 MCA segment stenosis; beam hardening artifact 

obscured the ICA/MCA segment in three cases; one case was with a M1 MCA aneurysm 

adjacent to the M1 segment occlusion; and two cases had low quality scans (poor contrast 

filling, incomplete study). No obvious reason for the false positive finding was found in the 

remaining four cases. 

The sensitivity and specificity for LVO detection were 0.894 (95% CI: 0.854–0.932) 

and 0.874 (95% CI: 0.817–0.919), respectively, and the AUC was 0.939 (95% CI: 0.915–

0.962). Results of subgroup analyses for the M1 and ICA segment occlusion detection were 

comparable to the main analysis, Table 4.2. In analysis stratified by patient sex, age, presence 

of hemorrhage, slice thickness, kVp and scan manufacturer, the sensitivity, specificity, and 

AUC ranged from 0.843–0.945, 0.83–1.0, and 0.924–0.970, respectively, Table 4.2. There was 

also no difference found in the software performance when the cases with ICH were excluded 

from the other/no occlusion cohort. No statistically significant interactions were noted between 

age, sex, presence/absence of ICH, slice thickness, kVp and software prediction of LVO in 

logistic regression models testing for association between software prediction and ground truth 

(all p>0.05). 

The mean processing time for the sum of 217 true and false positive cases was 44.5 

seconds (standard deviation ± 11 seconds), the minimum time was 18.4 seconds, the maximum 

time was 77.9 seconds. 
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Figure 4.2. Diagram of scan selection. Scan selection of the test set that was used for 

evaluation of large vessel occlusion detection with StrokeSENS LVO.  

Note: ICA – internal carotid artery, LVO – large vessel occlusion, M1 MCA – M1 segment of 

the middle cerebral artery 
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Table 4.1. Baseline clinical and imaging characteristics of subjects in the test set.  

Baseline characteristic 

LVO 

(n=217) 

other/no 

occlusion 

(n=183) p-value 

Age, median (IQR) 70 (61 – 78) 69 (58 – 78) 0.671a 

Sex, female, n (%) 97 (44.7) 86 (46.7) 0.687b 

Baseline NIHSS, median (IQR) 17 (11 – 21) 8 (6 – 16) <0.001a 

Baseline ASPECTS, median (IQR) 8 (7 – 9) 10 (9 – 10) <0.001a 

Onset to CT, min, median (IQR) 134 (71 – 253) 115 (72 – 195) 0.261a 

a derived from Wilcoxon rank sum test 

b derived from chi-square test 

Note: ASPECTS – Alberta Stroke Programme Early CT Score, IQR – interquartile range, LVO – large vessel 

occlusion; NIHSS - National Institutes of Health Stroke Scale 
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Table 4.2. Area under the curve, sensitivity and specificity for automated LVO detection 

using the machine learning-based algorithm. 

Group # of 

LVO 

# of 

other/no 

occlusion 

Total Sensitivity 

[95% CI] 

Specificity 

[95% CI] 

AUC [95% CI] 

Full cohort 217 183 400 0.894 

[0.854, 

0.932] 

0.874 

[0.817, 

0.919] 

0.939 [0.915, 

0.962] 

Site of 

Occlusion 

      

ICA + 

other/no 

occlusion  

77 183 260 0.857 

[0.759, 

0.927] 

0.874 

[0.817, 

0.919] 

0.927 [0.888, 

0.965] 

M1 MCA + 

other/no 

occlusion 

140 183 323 0.914 

[0.855, 

0.955] 

0.874 

[0.817, 

0.919] 

0.945 [0.918, 

0.972] 

Age       

<70 years 108 95 203 0.843 

[0.760, 

0.901] 

0.916 

[0.841, 

0.963] 

0.928 [0.891, 

0.965] 

70 years 109 88 197 0.945 

[0.884, 

0.980] 

0.83 [0.735, 

0.901] 

0.951 [0.923, 

0.980] 

Sex       

Male 120 97 217 0.875 

[0.802, 

0.928] 

0.866 

[0.782, 

0.927] 

0.936 [0.905, 

0.968] 

Female 97 86 183 0.918 

[0.844, 

0.964] 

0.884 

[0.797, 

0.943] 

0.940 [0.903, 

0.977] 

Hemmorhage       

LVO + 

Hemorrhage  
217 110 327 

0.894 

[0.845, 

0.932] 

0.891 

[0.817, 

0.942] 

0.944 [0.920, 

0.968] 

LVO + Non-

Hemorrhage 
217 73 290 

0.894 

[0.845, 

0.932] 

0.849 

[0.746, 

0.922] 

0.930 [0.899, 

0.961] 

Slice thickness       

       

<1.0 mm 120 100 220 0.883 

[0.812, 

0.935] 

0.850 

[0.765, 

0.914] 

0.936 [0.904, 

0.967] 

1.0 mm 97 83 180 0.939 

[0.849, 

0.983] 

0.924 

[0.832, 

0.975] 

0.939 [0.902, 

0.977] 
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Tube voltage       

<120 kVp 76 4 80 0.908 

[0.819, 

0.962] 

1.0 [0.398, 

1.0] 

0.970 [0.923, 

1.0] 

120 kVp 141 179 320 0.887 

[0.822, 

0.934] 

0.872 

[0.814, 

0.917] 

0.935 [0.905, 

0.965] 

Scanner 

manufacturer 

      

GE Medical 62 84 146 0.903 

[0.801, 

0.964] 

0.869 

[0.778, 

0.933] 

0.956 [0.924, 

0.987] 

Siemens 63 80 143 0.857 

[0.746, 

0.933] 

0.90 [0.812, 

0.956] 

0.924 [0.875, 

0.972] 

Other 

(Philips,Toshib

a) 

92 19 11 0.913 

[0.836, 

0.962] 

0.79 [0.544, 

0.94] 

0.927 [0.871, 

0.983] 

Note: AUC – area under the curve, CI – confidence interval, ICA – internal carotid artery, kVp- kilovoltage peak, 

LVO – large vessel occlusion, M1 MCA – M1 segment of the middle cerebral artery 
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4.4 DISCUSSION 

In this study, we test the ability of StrokeSENS LVO in detecting LVO of the anterior 

circulation automatically in patients presenting with acute stroke. The accuracy (sensitivity and 

specificity of 0.894 and 0.874 overall, with similar results across various subgroups, Figure 

4.3) and speed of detection of the software in a large dataset from multiple centers and 

geographies, using a variety of vendor machines and protocols for CTA image acquisition 

supports the generalizability of the software’s use in routine clinical practice. 

 In general, sensitivity is important metrics to indeed capture as many positive cases as 

possible and consider them for lifesaving EVT treatment; on the flip side, specificity is very 

important, especially in hospital sites in which the prevalence of LVOs is very low, since the 

positive predictive value (precision) is directly influenced by it. In turn, low PPV values can 

lead clinicians to not trust the tool which can, in turn, lead them to ignore the notifications of 

the tool entirely (21). Given that, we aimed at maximizing both the sensitivity and specificity 

of the model equally. 

The test set in this analysis was purposively sampled to include a higher prevalence of 

common pathologies (i.e., ICH, distal occlusions, and posterior circulation occlusions) than is 

typically encountered in consecutive suspected acute stroke cases in the anterior circulation. 

The objective of the purposive sampling was to test the model’s diagnostic performance in a 

dataset with a large representation of less straightforward cases (i.e. ICH & “other” occlusions) 

that are expected to be encountered by the algorithm in the clinical practice. A high proportion 

of hemorrhagic scans in the other/no occlusion cohort was included in order to test the 

consistency of the software’s performance in LVO detection and verified the consistency of 

the tool. We considered this to be a valid feature of the software tool as the presence of the ICH 

or other pathologies such as intracranial tumors can lead to false positive finding due to tissue 

distortion resulting in a change of the vessel course (22). Although ICH cases can be detected 

on NCCT scan and will most likely be excluded from further imaging in many diagnostic 

settings, the fact that other settings include a CTA after NCCT in patients with ICH (for 

detection of neurovascular abnormalities or spot sign identification) means that even with 

diagnostic pathways including such cases being sent to the algorithm, the performance 

continues to be good.  

Several automated standalone acute stroke software platforms are available for use in 

the clinical practice, such as iSchemaView (RAPID CTA), Viz.ai (VIZ LVO), Brainomix (e-

CTA), Canon (AUTOStroke Solution LVO) or StrokeViewer (NICO.LAB). These platforms use 

different artificial intelligence including machine-learning methods for automatic detection of 
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LVOs. Strategies for computer-aided detection of LVO include the direct identification of 

occlusion site using local vascular features (i.e. detect the clot directly by identifying the 

discontinuity of the contrast-enhanced vessel), and the indirect identification of occlusion site 

based on the regional vessel density asymmetry between the affected hemisphere and the 

unaffected hemisphere. The 3D-CNN that is at the core of StrokeSENS LVO was trained using 

information about the existence of LVO and the location of the clot, which allows it to extract 

both global (image-level) features as well as local features of the clot. Additional analysis is 

required to assess the trade-off between these two strategies, but it is expected that an ideal 

device will take both strategies into consideration, similar to how a clinician typically reviews 

a CTA scan. More specifically, it is well known that in LVO cases with good collateral flow, 

the downstream effect of the occlusion on the opacification of the peripheral vasculature might 

not be easily detectable; in contrast, a bundle of vessels around the site of occlusion in LVO 

cases, or an intracranial MCA stenosis or aneurysm in other/no occlusion cases, may influence 

a detection of the clot features and result in false negative/positive findings. 

 Different methodologies for the computer-aided detection of LVO are discussed in a 

systematic review by Murray, et al. (23) published in 2019. Of the previously mentioned 

commercial LVO detection platforms, most have undergone validation studies that describe 

the software’s performance in LVO (ICA and M1 MCA) occlusion detection, Table 4.3. The 

reported sensitivity and specificity of the software tools ranged from 0.72-0.97 and 0.74-0.96, 

respectively. The performance of the software tools was tested on various datasets and 

therefore a direct comparison is not possible. However, with regard to this limitation, the 

available data suggest that StrokeSENS with its sensitivity and specificity of 0.89 and 0.87, 

respectively, is likely comparable to the currently available tools.  

The retrospective review of false negative cases revealed imaging characteristics that 

the algorithm did not overcome such as normally opacified terminal ICA segment in the 

presence of more proximally located ICA occlusion or presence of short-segment occlusion 

and good collaterals. The same reasons for the false negative finding were mentioned by 

authors of the RAPID CTA validation study (24). This suggests that an early opacification of 

the vasculature beyond the occlusion through collateral flow remains a challenge for automatic 

software. Similar to the previously reported reasons for false positive findings in literature 

(22,24), intracranial MCA stenosis or the presence of an MCA aneurysm lead to falsely positive 

result also in our dataset. However, the most common reason identified in this study that likely 

lead to false positive results was an asymmetric projection of the circle of Willis on the axial 

scan caused by lateral tilt. This is important information that could be incorporated into the 
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further development of the software tool. In three cases, M2 occlusions were identified as LVO 

and marked as false positive result while the validated software version was primarily 

developed to identify ICA and M1 MCA occlusions.  

Automated software systems utilizing AI for detection of stroke signs can potentially 

accelerate the triage, diagnosis and treatment initiation of stroke patients significantly (25). 

Current methods of notifying the treating physician results in delays in treatment that 

negatively impact patient outcomes (26). A recent study showed that utilizing an automated 

LVO detection software together with a notification system resulted in an average reduction of 

22.5 minutes in triage and transfer times between the spoke primary stroke center and the hub 

comprehensive stroke center (27). A tool for automated LVO detection and notification that 

would streamline the clinical workflow and aid in accurate and timely patient selection for 

rapid EVT at spoke hospitals. The StrokeSENS LVO showed excellent performance in speed 

of potential notification with a mean processing/notification time of 44.5 seconds in this study. 

Although a short processing time is a promising feature, time for data transfer from the CT 

machine to the processing computer needs to be evaluated in the real-world.  

This study has some limitations. First, the current version of the software has been 

developed to identify only LVOs in the anterior circulation and its primary evaluation was 

therefore focused only on detection of such LVOs. With increasing evidence of endovascular 

treatment benefit in more distally located occlusions and occlusions in the posterior territory, 

further software development is warranted to reliably identify such intracranial occlusions. 

Second, the software performance was evaluated in a retrospective fashion on data from 

clinical studies that may have excluded patients with stroke mimics and other non-stroke 

pathologies that are detected routinely in real life practice. Our study dataset consisted of an 

artificially high LVO prevalence (54%) as we optimized the model with as many LVO cases 

as possible while matching those with an equal number of examples of other/no occlusion 

findings. The real-world LVO prevalence is approximately 15%-30%, therefore, the evaluation 

of the software performance in real-world data is warranted. The StrokeSENS LVO’s 

performance in LVO detection and potential speed of notification in this validation dataset will 

need to be supported by tests in real life conditions done in a prospective manner. Such studies 

are planned. Finally, the impact of tools such as StrokeSENS will need to be compared with 

current standard workflow in a randomized manner for us to understand the true benefit of such 

tools on the population of acute stroke patients.  
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Figure 4.3. Areas under the receiver operating characteristic curves (AUC) for the 

StrokeSENS LVO. Model performance is demonstrated in the full dataset and in data stratified 

by occlusion site ( ICA and M1 MCA segment), age (<70 years and 70 years), sex and 

presence/absence of intracranial hemorrhage 
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Table 4.3. The summary of available automatic software tools for LVO detection. 

Software Number of 

cases 

(LVO/all) 

Detected 

occlusion 

site 

Sensitivity Specificity AUC False negative False positive Processing 

time, 

seconds 

StrokeSENS 217/400 ICA & 

M1 MCA 

0.894 0.874 0.939 23 (6 ICA 

occlusions with 

normally 

opacified 

terminal ICA 

segment; 6 

short-segment 

occlusions; 4 

distal M1 MCA 

occlusion with 

prominent 

ATA; 3 good 

collaterals and 

arterio-venous 

phase; 1 non-

occlusive 

thrombus; 1 

poor contrast 

filling) 

23 (6 axial 

scan 

asymmetry; 4 

M2 

occlusions; 3 

MCA 

stenosis; 3 

beam 

hardening 

artifact; 1 

MCA 

aneurysm; 5 

unclear 

reason) 

44.5 

(mean) 

Viz LVO 

(Viz.ai)[28] 

163/2544 Not 

specified 

0.963 0.938    345 

(median) 

Viz LVO 

(Viz.ai)[22] 

75/1167 ICA & 

M1 MCA 

0.81 0.96 0.91 14 56 (12 M2 

and M3 MCA 

occlusions; 

12 

hemorrhage; 

9 >50% 

MCA 

stenosis; 4 

scans with 

tumor; 19 no 

pathology)  

 

Stroke protocol 72/404 ICA & 

M1 MCA 

0.82 0.90  13 -  

RAPID CTA[24] 

(iSchemaView) 

320/926 ICA & 

M1 MCA 

0.969 0.743 0.941 9 (3 short-

segment 

occlusions; 5 

robust 

collaterals; 1 

ICA at skull 

base) 

11 (4 variant 

MCA 

anatomy; 1 

subdural 

hematoma 

with severe 

midline shift; 

1 MCA 

aneurysm;3 

M2 MCA 

stenosis; 1 

incomplete 

TICI 2b 

reperfusion 

after MT 

158 

(median) 

e-CTA 

(Brainomix)[29] 

(160/301) ICA & 

M1 MCA,  

0.92  0.98  26   

Stroke Solution 

LVO 

(Canon)[30] 

202/303 ICA / 

M1 MCA 

0.90/0.77 0.98/0.98  55 2 71.5 (for 

LVO 

cohort) 
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StrokeViewer 

(NICO.LAB)[31] 

 

MR CLEAN 

Registry 

952 a ICA / M1 

MCA 

0.88/0.94   65 (8 ICA 

occlusions; 13 

M1 occlusions; 

44 incorrect 

location 

marked) 

0 299 

(mean) 

PRESTO  76/581a ICA/M1 

MCA 

0.80/0.95 - - 6 (2 ICA 

occlusions; 4 

incorrect 

location 

marked) 

55 (24 no 

occlusion; 2 

extracranial 

ICA, 29 

unknown data 

 

a Data from the sensitivity analysis with excluded M2 MCA occlusions  

b Mean processing time for the pooled dataset of patients from MR CLEAN Registry and PRESTO study 

Note: ATA – anterior temporal artery; AUC – area under the curve, CI – confidence interval, ICA – internal 

carotid artery, LVO – large vessel occlusion, MCA – middle cerebral artery, MT – mechanical thrombectomy;  

NPV – negative predictive value, PPV – positive predictive value 

 

4.5 CONCLUSION 

Automated LVO detection and notification can aid in acute stroke management by quickly and 

accurately detecting patients with LVO who may likely require immediate medical attention 

and benefit from EVT. However, a further development including the full range of clinically 

relevant intracranial occlusions is as well as prospective studies exploring the impact of the 

software tools on acute stroke workflow and patient outcomes is warranted. 
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 5. Chapter 5 - Utility of time-variant multiphase CTA color maps in 

outcome prediction for acute ischemic stroke due to anterior circulation 

large vessel occlusion 

 

The contents of this chapter have been adapted from the journal article entitled “Utility of time-

variant multiphase CTA color maps in outcome prediction for acute ischemic stroke due to 

anterior circulation large vessel occlusion”, published in Clin Neuroradiol 2021;31:783-790 

by J.M. Ospel, P. Cimflova, O. Volny, et al.  

Reproduced with permission from Springer Nature 

 

Background Multiphase CTA (mCTA) is an established tool for endovascular treatment 

decision-making and outcome prediction in acute ischemic stroke, but its interpretation 

requires some degree of experience. We aimed to determine whether mCTA-based prediction 

of clinical outcome and final infarct volume can be improved by assessing collateral status on 

time-variant mCTA color maps rather than using a conventional mCTA display format. 

 

Methods Patients from the PRove-IT cohort study with anterior circulation large vessel 

occlusion were included in this study. Collateral status was assessed with a three-point scale 

using the conventional display format. Collateral extent and filling dynamics were then graded 

on a three-point scale using time-variant mCTA color-maps (FastStroke, GE Healthcare, 

Milwaukee, WI, USA). Multivariable logistic regression was performed to determine the 

association of conventional collateral score, color-coded collateral extent and color-coded 

collateral filling dynamics with good clinical outcome and final infarct volume (volume below 

vs. above median infarct volume in the study sample). 

 

Results A total of 285 patients were included in the analysis and 53% (152/285) of the patients 

achieved a good outcome. Median infarct volume on follow-up was 12.6ml. Color-coded 

collateral extent was significantly associated with good outcome (adjusted odds ratio [adjOR] 

0.53, 95% confidence interval [CI]:0.36–0.77) while color-coded collateral filling dynamics 

(adjOR 1.30 [95%CI:0.88–1.95]) and conventional collateral scoring (adjOR 0.72 

[95%C:0.48–1.08]) were not. Both color-coded collateral extent (adjOR 2.67 [95%CI:1.80–

4.00]) and conventional collateral scoring (adjOR 1.84 [95%CI:1.21–2.79]) were significantly 
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associated with follow-up infarct volume, while color-coded collateral filling dynamics were 

not (adjOR 1.21 [95%CI:0.83–1.78]). 

 

Conclusion: In this study, collateral extent assessment on time-variant mCTA maps improved 

prediction of good outcome and has similar value in predicting follow-up infarct volume 

compared to conventional mCTA collateral grading. 
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5.1 INTRODUCTION 

Acute ischemic stroke (AIS) due to large vessel occlusion (LVO) is a highly time-critical 

disease. A typical LVO patient loses 1.9 million neurons per minute (1). In 2015, endovascular 

treatment (EVT) has become standard of care for LVO strokes presenting within 6 hours from 

symptom onset (2). EVT is a powerful treatment, and its effect is highly time-dependent (3). 

The overarching goal when performing EVT is therefore to treat the patient as fast as possible. 

However, not all patients will benefit from EVT, and selecting the right patients is crucial, in 

order not to cause harm. Currently, patient selection is based on 2 pillars: clinical characteristics 

(symptom severity, pre-morbid functional status) and brain imaging (2). Imaging is used to 

determine how much brain tissue is already irreversibly damaged, since in patients with 

extensive ischemic changes, tissue is unlikely to be salvaged by EVT, and the risk of 

reperfusion hemorrhage is high. There are many ways of identifying irreversibly damaged 

tissue; the most commonly used imaging techniques are CT perfusion (CTP) and multiphase 

CTA (mCTA). Both techniques have been successfully used for EVT patient selection in 

randomized controlled trials (4-7), and both have their advantages disadvantages: CTP maps 

can be quickly and easily interpreted even with limited imaging experience, because the color-

coded display format is a clear visual indicator of pathology. On the other hand, CTP is 

susceptible to patient motion and post-processing artifacts, and generating postprocessed maps 

takes some time. mCTA is more robust against patient motion, and requires less contrast and 

radiation dose. It is equally reliable to CTP as an EVT selection and outcome prediction tool, 

and because it can easily be implemented without any additional technical requirements, it is 

particularly attractive for smaller hospitals and places in which it is not possible to afford 

additional hardware and software (8). However, the standard display format of mCTA consists 

of 3 separate gray-scale images of the cerebral vessels, and evaluating the collaterals requires 

the reader to assess all three of them simultaneously. The interpretation of mCTA therefore 

requires some degree of experience and is often perceived to be less intuitive than CTP 

interpretation. Novel color-coded mCTA display format, was recently described, in which all 

3 mCTA series are consolidated in a single color-coded map, thereby potentially facilitating 

and improving mCTA interpretation (9). 

The purpose of this study is to compare prediction of clinical outcome and final infarct 

volume in acute ischemic stroke due to LVO using a conventional mCTA display format vs. 

time-variant color maps. 
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5.2 MATERIALS & METHODS 

5.2.1 Patient population 

The Precise and Rapid Assessment of Collaterals Multi-phase CTA in the Triage of Patients 

With Acute Ischemic Stroke for IA Therapy (Prove-IT) study (10) was a prospective multi-

center cohort study that enrolled 464 patients who presented with symptoms consistent with 

AIS (NCT02184936). Patients were eligible for the study if they presented to the emergency 

department with symptoms consistent with AIS, were older than 18 years, and mCTA and CTP 

were performed within 12 hours of symptom onset and before recanalization therapy. Detailed 

inclusion and exclusion criteria have been published previously (8). We included patients with 

anterior circulation LVO (internal carotid artery, M1 or proximal M2 occlusions) in this study. 

Patients in which baseline mCTA images were incomplete or not interpretable were excluded.  

 

5.2.2 Image acquisition 

Non contrast head CT (NCCT) and mCTA: NCCT was acquired with 5 mm slice thickness. 

mCTA consisted of three phases, with arch to vertex coverage in the first (arterial) and skull 

base to vertex coverage the second (peak venous) and third (late venous) phases. Detailed 

mCTA acquisition parameters have been published previously (8). Axial images with 1 mm 

overlap and multiplanar axial, coronal and sagittal reconstructions with 3 mm thickness, 1 mm 

intervals and 1 mm overlap for the first phase were then generated, as well as axial maximum 

intensity projections (MIPs) for all three phases. Time variant mCTA color maps were 

generated with the FastStroke research prototype (GE Healthcare, Milwaukee, Wisconsin) and 

displayed as axial, coronal, sagittal, and oblique MIP reformations. Color-coding of the 

collaterals based on a per-patient adaptive threshold technique (9); vessels with maximum 

enhancement in the pre-venous phase are displayed in red; those with maximum enhancement 

in the peak-venous phase and late-venous phase are displayed in green and blue, respectively, 

Figure 5.1. 
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Figure 5.1. Conventional and color-based collateral scoring. Top row: good collaterals. 

Most collaterals are opacified on the first mCTA phase and appear red on the color-map, which 

is consistent with a zero-phase delay. The vessel extent is nearly identical to the contralateral 

side. Middle row: Intermediate collaterals. Most collaterals are opacified on the second mCTA 

phase and appear green on the color-map, which is consistent with a one-phase delay. The 

vessel extent is slightly reduced compared to the contralateral side. Bottom row: Poor 

collaterals. The few visible collaterals are mostly opacified on the third mCTA phase and 

appear blue on the color-map, which is consistent with a two-phase delay. The vessel extent is 

markedly reduced compared to the contralateral side. 

 

 

5.2.3 Image interpretation 

All images were assessed in a consensus read (by a neurologist and neuroradiologist). 

ASPECTS: ASPECTS was scored on 5 mm reconstructed axial unenhanced NCCT images. 

 

Occlusion site: Occlusion site determined on axial mCTA MIP images and was reported as 

either terminal internal carotid artery, M1 segment or proximal M2 segment. We decided to 
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include the proximal M2 segment in our analysis, since most physicians consider proximal M2 

occlusions “large vessel occlusions” and as appropriate target lesions for EVT (10). Proximal 

M2 occlusions were hereby defined as Sylvian segment M2 occlusions located within 1 cm 

from the middle cerebral artery bifurcation. 

 

Conventional mCTA collateral grading: The delay and extent of collateral filling was graded 

on axial MIPs of the three mCTA phases. A trichotomized collateral scale as used in the 

ESCAPE (6) and ESCAPE NA1 (11) trial was used: 

1) Poor collaterals: no or only few vessels visible in any phase within the occluded vascular 

territory compared to the asymptomatic contralateral hemisphere. 

2) Intermediate collaterals: delay of two phases in filling in of peripheral vessels with or 

without decreased prominence and extent or a one-phase delay and some ischemic regions with 

only few or no vessels compared to the asymptomatic contralateral hemisphere. 

3) Good collaterals: no delay or 1 phase delay in filling of peripheral vessels with identical or 

increased prominence of vessels compared to the asymptomatic contralateral hemisphere. 

 

Collateral grading on time-variant color maps: Both delay and extent of collateral filling were 

graded on a trichotomized scale on axial color-coded MIPs.  

Collateral extent was graded as follows: 

1) Normal or almost normal extent (>90%) of visible vessels within the occluded vascular 

territory compared to the contralateral hemisphere. 

2) Vessel extent 50 – 90% compared within the occluded vascular territory to the contralateral 

hemisphere. 

3) Vessel extent <50% compared within the occluded vascular territory to the contralateral 

hemisphere. 

 

Collateral delay was graded as follows: 

1) Predominantly no delay (most vessels are displayed in red) within the occluded vascular 

territory. 

2) Predominantly 1 phase delay (most vessels are displayed in green) within the occluded 

vascular territory. 

3) Predominantly 2 phase delay or no collaterals (most vessels are displayed in blue/no vessels 

visible at all) within the occluded vascular territory. 
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Final infarct volume: Final infarct volumes were measured by summation of manual 

planimetric demarcation of infarct on axial NCCT or DWI-MRI follow-up imaging at 24 hours. 

 

5.2.4 Interrater agreement 

To determine interrater agreement for scoring of collateral extent and filling dynamics on time-

variant mCTA color maps, a neuroradiologist and a medical student independently reviewed 

30 cases in two separate reading sessions with a 1-week break between the two sessions 

(session 1: conventional collateral scoring, session 2: assessment of collateral extent and filling 

dynamics on time-variant color maps). The reader had access to the site of occlusion, age and 

baseline NIHSS, but were blinded to all other baseline information and patient outcomes.  

 

5.2.5 Statistical analysis 

Patient baseline characteristics were described using descriptive statistics. Uni- and 

multivariable logistic regression was used to determine the association of conventional and 

color-coded collateral scores and a) good outcome, defined mRS 0-2 at 90 days (primary 

outcome), and b) follow-up infarct volume (secondary outcome). Follow-up infarct volume 

was hereby included in the models as binary variable (infarct volume below or equal to/above 

the median infarct volume in the study sample). Information loss across models was compared 

using the Akaike and Bayesian information criterion (AIC, BIC) and the area under the curve 

(AUC). Adjustment was performed for patient age, sex and baseline NIHSS. Inter-rater 

agreement was assessed using the Kappa statistic. All statistical tests were two-sided and 

conventional levels of significance (alpha = 0.05) were used for interpretation. All analysis was 

performed using Stata 15.1.  

 

5.3 RESULTS 

Out of 464 patients, 285 were included in the analysis. Figure 5.2 shows a flow chart of 

included and excluded patients. Patient baseline characteristics are shown in Table 5.1. 

When using the trichotomized grading system on conventional display format, 60.7% 

(173/285) patients had good collaterals, 30.2% (86/285) had intermediate and 9.1% (26/285) 

poor collaterals. Collateral extent on time-variant color maps was normal or almost normal in 

50.9% (145/285) patients, a collateral extent of 50-90% compared to the contralateral 

hemisphere was seen in 34.0% (97/285), and a collateral extent of less than 50% compared to 

the contralateral hemisphere in 15.1% (43/285).When using time-variant color maps, there was 
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mostly no delay in 14.4% (41/285), mostly a one phase delay in 56.5% (161/285) and mostly 

a two phase delay in 29.1% (83/285).  

 

5.3.1 Collateral grading and clinical outcome 

Overall, 53.3% (152/285) patients achieved a good outcome at 90 days. Table 5.2 shows 

unadjusted and adjusted measures of effect size for the association of conventional collateral 

grade, color-coded collateral extent, color-coded collateral filling dynamics and good clinical 

outcome, as well as the respective AIC, BIC, and AUC values for the multi-variable models. 

 

5.3.2 Collateral grading and final infarct volume 

Infarct volume was available for 93.0% (265/285) patients. Median final infarct volume was 

12.6 ml (IQR 1.7 – 49.2). Table 5.3 shows unadjusted and adjusted measures of effect size for 

the association of conventional collateral grade, color-coded collateral filling dynamics, color-

coded collateral extent and follow-up infarct volume (infarct volume below vs. above the 

median infarct volume), as well as the respective AIC, BIC, and AUC values for the multi-

variable models. 

 

5.3.3 Inter-rater agreement 

Inter-rater agreement for color-coded grading of collateral filling dynamics and collateral 

extent was substantial (Kappa = 0.69 and 0.74 respectively). 
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 Figure 5.2. Flowchart of included and excluded patients.  

 

* Patients with proximal M2 occlusions (Sylvian segment M2 occlusions located within 1 cm 

from the middle cerebral artery bifurcation) were considered large vessel occlusions. mCTA = 

multiphase CT angiography  
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Table 5.1. Patient baseline characteristics (n = 285).  

 

Female sex – n (%) 152 (53.3) 

Age – median (IQR) 74 (64 – 81) 

Co-morbidities – n (%)  

Coronary artery disease 50/284 (17.6) 

Chronic heart failure 31/284 (10.9) 

Valvular disease 20/284 (7.0) 

Hypertension 188/284 (66.2) 

Previous stroke 52 (18.3) 

Dyslipidemia 122/284 (43.0) 

Atrial Fibrillation 108/283 (38.2) 

Diabetes 42/281 (14.9) 

Smoking 107/276 (38.8) 

Heart rate/min – median (IQR) 77 (66 – 92), n = 270 

Systolic blood pressure – median (IQR) 148 (130 – 170), n = 282 

Blood glucose in mmol/l – median (IQR) 6.5 (5.7 – 7.7), n = 281 

Baseline NIHSS – median (IQR) 17 (11 – 22) 

Baseline ASPECTS – median (IQR) 9 (8– 10), n = 284 

EVT – n (%) 193 (67.7) 

Intravenous alteplase – n (%)* 192 (67.4) 

Occlusion Site – n (%)  

Intracranial internal carotid artery 56 (19.7) 

M1 segment 184 (64.6) 

Proximal M2 segment** 45 (15.8) 

Onset to baseline CT in min – median (IQR) 124 (80 – 245) 

Note: IQR = interquartile range, NIHSS = National Institutes of Health Stroke Scale, ASPECTS = Alberta Stroke 

Program Early CT Score, EVT = endovascular treatment 

* Including six patients who received intravenous tenecteplase 

** Proximal M2 occlusions were defined as occlusions in the horizontal M2 segment within one cm from the 

middle cerebral artery bifurcation.  

  



 107 

Table 5.2. Association of conventional and color-map based collateral grade and good 

clinical outcome (n = 285). 

Collateral score Unadjusted OR 

(95% CI) 

Adjusted OR* 

(95% CI) 

AIC** BIC** AUC** 

Conventional score  0.62 (0.43 – 0.89) 0.72 (0.48 – 1.08) 350.0 368.2 0.74 

Color-map based 

collateral extent 

0.54 (0.39 – 0.75) 0.53 (0.36 – 0.77) 340.9 359.2 0.76 

Color-map based 

filling delay 

1.21 (0.84 – 1.74) 1.30 (0.88 – 1.95) 350.8 369.1 0.74 

*Adjusted for patient age, sex and baseline National Institutes of Health Stroke Scale. 

**Derived from adjusted models 

Note: OR = odds ratio, 95% CI = 95% confidence interval, AIC = Akaike information criterion, BIC = Bayesian 

information criterion, AUC = Area under the curve 

 

 

 

 

 

Table 5.3. Association of conventional and color-map based collateral grade and final 

infarct volume (n = 265).  

Collateral score Unadjusted OR 

(95% CI) 

Adjusted OR* 

(95% CI) 

AIC** BIC** AUC** 

Conventional score  2.05 (1.37 – 3.07) 1.84 (1.21– 2.79) 354.2 372.1 0.67 

Color-map based 

collateral extent 

2.99 (2.04 – 4.40) 2.67 (1.80 – 4.00) 336.4 354.3 0.72 

Color-map based 

filling delay 

1.29 (0.89 – 1.87) 1.21 (0.83 – 1.78) 361.7 379.6 0.63 

*Adjusted for patient age, sex and baseline National Institutes of Health Stroke Scale. 

**Derived from adjusted models 

Note: Final infarct volume was coded as a binary variable in this analysis (volume below vs. above the median 

infarct volume) 

OR = odds ratio, 95% CI = 95% confidence interval, AIC = Akaike information criterion, BIC = Bayesian 

information criterion, AUC = Area under the curve 
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5.4 DISCUSSION 

Our study has the following main findings: 1) Color-coded mCTA grading of collateral extent 

improves prediction of good outcome at 90 days, and its performance in predicting follow-up 

infarct volume is similar compared to conventional collateral grading, 2) Color-coded mCTA 

grading of collateral filling dynamics performs worse than conventional collateral grading, and 

3) inter-rater agreement for color-coded mCTA grading of collateral extent and filling 

dynamics is substantial. 

Assessing collateral status on mCTA using a conventional display format, i.e. three 

separate series that are usually linked by the reader and then assessed in conjunction, takes both 

collateral filling dynamics and extent into account (13). When using time-variant mCTA color 

maps, collateral extent and filling dynamics are graded separately. When color-coded collateral 

extent was used to predict good outcome and follow-up infarct volume in our study, 

information loss was lower and discrimination better compared to conventional mCTA 

collateral scoring and color-coded scoring of filling dynamics. These results potentially 

indicate that collateral extent reflects tissue viability more accurately compared to collateral 

filling dynamics. In a previous study, D’Esterre at al assessed collateral extent and filling 

dynamics on conventional mCTA images and found that the former was not independently 

associated with follow-up infarction, while washout, a parameter that partly reflects filling 

dynamics, was associated with follow-up infarction (14). The apparently contradictory findings 

between their and our study could be explained by the fact that in the current study, the entire 

hemisphere was assessed, while d’Esterre and colleagues evaluated brain tissue per ASPECTS 

region. Both the current study and the study by d’Esterre et al relied on visual assessment of 

collaterals, which will always be subject to some degree of inter-rater variability. This 

variability could also explain the different results. Automation of collateral scoring could 

mitigate this problem, but the automated assessment would have to be available 

instantaneously, and integration of the technology into routine clinical practice will probably 

take some time (15). Software to generate time-variant mCTA maps on the other hand is 

already available, and the color-maps can be generated within a few seconds. mCTA color-

maps therefore constitute a good alternative to facilitate interpretation of collateral status until 

fully-automated collateral assessment is routinely available, particularly for less experienced 

readers. Indeed, when comparing a non-expert to an expert reader, inter-rater agreement for 

color-map based collateral grading in our study was substantial. Agreement was higher for 

color-map based grading of collateral extent compared to filling dynamics. This suggests that 



 109 

the latter is more challenging, which could be the reason for the lacking association of collateral 

filling dynamics and clinical outcome /follow-up infarct volume.  

The predictive utility of conventional collateral assessment, while it was still good 

overall, was slightly lower when compared to color-map based grading of collateral extent. It 

is possible that complications that happened after treatment in the 3-month follow-up period 

have influenced the association with clinical outcomes, while the efficacy of treatment (either 

EVT or intravenous alteplase) might have influenced the association of collateral grade and 

final infarct volumes, although the latter two points would in theory affect both conventional 

and color-map based collateral grading. The exact reasons for the differences in predictive 

power remain therefore unknown at the time being. 

Our study has several limitations: First, assessing infarct volume on NCCT can be 

challenging, since the infarct is often not clearly demarcated. In order to account for this 

possibility, we performed sensitivity analysis by stratifying patients according to their follow-

up imaging modality. Second, we restricted our analysis to patients with LVO (including 

proximal M2 occlusions); our findings can thus not be generalized to more distal occlusion 

sites. Third, reperfusion status is an important predictor of infarct volume and outcome, but 

since vascular imaging was not available in all patients, we could not stratify our analysis by 

reperfusion status. Fourth, recanalization data were missing in a relatively large number of 

patients, partly because it was impractical to obtain follow-up vascular imaging in many local 

institutional settings, and partly because it does not have a therapeutic consequence in the vast 

majority of cases. Fifth, we showed that color-map based assessment of collateral extent is 

significantly associated with good outcome and infarct volume in LVO patients, but we could 

not assess in our study whether and how this alters clinical decision-making. Doing so would 

warrant a diagnostic randomized controlled trial. Such trials generally require very large 

sample sizes and are difficult to conduct for various reasons (16). Thus, no randomized 

diagnostic trials have so far been conducted for any acute stroke imaging paradigm and we 

suspect that this will remain true in the near future as well. Sixth, the current GE FastStrokeTM 

Software does not allow the user to change the color-coding scheme; this might be confusing 

for some users who are used to different color schemes and is something that could be improved 

on in subsequent iterations of the software. 
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5.5. CONCLUSION 

In this study, collateral extent, assessed on time-variant mCTA maps improved prediction of 

good outcome and has similar utility in predicting follow-up infarct volume compared to 

conventional mCTA collateral grading. 
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6. Chapter 6 - Multiphase CTA‑derived tissue maps aid in detection of 

medium vessel occlusions  

 
The contents of this chapter have been adapted from the journal article entitled “Multiphase 

CTA‑derived tissue maps aid in detection of medium vessel occlusions”, published in 

Neuroradiology 2022;64(5):887-896 by R. McDonough, W. Qiu, … P. Cimflova, et al.  

Reproduced with permission from Springer Nature 
 

Background: Medium vessel occlusions (MeVOs) can be challenging to reliably and quickly 

detect on imaging due to their smaller vessel caliber and relatively distal location. Multiphase 

computed-tomography angiography (mCTA) has been shown to improve large vessel 

occlusion (LVO) detection and endovascular treatment (EVT) selection. The aims of this study 

were to determine if mCTA-derived tissue maps can 1) accurately detect MeVOs; and 2) 

predict infarction on 24h follow-up imaging with comparable accuracy to CT perfusion (CTP) 

maps. 

 

Methods: Two readers assessed mCTA tissue maps of 116 AIS patients (58 MeVO, 58 non-

MeVO [49 LVO, 4 from the vertebrobasilar circulation, and 5 cases without any occlusion]) 

and determined by consensus: 1) the presence of MeVO (yes/no) and 2) occlusion site, blinded 

to clinical or imaging data. Sensitivity, specificity, and area under the curve (AUC) for MeVO 

detection were estimated in comparison to the reference standards of 1) expert core lab reading 

of baseline mCTA and 2) CTP maps. Volumetric and spatial agreement between predicted 

infarcts based on mCTA and CTP was assessed using concordance correlation coefficient and 

intraclass correlation coefficient. Interrater agreement for MeVO detection on mCTA tissue 

maps was estimated with Cohen’s Kappa.  

 

Results: MeVO detection based on mCTA-derived tissue maps had a sensitivity of 91% 

(95%CI: 80-97), specificity of 82% (95%CI: 70-90), and AUC of 0.87 (95%CI:0.80-0.93) 

compared to expert reads of baseline mCTA. Compared to CTP maps, sensitivity was 87% 

(95%CI 75-95), specificity was 78% (95%CI 65-88), and AUC of 0.83 (95%CI:0.76-0.90). 

The mean difference between mCTA and CTP predicted final infarct volume was 4.8 mL 

(limits of agreement: –58.5 to 68.1) with a Dice coefficient of 33.5%. Interrater reliability 

(Cohen’s kappa) was good (0.72, 95%CI: 0.60-0.85) for the presence of MeVO. 

 

Conclusion: mCTA tissue maps can be used to reliably detect MeVO stroke and predict tissue 

fate.  
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6.1 INTRODUCTION 

Endovascular treatment (EVT) has become the standard of care patients with acute ischemic 

stroke (AIS) due to large vessel occlusion (LVO) (1-6). LVOs, however, constitute only 10-

30% of all AIS cases; 25-40% are caused by so-called medium vessel occlusions (MeVOs), 

which are defined as occlusion of the M2, M3, A2, A3, P2, or P3 segments with disabling 

deficits(7,8). Due to the smaller caliber, varied vascular anatomy, and more distal location from 

the arterial tree compared with LVOs, MeVOs can be challenging to diagnose on imaging, 

particularly for trainees (9). Indeed, MeVOs are approximately five times more likely to be 

overlooked compared to LVOs, with physicians failing to detect occlusions of the M2 segment 

in up to one third of cases (9). This is important within the context of the time-critical nature 

of AIS, where it is crucial to identify the occluded vessel and assess the extent of tissue damage 

quickly and reliably to establish the diagnosis and initiate rapid treatment. 

 CT perfusion (CTP) is commonly used during admission imaging to select patients 

most likely to benefit from EVT. The color-coded output maps facilitate detection of occlusion 

location. The disadvantages, however, are longer acquisition and post-processing times, and 

overestimation of infarct core, particularly in the ultra-early time window(10,11), which may 

cause physicians to forego EVT in patients who may have otherwise benefitted from treatment. 

Multiphase computed-tomography angiography (mCTA) is an alternative advanced imaging 

technique that provides time-resolved, whole brain imaging of the cerebral vasculature, without 

the requirement for postprocessing (12). During mCTA, an initial aortic arch-to-vertex CTA is 

obtained in an analogous fashion to single-phase CTA, followed by the acquisition of two 

additional series during the peak-venous and late-venous phases using the same contrast bolus. 

These latter two phases cover only the intracranial vasculature from the skull base to the vertex. 

Patient selection for treatment based on mCTA collateral status has been shown to identify 

patients that are likely to benefit from EVT, without being overly restrictive (12). However, 

while mCTA has been proven to be a valid EVT selection tool in LVO stroke (3,13), imaging 

selection criteria for MeVO EVT have yet to be established. 

 Recently, mCTA-derived tissue maps with color indicator effect, analogous to CTP 

perfusion maps, were developed using machine learning methods (14). In contrast to CTP, they 

require a lower radiation dose, less contrast, and do not result in prolonged imaging times. 

Despite their slightly lower signal-to-noise ratios (due to the comparatively limited temporal 

resolution), mCTA tissue maps were able to predict infarct core, penumbra, and perfusion 

status with comparable accuracy to CTP (14). However, the majority of included images were 
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from patients with LVOs; it currently remains unclear whether mCTA-based tissue maps are 

capable of aiding in the detection of the more subtle imaging findings of MeVO stroke. 

 To this end, we sought to determine the accuracy of mCTA-derived tissue maps for the 

detection of MeVOs. In a secondary analysis, we quantitatively compared mCTA-based core 

and penumbra maps to those generated from CTP in their ability to predict final infarct volume 

in patients with definite MeVOs.  

 

6.2 MATERIALS & METHODS 

Data used were from the PRove-IT study, a prospective multicenter study of AIS patients 

undergoing baseline non-contrast CT (NCCT), single-phase CTA, mCTA, and CTP (12,15).  

This study was approved by the local ethics committee. Data analysis was performed with Stata 

15.1. Figures were created with Apple Keynote 11.0.1. 

 

6.2.1 Study participants 

Subjects who had 1) baseline NCCT and mCTA; 2) baseline CTP imaging with ≥ 8 cm z-axis 

coverage; 3) reperfusion assessed on conventional angiography after thrombolysis treatment 

(intravenous tissue plasminogen activator [tPA], EVT, or both) with mTICI scale; and 4) had 

24/36-hour follow-up imaging on diffusion MRI or NCCT were included in this analysis. 

Figure 6.1 describes the patient inclusion criteria. In this case-control study design, we 

included 116 patients, 58 with AIS due to MeVO and 58 with AIS due to non-MeVO (49 

LVOs, 5 with no detectable occlusions, and 4 with occlusions of the vertebrobasilar 

circulation). 
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Figure 6.1. Patient inclusion flowchart. The patients with AIS due to non-MeVO were 

randomly selected as matched controls. 

 

 

 

6.2.2 Imaging protocol 

NCCT and mCTA: NCCT with 5 mm slice thickness was obtained, followed by mCTA with 

arch to vertex coverage in the first (arterial) and skull base to vertex coverage the second (peak 

venous) and third (late venous) phase. Detailed mCTA acquisition parameters have been 

published previously (12). Axial images with 1 mm overlap and multiplanar axial, coronal and 

sagittal reconstructions with 3 mm thickness, 1 mm intervals and 1 mm overlap for the first 

phase were obtained, along with axial maximum intensity projections (MIPs) for all three 

phases with 24 mm thickness and 4 mm intervals. CTP: 45 ml of iodinated contrast agent were 

injected at a rate of 4.5 ml/sec followed by a 40 ml saline bolus injected at a rate of 6 ml/sec. 

Image acquisition started 5 sec after contrast injection and 24 passes over 66 seconds were 

performed with 5 mm section thickness and a cranio-caudal coverage of 8 cm. 
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6.2.3 Image processing 

First, skull stripping of the NCCT and mCTA images was performed (16). To account for 

patient movement, the three phases of the mCTA images were then aligned using rigid-body 

registration. The aligned 3-phase CTA images were registered onto NCCT images using affine 

registration. 

We then used two machine learning models: 1) a core model; and 2) a penumbra model, 

as previously described (14), to generate mCTA derived tissue maps for the patients with 

reperfusion (mTICI 2b/2c/3, core prediction) and without reperfusion (mTICI 0/1/2a, 

penumbra prediction), respectively. mCTA predicted volume was obtained by thresholding the 

mCTA derived tissue maps (14). 

Each CTP study was processed using commercially available delay-insensitive 

deconvolution software (CT Perfusion 4D, GE Healthcare, Waukesha, WI). Absolute maps of 

cerebral blood flow (CBF, mL・min-1・(100g)-1, cerebral blood volume (CBV, mL・(100 g)-1, 

and Tmax (seconds) were generated. Average maps were created by averaging the dynamic 

CTP source images. Time-dependent Tmax thresholds were used to generate baseline CTP 

thresholded maps, defined as CTP predicted infarct volume (17,18). 

One radiologist (2-year experience) and one stroke neurologist (with 5 years of stroke 

image reading experience) assessed the source baseline mCTA images for the occlusion 

location, if any. Conflicts were resolved by consensus. These were considered the standard 

reference of expert reads for the qualitative portion of this study.Two radiologists (each with 

>5 years’ experience) used ITK-SNAP (version 3.8.0, http://www.itksnap.org)  to manually 

delineate the infarct region on follow-up diffusion weighted (DWI)/NCCT imaging, with 

conflicts resolved by consensus (19). The follow-up images, manual infarct segmentations, and 

CTP average maps were registered onto NCCT images, thus bringing all images into the same 

image space. When registration was sub-optimal, manual refinement of the registered infarct 

segmentations was attempted. The NiftyReg tool was used for all image registration tasks (20). 

 

6.2.4 Qualitative image analysis for MeVO detection 

Two radiologists (RM, PC) independently assessed the mCTA-derived tissue maps of 116 AIS 

cases (58 due to MeVO, 58 due to non-MeVO) for the presence of MeVO (binary yes/no), 

blinded to both clinical and imaging data. In a second step, the location of the occlusion was 

estimated based on the hypoperfusion pattern (if any) and scored according to a pre-determined 

classification: internal carotid artery (ICA), M1 segment of the middle cerebral artery (MCA), 

http://www.itksnap.org/
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anterior M2 segment of the MCA, posterior M2 segment of the MCA, M3 segment of the MCA 

or more distal, anterior cerebral artery (ACA), posterior cerebral artery (PCA), no occlusion, 

or “other” (e.g., occlusion of the vertebrobasilar circulation, Figure 6.2 & 6.3). Conflicts were 

resolved by consensus. Sensitivity, specificity, and area under the curve (AUC) for detection 

of MeVO were estimated in comparison to the reference standards of 1) expert readings of the 

baseline CTA and 2) CTP-based Tmax maps, as read by the readers of this study in a separate 

reading session one week later. Interrater agreement for MeVO detection on mCTA tissue maps 

was estimated using unweighted Cohen’s kappa. 

 

 

Figure 6.2. Schematic examples of perfusion deficit patterns for various occlusion 

locations. A - anterior cerebral artery; B - posterior cerebral artery; C - internal carotid artery; 

D - M1 segment of the middle cerebral artery (MCA); E - anterior M2 segment of the MCA; F 

- posterior M2 segment of the MCA; G - M3 segment of the MCA 
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Figure 6.3. Exemplary cases. Right P2 PCA occlusion (C, red arrow ) and left posterior M2 

MCA occlusion (F, red arrow) with corresponding mCTA tissue maps (A, D) and CTP Tmax 

maps (B, E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.5 Volumetric and spatial analyses of mCTA-derived tissue maps  

Volumetric agreement between mCTA tissue maps and CTP perfusion maps for core and 

penumbra volumes was assessed using concordance and intraclass correlation coefficients 

(CCC and ICC, respectively). The mean differences and limits of agreement (LoA) between 

the two types of generated volume were illustrated using Bland Altman plots, and spatial 

agreement between the two volumes was assessed using Dice Similarity Coefficient (DSC). 

When comparing mCTA tissue maps to CTP maps in their ability to predict follow-up 

infarction conditional on treatment, expert contoured follow up lesions (true follow up infarct) 

on 24h DWI/NCCT was used as the reference standard. Absolute volume agreement between 

mCTA predicted follow-up infarct/CTP predicted follow-up infarct and the reference standard 

(true follow up infarct) was reported using CCC and ICC. In addition, Bland-Altman plots were 

used to illustrate mean differences and LoA between predicted follow-up infarction volumes 

and CTP predicted volumes. 
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6.3 RESULTS 

A total of 116 cases were included in this study, 58 with MeVO (23 occlusions of the M3/4 

segment of the MCA, 22 of the posterior M2 segment of the MCA, 5 of the anterior M2 segment 

of the MCA, 2 of the A2/3 segment of the ACA, and 6 of the P2/3 segments of the PCA) and 

58 with non-MeVO (7 occlusions of the ICA, 42 occlusions of the M1 segment of the MCA, 4 

occlusions of the vertebrobasilar circulation, and 5 with no occlusion). 

 

6.3.1 Feasibility of mCTA-based MeVO detection 

In this study, binary MeVO detection (yes/no) based on mCTA-derived tissue maps had a 

sensitivity of 90.7% (95%CI: 79.7-96.9%), specificity of 82.2% (95%CI: 70.5-90.8%), a 

positive predictive value of 81.7% (95%CI: 69.6-90.5), a negative predictive value of 91.1% 

(95%CI: 80.4-97.0), and an area under the curve (AUC) of 0.87 (95%CI: 0.80-0.93) compared 

to expert reads of baseline mCTA source images. Interrater agreement was good, with an 

unweighted Cohen’s kappa of 0.72 (95%CI: 0.60-0.85) (21,22). When compared to the CTP 

map-based reference standard, mCTA tissue map-based MeVO detection had a sensitivity of 

86.8% (95%CI: 74.7-94.5), a specificity of 78.3% (95%CI: 65.8-87.9), a positive predictive 

value of 78.0% (95%CI: 65.3-87.7), a negative predictive value of 87.0% (95%CI: 75.1-95.6), 

and an AUC of 0.82 (95%CI: 0.75-0.89). Interrater agreement was moderate, with an 

unweighted Cohen’s kappa of 0.57 (95%CI: 0.42-0.72). The overall accuracy of mCTA tissue 

map based MeVO detection was 86% (100/116). Five cases were misclassified as being non-

MeVOs (including 1 occlusion of the P2 segment of the PCA, 1 of the anterior M2, and 3 of 

the posterior M2), while the 11 cases that were incorrectly classified as MeVOs included 

occlusions of the vertebrobasilar circulation (n=3), the M1 segment of the MCA (n=7), and one 

case with no occlusion. Occlusion location based on mCTA tissue maps was correctly 

estimated in 70% (81/116) of cases. 

 

6.3.2 Agreement of mCTA and CTP predicted infarct volumes  

Figure 6.4 illustrates Bland-Altman plots showing agreement between the mCTA predicted 

infarct volume and pre-specified CTP predicted infarct volume for 58 patients with MeVO. 

The mean difference between the mCTA and CTP predicted infarct volumes was 4.8 mL (LoA, 

–58.5 to 68.1; P=0.56), CCC was 0.66 (95%CI: 0.56 to 0.76; P<0.01) and ICC was 0.68 

(95%CI: 0.62 to 0.80; P<0.01). When stratifying the 58 patients into two subgroups 

with/without acute reperfusion, the mean difference between the mCTA and CTP predicted 

infarct volume for the 27 patients with complete reperfusion (mTICI 2b/2c/3) was 2.0 mL 
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(LoA, –75.4 to 79.5; P=0.54), CCC was 0.54 (95%CI: 0.47 to 0.68; P<0.01) and ICC was 0.57 

(95% CI, 0.52 to 0.73; P<0.01); the mean difference between the mCTA and CTP predicted 

infarct volume for the 31 patients with incomplete reperfusion (mTICI 0/1/2a)  was -10.7 mL 

(LoA, –239.8 to 218.3; P=0.45), CCC was 0.32 (95%CI: 0.25 to 0.48; P<0.01) and ICC was 

0.33 (95%CI: 0.24 to 0.51; P<0.01) 

 

Figure 6.4. Bland-Altman plots for predicted infarct volume. mCTA predicted infarct 

volume (ml) compared to CTP predicted infarct volume.  

 

6.3.3. Agreement of mCTA predicted infarct volume and measured final infarct volume 

Figure 6.5 illustrates Bland-Altman plots showing the agreement between mCTA predicted 

infarct volume and follow-up infarct volume in 58 patients with MeVO. The mean difference 

between the mCTA predicted infarct volume and follow-up infarct volume was -16.6 mL (LoA, 

–64.7 to 31.6; P=0.53), which was less than the CTP predicted infarct volume of -21.4 mL 

(LoA, –72.5 to 29.8; P=0.54). Figure 6.6 shows exemplary mCTA tissue maps, CTP maps, 

and the associated follow-up images. The CCC between the mCTA predicted and follow-up 

infarct volume was 0.57 (95%CI: 0.43 to 0.70; P<0.01), and the ICC was 0.59 (95%CI: 0.48 

to 0.72; P<0.01). The subgroup analyses by stratifying the 58 patients into those with 

reperfusion (mTICI 2b/2c/3) and those with non-reperfusion (mTICI 0/1/2a) groups show the 

comparable accuracy of mCTA in predicting follow up infarct compared to CTP imaging 

(Figure 6.5b & 6.5c).  



 122 

Figure 6.5. Bland-Altman plots for predicted versus final infarct volume. mCTA and CTP 

predicted infarct volume (ml) compared to follow up infarct volume. 

 

 

Figure 6.6. Exemplary cases. Right posterior M2 occlusion (A-C) and a right M3 occlusion 

(D-F) with associated mCTA tissue maps (A, D), CTP-generated Tmax maps (B, E), and 

follow-up images (C, F). 
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6.3.3 Spatial agreement between mCTA and CTP predicted infarct volume and measured final 

infarct volume 

The median DSC between mCTA and CTP predicted infarct volume (Figure 6.7) was 33.5% 

(IQR: 18.7% to 48.8%) for 58 patients with MeVOs, 39.5% (IQR: 25.6% to 49.5%) for 27 

patients with complete reperfusion, and 55.2% (IQR: 38.5% to 61.3%) for 31 patients with 

incomplete reperfusion. The median DSCs between mCTA predicted infarct volume and 

follow up infarct volume and between CTP predicted infarct volume and follow up infarct 

volume ranged from 23.5% to 37.8%. 

 

Figure 6.7. Dice similarity coefficient (%) between mCTA predicted infarct, CTP 

predicted infarct, and follow up infarct. 

 

 

 

6.4 DISCUSSION 

EVT for AIS due to MeVOs is seen as the next frontier for the advancement of current stroke 

treatment paradigms (23,24). The advent of smaller, more flexible stent retrievers and 

catheters, as well as improvements in technique, have made EVT for MeVO stroke both 

possible and safe (23,25-27). Indeed, in a cross-sectional, multinational survey, the majority of 

physicians queried indicated that they would proceed directly to EVT for a variety of MeVO 

case scenarios (28). A randomized clinical trial is warranted to confirm these findings and to 

establish EVT for MeVO stroke as a standard of care, particularly due to the fact that the current 

standard, intravenous alteplase, results in approximately one-third of MeVO patients being 

dependent at the 90-day follow up (29). To this end, validated imaging tools for 1) detection 

of MeVOs and 2) appropriate selection of patients for EVT need to be developed. Parallel 

assessment of the three mCTA phases has previously been shown to improve MeVO detection 

when compared to single-phase CTA (30,31). This pilot study shows that mCTA-derived tissue 
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maps also allow for feasible detection of MeVOs in most cases. In the instances that a MeVO 

was misclassified, it was most often due to interpretation of the occlusion being an LVO; in no 

case was an occlusion completely missed, which has important implications for clinical 

practice.  

 Volumetric analyses showed a mean difference in predicted infarct volume of 4.8 ml 

when comparing mCTA and CTP maps, with a modest CCC of 0.65 and an ICC of 0.67. This 

difference decreased to less than 2 ml when stratifying the cohort according to successful 

versus non-successful reperfusion. Because CTP and mCTA employ similar imaging 

techniques, they can both be used to predict tissue fate on a voxel-by-voxel basis with good 

agreement, despite differences in temporal resolution. Furthermore, the differences between 

mCTA-based predicted final infarct volume and “true” (expert contoured) final infarct volumes 

on follow up was less than that which was predicted using CTP-derived maps, with a modest 

CCC and ICC of 0.55 and 0.58, respectively. Both CTP and mCTA predicted final infarct 

volumes were underestimated, regardless of reperfusion status. A previous study showed that 

Tmax-based prediction of final infarct volumes tended to be underestimated in patients without 

early recanalization, which could at least partially explain these results (32). 

 The overall spatial agreement between CTP and mCTA predicted infarct volumes was 

moderate, with a DSC 38.5%. The same was true between mCTA predicted follow-up infarct 

volume and measured infarct volume (DSC = 23.5%) and CTP predicted follow-up infarct 

volume and measured infarct volume (DSC = 32.5%). This is in line with a previous study (14) 

and likely at least partially due to continued infarct growth, which can occur even in cases of 

successful reperfusion. Indeed, spatial agreement was worse in the non-reperfused group, 

probably due to infarct growth, which biases the DSC. Furthermore, accurate quantification of 

irreversibly damaged versus salvageable tissue is difficult and likely influenced by multiple 

pathophysiological processes (e.g., cerebral autoregulation, collateral status, etc.). Another 

factor contributing to low spatial agreement could be the co-registration of different imaging 

modalities, e.g., overlaying DWI segmentations from follow-up MRI studies onto baseline CT 

(33).  

This study has several limitations. First, the current models were derived using only 

imaging-based information; incorporating clinical parameters (e.g., time from onset, patient 

history, etc.) may increase the prediction accuracy (34). Second, accurate measurement of final 

infarct volume is challenging, with a multitude of factors such as modality, time from onset to 

imaging and reperfusion, collateral status, tissue tolerance to ischemia, and infarct location 

likely influencing the results (18,34,35). Third, although the mCTA models have now been 
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tested in patients with both LVOs and MeVOs, their applicability needs to be expanded to 

include more diverse cases (e.g., stroke mimics, small vessel occlusions) to further increase 

accuracy. Similarly, although the patient collective was from a multicenter study, testing of the 

models should be performed in external, larger, and more diverse datasets, a necessary step 

before implementing our results into clinical practice. 

 

6.5 CONCLUSION 

mCTA-derived tissue maps can be used to accurately detect MeVO stroke and automatically 

predict tissue fate with similar accuracy to CTP imaging. Thus, mCTA-derived tissue maps 

could be used as for patient selection in a randomized MeVO EVT trial as well as in daily 

clinical practice, particularly in centers in which CTP is not available. 
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7. Chapter 7 – Results summary 

 

The main aim of this thesis was to investigate and evaluate possible further utilizations of CT 

imaging modalities in acute stroke care. Several practical implications can be drawn from the 

finding reported in this thesis. 

 

First, we showed in Chapter 2 that collateral grading evaluated on the multiphase CTA 

correlates with increasing perfusion lesion volumes automatically derived from CTP. In the 

author’s opinion these findings supports the paradigm that CTP is not necessary in patients 

presenting during the first 6 hours from the symptom onset while the median volume of the 

ischemic core remained relatively small even in the patients with poor collaterals. Moreover, 

the reported values of perfusion lesion volumes might be used as an estimate of the probable 

ischemic core volume and severely hypoperfused tissue based on the collateral grade on 

mCTA, which can be easily implemented without any additional technical requirements and 

thus can be an attractive tool in smaller hospitals and places where CTP is not available. The 

validation of these results should be performed on a large multicentre dataset. 

 

It was demonstrated in Chapter 3 that the early ischemic changes can be assessed with higher 

accuracy on CTP maps (specifically on CBF<30% and Tmax >10s) compared to the expert 

reading on NCCT. Despite the automatic software analysis of early ischemic changes on NCTT 

showed the lowest accuracy and sensitivity, its accuracy of 0.76 was comparable with the 

expert consensus reading and can still be considered as good. In author’s opinion, this finding 

encourages the use of automatic software analysis in clinical practice especially by less 

experienced readers (e.g. residents on-call) or clinicians in primary stroke care centres to fasten 

the AIS patients triage and prevent any delays in treatment initiation. The author of the thesis 

was involved in the implementation of use of the automatic software tools (RAPID-IA and e-

ASPECTS Brainomix). 

 

Results reported in Chapter 4 demonstrating the high accuracy of the automatic anterior LVO 

detection using the machine learning based software tool supports the generalizability of the 

software’s use in routine clinical practice. Although the tested version of the software tool was 

intended only for a detection of LVO in the anterior circulation, it provided a solid baseline for 

further software development to identify all intracranial occlusion (i.e. distally located 
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occlusions and occlusion in the posterior territory). Again, the findings of this study further 

encourages the use automatic software tools in acute stroke care to quickly and accurately 

detecting patients with LVO who may likely require immediate medical attention and benefit 

from timely treatment. The further software development shall be focused on detection of all 

intracranial occlusion including MeVOs and occlusions in the vertebrobasilar territory. 

Moreover, studies evaluating the software performance on the real world data in a prospective 

manner are warranted. The author of this thesis was involved in the development and evaluation 

of the StrokeSENS automatic software tools.  

 

The novel time-variant (color-coded) mCTA display format was evaluated in Chapter 5. We 

showed that the collateral extent assessment on time-variant mCTA maps improved prediction 

of good outcome and had similar value in follow-up infarct volume prediction compared to 

conventional mCTA collateral grading. While the interpretation of collateral status on mCTA 

requires some degree of experience and suffers from some degree of inter-rater variability, the 

time-variant mCTA display format represents a suitable alternative to facilitate interpretation 

of the collateral status. 

 

Another novel machine learning based application of mCTA was evaluated in Chapter 6. 

mCTA-derived tissue maps as an alternative to CTP maps predicting ischemic core and 

penumbra. It the presented study, we showed that mCTA-derived tissue maps can be used to 

accurately detect MeVO stroke which is believed to be the next frontier for EVT. We also 

demonstrated that tissue fate can be predicted with similar accuracy to CTP maps, with 

moderate spatial agreement between mCTA and CTP. The clinical implication of these findings 

lies in the possibility of using mCTA-derived tissue maps to detect MeVO EVT candidates and 

estimate the benefit of treatment (volume of potentially salvageable tissue) particularly in 

centers in which CTP is not available. Further research could be focused on validation of these 

results on a large prospectively collected dataset. 
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