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Abstract

This Thesis reports an experimental investigation of a flow of He II thermally induced by

a fountain pump through vertical channels of square cross-section with ends blocked by

sintered silver superleaks and its decay. We confirm the existence of a weakly tempera-

ture dependent critical velocity vI

cr
of order 1 cm/s, which does not scale with the channel

size and is therefore an intrinsic property of the self-sustained vortex tangle of vortex line

density, L, measured by the second sound attenuation. In addition to the previously re-

ported turbulent A-state characterized by L1/2 = γ(T )(v − vI

cr
) we have discovered a new

B-state characterized by L = β(v−vII

cr
), where β seems temperature independent. It poses

an important question why the quadratic generation mechanism, so well established in

thermal counterflow, ceases to work. We offer a phenomenological model assuming that

in the B-state the superflow matches the classical parabolic profile, with a finite, temper-

ature dependent slip velocity vII

cr
of order few cm/s and that a confined viscous normal

fluid flow of toroidal form is induced inside the channel due to the mutual friction force.

When the fountain pump is switched off, after an initial decay, a confined quasi-viscous

flow of a quasi-single component fluid with effective kinematic viscosity νeff (T ) estab-

lishes, giving rise to the observed exponential decay. The corresponding values of νeff (T )

are calculated and presented. The Thesis also presents the temperature dependence of the

effective kinematic viscosity of turbulent He II νeff (T ) deduced from second sound atten-

uation data using the late stage of decay of thermally induced counterflow He II turbu-

lence in two channels of square cross-section. It is shown that values of νeff (T ) calculated

in this Thesis agree not only with with each other, but also with the theoretical model of

Vinen and Niemela and published data of νeff (T ) calculated based on the Oregon exper-

iments on the decaying grid generated He II turbulence and the recent Manchester spin

down He II experiments.
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Chapter 1

Introduction

. . . doue la turbolenza dellacqua sigenera

doue la turbolenza dellcq simantiene plugno

doue la turbolenza dellacqua siposa . . .

From daily experience we know that liquid can move smoothly (quietly) or the stream

has properties of unpredictability and disorder. The first type of flow is called laminar,

the other one turbulent. Most flows we meet in Nature are turbulent. A lot of people

associate turbulence mainly with huge eddies affecting planes, but fluid turbulence is

much more common phenomenon. It surrounds us every minute wherever we are. It

shows, for example, in the flow of water from a common faucet and in the flow over the

hull of a submarine, at moving great air masses or at mixing fuel components in a jet

engine.

The first scientific document of turbulence observation is the Leonardo da Vinci’s

manuscript (approximately 1507 A.D.). He tried to understand the principles of liquid

motion in the Arno River and named the phenomenon he observed in whirl flow ”la

turbolenza”. One of the comments which he wrote in his notes reads as follows:

”. . . doue la turbolenza dellacqua sigenera doue la turbolenza dellcq simantiene plugno doue la

turbolenza dellacqua siposa . . . ”1

This note formulates three main questions of turbulent flows. In this Thesis, we

mainly concentrate on last two problems.

Although the problem of turbulence was formulated in the beginning of 16th century,

some elements of real mathematically sound turbulent theory appeared only in the end

of 19th century, thanks to the famous work of Osborne Reynolds. It is based on several

1”. . . where turbulence of water is raised where turbulence of water is kept for a long time where turbulence of

water fades . . . ”
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Introduction

Fig. 1.1: Leonardo, Old Man with Water Studies, c. 1513.

aspects of da Vinci’s observations. Such unusually long empty period is connected with

the complexity of solving nonlinear and multiscale problems involved in turbulent fluid

flows.

There are only few basic fluid dynamical problems, such as slow flow of water in a

pipe or laminar flow around various obstacles, which can be resolved analytically, based

on the Navier-Stokes equation (equation of motion for a viscous fluid). Despite the fact

that the Navier-Stokes equation has, in principle, a deterministic solution for a turbulent

flow and can therefore be solved numerically, nonlinearity of the problem makes nu-

merical solution hard to obtain, and for highly turbulent flows the task is in most cases

impossible even for today’s supercomputers.

Development of statistical physics allowed to apply another approach. Andrey Niko-

laevich Kolmogorov was first who applied statistical approach to the turbulence problem,

in his theory known in the turbulent community as K-41. But this is not the end of the

story. Development of new parts of mathematical physics, such as fractal geometry and

deterministic chaos, lead to yet another approaches to the problem of fluid turbulence.

The results obtained in frame of these approaches are frequently concerned with dif-

ferent aspects of the problem and answer particular questions arising in qualitatively

different experimental situations. Every approach was considered to their supporters as

a uniquely acceptable, so they were developed in parallel and practically independently.

2



Introduction

Only during last 20 years or so there is a tendency to outline direction towards a uniform

theory of turbulence.

This Thesis is devoted to a special branch of turbulence – quantum turbulence – taking

place in quantum liquids. It is well known that liquid helium displays such an extraordi-

nary quantum phenomenon as superfluidity, when a part of the fluid loses its viscosity

at low enough temperature. A flow of superfluid helium differs from that of a classical

viscous fluid in three important respects, all related to quantum effects: it exhibits two-

fluid behavior; the superfluid component can flow without viscous dissipation; and the

flow of the superfluid component is subject to severe quantum restrictions.

There are two stable isotopes of helium: 3He and 4He. Superfluid 3He exists in several

superfluid phases with numerous types of topological defects. It represents an extremely

pure system which allows, for example, to create a single quantized vortex and to inves-

tigate its dynamics or multiplication. But such type of experiment needs a complicated

technique connected with achieving of ultra low temperature of order 1 mK.

Other possibility is to investigate quantum turbulence in superfluid 4He, where we do

not need such a low temperature and an extremely sensitive experimental tool - second

sound attenuation - can be used. The existence of a ”virgin” sample, i.e., without any

quantized vortex line is hardly possible here, as any solid wall ought to be considered

as rough on the scale of the size of the vortex core, and, consequently, remnant vortex

lines are always present in any macroscopic sample of superfluid 4He. On the other

hand, there are many experiments with superfluid 4He where quantum turbulence can

be created by various thermal or mechanical means, which, we believe, ought to provide

with valuable experimental data leading to better understanding of the phenomenon of

fluid turbulence in general. This is main motivation for the work reported in this Thesis

devoted to experimental investigation of thermally induced quantum turbulence in He II.

3



Chapter 2

Theoretical Background

The thorough and long-lasting investigation of physical properties of liquid helium be-

gun since helium was first liquefied by Heike Kamerlingh Onnes in 1908. During those

100 years, many researchers worked on various aspects of behavior of this extraordinary

liquid. In particular, turbulence in helium – the topic of this Thesis – has been an object of

study for more than half a Century. The aim of the Theoretical background is to describe

those properties, which, according to my mind, are important for understanding of our

experiments.

2.1 Selected Physical Properties of He II

Below Tλ = 2.172 K liquid 4He becomes superfluid and is referred to as He II – a quantum

fluid that exhibits extraordinary flow properties [1, 2, 3]. They can largely be understood

within a phenomenological two fluid model, where, in the limit of low flow velocities,

He II is described as consisting of two interpenetrating fluids of independent velocity

fields. One is the inviscid superfluid of density ρs, the other one the normal fluid of

density ρn and dynamic viscosity η; the total density is therefore

ρ = ρs + ρn . (2.1)

The mass flux of fluid ~j is given by

~j = ρs ~vs + ρn ~vn . (2.2)

The total mass is conserved, thus we can write the continuity equation in the form

∂ρ

∂t
= −~∇ ·~j . (2.3)

4
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Fig. 2.1: The normal and superfluid density

ratios vs temperature.

Fig. 2.2: Temperature dependence of the

second sound velocity.

The normal and superfluid density ratios (see Fig. 2.1) were first measured in the

famous Andronikashvili experiment [2]. The superfluid has neither viscosity nor entropy,

thus the entire heat content of He II is carried by the normal component. This simplified

picture is reflected by the Landau two-fluid model [3].

In order to avoid unnecessary complexity, we first consider the limit of low flow veloc-

ities: the superfluid velocity vs is much smaller than that at which dissipation takes place;

and the velocity of the normal component vn is much smaller than the value at which tur-

bulence appears. According to Landau, the equations of motion for the superfluid and

for the normal fluid can be written as

ρs

{

∂~vs

∂t
+ (~vs · ∇)~vs

}

= −ρs

ρ
∇p + ρsσ∇T , (2.4)

ρn

{

∂~vn

∂t
+ (~vn · ∇)~vn

}

= −ρn

ρ
∇p − ρsσ∇T + ηn∇2~vn . (2.5)

These equations are of Euler and Navier-Stokes type, but with the addition of thermal

gradient terms. These equations are valid as soon as vs and vn are sufficiently small.

One important outcome of these equations is the prediction of second sound – a wave

described by temperature fluctuations rather than by density fluctuations as is the case

of the ordinary sound, also referred to as first sound. Expressions for the first and second

sound velocities derived from the equation of the continuity (Eq. 2.3) and from the two-

5



2.2 Quantum mechanical description of He II Theoretical Background

fluid equation (Eq. 2.4 and 2.5) read:

u2

1
=

(

∂p

∂ρ

)

σ

, (2.6)

u2

2
=

ρs

ρn

σ2

(

∂T

∂σ

)

p

, (2.7)

where p is the pressure and σ is the entropy per unit mass. The dependence of second

sound velocity on temperature is presented in Fig. 2.2. The second sound can be consid-

ered as an antiphase motion of the two fluids, thus total flow of matter at every moment

stays constant. Standing waves of second sound can be generated by a suitable transmit-

ter (e.g., in a form of an electrical heater) and detected, e.g., by a resistance thermometer.

Other possibility is to use a pair of porous membranes fixed opposite each other. The

transducer membrane is oscillating and pushing the normal component (which, due to

finite viscosity, cannot penetrate through the pores), while the inviscid superfluid pen-

etrates freely. This leads to antiphase motion of the two fluids and, as a result, second

sound waves become generated. This method will be discussed in detail in Chapter 3.1.1

2.2 Quantum mechanical description of He II

From the quantum mechanical point of view an ansamble of 4He atoms is governed by

the Bose-Einstein statistics, as spin of the 4He atom is zero. It is well known that in the

low temperature limit a macroscopic number of particles of an ideal Bose–gas occupy the

same quantum state on the lowest energy level. This phenomenon occurring in the 3D

momentum space is known as Bose–Einstein condensation. Let us assume that liquid
4He below the λ–point contains condensate. In steady state it can be described by the

macroscopic wave function:

Ψ(r) = Ψ0exp[iS(r)] , (2.8)

where Ψ0 is its amplitude and S(r) is the macroscopic phase. The canonical momentum

of the condensate can be expressed as:

~p = h̄∇S .

It can be interpreted as the momentum per one particle of the superfluid with the super-

fluid velocity

~vs =
h̄

m4

∇S ,

6



2.3 Quantized vortices in He II and their detection Theoretical Background

where m4 is the mass of 4He. As one can see, the superfluid velocity is proportional to

the gradient of the phase. It follows that the curl of superfluid velocity:

curl ~vs = 0 . (2.9)

These hydrodynamic properties of He II clearly demonstrate that superfluidity can be

interpreted as quantum mechanical behavior on macroscopic scale.

2.3 Quantized vortices in He II and their detection

Equation 2.9 corresponds to the condition with no quantized vortices in the superfluid.

However, it is possible to prove that circulation in a multiply connected region1, defined

as

χ =
∮

~vsd~l =
h̄

m4

∮

∇Sd~l

is quantised. The phase can be zero or plus/minus any integer times 2π, while the value

of the superfluid macroscopic wave function remains single-valued. Thus the quantiza-

tion condition for circulation yields

χ = n
h̄

m4

= ±nκ ,

where h̄ is the Planck constant, n = 0, 1, 2, ... and

κ =
h̄

m4

. (2.10)

The quantity κ is known as the quantum of circulation and in 4He equals to 9.997 ×
10−8 m2/s.

The core of the vortex of size of order the healing length ξ ≈ 0.1 nm does not contain

superfluid component and inside it curl ~vs 6= 0. A series of concentric circular streamlines

are surrounding the vortex core. Superfluid velocity decreases from the vortex axis as

vs ∝ r−1, where r is the distance from the axis.

The presence of vortices in He II leads to interaction between the normal fluid and the

superfluid known as the mutual friction force [4, 5]. The microscopic origin of the mutual

friction force is scattering of the normal fluid made up by the elementary excitations –

photons and rotons – off the vortex core. Let us mention in passing that the first unequiv-

ocal proof of existence of quantized vortices and of the magnitude of their circulation

quantum was obtained indirectly, using the vibrating wire technique, by Vinen [6].

1An example of multiply connection region is the space between two coaxial cylinders filled with He II.

7
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4 mm

Normal He I, T > Tλ Superfluid He II, T < Tλ

4 mm

Normal He I, T > Tλ Superfluid He II, T < Tλ

Fig. 2.3: The photograph of small hydrogen-deuterium “snowballs” in normal liquid He I

(left) and in superfluid He II, where they are attracted by the Magnus force to the cores of

quantized vortices and decorate them. Quantized vortices appear spontaneously when

the liquid is cooled through the superfluid transition.

The most direct approach to prove the existence of quantized vortices is straight visu-

alization of them, using the sophisticated technique of particle image velocimetry (PIV),

where as working particles small hydrogen-deuterium “snowballs” can be used. This

approach, however, proved difficult to realize and it is only very recently that successful

results such as shown in Fig. 2.3 have been obtained [7].

There are several other methods how one can detect quantized vortices. Both positive

and negative [8] ions can serve as probes to detect them, and indeed the ion method was

first to take photographs of the geometry of the vortex lattice appearing in the rotating

bucket [9].

In this Thesis, we concentrate on detection of quantized vortices in He II using so

called second sound attenuation technique. Second sound technique was used since the

very beginning of this research, starting with pioneering experiments of Hall and Vinen

with rotating containers of He II [4, 5]. It was later discovered that, at constant angular

velocity, the basic state of rotation of the superfluid component of He II is represented

by regular configuration of vortex lines, which are parallel to the axis of rotation. In the

experiment, when second sound waves were propagating in the direction along vortex

lines, no perceptible excess attenuation of second sound was detected. On the other hand,

it was shown that the excess attenuation of second sound, αL, propagating in the direction

8



2.3 Quantized vortices in He II and their detection Theoretical Background

perpendicular to the rotation axis, due to the presence of quantized vortices becomes

αL =
BΩ

2u2

, (2.11)

where Ω is the angular velocity of the container, u2 is the second sound velocity and B is

a phenomenological parameter described below. Later Eq. 2.11 was derived phenomeno-

logically by Bekarevich and Khalatnikov [10]. This extra attenuation results from the

scattering of the elementary excitations, which make up the normal fluid, by vortex lines.

Let us discuss the case of rotating bucket of He II in some more detail. In solid body

rotation the vorticity of the normal viscous fluid ωn ought to be written in a usual way, as

~ωn = 2~Ω (2.12)

Since the superfluid mimics solid body rotation by creation of a lattice of rectilinear quan-

tized vortices aligned in the direction of the rotation axis, the vorticity ωs, on average, is

given by

〈ωs〉 = 2Ω = κL , (2.13)

where the quantity L, called vortex line density, is the total length of the vortex line per

unit volume.

Let us consider a simple rotating one-dimensional second sound resonator (second

sound propagating normally to the rotation axis), where the second sound resonance can

be considered as an infinite series of reflected second sound waves. The extra attenuation,

[11] due to rectilinear quantized vortices that are created during rotation, becomes

αL =
BκL

4u2

=
π∆0

u2

(

a0

a
− 1

)

, (2.14)

where a and a0 are the amplitudes of the second sound standing wave resonance with

and without vortices present, respectively.

If second sound propagates at arbitrary angle with respect to the direction of vortex

lines, the phenomenological mutual friction parameter B have to be replaced in Eq. 2.11

by Bsin2(Θ) + B′′cos2(Θ), where Θ is the angle between the direction of the quantized

vorticity and the direction of second sound propagation. The second term, containing

another (nondissipative) phenomenological mutual friction parameter B′′ is small and

except very close to the lambda temperature can be neglected, resulting in

αL =
Bsin2(Θ)Ω

2u2

(2.15)

This so-called ”sine squared law” has been confirmed experimentally by measuring sec-

ond sound signals in a container filled with superfluid helium held at tilted angles with

9



2.4 Quantum Turbulence Theoretical Background

respect to the axis of the rotation cryostat [12, 13]. We shall describe later how the second

sound detection technique can be used in investigations of quantum turbulence in He II.

2.4 Quantum Turbulence

Turbulence in the superfluid component of 4He was first mentioned as a theoretical pos-

sibility by Feynman [14], who suggested that it takes the form of a random tangle of

quantized vortex lines. Quantum turbulence, a form of turbulence observed in super-

fluids, differs from that in classical fluids for three reasons: except at the lowest tem-

peratures, superfluids exhibit two-fluid behaviour; the superfluid component can flow

without dissipation; and superflow is subject to severe quantum restrictions, so that ro-

tational motion can exist only through the presence of quantized vortex lines. In spite of

these differences there is evidence that quantum turbulence can exhibit features similar

to those observed in its classical counterpart, especially on large length scales.

Quantum turbulence can be probably most generally defined as a way of motion of

a quantum fluid that involves dynamics of a tangle of quantized vortices. It can exist in

various quantum fluids - besides He II in superfluid phases of 3He, in 3He - 4He mixtures,

in Bose-condensates of alkali atoms or perhaps even in neutron stars. Experimental in-

vestigations have been so far restricted to He II and the fermionic superfluid 3He-B. As

atoms of 3He are fermions and Cooper pairs of 3He atoms have spin S = 1, nuclear

magnetic resonance technique therefore serves as a powerful tool of its investigation and

quantum turbulence in 3He can be detected and investigated by an NMR spectrometer

[15]. Additionally, thanks again to the fermionic nature of superfluid 3He-B, quantum

turbulence can be probed by vibrating wires [16] or piezoelectric quartz tuning forks

[17] using so called Andreev scattering technique. Although the author of this Thesis

spent three months visiting Low Temperature Laboratory, Helsinki University of Tech-

nology in Finland and actively participated in experimental 3He-B quantum turbulence

research, considerations of quantum turbulence in superfluid phases of 3He lays beyond

the scope of this Thesis. Leaving aside also other exotic possibilities of quantum turbu-

lence mentioned above, unless especially mentioned, by quantum turbulence we shall

mean turbulence in the superfluid phase of the common isotope of helium, 4He.

Turbulence in He II can be created classically, i.e., in a same way as it is usually done in

classical viscous fluids. Examples are an impulsive spin-down of a rotating bucket [8], or

towing a grid of bars through a stationary sample of He II in a channel [18, 11, 19]. These

types of turbulence in He II are in many ways analogous with the classical turbulence in

10



2.4 Quantum Turbulence Theoretical Background

an ordinary viscous liquid.

Another possibility is to create He II turbulence thermally, which, due to the two-

fluid behavior, has no direct classical analog in conventional hydrodynamics. The prime

examples are thermal counterflow [20, 21, 22] and pure superflow in a flow channel [23,

24, 25]. In this Thesis, we shall mainly consider He II turbulence which is thermally

driven.

2.4.1 Thermal counterflow in He II

The two fluid equations 2.4 and 2.5 explain the existence of a peculiar flow of He II called

counterflow – under influence of applied heat the superfluid moves to the heat source,

becomes converted into the normal fluid which flows against the approaching superfluid

in such a way that the total density of He II stays unchanged [1, 2].

Thermal counterflow can be easily set up by applying a voltage to a resistor (heater)

located at the closed end of a channel open to the helium bath at the other end. The

heat flux is carried away from the heater by the normal fluid alone, and, by conserva-

tion of mass, a superfluid current arises in the opposite direction. In this way a relative

(counterflow) velocity ~vns = ~vn − ~vs is created along the channel which is proportional to

the applied heat flux, q̇ = Q̇/A, where A is the cross–section of the flow channel, which

for simplicity we assume constant. Assuming that the power Q̇ applied at the heater is

used to convert superfluid into normal fluid, the velocity of the outgoing normal fluid

is vn = q̇/(STρ), where S is the specific entropy of He II. The counterflow velocity vns is

then easily established from the condition ρsvs + ρnvn = 0.

This simple physical picture holds only at low counterflow velocities. Already at rela-

tively small values of vns of order 1 cm/s the flow and the heat transfer becomes affected

by quantum turbulence – due to the appearance of an apparently disordered tangle of su-

perfluid vortex lines. Its intensity is represented by the vortex line density L - total length

of vortex lines in a unit volume. The steady state counterflow He II turbulence and its

decay has been a subject of investigation by many authors [20, 21, 22]. A phenomenolog-

ical model for description of vortex dynamics based on the concept of a random vortex

tangle of line density L was introduced by Vinen [20, 26] and backed up by Schwarz [27]

using rather general arguments tracing back to the equation of vortex motion in local

approximation. The phenomenological Vinen equation (its slightly simplified form, but

adequate for our purpose here) reads:

∂L

∂t
=

ρnB

2ρ
χ1vnsL

3/2 − κ

2π
χ2L

2 , (2.16)

11
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Fig. 2.4: The square-root of the vortex

line density L0 versus the relative veloc-

ity V (see Eq. 2.17) plotted in dimen-

sionless form.

Fig. 2.5: The square-root of the vortex

line density as a function of counterflow

velocity at 1.7 K.

where vns is the counterflow velocity, χ1 and χ2 are undetermined dimensionless con-

stants and B is the temperature dependent (and weakly frequency dependent) mutual

friction coefficient, tabulated in [28]. The first term on the right hand side (RHS) de-

scribes production of the turbulence; the last term on the RHS its decay. The steady state

solution of the Eq. 2.16 obtained by setting ∂L/∂t to zero is

L0 = γ2v2

ns , (2.17)

where

γ =
πBρnχ1

ρκχ2

. (2.18)

Thus the vortex line density is proportional to the square of the counterflow velocity, and

the steady state value determines the ratio of the phenomenological constants χ1 and χ2.

The principle Vinen’ result based on the second sound steady state measurements in a

wide channel is shown in Fig. 2.4. This experiment demonstrated that the mutual friction

force is zero below some critical velocity and increases when the flow velocity exceeds it.

Thus below the critical velocity the flow of the superfluid component is potential and the

flow of the normal component is always laminar. Dissipation is provided by the normal

fluid viscosity only. This result was later confirmed also in our laboratory in experiments

on steady-state and decaying counterflow (see Fig. 2.5).

12



2.4 Quantum Turbulence Theoretical Background

Following the Vinen’ pioneering experiments [20, 26], the counterflow turbulence was

subsequently experimentally investigated by many authors [21, 20, 26, 29, 30, 31]. Tough

with co-authors investigated thermally induced counterflow turbulence in the channel of

small cross-section [21]. Measuring the temperature difference between the ends of the

flow tube, his group discovered two turbulent states denoted as T I and T II. Above some

second critical counterflow velocity the behavior of vortex line density changes. The T I

state agrees with the homogeneous theory of Schwarz [27] only qualitatively while for

the T II state this theory works rather well. It was claimed by Tough that the T I state

might not be homogeneous and isotropic.

2.4.2 Pure superflow in He II

Tough and coworkers investigated pure superflow with the same flow tube. Their method

uses a superleak, which in a clever way prevents the normal fluid flow through the tube.

The term pure superflow thus means the net flow of the superfluid component trough

the pipe only. Surprisingly, only one turbulent state [24] was found, as opposed to the

two in thermal counterflow. The result of both complementary experiments presented in

term of vortex line density is shown in Fig. 2.6.

Fig. 2.6: The vortex line density (in di-

mensionless form) for thermal counter-

flow and pure superflow as a function of

the relative velocity.
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Fig. 2.7: The dimensionless critical su-

perfluid velocity measured at various

temperatures. The temperature depen-

dence determined by the Schwarz model

is shown by the solid line.

The physical properties of pure superflow can be described by vortex line density L

13
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of the form given by Eq. 2.17. The early experimental observations of pure superflow

both in cylindrical (id = 0.13 mm) and rectangular (0.057 × 0.057 mm2) cross–section

channels did not display any evidence of critical velocity [23, 32, 25]. Only later careful

experiments in a circular (id = 0.13 mm) tube confirmed the finite nearly temperature in-

dependent value vI
cr, of about 1.5 cm/s [33], which was defined as the minimum velocity

at which any dissipation was observed. Figure 2.7 shows temperature dependence of

critical velocity obtained from Tough’s experiments and Schwarz numerical calculations

in a dimensionless form of ”superfluid Reynolds number” Res = vI
crd/κ. The dimension-

less form was chosen because it was assumed, in analogy with experimental results on

thermal counterflow, that the critical velocity scales with the size of the channel, d.

2.4.3 Detection of Quantum turbulence in He II Using Second Sound

We have shown above how the second sound attenuation can be used to detect the array

of quantized vortices, depending on the angle between the second sound propagation

and the direction of the detected quantized vorticity, leading to the “sine squared” law

[12, 13]. Let us generalize this method for detection of quantum turbulence., following

the work [34, 35]

Let us consider a strictly homogeneous quantum turbulence of vortex line density

L in a channel. The generated second sound wave propagates across this rectangular

channel of finite dimension, normally to the axis and the channel, which acts therefore

as a one-dimensional second sound resonator. In view of forthcoming discussion of our

results, it is useful to consider two limiting cases: (i) the tangle is fully isotropic; (ii) the

tangle is polarized in such a way that all quantized vortices lie in planes perpendicular

to the vector of the mean velocity flow, coincident with the axis of the channel. We shall

later show that the latter case is possible when He II flows through a channel, it has a

velocity flow profile which leads to a (partial) polarization of quantized vortex lines in

such planes. Assuming now that all vortices lie in planes perpendicular to the direction

of the flow, we have to take the average of sin2(Θ) over the unit disc:

〈

sin2(Θ)
〉

=
1

2
;

where 〈 〉 denotes the average over the unit disc. The second sound sensor therefore

detects:

Leff =
L

2
.

In the former case, when vortex lines is assumed fully isotropic, we have to average over

14
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the unit sphere:
〈

sin2(Θ)
〉

=
2

3
;

here 〈 〉 denotes the average over the unit sphere and the sensor will detect:

Leff =
2L

3
.

Thus when the vortex tangle is considered as homogeneous and isotropic, taking into

account the “sine squared: law, Eq. 2.14, ought to be rewritten as:

L =
6π∆0

Bκ

(

a0

a
− 1

)

. (2.19)

We shall use this expression when deducing the vortex line density from our second

sound data. It is easy to write the corresponding formula for the vortex line density for

the fully polarized tangle.

It follows from this analysis that when the degree of polarization of the vortex tangle

is not known, this method provides information on the vortex line density with the rel-

ative accuracy up to about 1/8; moreover, when the degree of polarization of the tangle

changes (e.g., during the decay of turbulence), the method would spuriously indicate it

as a change in the vortex line density.

2.5 Classical Turbulence

We have already mentioned that under some circumstances turbulence in He II displays

features similar to those of classical turbulence in viscous fluids. It is useful therefore to

remind some of its main features. A particularly simple but important form of classical

turbulence is produced by steady flow through a grid.

2.5.1 Classical Grid Turbulence

At a significant distance downstream from the grid the turbulence is at least approxi-

mately homogeneous and isotropic (HIT), and the development of an understanding of

this simple form of turbulence has been important in contributing to our general under-

standing of turbulent flow [36, 37]. Jets of fluid emerging from the grid are unstable and

break up into turbulent eddies of various sizes. The turbulent wakes formed behind each

element of the grid merge at a distance from the grid much greater than the mesh of the

grid, M . Eddies of various sizes are coupled and turbulent energy flows without dissi-

pation (as long as the Reynolds number is large) from the large scale eddies (size D) into
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smaller eddies (size d). This process, known as Richardson cascade, continues until small

eddies with Reynolds numbers of order unity dissipate the turbulent energy by viscosity.

The range of length scales over which there is negligible dissipation is called the inertial

range.

The important statistical property of HIT is the energy spectrum, E(k), such that the

average turbulent energy per unit mass in the range of wavenumbers dk is E(k)dk. In-

side the fully developed cascade 2π/D ≪ k ≪ 2π/d that is in the inertial range, the

spectrum can depend on only k and the energy decay rate ε = −dE/dt. It follows from a

dimensional argument that E(k) must have the Kolmogorov form

E(k) = Cε2/3k−5/3 , (2.20)

where C is a dimensionless quantity known as the Kolmogorov constant. In fully-developed

turbulence most of the energy is concentrated in the largest (energy containing) eddies.

Examination of the form of the Navier-Stokes equation shows that the non-linear cou-

pling will cause a transfer of energy from these energy-containing eddies in a time of

order D/U (the turnover time), where U be the characteristic velocity associated with

these eddies. Thus the rate at which the energy containing eddies lose energy per unit

mass ε ≈ U3/D. This energy is being dissipated at large wavenumbers by viscosity, and

this dissipation rate can be shown to be

ε = −dE

dt
= νω2 (2.21)

where ν stands for the kinematic viscosity and ~ω = curl
→

v is the vorticity in the flow.

So far our considerations on classical turbulence assumed its steady-state. However,

one of cornerstones in investigation of turbulence is understanding how does it decay.

The investigation of decaying turbulence is indeed an interesting and still partly open

problem of fluid dynamics. Studies of the decay can help to understand the nature of the

phenomenon of fluid turbulence in general. It is not our aim to describe all the complexity

of decaying classical turbulence; we shall focus on one particular model that later will

become relevant to our experiments on decaying quantum turbulence.

2.5.2 Classical Spectral Decay Model

Let us introduce a simplified version (for full version, see [38]) of a classical spectral decay

model of decaying HIT. It assumes that at early times we have a generally accepted form
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of the 3D energy spectrum

E(k) = 0 ; k < 2π/D (2.22)

E(k) = Akm ; m = 2 ; 2π/D ≤ k1(t) (2.23)

E(k) = Cε2/3k−5/3 ; k2(t) ≤ k ≤ γ(ε/ν3)1/4 = 2πηeff (2.24)

E(k) = 0 ; k > ηeff (2.25)

which reflects the fact that eddies larger than the size of the turbulence box cannot exist.

The high wave number exponential tail is approximated by a sharp cutoff at the effective

Kolmogorov dissipation scale ηeff by introducing the dimensionless factor γ of order

unity. In the vicinity of the energy containing length scale ℓe = 2π/ke(t), where k1(t) <

ke(t) < k2(t), the spectral energy density displays a broad maximum whose shape does

not have to be exactly specified. Evaluating the total turbulent energy by integrating the

3D spectrum over all k leads to a differential equation for decaying turbulent energy and

applying ε = νω2 leads to a differential equation for decaying vorticity, the quantity we

are primarily interested here.

At the early decay the spectrum stays self-similar. For D ≫ ℓe ≫ ηeff the decay is

E(t + tvo1) = E(τ) ∝ τ−2
m+1

m+3 ; ℓe ∝ τ
2

m+3 ; ω ∝ τ
3m+5

2m+6 . (2.26)

Here tvo1 is the virtual origin time, when the decaying turbulent energy would have been

infinitely large. Assuming validity of the Saffman invariant (m = 2), we obtain the first

regime for decaying vorticity, ω ∝ τ−11/10.

As the turbulence decays further and ℓe ∝ τ 2/5 grows, the lowest physically significant

wave number becomes closer to the broad maximum around 2π/ℓe. The low wave num-

ber part of the spectrum can no longer be approximated as Akm with m = 2. Instead, it

can be characterized by an effective power that decreases as the turbulence decays, such

that 0 < m < 2. Formula 2.26 then shows that the decay rate slows down. As ℓe ap-

proaches D, m becomes effectively zero and we arrive at the second regime of the decay

ω ∝ τ−5/6.

At the saturation time, tsat, the vorticity reaches its saturation value, ωsat, and the

growth of ℓe is completed. Still neglecting the cutoff of the spectrum at ηeff , the universal

third regime is predicted as

ω(t + tvo2) = ω(τ) =

√
27D

2π

√

C3

ν
τ−3/2 (2.27)

with the different virtual origin time tvo2. This regime is universal in that no matter what

the starting level of turbulence was (providing it was high enough to neglect viscosity

corrections), the decaying system must sooner or later reach it.

17



2.5 Classical Turbulence Theoretical Background

So far we neglected a role of the high wave number cutoff of the energy spectrum at

ηeff . As the vorticity decays and the Kolmogorov scale grows, the relative importance of

this cutoff increases and a simple power cannot any longer describe the decay of vorticity.

It was shown by [18] that after saturation of the energy containing length scale by the size

of the turbulence box the decay of vorticity is more accurately described as

ω(τ) =
3ν

23γ

2π

D

2 tB
τ

3/2

cos3θ , (2.28)

where

cos2(3θ) = τ/τB (2.29)

and

τB =
16Cγ4/3

9ν

2π

D

2

. (2.30)

Naturally, for γ → ∞ expression 2.28 reduces to the simple power law 2.27. Formally, as

the vorticity decays, ηeff becomes the size of the turbulent box D and both the turbulent

energy and vorticity vanish. Close to this stage, however, applicability of the spectral

decay model is no longer justified.

This decay model has been successfully applied to a number of wind tunnel exper-

iments as well as to the decaying turbulence generated in water by an oscillating grid

by [39], where the effect of saturation the energy containing length scale is clearly seen.

Moreover, the validity of the model was confirmed by computer simulations of decaying

turbulence in a bounded domain [40].

2.5.3 Classically Generated He II Turbulence and its Decay

Interest in quantum turbulence greatly grew in the nineties of the last century, in view of

experiments where He II turbulence was generated classically. It was soon realized that

thanks to coupling of large normal and superfluid eddies by the mutual friction force,

classical and quantum turbulence (despite severe quantum-mechanical restrictions for

superflow outlined above) bear important similar features and that quantum turbulence

may help in deeper understanding of fluid turbulence in general.

Let us mention two experiments showing that classically generated He II turbulence

is very similar in its characteristics to classical turbulence in viscous fluids, despite the

two-fluid behavior of He II and quantization of circulation in its superfluid component.

The first one is the experiment of Maurer and Tabeling [41], which investigates turbu-

lence created between two counterrotating discs. In this experiment, fluctuations of the

pressure head in both He I and He II steady-state turbulence were monitored by a small
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sensitive pressure sensor, allowing evaluation of the frequency power spectra. Both in

He I and He II the results strongly suggest the existence of the three-dimensional energy

spectra containing an inertial range of scales of the classical Kolmogorov form Cε2/3k−5/3,

where k denotes the wave number and ε = −dE/dt is the energy decay rate. Moreover,

from measurements of the skewness factor of the velocity increments, the authors found

the value of the 3D Kolmogorov constant C ∼= 1.5, which corresponds to the accepted

value in classical turbulence [42].

The second one is the experiment on decaying quantum turbulence in He II generated

by the towed grid. Various modifications of it have been performed over years by a

Donnelly’s group of in Eugene, Oregon. The essential experimental results have been

published in a series of papers [43, 19, 18]. In these experiments, a grid was moved

at constant speed up to 2 m/s through a channel of 1 × 1 cm2 containing He II. The grid

creates turbulence in both the normal and the superfluid components. Under assumption

of homogeneity and isotropy, the measured excess attenuation of second sound provides

information about the density of vortex lines (and thus vorticity, see later) in a small fixed

region through which the grid had moved.

The figure 2.8 is composed in such a way that it displays all observed regimes of de-

caying vorticity in the grid generated He II turbulence. The early part of the vorticity

decay displays a power law with exponent -11/10 and later -5/6. After saturation of the

energy–containing length scale, typically over several orders of magnitude the decaying

vortex line density, L, closely follows the power law with exponent -3/2, represented by

the thick solid line. All the measured decay curves eventually closely follow this univer-

sal power laws behavior, in accord with the classical spectral decay model for decaying

homogeneous and isotropic turbulence in a finite channel. The very late decay can be

characterized as exponential one, of a form exp (−t/t0).

In order to compare the decay of classical grid turbulence and the measured decay of

L in the Oregon experiment, we have to discuss the role of quantized vortices in He II

turbulence. The simplest system to assimilate the role of quantized vortex lines is a ro-

tating bucket of He II. In steady state, the normal fluid is in solid body rotation. As was

mention in earlier the superfluid imitates solid body rotation and evolves to match the

vorticity of the normal fluid.

Similarly to how vortex lines align themselves in a rotating bucket, bundles of quan-

tized vortices align on the cores of normal fluid eddies. The superfluid vorticity is com-

parable to the vorticity of the normal fluid eddy and the effective fluid density is equal

to the total fluid density. In a turbulent flow there will be a complex tangle of vortices
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Fig. 2.8: The decaying vorticity multiplied by (t + t∗)3/2 = τ 3/2, measured at T = 1.65 K.

The early part of the decay displays power laws with exponents -11/10 and later -5/6,

as indicated by straight solid lines next to the data sets. The influence of growing Kol-

mogorov length scale is indicated by the difference from the horizontal direction i.e., -3/2

power law. The inset shows the late decay which can be characterized as exponential, of

a form exp(−t/t0) with t0 = 29 s, represented by the straight solid line.

evolving in such a way as to minimize the difference between the two otherwise inde-

pendent velocity fields. Turbulent He II flow thus resembles classical flow possessing an

effective kinematic viscosity νeff of order ηn/ρ, where ηn is the dynamical viscosity and

ρ denotes the total density of He II. If so, then the mentioned above usual homogeneous

and isotropic turbulence relationship should apply:

ε = −dE

dt
= νeff (T )(κL)2 , (2.31)

i.e., vorticity would be defined as κL.

The underlying physics of Eq. 2.31 is discussed in detail by [44, 45]. On length scales

large compared with the mean vortex line spacing, l, the two fluids are likely to be cou-

pled together by the mutual friction force and to behave like a conventional fluid with
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non-dissipative motion. There is a dissipation on a scale of order, l, given by Eq. 2.31,

taking into account that L ∝ l−2 is the length of vortex line per unit volume. On smaller

length scales account must be taken of dissipation, due to viscosity in the normal fluid,

frictional interaction between the vortex lines and the normal fluid, and the radiation of

sound from the vortex lines. Motion on the largest length scales contains most of the

turbulent energy, as it is described by the Kolmogorov spectrum. Energy flows from the

large length scales to smaller ones in a cascade, energy from the largest eddies flows con-

tinuously to those in which dissipation takes place (k ∼ l−1). On some length scale the

two fluids must become decoupled. The total energy flux:

dE

dt
=

dEs

dt
+

dEn

dt
, (2.32)

where dEs/dt and dEn/dt are energy fluxes in the superfluid and normal fluid per unit

volume, respectively. Then assuming fully coupled motion of superfluid and normal

fluid (vs = vn) we find that the total rate at which energy is flowing down the combined

cascade per unit volume is given by

dE

dt
=

ρ

ρs

dEs

dt
, (2.33)

The total rate of energy loss per unit mass of helium, ε, is given by

ε = −ρsκα
〈

v2

L

〉

L , (2.34)

where α is the mutual friction coefficient and 〈v2

L〉 denotes an average of local velocity

over vortex tangle. However, in Eq. 2.34 L is the length of vortex lines per unit volume

relating to a random tangle. But in grid turbulence the tangle is partially polarized in

order to create the large-scale motion. So we have to reduce the effective value of L by

factor of s, of order unity.

According to the local induction approximation each element of vortex line moves

with velocity given by

vL =
κ

4πR
ln

(

R

a0

)

, (2.35)

where R is the local radius of curvature and a0 is an effective core radius. In the Schwarz

theory [46] the ratio between the curvature of the vortex lines and the line spacing is given

by
〈[

1

R2

]〉

= c2

2
L , (2.36)

It follows that
dE

dt
=

sκ3αc2

2

16π2

(

ln
R

a0

)2

L . (2.37)
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We note that Eq. 2.37 has the same form as Eq. 2.31, and therefore the decay can also be

expressed in terms of an effective kinematic viscosity, given by

νeff = κ

(

sαc2

2

16π2

)

(

ln
R

a0

)2

. (2.38)

As one can see in Fig. 2.9, this model calculation correctly predicts the tendency for

νeff (T ) and roughly agrees with experimental results that have been obtained [47] by

comparison of the experimental data with the spectral decay model prediction for the

third universal regime

L(t) =
(3C)3/2D

κν
1/2

eff

(t − t∗)−3/2 (2.39)

with the virtual origin time t∗, which for late decay time t ≫ t∗ can be neglected.
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Fig. 2.9: The temperature dependence of the effective kinematic viscosity of turbulent

He II above 1 K. Up- and down–triangles are deduced from the decaying vortex line

density in the experiments with unconventional and conventional grids respectively. The

crosses connected by the solid line represent a model calculation for νeff (T ). The dotted

line is a plot of kinematic viscosity of He II based on the total fluid density [28].
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Fig. 2.9 shows that the extracted effective kinematic viscosity νeff has the same order

of magnitude as ηn/ρ, but displays different temperature dependence. Let us stress that

in view of the link between He II turbulence and classical turbulence, having in mind the

possibility of practical use of He II as a working fluid [48], knowing the exact value of

effective kinematic viscosity and its temperature dependence is essential.

We are left to discuss the last exponential part of the experimentally observed de-

cay, for which the spectral decay model that assumes fully developed turbulence cannot

be used any more. With no inertial scale left there is no energy transfer toward higher

wavenumbers and the only possibility for further decay is the exponential viscous decay.

This is the fourth and last regime of decaying vorticity in a finite channel. The late de-

cay curves originating from various ReM (see inset on Fig. 2.8) display an exponential

decay of the form ω ∝ exp(−t/t0) (practically indistinguishable from the spectral model

prediction). This last decay regime can be considered in analogy with the decay of the

oscillatory motion in viscous fluids, characterized by exponential decay of the energy

E ∝ E0exp(−βt), where the decay coefficient β = 3νk2. For k = 2π/D and ν of order

10−4 cm2/s it suggests a characteristic decay time close to the observed one.

2.5.4 Decay of Counterflow Turbulence

For several years our laboratory investigated decaying counterflow turbulence in two

channels of square cross-section and in one cylindrical channel [22]. A typical family of

decay curves measured at 1.6 K is shown in Fig. 2.10.

It was found that the decay of turbulence generated by a heat flow can be divided in

two stages. After the heater is switched off the liquid cannot become isothermal instantly.

So, during the first stage, before time (t < ts), the liquid is not isothermal yet. The initial

decay of the steady-state counterflow turbulence is taking place under conditions that the

turbulence is still partly thermally driven, by the excess heat energy which is present in

the the hotter part of the channel near the heater. However, in the second stage (t > ts)

the liquid can be considered as approximately isothermal and the decay as free. The time

ts depends on the channel’s length and geometry as well as on experimental conditions.

We concentrate here on the isothermal stage of the decay, which in turn consists of

an early part, where depolarization of vortex tangle and growth of the energy contain-

ing length scale takes place [34, 35] and a late power law decay. It was found that this

late part of the decay (past saturation time tsat) displays the classical t−3/2 power law (see

Fig. 2.10), independent of temperature over the range of investigation, despite the con-
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Fig. 2.10: The decay of vortex line density in counterflow turbulence measured at 1.6K for

various initial heat inputs as indicated. The saturation times, tsat, after which the decay

displays classical character of the form t−3/2 are marked by arrows.

siderable change of the superfluid to the normal fluid density ratio. We remind that the

same temperature independence was observed in the decay of turbulence generated by a

towed grid. These results strongly suggest that for t > tsat the decay of counterflow tur-

bulence and the decay of grid-generated turbulence are essentially similar and follow the

pattern predicted by the phenomenological spectral decay model [38] discussed above.

Moreover, the measurement of decaying counterflow turbulence provided a first di-

rect experimental check that the vortex line density in the late stage of the decay is propor-

tional to the channel size d, in accord with Eq. 2.39 (see Fig. 2.11). This result confirms the

surprisingly close similarity between the late stage of decaying counterflow turbulence

in He II and the decay of classical homogeneous and isotropic turbulence.

24



2.5 Classical Turbulence Theoretical Background

1 10
103

104

105

 

 

0.69x104 t-3/2

1.15x104 t-3/2

 L
 (1

/c
m

2 )

 Time (s)

Fig. 2.11: The decaying vortex line density at 1.5 K calculated using formula Eq. 2.39 from

the second sound data measured in both channels assuming that the decaying turbulence

is homogeneous and isotropic. The third universal decay regime (the power law decay

with the exponent of -3/2 represented by solid line) is reached irrespectively of the initial

conditions from steady-state counterflow. The decay data measured in the 0.6 × 0.6 cm2

channel (blue squares) follow the third universal decay regime but with the prefactor low-

ered by 0.6, the ratio of the channels widths, in comparison with the decay data measured

in the 1 × 1 cm2 channel (red circles), in accord with Eq. 2.39.

We stress that this result was very unexpected. Back to the Vinen equation (Eq. 2.16),

there is the analytical solution [30], which for a particular case of free decay reduces to

the inverse time dependence of the form

L(t) ∝ 1

t + tvo

, (2.40)

where tvo stands, as usually, for the virtual origin time. The physical meaning of tvo is the

instant from when L would have decayed from infinitely large value. We see, however,

that this simple inverse time prediction of the Vinen’s equation does not describe the

experimental data for decaying counterflow turbulence in He II.
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Chapter 3

Experimental Setup and Protocol

3.1 Experimental Setup and Equipment

For observing various types of He II flow we have used a standard stainless steel HK150

open bath cryostat. Natural 4He is used as refrigerant as well as the working fluid. Our

experimental setup is of flexible construction, allowing us to use several cells to generate

and probe various flows of He II [P4]. The vapor above the liquid surface can be pumped

out and, as a result, temperature of the entire helium bath decreases. We have used a

powerful pumping unit based on the CIT Alcatel RSV 350 roots pump that allows to

lower the temperature down to about 1.35 K.

The experiments described in this Thesis have been carried out in two brass channels

11.5 cm long, of square 6 × 6 mm2 and 10 × 10 mm2 cross-sections (see Fig. 3.1). For

experiments on thermal counterflow one end of the channel was dead and contained a

manganin wire heater wound on a cone. The author of this Thesis took part only in

the final part of the counterflow experiments and in the data analysis, but had a full

responsibility to design and manufacture the experimental setup used for investigation of

quantum turbulence generated by pure superflow. The experiment can be characterized

as follows.

Both ends of the brass flow channel are blocked by sintered silver superleaks about

3 mm thick and 16 mm in a diameter1. They are embedded inside brass flanges and

smoothly connected to the channel via a thin In O-ring. Large diameter of the superleak

and filling factor of the finest silver powder to about 1/2 of the bulk density of silver

ensure that the superfluid can freely penetrate through such superleaks and thus through

1These superleak were sintered at Institute of Scientific Instruments, AS, CR, Brno by J. Dupak in situ

directly in the brass flanges.

26



3.1 Experimental Setup and Equipment Experimental Setup and Protocol

Fig. 3.1: Shematic picture of the channel.

the channel, but superleaks stay opaque for the normal fluid.

Prior incorporating the superleaks in the experimental setup, we have successfully

tested the analogical one (prepared using exactly the same technology) in a separate ex-

periment, by utilizing the famous ”fountain” effect2.

The brass channel body with attached via thin indium O-ring superleaks is mounted

to the stainless steel tube shaft and positioned vertically inside the cryostat. Additionally,

a brass ”nozzle” is fixed on the top of the upper superleak. The bifilarly wound manganin

50 Ω heater H1 (see Fig. 3.2) is placed inside the nozzle above the upper superleak. The

heater has a distributed spiral form in order to ensure uniformity of the supplied heat

over entire crossection of the superleak. Another heater, H2, with matched resistance

value is placed in the bath so that the externally applied power can be easily switched

from one heater to another. This helps to avoid temperature fluctuations when flow in

the channel is triggered or stopped. The procedure of power switching between heaters

H1 and H2 is based on the National Instruments data acquisition device (NI-DAQ) and

the home-made Power Split Unit (PSU) designed and manufactured for us by Ing. Fran-

tisek Soukup, a member of the Joint Low Temperature Laboratory. NI-DAQ sends the

2This effect, in principal, can be used to measure velocity of the superfluid, namely, by measuring the

height of the fountain stream.
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Fig. 3.2: Principle circuitry of the experimental setup.

reference signal to the amplifier input of the PSU (of maximum value 2 V). This signal is

proportional to the output current which the amplifier applies to the channel and bath

heaters. The total heat power applied to the system is kept constant. We have typically

used heat powers to our system up to about 0.4 W; above this value it proved difficult to

stabilize the temperature with the desired accuracy (which depends on experimental con-

ditions and roughly means that the corresponding frequency shift of the second sound

resonance is much smaller than its linewidth).

Yet another 50 Ω heater, H3, is mounted on a plastic plate on the bottom of the cryostat,

serving as a tool for fine temperature stabilization of the helium bath. Its temperature is

monitored and controlled by by the Conductus LTC-21 temperature controller, via the

calibrated Cernox sensor T1, or via the Ge film on GaAs thermometer T2 [49].

In order to spend all the heat from the channel heater on generation of a flow through

the channel, the only thermal contact between the channel heater and helium in the bath

must be through the helium inside the channel. Technically this was made in such a

way that the top edge of the channel is positioned slightly above the liquid surface. On
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the other hand, if the channel heater in the nozzle were not covered by liquid helium, it

would be impossible to create any flow through the channel.

To ensure that the fountain pump outlet is positioned at the same level above the

surface of the liquid in the helium bath represents an experimental challenge, as the he-

lium level of the pumped open bath is dropping during the experiment. We have solved

this using a home-made capacitance level sensor C, which is mounted in parallel to the

channel. It consists of three coaxial stainless steel tubes, 3 mm, 6 mm and 9 mm in di-

ameter. The two inner tubes are used as a capacitor and the outer one as a shield. The

useful signal from this sensor in helium is very small, of order (fF/mm). For measuring

such a small signal we had to design and manufacture a special Capacitance Meter (it

was designed by Ing. Frantisek Soukup). The level stabilization process is as follows: The

NI-DAQ transforms the analog signal from this device and sends it to PC. The computer

calculates the required vertical displacement (from the pre-set value) of the channel with

respect to the helium level in the bath and through the MIP-50 board sends commands

to the Maxon DC motor. The Maxon DC motor performs required number of steps and

changes the vertical position of a lift system attached to the shaft to which the channel is

mounted inside the cryostat, so that the He–level in the nozzle above the upper super-

leak stays constant during the experiment. The lift and gear system have been designed,

constructed and mounted on a special platform at the top of the cryostat. A stainless steel

rod (30 cm long, 5 mm in diameter) with a good polished surface is screwed to the lift. It

passes through a special vacuum tight flange, which is fixed on the top of the main flange

of the cryostat. This vacuum tight flange consists of a tube with two rubber O-rings. The

space between the O-rings can be either pumped out or overpressurized by helium gas,

in order to prevent contamination of the helium bath by air during experiments. The

Maxon DC motor is connected to the gear system. The requested values of velocity and

acceleration of the lift motion are set up by the MIP-50 board connected through COM

port to computer. It allows setting up a lift motion velocity about 0.1 mm/s. The other

end of the rod is screwed to a thin-walled stainless steel tube (90 cm long and 9 mm

in diameter) equipped with a plate for mounting the flow channel on the opposite side

inside the cryostat. The vertical position of the entire cryogenic inset can be changed

within 20 cm range; the channel can move vertically very slowly and accurately, without

perturbing the helium system. To calibrate the Capacitance level meter, we performed a

special experiment which will be described in subsection 3.1.2.
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3.1.1 Second Sound Sensors

Second sound attenuation is a powerful tool for experimental investigation of quantum

turbulence in He II. In order to generate and detect second sound wave, we designed and

produced various types of second sound sensors. Construction of the holder and sensors

size depends on the type of experiment and experimental cell.

In the present experiment we used sensors 10 mm in diameter, with the holder made

a of special strong and highly isolating material Delrin. Both the transducer and re-

ceiver sensors are based on a gold-plated Nuclepore membrane. The membrane has

very fine submicron pores and one side of it is covered by about 100 nm thick layer of

gold. We have designed and manufactured a special holder for the membrane and gold-

evaporating of our membranes has been done in the Institute of Physics ASCR, with kind

help of Jarmila Prachařová. With the help of especially designed tools the circular piece

of the gold-plated membrane is punched out, carefully stretched over a plastic 10 mm

cylindrical ring and fixed by another plastic Delrin ring (see Fig. 3.1). Care is taken to

avoid any wrinkles on the stretched membrane surface that would lead to non-uniform

generation of second sound. The sensors are placed opposite each other across the chan-

nel, buried in its body in the middle of its length. There are small lugs inside holes and

gold-plated membrane surface placed inside has an electrical contact with the channel

body. The surface of the sensor membrane is thus fixed almost flush with the inner wall

of the channel. This way any additional perturbation concerning non ideal geometry of

the channel is minimized and the cross section of the main flow along the channel stays

fixed. Both holes drilled for sensors – transducer and receiver – into the brass channel

body are then tightly closed by brass discs via In O-rings. The iron spring is fixed on the

inner side of each brass disc; its opposite end is connected via an insulator to the brass

electrode, mechanically pressed to the insulating side of the sensor membrane. The sensor

holes have to be tightly closed by brass discs mounted via In O-ring to avoid any helium

leak from the bath so that the superfluid can enter the channel only through the bottom

superleak. To a good precision, its mean velocity can be calculated from the known heat

power applied to the fountain pump heater.

The gold-plated side of the nuclepore membrane in combination with the brass elec-

trode over which the membrane is stretched makes a capacitor. The DC BIAS, typically

up to 100 V, is applied to the channel body and used to press the membrane against

the brass electrode more tightly. The capacitance of these sensors reaches typically 60

- 80 pF, while the sensitivity threshold at a working frequency of order 1 kHz is about

1 fF. In order to avoid additional noise from the connecting leads we use the high quality
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Lake Shore cryogenic coaxial cable with no appreciable microphone effect and miniature

LEMO coaxial vacuum-tight connectors.
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Fig. 3.3: The form of the second sound signal plotted against frequency, showing the

absorption (empty symbols) and dispersion (filled symbols) data with no power applied

to the fountain pump (no flow). The red curve is a fitted Lorentzian. A0 is the second

sound amplitude (SSA) at resonance frequency f0 and ∆ is the full width of the peak at

the half height. Almost linear dependence of the SSA signal versus the drive amplitude

at the frequency of resonance (see insert) proves that second sound sensors themselves

do not create any quantized vorticity in the channel.

The mechanism of generation and detection of a second sound wave in our exper-

iment utilizes antiphase oscillations of normal and superfluid components. The mem-

brane begins to oscillate after applying the sinusoidal driving signal to the transducer. It

forces the membrane to meve and it pushes the normal component whereas the super-

fluid component can freely penetrate and stays basically motionless. The space between

the transducer and receiver acts as a second sound resonator. On the opposite side of the

channel, the normal component pushes the receiver membrane. For detecting this signal

electrically, we use the SR 830 dual phase lock-in amplifier. The sinusoidal driving signal

is generated by the Agilent 33250A function generator. It generates the excitation signal

31



3.1 Experimental Setup and Equipment Experimental Setup and Protocol

up to 10 V pick–to–pick in 0.001 V steps in the frequency range from 1 Hz to 10 MHz.

Thus slowly sweeping the frequency of the driving signal we observe second sound res-

onance peaks nearly Lorentzian in shape (see Fig. 3.3). It is possible to calculate their

resonance frequencies as ν−1 = nl/Vss, where l is the distance between membranes, Vss

is the velocity of second sound and n is number of the half–wave lengths of the second

sound signal for the observed resonance mode. Typically we have used harmonics with

resonant frequencies lying between 1 kHz and 3 kHz.

3.1.2 Capacitance helium level meter tuning procedure
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Fig. 3.4: The capacitance helium level gauge calibration data. There are three ranges

divided by red lines. Left: The channel is entirely submerged below the He II surface;

middle: the top of the nozzle is above the liquid level (working range); right: the heater

H1 is already in the vapor and thus in a weak contact with He II – SSA will increase with

dropping of helium level in the bath.

As we have already mentioned, we use the home–made capacitance meter as a he-

lium level indicator in our experiments. In order to find the best working level within
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the acceptable vertical level range for actual measurements, we use the following tuning

protocol.

By applying current to the heater H1, we aim to force the superfluid to flow due to

the temperature gradient. We stress that the normal fluid is not able to penetrate the

superleak. If the top end of the channel (i.e., the outlet of the fountain pump) is entirely

submerged under the liquid level in the bath, the applied heat propagates from H1 in

all available directions and superfluid flows to the heater through the channel as well

as directly from the bath. Thus the main flow through the channel is weak; with small

number of created vortices. On the other hand, when the channel heater is entirely above

the liquid surface, the supplied heat to H1 propagates through the poorly conducting

helium gas. It means that in this case the number of created quantized vortices is much

smaller than when the entirely submerged heater has a good contact with the highly

conducting superfluid liquid. In both cases (outlet of the fountain pump submerged or

heater H1 above the liquid surface) precise calculation of the flow velocity through the

channel based on the known heat power supplied to the fountain pump heater H1 is not

possible.

For calibration, we sank the channel and found second sound resonance peak which

corresponds to the vortex free conditions. Applying high enough heat pulse a dense

vortex tangle is created resulting in decreasing of the observed second sound amplitude.

Minimum values of SSA mark the position of the channel within an acceptable working

range. Calibration data are presented in figure 3.4.

3.2 Steady-state and decaying turbulence

All our standard devices such as the Conductus LTC-21 cryogenic temperature controller,

the SR 830 dual phase lock-in amplifier, the TD 2000 Tektronix Oscilloscope, and the

Agilent 33250A function generator are controlled via the GPIB bus card by PC, using the

NI LabView software. All the multifunctional LabView software that includes setting

up the initial conditions, controlling of the experimental run and reading out the raw

measured data has been created by the author of this Thesis.

The measurements have been performed in two independent modes: (i) steady state

measurements and (ii) measurements of decaying turbulence. In both modes, it is essen-

tial that the temperature of He II bath is kept constant during the run. Fine stabilization

of the temperature is achieved by the LTC 21. For various temperatures, we found the

most appropriate PID scheme. The vertical position of the channel relative to helium
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surface was always kept within the working range. The observable quantities were the

current applied to the heater H1, the readings of thermometers T1 and T2, the frequency

and amplitude of the second sound driving signal and (the principal measured quantity)

the amplitude of the second sound receiver in the vicinity of the chosen second sound

resonance peak.

3.2.1 The steady-state measurements
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Fig. 3.5: The example of raw data for steady-state measurements: the top of the chosen

second sound resonance peak is scanned in both directions, then the applied heat to the

fountain pump is changed.

In this type of experiments, we scanned the frequency of the driving signal applied to

the transducer over the chosen (typically second) second sound resonance peak several

times for each fixed heat applied to the heater H1. Typically at the beginning of the run,

we additionally measured SSA without any heat input to H1, for detecting the undis-

turbed second sound amplitude A0 and the width of the peak ∆ (see Eq. 4.6). Then the

heat power was subsequently increased by the preset step and the peak was scanned for
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several times in both directions (for detecting the suppressed amplitude A). As the ob-

served stabilization time of the steady state flow in our channel is several seconds, we

did not scan whole peak and limited the scan by several Hertz around its resonance fre-

quency. Normally the heat power was changed from the lowest value to the highest one.

Measurements in opposite direction are more difficult, because stabilization takes more

time owing to long decay time of pinned vortices inside the channel. In this case, values

of SSA are typically somewhat higher, especially in the low heat power range. An exam-

ple of raw data is presented in Fig. 3.5. Using such sets of data, it is possible to calculate

the vortex line density and using the values of the current supplied to the heater H1, also

the mean velocity of the superfluid component flowing upwards through the channel.

3.2.2 The decay measurements
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Fig. 3.6: Example of raw data on decaying turbulence, showing the typical behavior of

the second sound amplitude at resonance - heater On (blue arrow): vortices appear and

the second sound amplitude decreases. When the overshoot os is over, the system comes

to the steady state regime. Heater Off (green arrow): turbulence decays and the second

sound amplitude is recovering to its initial value A0.

To detect A0 and to be sure that it stays constant during the measurement we have
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scanned the SS resonance peak both before and after each run. We had no time to scan

the entire peak or even any part of it during the decay, because turbulence decays rather

rapidly. Thus we find and set up the resonance frequency for each run and assume that

it does not change during all manipulations. This assumption is reasonable, as the sup-

pressed peak in the presence of turbulence in the channel is much wider and any small

frequency shift would not result in appreciable reduction of the actual amplitude in com-

parison with that at true resonance. Additionally, we have experimentally checked by

scanning over the suppressed peak in the steady-state regime that the possible frequency

shift is in most cases indeed negligible.

After initial measurement of A0 (about 15-20 sec) we stepwise switched parts of the

power from the compensating heater H2 to the channel heater H1. The SSA immediately

drops down and, after a short initial time (from 1 to 2 seconds), it stabilizes on a new

level. From this moment on the superfluid flows through the channel in the steady state

regime. We kept the flow in steady state regime for typically about 10-20 seconds, then

the theater H1 was switched off and we observed relaxation of the SSA to the initial value

A0. Figure 3.6 shows evolution of the second sound amplitude for one such a run.
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Chapter 4

Experimental results

In this Chapter, we describe only selected results needed for self-containing description

of the physics underlying our pure superflow and thermal counterflow experiments. In-

clusion of all available results will make the Thesis too bulky and more difficult to follow.

For further details, we refer the reader to the already published papers.

4.1 Mean superflow velocity through the channel

In the present experiments we assume that the superfluid enters the channel through the

bottom superleak, and that there is no net normal fluid through it1.

For calculation of the mean superflow velocity through the channel we suggest the

following reasoning. Knowing the electrical resistance of the fountain pump heater H1

and measuring the supplied current through it, we calculate the power q̇ = Q̇/d2 per

unit cross-section of the channel, which we apply to the system. Here Q̇ is the applied

heat power and d is the size of the channel. The power q̇ is the only source of energy,

the principle part of it is spent at the heater H1 on conversion of the superfluid into

the normal fluid. In principle, we have also to add the kinetic energy of the normal

flow ρnvn
v2

n

2
and the kinetic energy of the superflow ρsvs

v2
s

2
, having in mind that ρnvn and

ρsvs are the mass flows of the normal fluid and of the superfluid, respectively. We can

therefore write the following energy budget equation:

q̇ = ρvnST + ρnvn
v2

n

2
+ ρsvs

v2

s

2
. (4.1)

Furthermore, we assume the fountain where superfluid and normal fluid velocities are

matched: vn = vs. This assumption is justified, as we have independently checked by

1However, we can not exclude any motion of the normal fluid inside the channel.
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Fig. 4.1: Relative weights of the second (red line) and the third terms (blue line) of the

RHS of equation 4.1 (in comparison with the first RHS term) as a function of temperature

for various superfluid velocities as indicated.

direct measurements, using thermometers T1 and T2, that the temperature of the fountain

is hardly different from that of the helium bath.

The numerical solution of equation 4.1 shows that the second and the third terms

on the RHS are small (less then one percent) and can be neglected. Figure 4.1 presents

the relative weights of the second and the third terms as a function of temperature for

various superfluid velocities. Thus the total mass of helium leaving the channel every

second equals:

Mout = vn(ρs + ρn)d2 =
Q̇

ST
; (4.2)

where:

Q̇ = q̇d2 = ρvnSTd2 ,

with S denoting the entropy of He II. On the other hand, this must be the same mass as
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that of the incoming superfluid via the channel:

Min = vsρsd
2 . (4.3)

Thus the mean superflow velocity in the channel can be expressed as:

vs =
Q̇

ρsSTd2
. (4.4)

It is fair to mention that there are other effects which could, in principle, influence the

flow inside the channel, such as oscillations of the superfluid through superleak after the

heater is switched off, pinned vortex lines, flow of the superfluid film over the nozzle,

finite thermal conductivity of the brass and Kapitza thermal resistance, but it is difficult

to take them into account quantitatively and according to our estimates we believe that

they can be neglected. Note that all these effects would tend to slightly lower the mean

superfluid velocity calculated above.

As for the experiments on thermal counterflow in which the author took part, we

remind that the thermal counterflow was generated by a standard way, i.e., by applying a

heat current, via a heater (resistor) located at the closed end of a channel with the opposite

end open to the helium bath. The heat flux is carried away from the heater by the normal

fluid alone. Assuming that the power Q̇ = d2q̇ applied at the heater is used entirely

to convert the incoming superfluid into the normal fluid, the velocity of the outgoing

normal fluid is vn = q̇/(STρ). The counterflow velocity vns is then easily established

from the condition ρsvs + ρnvn = 0 and becomes equal to the mean superfluid velocity

calculated above, i.e.:

vns =
Q̇

ρsSTd2
. (4.5)

4.2 Vortex line density

To calculate the vortex line density from our second sound data, assuming that the vortex

tangle is homogeneous and isotropic, we use the expression:

L =
6π∆0

Bκ

(

a0

a
− 1

)

, (4.6)

where a0 is the unperturbed second amplitude with no applied heat into the channel, ∆0

is the full width at half hight of the second sound resonance absorption peak (typically

10 Hz) and B is the temperature dependent dissipational mutual friction coefficient. The

experimental procedure how to obtain these quantities has been described in the previous

Chapter.
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Fig. 4.2: The calculated steady-state vortex line density plotted versus the mean super-

fluid velocity in the 6 mm channel. The blue arrows from below indicate the fitting pa-

rameter – slip velocity vII

cr
; the solid lines (from left to right) are plots of linear dependen-

cies L = β(v−vII

cr
) for the data sets taken at T=1.92 K, (green), T=1.73 K, (black), T=1.58 K,

(blue) and T=1.49 K, (red), with β = 2.65 × 104 cm−3s.

4.3 Steady-state results

We have investigated the steady-state flow in two square channels at various tempera-

tures in the range 1.45–1.95 K. Figures 4.2 and 4.3 illustrate the behavior of the flow, via

the dependence of calculated vortex line density plotted versus mean superfluid veloc-

ity in both channels at various temperatures. Based on these data, we can identify three

ranges corresponding to different types of flow (see Fig. 4.4).

The first range, which appears below the first critical velocity vI
cr, is characterized by

a constant – nearly zero – density of vortex line. We suppose that below vI
cr the flow

is nearly dissipationless and thus potential. Sometimes, by repeating the experiments,

we observe low but non-zero value of the vortex line density even in this regime. We

belive, however, that it is connected with pinning of quantized vortices, most likely on
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Fig. 4.3: The calculated vortex line density plotted versus the main superfluid velocity at

various temperatures as indicated, in the channel of 10×10 mm2 cross-section.

the surface of superleaks and on the second sound porous sensors. Number of pinned

vortices can vary a little in time even without any flow through the channel. Normal

fluid stays quiescent in the first regime. Note that the first regime here differs from the

first laminar regime in the thermal counterflow, where laminar flow of the viscous normal

fluid causes finite dissipation already below the critical velocity.

The second range (A-state) appears above the critical velocity vI
cr. The observed vor-

tex line density grows here proportional to the square of the mean superfluid velocity and

in analogy with the thermal counterflow can be described in terms of the mutual friction

formalism [46]:

L1/2 = γ(T )(v − vI
cr) , (4.7)
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Fig. 4.4: The square-root of the vortex line density L as a function of mean superfluid

velocity for channels 6×6 mm2 (black circles) and 10×10 mm2 (red squares) cross-section.

Blue and red arrows show the first critical velocity vI
cr and the loosely defined second

critical velocity. There are three flow ranges fitted by: the brown line – the laminar flow,

the blue one – the turbulent A-state and red dotted-line – the turbulent B-state.

where γ(T ) and vI
cr are determined from the fits to the data. Dependencies of the γ coeffi-

cient versus temperature for both channels are presented in figure 4.5. As one can see, the

γ coefficient increases with increasing temperature. The black dotted-line on figure 4.5 is

γ(T ) from the Schwarz theory. Our experimental results are in qualitative agreement with

this theory, but the actual values are lower by a factor of about three. One of the possible

reasons of this discrepancy is that the vortex tangle in the A-state is not homogeneous

and isotropic.

The behavior of the vortex line density in the A-state is therefore analogical to thermal

counterflow, which was first investigated by Vinen [20, 26] and agrees with the prediction

of the phenomenological Vinen equation discussed above. Such a flow was previously

observed in our Laboratory in both present channels [50] when used without superleaks,

in a regime of thermal counterflow. We did not measure steady state of counterflow in

42



4.3 Steady-state results Experimental results

a detail. However, the calculation of γ(T ), taking into account the error bars, is in the

qualitative agreement (for counterflow γ ≈ 50 at 1.7K) with γ coefficient in case of steady

state of pure superflow.
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Fig. 4.5: Vortex line density coefficient γ(T ) in the A-state for both channels. Red circles

and blue squares are the average values of the experimental data for channels of 6×6 mm2

and 10×10 mm2 cross-section, respectively. Red and blue straight lines are linear fits

through these averaged values. The black dotted-line represents γ(T) from the Schwarz

theory.

We emphasize that the A-state is the only one so far experimentally observed in pure

superflow [24]. However, our results (see figure 4.2 and 4.4) show the dramatic modifica-

tion, taking place at loosely defined second critical velocity, from the A-state to a newly

discovered B-state, representing the third range of the flow.

The new B-state can be characterized by the linear dependence of vortex line density

on the mean superfluid velocity, of the form

L = β(v − vII
cr ) , (4.8)

where β and vII
cr are fitting parameters, physical meaning of which will be given below.
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Figure 4.6 shows β as a function of temperature. We see that β has very weak, if any,

temperature dependence. The spread of β points as well as in values of critical velocities

vI
cr and vII

cr is connected at least in part with the time interval allowed in the measurement

for setting up the steady-state regime. If the time between the two subsequent steady-

state measurements is too short, the new steady-state value of L becomes slightly shifted.

This might be connected with the pinning-depinning processes inside the channel, where

the configuration of pinned vortices did not fully relax to the new steady-state level.

The important experimental observations are that within the investigated temperature

range the character of the flow in the B-state hardly changes with temperature and that

the A-B transition is gradual, as one can see from figure 4.4.

The turbulent B-state was clearly observed only in the smaller 6×6 mm2 channel. The

reason of this is experimental: the mean superfluid velocity is inversely proportional to

the cross-section of the channel. In order to go deep enough inside the B-state in the

larger 10×10 mm2 channel, one needs to apply rather high power to the fountain pump.

The temperature stabilization is difficult under these conditions which results in a drift

of the resonance frequency of the second sound peak and measurements can be only

qualitative. Nevertheless, we have clear qualitative indication that the A-B transition

occurs in the wider 10 mm channel as well.

Figure 4.7 shows the critical velocities vI
cr and vII

cr versus temperature. The first critical

velocity, vI
cr, is observed to be only weakly temperature dependent in both channels (tak-

ing into account the error bars, in the first approximation it can perhaps be considered as

constant), while vII
cr decreases with decreasing temperature rather more steeply.

4.4 Results on decaying vortex line density

Our sensitive second sound attenuation technique is capable of investigating not only

the steady-state quantum turbulence in He II, but also its temporal decay - an interesting

phenomenon in itself. Furthermore, investigation of decaying turbulence can help us to

understand the underlying physics of the two experimentally observed turbulent steady-

states A and B.

Figure 4.8 displays a family of decay curves originating from various high steady-

state levels of vortex line density in the 6 mm channel. Let us stress that this character

of the decay does not change with temperature, at lest over the entire range that we

investigated. Over a complicated initial part of the decay, within about 1 s since the

heater H1 was switched off, the decay gradually becomes exponential in character, of the
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Fig. 4.6: Plot of the vortex line density coefficient β(T) in the B-state versus temperature

for the 6×6 mm2 channel. Red full circles represent the averaged values of the experimen-

tal data at that temperature; the Red line is a linear fit through these averaged values.

form

L(t) = L(0) exp {−t − tvo

τ
} , (4.9)

where tvo is the virtual origin time – its approximately inverse proportionality on the

mean superfluid velocity (as qualitatively observed at all temperatures) is shown in Fig. 4.9.

The physical meaning of tvo is to take into account the instant from when L would decay

exponentially from an infinitely large value.

Analysis of the data shows that the characteristic decay time τ does not depend on

the steady-state value of L from which the decay originates (providing that L is high

enough, thus corresponding to the turbulent B-state) and only weakly on temperature

(see Fig. 4.10). The rather large error bars are given, due to sensitivity of τ to a0, which

is reproducible only within about 1%, presumably due to trapped vorticity in porous

membranes.

Let us mention here that the described character of the decay is distinctly different

from our initial expectations based on known results on the decay of L in thermal counter-

flow [22] and [P3], where the decay is of complicated form (described in detail in previous
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Fig. 4.7: The observed critical velocities vI
cr and vII

cr plotted versus temperature. Values

of vI
cr are given for both channels (open black squares - 10 mm channel, open red cir-

cles - 6 mm channel), while values of vII
cr (filled blue circles) could have been deduced

quantitatively only for the smaller 6×6 mm2channel.

publications based on the experimental research performed in our Laboratory [34, 35])

but its late stage can be described by a power law with the classical exponent of -3/2

[P2, P5]. For completeness, let us add that the exponential decay of L was previously al-

ready observed, but only as a very late stage, for very low vortex line density part of the

complex decay of the classically generated grid turbulence, consisting of four distinctly

different regimes [18]. On the first sight, it seems therefore that our new unexpected result

contradicts many earlier results obtained in thermal counterflow and strongly suggests

that the nature of He II turbulence generated by superflow (namely the B-state) differs

from that generated by the thermal counterflow.

This fact naturally invokes a question - are the decays originating from described

above steady-states A and B different in character? To answer this question experimen-

tally, it is best to compare the decay originating deep in the B-state in the 6 mm channel

with that originating from A-state in the 10 mm channel, as here the A-state holds up to
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Fig. 4.8: Steady-state and decaying vortex line density (assuming that the vortex tangle

is random) generated by pure superflow of various mean velocity. The displayed vortex

line density is measured in the middle of the length of the 6 mm channel at T = 1.73 K. The

heater is switched off at t = 0. Following the fast initial decay (past ≃ 1 s), the exponential

decay of the form ∼ exp(−t/τ) is observed.

high enough steady-state values of L allowing long enough time over which the decay

could be clearly resolved. Indeed, as illustrated in Fig. 4.11, the decay of the vortex line

density originating from the A-steady-state in the channel of 10×10 mm2 cross-section

within certain limited parameter range displays about an order of magnitude of the ex-

pected classical power law dependence L ∝ t−3/2. The experimental answer therefore

is that the character of the decay depends on the nature of the steady-state it originates

from. Decaying A-state and B-state must therefore involve distinctly different underlying

physics.

Due to the fact that we cannot penetrate deep enough into the newly discovered B-

state (for reasons discussed earlier), we show no measurements in 10 mm channel origi-

nating from higher L than those given in Fig. 4.11. We restrict ourselves by saying that

the measured decays can be considered as preliminary and qualitative only, they are of
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Fig. 4.9: Dependence of tvo vs vS for the 6 mm channel at T = 1.73 K.

more complex form and are substantively more difficult to interpret.

4.5 Results on decaying thermal counterflow

As it was already mentioned, the author of this Thesis took active part in experiments on

thermal counterflow, performed prior experiments on pure superflow using the same two

channels (without superleaks, placed horizontally in the helium bath, with one end open

to the helium bath and the other (dead end) equipped by a resistive heater wound by the

manganin wire on a brass cone to generate the studied thermal counterflow), especially

on measurements of the decaying thermal counterflow. Here we present selected exper-

imental results on the decaying thermal counterflow, which are in a close relationship

with the already described results on decaying pure superflow. We shall skip description

of first two stages of the decaying counterflow and concentrate on the third, universal

decay regime, which in analogy with the classically generated grid turbulence in He II

can be described quasiclassically, using the purely classical spectral decay model based
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Fig. 4.10: Dependence of the decay time τ vs temperature for the channel of 6× 6 mm2

cross-section.

on the accepted Kolmogorov K41 form of the classical 3D energy spectrum, predicting:

L(t) =
d(3C)3/2

2πκ
√

νeff

(t + tvo)
−3/2 ∼= d(3C)3/2

2πκ
√

νeff

t−3/2 . (4.10)

Some typical examples of the decay data are shown in Fig. 4.12. The top and middle

frames show the quantity a(0)/a(t) − 1 versus time, measured in the 10 mm channel. As

it was described in the previous Chapter, under assumption of homogeneity and isotropy

this quantity is proportional to the vortex line density in the channel. As it was discussed

in detail in [34, 35], during the first two stages of the decay the assumption of isotropy

and homogeneity is not satisfied, however, as the decay progresses, the vortex tangle

depolarizes and during the third universal stage of the decay it can be assumed to be, at

least approximately, homogeneous and isotropic.

Fig. 4.12 clearly demonstrates that, although the decay curves measured at T = 2 K

and at T = 1.6 K originate from the steady-state counterflow generated by applying

various heat power and thus from different L, the third regime is universal in that all

data eventually collapse on a single line given by formula 4.10.

The right frame of Fig. 4.12 displays the decaying L calculated from the second sound
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Fig. 4.11: Decaying vortex line density in the 10 mm channel originating from steady-state

values of vortex line density generated at T = 1.56 K by the mean superflow velocities as

indicated.

data measured in both channels at T = 1.5 K assuming that the decaying turbulence is

homogeneous and isotropic and clearly shows once again that the third universal decay

regime (the power law decay with the exponent of -3/2 represented by dashed lines) is

reached irrespectively of the initial conditions. The decay data measured in the 0.6 ×
0.6 cm2 channel (filled blue symbols) also follow the third universal decay regime but

with the prefactor lowered by the factor of 0.69/1.15 ∼= 0.6 - the ratio of the channels

widths and therefore in full agreement with formula 4.10. To the best of our knowledge,

it for the first time that formula 4.10 has been experimentally verified also with respect to

the channel size, d.

50



4.5 Results on decaying thermal counterflow Experimental results

Fig. 4.12: Examples of the second sound experimental data. The top and bottom left

figures show the quantity a(0)/a(t)−1 versus time, measured in the 1×1 cm2 channel. The

decay curves measured at T = 2 K originate from the steady-state counterflow generated

by applying 0.52 W (∇), 0.41 W (blue ⋄) and 0.32 W (red ◦); the decay curves at T = 1.6 K

from 0.5 W (⋄), 0.23 W, (green squares) 0.18 W (red ◦ ) and 0.14 W (various blue triangles

– three individual decay curves are shown to appreciate the level of reproducibility for

the lowest applied power). The right figure shows the decaying L calculated from the

second sound data measured in both channels assuming that the decaying turbulence is

homogeneous and isotropic.
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Chapter 5

Discussion

We shall start the discussion with considering the decaying counterflow, in order to build

up the notion of an effective kinematic viscosity of turbulent He II. We shall show that

under certain circumstances turbulent He II (i.e. containing the tangle of quantized vortex

lines) can be treated, at least approximately, as a quasi single component quasi-viscous

fluid, as motion of the superfluid and of the normal fluid on all relevant length scales

(i.e., normal and superfluid eddies of all sizes present in turbulent He II) can be thought

as tightly coupled together by the action of the mutual friction force. The decay of such

a single component quasi-viscous fluid then can be considered fully classically, simply

by replacing the kinematic viscosity of a classical viscous fluid by the effective kinematic

viscosity.

Exactly this approach was successfully applied to understand the underlying physics

of the decaying grid-generated turbulence in He II [19, 18], where it was assumed that

normal and superfluid eddies are tightly coupled all the time, at all relevant length scales

and normal and superfluid velocity fields being fully identical.

In case of steady-state counterflow or steady-state pure superflow this approach is not

applicable, as there is a net counterflow velocity, which tries to tear apart the normal and

superfluid eddies. As it was shown by Vinen [20, 26], eddies larger than certain critical

size (that is given by the balance between the size of the eddy over its turnover time and

the counterflow velocity) cannot be coupled. In counterflow, the mutual friction force

is capable of coupling only eddies that are smaller than this critical size. On the other

hand, in the decaying counterflow turbulence the net counterflow velocity quickly dis-

appears. The critical size of normal and superfluid eddies that become coupled together

therefore increases and over later stages of the decay the situation might closely remind

that of decaying classically generated (e.g., grid) turbulence. To confirm this scenario
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experimentally, we start our discussion with the decaying counterflow data.

5.1 Discussion on decaying counterflow

Let us consider results of counterflow experiments performed by the previous graduate

student of our group A.V. Gordeev together with the author of this Thesis. We remind

that these counterflow experiments have been performed using the same two channels

of square cross-section (without superleaks). We have already discussed in the previous

Chapter that the decaying vortex line density originating from various levels of steady-

state counterflow turbulence displays the third universal decay regime, over which the

vortex tangle could be assumed homogeneous and isotropic. The temporal dependence

of this third universal regime of the decay follows the prediction of the classical decay

model for vorticity in a finite size channel if He II is considered as a single fluid with an

effective kinematic viscosity νeff (T ). Moreover, measurements of the decaying counter-

flow turbulence in two channels of different square crossection provided the first direct

experimental check that the vortex line density in this stage of the decay is proportional

to the channel size, d, in accord with Eq. 2.39 (see Fig. 2.11) [P3]. This result confirms the

surprisingly close similarity between the late stage of decaying counterflow turbulence

in He II and the decay of classical homogeneous and isotropic turbulence.

5.1.1 Effective kinematic viscosity of turbulent He II

Thanks to the fact that decaying counterflow turbulence and grid generated turbulence

are of so similar nature, it is possible to calculate the effective kinematic viscosity by com-

paring the experimental decay data of L measured at various temperatures using Eq. 2.39

[P6]. The results of our analysis for both channels of square crossection are displayed in

Fig. 5.1. We found the values of νeff (T ) calculated separately for two square channels

within the experimental error overlapped, so effective kinematic viscosity does not there-

fore depend on the channel size. We have therefore calculated the mean values of νeff (T )

over our new data from both channels at each temperature, represented in in Fig. 5.1 by

the open diamond with error bars.

This set of the data has to be compared with νeff (T ) obtained in the Oregon towed

grid experiments. Such a comparison is justified and useful, as in the Prague counterflow

experiments we have used the same square 1× 1 cm2 channel (plus the smaller one 0.6×
0.6 cm2) and essentially the same second sound technique.
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Fig. 5.1: The temperature dependence of the effective kinematic viscosity of turbulent

He II. The open diamond with error bars represent the mean value over our new data

from both channels ateach temperature. Up- and down-triangles are corrected data from

Fig. 2 of [51] (for more ditale see [P6]), deduced from the decaying vortex line density

in the Oregon experiments with unconventional (up-triangles) and conventional (down-

triangles) grids. The crosses connected by the solid line represent a model calculation for

νeff (T ) [45]. The dotted line is a plot of kinematic viscosity of He II based on the total

fluid density [28].

It is useful at this stage to write few comments on the Oregon experiments. The orig-

inal second sound Oregon data on decaying He II turbulence [43, 19, 18, 47, 11] have

been obtained using a grid of a rather unconventional design in that the 65% open grid

consisted of only four parallel rectangular tines crossed by a single tine at 45 degrees,

to which a centered pull rod was attached. This might have caused a difference in the

nature of turbulence generated by such a grid with respect to turbulence generated by a

grid of conventionally accepted geometry. Therefore Niemela and coworkers [51] later

repeated measurements of decaying vortex line density in the same 1 × 1 cm2 channel

using a newly designed grid consisting of 28 rectangular tines of width 0.012 cm forming

13 × 13 full meshes across the channel of approximate dimension M = 0.064 cm. That

the decay data indeed follow the -3/2 power law very closely is further strengthened by

an additional analysis, see Fig. 9 in Ref. [48]. Values of νeff (T ) deduced from the decay

data originating from relatively high mesh Reynolds number turbulence ReM = vgMρ/µ
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of order 105, where vg is the grid velocity, M is the mesh size, ρ is the total density of

He II and µ its dynamic viscosity, do not differ dramatically from the data obtained with

the original unconventional grid, although they systematically lie about 10% lower (see

Fig. 5.1).

The towed grid and counterflow generated data series are consistent with each other,

the counterflow data displaying larger scatter. The displayed error bars reflect only the

statistical scatter or the data, which is mostly caused by the fact that for generating coun-

terflow turbulence a large heat input up to 1 W has to be applied to the dead end of the

channel and then abruptly switched off. Although in the experiment the total heat input

to the cryostat is kept constant (the power is not switched off but to another matching

heater placed outside the channel in the helium bath), it is very difficult to stabilize the

bath temperature, even with an additional bath heater and a temperature controller in

use. Minimizing temperature fluctuations that necessarily follow switching off the chan-

nel heater is an experimental challenge. Fine tuning of the electronics at any particular

temperature is needed before reproducible decay curves closely following the -3/2 power

law (such as shown in Fig. 4.12 and in [35, 22] and [P3]) can be measured. This becomes

increasingly difficult both at the lowest and highest displayed temperatures and hardly

possible above 2 K, where second sound velocity steeply depends on temperature and

therefore temperature fluctuations affect the propagation of second sound in the channel

more strongly. Another source of a systematic error might be coupling between trans-

verse and longitudinal second sound modes in the channel, which could lead to slightly

distorted values of linewidth ∆0 entering Eq. 4.6.

Within experimental error, calculated values of νeff (T ) for two square channels do not

depend on the channel size, in accord with Eq. 4.10. It is clear that the effective kinematic

viscosity of turbulent He II νeff (T ) distinctly differs from the tabulated values of kinematic

viscosity of He II [28] defined as the dynamic viscosity over the total density, ν = µ/ρ (see

the dotted line in Fig. 5.1). A model calculation [45] based on the assumption that the

effective kinematic viscosity is entirely due to mutual friction is also included in Fig. 5.1.

To conclude this part of the Discussion chapter on the decaying counterflow, we present

experimental values of effective kinematic viscosity of turbulent He II, over the tempera-

ture range where the temporal decays of thermal counterflow and towed grid turbulence

have been investigated using the second sound attenuation technique. It is truly remark-

able that, although the steady-states of the grid-generated turbulence in He II and the

thermally induced counterflow He II turbulence are very different in character [45], their

late decays display the universal classical power law of the form of Eq. 4.10, moreover,
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the deduced values of effective kinematic viscosity are consistent with each other as well

as with the model calculation [45].

5.2 Discussion on pure superflow experiments

In the previous Chapter we described rather unexpected experimental results obtained in

our experimental study of He II flow restricted to pure net superflow through channels

with ends blocked by superleaks. In particular, two different, physically distinct turbu-

lent states A and B have been observed for the first time and we have a formidable task

of introducing suitable phenomenological model that would capture the observed flow

phenomena and explain the underlying physics.

5.2.1 Steady-state pure superflow – first critical velocity

As we have described in the previous Chapter, upon increasing the heat power from

zero we observe no quantized vortices in the channel until the first critical velocity vI
cr

is reached. This statement is an oversimplification that needs additional explanation,

for the following reasons. It is well known that any macroscopic size sample of He II

always contains remnant vortices and there have been even attempts to estimate their

vortex line density depending on the geometry of the cell which contains a stationary

sample of He II [52]. One particular reason is that any wall in contact with He II can

be considered as rough on the length scale of the size of vortex core - the healing length

ξ ≃ 10−10 m. Excrescences on the wall then serve as suitable pinning sites for these

remnant vortices; in our case the porous membranes used to make the second sound

transducer and receiver ought to act as rather efficient pinning area for such remnant

vortices. They may stretch across the channel, or exist in form of small vortex loops.

Their density and configuration depend on the history of the sample and this is why our

undisturbed second sound amplitude a0 measured at resonance without any thermally

induced flow through the channel is not exactly reproducible - the accuracy is typically

slightly better than 1 per cent.

Neglecting the remnant vorticity, until the first critical velocity vI
cr is reached the flow

of the superfluid component is potential (or we can define it as largely potential) and the

normal component stays quiescent.

Let us compare our observations with those of previous investigators. As far as we

know, the first experiments on pure superflow have been performed by Tough’s group
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Fig. 5.2: The critical velocities vI
cr as observed in both channels (open red circles – 6 mm

channel, open black squares – 10 mm channel) plotted versus temperature. Green crosses

(experiment) and solid black line (prediction of the Schwarz theory) are taken from the

work of Baehr and Tough.

[23], both in circular (id = 0.13 mm) and rectangular (0.057 × 0.57 mm2) cross-section.

These first experiments, however, gave no evidence of any critical velocity. However,

in later careful experiments of this group with a circular (id = 0.13 mm) tube a finite

and nearly temperature independent critical velocity vI

cr
was found, of about 1.5 cm/s

[33] (see Fig. 2.6). The authors assumed that (as it takes place in thermal counterflow

[21]) vI

cr
scales with the size of the channel, d, and in Ref. [33] the results are given in the

dimensionless form of a ”superfluid Reynolds number”

Res =
vI

cr
d

κ
, (5.1)

where κ denotes the circulation quantum.
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Fig. 5.2 displays the direct comparison of their observed critical velocity vI

cr
with our

data. Our observations of vI

cr
in two channels of sizes 6 and 10 mm, within the error bars,

agree with each other as well as with the observed critical velocity vI

cr
of Ref. [33]. This

agreement is rather surprising, as our channels are almost two orders of magnitude wider

than the channel used in the work of Baehr and Tough.

We are therefore forced to conclude that the ”superfluid Reynolds number” scaling

does not hold. On the contrary, the agreement of our data with those obtained in a chan-

nel two orders of magnitude thinner strongly suggests that the observed critical velocity

vI

cr
is an intrinsic property of a self-sustaining tangle, in accord with the early consider-

ations and calculations of Schwarz [46] for steady homogeneous counterflow which do

not take explicitly into account any influence of the channel walls and predict the weakly

temperature dependent vI
cr of about 1 cm/s. This conclusion ought to be valid for pure

superflow, as well as, via Galilean transformation also for homogeneous thermal counter-

flow.

5.2.2 Steady-state pure superflow – A-state

Above the critical velocity vI

cr
the turbulent A-state occurs in both channels, characterized

by the observed vortex line density

L1/2 = γ(T )(v − vI

cr
). (5.2)

This functional dependence is similar to that presented by Tough’s group [23], based

on experiments in a circular channel of inner diameter 0.13 mm, however, with much

smaller vI

cr
– we have already mentioned that these experiments gave no evidence of finite

vI

cr
. Later experiments of Baehr and Tough gave, on one hand, a clear evidence of finite vI

cr

of order 1 cm/s, on the other hand these data have not been taken up to sufficiently high

superfluid velocities to extract functional dependence L(vs) above vI

cr
. Moreover, we have

to stress that the measured quantity in these experiments was the temperature difference

along the channel and the vortex line density was deduced from these measurements in

analogy with thermal counterflow experiments assuming full isotropy and homogeneity.

The direct quantitative comparison with our data is therefore not possible.

Still, the functional dependence Eq. 5.2 allows to conclude that the A-state is most

likely analogical to thermal counterflow. This is further supported by the fact that the late

decay of the A-state as well as the late decay of thermal counterflow display the classical

universal decay regime for decaying vortex line density, characterized by the power law

with exponent -3/2. These data (such as shown in Fig. 4.11) do not span sufficiently large
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range of the decaying vortex line density for precise deduction of effective kinematic

viscosity, but they still allow to estimate it to be of order 5×10−4 cm2/s, which is consistent

with the data given in Fig. 5.1.

5.2.3 Steady-state pure superflow – B-state

We have already described that in both our channels the steady A-state, characterized by

L1/2 = γ(T )(v − vI

cr
), gradually changes character and, especially in the smaller 6 mm

channel can be described by

L = β(T )(v − vII

cr
), (5.3)

where vII

cr
of order few cm/s decreases with increasing temperature (see Fig. 5.2 and β

only very weakly (if at all) temperature dependent (see Fig. 4.6).

Because the B-state has been experimentally observed for the first time, it poses a

challenging problem of proposing plausible physical model that would capture the un-

derlying physics. Based on our experimental data, we are offering here the following

phenomenological model (see [P7]).

Our current understanding of the nature of this new B-state is stimulated by the abil-

ity of superfluid to mimic classical flows. The simplest example is the rotating bucket of

He II, where the superfluid mimics solid body rotation via a hexagonal lattice of rectilin-

ear quantized vortices, so that on length scales larger than intervortex distance the flow

appears classical. Could superfluid mimic a classical laminar pipe flow?

To answer this question, let us first consider an ordinary viscous liquid which flows

through a cylindrical pipe of radius R. For not very large Reynolds number the flow has

a parabolic Poiseuille velocity profile which is symmetric relative to the axis of the pipe,

with maximum velocity on it. In cylindrical coordinates (r, φ, z) with the z-axis placed on

the axis of the pipe the parabolic velocity profile can be expressed as

~v = (0, 0, av0(1 − r2

R2
)), (5.4)

where a can be found by integration:

v0 =
1

πR2

∫ R

0

∫

2π

0

r dr dϕ av0(1 − r2

R2
) , (5.5)

which gives a = 2. We shall be interested in vorticity, which in cylindrical coordinates

becomes curl ~v = (0, 4v0
r

R2 , 0), thus its average value yields:

〈ω〉 = 〈curl ~v〉 =
1

πR2

∫ R

0

∫

2π

0

r dr dϕ 4v0

r

R2
=

8

3

v0

R
. (5.6)
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We see that the average vorticity in the pipe is a linear function of the mean velocity;

a fact which we use in building up our model, in the following way. Let us consider

the situation when pure superfluid flows through such a cylindrical pipe and mimics

the normal fluid behaviour with parabolic flow profile. One can imagine vortex rings of

various radii located in parallel planes perpendicular to the velocity vector. Assuming

that the superfluid mimics such a classical flow, we require

〈~ω〉 = 〈curl~v〉 = κL , (5.7)

in analogy with the rotation bucket. The required numerical value of vortex line density

for velocity v0 = 10 cm/s and channel of radius R = 0.3 cm (thus similar in size to our

6 mm channel) becomes L = 8.9 × 104 cm2/s. In other words, this would mean that the

proportionality constant, the β coefficient, is β ≃ 9 × 103 s cm−3; only a factor of 2–3

lower than that experimentally observed. In view of simplicity of this physical picture,

this seems as a remarkable coincidence. We see the semi-quantitative agreement with

our observations and, probably more importantly, the correct prediction of the observed

temperature independent linear behavior of vortex line density with mean superfluid

velocity Eq. 4.8, where the second critical velociy vII

cr
playing a role of the slip velocity on

the solid boundary of the channel.

Let us add few remarks here. In our calculation we have considered a cylindrical

channel with the parabolic flow profile. In fact, our experimental channels are of square

cross-section, so the profile of the flow is more complicated. But more accurate calcula-

tions of β based on classical flow profile in a square pipe does not seem practical, e.g., due

to insufficient entry length to expect the fully developed flow profile. It is well known that

as a rule in classical fluid dynamics, in order to create the fully developed flow profile,

ratio of the channel width to its length have to be 1:50. Moreover, if vortex lines are fully

or partially polarized, it increases the minimum calculated value of L. So far in our con-

siderations we ignored the normal fluid. The net normal fluid flow rate which penetrates

to the channel must be zero, because the ends of the channel are blocked by superleaks.

So we can exclude any kind of flow in which superfluid and normal fluid velocity fields

are fully matched, such as is the case of the rotating bucket. On the other hand, the pres-

ence of vortex tangle gives rise to the mutual friction force which may induce an internal

viscous flow (thus subject to no slip boundary conditions). The dissipation of energy by

the mutual friction force would be minimized if suitable steady flow of the normal fluid

becomes generated. Now, let us assume that deep enough in the B-state the superfluid

has approximately parabolic flow profile, (which might become slightly distorted by this
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5.2 Discussion on pure superflow experiments Discussion

Fig. 5.3: Phenomenological model of the flow. For details, see text.

induced internal normal fluid flow). Taking into account the symmetry of the channel, it

is reasonable to assume the normal flow of approximately toroidal form.

Fig. 5.3 shows the evolution of the normal and superfluid flow profiles graphically.

On increasing vs from zero, there are no quantized vortices (except remnant ones) in the

channel and second sound amplitude remains unchangeable. The superfluid profile is

flat (see (a) in Fig. 5.3), the normal component stays quiescent. The flow is presumably

laminar, until the first critical velocity vI
cr is reached. Then the A-state region, charac-

terized by Eq. 4.7, is observed. The likely forms of normal fluid and (averaged over a

distance greater than the intervortex distance) superfluid flow profiles slightly above vI
cr

are schematically shown in (b). The normal fluid is still approximately quiescent and

the superfluid flow profile is approximately flat. In the B-state (see (c) in Fig. 5.3) the

superfluid has approximately parabolic flow profile, while the normal flow is of approxi-

mately toroidal form. Could such a flow of the normal fluid be detected? We believe that

the answer to this question lies in our decay data – discussion of those follows.

5.2.4 Decay of steady-state pure superflow

The key point here is the exponential part of the decay of the vortex line density that

takes place after the first complex part of the decay, as it has been described in detail

in previous Chapter. This exponential decay could be considered in analogy with the

decay of the oscillatory motion at some particular wave number in viscous fluids (such
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Fig. 5.4: The value of effective kinematic viscosity required by our decay model (filled

red circles) together with νeff (T ) deduced from decaying counterflow (open diamond),

towed grid (up- and down-triangles) and spin-down experiments (blue squares) in He II

(see [8], as well as with theoretical estimate (green crosses connected with the solid line)

as, e.g., decay of the gravity waves on the surface of classical fluids or viscous decay of the

rotational motion of fluid inside a long cylindrical vessel) characterized by exponential

decay of energy of the form

E = E0 exp (− t

τ
) , (5.8)

with the decay time τ−1 = 2πk2, where k is the characteristic wave number [3]. The

observed τ corresponds to a quasi-viscous decay of a toroidal eddy (schematically shown

in Fig. 5.3 (c)(left)): D/2 = 2π/k. It follows that the observed τ would require an effective

kinematic viscosity

νeff = D2/(32π2τ) (5.9)

That our simple model is reasonable is evident from comparison with the theoretical

calculation of νeff (see Chapter 2.5.3) as well as with available data deduced from other

experiments. These include (i) the Prague decaying thermal counterflow, (ii) the Oregon

decaying towed grid He II turbulence (both using the second sound attenuation as the

detection technique) and (iii) and the Manchester spin-down experiments (ion detection
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5.2 Discussion on pure superflow experiments Discussion

technique). Fig. 5.4 shows all these data together.

Formula 5.9 would predict that in the 10 mm channel, τ ought to be about twice as

large, as τ ∼ D2. We have no systematic data from the bigger channel (for experimental

reasons explained above), but our data allow to conclude that this prediction is fulfilled

qualitatively.
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Chapter 6

Conclusions

The present Thesis is dedicated to experimental studies of both steady-state and decaying

flows and quantum turbulence in superfluid 4He, which was generated thermally, by

applying heat power either to the dead end of the counterflow channel or to the fountain

pump above the channel with ends blocked by sintered silver superleaks. Additionally,

the Thesis contains results and analysis of experiments on decaying thermal counterflow.

The main results can be characterized as follows:

(i) An experimental apparatus for generation and detection of quantum turbulence

in He II has been design and constructed, allowing generation and detection of an up-

ward superflow, induced by the fountain pump through vertical channels of square cross-

section with ends blocked by sintered silver superleaks. Home made lifting system based

on a capacitive level meter, ac capacitance bridge, PC controlled Maxon DC stepper motor

and the developed software based on the multifunctional graphical NI LabView pack al-

lows open helium bath experiments with continuous control of the helium level. Various

types of tests confirmed that this apparatus is capable of measurements of the steady-

state as well as decaying vortex line density in such flows, using the second sound at-

tenuation technique to probe them. The construction of second sound transducers and

receivers based on gold-evaporated porous Nuclepore membranes has been largely im-

proved during this work, leading to better sensitivity and reproducibility of this remark-

able detection technique.

(ii) Steady-state flows of He II in two channels of different square cross-section re-

stricted to pure net superflow have been experimentally investigated within the temper-

ature range 1.45-1.95 K. On increasing the heat power, Q̇, several physically distinct flows

have been found. The first one is a potential vortex-free superflow, which upon reaching

the first critical velocity gives way to the turbulent A-state, where approximately homo-
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geneous and isotropic self-sustaining vortex tangle exists, similar as in thermal counter-

flow. An important experimental fact is that the first critical velocity vI
cr, of order 1 cm/s,

does not depend on the channel size and is therefore an intrinsic property of the self-

sustaining vortex tangle. The turbulent A-state, characterized by the vortex line density

L1/2 = γ(T )(vs − vI
cr) gradually changes into the newly discovered B-state, characterized

by L = β(vs − vII
cr ), where β seems temperature independent.

(iii) The temporal decay of steady-state B generated for various superfluid velocities

has been investigated. When Q̇ is switched off, after a complicated fast initial part of the

decay that probably involves thermal relaxation and partial depolarization of the vortex

tangle, the decay gradually becomes exponential in character, of the form L ∝ exp−t/τ ,

where the characteristic decay time τ is only weakly temperature dependent.

(iv) We have developed a simple phenomenological model qualitatively capturing all

the experimentally observed features. The model is built on the assumption that in the

B-state the superfluid velocity profile tries to match the classical laminar parabolic flow

profile. Due to the mutual friction force, a confined viscous normal fluid flow is induced

inside the channel. When the fountain pump is switched off, after an initial decay a

coupled confined quasi-laminar flow of toroidal form of both components establishes,

giving rise to the observed exponential decay.

(v) Based on our analysis of experimental results on decaying counterflow in two

channels of square cross-section, we have deduced the temperature dependence of the

effective kinematic viscosity of turbulent He II, νeff (T ). It is shown to agree qualitatively

with the published data for νeff (T ) calculated based on experiments on decaying grid-

generated He II turbulence.

(vi) Additionally, we have used the developed phenomenological model for deduc-

ing νeff (T ) from our second sound data on decaying pure superflow. With no fitting

parameters, the values of νeff (T ) deduced from the exponential part of the decay agree

quantitatively with those calculated based on various other experiments (decaying towed

grid He II turbulence, spin down experiments, decaying counterflow) as well as with the

theoretical model introduced by Vinen and Niemela. This fact gives us confidence that

our phenomenological model is physically sound.
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