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1. Introdu
tion to hash fun
tion theory1. 1. Cryptographi
 se
ure one-way hash fun
tion
1. 1. 1. hash function

Hash function h is a function that takes an input of arbitrary length and produces a
fixed length output (digest). A hash function is a deterministic function which produ-
ces an output from uniform distribution on any set of random inputs. Hash functions
are used in data structures to ensure constant access time (a hash of an element is
used as its address). In cryptography, they are used as message authentication codes
(MAC), and manipulation detection codes (MDC), therefore they are required to have
additional properties.

1. 1. 2. cryptographic properties� preimage resistance (one-wayness): given a digest D it is hard to find any M
such that D = h(M)

a function is one-way iff� it is easy to compute, which means there is a probabilistic polynomial time
bounded Turing machine which computes h(M) from M� it is hard to invert, which means given a digest D, there is no probabilistic
polynomial time bounded Turing machine which computes M such that
D = h(M) with satisfactory probability; alternatively every probabilistic
polynomial time bounded Turing machine computes M such that D =
h(M) with a negligible probability.

The existence of one-way function is not proved, and a proof of its existence
would be a solution of well-known P = NP problem [24].� second preimage resistance: given an input M1, it is hard to find another input
M2 such that h(M1) = H(M2).� collision-resistance: it is hard to find two different messages M1 and M2 such
that h(M1) = h(M2)

it is hard means there is no better way than a brute force attack, ideally a
hash function is an instance of a random oracle
length(oracle(M)) = n, then� brute force attack on preimage-resistance: takes 2n queries� brute force attack on second preimage-resistance: takes 2n queries� brute force attack on collision-resistance: takes 2n

2 queries

However, we will show that most widely used hash functions do not behave like
a random oracle and a brute force attack requires less computational power.

In this paper whenever we refer to a hash function we mean a cryptographic secure

one-way hash function.

6



1. 2. Constru
tion of a hash fun
tion
One-wayness requires the function to be easily computable. Therefore a hash function

is often constructed from a compression function, which takes fixed length input

and produces fixed output; and the compression function is iterated. A compression

function with cryptographic properties can be used to build a secure hash function.

However, the fact that a hash function is based on a secure compression function is

not sufficient for a hash function to be secure [1].

1. 2. 1. Construction of a compression function

Compression function can be constructed from a block cipher [2].� Davies-Meyer� Miyaguchi-Preneel modification of Davies-Meyer construction
These constructions are widely used, however, they are not secure enough, because

they rely on properties, which a block cipher does not quarantee. For further infor-

mation on block cipher based hash/compression function the reader is referred to

[25].

1. 2. 2. Building of a hash function� Merkle-Damgard [3]� iteration of random oracle using a chaining value (intermediate vector).
Message is padded with zeros.� the digest is the last chaining value

� Merkle-Damgard strenghtening [3]
Merkle and Damgard found independently a construction of a hash function

from a random oracle. The oracle takes an input of fixed length and produces

an output of fixed length. The oracle is parametrized by chaining value.

The first chaining value is called initialization vector (IV) and is publicly known.

The digest is the last chaining value. The oracle takes a chaining value, and a

message block and produces a new chaining value. This way, the computation

is iterated until the end of message is reached. The message is padded with a

block containing the message length.� padding block contains a message length to prevent 2nd preimage long-

message attack.
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� the digest is the last chaining value
� Merkle-Damgard with fixed offset [35]� the last but one chaining value is XORed with publicly known value c� the digest is the last chaining value
� Enveloped Merkle-Damgard [1]� Merkle-Damgard for all blocks save the last one, which produces a chaining

value C� the digest is obtained from a query to a random oracle (a different ran-
dom oracle from the one used in Merkle-Damgard iteration). The oracle is

initialized using publicly known value IV2 (this is sufficient for the oracle

to be different), and the query block is obtained by concatenation of C,

last message block Mlast, and the message length.
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2. Compression fun
tion2. 1. Random Ora
le Model
Random oracle is a black-box supporting a query operation. For a new query it outputs

a random reply from a uniform distibution, and for a repeated query it outputs the

previous reply.

Some explain this as an Elf with a notepad sitting inside the blackbox performing the

following operation.

Everytime a new query comes, he looks it up in his notepad. If he finds the query,

he replies with the value coresponding to the query. If he does not find the query, he

flips a coin for every bit of the output, repiles with such an output, and writes the

pair query ! output into his notepad.2. 2. Birthday paradox
Birthday paradox states that at least two numbers in a collection of n random integers

drawn from a uniform distribution with range (1, N) are the same with probability

p(n;N).

The name is derived from the following special case: In a group of at least 23 randomly

chosen people, the probability that some pair will have the same day of birthday is

more than 50%.

In this thesis, the birthday paradox will also be referred to as an event, that there

is a non-empty intersection of two sets of integers of size n and m with probability

p(n;m;N).

This would be a probability that in a group large enough there is a male and a female

having birthday the same day.

The picture shows a difference between one collection and two sets.

In the one collection case, the probability p(n;N) = 1�Qn−1
k=1 (1� k

N
) � 1� e−

n∗(n−1)
2N .

1� k
N
is a probability that a new integer differs from all (k) integers in the collection.

For n =
p
2N , p(n;N) � 1� e

−1
2 � 0.4

In the two sets case, the probability p(n;m;N) = 1 �Qn

k=1 (1� 1
m
) = 1 � (1 � 1

m
)n,

p(n;m;N) = e−
nm
N , p(n;n;N) � 1� e−n2 .
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1 � 1
m is a probability that a new integer in first set differs from all integers in the

other set.

For n = m =
p

N , p(n;n;N) � 1� e−1 � 0.63
An extended results on birthday attack can be found in [9].

2. 2. 1. Generalized birthday paradox

This attack was introduced by Wagner in [30]. It is a generalization of birthday para-

dox for two sets. Note that the case for two sets explained above can be interpreted as

finding s1 2 X1, and s2 2 X2, such that s1 � s2 = 0. The the solution (s1, . . . , sk) can

be found in Θ(2
n
2 ) steps, and it exists with a good probability iff jX1j � jX2j � 2n.

Generalized birthday paradox for k sets is finding s1 2 X1, . . ., sk 2 Xk, such that

s1� . . .�sk = 0. The solution exists for jX1j� . . .�jXkj � 2n with a good probability,
however an algorithm than would make less than Θ(2

n
2 ) steps was an open problem.

Wagner showed in [30] an algorithm, which finds a solution of s1 2 X1, s2 2 X2, s3 2
X3, s4 2 X4 for jXij = 2n

3 in O(2
n
3 ) steps.

The algorithm can be constructed for + operation as well. Such an algorithm solves

so called k-sum problem, which can be used to solve a discrete logarithm problem.

The reader should refer to [30] for further details.

Attack using generalized birthday paradox can be found in [32].2. 3. Introdu
tion to 
ompression fun
tions
Ideal compression function is a pseudo-ranndom function 2m ! 2h with random oracle
properties. In praxis only indistinguishability from random oracle is required. The

concept of indistinguishability and author’s contribution can be found in the following

chapter.

Let us concentrate on requirements, which any compression function should meet, and

how can we built such a function.

The compression function should meet the following� function is surjective� 8x 2 Rng : jy : C(y) = xj = 2m−h, where m is message block length, h is a

length of hash value, and C is the compression function.

2. 3. 1. Preimage resistance

This property is called one-way ness in complexity theory. The existence of one-way

function is an open problem, which is equivalent to P = NP . The proof can be found

in [24].

f is one-way iff� for every x 2 Dom, f(x) can be computed in polynomial time
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� for any y 2 Rng any polynomial time bounded algorithm A will output x such

that y = f(x) with negligble probability.

For a random oracle, it holds that the preimage can be founnd only by making a

correct query. This event occurs with probability 2−h, and such a propety is also

required from any compression function.

2. 3. 2. Second preimage resistance

For any random oracle it holds, that a second preimage can only be found by making

a correct query. This event occurs with probability 2−h, and such a propety is also

required from any compression function.

2. 3. 3. Collision resistance

For any random oracle it holds that collision can be found using birthday paradox in

2
h
2 queries with approximately 50% probability .

Compression functions are usually based on a block cipher, pseudorandom generator

or some difficult problem in information theory.

Block cipher based compression function are the most usual, and they are described

in many other papers. They are often divided as follows:Expli
it 
onstru
tions of 
ompression fun
tion
Most common constructions are:� Davies-Meyer construction

E

IV

M� Miyaguchi-Preneel construction
EIV

M

The list of all secure constructions based on block cipher can be found in [2].

These constructions are secure in the random oracle model, which follows from

[21]. This was pointed out by Klima in [34] that using an ordinary block cipher in

any of these constructions is not secure. Further explanation of these principles

can be found in [25], and in [26].
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Impli
it 
onstru
tions of 
ompression fun
tion
These constructions are usually based on Davies-Meyer, or Miyaguchi-Preneel con-

struction. The underlying building block is either similar to a block cipher or it is a

block cipher build only for the use in the compression function.� MD5/SHA� Whirlpool, Maelstrom-0� Radio-Gatun� Hash Double Net (which is based on principles of Special Block Cipher from
[34])2. 4. Pseudo-random number generator based fun
tions

2. 4. 1. Introduction

Some proposals for a new hash function are based on pseudo-random number genera-

tor. The general construction is to initialize a pseudo-random number generator with

an IV and message block. Make a few steps, apply a one-way function and trim the

output.

2. 4. 2. RC4-Hash

Basic properties

This hash function is based on RC4 key schedule algorithm, and was proposed in [17].

RC4 algorithm and its key scheduling is studied for a long time. Since the attack

against hash function based on RC4 will lead to an attack against RC4 algorithm, we

have a good security analysis.

RC4-hash is a wide-pipe hash introduced by Lucks in [15]. Therefore it resists to

generic attacks such as [4][5][6][7].

The key schedule algorithm in RC4:

K is a secret key of length κ bytes.

S is a state vector of RC4 of length 28 bytes,

it is a permutation S ∈ SN

procedure RC4-KSA(K) : RC4 Key Schedule algorithm

for i=0 to 28 − 1
S[i] = i

for i=0 to 28 − 1
j = j + S[i] +K[i mod κ]

swap(S[i], S[j])

κ is the size of the secret key in bits

12



S ∈ SN is a state vector of RC4 of length 2
8 bytes.

i = 0

j = 0

procedure RC4-PRBG() : RC4 Pseudo-Random Bit Generator

i = i + 1 mod N

j = j + S[i] mod N

swap(S[i], S[j])

return S[(S[i] + S[j])]

Therefore the inner state of RC4 random byte generator is log2 (jSj � jij � jjj) =
log2 (2

8! � (28)2) � 1700.
The key schedule algorithm seems to be a good pseudo random generator.

RC4-KSA attacks

RC4-hash algorithm

The hash algorithm consists of 3 steps.� padding� iteration� post-processing
Iteration The compression function of RC4-hash is based on RC4-KSA.

X is a message block

(S,j) is initialization vector

procedure C((S,j), X) : RC4-Hash Compression function

for i=0 to 28 − 1
j = j + S[i] +X [r(i)]

swap(S[i], S[j])

return (S, j)

r : 2256 → 264

r | [i,i+63] : 2
64 → 264 is bijection for i ∈ {0, 64, 128, 192}

Post-processing Let (St,jt) be the last chaining value. We produce a hash by ap-

plying two functions.

RC4− hashl = HBGl(OWT (S0 ◦ Sj , j))

13



Where OWT is believed to be a one-way transformation

procedure OWT((S,j)) : One-Way Transformation of RC4-Hash

perm1 = S

for i=0 to 29 − 1
j = j + S[i]

swap(S[i], S[j])

perm2 = S

return (perm1 ◦ perm2 ◦ perm1, j)

procedure HBGl((S,j)) : Hash Byte Generation Algorithm

for i=0 to l

j = j + S[i]

swap(S[i], S[j])

out[i] = S[S[i] + S[j]]

return out

RCHl(M1, M2, ..., Mn) = HBGl(OWT (C(...(C(C(SIV , M1), M2), ...), Mn)))

RC4-hash - choice of initialization vector

Since RC4 cipher has some weak keys, which would reduce the size of internal state,

the chosen IV should not be one of them. For more information reffer to the original

article. 2. 5. DiÆ
ult problem based 
ompression fun
tions
2. 5. 1. VSH

Very smooth hash was proposed by Contini, Lenstra, and Steinfield at Eurocrypt

2006. This function is designed to be provably secure against finding collisions under

an assumption factoring of big integers is difficult. The VSH function cannot be used as

an instance of random oracle, and therefore strictly speaking it is not a hash function.

VSH algorithm

procedure VSH(m) :

l = |m| length of the message in in bits
k = block length

mi is ith bit of message

L =
⌈

l
k

⌉

number of blocks of message

li ∈ {0, 1} such that l =
∑k

l=1 li2
i−1

14



mi = 0 for l < i < Lk padding of last block

define mLk+i = li for 1 ≤ i ≤ k padding with message length

x0 = 1

for j = 0 to L

xj+1 = x2
j

∏k

i=1 p
mjk+i

i mod n

return xL+1

Collision resistance of VSH

VSH was built on a hard problem which arises in factoring of large numbers using

NFS (Number Field Sieve) algorithm.

procedure QS basic(N) :

find x2 ≡ y2 mod N , where x2 and y2 are non-trivial

gcd(x2 − y2, N) / N

There is no efficient algorithm to find such x2 and y2, and it is supposed there is

no probabilistic polynomial time algorithm which would find such pair x2, y2 with a

non-negligable probability.

Definition 2.1: VSSR - Very Smooth number nontrivial modular Square Let N be

the product of two unknown primes and let k < (logn)c.

VSSR problem: Given N , find x 2 Z∗
N such that x2 �Qk

i=0 p
ei

i .

Theorem 2.2: Collision resistance of VSH

Finding a collision in VSH is as hard as solving VSSR.

Proof: Let m, m′ be a collision in VSH. l, l′ bitlengths, and L, L′ number of blocks

of m, m′.

Since m and m′ collide m 6= m′ and xL+1 = x′
L′+1 = digest

Letm[j] be them[j] = (mjk+i)
k
i=1, and t � L is the largest index such that (xt,m[t]) 6=

(x′
t,m

′[t]), ie. (xj ,m[j]) = (x
′
j ,m

′[j]) for t < j < L+ 1.

1. l = l′

(xt)
2 �Qk

i=1 p
mtk+i

i � (xt)
2 �Qk

i=1 p
m′

tk+i

i mod N

Denote

∆ = fi : mtk+i = m′
tk+i, 1 � i � kg

∆10 = fi : mtk+i = 1,m
′
tk+i = 0, 1 � i � kg

Then h
xt

x′
t
�Qi∈∆10

pi

i2 �Qi∈∆ pi mod N� ∆ 6= ; ) collision gives a solution to VSSR.� ∆ = ; ) x2t � x′2
t mod N Since m 6= m′, we know t � 1
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� xt 6� �x′
t mod N , VSSR is solved by factoring N ,

gcd(x2t � x′2
t , N) is a factor of N.� xt � �x′

t mod N ) xt � �x′
t mod N ,

and from the definition of t xt 6= x′
t.

From xt � �x′
t mod N ) xt

x′
t
� �1 mod N�1� �Qi∈∆10

pi

�2 � 1 mod N ) it solves VSSR
2. l 6= l′, since xL+1 = x′

L′+1,
�

xL

x′
L′

�2 �Qk

i=1 p
l′
i
−li

i

Since jl′i � lij = 1 for at least one i, it solves VSSR

Creating collisions

Finding collisions is difficult if and only if the factorization of N is unknown.

Denote ei =
PL

j=0mjk+i2
L−j for 1 � i � k, then VSH(m) =

Qk

i=1 p
ei

i .

Let φ(N) be an Euler function. Then for any a, t, it holds atφ(N) � 1 mod N .

VSH(m) =
Qk

i=1 p
ei

i =
Qk

i=1 p
ei+tiφ(N)
i = VSH(m′)

But such collisions reveals φ(N), and therefore it reveals the factorization of N .

Preimage resistance of VSH

Since the function is collision resistant, the attacker is required to make at least Ω(2
n
2 )

computations. The following algorithm for finding a preimage, which requires Θ(2
n
2 ),

makes use of multiplicative property in time-memory tradeof attack.

H(x ^ y)H(x _ y) � H(x)H(y) mod n

H(y) = H(x)−1H(x ∧ y) H(m) mod n; we will choose x, y such that x ∧ y = 00...0,

this holds for x = x′ || 00...0, and y = 00...0 || y′, where |00...0| = n
2

procedure Preimage(H(m)) :

for 0 ≤ x′ < 2
n
2

x = x′ || 00...0
insert into table H(x)−1H(x ∧ y)H(m)

for 0 ≤ y′ < 2
n
2

y = 00...0 || y′

search in table H(y)

if match found return x || y

The attack has both time and space complexity of O(2
n
2 ), and since we know the

attack has a complexity of at least Ω(2
n
2 ) the preimage attack has complexity of

Θ(2
n
2 ) - under the assumption VSSR problem has a complexity of at least Ω(2

n
2 ).
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VSH-DL : Discrete Logarithm variant of VSH

Definition 2.3: VSDL - Very Smooth number Discrete Log Let p, q be primes with

p = 2q + 1 and let k � (log p)c.
VSDL problem: Given p, find integers e1, e2, . . . , ek such that 2

e1 � Qk

i=2 p
ei

i mod p

with jeij < q for i = 1, 2, . . . , k and at least one of ei 6= 0.
procedure VSH DL(m) :

p is S-bit prime p = 2q + 1, for q prime

k fixed integer, number of small primes

L ≤ S − 2
l = |m| length of the message in in bits
m is Lk-bit message

mi is ith bit of message, i ∈ {1, . . . , Lk}
x0 = 1

for j = 0 to L − 1

xj+1 = x2
j × ∏k

i=1 p
mjk+i

i mod p

return xL

This section contains a summary of [16] and [22]. The main purpose for this section

was presenting a hash function with some provable secure properties.

2. 5. 2. MQ-HASH

The security of this hash function is based on the difficulty of solving randomly chosen

set of multivariate quadratic equations.

Such a function is supposed to be preimage resistant, because solving of multivariate

quadratic equations is an NP-hard problem.

Theorem 2.4: collisions in MQ equations (from [10])

Let Q be a tuple of e quadratic equations f1, . . . , fe in u variables over a finite field F .

For every value δ = (δ1, . . . , δu), it is possible to give, with time complexity O(eu2),

a parametrized description of the set of inputs x = (x1, . . . , xu) and y = (y1, . . . , yu)

colliding though Q and such that y � x = δ, if any.

Proof:

Given δ, one computes a linear system Lδ(z) = 0 in the indeterminate z, where Lδ

is the affine mapping defined by Lδ : z ! Q(z + δ) � Q(z). Thus, any colliding pair

(x, y) = (x, x + δ) for Q with prescribed difference δ translates into a solution x of a

linear system, and any standard algorithm for solving linear system recovers the set

of solutions of the collision equation Q(z) = Q(z + δ)
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Algorithm for collision in MQ equation

Eq1 : f1(z1 + δ1, z2 + δ2, . . . , zu + δu)� f1(z1, z2, . . . , zu) = 0
=
Pu

i=1

Pu

j=1 a1,i,j(zi + δi)(zj + δj)�Pu

i=1

Pu

j=1 a1,i,j(zi)(zj)
=
Pu

i=1

Pu

j=1 a1,i,jδjzi +
Pu

i=1 a1,i,jδiδj

Eq2 : f2(z1 + δ1, z2 + δ2, . . . , zu + δu)� f2(z1, z2, . . . , zu) = 0
=
Pu

i=1

Pu

j=1 a2,i,jδjzi +
Pu

i=1 a2,i,jδiδj

...
Eqe : fe(z1 + δ1, z2 + δ2, . . . , zu + δu)� fe(z1, z2, . . . , zu) = 0

=
Pu

i=1

Pu

j=1 ae,i,jδjzi +
Pu

i=1 ae,i,jδiδj

It gives us e equations of u variables, which can be solved using Gauss elimination in

O(eu2).

Setting (x, y) = (z, z + δ) gives a collision (f1(x), . . . , fe(x)) = (f1(y), . . . , fe(y)).0BB�Pu

j=0 a1,1,jδj

Pu

j=0 a1,2,jδj . . .
Pu

j=0 a1,u,jδjPu

j=0 a2,1,jδj

Pu

j=0 a2,2,jδj . . .
Pu

j=0 a2,u,jδj

...
...

. . .
...Pu

j=0 ae,1,jδj

Pu

j=0 ae,2,jδj . . .
Pu

j=0 ae,u,jδj

1CCA0BB� z1
z2
...
ze

1CCA = 0BB��Pu

i=1 a1,i,jδiδj�Pu

i=1 a2,i,jδiδj

...�Pu

i=1 ae,i,jδiδj

1CCA
Using Gauss elimination algorithm, we can find z, such that the equations hold. Gauss

elimination algorithm run in time O(eu2), and returns a set of solutions for such δ.

The set is empty, if a collision for such δ does not exist.

Compression function of MQ-HASH

As we have seen in previous theorem, MQ-Hash has to be built so that it is not a

plain multivariate quadratic equation. If we have a hash function containing a plain

multivariate quadratic equation for each bit of an output, the hash function itself does

not contain any message expansion.

The expansion function for MQ-Hash is another multivariate quadratic equation.

The MQ-HASH compression function can be defined as g Æ f , where

f : F m+n ! F r; x = (c1, . . . , cn, b1, . . . , bm)! f(x) = (f(x1), . . . , f(xr))

g : F r ! F n; η = (η1, . . . , ηr)! g(η) = (g1(η), . . . , gn(η))

MQ-HASH: vi = g Æ f(vi−1,Mi)

MQ-HASH(M1jjM2jj . . . jjMn) = g Æ f(. . . (g Æ f(g Æ f(v0,M1),M2)) . . . ,Mn)

This section presented a hash function with some provable secure properties. The only

source for this section was [10]. The reader is encouraged to refer to [18], and [11] to

understand preimage attacks against some constructions.
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3. Authenti
ation s
hemes3. 1. COMP-128 hash fun
tion
GSM authentication is a standard challenge-response protocol. Authentication ser-

ver sends via base station (BS) a random challenge to a new mobile station (MS).

Both authentication server and mobile station compute a response using so called A3

algorithm, the challenge, and secret key. Mobile station sends the response to the au-

thentication server. The server compares the received value with the computed value,

and authenticates the mobile station if and only if values are same.

The A3 algorithm must not leak any information about the secret key. A3 algorithm

was not required to be collision resistant, because in general a collision is not an attack

against authentication protocol. A3 algorithm is performed on SIM card so that the

secret key never leaves the chip.

A3 and A8 algorithms in GSM were implemented using COMP-128 hash function.

The COMP-128 algorithm was not publicly known until 1997, when an incomplete

specification appeared on usenet. The remaining parts were reversed engineered soon.

After that cryptologists pointed out there is a flaw (called narrow pipe) in the algo-

rithm. The attacker can produce collisions by changing only a few bytes of an input,

and such collisions leaks information about the secret key.

The occurence of a specific collision at the beginning of the algorithm, and such

collision propagates into the digest. Since the collision in hash implies with high

probability a collision in the narrow pipe for specific inputs, one can use a collision in

narrow pipe to reconstruct two bytes of the secret key.

|Secret Key| = 128 bits
|Challenge| = 128 bits
procedure A3(Secret Key, Challenge) : algorithm on SIM card

Y = COMP128(Secret Key, Challenge)

return [Y ]310

|Secret Key| = 128 bits
|Challenge| = 128 bits
procedure A8(Secret Key, Challenge) : algorithm on SIM card

Y = COMP128(Secret Key, Challenge)

return [Y ]9632

|Challenge| = 128 bits
procedure Authenticate Mobile(Challenge) : authentication algorithm interface
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Secret Key = read from SIM (does not leave SIM card)

return A3(Secret Key, Challenge) . . . computed by SIM card

procedure Authenticate Provider() : authentication algorithm at a provider

Secret Key = read from database

Challenge = Random()

if Authenticate Mobile(Challenge) = A3(Secret Key, Challenge)

return ok

else

return failure

COMP-128 algorithm.

|Secret Key| = 128 bits
|Challenge| = 128 bits
X is an input array of length 32 bytes

procedure COMP128(Secret Key, Challenge) : cryptographic part of the algorithm

X [16 . . .31] = Challenge

for j = 0 to 7

X [0 . . . 15] = Secret Key

COMP128 Compress(X)

Form bits from bytes = convert 32 4-bit numbers to 16 8-bit numbers

if j 6= 7 Permutation
Y = compressed 16 bytes output of COMP128(X) into 12 bytes

return Y

table T0 is a function T0 : 2
9 → 28

table T1 is a function T1 : 2
8 → 27

table T2 is a function T2 : 2
7 → 26

table T3 is a function T3 : 2
6 → 25

table T4 is a function T4 : 2
5 → 24

X is an input array of length 32 bytes

procedure COMP128 Compress(X) : cryptographic part of the algorithm

for j = 0 to 4

for k = 0 to 2j − 1
for l = 0 to 24−j − 1

m = l + k ∗ 25−j

n = m+ 24−j

y = ( X [m] + 2 ∗ X [n]) mod 29−j

z = (2 ∗ X [m] + X [n]) mod 29−j
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X [m] = Tj[y]

X [n] = Tj[z]

3. 1. 1. Narrow pipe attack

The name of the attack suggests there is a trail in the algorithm, such that only a

few bits of the output may cause a collision on a few bits (somewhere) during the

algorithm. If the attacker sets bits outside the narrow pipe same for both inputs, a

collision in the narrow pipe propagates throughout the algorithm into the digest.

The narrow pipe in COMP128 is at the beginning of COMP128 Compress. The at-

tacker forces a collision in the first run of COMP128 Compress (which is repeated 8

times). The collision propagates to the digest, and the attacker finds the secret key

(using brute force search on bits of narrow pipe), which leads to this collision.

Graphical representation of COMP128 Compress the algorithm.

procedure COMP128 Compress(X) : cryptographic part of the algorithm

level0 :

for l = 0 to 15

m = l

n = m+ 24

X [m] = T0[( X [m] + 2 ∗ X [n]) mod 29]

X [n] = T0[(2 ∗ X [m] + X [n]) mod 29]

level1 :

for k = 0 to 1

for l = 0 to 7

m = l + k ∗ 24

n = m+ 23

X [m] = T1[( X [m] + 2 ∗ X [n]) mod 28]

X [n] = T1[(2 ∗ X [m] + X [n]) mod 28]

21



level2 :

for k = 0 to 3

for l = 0 to 3

m = l + k ∗ 23

n = m+ 22

X [m] = T2[( X [m] + 2 ∗ X [n]) mod 27]

X [n] = T2[(2 ∗ X [m] + X [n]) mod 27]

level3 :

for k = 0 to 7

for l = 0 to 1

m = l + k ∗ 22

n = m+ 21

X [m] = T3[( X [m] + 2 ∗ X [n]) mod 26]

X [n] = T3[(2 ∗ X [m] + X [n]) mod 26]

level4 :

for k = 0 to 15

m = k ∗ 2
n = m+ 1

X [m] = T4[( X [m] + 2 ∗ X [n]) mod 25]

X [n] = T4[(2 ∗ X [m] + X [n]) mod 25]
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COMP128 Compress the algorithm.

Graphical representation of narrow pipe.

Bytes i, i+ 8, i+ 16, i+ 24 in level1 function depends only on bytes i, i+ 8, i+ 16,

i+ 24 of the input array X. Bytes i, i+ 8 are bytes of a secret key, bytes i+ 16, and

i+ 24 are bytes of a challenge. Bytes i+ 16, and i+ 24 are varied until a collision is

found. Other bytes in the challenge are fixed (but random).

Since T1 function is T1 : 2
8 ! 27 there are collisions. The probability of a collision

can be computed using a formula for birthday paradox. If all but two bytes: i + 16,

i+24 are fixed (a = 16 bits), then all but 4 outputs i, i+8, i+16, i+24 of function

level1 are constant, the output of T1 table is a 7-bit number. Therefore the length
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of the pipe (number of bits that can be varied) is b = 4 � 7 = 28 bits. According to
birthday paradox, the probability of a collision is 1� e

−n2

2∗m , where n = 2a and m = 2b.

And after substitution 1� e
−(216)2

2∗228 = 0, 9997. An average number of tests required to

obtain a collision is E =
p

π � m
2 , E =

q
π � 2282 = 214.326 = 20538. Since we can only

see the collision at the end of computation, we need to know what is the probability

a collision from COMP128 is the collision in level2. The probability of a collision in

A3 hash function after E queries is 1 � e
−(214.326)2

2∗232 = 0, 0479. This gives us enough

confidence, the collision is at level2. For more confidence, we can use the output from

A8 algorithm. It gives us 1� e
−(214.326)2

2∗232+64 � 3 � 10−21 � 0 probability of a collision.
Once a collision is found it is easy to recover the secret key using brute force search.

procedure CollisionSearch(i) : search for a collision for ith byte

for t = 0 to 127

challengenew[t] = Random() - held fixed for all bytes but ith and i+ 8th

for j = 0 to 255

for k = 0 to 255

challengenew[i] = j

challengenew[i+ 8] = k

response = COMP128(challengenew, key)

challengeold = search in database(response)

if challengeold 6= null
return (challengenew, challengeold)

else

add to database((response, challengenew))

procedure KeySearch(chall1, chall2, i) : recover ith byte of secret key from collision

for t = 0 to 127

key[t] = 0 - only bytes i and i+ 8 are important for key recovery

for j = 0 to 255

for k = 0 to 255

key[i] = j

key[i+ 8] = k

if COMP128(chall1 || key ) = COMP128(chall2 || key)

return (key[i], key[i+ 8])

return failure collision was not in the second round

procedure CloneSim() : recover the secret key from SIM

for i = 0 to 7

(challengenew, challengeold) = CollisionSearch(i)

(key[i], key[i+ 8]) = KeySearch(chall1, chall2, i)
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return key

3. 1. 2. Partitioning attack

There is also a side channel attack (called partitioning attack) which requires � 210
queries in non-adaptive version and 8 queries in adaptive version.

The attack is quite simple. The table T0 has size 2
9. Since addressing is often 8-bit, the

table T0 is implemented as T00 and T01. One can distinguish which table is accessed

using side-channel such as differential power analysis or electromagnetic emission.

Since the access to the table depends directly on bytes of secret key and challenge,

one can distinguish, whether x[i] � 28 or x[i] > 28. Using binary search (adaptively

chosen queries), one can distinguish the value of byte x[i] in 8 = log2 2
8 queries. Non-

adaptive mode requires much more queries, so that the probability one can distinguish

the bit is high enough. Moreover, we can perform such search in parallel on all bits of

the secret key.

Table T0 is a function T0 : 2
9 ! 28, which is often implemented using T00 : 2

8 ! 28,
T01 : 2

8 ! 28
level0 :

for l = 0 to 15

m = l

n = m+ 24

M = ( X [m] + 2 ∗ X [n]) mod 29

N = (2 ∗ X [m] + X [n]) mod 29

// X [m] = T0[M ]

if (M < 28) X [m] = T00[M mod 28]

else X [m] = T01[M mod 28]

// X [n] = T0[N ]

if (N < 28) X [m] = T00[N mod 28]

else X [n] = T01[N mod 28]

Using side channel, one can distinguish whether if, or else branch was executed. Let

l be fixed. X[m] is an unknown byte of secret key, X[n] = B is a known byte of

the challenge. Side channel gives the attacker information X[m] + 2 �B mod 29 < 28,

2 �X[m] + B < 28 mod 29. The attacker wants to distinguish the challenge byte B,

so that (2 �X[m] +B) mod 29 < 28 and (X[m] + 2 �B) mod 29 � 28 or the other way
round.

f(S,R) : 0 � S + 2 �R mod 29 < 28 ! 0
: 256 � S + 2 �R mod 29 < 512! 1
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g(S,R) : 0 � 2 � S +R mod 29 < 28 ! 0
: 256 � 2 � S +R mod 29 < 512! 1

Functions f(S, .), g(S, .) are connected function save for two points.

procedure distinguishPartitionl(R): using f

R = X [l+ 24] - byte of random challenge

S = X [l] - byte of secret key

// X [m] = T0[M ]

if ( (S + 2 ∗ R mod 29) < 28)

return 0

else

return 1

procedure distinguishKeyl(): using f

Rorig = Random() - byte of random challenge

R = Rorig - byte of random challenge

prev8 = distinguishPartitionl(R)

if ( prev8 = 0) low = 0, high = 28

else low = 28, high = 29

for i = 7 downto 0

previ−1 = distinguishPartitionl(R + (−1)previ+1 − previ2i)

R = R+ (−1)previ+1 − previ2i

if ( previ = previ−1)

high = high − 2i

else ( previ 6= previ−1)

low = low + 2i

low ≤ 2S + Rorig < high holds in both cases, and high − low = 2i

After the algorithm, we have either

distinguishPartitionl(R) 6= distinguishPartitionl(R� 1), or
distinguishPartitionl(R) 6= distinguishPartitionl(R + 1)

Having such R, we can distinguish S. Let us consider only one case, the rest is similar.

procedure distinguishKeyl(R): using f

part = distinguishPartitionl(R)

if ( part = 0)

0 ≤ 2S +R < 256 mod 29

256 ≤ 2S +R+ 1 < 512 mod 29

⇒ 256 ≤ 2S +R+ 1 < 257 mod 29

255 − R
2 ≤ S < 256 −R

2 mod 28
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⇒ S = 255 − R
2 mod 28

if ( part = 1)

0 ≤ 2S +R+ 1 < 256 mod 29

256 ≤ 2S +R < 512 mod 29

⇒ 0 ≤ 2S +R+ 1 < 1 mod 29

−1− R
2 ≤ S < −R

2 mod 28

⇒ S = −1− R
2 mod 28

We used 8 adaptive queries in distinguishKeyl(). Since we can do the measurement

parallel on all the bytes of secret key, we need only 8 adaptive queries to recover S.

For graphs and details on both adaptive and non-adaptive version of attack, the reader

sould refer to [12]. 3. 2. SQUASH
This hash function was proposed by Adi Shamir at FCE 2008 [14]. The function

is to be used on RFID chips and other constrained devices in a challenge response

authentication protocol. Since the response is being computed on a constrained device,

the function itself has to be fast, easy to implement, and it should have as low memory

requirements as possible. SQUASH is to be used in a challenge response protocol only,

therefore the only hash function property important for this application is a preimage

resistance.

Security of any challenge response authentication scheme requires it is impossible to

deduce a key using a set of pairs (challenge, response), where challenges can be chosen

adaptively.

SQUASH is based on squaring modulo a composite number N .

The motivation comes from the Rabin encryption scheme.

N is a public parameter, N = pq, p, q prime numbers

m is a message to be encrypted

procedure Rabin encrypt(m, N) :

c = m2 mod N

return c

p, q prime numbers - private parameters, N = pq

c is a message to be decrypted

procedure Rabin decrypt(c, p, q):

m =
√

c mod pq

return m

Rabin encryption scheme is provably secure against ciphertext only attack under the

assumption that factoring of a composite N is difficult.
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Algorithm for computing square root modulo a composite number N =
Q

pei

i , where

pi’s are known different prime numbers, consists of Shanks-Tonelli algorithm for com-

puting square root modulo prime number (i.e. solving the congruence x2 � a mod pi).

Then the Hensel lifting is used to lift the solution of x2 � a mod pi to modulo

x2 � a mod pei

i , and Chinese remainder theorem to combine solutions for different

pei

i s to obtain a solution x2 � a (mod
Q

pei

i ). The reader can refer to chapter

12.5 of [31] for further information. The difficulty of square rooting modN is equi-

valent to factoring of N . The algorithm would be generating a random number x

and computing y =
p

x2 mod N mod N , if x 6= �y, then it holds that (x � y)/N

because x2 � y2 mod N , i.e. x2 � y2 � 0 mod N , (x � y)(x + y) � 0 mod N )
(x� y)(x+ y) � aN .

Let S be a secret key known only by the chip and an authentication centre, and

R be a random challenge sent by the authentication centre to the chip. SQUASH

algorithm consists of a function M = Mix(S,R), and outputs a section of bits of

number M2 mod N .

The N in SQUASH is chosen as a composite number with an unknown factorisation.

Everyone can compute M2 mod N to produce a digest, but no one can computep
M mod N .

Notation:

n = logN .

For X = (xn−1, . . . , x0), 0 � j < k � n denote [X]kj = (xk−1, . . . , xj−1).

Challenge response protocols usually use a secret key of length 64 bits and a challenge

of the same length. They are ”securely” mixed so that it is difficult to compute the

secret key from adaptive challenges.

The challenge and the secret key are mixed together using a function Mix(S,R). The

authentication response is SQUASHS = [Mix(S,R)2]kj , for k�j = 64 and j = n
2� k−j

2 .

Squaring operation mod N ensures non-invertibility, but its algebraic nature (a+b)2 =

a2 + 2ab+ b2, (ab)2 = a2b2 creates weaknesses. These weaknesses should be overcome

by a good choice of the Mix function. Various choices of Mix will be discussed later

in this section.

Speedups

Using a good choice of modulus N one can lower the time and memory requirements

on the computational power of the chip. This is very important, since a low cost device

such as RFID chip usually suffers from having enough memory, computational power,

or energy to execute the algorithm.

α) choice of an easy to store modulus N
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1. consider a Mersenne number N = 2n � 1, this number contains n � 1
ones and no zero. Therefore we need to store only the number n, and this

requires storing logn = log logN instead of logN as usual.

2. consider a number N = 2n +1, this number contains two ones, one at the

beginning, and the other at the end of the number, and the rest of n � 2
digits are zeroes. Therefore we can store n�2 instead of N , which requires
requires only log logN bits.

3. consider a number N = 2n + c, and c is fixed. The minimum number of

bits required to store such number is log n+log c = log logN+log c, which

is less than logN for a small c.

β) choice of a modulus N such that modN is easy to compute

1. For the choice of a modulus N = 2n � 1, consider a number in the
form a2n + b (mod 2n � 1), where b < 2n. Since 2n � 1 mod 2n � 1,
a2n + b � a+ b (mod 2n � 1).

2. For the choice of a modulus N = 2n + 1, consider a number in the

form a2n + b (mod 2n + 1), where b < 2n. Since 2n � �1 (mod 2n + 1),
a2n + b � �a+ b (mod 2n + 1).

The SQUASH proposal composite Mersenne numbers were suggested as a good choice

of N - both α1) and β1) are used to speed up the computation. The number n = 1277

was selected, because N = 21277�1 is a composite number for which the factorisation
is not known.

squaring operation in natural numbers

In this section X is a n-bit number.

Square(X) is an algorithm for multiplying of integer taught at basic school.

input X = (xn−1, ...., x0)

procedure Square(x): square in Z

carry = 0

for i = 0 to k

for j = 0 to i

carry = carry + xi ∗ xj

outi = carry mod 2

carry = carry / 2

return out
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The result of this algorithm is a number a � 2n + b for some a, b. Now we need to

perform the squaring operation modN .

operation modulo 2n � 1
Let us take a closer look on the squaring operation modulo N = 2n�1, then we build
an algorithm that performs squaring modulo N .

squaring modulo 2n � 1
input x = (xn−1, ...., x0)

procedure Squash Square(x): square in Z2n−1

carry = 0

for j = 0 to n − 1
for v = 0 to n − 1

carry = carry + xv ∗ xj−v mod n

outj = carry mod 2

carry = carry / 2

return out
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Note that we need only n-bit output buffer, instead of 2n-bit buffer which would be

required by squaring operation in Z.

Generic proposal for SQUASH is [Mix(S,R)2]kj for a secure mixing functionMix(S,R).

Since only some bits of squaring operation are used as a response, we would like to

compute only the necessary bits of the response to save computational power of the

chip.

If we knew the correct carry at position j the Squash Square algorithm could be run

for bits used in the digest only. Moreover we can guess the carry with probability 2−s

if we run the algorithm for s so called safeguard bits before the digest window. See

the diagram below.

This gives us the complete SQUASH algorithm

S is a secret key

R is a random challenge

j is a lower index of output

k is a higher index of output

l is a length of output window

s is a length of carry safeguard

n is such that 2n − 1 is a hard to factor composite number
procedure SQUASHn

S (R): square in Z2n−1

X = Mix(S, R)

j = n
2 − l

2

k = n
2 +

l
2

carry = 0

for q = j − s to k

for v = 0 to n − 1
carry = carry + xv ∗ xq−v mod n

x = carry mod 2

carry = carry / 2
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if q ≥ low output x

Algoritmus 3.1:

Observation 3.1:

SQUASHS(R) outputs
�
Mix(S,R)2 mod N

�k
j
with probability 1� 1

2l
,

and
�
Mix(S,R)2 mod N

�k
j
� 1 with probability 1

2l

3. 2. 1. Security of SQUASH

The attacker can see only [Mix(S,R)2 mod N ]kj , while jMix(S,R)2j = n � k � j.

If factorisation of N is known, it is easy to find a square root. However, since only

a few bits of the number Mix(S,R)2 mod N is known to an attacker, they cannot

perform square root algorithm.

For a number a = [Mix(S,R)2 mod N ]kj , there are 2
n−k+j−1 numbers b, such that

[b2]kj = a. And b =Mix(S,R) only for one of them.

Therefore when factorisation of N is found, the security of SQUASH relies on the

difficulty of guessing the correct b.

Note: the attacker needs at least |S|
k−j different pairs (challenge, response) to have

enough information to distinguish the correct S.

SQUASH, SQUASH128

The paper [14] contained two proposals. SQUASH is a generic method to construct a

secure hash function for authentication schemes. This function uses a modulus 21277�1.
It is a composite number of an unknown factorisation. The Mix(S,R) function is not

specified for SQUASH .

SQUASH128 is constructed the same way. However its modulus is only 2
128 � 1 the

factorisation of which is easy to find using the advanced factoring algorithms such

as number field sieve. SQUASH128 uses for Mix(S,R) a non linear feedback shift

register from GRAIN128 cipher.

Motivation for attacks.

Rabin encryption scheme is provably secure against ciphertext only attack. But the

attack model for SQUASH is different. The attacker can deduce the secret key from

multiple pairs (challenge, response). They can wiretap not only a response but also

the challenge. Usually they can also communicate with the chip and send their own

challenges.

Insecure mix functions

This section explains an attack based on algebraic properties of squaring operation in

SQUASH . The attack is prevented by a good choice of the mix function.
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Let us start an analysis using simple insecure mix functions.

1. Mix+(S,R) = S +R

SQUASH+(R) =
[

Mix+(S, R)2 mod N
]k

j
=

[

(S + R)2 mod N
]k

j

The secret key recovery algorithm is based on the fact that (S + R)2 � S2 =

2SR + R2. Therefore, the attacker does not have to perform square rooting,

and they extract information about the secret key S from the difference of two

responses.

The following sections gives guidelines how to implement an easy algorithm to

distinguish the secret key S, and gives the proof of correctness of such algorithm.

The requirement of the algorithm is the fact, that the adversary is allowed to

send challenges to the chip.

The challenges sent by the adversary are 0, and 2i for i 2 [0, . . . , n�1]. We shall
recover bits of the secret key from the difference of responses SQUASH+(2

i)�
SQUASH+(0).

Auxiliary theorems

Theorem 3.2: [A]kj = [A mod 2
k+1]kj , for every A 2 Z+

Theorem 3.3: [A]kj = [A]
k
j mod 2

k−j+1, for every A 2 Z+

Definition 3.4: [A]kj = [A mod 2
k+1]kj , for every A 2 Z−

Theorem 3.5: [A +B]kj =
�
[A]kj + [B]

k
j + a

�
mod 2k−j+1, for every A,B 2 Z0+

for some a 2 f0, 1g
Proof:

Denote by ai the i-th bit of A, bi i-th bit of B, di i-th bit of A + B. Then

di = ai+ bi+ ci−1� 2ci, for some ci 2 f0, 1g is such that di 2 f0, 1g and c−1 = 0.

The zero bit of [A+B]kj equals to aj + bj + cj−1 � 2cj .

The zero bit of
�
[A]kj + [B]

k
j + a

�
equals to aj + bj + a� 2cj.

Let us choose a = cj−1. Then, the zero bit of [A+B]kj equals to aj+bj+cj−1�2cj,

the zero bit of
�
[A]kj + [B]

k
j + a

�
equals to aj + bj + cj−1 � 2cj , which gives us

the same carry cj in both cases.

The number [A + B]kj has k � j + 1 bits (including leading zeros), the number�
[A]kj + [B]

k
j + a

�
can have more than k � j + 1 bits.

Therefore we take
�
[A]kj + [B]

k
j + a

�
mod 2k−j+1 to obtain the number with k�

j + 1 bits.

Theorem 3.6: [A�aN ]kj = [A+a]kj , for every A 2 Z0+, and for every a 2 f0, 1, 2g
Proof:
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[A� aN ]kj =
�
(A� aN) mod 2k+1

�k
j
=
�
(A� a(2n � 1)) mod 2k+1�k

j

= [
�
A� a(2n � 1) + a2n−k−12k+1

�
mod 2k+1]kj

= [(A� a(2n � 1) + a2n) mod 2k+1]kj = [(A+ a) mod 2k+1]kj = [A+ a]kj

Proof of correctness and explanation of the attack

Notation 3.7: ∆i = SQUASH+(2
i)� SQUASH+(0)

The following theorem allows the attacker to recover bits of the secret key from

the difference of two queries to the chip.

Theorem 3.8: For all i 2 Z, we have��
2i+1S mod N

��k
j
=

�
∆i � ��22i mod N

��k
j
� ci

�
mod 2k−j+1,

for some ci 2 f0, 1, 2, 3g
Proof: The following computation is performed in Z2k−j+1

∆i = SQUASH+(2
i)− SQUASH+(0)

=
[

(

S + 2i
)2
mod N

]k

j
−

[(

S2 mod N
)]k

j

=
[ ( (

S2 mod N
)

+
(

2i+1S mod N
)

+
(

22i mod N
)

mod N
) ]k

j
−

[ (

S2 mod N
) ]k

j

=
[ (

S2 mod N
)

+
(

2i+1S mod N
)

+
(

22i mod N
)

− aN
]k

j
−

[ (

S2 mod N
) ]k

j
,

for some a ∈ {0, 1, 2}
=

[

S2 mod N
]k

j
+

[(

2i+1S mod N
)

+
(

22i mod N
)

− aN
]k

j
−

[ (

S2 mod N
) ]k

j
+ b,

for some a ∈ {0, 1, 2}, b ∈ {0, 1}, using (3.5).
=

[(

2i+1S mod N
)

+
(

22i mod N
)

− aN
]k

j
+ b,

for some a ∈ {0, 1, 2}, b ∈ {0, 1}
=

[(

2i+1S mod N
)]k

j
+

[(

22i mod N
)

− aN
]k

j
+ b+ c,

for some a ∈ {0, 1, 2}, b, c ∈ {0, 1}, using (3.5).
=

[(

2i+1S mod N
)]k

j
+

[(

22i mod N
)

+ a
]k

j
+ b+ c,

for some a ∈ {0, 1, 2}, b, c ∈ {0, 1}, using (3.6).
=

[(

2i+1S mod N
)]k

j
+

[(

22i mod N
)]k

j
+ [a]kj + b+ c+ d,

for some a ∈ {0, 1, 2}, b, c, d ∈ {0, 1}, using (3.5).
=

[(

2i+1S mod N
)]k

j
+

[(

22i mod N
)]k

j
+ b+ c+ d,

for some b, c, d ∈ {0, 1}, since [a]kj = 0 for a ∈ {0, 1, 2}.
=

[(

2i+1S mod N
)]k

j
+

[(

22i mod N
)]k

j
+ ci,

for some ci ∈ {0, 1, 2, 3}.

Observation 3.9:

If we use the algorithm (3.1) instead of squaring, we have��
2i+1S mod N

��k
j
= ∆i � ��22i mod N

��k
j
� ci mod 2

k−j+1,

for some ci 2 f�1, 0, 1, 2, 3, 4g
Proof:

From (3.1), it holds SQUASH+(2
i) � SQUASH+(0) =

h�
S + 2i

�2
mod N

ik

j
�

c1 � �S2 mod N
�k
j
+ c2, c1, c2 2 f0, 1g.
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Observation 3.10:�
2i+1(a+ 2n−i−1b) mod N

�
= b+ 2i+1a mod N , for N = 2n � 1

The following theorem shows, the attacker can recover bit at any position q,

because they can choose i such that q 2 [j � i� 1 mod n, . . . , k � i� 1 mod n]

Theorem 3.11: 2i+1S mod N = S<<<i+1

The following theorem shows, that if we forget last few bits in (3.8), we can

reduce the difference to f0, 1g. Moreover, if the difference is either zero or one,
and the attacker knows a bit of the result, they can distinguish the difference.

Theorem 3.12:

For all i 2 Z, we have�
2i+1S mod N

�k
j+m

=

�h �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

m� a

�
mod 2k−j−m+1, for a 2 f0, 1g, and 3 � m < k � j

Proof:

From (3.8), we have��
2i+1S mod N

��k
j
= ∆i � �22i mod N

�k
j
� ci mod 2

k−j+1,

for some ci 2 f�1, 0, 1, 2, 3, 4g
Therefore� ��
2i+1S mod N

��k
j

�k−j

m

=

�
∆i � �22i mod N

�k
j
� ci mod 2

k−j+1

�k−j

m

,

for some ci 2 f�1, 0, 1, 2, 3, 4g
And since

�
[A]kj

�k−j

m

=

�
A

�k

j+m�
2i+1S mod N

�k

j+m

=

�
∆i � �22i mod N

�k
j
+ 1� c′i mod 2

k−j+1

�k−j

m

,

for some c′i 2 f0, 1, 2, 3, 4, 5g�
2i+1S mod N

�k

j+m

=

� �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1 � c′i

�k−j

m

,

for some c′i 2 f0, 1, 2, 3, 4, 5g�
2i+1S mod N

�k
j+m

=

� h �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

m� [c′i]k−j

3 � a

�
mod 2k−j−m+1,

for some c′i 2 f0, 1, 2, 3, 4, 5g, a 2 f0, 1g
Since [c′i]

k−j

m = 0, for every c′i 2 f0, 1, 2, 3, 4g and m � 3, we have
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�
2i+1S mod N

�k
j+m

=

� h �
∆i � ��22i mod N

��k
j
+ 1

�
mod 2k−j+1

ik−j

m� a

�
mod 2k−j−m+1, a 2 f0, 1g

The following theorems will be used to recover a single bit or multiple bits of

secret key.

Theorem 3.13:

Denote δi,c
m the m-th bit of ∆i� �22i mod N

�k
j
� c, and let C = f�1, 0, 1, 2, 3g be

the set of all possible differences. Then if there is b 2 f0, 1g, such that δi,c
m = b

for all c 2 C, then sj+m−i−1 mod n = b

Proof:

One of differences ci 2 f�1, 0, 1, 2, 3, 4g is the correct one. If all of them lead to
the same value of the m-th bit, then the correct one leads to this value as well.

From theorem (3.8), the m-th bit of ∆i � �
22i mod N

�k
j
� ci is the m-th bit

of
��
2i+1S mod N

��k
j
. The m-th bit of

�
2i+1S mod N

�k
j
is the (m+ j)-th bit of�

2i+1S mod N
�
. And from (3.11) this is the (m+ j� i� 1 mod n)-th bit of S. If

the m-th bit of ∆i � �22i mod N
�k
j
� ci is constant for all ci 2 f�1, 0, 1, 2, 3, 4g,

then it equals to the m-th bit of
��
2i+1S mod N

��k
j

The theorem (3.13) is used to recover a bit of the secret key only once. The value

of the recovered bit is then used in the following query to distinguish difference.

Therefore, the attacker can avoid usage of (3.13), and try all possible value of

bit sq. Only one of them would lead to the correct S.

Once the attacker recovers a single bit sq, they can recover bits sq+1, . . . , sk using

(3.12), and the following theorem.

Theorem 3.14:

Denote δi,c
m them-th bit of

h �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

3
�c, and

let C = f0, 1g be the set of all possible differences. Then if there is b 2 f0, 1g,
such that δi,c

m = b for all c 2 C, then sj+m−i−1 mod n = b

Proof:

The proof follows the proof of (3.13).

Once the attacker knows the bit sq, they can use this bit to distinguish the

difference cj−q+3 (of another query) using the following theorems.

Theorem 3.15:
�
[S]k−i

j−i

�k−j−1

0
=
�
[S]k−i−1

j−i−1

�k−j

1
.

Proof:
�
[S]k−i

j−i

�k−j−1

0
= [S]k−i−1

j−i and
�
[S]k−i−1

j−i−1

�k−j

1
= [S]k−i−1

j−i

36



Theorem 3.16: [ [S]k−i
j−i ]

k−j−m
0 = [ [S]k−i−m

j−i−m ]
k−j
m .

Proof:
�
[S]k−i

j−i

�k−j−m

0
= [S]k−m

j−i and
�
[S]k−m

j−i−m

�k−j

m
= [S]k−m

j−i

Theorem 3.17:

Let sq, the q-th bit of secret key S, be known. Then bits [q + 1 mod n, . . . , q +

k � j � 3 mod n] can be recovered from ∆j−q+3

Proof:

First, let us find i, such that j � i � 1 = q � 3 (mod n), which holds for

i = j � q + 2 (mod n), i.e. the known bit of secret key is at index three in

∆i ���22i mod N
��k

j
�ci mod 2

k−j+1, for some ci 2 f�1, 0, 1, 2, 3, 4g. It means,
it is at index zero inh �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

3
� c′i, for some c′i 2 f0, 1g.

Since the attacker knows the bit at position zero, they also know the difference

c′i. Bits of secret key can therefore be recovered using (3.12).

Theorem (3.14) can be used to recover at least one bit of secret key, ifh �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

3
6= 0, orh �

∆i � �22i mod N
�k
j
+ 1

�
mod 2k−j+1

ik−j

3
6= 2k−j−3.

In the following observations, we will discuss the remaining cases.

Observation 3.18:

If it holds for every i, that
h �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

m
= 0,

for 3 � m < k � j, the attacker knows that S = 000 . . . 00.

Proof:

Let the attacker try sq = 1, this will help them to recover cj−q+3 = �1. This
leads to si = 1 for all i 2 fj � q + 3, . . . , k � qg, since cj−q+3 = �1 andh �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

m
= 0.

Using (3.15) we can use the recovered bits of the secret key to distinguish another

difference cm = �1. At the end of the algorithm, we will recover S = 111 . . . 11 =
000 . . . 00 mod N .

Let the attacker try sq = 0, this will lead to S = 000 . . . 00 using the same

technique as above.

Observation 3.19:

If there is an l such that Xl = 2
k−j−3, then Xl+1 6= 2k−j−3, and Xl+1 6= 0.

Proof:

If Xl = 2
k−j−3 then sk−l−1 mod n 6= sk−l−2 mod n. This will cause Xl+1 6= 0, and

Xl 6= 2k−j−3.
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Secret key recovery

For every i, let us compute

Xi =
h �
∆i � �22i mod N

�k
j
+ 1

�
mod 2k−j+1

ik−j

3
, and store them in the

database. Let us find Xl in database, Xl 6= 0 & Xl 6= 2k−j−3. Using (3.14) let us

recover some bits of S. Using (3.15), and (3.12) for l+1 mod n, l+2 mod n, . . .

the attacker recovers all bits of S.

The only special case (3.18), which does not allow to distinguish any bit of secret

key for certain, can easily be tested.

The number Xl, such that Xl 6= 0 & Xl 6= 2k−j−3, is used to recover at least one

bit of the secret key. Using (3.15), and (3.12) for l � 1 the attacker can recover
another bit of secret key.

The algorithm to recover the secret key can be found on an enclosed CD.

The algorithm is based on an active adversary. However, sometimes only a pas-

sive adversary is allowed. This attack can be extended even to the passive ad-

versary, however, it is no longer such an easy task to obtain bits of the secret

key S from the SQUASH+(Ra)� SQUASH+(Rb).

2. Mix⊕(S,R) = S �R

SQUASH⊕(R) =
[

Mix⊕(S, R)2 mod N
]k

j
=

[

(S ⊕ R)2 mod N
]k

j

The technique of secret key recovery algorithm is the same as for SQUASH+.

However, the attacker will recover either S, or (S xor 111 . . . 11).

The challenges are 0, and 2i for i 2 [0, . . . , n � 1]. We shall recover bits of the
secret key from difference of responses SQUASH⊕(2

i)� SQUASH⊕(0).

The algorithm is based on two facts� It holds either S � 2i = S + 2i, or S � 2i = S � 2i.� It holds (S +R)2 � S2 = 2SR+R2.

It means that (S � 2i)2 � S2 = 2i+1S + 22i, or (S � 2i)2 � S2 = �2i+1S + 22i.
Therefore, the adversary can deduce a sequence of bits of either S or �S from

the difference SQUASH⊕(2
i)� SQUASH⊕(0).

The following theorems form, together with the theorems from the previous

section, the proof of correctness of the key recovery algorithm for SQUASH⊕.

Notation 3.20: ∆i = SQUASH⊕(2
i)� SQUASH⊕(0)

Notation 3.21: :X = X xor 111 . . . 11

Observation 3.22: Let m > k, for numbers [A mod (2m�1)]kj , [�A mod (2m�
1)]kj it holds [A mod (2

m � 1)]kj xor ([�A mod (2m � 1)]kj ) = 111 . . . 11,
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Proof:

Denote A = (am−1, . . . , a0), and B = (:am−1, . . . ,:a0)

Then A+B mod (2m � 1) = 111 . . . 11 mod (2m � 1) = 0 mod (2m � 1)
Theorem 3.23:

∆i � �22i mod N
�k
j
� c mod 2k−j+1 =

�
2i+1S mod N

�k
j
, or

∆i � �22i mod N
�k
j
� c mod 2k−j+1 =

�
2i+1(:S) mod N

�k
j

for some c 2 f�1, 0, 1, 2, 3g
Proof:

S � 2i = S + 2i or S � 2i = S � 2i, the rest of the proof follows the proof of
theorem (3.8).

If S is such that S � 2i = S + 2i, i.e. si = 0, then

∆i � ��22i mod N
��k

j
� c mod 2k−j+1 =

��
2i+1S mod N

��k
j

If S is such that S � 2i = S � 2i, i.e. si = 1, then

∆i � ��22i mod N
��k

j
� c mod 2k−j+1 =

���2i+1S mod N
��k

j

for some c 2 f�1, 0, 1, 2, 3g
From (3.22), we have

���2i+1S mod N
��k

j
=
��
2i+1(�S) mod N

��k
j

=
��
2i+1(:S) mod N

��k
j

Recover secret key from ∆is

From ∆0, we recover a sequence of bits of either S or :S using (3.13). Let m

be the lowest index of distinguished bit. The attacker recovered either [S]k−1m ,

or [:S]k−1m . Denote T0 the sequence of recovered bits.

From ∆−1, we recover a sequence of bits of either S or :S using (3.13). Let n be

the lowest index of distinguished bit. Then the attacker recovered either [S]kn,

or [:S]kn. Denote T−1 the sequence of recovered bits.

We do not know which bits we have recovered from ∆0 and ∆−1. However, we

know (from (3.15) ) that [S]k−1m , and [S]kn have a same sequence of bits, and that

[:S]k−1m , and [:S]kn have a same sequence of bits as well.

If there is an overlap between T0, and T−1, then we recovered bits of S (or bits of:S) in both cases. If there is no overlap between T0, and T−1, then we recovered

bits of S in one case and bits if :S in the other case. Therefore there is overlap

between T0, and :T−1, and we can recover [S]
k

m, or [:S]km from T0, and :T−1.

From ∆−2, we can find [S]
k+1
m , or [:S]k+1m . And so on.

At the end of the algorithm, we get S ′ and S ′′. And it holds either S ′ = S, S ′′ =:S, or S ′′ = S, S ′ = :S. Let us compute
�
S ′2 mod N

�k
j
, and

�
S ′′2 mod N

�k
j
.

One of them equals to SQUASH⊕(0). If both of them does, let us distinguish

the correct one using SQUASH⊕(2
i) for some i 2 f0, . . . , n� 1g.
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Linear feedback shift register based mix functions

Linear feedback shift register takes a sequence of bits as an input and produces

a sequence of bits as an output. One step of LFSR can be expressed using

a matrix A. Linear feedback shift register performs l steps nad therefore the

transformation LFSR(X) = Al(X).

In the following section linear feedback shift register is referred to as LFSR.
3. MixLFSR+(S,R) = LFSR(S +R)

SQUASHLFSR+
(R) = (LFSR(S + R))2 mod N

Al(S +Ri) = Al(S) + Al(Ri) = T +Xi.

SQUASHS
LFSR+(R) = [(LFSR(S +R))2 mod N ]kj

= [(Al(S +R))2 mod N ]kj

= [(Al(S) + Al(R))2 mod N ]kj

= [(T +X)2 mod N ]kj

= SQUASHT
+(X)

Therefore the secret key of SQUASHS
LFSR+ can be recovered using the same

method as SQUASH+. The challenges to be used are Ri = A−l2i, R = A−l0.

Once we recover secret key T of SQUASH+, let us compute

A−lT = A−lAl(S) = S to recover secret key S of SQUASHLFSR+

4. MixLFSR||(S,R) = LFSR(SjjR)
SQUASHLFSR||

(R) = [(LFSR(S || R))2 mod N ]kj

In this section SQUASH denotes SQUASHLFSR||
.

The following text is only a suggestion, how the secret key S can be recovered,

if a LFSR and concatenation is applied in the mix function.

In this section, we suppose that jRj = jSj = n, and N = 22n � 1.
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The MixLFSR||(S,R) = LFSR(SjjR) can be reduced to the previous case, since
SjjR = 2nS +R. Denote S ′ = 2nS.

Then MixLFSR||(S,R) =MixLFSR+(S
′, R) = LFSR(S ′ +R).

However, we cannot use the method suggested in the previous case, because that

case required that for every i there is a challenge Xi, such that LFSR(S+Xi) =

T + 2i (it held since jSj = jRj = jN j). But this requirement will not be met in
this case, since jSj = jRj = jpN j.
We will use a similar approach in this case to recover the secret key.

∆a,b = SQUASHLFSR||
(S,Ra)� SQUASHLFSR||

(S,Ra)

= [(LFSR(2nS +Ra))
2 mod N ]kj � [(LFSR(2nS +Rb))

2 mod N ]kj

= [(LFSR(2nS) + LFSR(Ra))
2 mod N ]kj� [(LFSR(2nS) + LFSR(Rb))
2 mod N ]kj

Denote T = LFSR(S), and

= [(2nT +Ra)
2 mod N ]kj � [(2nT +Rb)

2 mod N ]kj

= [22nT 2 + 2RaT +R2a mod N ]kj � [22nT 2 + 2RbT +R2b mod N ]kj

Using (3.5), (3.6), 22nX � X (mod 22n � 1), and the fact that for every 0 �
a, b, c < N it holds a+ b+ c mod N = a+ b+ c� dN , for some d 2 f0, 1, 2g.

= [T 2 mod N ]kj + [2
n+1RaT mod N ]kj + [R

2
a mod N ]kj� [T 2 mod N ]kj � [2n+1RbT mod N ]kj � [R2b mod N ]kj + a,

for some a 2 f�3,�2,�1, 0, 1, 2, 3g
= [2n+1RaT mod N ]kj + [R

2
a mod N ]kj� [2n+1RbT mod N ]kj � [R2b mod N ]kj + a,

for some a 2 f�3,�2,�1, 0, 1, 2, 3g
= [2n+1(Ra �Rb)T mod N ]kj + [R

2
a mod N ]kj � [R2b mod N ]kj + a,

for some a 2 f�4,�3,�2,�1, 0, 1, 2, 3g
This gives us

∆a,b � [R2a mod N ]kj + [R
2
b mod N ]kj � a = [2n+1(Ra �Rb)LFSR(S) mod N ]kj

for some a 2 f�4,�3,�2,�1, 0, 1, 2, 3g,
Since we know bits of ∆a,b, Ra, and Rb, we can find relations between bits of S.

Given many different pairs Ra, Rb, we can find bits of S.

However, Ra �Rb, has a domain size
p

N + 1, and not N . Therefore it may be

impossible to obtain relations for some bits of S.

Denote S? the unrecoverable part of the secret key, and S⋆, the recoverable part

of the secret key. We have S = S? + S⋆.

Moreover it holds,

∆a,b � [R2a mod N ]kj + [R
2
b mod N ]kj � a = [2n+1(Ra �Rb)LFSR(S⋆) mod N ]kj

for some a 2 f�4,�3,�2,�1, 0, 1, 2, 3g,
since there is no relation in ∆a,b � [R2a mod N ]kj + [R

2
b mod N ]kj for S?.
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The attacker cannot find the S? using our technique, however, they can forge a

response to any challenge.

Forgery of a response

Let X be a new challenge from the authentication server,

and let
�
R,SQUASHLFSR||

(S,R)
�
be a pair of a challenge, and the correspon-

ding response from the chip.

∆X = SQUASHLFSR||
(S,X)� SQUASHLFSR||

(S,R)

= [2n+1(X �R)LFSR(S⋆) mod N ]kj + [X
2 mod N ]kj� [R2 mod N ]kj + a,

for some a 2 f�4,�3,�2,�1, 0, 1, 2, 3g
Since we know S⋆, we compute ∆X with probability

1
|{−4,−3,−2,−1,0,1,2,3}| =

1
8 .

The response to the challenge X is

SQUASHLFSR||
(S,X) = ∆X + SQUASHLFSR||

(S,R).

5. Mix||+(S,R) = LFSR(SjjS +R)

SQUASHLFSR|| +
(R) = (LFSR(S || S + R))2 mod N

The initial state of register is SjjS +R =

0BBBBBBB�
s1
...
sn

s1 + r1
...

sn + rn

1CCCCCCCA = T

0BBBBBBB�
s1
...
sn

r1
...
rn

1CCCCCCCA.
For some matrix T . and si and ri are bits of S, R.

Al(SjjS +Ri) = AlT (SjjRi).

This case can be solved using the same method as in the previous case, using a

different LFSR transformation matrix B =
�
AlT

�−l
.

SQUASHLFSR||
(R) =

�
(LFSR(SjjR))2 mod N

�k
j
=
�
Bl(SjjR) mod N

�k
j

=
�
AlT (SjjR) mod N

�k
j
=
�
Al(SjjS +R) mod N

�k
j
= SQUASHLFSR||+

(R)3. 3. SQUASH128 proposal
The final proposal of [14] is the following Mix function. jSj = jRj = 64 is a bitlength
of a secret key and a challenge.

Mix(S,R) = GRAINNLFSR
128 (Sjj(S �R))

SQUASH128 =
h�

GRAINNLFSR
128 (Sjj(S �R))

�2i80
48

where GRAINNLFSR
128 is a non-linear feedback shift register used in GRAIN128 stream

cipher.
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Let

0BBBBBBB�
b1
...
...
...
...

b128

1CCCCCCCA =
0BBBBBBB�

s1
...

s64
s1 � r1
...

s64 � r64

1CCCCCCCA
GRAINNLFSR

128 uses the following non-linear function:

bi⊕128 = bi�bi+26�b56�b91�b96�b3b67�b11b13�b17b18�b27b59�b40b48�b61b65�b68b84.

Note that 32 steps can be done simultaneously, and NLFSR can run both forward

and backward.

The register is clocked 512 times, while GRAIN register is clocked 256 times only. If

the register was clocked only 256 times, it would be feasible to find a linear equation for

each bit xi of Mix(S,R) = (x1, . . . , x128) using contemporary computational power.

If we had such equations we could use a similar approach as in SQUASHLFSR||+
.

If the NLFSR could be approximated with some LFSR, the attacker could use the

previous case SQUASHLFSR||+
, and generate responses.

Note that for R = (1, . . . , 1), it holds:

0BBBBBBB�
b1
...
...
...
...

b128

1CCCCCCCA =
0BBBBBBB�

s1
...

s64:s1
...:s64

1CCCCCCCA, and similary for any R.

This property can be used to reduce memory requirements of finding linear equations

for xi in Mix(S,R) = (x1, . . . , x128). However for a 512 steps of NLFSR the require-

ments are too high, even if the memory requirements of equations are reduced using

the following x&x = x, x� :x = 1, x&:x = 0.

In another attack, one can try to find some differential characteristic of Mix(S,R),

and follow the rey recovery of SQUASH⊕
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4. Generi
 atta
ks on iterative hash fun
tions4. 1. Joux multi
ollision atta
k
A r-multicollision is a r-tuple of messages which hash to the same value.

If the hash function behaved like a random oracle, obtaining 2k-multicollision would

require 2k2
n
2 computations of hash/compression function (2

n
2 queries to a random

oracle to meet requirements of birthday paradox, 2k is a multiplication factor to

ensure the attacker can obtain 2k colliding messages).

However, Joux found a simple generic attack on an iterated hash function, that requi-

res only k2
n
2 computations of compression function.

The only requirement of Joux attack is a linear iteration of a random oracle using a

chaining value. Merkle-Damgard construction meets these requirements, and therefore

it is vulnerable to this attack. But even if the iteration is not linear and any message

block can be used up to k times, the attack can be extended to count such security

enforcements [4].4. 2. Atta
k on iterative hash fun
tion
The hash function is constructed by iteration of a random oracle (compression function),

which takes two inputs: chaining value and message block. First chaining value is pu-

blicly known.

The computation of a hash function goes as follows: A random oracle is initialized

with a chaining value (the first chaining value is publicly known initialization vector).

Then the function reads the first message block and outputs a new chaining value;

and the iteration continues.

Since random oracles are vulnerable to birthday paradox attack (and this attack can-

not be prevented), it can be mounted to find a collision on first message block. The

birthday paradox attack takes approximately 2
n
2 queries to a random oracle (com-

putations of a compression function). This way the attacker obtains two different

message blocks, and both of them transforms chaining value IV1 to IV2, which means

the attacker obtains a collision after the first message block. Since the birthday para-

dox has no requirements on input chaining value (it has no requirements on a random

oracle), the birthday paradox can be used in the next step to obtain a collision after a

second message block. This way the attacker obtains two options for the first message

block, and two options for the second message block, and therefore they obtain 22

different 2-block messages, and all of them have the same hash. The birthday paradox

attack can be used again to obtain a collision on IV3 giving an attacker 2
3 different

messages. From induction, the attacker obtains 2i messages after ith usage of birthday

paradox. Therefore the 2k-multicollision attack takes only k2
n
2 .
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The following diagram shows the attack. The arrows indicates the message block.

The circle represents a chaining value. The start point of the arrow is the old chaining

value, and the end point of the arrow is a new chaining value (produced by a random

oracle initialized with the old chaining value and using a message block as a query).

Both arrows have the same start point, because the old chaining value is the same for

both message blocks; and they have the same end point, because the random oracle

outputs the same chaining value for both message blocks (because they are found

using birthday paradox, so that this condition holds).

This attack was first presented by Antoine Joux in [5].4. 3. Atta
ks on strengthen 
onstru
tions
Even though the attack is general, this basic variant can be easily prevented. Using a

birthday paradox attack, the attacker obtains two messages, such that

Random oracleIVi
(M1) = Random oracleIVi

(M2) holds. But it is very unlikely the

message blocks M1, M2 would collide on a different random oracle. Using the first

message block once again at the end of the message would prevent this attack (only

its basic variant).

A different random oracle (processing the same message block) can be obtained by

message expansion (using message block more than once), because the random oracle

would be initialized using a different chaining value and the following inequality holds

with a very high probability: Random oracleIVi
6= Random oracleIVj

for i 6= j.

Another way to obtain a different random oracle is using a different class of ran-

dom oracles (this means a different compression function - effectively a different hash

function).
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4. 3. 1. Concatenation of different hash functions

For a security improvement, the final digest can be obtained by concatenation of two

or more hashes.

As discussed above, it is unlikely, that message blocks colliding on a random oracle

Oracle1 would collide on a random oracleOracle2 as well. Indeed birthday paradox can

be used on a larger random oracle (which is constructed by concatenation of outputs

of Oracle1 and Oracle2 - if this were the only possible attack, the construction would

be secure).

Joux presented in [5] another attack on this construction. Suppose F and G are iterated

hash functions with an output of nf and ng bits respectively, and nf � ng. The attacker

can create 2
ng

2 multicollision in ng2
nf

2 computations of F’s compression function. Since

they have 2
ng

2 different messages, they can find a collision from birthday paradox with

50% probability. c(f) (c(g)) denotes compression function of f (g).

The first diagram shows a multicollision in f long enough, so that the attacker can

produce enough messages for birthday paradox and find a collision in g. The second

diagram shows the collision; one colliding message is dashed line, the other one is

dotted line.

4. 3. 2. Concatenation and expansion of a message

Another security improvement might be an expansion of the message.

Expansion of a message means that a message block can be used more than once by

a hash function. As was discussed above, the basic variant of Joux attack cannot deal

with it.

The limitation of Joux attack is the fact that a pair of message blocks is bound to a

certain input chaining value. If the input chaining value is different, message blocks

are likely to lead to different chaining values.

46



4. 4. Atta
k on ICE hash fun
tion
The security of combination of expansion and concatenation of different hash function

seems to be better than a simple iterative construction (a message block is used many

times in different hash functions; the output values of functions are concatenated to

form a digest - the message has to collide on every hash function), but Hoch and Sha-

mir presented in [4] an attack against both ICE (iterated, concatenated, expanded),

and TCE (tree based, concatenated, expanded) hash functions.

In a general case, the ICE hash function expands message blocks up to k times and

it can process the copies of a block anytime during the computation of a digest.

We will explain only a successive permutation case.

In this case the message is processed in k rounds. In every round the message is

permuted. The initialization vector for every round is a fixed publicly known value

(this gives us a different hash function for every round). The final digest is obtained

by concatenation of all digests from rounds 1 to k.

A hash function in next paragraph is a simple case of iterated, concatenated and ex-

panded hash function F . It consists of three different hash functions f1, f2, f3. Their

output is concatenated to form a final digest of F . Each fi can use a different permu-

tation of message blocks.

multicollision in f1
To create 2r-multicollision in F , an attacker has to generate a large multicollision in

f1, say 2
m-multicollision. They can use Joux multicollision attack. The expansion of

a message does not introduce any problems in this stage. Expanded message blocks,

which are already fixed, are not used for multicollision. They can change only the

intermediate chaining value, not a number of multicollisions (and therefore they will

not influence the birthday paradox).

To obtain a multicollision in f2, the attacker has to deal with a fact that a hash

function is different (sometimes only an initial chaining value of a hash function is
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different). They can, however, use the Joux attack on concatenated hash function.

This attack will give them a smaller multicollision which will work for both f1 and f2.

finding a multicollision in f2 and f3

The attacker has a 2m-multicollision in f1. They produce 2 (from 2
n
2 ) messages by

fixation of message blocks. If they find such a multicollision for every group of n
2 blocks,

they obtain a 2
m
n
2 -multicollision in f2. The reason why this works is straightforward.

Fixation of some blocks in multicollision in f1 does not change the hash of f1. There

is enough messages for an attacker to find a collision in f2, and the colliding messages

can be obtained by fixation of some blocks.

For f3 the collision is found in the same way. All possible paths over a group of
n
2

blocks will give the attacker 2
n
2 different messages, and from birthday paradox one

pair of messages will hash to the same chaining value. In this case, the attacker choose

for every group which message (one from the pair - both of them collide in f2 ) will

be used in collision.

The general case can be reduced to a successive permutation case. For more info the

reader is referred to [4]. The reduction is based on the fact that for a long message,

the attacker can reduce a general case to the successive permutation case by fixation

of some message blocks.4. 5. Expandable message atta
k4. 6. Expandable message
A technique similar to Joux multicollision, can be used to construct an expandable

message and execute a 2nd preimage attack. (α, β)-expandable message is a set of

messages which have a constant hash value in some interval (α, β), where α (β) is the

message length (number of message blocks).

4. 7. Usage of an expandable message
In chapter 1 a 2nd preimage attack on non-strengthen Merkle-Damgard construction

was mentioned (it works for long messages). The strengthen Merkle-Damgard con-
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struction adds a padding block which contains the message length. The padding

block is used as an instrument preventing 2nd preimage attack. Having an expan-

dable message the attack can be mounted on strengthen Merkle-Damgard, because

expandable message can be expanded to desired length, and therefore 2nd preimage

can be found in less than 2n.4. 8. Example of an expandable message
4, 20-expandable message

The bigger rectangle is a not expanded message block, the small rectangles form an ex-

panded message block. The pair of not expanded message block and expanded message

block is referred to as expandable message block. f1, 2i+1g-expandable message block
leads to the same chaining value for both 1 and 2i + 1 length.

By concatenation of expandable blocks the attacker can obtain any message of length2 (k, 2k+1 + k) with constant hash value.4. 9. Building of an expandable message
As it was mentioned before, (k, 2k+1+k)-expandable message can be constructed using

k f1, 2i+1g-expandable message blocks for i 2 (1, k). The message of a desired length
l is constructed by expanding ith block iff the number l � k has 1 on ith position in

binary representation.

message of length 11 built from 4, 20-expandable message

4. 9. 1. Building of an expandable blockf1, 2i+1g-expandable message block can be constructed using a birthday paradox. The
attacker creates two sets of chaining values of size 2

n
2 . They generate the messages

(do not have to be random - because the output of random oracle will be random

anyway) of length 1 and 2i+1 blocks and obtain two messages of different length that

lead to the same chaining value (from birthday paradox).
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The attacker creates two sets of pairs (message block Mi, chaining value Ci+1) such

that Ci+1 = OracleCi
(Mi,0).

Set S0 contains pairs (Mi,0, Ci+1), where Mi,0 is a non-expanded message block; set

S1 contains pairs (Mi,1, Ci+1), where Mi,1 is an expanded message block.

Because chaining values Ci+1 are random (regardless the randomness of Mi - the

value is an output from random oracle), if sets S0 and S1 are big enough, the attacker

can find two pairs (using a birthday paradox) (Mi,0, Ci+1,0), (Mi,1, Ci+1,1), such that

Ci+1,0 = Ci+1,1. For a satisfactory probability, the size of sets should be 2
n
2 .

Note that the expandable message block is bound to the input chaining value Ci, and

it requires a constant random oracle.

Arrows represents a query to a random oracle using a corresponding message block.

Note that expandable message block is bound to one input chaining value only and it is

not required meet to its properties for any other input chaining value. It is a set of two

message blocks M1,M2 of different length, such that OracleIV (M1) = OracleIV (M2)

for chaining value IV .4. 10. Complexity of building an expandable message
Complexity of the algorithm is measured in queries to a random oracle. Any other

operation is considered to be constant time. Complexity of building an f1, 2i + 1g-
expandable block is 2i + 2

n
2
+1; 2i + 2

n
2 to build the set S0 and 2

n
2 to build the set S1.

Finding of a common chaining value in sets S0 and S1 is considered to be constant

time operation (it does not require a query to random oracle).4. 11. Prevention of long message 2nd preimage atta
k
The long-message attack can be prevented even if iterative hash function is used.

Merkle-Damgard iteration can be expressed by IVi = Oracle(Mi, IVi−1).
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Consider a modification Oraclei(Mi, IVi−1). The oracle is not constant in the iteration

and it depends on the number of processed blocks. Therefore the attacker cannot build

an expandable message (using our algorithm).4. 12. Nostradamus (herding) atta
k
This is an attack against the commitment property of a hash function. It was first

proposed by Kesley in [7]. Their analysis has shown, that some hash function based

commitment schemes use a property not guaranteed by a hash function. This leads

to an introduction of a new property called Chosen target forced prefix preimage

resistance (CTFP-preimage resistance).4. 13. Motivation
Alice claims to have some knowledge, and she does not want to reveal it to Bob.

On the other hand, she wants to prove to Bob, she knows. Alice hashes the message

and sends the digest to Bob. Alice’s message is hidden from Bob, because the hash

function is preimage resistant. When Alice needs to keep the secret no longer, she

reveals the message to Bob.

Bob computes its digest and compare it to Alice’s committed digest. If they equals,

Bob trusts Alice she had the knowledge. In bit-commitment scheme, Bob relies on

collision resistance property, because Alice could have used a birthday paradox attack

to create two values for one commitment.

But if Alice claims to know the future, she cannot use the birthday paradox attack

(because she cannot generate all possible outcomes). This sounds reasonable for Bob,

and he can trust Alice she knew the future, when she reveals the message which hashes

to committed value. One would expect Alice needs approximately 2digest length queries

to decieve Bob. However, the attack which is explained later requires approximately

2
digest length

2 queries and some precomputation.

In Mental poker scheme, Alice can gain an advantage using the birthday paradox

attack to obtain two messages for one commitment. But Alice would definitely prefer

to be able to generate the entire message after she knows the Bob’s value; having two

options is an advantage, but it may not be enough for an attack.4. 14. Atta
k
The attack which will be explained in this section gives an attacker a power to commit

a hash value of a message they do not know. When they get to know the message,

they compute the suffix of the message, so that the result hashes to the committed

value.

This is a new property called Chosen target forced prefix preimage attack (the attacker

can find a message (with any prefix they want) which hashes to a digest (which was

chosen prior to knowledge of the prefix).
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The attack is time-memory trade off. It requires a precomputed structure with a lot

of entry points and only one exit point. An entry point is a chaining value. Exit point

is a digest D. If a prefix leads to a chaining value C which is also an entry point of

the structure, the attacker can easily find a suffix, such that h(preffix jjsuffix) = D.

The structure can be built of an expandable message, which will be explained at the

end of the chapter. Kelsey proposed in [7] a structure (called Diamond structure)

which leads to a shorter message than the expandable message structure. In [29] it

was shown that the attack can be extended to concatenated hash functions.

The Diamond structure has a lot of entry points (chaining values which allows to

enter the structure). The structure is shown in the next diagram. In this case, entry

points are all chaining values on the top most level (3 in an example) (dashed lines

are possible connections from prefix to a diamond structure). If an attack is mounted

on non-strengthen Merkle-Damgard construction, any chaining value in the diamond

structure can be used as entry point.

Digest

4. 14. 1. Building of a diamond structure

The naive approach of building diamond structure is fixing the nodes in the tree and

using a birthday paradox to find next node. This approach has a complexity
Pk

i=0 2
i �

2
n
2 = 2k+1+

n
2 queries to random oracle. (An attacker has to perform approximately 2

n
2

queries to a random oracle from every chaining value on level i, which has 2i nodes.)
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A better approach does not fix a position of a node in the tree, and therefore it requires

less queries to a random oracle.

The number of queries from a single IV is 2
n
2
− i
2
+ 1
2 , the total work to go to a lower

level is 2
n
2
+ i
2
+ 1
2 . This gives us a total work of

Pk

i=0 2
n
2
+ i
2
+ 1
2 = 2

n
2
+ k+1

2
+ 1
2 queries to the

random oracle. This is a sufficient number of queries to find a perfect matching on set

of Si with a high probability (the sets Si and Sj for i 6= j are connected in a graph

(they match) iff Si

T
Sj 6= ;).4. 15. Usage of Diamond stru
ture in an atta
k

The attacker builds a diamond structure with 2
n
2 entry points, and they commit the

digest of diamond structure.

Once they know the prefix of the message, they compute a chaining value IVc of their

message. Then they make 2
n
2 queries with linking message blocks to receive a set of 2

n
2

chaining values. From birthday paradox one of the chaining values is an entry point

to the diamond structure. They submit a message constructed by concatenation of
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prefix, linking message block, and all message blocks on the path from the entry point

to the exit point (a dashed line).

Building of diamond structure requires a lot of queries to a random oracle and only top

most level can be used for entry points (otherwise the length of message is different.

This leads to a different padding block and therefore a different digest). If a short

expandable message is appended to a diamond structure, all intermediate chaining

value in the diamond structure can be used as an entry point.

The attack is very similar but uses all intermediate values of diamond structure.

An expandable message can be used for commitment forgery as well.

For non-strengthen Merkle-Damgard construction, the structure can be a long chain

of random messages (entry points are all chaining values). For strengthen Merkle-

Damgard construction, the structure would consist of a long chain of random messages

and an expandable message. But this attack would lead to a long message.
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4. 16. Solution
Presented attacks show that iterative hash function does not behave like a random

oracle. Every property (save preimage resistance) can be attacked with a complexity

O(2
n
2 ). A requirement of another property was shown in the herding attack - an

attack against a random oracle giving a same result is the preimage attack, however,

a time-memory trade off attack is possible against iterative hash function.

Since the iterative construction is required in many applications (computing a digest

of a data stream) the only solution is computational security. The bound of compu-

tational security is 280, and therefore every secure hash function should have a digest

at least 160 bits long.

4. 16. 1. Wide-pipe hash

Lucks presented in [15] a method to prevent multicollisions in an iterative hash

function. This method is provably secure against multicollisions.

IV
′

i+1 = Compress(IV
′

i , IV
′′

i jjMi) and IV
′′

i+1 = Compress(IV
′′

i , IV
′

i jjMi). There is a

non standard assumption on the compression function called cross collision resistance,

which means it is difficult to find a message M , such that

Compress(IV
′

i , IV
′′

i ,M) = Compress(IV
′′

i , IV
′

i ,M), for IV
′

i 6= IV
′′

i .

It prevents a reduction of the wide pipe to a narrow pipe hash IV
′

i+1 = IV
′′

i+1 =

Compress(IVi, IVi,Mi).

The version suggested by Preneel uses two different random oracles Compress1 and

Compress2.

IV
′

i+1 = Compress1(IV
′

i , IV
′′

i ,Mi), and IV
′′

i+1 = Compress2(IV
′

i , IV
′′

i ,Mi).

cross collision resistance

Let us find a probability of a cross collision for a random oracle O.
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This means finding a message M such that for IV
′

i 6= IV
′′

i , O(IV
′

i , IV
′′

i jjM) =
O(IV

′′

i , IV
′

i jjM).
The space of possible values O(IV

′

i , IV
′′

i jjM), O(IV
′′

i , IV
′

i jjM) is 22h, and only 2h
values are of the form X,X. The probability of finding M1,M2, such that

O(IV
′

i , IV
′′

i jjM1)O(IV
′′

i , IV
′

i jjM2) is 2
−h. Since the message block M is the same for

both X = O(IV
′

i , IV
′′

i jjM), and X = O(IV
′′

i , IV
′

i jjM), the probability of finding such
a message M is 2−h−m.

We will show that if a compression function is constructed using Davies-Meyer con-

struction, and the builtin block cipher is ideal, the probability of a cross collision is

the same, which also follows from [21].

Davies-Meyer construction: F (H,M) = EM(H) +H , where E is a block cipher.

If the compression function is a Davies-Meyer function, we have:

IV
′

i+1 = Compress(IV
′

i , IV
′′

i jjMi) = E
IV

′′
i
||Mi
(IV

′

i ) + IV
′

i

IV
′′

i+1 = Compress(IV
′′

i , IV
′

i jjMi) = EIV
′
i
||Mi
(IV

′′

i ) + IV
′′

i

We want to reduce the wide-pipe to a narrow-pipe to get fast multicollisions. For a

narrow-pipe hash we require IV
′

i+1 = IV
′′

i+1.

EIV
′′
i
||Mi
(IV

′

i ) + IV
′

i = EIV
′
i
||Mi
(IV

′′

i ) + IV
′′

i

E
IV

′′
i
||Mi
(IV

′

i )�E
IV

′
i
||Mi
(IV

′′

i ) = IV
′′

i � IV
′

i

E(IV
′
i
+δi)||Mi

(IV
′

i )�EIV
′
i
||Mi
(IV

′

i + δi) = δi

So the attacker wants to cancel the differences at the beginning of the key and in

message using only bytes at the end of the key.

This would be a very non standard requirement for a block cipher. Even though there

is no generic attack better than a brute force, an instance of block cipher used in the

compression function can be vulnerable to such attack.

Fix δi, and IVi. Ek is a bijection.

Note that for a fixed Mi there is � 2|M |−|H| messages Mj (distribution of keys K such

that EK(x) = y, for x, y fixed, is uniform), such that

E−1

(IV
′
i
+δi)||Mj

(E
IV

′
i
||Mi
(IV

′

i + δi) + δi) = IV
′

i

Since only Mi is a cross collision, we have a probability � 2|M|−|H|

22|M| = 2
−|H|−|M | that

a cross collision exists for this Mi. Trying � 2−|H|−|M | random Mis will give a cross

collision.

For jM j = m, jH j = h, we have a probability of a cross collision in Davies-Meyer

compression function = 2−h−m = 2−h−m. Therefore any Davies-Meyer compression

function built from any ideal block cipher is cross-collision resistant.
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