
MASTER THESIS

Petr Chmel

New Intersection Graph Hierarchies

Computer Science Institute of Charles University

Supervisor of the master thesis: doc. RNDr. Vít Jelínek, Ph.D.
Study programme: Computer Science

Study branch: Discrete Models and Algorithms

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank doc. RNDr. Vít Jelínek, Ph.D. – the supervisor of this
thesis – for all guidance, helpful consultations, and invaluable feedback. I would
also like to express gratitude to my family, friends, and especially my girlfriend
Míša for supporting me during my studies.

ii

Title: New Intersection Graph Hierarchies

Author: Petr Chmel

Institute: Computer Science Institute of Charles University

Supervisor: doc. RNDr. Vít Jelínek, Ph.D., Computer Science Institute of
Charles University

Abstract: String graphs are the intersection graphs of curves in the plane. Asi-
nowski et al. [JGAA 2012] introduced a hierarchy of VPG graphs based on
the number of bends and showed that the hierarchy contains precisely all string
graphs. A similar hierarchy can be observed with k-string graphs: string graphs
with the additional condition that each pair of curves has at most k intersection
points. We continue in this direction by introducing precisely-k-string graphs
which restrict the representation even more so that each pair of curves has either
0 or precisely k intersection points with all of them being crossings. We prove that
for each k ≥ 1, any precisely-k-string graph is a precisely-(k+2)-string graph and
that the classes of precisely-k-string graphs and precisely-(k + 1)-string graphs
are incomparable with respect to inclusion.

We also investigate the problem of finding an efficiently representable class of
intersection graphs of objects in the plane that contains all graphs with fixed
maximum degree. In the process, we introduce a new hierarchy of intersection
graphs of unions of d horizontal or vertical line segments, called impure-d-line
graphs, and other variations of the class with representation restrictions. We
prove that all graphs with maximum degree ≤ 2d are impure-d-line graphs and
for d = 1 this is the best possible. We also study the relationship between the d in
the definition of impure-d-line graphs as a parameter and other graph parameters
such as treewidth or clique-width.

Keywords: intersection graph, string graph, hierarchy, graph parameter

iii

Contents

Introduction 2

1 Related works 4
1.1 Previously studied hierarchies of intersection graphs 4

1.1.1 The motivation . 7

2 Unions of line segments 8
2.1 Properties of the parameters . 10
2.2 The parameters and maximum degree 16
2.3 The pure-tile parameter of planar graphs 20
2.4 Relations with other graph parameters 20
2.5 The parameters and the number of vertices 22
2.6 Open problems . 23

3 Precise number of intersections 26
3.1 A version of Euler’s formula . 26
3.2 Hierarchy inclusions . 28
3.3 Hierarchy non-inclusions . 29

3.3.1 The Noodle-Forcing Lemma 30
3.3.2 Proofs of the non-inclusions 31

3.4 Open problems . 38

Conclusion 40

Bibliography 41

List of Figures 45

1

Introduction
An intersection graph is a graph such that we can map each vertex v of the graph
to a set Sv such that the assigned sets Su, Sv have a nonempty intersection if and
only if the vertices u and v form an edge. The typically investigated classes of
intersection graphs are then formed by restricting the properties of the sets Sv.
For example, we may restrict the sets to be simple curves in the plane, which
yields the class of string graphs. The considered classes of graphs will be defined
precisely later in Chapter 1.

Quite often, these classes may be restricted by a numerical parameter. These
restrictions come in various forms; e.g., in the case of string graphs, the restriction
may be in the maximum number of intersections between a pair of curves. A string
graph with a representation in which each pair of curves intersects in at most k
points is called a k-string graph.

A folklore result also says that the class of string graphs is equivalent to the
class of intersection graphs of paths on a rectilinear grid, also abbreviated as
VPG. Again, we may restrict the intersection representation further by requiring
that the paths have at most k bends, yielding the class Bk-VPG [1]. A similar
class arises when considering the class of edge intersection graphs of paths on a
rectilinear grid, denoted by EPG. The classes VPG and EPG differ as follows:
for a VPG graph, any shared point is enough to form an edge, while two vertices
form an edge in an EPG graph if and only if their paths share an edge in the
grid. Nevertheless, we may still restrict the paths to have at most k bends, which
results in the analogous class Bk-EPG [2].

We can easily observe that the class B0-EPG is equal to the class of interval
graphs, the intersection graphs of intervals on a real line [2]. We can use interval
graphs to extend the class further by allowing representations that are less re-
strictive. The first class, so-called k-interval graphs are the intersection graphs of
unions of at most k disjoint intervals on a single real line – this extends the class
of interval graphs by allowing representations with one vertex being represented
by more intervals [3, 4]. Another, this time slightly more restrictive, extension of
interval graphs is the class of k-track graphs [5]. These are the intersection graphs
of unions of k intervals on k disjoint parallel real lines (tracks) with one interval
per track. When mentioning k-track and k-interval graphs, we should note that
these classes are relevant in scheduling [6] or bioinformatics [7, 8].

When considering these restrictions by a numerical parameter, we often con-
sider the hierarchy of inclusions of the classes depending on the parameter. In
all of the cases mentioned above, increasing the number makes the class larger.
Moreover, these inclusions are strict for k-string graphs (proved by Kratochvíl
and Matoušek [9]) and Bk-VPG (proved by Chaplick et al. [10]) among other
classes.

As with other graph classes, it is customary to consider the complexity of
recognition of the class or other decision problems on the class. In this thesis,
we only focus on the problem of recognizing the classes. For the mentioned
classes, the recognition problem is often NP-complete: k-string graphs for any
fixed k ≥ 1 [11], Bk-VPG for any fixed k ≥ 0 [11, 10], k-track and k-interval
graphs for any fixed k ≥ 2 [12, 13], B1-EPG [14] and B2-EPG [15] with Bk-EPG

2

for any k ≥ 3 being conjectured to be NP-complete to recognize by Epstein et
al. [16] The cases of 1-track, 1-interval, and B0-EPG graphs are an exception
as all of these classes are the same as interval graphs which are recognizable in
polynomial time [17, 18]. We also point out that in the case of k-string graphs,
the restriction on the number of intersections also quickly yields membership of
their recognition in NP, which lies in stark contrast with the case of general string
graphs, which were proven to be NP-hard to recognize by Kratochvíl [19] twelve
years before Schaefer, Sedgwick, and Štefankovič [20] showed the membership in
NP.

In the thesis, we focus on two particular cases of hierarchies of intersection
graphs: we first turn to graph classes akin to k-interval and k-track graphs in the
plane instead of on the real line, and then we introduce precisely-k-string graphs,
which are exactly the k-string graphs such that each pair of curves intersects
either in 0 or precisely k points.

In Chapter 1, we review already studied related hierarchies in more detail.
Chapter 2 then focuses on new graph classes, called pure-k-tile, pure-k-line,
impure-k-tile, and impure-k-line graphs, their relations with each other, and re-
lations with other graph parameters such as treewidth, degeneracy or maximum
degree. In Chapter 3, motivated by a version of Euler’s formula for intersection
graphs of simple curves in the plane, we focus on precisely-k-string graphs, build-
ing a hierarchy in which neither of the two inclusions between precisely-k-string
graphs and precisely-(k + 1)-string graphs holds.

Preliminaries
We use standard notation covered by most introductory courses on discrete math-
ematics. Notably, we use [n] to denote the set {1, 2, . . . , n} and

(︂
X
k

)︂
to denote

the set of all subsets of the set X of size k. We also introduce a few concepts
that are often mentioned in the thesis.

A representation R of a graph G = (V,E) is a family of sets R = {R(v) :
v ∈ V } such that ∀u, v ∈ V : R(v) ∩R(u) ̸= ∅ ⇔ {u, v} ∈ E.

A string representation R of a graph G = (V,E) is a representation R =
{R(v) : v ∈ V } such that each R(v) is a piecewise linear curve in the plane.

A string representation is proper if every curve is simple, there are finitely
many bends and finitely many intersection points, and in every point of the plane,
at most two curves intersect, and every such intersection is a crossing. Note that
this implies that no two curves are allowed to touch and that an endpoint of a
curve cannot lie on another curve.

A string graph is an intersection graph of simple curves in the plane. Equiv-
alently, it is an intersection graph of simple piecewise linear curves in the plane.

An L-shape is the union of a horizontal line segment and a vertical line
segment such that the only common point of the two line segments is the lowest
point of the vertical line segment and the leftmost point of the horizontal line
segment.

An L-representation is a string representation whose every curve is an L-
shape.

An L-graph is a graph that admits a proper L-representation.

3

1. Related works
In this chapter, we focus on related works with special focus on hierarchies of
intersection graphs. We also mention the motivation for the second chapter;
the motivation for the concepts explored in the third chapter follows from an
observation in the second chapter.

1.1 Previously studied hierarchies of intersec-
tion graphs

We start with three different hierarchies described in one of the initial papers
investigating a hierarchy of classes by Kratochvíl and Matoušek [9].

Definition 1 (k-string graph). A k-string representation is a proper string rep-
resentation such that every two curves intersect in at most k points.

A graph is a k-string graph if it has a k-string representation.

Definition 2 (k-SEG graph). A k-SEG representation is a proper string repre-
sentation such that each piecewise linear curve consists of at most k segments.

A graph is a k-SEG graph if it has a k-SEG representation.
Instead of 1-SEG, we often write just SEG and call the graph a segment graph.

Definition 3 (k-DIR graph). A k-DIR representation is a string representation
such that each curve consists of a single line segment, and all segments have at
most k different slopes.

A graph is a k-DIR graph if it has a k-DIR representation.

Definition 4 (PURE-k-DIR graph). A PURE-k-DIR representation is a k-DIR
representation with the additional constraint that no two parallel line segments
intersect. (This is equivalent to saying that it is a proper k-DIR representation.)

A graph is a PURE-k-DIR graph if it has a PURE-k-DIR representation.

We can immediately observe that increasing the parameter in these cases
always creates a larger class. Moreover, we can also see from the definition that
∀k ≥ 1 : PURE-k-DIR ⊆ k-DIR. Kratochvíl and Matoušek [9] showed these
inclusions to be strict while also showing the inclusion of k-SEG graphs in k2-
string graphs. The whole landscape of the hierarchies is as follows: ∀k ≥ 1 :
k-DIR ⊊ (k + 1)-DIR, PURE-k-DIR ⊊ PURE-(k + 1)-DIR, k-SEG ⊊ (k + 1)-
SEG, k-string ⊊ (k + 1)-string, PURE-k-DIR ⊊ k-DIR, SEG = ⋃︁

k≥0PURE-k-
DIR= ⋃︁

k≥0 k-DIR [9].
It is also natural to ask about the complexity of recognizing the classes. Most

of these have also been resolved by Kratochvíl and Matoušek [11, 21, 19], showing
that the decision problems of recognizing k-string graphs, k-DIR graphs, PURE-
k-DIR graphs, all with k fixed, are NP-complete. Moreover, the problem of
recognizing SEG graphs in ∃R-complete [9]. (That is, it is polynomially equiv-
alent to the problem of deciding the values of the existential theory of the real
numbers. The class ∃R is defined as the class of all problems that can be reduced
in polynomial time to the decision problem of the existential theory of the reals.

4

The class itself is known to contain NP and to be contained in PSPACE [22].
However, it is an open question whether these inclusions are strict or possibly
equalities. For a thorough introduction, we recommend the expository paper on
the topic by Matoušek [23].)

An alternative hierarchy of string graphs was introduced by Asinowski et al. [1]
In this case, the restriction is similar to k-SEG graphs with the additional con-
straint that the segments are either horizontal or vertical.

Definition 5 (Bk-VPG and VPG graph). A Bk-VPG representation is a string
representation such that each piecewise linear curve consists of at most k segments
and all of the segments.

A graph is a Bk-VPG graph if it has a Bk-VPG representation.
We also define the class VPG = ⋃︁

k≥0 Bk-VPG.

The abbreviation of the class may seem peculiar at first, meaning “Vertex
intersection graphs of Paths on a Grid” which alludes to an alternative view of
the representation: we may think of the vertices as being represented by paths
on a rectangular grid with two vertices forming an edge if and only if the two
respective paths share a vertex. This can be contrasted with the class EPG, “Edge
intersection graphs of Paths on a Grid”, introduced by Golumbic, Lipshteyn,
and Stern [2], which is defined similarly, with the only difference being that two
vertices of the graph form an edge if and only if their respective paths share an
edge.

Definition 6 (Bk-EPG and EPG graph). A Bk-EPG representation of a graph
G = (V,E) is a family of piecewise linear curves R = {R(v) : v ∈ V } such that
∀v ∈ V : R(v) has at most k bends and every line segment is either horizontal or
vertical and ∀u, v ∈ V : {u, v} ∈ E ⇔ |R(u) ∩R(v)| = ∞.

A graph is a Bk-EPG graph if it has a Bk-EPG representation.
We also define the class EPG = ⋃︁

k≥0 Bk-EPG.

Before we focus on the known results about these hierarchies, we first compare
the differences between VPG and EPG graphs. The two classes differ wildly:
by a folklore result, VPG graphs are precisely string graphs, while Golumbic,
Lipshteyn, and Stern [2] showed that every graph is an EPG graph. On the
other hand, when comparing the zero-bend classes, B0-EPG is exactly the class
of interval graphs [2], while B0-VPG is strictly larger as it contains all interval
graphs by definition, and additionally, it is easy to observe that the four-cycle C4
is a B0-VPG graph but not an interval graph. When comparing hierarchies, we
note again that in both cases, increasing the number always yields an inclusion
and in all cases, this inclusion is strict. In particular, ∀k ≥ 0: Bk-VPG⊊ Bk+1-
VPG as shown by Chaplick et al. [10] and ∀k ≥ 0 : Bk-EPG⊊Bk+1-EPG which
was first proven by Asinowski and Suk for odd k [24] and later strengthened for
all k by Heldt, Knauer, and Ueckerdt [14].

Again, we ask about the complexity of recognizing these classes. The classes
Bk-VPG are all NP-complete to recognize as shown by Kratochvíl and Matoušek
for k = 0 [11] and Chaplick et al. for k ≥ 1 [10]. Moreover, in the case of a single
bend, even if we only have a single rotation of the L-shape at our disposal, the
recognition decision problem still remains NP-complete [25, 26]. On the other
hand, the only known results for Bk-EPG are restricted to k ∈ {0, 1, 2}. The case

5

of B0-EPG is simple as we can recognize interval graphs in linear time [17, 18]. In
the cases of B1-EPG and B2-EPG, we know that these classes are NP-complete
to recognize as shown by Heldt, Knauer, and Ueckerdt [14] for the case k = 1
and Cameron, Chaplick, and Hoàng [27] showed this also extends to all natural
subclasses induced by all possible combinations of the four rotations of L-shapes.
Pergel and Rzążewski [15] extended these results for the case k = 2 and the
natural subclasses.

We continue with two closely related hierarchies, both based on extending the
class of interval graphs. Interval graphs are often applied to scheduling [28], but
often we may wish for a scheduled lecture to have two or more disjoint parts. A
similar extension can also be used in bioinformatics for modeling similar regions
of DNA sequences [7]. This idea leads to two possible natural definitions. In
the first definition, we only expect each vertex to be represented by a union of k
intervals on the real line with no other restrictions. The second definition is more
restrictive, as in this case, we write the graph as a union of k interval graphs.
This is equivalent to a representation where we are given k parallel lines, and
each vertex is represented by a union of k intervals, one from each line. We now
present a formal definition.

Definition 7 (k-interval graph). A k-interval representation of a graph G =
(V,E) is a family of k-tuples of intervals on the real line R = {(R1(v), . . . , Rk(v)) :
v ∈ V } such that {u, v} ∈ E ⇔ ∃ℓ,m ∈ {1, . . . , k} : Rℓ(u) ∩Rm(v) ̸= ∅.

A graph is a k-interval graph if it has a k-interval representation.

Definition 8 (k-track graph). A k-track representation of a graph G = (V,E)
is a family of k-tuples of intervals R = {(R1(v), . . . , Rk(v)) : v ∈ V } such that
∀v ∈ V, ∀i ∈ [k] : Ri(v) ⊆ R × {i} and {u, v} ∈ E ⇔ ∃ℓ ∈ {1, . . . , k} : Rℓ(u) ∩
Rℓ(v) ̸= ∅.

A graph is a k-track graph if it has a k-track representation.

As with all previous hierarchies, increasing the parameter creates a graph
class that is a strict superclass, which was shown for k-interval graphs by Trotter
and Harary [3] and for k-track graphs by West and Shmoys [12] who also showed
that these two classes are distinct, as for any k ≥ 2, the complete bipartite graph
Kk2+k−1,k+1 is a k-interval graph, but not a k-track graph.

Regarding the complexity of recognizing these classes, West and Shmoys [12]
also showed that recognizing k-interval graphs for any k ≥ 2 is NP-complete.
Gyarfás and West [5] showed the NP-completeness of recognition of 2-track graphs
and conjectured that k-track graphs are NP-complete to recognize for any k ≥ 2.
The conjecture was proved by Jiang [13], who also extended the result to more
subclasses such as unit k-track graphs1. All these results require k ≥ 2 because
1-track graphs are the same as 1-interval graphs, and interval graphs can be
recognized in linear time, first shown by Booth and Lueker [17] using PQ-trees
and later also by Habib et al. [18] using LexBFS.

We may also focus on other possible measures of complexity of a graph repre-
sentation as the numerical parameter. Cabello and Jejčič [29] consider the classes
of k-length segment graphs and k-size-disk graphs. In both cases, the number
corresponds to the maximum number of lengths or sizes of the respective objects.

1These are k-track graphs with the additional restriction that every interval has unit length.

6

Definition 9 (k-length-segment graph). A k-length-segment representation is a
representation such that each curve consists of a single line segment, and all
segments have at most k different lengths.

A graph is a k-length-segment graph if it has a k-length-segment representa-
tion.

Definition 10 (k-size-disk graph). A k-size-disk representation of a graph G =
(V,E) is family of disks in the plane R = {R(v) ⊆ R2 : v ∈ V } such that ∀u, v ∈
V : {u, v} ∈ E ⇔ ∃ℓ ∈ {1, . . . , k} : Rℓ(u) ∩Rℓ(v) ̸= ∅ and all the disks in R have
at most k distinct diameters.

A graph is a k-size-disk graph if it has a k-size-disk representation.

Considering the inclusions, Cabello and Jejčič [29] show that k-length-segment
graphs form a strict subclass of (k+ 1)-length-segment graphs for any k ≥ 1 and
the same holds for k-size-disk graphs: for all k ≥ 1, the class of k-size-disk graphs
is strictly contained in the class of (k + 1)-size-disk graphs.

The complexity of the recognition of these classes seems to be open with the
only exception of 1-size-disk graphs, which were shown to be NP-hard to recognize
by Breu and Kirkpatrick [30] and later were shown to be ∃R-complete by Kang
and Müller [31].

1.1.1 The motivation
The original motivation for Chapter 2 is a paper by Mustaţă and Pergel [32]
that considers the decision problem of recognizing classes of intersection graphs
with bounded maximum degree. By way of context, we also mention that Kra-
tochvíl and Pergel [33] considered the decision problem of recognizing classes of
intersection graphs with large girth.

As Mustaţă and Pergel [32] exhibited classes of intersection graphs that are
NP-complete to recognize with bounded degree, it is natural to ask whether
there exist classes with bounded degree. In particular, our goal is to find a
class of intersection graphs that is trivially recognizable in polynomial time when
restricted to graphs with a fixed maximum degree, and it permits a representation
that is as simple as possible.

7

2. Unions of line segments
We are searching for a hierarchy of classes of intersection graphs that satisfy
two (conflicting) requirements: we want the representing sets to be as simple as
possible, but at the same time, we want to be able to represent as many graphs
as possible. To be more precise, our requirement on the simplicity of the sets is
formulated via efficient implicit representations.
Definition 11 (Efficient implicit representation [34]). An efficient implicit rep-
resentation of a family of graphs F is an assignment of a O(log n)-bit code to
each vertex of any labeled n-vertex graph G ∈ F with an existing polynomial-
time decoder depending only on F , i.e., a function that, given two codes of two
vertices, computes whether the two vertices are adjacent in the graph or not in
polynomial time with respect to the representations.

It is natural to want our representations to be efficient implicit represen-
tations. This slightly restricts us as Kannan, Naor, and Rudich [34] observed
that any graph class with efficient implicit representation has at most 2O(n log n)

graphs on n vertices. In particular, we cannot hope to represent graphs with ei-
ther bounded chromatic number or bounded clique number, as there are at least
2Ω(n2/4) bipartite graphs on n vertices (just by considering all bipartite graphs on
n vertices with vertices 1, . . . , ⌊n/2⌋ in the first partition and ⌊1 + (n/2)⌋, . . . , n
in the second partition). We, therefore, turn our attention to the classes with a
bounded degree or bounded degeneracy.

In particular, we search for a hierarchy of classes of intersection graphs that
contain all graphs of maximum degree k or all k-degenerate graphs. As men-
tioned before, Mustaţă and Pergel [32] showed NP-completeness of recognition of
string graphs with maximum degree 8. In contrast, our results will yield classes
of intersection graphs that are trivially recognizable in polynomial time when
restricted to graphs with maximum degree k.

It is easy to see that for maximum degree 2, even 2-DIR graphs are enough as
such graphs are unions of paths and cycles, and both are representable in 2-DIR.

However, a well-known argument by Sinden [35] shows that there exists a
bipartite graph of maximum degree 3 that is not a string graph: the subdivision
of K3,3. Therefore, even for maximum degree 3, we have to resort to a more
general model of intersection graphs inspired by k-track and k-interval graphs.
In our case, we focus on the case of unions of horizontal and vertical line segments
in the plane.

We will use analogous names: for the case where no restrictions are imposed,
we call these k-line graphs1. In the other case, where we effectively want to
represent the graph as a union of k (not necessarily disjoint) intersection graphs,
we will use the name k-tile graphs. This naming represents the intuition that
we may think of the plane divided into k tiles and in each tile, each vertex is
represented by a single line segment.

We may also consider two possibilities with respect to the permitted intersec-
tions. Historically, the classes of grid intersection graphs (PURE-2-DIR, some-
times also referred to as bipartite B0-VPG graphs) and 2-DIR graphs have both

1While the name k-segment graphs would be more fitting, it could be easily confused with
the class k-SEG.

8

been considered as the intersection graphs of horizontal and vertical line seg-
ments [9]. The only difference is that in PURE-2-DIR, we only permit inter-
sections between a horizontal and a vertical line segment, while in 2-DIR, all
intersections are permitted. To easily differentiate between these choices, we ex-
plicitly say whether the representations are pure (only intersections between a
horizontal and a vertical line segment are allowed) or impure (all intersections
are allowed).

These two choices are independent, hence we get four different possible rep-
resentations.

Definition 12 (Impure-line representation). An impure-k-line representation of
a graph G = (V,E) is a family of k-tuples of horizontal or vertical line segments
R = {(R1(v), . . . , Rk(v)) : v ∈ V } such that {u, v} ∈ E ⇔ ∃ℓ,m ∈ {1, . . . , k} :
Rℓ(u) ∩Rm(v) ̸= ∅.

Definition 13 (Impure-tile representation). An impure-k-tile representation of
a graph G = (V,E) is an impure-k-line representation R = {(R1(v), . . . , Rk(v)) :
v ∈ V } such that ∀u, v ∈ V : ∀ℓ,m ∈ {1, . . . , k} : ℓ ̸= m ⇒ Rℓ(u) ∩Rm(v) = ∅.

Definition 14 (Pure-line representation). A pure-k-line representation of a graph
G = (V,E) is an impure-k-line representation R = {(R1(v), . . . , Rk(v)) : v ∈ V }
such that ∀u, v ∈ V, ∀ℓ,m ∈ {1, . . . , k}, if Rℓ(u) ∩ Rm(v) ̸= ∅, then precisely one
of Rℓ(u), Rm(v) is a horizontal line segment.

Definition 15 (Pure-tile representation). A pure-k-tile representation of a graph
G = (V,E) is a pure-k-line representation R = {(R1(v), . . . , Rk(v)) : v ∈ V } such
that ∀u, v ∈ V : ∀ℓ,m ∈ {1, . . . , k} : ℓ ̸= m ⇒ Rℓ(u) ∩Rm(v) = ∅.

Definition 16 (Parameters pure-tile, pure-line, impure-tile, impure-line). Given
a graph G, we define the following four parameters:

• il(G) is the least k such that G has an impure-k-line representation,

• it(G) is the least k such that G has an impure-k-tile representation,

• pl(G) is the least k such that G has a pure-k-line representation,

• pt(G) is the least k such that G has a pure-k-tile representation.

Additionally, all of the four representations yield efficient implicit representa-
tions whenever k is a fixed constant. In fact, the length of the codes is 4k log n
bits for tile versions, as we may assume all coordinates to be at most n and every
vertex is represented by k line segments with two endpoints, which in total yields
4k coordinates of size log n. In the line versions, we have to be slightly more
careful as we can only assume all coordinates to be at most kn, and therefore the
codes will be 4k log(kn) bits long.

The polynomial-time decoder for tile versions then looks at the endpoints of
the pair of line segments in each tile and checks whether they intersect – if at least
one pair intersects, it returns that the two vertices are adjacent, and otherwise, it
returns that the two vertices are not adjacent. The line version is slightly slower,
as it has to check all k2 pairs of line segments, but it still runs in polynomial
time.

9

Observation 1. For any fixed k ≥ 1, impure-k-line, impure-k-tile, pure-k-line,
pure-k-tile graphs all have efficient implicit representations.

This satisfies our first requirement, and now we show that the second require-
ment is also satisfied. In particular, we show that all the degeneracy of a graph is
an upper bound on its pure-tile parameter, and therefore all d-degenerate graphs
are pure-d-tile graphs.

Proposition 2. Let G be a d-degenerate graph. Then, pt(G) ≤ d.

Proof. We prove this by induction on the number of vertices of G. If |V (G)| = 1,
we can represent the vertex by a single segment in each of the tiles arbitrarily.

Otherwise, if |V (G)| > 1, then we use d-degeneracy and take the vertex
w ∈ V (G) with degG(w) ≤ d and by induction on G − w, we get a pure-d-tile
representation of G − w. We denote the neighbors of w in G by v1, . . . , vℓ for
ℓ ≤ d. In the i-th tile, we add the new line segment representing w so that it
intersects the line segment representing vi. If ℓ < i ≤ d, we can add the line
segment arbitrarily so that it has no intersections. ⊞

Notably, we will show that the classes we described contain graphs that are
not string graphs (for k ≥ 2), which extends the possible range of graphs that
can have an efficient implicit representation in an intersection graph class when
compared to intersection graph classes which require the objects to be connected.

2.1 Properties of the parameters
Before we tackle the original problem, we start by investigating the properties of
the parameters. First, we focus on the relationships with each other and with
other well-known parameters.

Observation 3. For any graph G, pt(G) ≥ pl(G) ≥ il(G) and pt(G) ≥ it(G) ≥
il(G)

Proof. This follows easily from the fact that any pure representation is also an
impure representation and any tile representation is also a line representation. ⊞

Proposition 4. For any graph G, il(G) ≤ pl(G) ≤ 2il(G).

Proof. We only need to prove the second inequality. Let k := il(G) and let us
take an impure-k-line representation R of G.

We may also think of R as a 2-DIR representation of a graph with a larger
vertex set (V (G) × [k]), and it is known that 2-DIR ⊆ L-graph [25], hence we get
an L-representation of the larger graph. Returning back to the original graph G,
we have created a pure-2k-line representation of G as each line segment in the
original representation was extended into at most two line segments. ⊞

We also note that the constant in the second inequality is the best possible:
it(K3) = il(K3) = 1 as we can represent the graph as an interval graph, while
pl(K3) = 2, as all pure-1-line graphs are by definition PURE-2-DIR graphs and,
by the characterization by Asinowski et al. [1] under the name of grid intersection

10

graphs, they must be bipartite which K3 is not. Therefore, pl(K3) ≥ 2, and the
pure-2-line representation given by Proposition 4 yields equality.

In particular, Observation 3 and Proposition 4 imply that for a class of graphs
G, one of the following four cases must occur.

(I) All four parameters il, it, pl, pt are bounded.

(II) The parameters il, it, pl are bounded, while pt is unbounded.

(III) The parameters il, pl are bounded, while pt and it are unbounded.

(IV) All four parameters il, it, pl, pt are unbounded.

We call these classes Type-I to Type-IV respectively. We may easily observe
that Type-I and Type-IV classes exist: an example of Type-I class could be the
class of graphs with maximum degree 1, as every such graph is a PURE-2-DIR
graph, and hence all parameters are equal to one as well. For Type-IV classes,
we may consider any class G that has 2Θ(n2) graphs on n vertices, as if G had any
of the parameters bounded, it would have an efficient implicit representation.
As mentioned at the beginning of this section, Kannan, Naor, and Rudich [34]
showed that any graph class with an efficient implicit representation has at most
2O(n log n) graphs on n vertices, and this would be a contradiction. In fact, we use
a similar counting argument in Section 2.5 to show nonconstructive lower bounds
on the parameters.

It is natural to ask whether there exist Type-II and Type-III graph classes,
and we focus on the question.

We first start by showing a class of graphs that is of Type-II – the class of
complete graphs. We will use Turán’s theorem during the proof, which we state
before moving to our result.

Theorem 5 (Turán [36]). ∀n ∈ N,∀2 ≤ r ≤ n, the Kr+1-free graph with the
largest amount of edges is the Turán’s graph T (n, r): the complete r-partite graph
with partitions of size

⌈︂
n
r

⌉︂
or

⌊︂
n
r

⌋︂
.

Proposition 6. Given a complete graph Kn on n ≥ 2 vertices, pt(Kn) =
⌈log2(n)⌉.

Proof. We first prove that such representation exists (i.e., we prove the inequality
pt(Kn) ≤ ⌈log2(n)⌉). Without loss of generality, we may assume that V (Kn) =
{1, 2, . . . , n}. It is easy to see that any complete bipartite graph can be repre-
sented in a single tile. Hence, in each of the log2(n) tiles, we represent a certain
subgraph as a union of complete bipartite graphs and use induction on the rest
of the graph.

If n = 2, the statement is obvious as K2 ∼= K1,1 and hence it is representable
in a single tile.

For the induction step, we assume n ≥ 3. Then, we use a single tile to
represent the largest complete bipartite graph with respect to the number of edges
(this follows from Turán’s theorem; in fact the weaker Mantel’s theorem would
suffice [37]) contained in Kn: Gn = ([n], {{a, b} : 1 ≤ a ≤ n/2 ∧ n/2 < b ≤ n}).
The graph Gn is complete and bipartite, and, moreover, the edges in G not
covered by Gn form a graph that is isomorphic to the disjoint union of a clique

11

ε

ε

ε

Figure 2.1: The operation of “purifying” the intervals

G′ of size ⌊n/2⌋ and a clique G′′ of size ⌈n/2⌉. By the induction hypothesis, we
have pt(G′) ≤ ⌈log2(⌊n/2⌋)⌉ , pt(G′′) ≤ ⌈log2(⌈n/2⌉)⌉.

We then observe that ⌈log2(⌊n/2⌋)⌉ ≤ ⌈log2(n/2)⌉ = ⌈log2(n) − log2(2)⌉ =
⌈log2(n)⌉ − 1. For the second inequality, we distinguish two cases based on the
parity of n. If n is even, then we use the same calculation except with equality:
⌈log2(⌈n/2⌉)⌉ = ⌈log2(n/2)⌉ = ⌈log2(n)⌉ − 1. If n is odd, then we calculate
⌈log2(⌈n/2⌉)⌉ = ⌈log2((n+ 1)/2)⌉ = ⌈log2(n+ 1)⌉ − 1 and since n is odd and we
are calculating the logarithm of n in base two, ⌈log2(n)⌉ = ⌈log2(n+ 1)⌉.

Therefore, in all cases we need ⌈log2(n)⌉ − 1 tiles to represent the remaining
edges and in total, we use precisely the alotted ⌈log2(n)⌉ tiles.

Next, we prove the other inequality showing that no representation with fewer
tiles exists, i.e. pt(Kn) ≥ ⌈log2(n)⌉. Given the n, let us take the largest k ∈ N
such that 2k + 1 ≤ n. We will show that the clique on 2k + 1 vertices (which
is a subgraph of Kn) has no representation on k = ⌈log2(n)⌉ − 1 tiles. By
contradiction, let us assume such representation exists. Then, each vertex is
represented by a horizontal or a vertical line segment in each of the tiles. Let us
color the vertices by the k-tuples in {H,V }k where the i-th coordinate denotes
whether the vertex is represented by a horizontal or a vertical line segment in
the i-th tile. There are only 2k colors but 2k + 1 vertices, and hence two vertices
must have the same color. However, this means that the two vertices cannot
intersect as in each of the k tiles, they are either both represented by a horizontal
line segment or both represented by a vertical line segment. This immediately
yields a contradiction, as we found an edge that is not represented, and hence
the representation is not correct. ⊞

Observation 7. Given a complete graph Kn on n ≥ 2 vertices, pl(Kn) ≤ 2.

Proof. This follows easily from the fact that Kn is an L-graph. ⊞

As all complete graphs are interval graphs, they also have it(Kn) = 1, il(Kn) =
1. This shows that complete graphs indeed form a Type-II class. Moreover, we
show that any Type-II class must have an unbounded clique number.

Proposition 8. For any graph G, it(G) ≤ pt(G) ≤ ω(G) · it(G).

Proof. Again, only the second inequality is nonobvious.
In this case, let ℓ = it(G) and assume we have an impure-ℓ-tile representation

R of G.
We start with takingR and ensuring no two line segments of the same direction

have a nonempty intersection by taking all line segments on a single line and

12

spacing them evenly ε-apart for some ε > 0 as shown in Figure 2.1. At the same
time, we also appropriately lengthen other line segments so that the only removed
intersections are between segments contained in the same line. Note that such
segments induce an interval graph.

Finally, we have to remedy the missing intersections. We do this for each tile
in parallel, and hence from now on, we focus only on a single tile. We note that
these interval graphs in the tile are vertex-disjoint as each vertex is represented
by a single line segment and hence has only a single line it lies on in the plane.

By our assumption, we now have an interval graph H with ω(H) ≤ k. We
observe that any interval graph with ω(H) ≤ k is (k − 1)-degenerate and by
Proposition 2, we know that then, pt(H) ≤ k − 1.

We can represent all the disjoint interval graphs from the same original tile
in the same new “pure” tiles, and the result follows. ⊞

In fact, this also implies a characterization of Type-II classes.

Corollary 9. If a class of graphs G has a bounded impure-tile parameter, then it
is Type-II if and only if its clique number is unbounded, and it is Type-I otherwise.

Proof. For a Type-II class, we have the inequality pt(G) ≤ ω(G) · it(G), and we
know that the impure-tile parameter is bounded, and as the pure-tile parameter
is unbounded, the clique number must be unbounded as well. On the other hand,
if the clique number is unbounded, the pure-tile parameter cannot be bounded
as the graph requires at least ⌈log2(ω(G))⌉ tiles for the clique by Proposition 6.

If both the impure-tile parameter and the clique number are bounded, then
Proposition 8 implies that the pure-tile parameter must be bounded as well. ⊞

Next, we focus on Type-III classes. In particular, we show that the class of
multipartite complete graphs is Type-III. For the following proposition, we will
employ a Ramsey-type theorem.

Definition 17 (Ramsey number R(k, c, r)). For k, c, r ∈ N, we define the Ramsey
number R(k, c, r) to be the least integer n such that n ≥ k and every set X with
n elements has a monochromatic subset2 of size r with respect to any c-coloring
of

(︂
X
k

)︂
.

Theorem 10 (Ramsey [38]; Theorem 9.1.3 [39]). For all k, c, r ≥ 1, there exists
an n ≥ k such that every set X with n elements has a monochromatic subset of
size r with respect to any c-coloring of

(︂
X
k

)︂
. In particular, the Ramsey number

R(k, c, r) is well-defined.

Proposition 11. For any K ≥ 3 there exists a graph GK such that it(GK) > K
and pl(GK) ≤ 2. In particular, the impure-tile parameter may be unbounded while
pure-line is bounded.

Proof. For the graph GK , we construct a particular complete p(K)-partite graph
GK = KN(K),...,N(K) with it(GK) > K > 2. We start by observing that any
complete k-partite graph is an L-graph and hence it has pl ≤ 2. This follows

2A subset Y ⊆ X is monochromatic with respect to a c-coloring φ :
(︁

X
k

)︁
→ [c] of

(︁
X
k

)︁
if there

exists a color ℓ ∈ [c] : ∀S ∈
(︁

Y
k

)︁
: φ(S) = ℓ.

13

Figure 2.2: Building the L-graph representation of a complete k-partite graph

immediately as we can first represent the complete graph Kk using L-shapes as
expected, and then we can blow up each represented vertex of the complete graph
into disjoint L-shapes that intersect all other vertices in the graph as shown in
Figure 2.2.

We then continue with noticing that taking the complete tripartite graph
K2,2,1, we have it(K2,2,1) > 1. For contradiction, assume we have an impure-1-tile
representation of K2,2,1. In the graph, the first two partitions form a C4. This
implies that it cannot happen that all vertices from the first two partitions would
be represented on a single line as C4 is not an interval graph. Moreover, it is easy
to see that every 2-DIR representation of C4 must consist of two parallel horizon-
tal line segments and two parallel vertical line segments with their intersections
being the vertices of a rectangle. It immediately follows that the line segment
representing the last vertex cannot intersect all of the other line segments in any
such representation.

We will construct the complete p(K)-partite graph GK for any fixed K > 2 by
taking p(K) = R(2, K, 3) (in other words, we know that every K-edge-coloring
of a complete graph on p(K) vertices has a monochromatic triangle). We now
show that if the partitions are large enough, then there exists a p(K)-partite
subgraph S = K2,...,2 such that the four edges between each pair of partitions are
monochromatic. Let all partitions of GK be of the same size N = N(K) and let vp

ℓ

be the ℓ-th vertex in p-th partition. We consider an auxiliary graph R = KN that
is colored by Kp(K)·(p(K)−1) colors with the edge {i, j} colored by the p(K)·(p(K)−
1)-tuple of colors that correspond to the colors of edges {vp

i , v
p′

j } over all pairs
(p, p′) ∈ [p(K)] × [p(K)] with p ̸= p′. For N = R(2, Kp(K)(p(K)−1), 2p(K)), we are
guaranteed to have a monochromatic clique of size 2p(K) in the graph R - we can
use these 2p(K) vertices u1, . . . , u2p(K) to get the required graph by taking the
vertices v1

u1 , v
1
u2 , . . . , v

k
u2k−1

, vk
u2k
, . . . , vp(K)

u2p(K)−1
, vp(K)

u2p(K)
with all the edges between

partitions monochromatic by the fact that the clique was monochromatic.
By the choice of p(K), there are three partitions such that the edges between

them have the same color and therefore, they form an induced monochromatic
K2,2,2. Therefore, assuming that there is an impure-K-tile representation of the
graph GK , there must be an induced K2,2,2 in one tile by setting the colors as tiles
in which the edges are represented by the intersection. This is a contradiction
with the fact that it(K2,2,1) > 1 as we get an impure-1-tile representation of
K2,2,2 and K2,2,1 is its induced subgraph, yielding an impure-1-tile representation
of K2,2,1 which is a contradiction, and therefore it(GK) > K > 2. ⊞

Another example of a Type-III class is the class of triangle-free L-graphs.

14

Pawlik et al. [40] showed that the class has an unbounded chromatic number.
This implies that the class also has an unbounded pure-tile parameter, as for any
graph G, we can bound χ(G) ≤ 2pt(G) by taking a pure-tile representation of
G with the least number of tiles and coloring each vertex by a {0, 1}-vector of
length pt(G), where i-th coordinate is 0 if the vertex is represented in i-th tile by
a horizontal line segment and the coordinate is 1 if the vertex is represented by
a vertical line segment. This is clearly a coloring, as two vertices with the same
color cannot form an edge by the definition of the representation, and hence the
bound holds. Moreover, the class also has an unbounded impure-tile parameter
by Proposition 8, as the class has a bounded clique number and unbounded pure-
tile parameter. On the other hand, L-graphs have both pure-line and impure-line
parameters bounded by the existence of their L-representation.

Proposition 12. For any graph G with χ(G) ≥ 2, we have it(G) ≤ ⌈log2(χ(G))⌉·
(il(G))2.

Proof. We first start by decomposing the graph G into ⌈log2(χ(G))⌉ bipartite
graphs. Let φ be a χ(G)-coloring of G. As in the proof of Proposition 6, we split
the complete graph Kχ(G) into ⌈log2(χ(G))⌉ bipartite graphs H1, . . . , H⌈log2(χ(G))⌉
on vertices [χ(G)]. We then blow up each of the graphs Hi into a graph Gi with
the vertex set V (G) with two vertices u, v ∈ V (G) forming an edge in the graph
Gi if and only if {φ(u), φ(v)} ∈ E(Hi) and {u, v} ∈ E(G).

Next, we build an impure-k2-tile representation from an impure-k-line rep-
resentation R of a bipartite graph Gi with partitions A ∪̇ B. For every pair
(α, β) ∈ [k] × [k], we create a tile that contains the representations Rα(u) for all
u ∈ A and Rβ(v) for all v ∈ B.

Given an edge {u, v} with u ∈ A, v ∈ B, by definition there exists a pair of
line segments Ra(u), Rb(v) such that Ra(u)∩Rb(v) ̸= ∅. The edge is then realized
by the intersection in the tile corresponding to the pair (a, b). Moreover, every
pair of vertices that is not connected by an edge has no intersections between any
two representing line segments in the impure-k-line representation, and therefore
we cannot create the edge in the impure-k2-tile representation.

We now apply the contruction on each of the ⌈log2(χ(G))⌉ bipartite graphs
Gi, proving the theorem. ⊞

Similarly to Type-II classes, the proposition and the arguments we showed for
triangle-free L-graphs imply a characterization of Type-III classes.

Corollary 13. If a class of graphs G has bounded impure-line parameter and
bounded clique number, then it is Type-III if and only if its chromatic number is
unbounded, and it is Type-I otherwise.

Proof. For a Type-III class, we have the inequality it(G) ≤ ⌈log2(χ(G))⌉ ·(il(G))2

and we know that the impure-line parameter is bounded and as impure-tile pa-
rameter is unbounded, the chromatic number must be unbounded as well.

On the other hand, if the chromatic number of the class is unbounded, the
pure-tile parameter must be unbounded as it requires at least ⌈log2(χ(G))⌉ by
the inequality χ(G) ≤ 2pt(G). Moreover, Proposition 8 implies that as the clique
number is bounded, the impure-tile parameter must be unbounded as well, and
hence the class is Type-III.

15

Finally, if the chromatic number of the class is bounded, the impure-tile pa-
rameter is bounded by Proposition 12 from the boundedness of both the impure-
line parameter and the chromatic number. Corollary 9 then implies that the
class must be Type-I, as both the impure-tile parameter and the clique number
are bounded. ⊞

2.2 The parameters and maximum degree
As the original motivation is to find a simple class of intersection graphs that con-
tains all graphs with maximum degree d, we now turn to examine the relationship
between the parameters and maximum degree.

We can use the 2-factor theorem to obtain similar results to Proposition 2 for
graphs with a maximum degree while either getting somewhat worse bounds or
weakening our expectations on the requested representation.

Theorem 14 (2-factor theorem, Petersen [41]). If G is a 2k-regular graph for
some k ∈ N, then the edges of G can be partitioned into k edge-disjoint 2-factors,
where a 2-factor is a 2-regular subgraph of G.

Lemma 15 (Addario-Berry [42]). For a k-partite graph G with maximum degree
r, there exists a k-partite r-regular graph G′ such that G is an induced subgraph
of G′.

Proof. We prove this by a recursive construction by Addario-Berry [42], which
we enhance by showing that the chromatic number stays the same.

We recurse based on the value of r− δ(G), where δ(G) is the minimum degree
of a vertex in G. If r − δ(G) = 0, we have an r-regular k-partite graph with G
as an induced subgraph. Otherwise, we have r − δ(G) > 0. In such case, we
take two disjoint copies G1 = (V1, E1), G2 = (V2, E2) of G and for any vertex
v ∈ V (G) such that degG(v) < r, we add the edge between the corresponding
vertices v1 ∈ V1, v2 ∈ V2. The resulting graph G′ still has the maximum degree
r, the minimum degree was raised by one to δ(G) + 1 and hence the difference
r − δ(G) is now smaller.

Moreover, the graph G′ is also k-partite: let us have a k-coloring φ of G that
we apply to G1 and G2, yielding φ1, φ2 such that ∀v ∈ V (G) : φ(v) = φ1(v1) =
φ2(v2). Using these colors together works well in each Gi separately, but the
edges connected across have both vertices colored with the same color. We fix
this easily by permuting the colors in G2. Let us take any permutation σ of [k]
with no fixed point (for example, we may take a permutation with a single cycle
(1 2 . . . k), which is possible as k ≥ 2). We then use the permutation to change
the colors on V2 by setting φ′

2(v) = σ(φ2(v)). This yields the k-coloring ψ of G′

as follows:

ψ(v) =
⎧⎨⎩φ1(v) for v ∈ V1,

φ′
2(v) for v ∈ V2,

Now, all edges in G1 do not see any change to the colors of their vertices, all
edges in G2 see the colors of both of the vertices change, but as they are only
permuted, the two colors remain different, and all edges between G1 and G2 now
have two different colors, as before, we had φ1(v1) = φ2(v2) and now, we have
φ1(v1) ̸= φ′

2(v2) and ψ is a k-coloring of G′. ⊞

16

Theorem 16. Let G be a bipartite graph with maximum degree ∆(G) ≤ 2d for
d ∈ N. Then pt(G) ≤ d.

Proof. From Lemma 15, we have a 2d-regular graph G′ such that G is an induced
subgraph of G′ and G′ is also bipartite.

We now apply the 2-factor theorem, and we obtain a partition of G′ into edge-
disjoint 2-factors F1, . . . , Fd. Each of these 2-factors is a union of cycles, and by
a characterization of bipartite graphs, a bipartite graph has no odd cycles, and
hence each of the cycles in Fi must be an even cycle. It is easy to see that every
even cycle has a PURE-2-DIR representation and therefore, we may represent
each of these 2-factors in a single pure tile.

In total, we are able to represent the graph in at most d tiles, which yields
the claimed bound pt(G) ≤ d. ⊞

Theorem 17. Let G be a graph with maximum degree ∆(G) ≤ 2d for d ∈ N.
Then it(G) ≤ d.

Proof. By Lemma 15, we construct a 2d-regular graph G′ such that G is an
induced subgraph of G′. Then, we use the 2-factor theorem to decompose G′

into d 2-factors H1, . . . , Hd. It is easy to see that each 2-factor, as a union
of disjoint cycles, has a 2-DIR representation. Therefore, we may put each of
these representations into a single tile, and we immediately get that it(G′) ≤ d.
Moreover, as G is an induced subgraph of G′, we also get that it(G) ≤ d. ⊞

We can easily see that for d = 1 we cannot represent all graphs with maximum
degree ≤ 3 as, by an argument dating back to Sinden [35], the subdivision of K3,3
is not a string graph and hence not even a 2-DIR graph. Therefore, the result is
tight for d = 1.

However, for larger d, our bounds on the maximum degree ∆ such that every
graph G with ∆(G) ≤ ∆ has it(G) ≤ d differ dramatically. This is mainly caused
by the fact that we use Ramsey theory to find a graph that is not even a string
graph and such Ramsey graphs tend to be large. To make the bounds slightly
better, we extend a lemma by Nešetřil and Rödl [43] for more than two colors
while following the proof presented by Diestel in his textbook [39]. While all of
these results are constructive in nature, the bounds are rather large, and we show
better bounds in Section 2.5 using counting arguments at the expense of being
nonconstructive.

We start by stating the necessary tools and definitions.

Definition 18 (Embedding). Given two graphs G,H, an embedding of G into H
is an injective map φ : V (G) → V (H) such that ∀u, v ∈ V (G) : {u, v} ∈ E(G) ⇔
{f(u), f(v)} ∈ E(H).

We remark that this is often called an induced embedding, however as we do
not use the usual “subgraph” embedding, we leave out the word “induced” for
brevity.

We also recall that we define the Ramsey number R(k, c, r) to be the least
integer n such that n ≥ k and every set X with n elements has a monochromatic
subset of size r with respect to any c-coloring of

(︂
X
k

)︂
.

17

Lemma 18 (Nešetřil and Rödl [43]; Lemma 9.3.2 [39]). Every bipartite graph
can be embedded in a bipartite graph of the form (X ∪̇

(︂
X
k

)︂
, E) for some set X

with E =
{︂
{x, Y } ∈ X ×

(︂
X
k

)︂
: x ∈ Y

}︂
.

Lemma 19 (An extension of Lemma 9.3.3. [39], originally by Nešetřil and
Rödl [43]). For every bipartite graph P and for every ℓ ≥ 2, there exists a bi-
partite graph P ′

ℓ such that for every ℓ-colouring of the edges of P ′
ℓ, there is an

embedding φ : P → P ′
ℓ for which all the edges of φ(P) have the same color.

Proof. We start with the assumption that the graph P has the form from Lemma
18 as otherwise, we can just apply the lemma and search for the supergraph in
the right form. Then, we continue by building a graph P ′

ℓ := (X ′ ∪̇
(︂

X′

k′

)︂
, E ′) with

k′ := ℓ · (k− 1) + 1 and X ′ is any set of cardinality |X ′| = R(k′, ℓ
(︂

k′

k

)︂
, ((k− 1)(ℓ−

1) + 1)|X| + (ℓ− 1)(k − 1)) with E ′ :=
{︂
{x′, Y ′} ∈ X ′ ×

(︂
X′

k′

)︂
: x′ ∈ Y ′

}︂
.

Let P ′
ℓ have its edges colored with ℓ colors. When we consider any Y ′ ∈

(︂
X′

k′

)︂
,

it has k′ = ℓ · (k − 1) + 1 neighbors, and by the pigeonhole principle, there must
exist at least one color c such that at least k edges have the same color. If there
are multiple such colors, we choose one of them arbitrarily. We say that Y ′ is
associated to the color via Z ′ ⊆ Y ′, where |Z ′| = k and ∀z′ ∈ Z ′, the color of
edge {z′, Y ′} is c.

We now assume X ′ to be linearly ordered. Then for every Y ′ ∈
(︂

X′

k′

)︂
, a unique

order-preserving bijection µY ′ : Y ′ → {1, . . . , k′} exists. From µY ′ , we get that
µY ′ [Z ′] ∈

(︂
[k′]
k

)︂
for Y ′ associated to its color via Z ′. We then color

(︂
X′

k′

)︂
by the

colors
(︂

[k′]
k

)︂
× [ℓ] as follows: for a Y ′ ∈

(︂
X′

k′

)︂
, we set its color to be the pair

(µY ′ [Z ′], j), where j ∈ [ℓ] is the color associated with Y ′ via Z ′.
By the choice of |X ′| to be the Ramsey number R(k′, ℓ

(︂
k′

k

)︂
, ((k − 1)(ℓ− 1) +

1)|X| + (ℓ− 1)(k− 1)), we know that X ′ has a subset W of size ((k− 1)(ℓ− 1) +
1)|X|+(ℓ−1)(k−1), such that

(︂
W
k′

)︂
is monochromatic. Moreover, every Y ′ ∈

(︂
W
k′

)︂
is associated with the same color α via some Z ′ (these may differ for different
Y ′), and the sets Z ′ lie in their Y ′ in the same way – in other words, there exists
a set S ∈

(︂
[k′]
k

)︂
such that µY ′(Z ′) = S for all Y ′ ∈

(︂
W
k′

)︂
and Y ′ associated with α

via Z ′.
It now remains to construct the embedding φ : P → P ′

ℓ. We start by defining
φ on the set X = {x1, . . . , xn} by choosing the images wi ∈ W so that φ(vi) = wi

and precisely k′ −k = (ℓ− 1)k+ (1 − ℓ) elements of W are smaller than w1, there
are exactly (ℓ−1)k+(1−ℓ) elements between each pair wi, wi+1 for all i ∈ [n−1]
and there are (ℓ−1)k+(1− ℓ) elements that are larger than wn. As we chose the
set W so that |W | = ((k − 1)(ℓ − 1) + 1)|X| + (ℓ − 1)(k − 1), we have precisely
the required number of elements to do so.

The next step is to define φ on the other partition, that is,
(︂

X
k

)︂
. For Y ∈

(︂
X
k

)︂
,

we want to choose Y ′ = φ(Y) ∈
(︂

X′

k′

)︂
so that the neighbors of Y ′ among the

vertices in φ(X) are exactly the images of the neighbors of Y in P . These
neighbors are the k vertices φ(x) with x ∈ Y , and therefore the colors of the
edges are all α.

We find this set Y ′ by first fixing the subset Z ′ := {φ(x) : x ∈ Y } – these
correspond to k vertices of the type wi. We then extend Z ′ by the remaining

18

k′ − k vertices that are in W \ φ[X] (that is, by the vertices that are not of the
type wi) so that Z ′ lies correctly inside Y ′: µY ′(Z ′) = S. We can do this as
between any two wi, there are at least (ℓ − 1)k + (1 − ℓ) = k′ − k other vertices
of W .

By definition, we have that Y ′ ∩ φ[X] = Z ′ and hence Y ′ has the correct
neighbors (and non-neighbors). It now remains to notice that φ is injective on(︂

X
k

)︂
as the images Y ′ of different Y ∈

(︂
X
k

)︂
must be distinct, as their intersections

with X are different and hence also their intersections with φ[X] are different. It
now follows that φ : P → P ′

ℓ is indeed an embedding. ⊞

Theorem 20. For all d ≥ 2, there exists a bipartite graph Gd with it(G) ≥ d.

Proof. For d = 2, as observed before, we take the subdivision of K3,3, which we
denote by K2

3,3, to be G2.
For d ≥ 3, we take the bipartite graph G = K2

3,3 with ℓ = d− 1, and we apply
the Lemma 19. We then get a bipartite graph G′

ℓ.
For contradiction, we assume that it(G′

ℓ) ≤ ℓ. Then, there is an impure-
(d− 1)-tile representation of G. If G′

ℓ can be represented using fewer than ℓ tiles,
we can add the remaining tiles so that they have no intersections.

We apply the natural coloring of edges on G′
ℓ, where each edge is colored by

the number of a tile in which it is represented. (Note that this coloring is not
uniquely determined, as an edge may be represented in multiple tiles; however, in
such case, we may choose any of the colors.) By Lemma 19, there exists a color
1 ≤ c ≤ ℓ such that G is an induced subgraph of G′

ℓ and all edges of G have the
color c. Therefore, in one of the tiles, we have a representation of the graph K2

3,3
that is not even a string graph, which is a contradiction.

This implies that G′
ℓ has no impure-tile representation with fewer than d tiles,

proving the theorem. ⊞

Corollary 21. For all d ≥ 2, there exists a bipartite graph Gd with il(G) ≥ d.

Proof. From Proposition 12, we get that for bipartite graphs, we have it(G) ≤
(il(G))2, implying il(G) ≥

√︂
it(G). Therefore, given d ≥ 2 we use the Theorem 20

to get the graph Gd2 with it(Gd2) ≥ d2, which immediately implies that il(G) ≥
d. ⊞

The bounds in Lemma 19 on the maximum degree are, however, rather large.
For the graph K2

3,3 and d ≥ 3, we get th at the size of the ground set in the
Ramsey graph is |X ′| = R((d − 1) · (k − 1) + 1, (d − 1) ·

(︂
(d−1)·(k−1)+1

k

)︂
, ((k −

1)(d − 2) + 1)|X| + (d − 2)(k − 1)), where |X| = 6, k = 2 as the subdivided
vertices in K2

3,3 can be thought of as some of the 2-tuples, hence we get |X ′| =
R

(︂
d, (d− 1) ·

(︂
d
2

)︂
, 7(d− 1) − 1

)︂
. By the definition of Gd, we get that the maxi-

mum degree in the graph is
(︂

|X′|−1
2

)︂
= (|X′|−1)(|X′|−2)

2 – we have two types of ver-
tices, the vertices that correspond to the d-tuples, which have degree d − 1 and
the vertices corresponding to the elements of X ′, which have an edge with every
3-tuple containing the element. Therefore, the number of 2-tuples not containing
the single element is the maximum degree. Using the stepping-up construction
of Erdös, Hajnal, and Rado [44], we have that R(k, c, r) ≥ Tk−1(c1r

2), where
Tk(x) is the tower of height k defined inductively as T1(x) = x, Ti+1(x) = 2Ti(x)

19

and c1 is a positive constant. Therefore, we see that the maximum degree in Gd

has a lower bound (Td−1(c1r
2))2, which grows much more quickly than the linear

growth of the maximum degree of 2d of our best impure-d-tile construction.

2.3 The pure-tile parameter of planar graphs
By Proposition 2 and the fact that planar graphs are 5-degenerate, we know that
for any planar G, pt(G) ≤ 5. However, we can do even better using a result by
de Fraysseix, Ossona de Mendez and Pach [45].

Theorem 22 (de Fraysseix, Ossona de Mendez, and Pach [45]). Any bipartite
planar graph is a contact intersection graph of horizontal and vertical line seg-
ments.

Theorem 23. For any planar graph G, pt(G) ≤ 2.

Proof. By the four color theorem, let us have a 4-coloring φ : V (G) → {1, 2, 3, 4}
of G. We then build two bipartite planar graphs G1, G2 so that in the first graph,
there are only the edges that have their endpoints colored as either 1 and 3, or 2
and 4. We put all the remaining edges into the second graph. Formally,

• G1 = (V (G), {e ∈ E(G) : φ[e] = {1, 3} ∨ φ[e] = {2, 4}}),

• G2 = (V (G), E(G) \ E(G1)).

Then, both of these graphs are planar and bipartite, and by Theorem 22, they
are contact intersection graphs of horizontal and vertical line segments. Therefore,
we have a pure-2-tile representation of G. ⊞

We also immediately notice that this is tight as there are graphs that re-
quire two tiles: in particular, the complete graph on four vertices K4, which by
Proposition 6 requires at least two tiles.

2.4 Relations with other graph parameters
In this section, we focus on the relationships of our newly defined parameters with
well-known parameters in graph theory. In particular, we focus on treewidth,
pathwidth, and clique-width.

We start by defining the parameters and related concepts that will be useful
in this section.

Definition 19 (Tree decomposition). A tree decomposition of a graph G is a pair
(T,X) where T is a tree and X = {Xv ∈ P(V (G)) : v ∈ V (T)} is a family of
so-called bags such that

1. ⋃︁
X = V (G),

2. ∀e = (u, v) ∈ E(G) : ∃w ∈ V (T) : {u, v} ⊆ Xw,

3. ∀u ∈ V (G) : the nodes of T whose bags contain the vertex u form a
nonempty connected subgraph (a subtree in particular).

20

We remark that in order to prevent confusion, it is a custom to say that the
tree T has nodes, while the graph G has vertices.

Definition 20 (Treewidth). The width of a tree decomposition T is max
Xi∈V (T)

|Xi|−
1.

The treewidth tw(G) is the minimum possible width of any tree decomposition
of G.

Definition 21 (Path decomposition). A path decomposition is a tree decompo-
sition (T,X) such that the tree T is a path.

Definition 22 (Pathwidth). The pathwidth of a graph G, denoted pw(G), is the
minimum possible width of any path decomposition of G.

Definition 23 (Clique-width). The clique-width of a graph G, denoted cw(G) is
the minimum number of labels needed to construct G by using the following four
operations:

1. creating a new vertex v with label i (denoted by i(v)),

2. taking a disjoint union of two labeled graphs G,H (denoted by G⊕H),

3. given two distinct indices i, j, creating an edge between each vertex with
label i and each vertex with label j (denoted by ηi,j),

4. renaming the label i to j (denoted by ρi→j).

We start by showing that bounded treewidth implies bounded pt parameter.

Proposition 24. For every graph G, pt(G) ≤ tw(G).

Proof. We use induction on the number of vertices to prove that graphs with
treewidth at most k are k-degenerate. While this result is not new [46], we prove
it for completeness. If |V (G)| ≤ k + 1, this is obvious as then the maximum
degree is at most k, the graph is trivially k-degenerate.

Otherwise, |V (G)| > k + 1 and hence any tree decomposition must have at
least two bags. This implies that the underlying tree must have a leaf.

Therefore, let us have a leaf node ℓ with its bag Xℓ and its neighboring node
v and its bag Xv. It can happen that Xℓ ⊆ Xv, in which case we remove the node
ℓ from the tree decomposition and continue by finding a leaf again. Otherwise,
∃u ∈ Xℓ : u ̸∈ Xv and, as |Xℓ| ≤ k + 1, degG(u) ≤ k and we have found a
vertex that is only in the bag Xℓ and hence has at most k neighbors. Therefore,
we found a vertex u of degree ≤ k and by the induction hypothesis, G − {u}
is k-degenerate: it still has treewidth at most k as removing vertices does not
increase the treewidth.

We have therefore shown that G is k-degenerate, and by Proposition 2, the
conclusion holds. ⊞

Corollary 25. For every graph G, pt(G) ≤ pw(G).

Proof. This follows from the previous proposition since any path decomposition
is also a tree decomposition, and hence tw(G) ≤ pw(G). ⊞

21

We have shown that if treewidth is bounded, then so is the pure-tile parameter;
however, the converse does not hold. It is well-known [47] that the treewidth of
an n × n-grid is n; however, it is 2-degenerate, and hence it can be represented
in two pure tiles. The same conclusion holds for the pathwidth as for any graph
G, tw(G) ≤ pw(G) which implies that the pathwidth of an n × n-grid is also
unbounded.

We now turn our focus to clique-width. In this case, we can only prove partial
results. By the definition, it is clear that a complete graph on n ≥ 2 vertices
has clique-width 2, but it requires ⌈log2(n)⌉ pure tiles. We, therefore, turn to
the slightly stronger parameter pure-line and we take a look at all graphs with
clique-width at most 2, so-called cographs.

Theorem 26. For any graph G, if cw(G) ≤ 2, then pl(G) ≤ 2. Moreover, G is
an L-graph.

Proof. The proof follows from two inclusions from the literature. We first use
the result by Bose, Buss, and Lubiw [48] which shows that every cograph is a
permutation graph. Then, we use the result by Cohen, Golumbic, and Ries [49]
which shows that every permutation graph is an L-graph. ⊞

On the other hand, Jelínek [50] showed that the n × n-grid has rank-width
precisely n − 1 and Oum with Seymour [51] proved that the rank-width of a
graph is a lower bound on its clique-width and hence there exist graphs with un-
bounded clique-width (and rank-width) but bounded pure-line parameter. The
question whether bounded clique-width implies bounded pure-line parameter re-
mains open.

2.5 The parameters and the number of vertices
In this section, we focus on bounds on the parameters on n-vertex graphs. First,
we show that there exist bipartite n-vertex graphs with impure-line representa-
tions requiring Ω(n/ log n) lines.

Theorem 27. There exists n0 ∈ N such that ∀n ≥ n0, there exists a bipartite
graph G with n vertices such that il(G) ∈ Ω(n

log n
)

Proof. We do this by upper bounding the number of labeled impure-ℓ-line graphs
on n vertices. We create the bound by counting the ways of creating impure-ℓ-line
graphs on n vertices: we may take any 2-DIR graph on ℓ ·n vertices and then split
the vertices into n partitions of size ℓ, where each of the partitions corresponds
to a single vertex of the graph represented by ℓ line segments.

Therefore, we need to bound the number of 2-DIR graphs on n vertices. We
may do this by noting that every 2-DIR graph is an L-graph [25], and there are at
most (n!)4 L-representations: every vertex is represented by a single L-shape, and
we may order their bends from top to bottom and from left to right, which yields
(n!)2. Moreover, we now have to take into account the lengths of the segments,
which yields again (n!)2: this follows from the fact that if we assume without loss
of generality that the L-shapes are drawn on an n×n-grid, the bottom-most bend
point can have its vertical line segment extend into at most n different lengths:
from 0 up to n − 1, and, for every bend point that is higher, we lose one of the

22

possibilities, which in total yields n! possibilities for the lengths of vertical line
segments, and the same for lengths of horizontal line segments. This yields that
the number of 2-DIR graphs on ℓn vertices is at most ((ℓn)!)4 ∈ 2O(ℓn log(ℓn)). By
a result of Scheinerman and Zito [52], this is also asymptotically best possible,
as the class of 2-DIR graphs trivially contains all perfect matchings (or, albeit
slightly more strongly, all graphs with maximum degree 1).

We can also upper bound the number of ways to split ℓn vertices into n

partitions of size ℓ by counting ∏︁n−1
i=0

(︂
ℓ(n−i)

ℓ

)︂
≤

(︂
ℓn
ℓ

)︂n
∈ 2O(ℓn log(ℓn)).

Therefore, we can see that the number of impure-ℓ-line graphs on n vertices
is at most 2O(ℓn log(ℓn)).

Moreover, we also easily observe that there are at least 2Ω(n2
4) bipartite graphs

as we can simply take (for n even) the bipartite graphs with vertices 1, . . . , n/2
in the first partition and the vertices n

2 + 1, . . . , n in the second partition. Such
graphs are in one-to-one correspondence with 0-1 matrices of size n

2 × n
2 , and

therefore there are at least 2n2
4 such labeled graphs.

We are now interested in finding ℓ such that n2/4 ∈ Θ(ℓn log(ℓn)) and we can
see that setting ℓ = Θ(n/ log n) fulfills the criterion as then we have ℓn log(ℓn) ∈
Θ(n2/4). Therefore, for n large enough, there exist bipartite graphs G on n
vertices with il(G) ∈ Ω(n

log n
), proving the theorem. ⊞

This bound also holds for the three remaining parameters, as we showed the
impure-line parameter to be less than or equal to the remaining parameters.

Next, we attempt to complement this result with upper bounds.

Proposition 28. Every graph on n vertices has a pure-
⌈︂

n√
2

⌉︂
-tile representation.

Proof. We use the result by Dean, Hutchinson, and Scheinerman [53] that shows
that every graph G = (V,E) can be written as a union of

⌈︃√︂
|E|
2

⌉︃
trees. As

|E| ≤ n2/2 for any n-vertex graph and trees are 1-degenerate, by Proposition 2,
we can represent each tree as a PURE-2-DIR graph, and therefore we have a
pure-tile representation that uses

⌈︃√︂
|E|
2

⌉︃
≤

⌈︃√︂
n2

4

⌉︃
=

⌈︂
n√
2

⌉︂
tiles. ⊞

Again, this also holds for the three remaining types of representations, as a
pure-tile representation is the most restricted type of the four representations we
consider.

We remark that Dean, Hutchinson, and Scheinerman [53] also have a result
that shows that every graph G = (V,E) can be written as a union of

⌊︃√︂
|E|
3 + 3

2

⌋︃
planar graphs. This is a better bound regarding the number of graphs, but to
represent a planar graph, we may need two tiles by Theorem 23 and Proposition 6,
and therefore, the multiplicative factor we would get is 2√

6 >
1√
2 and our bound

would be worse.

2.6 Open problems
The first glaring open problem stems from the difference of the bounds on the
minimum degree in Lemma 19 and Theorem 17.

23

Problem. Do there exist graphs with a maximum degree 2d + 1, d ≥ 2 such that
they do not have an impure-d-tile representation, or does there exist a better
lower bound on the minimum degree of a graph that still permits an impure-d-
tile representation?

In a similar vein, it would be interesting to investigate the gap between our
upper and lower bound of the pure-tile parameter on graphs on n vertices we
showed in Theorem 27 and Proposition 28.
Problem. Do there exist graphs on n vertices that require pure-Ω(n)-tile repre-
sentation or can we find a pure-f(n)-tile representation for all n-vertex graphs
with f ∈ o(n)?

A third question concerns the relation between bounded clique-width and
bounded pure-line parameter.
Problem. Does bounded clique-width imply bounded pure-line parameter?

Finally, it is natural to consider the decision problem of whether a graph G has
a pure-d-line representation. We can immediately see that the decision problem
is in NP: any n-vertex graph is (n− 1)-degenerate, and we may therefore assume
that d ≤ n as the answer is trivial otherwise. Then, there are at most n2 line
segments in the representation and we may assume that the endpoints of the line
segments on a 2n2 × 2n2-grid: take the representation and create a grid so that
all endpoints lie on the points of the grid. As there are at most 2n2 endpoints
and each of them may create a new grid line both horizontally and vertically, we
get to the size 2n2 × 2n2. (In fact, each line segment creates at most three grid
lines, one that the line segment lies on and two that are perpendicular to the line
segment and intersect it in the endpoints. However, for the membership in NP,
the above bound is sufficient.)

It is now obvious that we can use the description of the whole representation as
a polynomial certificate, as each of the n2 line segments requires only 2 log2(2n2)
bits and hence the polynomial certificate has size at most 2n2 · log2(2n2). The
verification of the certificate then can be done in time O(n4) as we can check every
pair of vertices and all

(︂
n
2

)︂
pairs of representation line segments representing the

vertices to either intersect or not intersect.
The case of d = 1 has been resolved by Kratochvíl [21] who showed that the

decision problem is NP-complete and the same also holds for other three variants
of the representations in the case of d = 1. Moreover, the decision problem of
recognizing impure-d-tile graphs with maximum degree 2d is trivially in P by
Theorem 17 and recognizing pure-d-tile graphs with maximum degree d is also in
P by Proposition 2.

The problem has already been studied with a similar parameter called thick-
ness, that is, the minimum number of planar graphs such that G can be written as
their union. In this case, Mansfield [54] showed that deciding whether thickness
is at most k for any k ≥ 2 is NP-complete. However, adapting such reduction for
the case of intersection representations proved to be tricky, as a key component
in the reduction was the ability to have a linear bound on the number of edges in
a planar graph that comes from Euler’s formula. While we can prove a version of
Euler’s formula for special cases of intersection representations and we do so in
the next chapter, it does not yield any nontrivial bound on the number of edges
unless we also require a large girth of the graph, which was first used by Nešetřil

24

and Kostochka [55]. This is a consequence of the fact that in planar graphs, edges
are represented by curves, while in intersection representations (and particularly
proper representations), edges are represented by the intersections, that is, the
points.
Problem. What is the complexity of deciding whether a general graph G has a
pure-d-line representation for d ≥ 2? The same question also applies to pure-d-
tile, impure-d-line, and impure-d-tile.

25

3. Precise number of
intersections
In this chapter, we focus on a parameter that has not been studied in much
detail: the number of intersections of string graphs. While 1-string graphs have
been studied in the past, the subclasses of string graphs with a higher number of
intersections have not been in the spotlight, with a few exceptions.

We study these classes, mainly motivated by a version of Euler’s formula for
intersection graphs in the plane. While the method used in the proof was first
used by Nešetřil and Kostochka [55] in proving bounds on chromatic numbers of
1-string graphs with large girth, they did not explicitly state the formula – Euler’s
formula is mentioned in the process, however, they use it on the “graphical graph”
H(F) which is planar.

3.1 A version of Euler’s formula
Theorem 29 (Euler’s formula for 1-string graphs). Let G be a connected 1-string
graph with a 1-string representation R. Let f denote the number of faces of R.

Then, |V (G)| − |E(G)| + f = 2.
Proof. We use the same terminology as Nešetřil and Kostochka: given the proper
1-string representation R of a graph G, we construct a plane graph H(R) (called
the graphical graph) as follows. The vertices ofH(R) are precisely the intersection
points of the curves. Two vertices of H(R) are joined by an edge if and only if
they lie on the same curve and there is no other intersection point in between
them. The drawing of H(R) immediately follows from the definition: the vertices
are drawn in the place of the intersection points and the edges are drawn on the
curve joining the intersection points.

Immediately, we see that |V (H(R))| = |E(G)| as each pair of curves may
intersect at most once, and hence each edge is counted precisely once. More-
over, |E(H(R))| = 2|E(G)| − |V (G)| as on each curve R(v), there are pre-
cisely degG(v) intersection points and hence degG(v) − 1 edges. In total, we
get ∑︁

v∈V (G)(degG(v) − 1) = 2|E(G)| − |V (G)|. We also immediately observe that
the drawing of H(R) has the same number of faces as the representation R, we
denote the number by f . By Euler’s formula, we know that 2 = |V (H(R))| −
|E(H(R))|+f = |E(G)|− (2|E(G)|− |V (G)|)+f = |V (G)|− |E(G)|+f , proving
the theorem. ⊞

We can also extend this to string graphs with at most k intersection points
per each pair of curves. If we know that all pairs of strings have precisely k
intersections, the inequality in the formula will then become equality. Therefore,
we also define a subclass of k-string graphs in which we require that the number
of intersections is always either k or zero.
Definition 24 (Intersection point). An intersection point of a string representa-
tion R is a point that belongs to two (or possibly more in the case of non-proper
representations) distinct curves in R. We use In(R) to denote the set of all
intersection points in the string representation R.

26

Definition 25 (Precisely-k-string graphs). A precisely-k-string representation is
a proper representation R such that every pair of curves has either precisely k
intersection points or precisely 0 intersection points.

A graph is a precisely-k-string graph if it has a precisely-k-string representa-
tion.

Theorem 30 (Euler’s formula for k-string graphs). Let G be a connected k-string
graph with a k-string representation R and let f be the number of faces of R. For
a vertex v ∈ V (G), let pv be the number of intersection points on R(v) and let
p = 1

2
∑︁

v∈V (G) pv be the number of all intersection points. Then,

|V (G)| − k|E(G)| + f ≤ 2.

Moreover, if G is a connected graph with a precisely-k-string representation R,
the equality holds.

Proof. The argument is similar to Euler’s formula for 1-string graphs, with some
exceptions in the second paragraph. We have p intersection points and we can now
observe that |V (H(R))| = p and |E(H(R))| = ∑︁

v∈V (G)(pv − 1) = 2p − |V (G)|.
Again, we use Euler’s formula for the planar graph H(R): 2 = |V (H(R))| −
|E(H(R))|+f = p−2p+|V (G)|+f = |V (G)|−p+f ≥ |V (G)|−k|E(G)|+f , where
the inequality follows from the fact that p ≤ k|E(G)|, as each edge corresponds
to a pair of strings with nonempty intersection, and every such pair interects in
at most k points.

It is also clear that for a precisely-k-string representation, we have p =
k|E(G)|, which yields equality. ⊞

We remark that in this case, the requirement for the representation to be
proper is indeed necessary for the definition to be nontrivial. If we did not re-
quire the representation to be proper and instead only expected a finite number of
intersection points and finitely many bends, we could then observe that the class
of precisely-k-string graphs would be the same as the class of k-string graphs (with
the same requirements on the representation, i.e., only finitely many intersection
points and finitely many bends). Given a k-string graph and a pair of intersect-
ing curves with less than k intersection points, we could create a representation
with the two curves intersecting in precisely k intersection points by taking an
intersection point of the two curves, and in a particularly small ε-neighborhood
of the intersection point, add the remaining intersection points in such a way that
the curves touch and do not cross.

A natural question also arises: what are the inclusions between the classes?
Is there some hierarchy?

It turns out that a hierarchy of sorts is indeed present, however, it is somewhat
complicated. We first start by showing that if we can represent a graph as a
precisely-k-string, then we can represent it with any larger number of intersections
of the same parity. After that, we show that for any precisely-k-string with k odd,
we can find a precisely-4k-string representation, and therefore, it has a precisely-
ℓ-string representation for any ℓ ≥ 4k.

However, we also show that not every precisely-k-string graph is a precisely-
(k + 1)-string graph which is quite unusual, as in most of hierarchies (k-string
graphs, k-SEG graphs, Bk-VPG graphs), the sets are also ordered by inclusion. In

27

c2

c1

c2

c1

Figure 3.1: An example of adding two intersection points

our case, this only holds for steps of even length as mentioned before. Of course,
we also show the more usual non-inclusion that there exists a precisely-(k + 1)-
string graphs that is not a precisely-k-string graph, which implies that the classes
of precisely-k-string graphs and precisely-(k + 1)-string graphs are incomparable
with respect to inclusion.

3.2 Hierarchy inclusions
Proposition 31. For all k, we have precisely-k-string ⊆ precisely-(k+ 2)-string.

Proof. We simply build a precisely-(k+ 2)-string representation from a precisely-
k-string representation.

For every pair of intersecting curves c1, c2, we choose a single intersection point
P of the two curves. As we assume the representations to be proper, there exists
an ε > 0 such that the ε-neighborhood of P contains only parts of c1, c2 with P as
their only intersection point and no other curve. We change the representation in
the ε-neighborhood of P so that the curves intersect three times – c2 will remain
the same, while we change c1 to cross c2 three times as in Figure 3.1.

⊞

Proposition 32. For all k, we have precisely-k-string ⊆ precisely-4k-string.

Proof. Given a precisely-k-string representation of G, we construct a precisely-4k-
string representation of G. Intuitively, we “double” each string, which quadruples
the number of intersections.

As the representation is proper, for each c in the representation, there exists
an εc > 0 such that in the εc-neighborhood of c, no two other curves intersect, and
if another curve in the representation enters the neighborhood, then it intersects
c precisely once and then leaves the neighborhood. We then take ε := minc∈R εc.

We extend each curve c as follows: we take the curve c, draw another curve
c′ parallel to c inside the ε/2-neighborhood and join one of the two pairs of
ε/2-close endpoints together by a single line segment, and an example is shown
in Figure 3.2. It is clear that given two curves c, d intersecting in the point
P , there are all four intersections in the ε-neighborhood of P : the intersections
between c and d, c′ and d and d′ and c exist immediately by the construction.
The intersection between c′ and d′ exists as the curves intersect the boundary of

28

Figure 3.2: An example of multiplying the number of intersection points by four

the ε-neighborhood in the cyclic order c, c′, d, d′, c′, c, d′, d, and therefore c′ and d′

must intersect as well.
No more intersections are created anywhere else, which ensures that we indeed

have a precisely-4k-string representation.
⊞

Proposition 33. For all k, and for any bipartite graph G, if G ∈ precisely-k-
string, then G ∈ precisely-2k-string.

Proof. We repeat the construction from the proof of the previous theorem, how-
ever, we only apply the “doubling” operation on the curves representing the
vertices of a single partition of G. This ensures that there are precisely 2k inter-
section points between two curves with a nonempty intersection. ⊞

We remark that the previous proposition does not follow from Proposition 31
as it may happen that k is odd, in which case the Proposition 31 does not imply
the inclusion.

Theorem 34. For all k, k-string ⊆ precisely-4k-string.

Proof. We start by creating a 4k-string representation by “doubling” the string
as in the proof of Proposition 31. In such a representation, we know by the
construction that every pair of strings that has a nonempty intersection intersects
in 4ℓ points for some ℓ ∈ N. In particular, the number of intersections is always
even.

Therefore, we may continue with the argument as in Proposition 31 and for
every pair of curves that has less than 4k intersection points, we add 2 intersection
points until it has precisely 4k intersection points. We note that we cannot skip
4k intersections as we start with an even number of intersections, and by adding
two intersection points, the parity of the number of intersection points remains
unchanged. ⊞

Naturally, we may ask whether k-string is contained in precisely-ℓ-string for
some ℓ < 4k. This remains open; however, in the next section, we show that
k-string is not contained in precisely-(k + 1)-string.

3.3 Hierarchy non-inclusions
This section focuses on proving the non-inclusions precisely-k-string ̸⊆ precisely-
(k + 1)-string and precisely-(k + 1)-string ̸⊆ precisely-k-string. We do this by
employing the Noodle-Forcing Lemma of Chaplick et al. [10], which we use to

29

reduce the task of finding a precisely-(k+ 1)-string to finding such representation
by only extending the strings from their endpoints with the additional property
that all added intersection points by essentially “doubling” consecutive intersec-
tion points at the beginning and the end of each string. The second non-inclusion
then follows immediately from the Noodle-Forcing Lemma.

3.3.1 The Noodle-Forcing Lemma
Before we prove the theorems, we have to investigate the Noodle-Forcing Lemma
and its proof. In particular, we aim to utilize the properties of the original
construction while making the whole construction precisely-k-string. We begin
by stating the lemma with the necessary definitions.

Definition 26 (Order-preserving mapping). Given a proper representation R,
and a not necessarily proper representation R′, with both representing the graph
G, and a mapping φ : In(R) → In(R′), we say that φ is order-preserving if it is
injective and for every v ∈ V , if p1, . . . , pk are all distinct intersection points on
R(v), then φ(p1), . . . , φ(pk) all belong to R′(v) and they appear on R′(v) in the
same relative order as the points p1, . . . , pk on R(v).

Lemma 35 (Noodle-Forcing Lemma, Chaplick et al. [10]). Let G = (V,E) be
a graph with a proper representation R = {Rv : v ∈ V }. Then there exists a
graph G′ = (V ′, E ′) containing G as an induced subgraph, which has a proper
representation R′ = {R′(v) : v ∈ V ′} such that R(v) = R′(v) for all v ∈ V and
R′(w) is a vertical or a horizontal segment for w ∈ V ′ \ V .

Moreover, for any ε > 0 any (not necessarily proper) representation of G′ can
be transformed by a homeomorphism of the plane and a circular inversion into a
representation Rε = {Rε(v) : v ∈ V ′} with these properties:

1. for every vertex v ∈ V , the curve Rε(v) is contained in the ε−neighborhood
of R(v) and R(v) is contained in the ε−neighborhood of Rε(v).

2. there is an order-preserving mapping ϕ : In(R) → In(Rε) with the addi-
tional property that for every p ∈ In(R), the point ϕ(p) coincides with the
point p.

We briefly sketch the construction, which works in two steps: in the first step,
we overlay the proper representation R of a graph F by a plane grid graph H
with particular properties, and in the second step, we construct a grid intersection
representation based on H.

The first step is performed as follows. We start by defining special points of R
– these are the endpoints of the curves, bend points of the curves, and intersection
points of the curves. We then construct the plane grid graph H that overlays the
representation with the following properties:

(P1) The edges of H are drawn as vertical and horizontal segments, and every
internal face of H is a rectangle. Moreover, the outer face of H does not
intersect any curve of R.

(P2) No curve of R passes through a vertex of H and no edge of H passes through
a special point of R.

30

Figure 3.3: The representation of cells in Noodle-Forcing Lemma

(P3) Every face of H contains at most one special point of R and no two faces
containing a special point are adjacent.

(P4) Every edge of H has at most a single intersection with the curves of R.

(P5) Every face of H intersects at most two curves of R, and if a face f intersects
exactly two curves of R, then the two curves intersect inside the face f .

(P6) Every curve of R intersects the boundary of a face of H at most twice.

The first three properties can be obtained by taking a grid that is large enough
and fine enough. The remaining three properties are then ensured by suitably
splitting the faces of H.

We proceed with the second step. Given the plane graph H, we build a
representation R′ of the graph G′ as follows. Starting with the vertices of H,
each v ∈ V (H) is converted into two vertices S1(v), S2(v) which form an edge
together. Each edge {u, v} = e ∈ E(H) that is incident with v is converted into
three vertices S(v, e), S(u, e), S(e) with edges {S(v, e), S(e)}, {S(u, e), S(e)}. If
an edge e that is incident with a vertex v is drawn as a horizontal segment, we
add an edge between S(v, e) and S1(v) and if e is drawn as a vertical segment, the
edge is added between the vertices S(v, e) and S2(v). We represent this naturally
with a grid intersection representation as shown in Figure 3.3.

To finish the construction, we add the vertices of G as in the representation
R with edges given by the intersections. An example of such reduction is shown
in Figure 3.4.

3.3.2 Proofs of the non-inclusions
Our first goal is to construct a precisely-k-string graph that does not have a
precisely-(k + 1)-string representation. We do this in two steps. First, we show
that given a precisely-k-string representation R of a graph G, we create a graph
G′ = G′(R) that has a precisely-(k + 1)-string representation if and only if the
representation R can be extended into a precisely-(k+1)-string representation by
“doubling” consecutive intersection points at the beginning and the end of each
string by extending the string from its endpoints. In the second step, we find a
precisely-k-string graph with a representation that cannot be extended in such a
way. We first formalize the concept of extending the representation.

Definition 27 (Suitable extension). We say that arepresentation R′ of a graph
G suitably extends a representation R of a graph G if

31

Figure 3.4: An example of the reduction in the proof of Noodle-Forcing Lemma

Figure 3.5: An example of a suitable extension of a precisely-2-string representa-
tion into a precisely-3-string representation

1. ∀v ∈ V (G), R(v) ⊆ R′(v), and

2. if p1, . . . , pℓ are all distinct intersection points in the order they appear on
R′(v) and pa, . . . , pb, 1 ≤ a ≤ b ≤ ℓ are all intersection points that appear
on R(v), then ∀i ∈ [a−1], the points pi, p2a−i intersect the same curve R(u)
and there is no other intersection point between pi and p2a−i on R(u), and
∀i ∈ [ℓ − b] the points pb+i, pb+1−i intersect the same curve R(u) and there
is no other intersection point between pb+i and pb+1−i on R(u).

An example of a suitable extension is shown in Figure 3.5.

Lemma 36. For all k ≥ 1, given a precisely-k-string representation R of a graph
G, the graph G′ constructed in the Noodle-Forcing Lemma has a precisely-k-string
representation as well.

Proof. Let us take the representation R′′ as in the proof of the Noodle-Forcing
Lemma and then we add the missing required intersections.

We now have to take care of the intersections of the newly added strings
and the intersections between the original strings and the newly added strings.
We start by resolving the issues with pairs of the newly added strings from the
Noodle-Forcing Lemma. We added three types of edges: the edges {S1(v), S2(v)},
{S(v, e), Si(v)}, and {S(v), S(v, e)}. In the representation R′′, any such edge
corresponds to a single intersection point, therefore, we have to add k more. In the

32

Figure 3.6: The first step of extension of intersection points

Figure 3.7: The final step of extension of intersection points

case of edges {S(v, e), Si(v)} and {S(v), S(v, e)}, we extend the connector S(v, e),
so that on the extension on one endpoint, we add the intersections with S(v) and
on the extension of the other endpoint, we add the required intersections with
Si(v). The edges {S1(v), S2(v)} are resolved similarly, we extend one endpoint of
S1(v) to add the required intersections. We show this graphically in Figure 3.6.

Finally, we take care of the intersections between the newly added strings
and the original strings. The only permitted edges are of the form {S(e), v} for
v ∈ V (G). Nevertheless, we may still require more intersection points, which we
accomplish by extending the strings representing the vertices S(e) from one of
the endpoints. The result is shown in Figure 3.7.

⊞

Lemma 37. For all k ≥ 1, given a precisely-k-string representation R of a graph
G, there exists a graph G′ = G(R) that has a precisely-(k+1)-string representation
if and only if the representation R can be suitably extended into a precisely-(k+1)-
string representation R′ of the graph G.

Proof. Given a precisely-k-string representation R of a graph G, we apply the
Noodle-Forcing Lemma to the representation R and we obtain a graph G′ with

33

its representation R′′ as described in the previous section. We claim that G′

satisfies the properties stated in Lemma 37.
We first prove the converse. Let us have a precisely-(k + 1)-string represen-

tation R′ of G that suitably extends R. We can then simply take the graph G′

with its representation R′′ and extend each string from its endpoints so that it
has the additional intersections from the suitable extension by drawing the new
parts ε-close to the original string with ε small enough so that the ε-neighborhood
of R′′(v) contains only parts of the curves that R′′(v) intersects and if a curve
c enters the ε-neighborhood of R′′(v), then it crosses R′′(v) a single time before
leaving the neighborhood. This forms the representation R̃. Moreover, the con-
struction ensures that all pairs of vertices that were present in G intersect in
either 0 or k + 1 points in R̃. We then use the same approach as in the proof of
Lemma 36.

We also remark that in the case of the intersections between the newly added
strings and the original strings, there may be more than a single intersection
between the representations of S(e) and v. In such case, we can have either one
or two intersections, depending on whether the representation of vertex v has
been extended that far. In particular, we note that it cannot happen that we
would have more intersections than required as the extension adds at most a
single intersection with each already intersected string. This finishes the proof of
the converse, and now we move to the forward implication.

We are now given a precisely-(k + 1)-string representation R′ of G′ and we
want to show that it yields a representation R′′ that suitably extends R. By
the Noodle-Forcing Lemma, we can transform the proper representation R′ into
a representation Rε of G′ with properties as in the statement of the lemma.
Moreover, Rε is also a precisely-(k+1)-string representation as homeomorphisms
and circular inversions are bijections, and hence the intersections are all preserved
as crossings and no new intersections appear.

As Rε(v) is ε-close to R(v), we note that Rε(v) ⊆ Nε(R(v)) = {x : ∃y ∈
R(v) : dist(x, y) < ε}. Using the same terminology as Chaplick et al. [10], we
focus on the zones of the representation and we call Nε(R(v)) the noodles. Let
two curves R(u), R(v) have k mutual crossing points p1, . . . , pk. The proof of the
Noodle-Forcing Lemma requires ε to be small enough so that Nε(R(v))∩Nε(R(u))
has k connected components Z1, . . . , Zk, all of which are parallelograms, and all
the connected components are disjoint. We call these connected components the
zones with each Zi containing the point pi. We also add the requirement for ε
to be small enough so that the distance between any intersection point in R and
any endpoint of a curve in R is strictly larger than ε > 0. This is possible due to
the fact that R is proper.

We note that as Rε is a precisely-(k + 1)-string representation, there is only
a single zone with two intersection points for each pair of vertices u, v forming
an edge, as there is one intersection point in each of the zones by the Noodle-
Forcing Lemma. Moreover, as we chose ε small enough so that for any vertex
u ∈ V (G) the distance between any intersection point of R(u) and the endpoints
is greater than ε, by the ε-closeness of R(u) and Rε(u), we have that in each of
the zones, the curves must intersect both of their respective opposite sides of the
boundary of the zone so that ε-closeness can be preserved. We show that the only
possible way of adding a single intersection point into a zone is by having one of

34

Rε(u), Rε(v) cross the zone twice. It may happen that Rε(u) intersects Zi with
multiple subcurves, and we focus on the different variants of these subcurves.

There are only two possibilities of the positions of subcurves in the zone Zi

based on the endpoints: either both endpoints of the subcurve lie on the same
side of the parallelogram or they lie on the opposite sides. If there was a subcurve
that would have endpoints on two neighboring sides, this would be a contradiction
with the fact that for any vertex w, Rε(w) ⊆ Nε(R(w)) as Nε(R(w)) is an open
set and one of the sides would lie on the boundary of the noodle Nε(R(w)), which
is not part of the set.

We first focus on the subcurves in Zi that have both endpoints on the same
side of the parallelogram. In this case, the subcurve γ ⊆ Rε(u) splits Zi into two
regions with one region bounded by the curve γ and the line segment between
the two endpoints of γ lying on the boundary of Zi, and therefore any curve
δ ⊆ Rε(v) that would cross γ must cross it at least twice (or, more generally,
an even number of times) as δ cannot leave the region through the line segment.
(Here, we extensively use the fact that we do not permit two curves to touch
without crossing.) Therefore, the subcurves with both endpoints of the subcurve
on the same side of the zone cannot add just a single intersection point.

This means that we cannot add just a single intersection by any pair of sub-
curves such that at least one of them has both endpoints on the same side of the
zone. We therefore now focus on the case of two subcurves γ ⊆ Rε(u), δ ⊆ Rε(v)
with the endpoints of each subcurve on the opposite sides of the zone. Again, γ
divides Zi into two regions with one endpoint of δ in each of the regions. There-
fore, as δ cannot leave the two regions, it must cross γ odd number of times, and
therefore we cannot get precisely two intersection points between δ and γ.

It immediately follows that the only way how to get two intersection points
in a single zone is by having exactly one of the two curves Rε(u), Rε(v) have two
subcurves that have their endpoints on the opposite sides of the zone. For brevity,
we say that the subcurve crosses the zone if its endpoints lie on the opposite sides
of the zone.

We now build the representation R′′ = {R′′(v) = Rε(v) : v ∈ V (G)} of G by
restricting Rε.

We first show that the second property of a suitable extension holds for R′′.
We fix a vertex v and we choose an orientation of R(v). Let us order the zones
Z1, . . . , Zℓ by the order of their corresponding intersection points on R(v) with
respect to the chosen orientation. We now show that it cannot happen that there
exists a zone Zj such that R′′(v) has two crossing subcurves through the zone
Zj, but there exist zones Zi, Zk : i < j < k such that R′′(v) has only a single
crossing subcurve through the zones Zi, Zk. For contradiction, we assume such
zones exist as is shown in Figure 3.8 and we consider the disjoint sets A,B,C,D
as depicted there. Each of the four sets has an odd number of crossings with
R′′(v) on the boundary, and therefore, there must be an endpoint in each of the
four sets. However, curves only have two endpoints, and this yields a contradic-
tion. Therefore, the zones with two crossing subcurves must form two continuous
intervals Z1, . . . , Zm for some m and Zk, . . . , Zℓ for some k.

To get the first property, we can just simply use a single homeomorphism to
deform the part R′′(v) containing the original intersection points into R(v) as we
now can only focus on intersections with other vertices of the original graph G

35

A B

C D

Nε(R(u))

Zi

Zj
Zk

Figure 3.8: The impossible situation with zones in proof of Lemma 37

in the zones of the noodle Nε(R(v)). Therefore, the representation R′′ indeed
suitably extends R. ⊞

Lemma 38. For all k ≥ 1, there exists a graph Gk with its precisely-k-string
representation Rk such that the representation cannot be suitably extended into a
precisely-(k + 1)-string representation.

Proof. We start with the case k = 1, where the graph is G1 = K8, the com-
plete graph on eight vertices, with its representation R1 as in Figure 3.9. We
want to show that there is no suitable extension of the representation and for
contradiction, we assume that such extension exists. We will consider the added
intersections of vertices c1, c2, d1, d2.

First, we note that only one of c1, c2 and one of d1, d2 can be extended from
the top endpoint farther than their intersection as otherwise, we would get more
than two intersection points for the two vertices (let cx, dy be the vertices that
are extended from the top endpoint farther than their intersection with c3−x, d3−y

respectively). This also implies that at least one of the four intersections between
ci, dj cannot be added by the top extension – in particular, the intersection be-
tween c3−x, d3−y. We note that some configurations of these extensions cannot be
extended from the bottom (e.g., if c2 is extended as far down as possible and d1
is extended to its intersection with c1, then the intersection point of c1, d2 cannot
be reached from the bottom), however, such cases cannot be the extensions either
way.

We can also use the argument to see that there is at least one intersection
point between ai and bj that is not covered by the extensions starting from the
top. Therefore, at least one of ai, bi must be extended from the bottom to obtain
the uncovered intersection and the same is true for at least one cj, dj. However,
each pair with one vertex ai or bi and the other vertex cj or dj has an intersection
in the bottom half of the representation, and hence it cannot happen that both
of them can be extended up to their so far uncovered intersection. Therefore, the
representation cannot be suitably extended.

Next, we continue with the case k ≥ 2. In this case, the graph is Gk = K4, the
complete graph on four vertices, with the representation Rk as in Figure 3.10. We
start by noting that at most one of the strings a1 and a2, or b1 and b2 respectively,
can be extended as both the leftmost and the rightmost intersection point are
between a1, a2, or b1, b2 respectively. Therefore, there are an ai and a bj that
cannot be extended and therefore, the number of intersection points between ai

and bj remains at k, showing that we cannot suitably extend the representation.

36

a1 a2 b1 b2 c1 c2 d1 d2

Figure 3.9: The graph G1 with representation R1

a1

a2

b1

b2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ k intersections

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

k − 1 intersections

Figure 3.10: The graph Gk with representation Rk for k ≥ 2

⊞

Theorem 39. For all k ≥ 1, precisely-k-string ̸⊆ precisely-(k + 1)-string.

Proof. This follows immediately: from Lemma 38, there is a graph Gk with its
representation Rk that cannot be suitably extended, and therefore, the graph G′

k

from Lemma 37 has a precisely-k-string representation, but it does not have a
precisely-(k + 1)-string representation, proving the theorem. ⊞

Corollary 40. For all k ≥ 1, k-string ̸⊆ precisely-(k + 1)-string.

Proof. Any precisely-k-string graph is a k-string graph and hence there exists a
k-string graph that is not a precisely-(k + 1)-string graph. ⊞

Our second goal is to show that the opposite inclusion does not hold, that is,
there exists a precisely-(k+ 1)-string graph that is not a precisely-k-string graph.

Theorem 41. For all k ≥ 1, precisely-(k + 1)-string ̸⊆ precisely-k-string.

Proof. We construct a representation Rk+1 of a graph G = K2, the complete
graph on two vertices. In particular, the construction is the same as in the proof
of Bk-VPG⊊Bk+1-VPG by Chaplick et al. [10]. As shown in Figure 3.11, the
represention is precisely-(k+ 1)-string, and we apply the Noodle-Forcing Lemma
on the representation to obtain a graph G′ with representation R′

k+1. (Using
terminology by Chaplick et al. [10], we grill the sausage.) By Lemma 36, the
graph G′ has a precisely-(k + 1)-string representation.

37

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ k intersections

Figure 3.11: The sausage construction of representation Rk

We now claim that the graph G′ has no precisely-k-string representation.
For contradiction, let R′′ be a precisely-k-string representation of G′. By the
Noodle-Forcing Lemma, we can use a homeomorphism of the plane and circular
inversion to transform R′′ into a representation Rε such that there exists an
order-preserving mapping ϕ : In(Rk+1) → In(Rε). Moreover, as we observed
in the proof of Lemma 37, any Rε obtained by transforming a precisely-k-string
representation must be precisely-k-string as well.

Let us consider Rk+1(u), Rk+1(v) with u, v the two distinct vertices of G.
However, Rk+1(u) has k+1 intersection points with Rk+1(v), and as φ is injective
by definition, there must be at least k+ 1 intersection points between Rε(u) and
Rε(v), which is a contradiction. ⊞

All of this yields a rather surprising structure in the hierarchy, as shown in
Figure 3.12. We have two chains of classes for k even and odd, respectively, and
we have a connection showing that for every odd k, we can find a representation
with an even number of 4k intersections per pair of curves. However, the other
direction is not clear at all: can we find a representation with 2ℓ+ 1 intersections
per pair of curves for any precisely-2k-string?

3.4 Open problems
We now mention two problems that remain open. The first problem consists of
finding representations with an odd number of intersections while having an even
number of intersections. The other direction follows from Proposition 32, but
it is not clear if we can change the parity of the number of intersections of two
curves from even to odd.
Problem. Given a k ∈ N, does there exist some ℓ ∈ N such that precisely-2k-string
⊆ precisely-(2ℓ+ 1)-string?

The second problem consists of minimizing the number of intersections ℓ such
that k-string graph can be represented as a precisely-ℓ-string graph. We are able
to show that ℓ ≤ 4k and that ℓ > k + 1. The main issue we run into is that
some pairs of curves may have an odd number of intersections and some pairs
may intersect in an even number of points. Resolving this with a less intersection
inflating procedure could quickly strengthen the bound.
Problem. What is the least ℓ such that k-string ⊆ precisely-ℓ-string?

38

precisely-2-string 1-string
precisely-1-string

2-string precisely-4-string precisely-3-string

3-string

precisely-12-string

string

Figure 3.12: The diagram of inclusions of the investigated classes

39

Conclusion
In the thesis, we studied different types of hierarchies of intersection graphs. First,
we considered the problem of finding a class of intersection graphs that contains
all graphs with maximum degree at most d for any d ∈ N. This led to the
introduction of classes of pure-k-line, pure-k-tile, impure-k-line and impure-k-tile
graphs.

We first established relations between these classes with k serving as a graph
parameter, and we also observed that there are graphs with bounded pure-line
parameter while the pure-tile parameter is unbounded. Next, we considered the
relationship between the parameters and maximum degree or graph degeneracy.
We showed that d-degeneracy of a graph G implies that G has a pure-d-tile repre-
sentation and a graph G′ with maximum degree at most 2d has an impure-d-tile
representation. Using Ramsey theory, we were also able to show that there ex-
ist bipartite graphs with arbitrarily large impure-tile and impure-line parameters.
We also compared the introduced parameters with other known graph parameters
such as treewidth, pathwidth, or clique-width. In all three cases, we showed that
there exist graphs with bounded pure-line parameter but unbounded treewidth,
pathwidth and clique-width. On the other hand, bounded treewidth and path-
width imply bounded pure-line parameter. The case of clique-width remains
open.

When considering the complexity of recognizing graphs with parameter ≤ k
for any of the four parameters, we proved a version of Euler’s formula for 1-string
graphs. This motivated the definition of the class of precisely-k-string graphs,
which we studied in Chapter 3. We showed inclusions of precisely-k-string graphs
into precisely-(k + 2)-string graphs and precisely-4k-string graphs. We also gave
examples of graphs that are precisely-k-string graphs (and hence also k-string
graphs) but are not precisely-(k + 1)-string graphs.

In the thesis, we introduced many open problems, two of which we point out
here. The first problem considers the complexity of deciding whether a general
graph has its pure-tile parameter ≤ k. It is easy to observe that the decision
problem is in NP, but it is not clear whether it is NP-complete or not.

In the second problem, we consider k-string graphs and their extensions into
precisely-ℓ-string graphs. We were able to show that every k-string graph is a
precisely-4k-string graph. Is this the best possible, or can we find a smaller ℓ
such that every k-string graph is a precisely-ℓ-string graph?

40

Bibliography
[1] Andrei Asinowski, Elad Cohen, Martin Charles Golumbic, Vincent Limouzy,

Marina Lipshteyn, and Michal Stern. Vertex intersection graphs of paths on
a grid. J. Graph Algorithms Appl., 16(2):129–150, 2012.

[2] Martin Charles Golumbic, Marina Lipshteyn, and Michal Stern. Edge in-
tersection graphs of single bend paths on a grid. Networks, 54(3):130–138,
2009.

[3] William T. Trotter Jr. and Frank Harary. On double and multiple interval
graphs. Journal of Graph Theory, 3(3):205–211, 1979.

[4] Jerrold R. Griggs and Douglas B. West. Extremal values of the interval
number of a graph. SIAM Journal on Algebraic Discrete Methods, 1(1):1–7,
1980.

[5] András Gyárfás and Douglas West. Multitrack interval graphs. Congr. Nu-
merantium, 109:109–116, 1995.

[6] Reuven Bar-Yehuda, Magnús M Halldórsson, Joseph Naor, Hadas Shachnai,
and Irina Shapira. Scheduling split intervals. SIAM Journal on Computing,
36(1):1–15, 2006.

[7] Liliana Alcón, Márcia R. Cerioli, Celina M.H. de Figueiredo, Marisa Gutier-
rez, and João Meidanis. Tree loop graphs. Discrete Applied Mathematics,
155(6):686–694, 2007. Computational Molecular Biology Series, Issue V.

[8] Vineet Bafna, Babu Narayanan, and R. Ravi. Nonoverlapping local align-
ments (weighted independent sets of axis-parallel rectangles). Discrete Ap-
plied Mathematics, 71(1):41–53, 1996.

[9] Jan Kratochvíl and Jiří Matoušek. Intersection graphs of segments. Journal
of Combinatorial Theory, Series B, 62(2):289–315, 1994.

[10] Steven Chaplick, Vít Jelínek, Jan Kratochvíl, and Tomáš Vyskočil. Bend-
bounded path intersection graphs: Sausages, noodles, and waffles on a grill.
In International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, pages 274–285. Springer, 2012.

[11] Jan Kratochvíl and Jiří Matoušek. NP-hardness results for intersection
graphs. Commentationes Mathematicae Universitatis Carolinae, 030(4):761–
773, 1989.

[12] Douglas B. West and David B. Shmoys. Recognizing graphs with fixed
interval number is NP-complete. Discrete Applied Mathematics, 8(3):295–
305, 1984.

[13] Minghui Jiang. Recognizing d-interval graphs and d-track interval graphs.
Algorithmica, 66(3):541–563, 2013.

41

[14] Daniel Heldt, Kolja Knauer, and Torsten Ueckerdt. Edge-intersection graphs
of grid paths: The bend-number. Discrete Applied Mathematics, 167:144–
162, 2014.

[15] Martin Pergel and Paweł Rzążewski. On edge intersection graphs of paths
with 2 bends. In Graph-Theoretic Concepts in Computer Science, pages
207–219. Springer, 2016.

[16] Dror Epstein, Martin Charles Golumbic, Abhiruk Lahiri, and Gila Morgen-
stern. Hardness and approximation for l-EPG and B1-EPG graphs. Discrete
Applied Mathematics, 281:224–228, 2020. LAGOS’17: IX Latin and Ameri-
can Algorithms, Graphs and Optimization Symposium, C.I.R.M., Marseille,
France - 2017.

[17] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms.
Journal of Computer and System Sciences, 13(3):335–379, 1976.

[18] Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-
BFS and partition refinement, with applications to transitive orientation, in-
terval graph recognition and consecutive ones testing. Theoretical Computer
Science, 234(1):59–84, 2000.

[19] Jan Kratochvíl. String graphs. II. Recognizing string graphs is NP-hard.
Journal of Combinatorial Theory, Series B, 52(1):67–78, 1991.

[20] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing string
graphs in NP. Journal of Computer and System Sciences, 67(2):365–380,
2003. Special Issue on STOC 2002.

[21] Jan Kratochvíl. A special planar satisfiability problem and a consequence of
its NP-completeness. Discrete Applied Mathematics, 52(3):233–252, 1994.

[22] John Canny. Some algebraic and geometric computations in PSPACE. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, page 460–467, New York, NY, USA, 1988. Association for
Computing Machinery.

[23] Jiří Matoušek. Intersection graphs of segments and ∃R. CoRR,
abs/1406.2636, 2014.

[24] Andrei Asinowski and Andrew Suk. Edge intersection graphs of systems of
paths on a grid with a bounded number of bends. Discrete Applied Mathe-
matics, 157(14):3174–3180, 2009.

[25] Petr Chmel. Algorithmic aspects of intersection representations. Bachelor’s
thesis, Charles University, Faculty of Mathematics and Physics, 2020.

[26] Dibyayan Chakraborty and Kshitij Gajjar. Finding geometric representa-
tions of apex graphs is NP-hard. In International Conference and Workshops
on Algorithms and Computation, pages 161–174. Springer, 2022.

42

[27] Kathie Cameron, Steven Chaplick, and Chính T. Hoàng. Edge intersection
graphs of L-shaped paths in grids. Discrete Applied Mathematics, 210:185–
194, 2016.

[28] Antoon W.J. Kolen, Jan Karel Lenstra, Christos H. Papadimitriou, and
Frits C.R. Spieksma. Interval scheduling: A survey. Naval Research Logistics
(NRL), 54(5):530–543, 2007.

[29] Sergio Cabello and Miha Jejčič. Refining the hierarchies of classes of geo-
metric intersection graphs. The Electronic Journal of Combinatorics, pages
P1–33, 2017.

[30] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is np-
hard. Computational Geometry, 9(1):3–24, 1998. Special Issue on Geometric
Representations of Graphs.

[31] Ross J Kang and Tobias Müller. Sphere and dot product representations of
graphs. Discrete & Computational Geometry, 47(3):548–568, 2012.

[32] Irina Mustaţă and Martin Pergel. What makes the recognition problem hard
for classes related to segment and string graphs? CoRR, abs/2201.08498,
2022.

[33] Jan Kratochvíl and Martin Pergel. Geometric intersection graphs: do short
cycles help? In International Computing and Combinatorics Conference,
pages 118–128. Springer, 2007.

[34] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation
of graphs. SIAM Journal on Discrete Mathematics, 5(4):596–603, 1992.

[35] F. W. Sinden. Topology of thin film rc circuits. The Bell System Technical
Journal, 45(9):1639–1662, 1966.

[36] Paul Turán. On an extremal problem in graph theory. Matematikai és Fizikai
Lapok, 48:436–452, 1941.

[37] Willem Mantel. Problem 28 (solution by H. Gouwentak, W. Mantel, J.
Teixeira de Mattes, F. schuh and W. A. Wythoff). Wiskundige Opgaven,
10:60–61, 1907.

[38] F. P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, s2-30(1):264–286, 1930.

[39] Reinhard Diestel. Graph Theory. Springer, Heidelberg, 2017.

[40] Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr
Micek, William T Trotter, and Bartosz Walczak. Triangle-free geometric
intersection graphs with large chromatic number. Discrete & Computational
Geometry, 50(3):714–726, 2013.

[41] Julius Petersen. Die theorie der regulären graphs. Acta Mathematica,
15(1):193–220, 1891.

43

[42] Louigi Addario-Berry (https://mathoverflow.net/users/3401/
louigi-addario-berry). Proving that every graph is an in-
duced subgraph of an r-regular graph. MathOverflow. URL:
https://mathoverflow.net/q/52375 (version: 2011-01-18).

[43] Jaroslav Nešetřil and Vojtěch Rödl. Simple proof of the existence of restricted
ramsey graphs by means of a partite construction. Combinatorica, 1(2):199–
202, 1981.

[44] Paul Erdős, András Hajnal, and Richard Rado. Partition relations for car-
dinal numbers. Acta Math. Acad. Sci. Hungar, 16:93–196, 1965.

[45] János Pach, Hubert de Fraysseix, and Patrice Ossona de Mendez. Repre-
sentation of planar graphs by segments. Technical report, North-Holland,
1994.

[46] Jiří Fiala. Graph minors, decompositions and algorithms. https://kam.
mff.cuni.cz/~fiala/tw.pdf, 2022. Accessed: 2022-04-06.

[47] Rudolf Halin. S-functions for graphs. Journal of geometry, 8(1):171–186,
1976.

[48] Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw. Pattern matching for
permutations. Information Processing Letters, 65(5):277–283, 1998.

[49] Elad Cohen, Martin Charles Golumbic, and Bernard Ries. Characteriza-
tions of cographs as intersection graphs of paths on a grid. Discrete Applied
Mathematics, 178:46–57, 2014.

[50] Vít Jelínek. The rank-width of the square grid. Discrete Applied Mathemat-
ics, 158(7):841–850, 2010. Third Workshop on Graph Classes, Optimization,
and Width Parameters Eugene, Oregon, USA, October 2007.

[51] Sang il Oum and Paul Seymour. Approximating clique-width and branch-
width. Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006.

[52] E.R Scheinerman and J Zito. On the size of hereditary classes of graphs.
Journal of Combinatorial Theory, Series B, 61(1):16–39, 1994.

[53] Alice M Dean, Joan P Hutchinson, and Edward R Scheinerman. On the
thickness and arboricity of a graph. Journal of Combinatorial Theory, Series
B, 52(1):147–151, 1991.

[54] Anthony Mansfield. Determining the thickness of graphs is NP-hard. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 93(1):9–23, 1983.

[55] A.V. Kostochka and J. Nešetřil. Coloring relatives of intervals on the plane,
I: Chromatic number versus girth. European Journal of Combinatorics,
19(1):103–110, 1998.

44

https://mathoverflow.net/users/3401/louigi-addario-berry
https://mathoverflow.net/users/3401/louigi-addario-berry
https://mathoverflow.net/q/52375
https://kam.mff.cuni.cz/~fiala/tw.pdf
https://kam.mff.cuni.cz/~fiala/tw.pdf

List of Figures

2.1 The operation of “purifying” the intervals 12
2.2 Building the L-graph representation of a complete k-partite graph 14

3.1 An example of adding two intersection points 28
3.2 An example of multiplying the number of intersection points by four 29
3.3 The representation of cells in Noodle-Forcing Lemma 31
3.4 An example of the reduction in the proof of Noodle-Forcing Lemma 32
3.5 An example of a suitable extension of a precisely-2-string repre-

sentation into a precisely-3-string representation 32
3.6 The first step of extension of intersection points 33
3.7 The final step of extension of intersection points 33
3.8 The impossible situation with zones in proof of Lemma 37 36
3.9 The graph G1 with representation R1 37
3.10 The graph Gk with representation Rk for k ≥ 2 37
3.11 The sausage construction of representation Rk 38
3.12 The diagram of inclusions of the investigated classes 39

45

	Introduction
	Related works
	Previously studied hierarchies of intersection graphs
	The motivation

	Unions of line segments
	Properties of the parameters
	The parameters and maximum degree
	The pure-tile parameter of planar graphs
	Relations with other graph parameters
	The parameters and the number of vertices
	Open problems

	Precise number of intersections
	A version of Euler's formula
	Hierarchy inclusions
	Hierarchy non-inclusions
	The Noodle-Forcing Lemma
	Proofs of the non-inclusions

	Open problems

	Conclusion
	Bibliography
	List of Figures

