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iii



Contents

Introduction 2

1 Ideal Theory 5
1.1 Hilbert’s weak Nullstellensatz . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Multiple evaluation points . . . . . . . . . . . . . . . . . . 5
1.1.2 Computing polynomials hi . . . . . . . . . . . . . . . . . . 7

2 Preliminaries and Definitions 10
2.1 Commitment scheme . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Interactive argument of knowledge . . . . . . . . . . . . . 11
2.2 Group operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Public parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Structured reference strings . . . . . . . . . . . . . . . . . . . . . 13
2.5 Security assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Ideal and real pairing check . . . . . . . . . . . . . . . . . 14
2.6 Schwartz–Zippel lemma . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Polynomial commitment scheme . . . . . . . . . . . . . . . . . . . 16

3 First Scheme for One Evaluation Point 19
3.1 The scheme for one evaluating point . . . . . . . . . . . . . . . . 19
3.2 Getting polynomials hi . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Completeness of the first protocol . . . . . . . . . . . . . . . . . . 20
3.4 Knowledge soundness of the first protocol . . . . . . . . . . . . . . 21
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Scheme complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Second Scheme for Multiple Evaluation Points 25
4.1 The scheme for multiple evaluating points . . . . . . . . . . . . . 25
4.2 About the protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 SRS structure . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Omitting the limitation of degree in variable W . . . . . . 29

4.3 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Knowledge soundness . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Scheme complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Prover’s Communication Complexity 35
5.1 Building a multivariate scheme from a univariate scheme . . . . . 35

Conclusion 38

Bibliography 39

1



Introduction

What is a polynomial commitment scheme?
Generally, a commitment scheme is a fundamental component in many

cryptographic protocols, where some statement needs to be committed by one
participant and then verified by the other. The very common and direct are
applications of polynomial commitments in zero-knowledge protocols, where the
essence is Prover’s effort not to reveal any additional information about the
statement, just persuading about Prover’s knowledge. Zero-knowledge protocols
are, for example, used in authentication systems or Zcach cryptocurrency.

In this thesis, we consider more specific polynomial commitment schemes
based on the polynomial statement, as the name indicates.

The commitment scheme involves two participants: a Prove and a Verifier,
typically, we write V . Briefly speaking, Prover is responsible for committing to
a polynomial. However, the own polynomial keeps secret and does not reveal the
polynomial to Verifier.

Via an interactive protocol, the Prover tries to prove the knowledge of the
secretly committed polynomial. At the end of the communication, Verifier
decides if he has been convinced or not. In the notation of the commitment
scheme, we use accept or reject as the Verifier’s response.

The polynomial commitment scheme comprises three parts: Setup, Commit,
and Open. In the Setup part, all prerequisites, in our case algebraic objects
such a as prime field, groups with group generators, and a pairing function
between groups, necessary for the remaining part of the polynomial commitment
scheme, are established. The elements in Setup are defined to ensure that the
commitment scheme is secure under some security assumptions. In this thesis,
we assume the Q-DLOG security assumption, precisely defined later Section 2.5,
a generalization of the standard discrete logarithm assumption. In this work, the
Setup part is performed by an external trusted party. In the following Commit
part, only the Prover participates, where under defined scheme creates and
publishes commitment to a secret polynomial. The Open part is an interactive
protocol between Prover and Verifier, where Verifier decides if ”believes” that
Prover knows the secret polynomial corresponding to the commitment or not.
We can say the Open part is a verification process of Prover honesty.

The polynomial commitment scheme’s primary purpose is to evaluate commit-
ted polynomials in any requested points.

Let f be a polynomial over a finite field F. At first, the Prover, following the
Commit protocol, commits to some polynomial by computing and publishing the
polynomial commitment. Let z be an element from F. Then Prover knowing the
committed polynomial, can output y = f(z). Polynomial commitment schemes
must ensure that whenever the Verifier outputs accept in the Open protocol, the
value y output by the Prover is the real evaluation of the committed polynomial
f in point z.
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First, we want to create a protocol where the honest Prover convinces Verifier
with high probability. If Prover knows the polynomial to which the commitment
was created and proceeds the interactive protocol properly, Verifier outputs accept.
We call this property completeness.

Secondly, we must ensure that if Prover convinces Verifier, Prover doesn’t
know the committed polynomial with a negligible probability. We say protocol
has knowledge soundness property. Knowledge soundness assumption indicates
that Commit has to be some irreversible operation since dishonest Prover cannot
be able to determine committed polynomials after the commitment is established.

Related work
Polynomial commitment schemes are already a well known and studied area in
the cryptographic literature (Bünz et al. [2019],Boneh et al. [2020], Kate et al.
[2010]). This thesis merges approaches from two works in this area.

Bünz et al. [2019] presented a technique of building polynomial commitment
schemes based on a multi-round interactive protocol. The security assumption
used in their work is called the Adaptive root assumption, based on the difficulty
of computing l-th root of random group element G, where l is a randomly chosen
prime number. In the Setup part, a group of unknown order with a random group
element is established.

The polynomial commitment is built in the following way. Polynomial over
a finite field F is uniquely encoded by evaluating polynomial in sufficient large
F element and then multiply by group element G. The security assumption
guarantees that the polynomial cannot be recovered from the released commit-
ment.

The Open part is a multi-round interactive protocol, where the degree of the
evaluated polynomial decreases in each round. The number of rounds depends
on the degree of the committed polynomial.

This thesis mainly extends work by Boneh et al. [2020], where the authors
used another technique for building a polynomial commitment scheme focused
on reducing Prover’s communication complexity.

In Boneh et al. [2020], the authors suggested computing in two additive
groups, for which they require the Q-DOG assumption. For efficient computation,
their protocol uses a mapping called pairing, which efficiently maps the element
from two additive groups G1,G2 to another multiplicative group Gt. For additive
groups, the authors suggested the Q-DLOG assumption, generalized of the discrete
logarithm assumption.

In the Setup part, structured reference strings denoted by SRS are constructed
and limited by the parameter Q corresponding to the parameter from the Q-
DLOG assumption. SRS contains all possible monomials that could be included
in the committed polynomials. The encoding is performed by group elements from
groups G1,G2. Based on the structure of SRS, the authors prove the completeness
and knowledge soundness property for interactive proofs of their Open part.

The commitment is created using SRS. By the coefficients of the polynomial,
which is supposed to be committed, the Prover combines encoded monomials
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from SRS and outputs a single element of G1.
During the Open part, the Prover uses the same method to compute the

combination of SRS for other polynomials. At the end of the Open protocol, the
Verifier checks some identity between elements computed by SRS. The computation
is efficient by using defined pairing.

Our results
However, the polynomial commitment scheme from Boneh et al. [2020] is only for
univariate polynomials. Our scheme extends their work and provides a scheme
for multivariate polynomials.

The scheme exploits ideal theory from abstract algebra with Hilbert’s weak
Nullstellensatz as the main theorem. For instance, other claims and algorithms
participating in our protocol are Buchberger’s algorithm for computation of a
Gröbner basis, claims appearing in Gröbner basis theory, and the Multivariate
Division algorithm.

Our work is focused on achieving a small size of proof, we can also say Prover’s
communication complexity. Since Bünz et al. [2019] also defined the scheme for
multivariate polynomials, a comparison with our scheme suggests itself.

In protocol by Bünz et al. [2019], the proof size depends on the number of
rounds in Open protocol. We outline that the complexity is O(µ · log(d)G), where
d is the total degree of the polynomial, µ is the number of polynomial variables,
and G denotes single operation in the group defined in Setup.

Our work reduces the size of Prover’s communication to only one group
element in the case we consider the scheme for univariate polynomial and to
O(µG) in the case of the multivariate polynomial. The communication complexi-
ty comparison is more precisely described in Chapter 5.
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1. Ideal Theory
This chapter introduces a part of algebra used in our construction of polynomial
commitment schemes.

1.1 Hilbert’s weak Nullstellensatz
One of the essential theorems for our work is the weak version of Hilbert’s Nullstel-
lensatz from in Boneh et al. [2020] (Theorem 3.15.), which allows us to convert
the problem of checking the correctness of polynomial evaluations to verifying
whether a polynomial belongs to an ideal. First, we present some standard
algebraic definitions.

Definition 1 (Ideal polynomial ring).
Let F be a field, R = F[X1, . . . , Xµ] a polynomial ring. A subset I ⊆ R is
an ideal, if it satisfies:

i) 0 ∈ I,

ii) If f1, f2 ∈ I, then f1 + f2 ∈ I,

iii) If f ∈ I and r ∈ R, then r · f ∈ I.

Definition 2 (Ideal generated by a finite set). Let R = F[X1, . . . , Xµ] be
a polynomial ring, I an ideal in R, and g1, . . . , gs polynomials in R. We say the
ideal I is generated by g1, . . . , gs, denote by I = ⟨g1, . . . , gs⟩, if it holds that:

I = {f | f = h1g1 + · · ·+ hsgs, hi ∈ R}

Theorem 1 (Hilbert’s weak Nullstellensatz). Let F be a field, α1, . . . , αµ ∈ F
and R = F[X1, . . . , Xµ] a polynomial ring. Then, ⟨X1 − α1, . . . , Xµ − αµ⟩ is a
maximal ideal, and, for each polynomial f ∈ R, the following holds:

f ∈ ⟨(X1 − α1), . . . , (Xµ − αµ)⟩ ⇔ f(α1, . . . αµ) = 0.

Hilbert’s weak Nullstellensatz allows us to use an ideal identity for verifying
the correctness of polynomial evaluation. Let r ∈ F be an alleged value of
polynomial at evaluation point z̄ = z1, . . . , zµ, i.e., r = f(z1, . . . zµ). Then, we
need to verify whether f(z1, . . . zµ)−r = 0. By using Hilbert’s weak Nullstellensatz,
it is equivalent if f(X1, . . . Xµ)−r could be generated by the basis (X1−z1, . . . , Xµ−
zµ), i.e., if there exist h1, . . . hµ ∈ F [X1, . . . , Xµ] s.t.

f(X1, . . . , Xµ)− r =
µ∑︂

i=1
hi(X1, . . . , Xµ)(Xi − zi).

1.1.1 Multiple evaluation points
More generally, Hilbert’s weak Nullstellensatz can be used to verify the correctness
of evaluation at multiple points. For ᾱ = (α1, . . . , αµ) ∈ Fµ, denote by Iα the
ideal (X1 − α1, . . . , Xµ − αµ).
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Using Hilbert’s weak Nullstellensatz (Theorem 1) for a multivariate polynomial
f ∈ F[X1, . . . , Xµ] and evaluation points ᾱ(1), . . . , ᾱ(t) ∈ Fµ, we have

∀i ∈ [t] : f(ᾱ(i)) = 0 ⇔ ∀i ∈ [t] : f ∈ Iᾱ(i) ⇔ f ∈
⋂︂

i∈[t]
Iᾱ(i) . (1.1)

For shortened notation, by [t] we denote the set of values {1, . . . , t}.

Denote by I the intersection of the above ideals Iᾱ(i) , i.e.,

I :=
⋂︂

i∈[t]
Iᾱ(i) .

For all i ∈ [t], the ideals Iᾱ(i) are maximal in F[X1, . . . , Xµ] and, thus, pairwise
comaximal. Since, for all pairs of comaximal ideals J1 and J2, we have the equality
J1 ∩ J2 = J1J2, we can express I as follows

I =
⋂︂

i∈[t]
Iᾱ(i) =

∏︂
i∈[t]

Iᾱ(i) .

Since we know how to construct the ideal I, we can derive the structure of
the ideal I and then precisely express its size.

The size of basis of the ideal I depends on parameters µ and t. Specifically,
its elements are all possible combinations of products of polynomials (Xj−αj

(i)).
Consider all possible mappings σ : [t]→ [µ] and denote the k-th of these mappings
by σk.

Then, we can express the k-th basis element of the ideal I as follows:

gk =
t∏︂

i=1

(︂
Xσk(i) − α

(i)
σk(i)

)︂
. (1.2)

Since the number of all possible mappings σ is µt, the number of basis
polynomials is also µt, i.e., for some g1, . . . , gµt ∈ F[X1, . . . , Xµ]

I = ⟨g1, . . . , gµt⟩.
We extend using Hilbert’s weak Nullstellensatz for the case we want to verify the
correctness of polynomial evaluation in more points.

Let r ∈ F<t[X1, . . . Xµ] be polynomial which should satisfy f(ᾱ(i)) = r(ᾱ(i))
for all evaluating points ᾱ(1), . . . , ᾱ(t). We limit the degree of polynomial r to t.
It follows from the fact each interpolation polynomial with t evaluation point has
a degree at most t.

Using the relation (1.1), we convert the verification of polynomial equality to
verify whether their difference belongs to the ideal I.

Specifically, instead of proving f(ᾱ(i)) − r(ᾱ(i)) = 0 we can use the following
corollary of Hilbert’s weak Nullstellensatz (Theorem 1) for more evaluation points.
Corollary 1. Let f ∈ F[X1, . . . , Xµ], ᾱ(1), . . . , ᾱ(t) ∈ Fµ are evaluating points,
and ideal I = (g1, . . . , gµt), where gk = ∏︁t

i=1

(︂
Xσk(i) − α

(i)
σk(i)

)︂
.

Let r be a polynomial in F<t[X1, . . . , Xµ]. For each j ∈ [t] following holds:

f(ᾱ(j))− r(ᾱ(j)) = 0⇔ f(ᾱ(j))− r(ᾱ(j)) ∈ I

⇔ ∃ h1, . . . , hµ ∈ F[X1, . . . , Xµ] : f − r =
µt∑︂

i=1
higi.
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1.1.2 Computing polynomials hi

Corollary 1 guarantees the existence of polynomials hi from decomposition of
polynomial f − r. In this section, we establish how these polynomials can be
computed. For this purpose, we use the Multivariate Division Algorithm 1.

Before presenting the complete algorithm, we recall some necessary definitions
and notations from the Gröbner basis theory based on Adams [1994].

We denote Tn = {xe1
1 · · ·xen

n |e1, . . . , en ∈ N0}.
Remark (Monomial ordering). Monomial ordering over Tn is a linear ordering <
over set Tn satisfying:

i) 1 < xϵ, for all xϵ ∈ Tn \ {1}

ii) if xα < xβ, then xαxγ < xβxγ, for all xα, xβ, xγ ∈ Tn.

Remark. Let f = anxn1
1 · · ·xnµ

µ +· · ·+a1x1 · · ·xµ+a0 be a multivariate polynomial.
Then we denote total degree the largest sum of the exponents in one single
monomial.
We denote lt(f) = anxn1

1 . . . xnµ
µ the leading term, i.e. the term with largest sum

of exponent, in case of equality the defined ordering decides.
We denote lm(f) = xn1

1 · · ·xnµ
µ the leading monomial, i.e the leading term without

the coefficient.

Definition 3. Given f, g, h ∈ F[X1, . . . , Xµ], with g ̸= 0, we say that f reduces
to h mod g written

f →g h

iff lm(g) divides non-zero term X that appears in f and

h = f − X

lt(g)g.

Definition 4. Let f, h ∈ F[X1, . . . , Xµ] and F ⊆ F[X1, . . . , Xµ] \ {0}.
F = {f1, . . . , fs}. We say that f reduces to h modulo F , denoted

f →F h

iff there exists a sequence of indices i1, . . . it ∈ {1, . . . , s} and a sequence of
polynomials h1, . . . , ht−1 such that

f →fi1 h1 →fi2 h2...→fit−1 ht−1 →fit h

Definition 5 (reduced polynomial). Let G ⊆ F[x1, . . . , xµ] \ {0}. Polynomial
ρ ∈ F[x1, . . . , xµ] is called reduced with respect to G, if for every g ∈ G none of
the terms included in ρ is divisible by lm(g). In other words, ρ cannot be reduced
modulo G.

Now we cover all prerequisites to introduce an important algorithm, Multiva-
riate Division Algorithm. (Adams [1994] Algorithm 1.5.1)
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Algorithm 1 Multivariable Division Algorithm
INPUT: f, G = {g1, . . . , gs|gi ∈ F[X1, . . . , Xµ]}
OUTPUT: h1, . . . hs, ρ ∈ F[X1, . . . , Xµ], where ρ is reduced mod G,

f = h1g1 + · · ·+ hsgs + ρ, lm(f) = max{lm(higi), ρ|i = 1, . . . , s}
1: h1 := 0, . . . hs := 0, ρ := 0, q := f
2: while q ̸= 0 do
3: if ∃ i ∈ 1, . . . s, st.lm(gi)|lm(q) then
4: choose min i (according to given monomial ordering) st. lm(gi)|lm(q)
5: hi := hi + lt(q)

lt(gi)

6: q := q − lt(q)
lt(gi)gi

7: else ρ = ρ + lt(q), q = q − lt(q)
8: end if
9: end while

10: RETURN h1, . . . hs, ρ

Generally, G could be any ideal basis and the algorithm outputs a decomposi-
tion f = h1g1 + · · · + hsgs + ρ, where ρ is a non-zero polynomial. However, for
our purpose in the polynomial commitment scheme, we need to work with a more
specific basis called Gröbner basis, by Adams [1994] (Definition 1.6.1).

Definition 6 (Gröbner basis). Let I ⊆ F[x1, . . . , xµ] be an ideal.
G = {g1, . . . , gt} ⊆ I \ {0}. G is called Gröbner basis of ideal I if, for every
f ∈ I, f ̸= 0, there is a gi ∈ G s.t. lm(gi)|lm(f).

To solve the problem of finding Gröbner basis of a given ideal, we use a well-
known Buchberger’s algorithm Adams [1994] (Algorithm 1.7.1). The algorithm
gets a set of polynomials determining the ideal as an input and outputs a Gröbner
basis of this ideal. For our purpose, we need the algorithm to be deterministic. In
the general version, the algorithm is introduced as non-deterministic when there
is some randomness in choosing pair of polynomials from a given set. We can
remove randomness by establishing that polynomials are chosen under a given
monomial ordering.

Let’s write down a known estimated complexity of the algorithm:

d2µ+o(1)
,

where d is total degree of input multivariate polynomials, µ is number of variables.

The following equivalence from Adams [1994] (Theorem 1.6.2) states how a
Gröbner basis is related with a polynomial decomposition output by Algorithm 1
(Multivariate Division Algorithm).

Proposition 1. Let 0 ̸= I ⊆ F[x1, . . . , xµ], G = {g1, . . . , gs} ⊆ I, g1, . . . gs ̸= 0.
Let Tn be a monomial ordering. Then the following conditions are equivalent.

i) G is a Gröbner basis of ideal I

ii) f ∈ I ⇔ f →G 0

iii) f ∈ I if and only if f = ∑︁s
i=1 higi, h1, . . . , hs ∈ F[x1, . . . , xµ] and

lm(f) = max{lm(hi)lm(gi)|i = 1, . . . , s}
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Suppose that a Gröbner basis of a given ideal is already computed. The
following lemma states that using Algorithm 1 (Multivariable Division Algorithm),
we obtain the required polynomials hi.

Lemma 2. Let I = ⟨G⟩ be an ideal ⊆ F[X1, . . . , Xµ] and G be a Gröbner basis
of ideal I. Multivariable Division Algorithm (Algorithm 1) with an input G =
{g1, . . . , gs} outputs f = ∑︁s

i=1 higi iff f ∈ I.

Proof. The Multivariate Division Algorithm generally outputs a decomposition
of polynomial f = ∑︁s

i=1 higi +ρ, where r is modulo G, in the other words f →G ρ.
By previous Proposition 1, since G is a Gröbner basis of the ideal I, f ∈ I ⇔

f →G 0. It implies f ∈ I ⇔ r = 0. Finally, f ∈ I iff Multivariate Division
Algorithm outputs f = ∑︁s

i=1 higi, (ρ = 0).

Summary . Let f be a polynomial in which we compute an evaluation and r be
a polynomial which satisfies f(ᾱ(i)) = r(ᾱ(i)) for all i ∈ [t]. The evaluation points
ᾱ(i) determine the ideal I by I = (g1, . . . , gk), where gk = ∏︁t

i=1

(︂
Xσk(i) − α

(i)
σk(i)

)︂
.

Using Buchberger’s algorithm, we compute Gröbner basis g1̃, . . . , gk̃ of the ideal
I. By Corollary 1, the polynomial f − r ∈ I. Finally by Lemma 2, using the
Multivariate Division Algorithm (Algorithm 1) with polynomial f−r and Gröbner
basis as inputs we obtain required polynomials hi.

The following example demonstrates the necessity of calculating Gröbner
basis. Multivariate Division Algorithm cannot be directly run for any basis of
the ideal I since it will not be ensured that even for f − r ∈ I, the algorithm
outputs ∑︁s

i=1 higi.
Example. Let F = Z17, and all polynomials are considering in polynomial ring
Z17[X1, X2]. Let α1̄, α2̄ be evaluating points and I1, I2 are corresponding ideals:

α1̄ = (2, 3), I1 = ⟨X1 − 2, X2 − 3⟩
α2̄ = (1, 4), I2 = ⟨X1 − 1, X2 − 4⟩

Using equation 1.2 we compute the intersection of I1, I2.

I = ⟨(X1 − 2)(X1 − 1), (X1 − 2)(X2 − 4), (X1 − 3)(X1 − 1), (X2 − 3)(X2 − 4)⟩
= ⟨X2

1 − 3X1 + 2, X1X2 − 2X2 − 4X1 + 8, X1X2 − 3X1 −X2 + 3,

X2
2 − 7X2 + 12⟩

We can consider these polynomials as basis g1, g2, g3, g4 of ideal I. However,
we cannot directly use Multivariable Division Algorithm to successfully compute
a decomposition of some polynomial f .

Let compute with the following polynomial:

f − r = (X1X2 − 3X1 −X2 + 3)− (X1X2 − 2X2 − 4X1 + 8) = X1 + X2 − 5

This polynomial is obviously an element of I because it is a linear combination
of two generating polynomials g3, g2. Since none of the leading monomials of
generating polynomials could divide polynomial f , Multivariate Division Algo-
rithm outputs nonzero residual polynomial ρ. Thus, the algorithm does no give
the required decomposition.
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2. Preliminaries and Definitions

2.1 Commitment scheme
For an introduction, write down a general definition of the commitment scheme.
Later in this chapter, after all the necessary prerequisites, we also define a
polynomial commitment scheme.

Security parameter The security of the protocol has to be computed against
some given parameter. We call this parameter security parameter, and denote
by λ.

By convention, we use the unary representation 1λ for inputs of algorithms.
Probabilistic polynomial-time algorithms (PPT) run in polynomial time with
respect to the size of inputs. Since we consider an input 1λ, PPT algorithms run
in λ polynomial-time.

Generally, in cryptography, it is sufficient to prove that some probability is
negligible in the security parameter λ.

Definition 7. A function ρ : N→ R is negligible, if for every integer c > 0 there
exists an integer nc such that for all x > nc

|ρ(x)| < 1
xc

.

At this point, we can write a general definitions of commitment scheme with
required property binding, both presented in Bünz et al. [2019](Definition 4).

Definition 8 (Commitment scheme). A commitment scheme Γ is a tuple (Setup,
Commit, Open) of PPT algorithms where:

• Setup (1λ)→ pp generates public parameters pp

• Commit (pp, x)→ (c) takes a secret message x and outputs a public
commitment c.

• Open (pp, c, x) → b ∈ {0, 1} verifies the opening of commitment c to the
secret message x.
The Open is an interactive argument of knowledge.

Generally, commitment scheme is required to be binding. It means no efficient
adversary can create a commitment for two different messages.

Definition 9 (Binding).
A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

⎡⎢⎢⎢⎣ b0 = b1 ̸= 0 ∧ x0 ̸= x1 :

pp← Setup(1λ)
(c, x0, x1)← A(pp)
b0 ← Open(pp, c, x0)
b1 ← Open(pp, c, x1)

⎤⎥⎥⎥⎦ ≤ negl(λ)

10



2.1.1 Interactive argument of knowledge
According to the definition of a commitment scheme, Open part is an interactive
argument of knowledge. The interactive argument of knowledge is a more demand-
ing interactive protocol. Generally, in the interactive protocol, a Prover convinces
a Verifier that c is the commitment to a message m, while the message m remains
a Prover’s secret.

Furthermore, in an interactive argument of knowledge, if Prover convinces
Verifier, Prover truly knows the secret message m with high probability.

We have to establish a new term relation R. Generally, let x be a statement
and w be a witness. Then the relation R is a set of pairs (x, w) which satisfies
the defined condition for R.

For instance, let x = (a, b), where a, b are elements in F and w be a polynomial
f ∈ F[X1, . . . , Xµ]. Then we can define relation R in following way: pair (x, w)
is in R iff b = f(a).

Now we can introduce the interactive argument of knowledge more formally
from Bünz et al. [2019](Definition 1).

Definition 10 (Interactive argument of knowledge).
Let P ,V be PPT (probabilistic polynomial-time) interactive algorithms.

Let Setup(1λ) → (pp) denote a non-interactive algorithm with given security
parameter λ outputting public parameters pp.

Both P and V have access to pp and both are given statement x. Prover has
on input w in addition. Let ⟨P(pp, x, w),V(pp, x)⟩ denote the output of V after
its interaction with P. Verifier outputs accept or reject.

The triple (Setup, P ,V) is called an argument of knowledge for relation R if
protocols satisfy completeness and knowledge soundness conditions.

By Verifier’s output accept, we understand that Prover convinces Verifier.
Otherwise, reject means that Verifier has not been convinced.

To complete the Definition 10, we have to define completeness and knowledge
soundness. We use the definition from Bünz et al. [2019](Definition 1).

Definition 11 (Completeness).
Interactive protocol has property completeness if every honest Prover P given

(x, w) ∈ R convinces Verifier (i.e. ⟨P(pp, x, w),V(pp, x)⟩ = accept ) with probabi-
lity one.

AGM model In this thesis, we work in the Algebraic Group Model (AGM) of
Fuchsbauer et al. [2018] (section 1.2). The AGM puts more restrictions on the
adversaries than a Standard Model. Informally, whenever an algebraic adversary
computes some group element, it also has to uncover the group representation of
the element with respect to its input.

Definition 12 (Algebraic adversary).
Whenever algebraic adversary A outputs an element g ∈ G, it also outputs a
vector v̄ = (v1, . . . , vn) ∈ Fn such that g = v̄T l̄ = ∏︁l

i=1 vili, where l1, . . . , ln is the
list of all group elements from G that are given to the adversary.

We introduce the knowledge soundness property (Boneh et al. [2020], Definition
2.3.), where we suppose an algebraic adversary participates.

11



Definition 13 (Knowledge soundness in AGM).
Interactive protocol has knowledge soundness in AGM if there exists an efficient

algorithm E such that for any algebraic adversary A the probability of adversary’s
winning of the following game is negl (λ) over the randomness of A.

1. A chooses input x and plays the role of P in the protocol with input x.

2. Given access to outputs of algebraic adversary A (including the vector of
representation of group elements), E outputs w dependent on this vector.

3. A wins if

• V outputs accept at the end of the protocol and
• (x, w) /∈ R

2.2 Group operation
This thesis suggests a polynomial commitment scheme, which security is based
on a group assumption. Furthermore, we work in more groups and we need to
efficiently switch between them. We start with efficient group mapping called a
pairing. The pairing naturally maps elements from two additive groups to another
multiplicative group.

Definition 14 (Pairing). Let G1,G2 be two additive cyclic groups of prime order
q. Let Gt be a multiplicative cyclic group of the same order q. The natural
mapping between groups e : G1×G2 → Gt is called pairing, satisfying the following
properties:

• e(g1, g2) = gt, where g1, g2, gt are group generators of G1,G2,Gt,

• Bilinearity: ∀x, y ∈ F∗
q,∀g1 ∈ G1,∀g2 ∈ G2 : e(x · g1, y · g2) = e(g1, g2)xy,

• Non-degeneracy: e(g1, g2) ̸= 1 ∈ Gt,

• Computability: Efficient algorithm computing e exists.

Remark. Later in this work, we use a shorter notation for some of these operations.
Let x ∈ F, g1 ∈ G1, g2 ∈ G2, {gt1 , gt2} ∈ Gt as above. For e(g1, g2), we use g1⊙ g2.
For operation x · g1, we use [x]1 = x · g1, similarly [x]2 = x · g2.
Remark. Since we suppose to use both additive and multiplicative groups, the
terms multiplication have a different meaning. Let x ∈ F, g1 ∈ G1, g2 ∈ G2, as
above, and {gt1 , gt2} ∈ Gt. The operation x · g1 we call multiplication in G1.
Similarly the operation x · g2 we call multiplication in G2. The operation gt1 · gt2

we call multiplication in Gt.

2.3 Public parameters
All public parameters are generated in Setup algorithm, an initial non-interactive
protocol in the polynomial commitment scheme. The Setup is performed by a
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third trusted party, which means Prover, not even Verifier, could participate in
Setup.

Generally, Setup takes security parameter as an input and outputs public
parameters, denoted by pp. In other words, public parameters depend on the
security parameter λ.

Specifically in this thesis, Setup outputs a representation of a finite field F
of order q = 2ω(λ), representations of two additive cyclic groups G1, G2 of order
q, one multiplicative cyclic group Gt of order q, together with groups generators
g1 ∈ G1, g2 ∈ G2, gt ∈ Gt and group pairing e : G1 × G1 → Gt satisfying
conditions from Definition 14.

To conclude, we have pp = (F,G1,G2,Gt, g1, g2, gt, e).

2.4 Structured reference strings
In this work, the schemes are based on Structured Reference Strings (SRS),
presented in Gabizon et al. [2019] (Section 2.2.). These strings are also constructed
in Setup. The Setup algorithm choose uniformly x1, . . . , xµ from F, takes group
elements g1, g2 and returns two structured reference string defined in the following
way.
Definition 15 (Structured reference strings).
Let x1, . . . , xµ be elements in a finite field F and f1(X1, . . . , Xµ), . . . , fl(X1, . . . , Xµ)
be polynomials over F. Let g1 be an element of G1 and g2 an element of G2.
Then we define µ-variables structured reference strings srs1, srs2 with degree Q
as follows:

srs1 =
{︂
[f1(xd1

1 , . . . , xdµ
µ )]1, . . . , [fl(xd1

1 , . . . , xdµ
µ )]1,

µ∑︂
i=1

di < Q
}︂

srs2 =
{︂
[f1(xd1

1 , . . . , xdµ
µ )]2, . . . , [fl(xd1

1 , . . . , xdµ
µ )]2,

µ∑︂
i=1

di < Q
}︂

In other words, the degree Q restricts the total degree of polynomials appear-
ing in the above SRS.

Generally, SRS can be determined by any polynomials f(X). In our work, we
use simple monomials. Specifically, SRS are described in schemes in sections 3.1,
4.1.

At this point, we can write the inputs and outputs of Setup algorithm.
Let λ is the security parameter, {d, µ} = poly(λ). In the Setup algorithm, pp
and srs1, srs2 are generated:

• Setup (1λ, µ, Q)→ (pp, srs1, srs2),
where pp = (F,G1,G2,Gt, g1, g2, gt, e) are the public parameters.
srs1, srs2 are µ-variables structured reference strings with degree Q satisfy-
ing Definition 15.

Generation of pp with SRS requires work from an external trusted party, which
can be optimized as follows. Setup could be divided into two parts. In the first
part, pp with groups G1,G2 and a finite field F are created. The second part uses
pp and generates SRS by choosing random elements from F. We emphasize that
one generation of pp could be reused for more SRS generations.
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2.5 Security assumptions
Once we have SRS defined, we can describe the security assumption used in
our schemes. We consider completeness and knowledge soundness under a group
property called the Q-DLOG assumption, presented in Gabizon et al. [2019]
(Definition 2.1.). In the following definition, we define the Q-DLOG assumption
for two additive groups.

Definition 16 (Q-DLOG assumption).
Let Setup be initial protocol generating pp and srs1, srs2 as above. Fix a positive
integer Q. Additive groups G1,G2 have Q-DLOG assumption if for every polyno-
mial algebraic adversary A following holds:

Pr
[︄

x ∈ {x1, . . . , xµ} : pp, srs1, srs2 ← Setup(1λ, µ, Q)
x ∈ F← A(pp, srs1, srs2)

]︄
≤ negl(λ)

Since we consider working in the Algebraic group model, we have to assume
the algebraic adversary in the definition. Emphasize that this requirement does
not change the strength of the definition.

Informally we can understand the Q-DLOG assumption as the complexity of
computing a root of a given group element g (in our case group generator). For
simplicity, suppose µ = 1. Even the adversary knows a sequence g1, x · g1, x2 ·
g1, . . . , xQ · g1, it is hard to compute the unknown element x ∈ F in a polynomial
time in λ.

2.5.1 Ideal and real pairing check
Finally, we have to mention a relation between two types of polynomial identity
checks. One way to check whether the equality of some polynomials holds is to
compare all their corresponding coefficients. We say we have to perform the ideal
check. However, in our protocol, whole polynomials with all coefficients are not
sent. Instead of that, the polynomials are represented using the SRS as group
elements. Hence, we need to check the polynomial identity by checking whether
the equation of their group representation is correct. For this purpose, we use
the real pairing check. Both ideal check and real pairing check are introduced in
Boneh et al. [2020] (Section 2.2).

Definition 17 (real pairing check). Let a, b be the vectors of F elements whose
encoding in G1,G2 an algebraic adversary A outputs during protocol. Real pairing
check has the form:

(a · T1) · (T2 · bT ) = 0,

where T1, T2 are matrices over F.

Matrices T1, T2 define the form of the equation. In the corresponding ideal
check, we verify if the equation holds for the actual polynomials, which coefficients
are derived from vectors a, b.

Definition 18 (ideal check). Let a, b be vectors from real paring check definition.
Let fi,l(x) be the l-th polynomial in srsi and v̄ a vector over F. Then aj =
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∑︁
vlfi,l(x) = Ri,j(x) for Ri,j(X) = ∑︁

vlfi,l(X). Denote, for i ∈ {1, 2} the vector
of polynomials Ri = (Ri,j)j. The corresponding ideal check has the form

(R1 · T1) · (T2 ·R2) ≡ 0.

At this point, we show that the replacement of the ideal check by real pairing
check in the protocol is legitimate. The following proposition (presented in
Gabizon et al. [2019], Lemma 2.2) states if the ideal check does not hold, the
real pairing check passes with a negligible probability.

Proposition 2. Consider the Q-DLOG assumption for additive groups G1,G2.
Given a polynomial algebraic adversary A participating in a protocol - based on
degree Q SRS. The probability that A can pass the real pairing check is larger by,
at most, an additive negl(λ) than the probability of the corresponding ideal check
holds.

Even the replacement from real pairing check to ideal check is done in natural
way, the notation can be confusing. We illustrate the definitions in the following
example.
Example (real pairing check and corresponding ideal check).
During the protocol, the algebraic adversary outputs the following values:

[a1]1 = [x1 + x2]1, [a2]1 = [2x2
1 + x2]1, [a3]1 = [3x1x2]1,

[b1]2 = [x2
1]2, [b2]2 = [x2]2, [b3]2 = [x3

2]2.

Then the vector a, b are

a = (x1 + x2, 2x2
1 + x2, 3x1x2),

b = (x2
1, x2, x3

2).

Let T1, T2 be matrices determine the form of the equation. The real pairing check
has the form:

(x1 + x2, 2x2
1 + x2, 3x1x2) · T1 · T2(x1 + x2, 2x2

1 + x2, 3x1x2)T = 0

At this point, we derive the corresponding ideal check. We can derive the
SRS elements and the vector v̄ which includes the polynomial coefficients. We
illustrate that only for a2:

a2 = 2x2
1 + x2 ⇒ v̄ = (2, 1), f1,1 = x2

1, f1,2 = x2

⇒ R1,2(X) = 2X2
1 + X2.

Overall, we have two vectors of polynomials, each corresponding to one srs.

R1 = (X1 + X2, 2X2
1 + X2, 3X1X2)

R2 = (X2
1 , X2, X3

2 ).

The ideal check has the form:

(X1 + X2, 2X2
1 + X2, 3X1X2) · T1 · T2(X1 + X2, 2X2

1 + X2, 3X1x2)T ≡ 0
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2.6 Schwartz–Zippel lemma
Our protocol is designed so that Prover does not reveal whole polynomials created
during the protocol because the goal is to decrease Prover’s communication
complexity.

However, Prover has to be able to convince Verifier about some polynomial
identity - that one polynomial is equal to another. In this case, Schwartz–Zippel
lemma becomes useful. Under some probability, two polynomials are equal if their
evaluation in random points is equal. We can slightly change the statement that
the difference between two polynomials is equal to zero (i.e., two polynomials are
identical) if the evaluation in a random point is equal to zero.

Precisely, the probability is estimated in the following standard lemma, pre-
sented in Coretti et al. [2018] (Lemma 37).

Proposition 3 (Schwartz–Zippel lemma). Let F be a finite field, f ∈ F[X1, . . . , Xµ]
be a non-zero polynomial of total degree d ≥ 0. Let S be a finite subset of F and
let r1, r2, . . . , rµ be selected at random independently and uniformly form S. Then

Pr[f(r1, r2, . . . , rµ) = 0] ≤ d

|S|
.

2.7 Polynomial commitment scheme
A polynomial commitment scheme is a commitment scheme (Definition 8), where
the secret message x is a multivariate polynomial.

The Open protocol is more specific since not only the correctness of commit-
ment is verified. Additionally, the protocol includes checking the polynomial
evaluation at a given point. The input of Open protocol is extended by challenging
value α ∈ F and Prover’s offered value y ∈ F. In the Open protocol, Prover has to
convince Verifier about equality y = f(α), where f is the committed polynomial.

In our thesis, we consider polynomial commitment scheme with structured
reference strings (SRS), similarly to the scheme presented in Boneh et al. [2020]
(Definition 2.3.).

Definition 19 (Polynomial commitment scheme - based on SRS).
A polynomial commitment scheme Γ - based on SRS is a tuple (Setup, Commit,
Open).

• Setup (1λ, µ, Q) → (pp , SRS) generates public parameters and public
structured reference strings.

• Commit (SRS, f(X1, . . . , Xµ))→ c
takes a secret polynomial f(X1, . . . , Xµ) ∈ F<d[X1 . . . , Xµ] and outputs a
public commitment c ∈ G1.

• Open is an interactive protocol between a PPT prover P and verifier V.
Only P knows f(X1, . . . , Xµ). Both P and V are given:

1. integers t, d

2. pp, SRS
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3. c ∈ G1 an alleged commitment to f

4. ᾱ(1), . . . , ᾱ(t) ∈ Fµ

5. r ∈ F<t[X1, . . . , Xµ], the polynomials allegedly satisfying

r(ᾱ(i)) = f(ᾱ(i)) ∀i ∈ [t].

At the end of the protocol V outputs accept or reject.

Open is an interactive argument of knowledge with respect to the following relation:

R =
{︃
⟨(c, r, ᾱ(1), . . . ᾱ(t), d), f(X1, . . . , Xµ)⟩ : f ∈ F<d[X1, . . . Xµ],

∀i : f(ᾱ(i)) = r(ᾱ(i)), c = [f(x1, . . . , xµ]1)]
}︃

. (2.1)

A polynomial commitment scheme is evaluation binding if no efficient Adver-
sary can convince Verifier that the committed polynomial f(X1, . . . Xµ) evaluates
to different values r0 ̸= r1 in the same point ᾱ ∈ Fµ. We write a definition from
Bünz et al. [2019], where the evaluation binding is defined informally.

Definition 20 (Evaluation binding). A polynomial commitment scheme Γ - based
on SRS, is evaluation binding if for all PPT adversaries A:

Pr

⎡⎢⎢⎢⎣ b0 = b1 ̸= reject
∧ r0 ̸= r1

:

(pp, srs1, srs2)← Setup(1λ)
(c, r0, r1)← A(pp, srs1, srs2, ᾱ)
b0 ← Open(pp, c, ᾱ, r0, f(X̄))
b1 ← Open(pp, c, ᾱ, r1, f(X̄))

⎤⎥⎥⎥⎦ ≤ negl(λ).

Since Open is an interactive argument of knowledge, it satisfies the completeness
and knowledge soundness conditions. Below, we specify these conditions for the
Polynomial commitment scheme.

Completeness of polynomial commitment scheme
Let d, t = poly(λ), ᾱ(1), . . . , ᾱ(t) ∈ Fµ, f ∈ F<d[X1, . . . , Xµ], r ∈ F<t[X1, . . . Xµ],
c ∈ G1, R be the relation defined in 2.1. The polynomial commitment scheme
has completeness if the following holds: If P proceeds the protocol correctly with
the values ⟨(c, r, ᾱ(1), . . . , ᾱ(t), d), f⟩ ∈ R, V outputs accept with probability one.

Knowledge soundness of polynomial commitment scheme
Polynomial commitment scheme has knowledge soundness if there exists an effi-
cient PPT algorithm E such that for any algebraic adversary A the probability
of A winning the following game is negl (λ) over the randomness of PPT A and
Setup (1λ, d, t).

1. Given d, t and (pp, SRS) = Setup (1λ, µ, Q), A outputs c ∈ G1.

2. E given access to outputs of algebraic adversary A (including the vector
v̄ of linear combination c = ∑︁s

i=1 vili, where li ∈ SRS), outputs a witness
polynomial f ∈ F[X1, . . . , Xµ] with coefficients included in vector v̄.
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3. A outputs ᾱ(1), . . . , ᾱ(t) ∈ Fµ, r ∈ F<t[X1, . . . , Xµ].

4. A takes the part of P in the protocol Open with inputs c, ᾱ(1), . . . , ᾱ(t), r.

5. A wins if

• V outputs accept at the and of protocol and
• ⟨(c, r, ᾱ(1), . . . , ᾱ(t), d), f⟩ /∈ R.

The knowledge soundness is a strong property. In the following theorem, we
show that knowledge soundness implies the scheme is evaluation binding.

Theorem 3. Let Γ be a binding polynomial commitment scheme - based on SRS.
If Γ has knowledge soundness, then Γ is also evaluation binding.

Proof.
To prove the theorem by contradiction, we suppose that an algebraic A breaks
the evaluation binding by outputting (c, ᾱ, r0), (c, ᾱ, r1), where r0 ̸= r1. Since
the knowledge soundness holds, there exists an efficient PPT algorithm E that
extracts polynomials f0(X̄) ̸= f1(X̄), which were committed to c in Commit
part and used in Open protocol by the adversary A. The polynomial inequality
f0(X̄) ̸= f1(X̄) follows from f0(ᾱ) = r0 ̸= r1 = f(ᾱ), two polynomial evaluated
differently in same point cannot be equal. But f0(X̄) ̸= f1(X̄) is a contradiction
with the assumption that Γ is the biding commitment scheme, i.e. two different
polynomials cannot be committed to the same value c.
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3. First Scheme for One
Evaluation Point

In this chapter, we present a polynomial commitment scheme, where the
Prover commits to some multivariate polynomial f over a finite field F and
afterward evaluates the polynomial in a given point ᾱ ∈ Fµ.

In Open interactive protocol the Prover convinces the Verifier about correct-
ness of the value f(ᾱ) w.r.t the commitment. This scheme verifies the correctness
of the evaluated value in only one point per one Open protocol.

The scheme is designed so that the valid commitment cannot be computed
to any polynomials from F[X1, . . . , Xµ]. One scheme parameter is an integer d,
which upper bounds the total degree of the committed polynomial f . Hence,
we have restrictions on the degree of SRS. In the Setup algorithm, parameter
d is taken as an input determining the SRS degree (according to the previous
notation Q = d). We need to consider a Q-DLOG assumption (Definition 16) for
the groups G1,G2, where the parameter Q = d. The formal description of our
first scheme is given in the next section.

3.1 The scheme for one evaluating point

1. Setup (1λ, µ, d) = (pp, srs1, srs2),
where pp = (F,G1,G2,Gt, g1, g2, gt, e) and srs1, srs2 are defined as follows:

srs1, srs2 =
{︄

[xd1
1 xd2

2 · · ·xdµ
µ ]1, [1]2, [x1]2, . . . , [xµ]2, di ≥ 0,

µ∑︂
i=1

di < d

}︄
,

where x1, x2, . . . , xµ ∈ F are chosen uniformly at random.

2. Commit (f, srs1, srs2) = [f(x1, . . . , xµ)]1

3. Open (pp, srs1, srs2, d, c, ᾱ = (α1, . . . , αµ) ∈ Fµ, r ∈ F)

a) P computes polynomials h1, h2, . . . , hµ ∈ F[X1, . . . , Xµ] s.t.

f(X1, . . . , Xµ)− r =
µ∑︂

i=1
hi(X1, . . . , Xµ)(Xi − αi).

Using srs1, P computes and sends to V group elements
[h1(x1, . . . , xµ)]1, . . . , [hµ(x1, . . . , xµ)]1.

b) Using srs2, V computes [(xi − αi)]2
V return accept if and only if

(c− [r]1)⊙ [1]2 =
µ∏︂

i=1

(︂
[hi(x1, . . . , xµ)]1 ⊙ [(xi − αi)]2

)︂
. (3.1)
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3.2 Getting polynomials hi

In the Open part of the protocol, P needs to compute polynomials h1, . . . , hµ s.t.

f(X1, . . . , Xµ)− r =
µ∑︂

i=1
hi(X1, . . . , Xµ)(Xi − αi).

In this case, the computation of polynomials hi is more straightforward than
described in Section 1.1.2. According to Section 1.1.2, P has to compute Gröbner
basis of an ideal I given by an evaluation point ᾱ. However, we can simplify the
procedure by noticing that Gröbner basis of the ideal I is already known. The
established ideal is I = (X1,−α1, . . . , Xµ−αµ). The following lemma states that
(X1 − α1, . . . , Xµ − αµ) is a Gröbner basis indeed.

Lemma 4. Let G = (g1, . . . , gµ| gi = Xi − αi, αi ∈ F), Let I = ⟨G⟩ be an ideal
in F[X1, . . . , Xµ]. Then G is a Gröbner basis of the ideal I.

Proof. We can use the Definition 6 of Gröbner basis. Let f ∈ I, f ̸= 0 be a
non-constant polynomial. Since lm(g1) = X1, . . . , lm(gµ) = Xµ, there certainly
exists gi ∈ G s.t. lm(gi)|lm(f). Thus, polynomials in G are already a Gröbner
basis of the ideal I.

Therefore, P simply uses Algorithm 1 (Multivariate Division Algorithm) with
Gröbner basis G as the input, and gets the required polynomials h1, . . . , hµ.

3.3 Completeness of the first protocol
Consider the prescribed P . Then f(ᾱ) = r, c is a correct commitment to
f(X1, . . . , Xµ) and P follows the Open protocol correctly with these values.

By Hilbert’s weak Nullstellensatz (Theorem 1), the first assumption, f(ᾱ) =
r implies f(X1, . . . , Xµ) − r ∈ I, where I = ⟨X1 − α1, . . . , Xµ − αµ⟩ and the
polynomial f − r could be generated by a basis of ideal I. Furthermore, by
Lemma 4, ⟨X1 − α1, . . . , Xµ − αµ⟩ is Gröbner basis of the ideal I.

Therefore, according to lemma 4, P can compute h1, . . . hµ ∈ F[X1, . . . , Xµ],
s.t. f − r = ∑︁µ

i=1 hi(Xi − αi) directly using Algorithm 1 (Multivariate Division
Algorithm). We write the following observation:

f − r =
µ∑︂

i=1
hi(Xi − zi)⇒ f(x1, . . . , xµ)− r =

µ∑︂
i=1

hi(x1, . . . , xµ)(xi − αi), (3.2)

where x1, . . . , xµ are elements used in srs1, srs2.
In the next step, P sends Commit (hi, srs1, srs2) to V . Since c is a correct

commitment, c = [f(x1, . . . , xµ)]1. At the end of the protocol, V checks if

(c− [r]1)⊙ [1]2 =
µ∏︂

i=1

(︂
[hi(x1, . . . , xµ)]1 ⊙ [(xi − αi)]2

)︂
.

Since P passes the protocol correctly:
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(c− [r]1)⊙ [1]2 = ([f(x1, . . . , xµ)]1 − [r]1)⊙ [1]2
= (f(x1, . . . , xµ) · g1 − r · g1)⊙ 1 · g2

= ((f(x1, . . . , xµ)− r) · g1)⊙ g2

= g
f(x1,...,xµ)−r
t

= g
∑︁µ

i=1 hi(x1,...,xµ)(xi−αi)
t

=
µ∏︂

i=1

(︂
[hi(x1, . . . , xµ)] · g1 ⊙ [(xi − αi)] · g2

)︂
,

where the fourth and sixth equalities follow from the bilinearity of the pairing.
The fifth equality follows from (3.2). To conclude, V outputs accept with probabi-
lity one.

3.4 Knowledge soundness of the first protocol
We show that there exists an extractor E as needed to satisfy Definition 13.
We suppose Setup generates two additive groups G1,G2 satisfying Q-DLOG as-
sumption (Definition 16) with parameter Q = d. Since A is algebraic adversary,
whenever A outputs c ∈ G1, E given access to linear combination c = ∑︁s

i=1 vi · li,
where v̄ = v1, . . . , vs is coefficient vector provided by algebraic A and l1, . . . , ls is
list of all elements in srs1.

E outputs an extracted witness polynomial

f =
s∑︂

i=0
viX

i.

In the next step, A determines ᾱ ∈ Fµ, r ∈ F s.t. f(ᾱ) ̸= r. We show that
with these values V outputs accept with only negl (λ) probability.

For simplicity, we shorten notation H(X1, . . . , Xµ) to H(X̄) and H(x1, . . . , xµ)
to H(x̄) for any following polynomials.

Now A outputs some [H1(x̄)]1, . . . [Hµ(x̄)]1, Hi ∈ F<d[X̄]. However, according
to Hilbert’s weak Nullstellensatz (Theorem 1), the following holds:

f(ᾱ)− r ̸= 0⇔ f(X̄)− r /∈ ⟨(X1 − z1) · · · (Xµ − zµ)⟩ (3.3)

⇎ ∃ Hi(X̄) s.t f(X̄)− r =
µ∑︂

i=1
Hi(X̄)(Xi − zi).

V verifies validity of real pairing check at point x̄, i.e,

([f(x̄)]1 − [r]1)⊙ [1]2 =
µ∏︂

i=1
([Hi(x̄)]1 ⊙ [xi − αi]2).

Under the Q-DLOG assumption for groups G1,G2, we can use the proposition
of probability bounding of real and ideal checks.
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By Proposition 2, it suffices to upper bound the probability of the correspon-
ding ideal check:

f(X̄)− r =
µ∑︂

i=1
Hi(X̄)(Xi − αi).

According to eq. (3.3), polynomials Hi passing the ideal check do not exist.
Using Proposition 2, the real check passes with probability negl (λ).

3.5 Summary
Theorem 5. Assuming Setup generates additive groups G1,G2 for which the Q-
DLOG assumption holds. Then the scheme defined in section 3.1 is a Polynomial
commitment scheme - based on SRS, where Open part is an interactive argument
of knowledge with respect to the relation R, defined in 2.1.

Proof. The scheme includes all three parts Setup, Commit, Open from definition
Polynomial commitment scheme (Definition 19). For Open to be an interactive
argument of knowledge, we have to prove completeness (Definition 11) and know-
ledge soundness (Definition 13). The completeness is proved in Section 3.3. The
knowledge soundness under the Q-DLOG assumption for G1,G2 is proved in
Section 3.4.

3.5.1 Binding
In this section we show that our suggested scheme from Section 3.1 satisfies
binding and evaluation binding properties. An algebraic adversary cannot commit
to two different polynomials with the same commitment (binding). An algebraic
adversary cannot convince the Verifier that the committed polynomial is evaluat-
ed in the same point to different values (evaluation binding).

Theorem 6.
Let Setup from polynomial commitment scheme defined in section 3.1 output
G1,G2 satisfying Q-DLOG assumption. Then the scheme is binding (Definition 9).

Proof. To prove the theorem by contradiction, we suppose that the scheme is
not binding. Hence, an algebraic adversary A convinces the Verifier in Open
protocol with values (pp, srs1, srs2, c, f0(X̄)) and (pp, srs1, srs2, c, f1(X̄)), where
f0(X̄) ̸= f1(X̄).

The commitment is equal for both polynomials, so we have [f0(x̄)]1 = [f1(x̄)]1.
We write the last equality in more detail.

[f0(x1, . . . xµ)]1 = [f1(x1, . . . xµ)]1 ⇒
f0(x1, . . . xµ) · g1 = f1(x1, . . . xµ) · g1 ⇒

(f0(x1, . . . xµ)− f1(x1, . . . xµ)) · g1 = 0.

g1 ̸= 0, since g1 is a generator of group G1 which has order q. Hence, we have

f0(x1, . . . xµ)− f1(x1, . . . xµ) = 0 or
f0(x1, . . . xµ)− f1(x1, . . . xµ) = k · q, for k ∈ N.
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It implies that polynomial f0(X̄)−f1(X̄) or f0(X1, . . . Xµ)−f1(X1, . . . Xµ)−k · q
has a non trivial root. Both of these polynomials have the total degree at most
Q, so A can find nontrivial factor x1, . . . , xµ which is in contradiction with the
Q-DLOG assumption.

Theorem 7. Assuming Setup generates additive groups G1,G2 for which Q-
DLOG assumption holds. The polynomial commitment scheme defined in the
section 3.1 is evaluation binding (definition 20).

Proof. The knowledge soundness property of Open protocol is shown in the sec-
tion 3.4. Then we can use Theorem 3, which states that if a polynomial commit-
ment scheme is binding (Theorem 6) and has knowledge soundness, then the
polynomial commitment scheme is also evaluation binding.

3.6 Scheme complexity
First, we introduce a standard auxiliary technical proposition.

Proposition 4. Let f ∈ F[X1, . . . , Xµ] be a µ-variate polynomial of total degree
d ∈ N. The maximum number of terms appearing in polynomial f is

(︂
µ+d

d

)︂
.

Proof. We need to compute the sum of the total number of terms of degrees
exactly 0, . . . , d. We look at this task as a combinatorial problem. Let i ∈
{0, . . . , d} be the current degree. We must divide i powers among exponents to µ

parts. This we can express as the combinatorial number
(︂

i+µ−1
µ−1

)︂
. Since we need

all the terms at degree 0, . . . , d, we obtain the following sum:

d∑︂
i=0

(︄
i + µ− 1

µ− 1

)︄
=

(d + 1)
(︂

µ+d
µ−1

)︂
µ

=
(d + 1) (µ+d)!

(µ−1)!(d+1)!

µ

= (d + 1)(µ + d)!
(µ− 1)!µ(d + 1)d! = (µ + d)!

µ!d! =
(︄

µ + d

µ

)︄
.

Theorem 8. The polynomial commitment scheme defined in the Section 3.1 has
the following properties:

i) srs1, srs2 consist of
(︂

µ+d
µ

)︂
elements of G1 and µ + 1 elements of G2.

ii) For integer n ≤ d and f ∈ F<n[X1, . . . , Xµ], computing Commit (f, srs1, srs2)
requires

(︂
µ+n

µ

)︂
multiplications in G1.

iii) Prover P sends µ elements of G1.

iv) Verifier V computes one multiplication in G1, one addition in G1, µ multipli-
cations in G2, µ + 1 pairings and µ multiplications in Gt.
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Proof.

i) According to Proposition 4, the number of terms with total degree 0, . . . , d

is
(︂

µ+d
µ

)︂
. To create srs1 we need to multiply each of the terms by g1.

Hence, to compute srs1, it is required to do
(︂

µ+d
µ

)︂
multiplication in G1.

Since srs2 consists of [1]2, [x1]2, . . . , [xµ]2, it is simply required to do µ + 1
multiplications in G2.

ii) According to Proposition 4, any polynomial f contains at most
(︂

µ+n
µ

)︂
terms.

For each term exists exactly one corresponding G1 element in precomputed
srs1. For example for term 3X1X2 corresponding [x1x2]1 and it remains to
compute 3·[x1x2]1. The computation of Commit (f, srs1, srs2) requires

(︂
µ+n

µ

)︂
multiplication in G1.

iii) Prover P has to send [h1(x1, . . . , xµ)]1, . . . , [hµ(x1, . . . , xµ)]1 i.e. µ elements
of G1

iv) Verifier V computes µ multiplications in G2 for computing [(xi − zi)]2 and,
since r is a single element in F, one multiplication in G1 for [r]1. V computes
one addition in G1, µ + 1 pairings and µ multiplications in Gt to verify
eq. (3.1) at the end of the protocol.
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4. Second Scheme for Multiple
Evaluation Points
In this chapter, we present a polynomial commitment scheme, where Open proto-
col verifies the correctness of a polynomial evaluation in multiple points.

The scheme requires more input parameters than the previous scheme from
the section 3.1. The restriction of a total degree of a committed polynomial is
the same parameter d. Additionally, the scheme depends on a parameter t, the
number of evaluating points.

In our scheme, we use the following notation: D = µt − 1. In Setup, we
have more specific restrictions to the particular degree of monomials appearing
in SRS, including both parameters d, D. The limitation of SRS total degree is
d + D. Thus, we have to consider a Q-DLOG assumption (Definition 16) for the
groups G1,G2, where the parameter Q = d + D.

4.1 The scheme for multiple evaluating points
1. Setup (1λ, µ, d, D) := (pp, srs1, srs2),

where pp = (F,G1,G2,Gt, g1, g2, gt, e) and srs1, srs2 are defined as follows:

srs1, srs2 =
{︃

[xd1
1 · · ·xdµ

µ ]1, di ≥ 0,
µ∑︂

i=1
di < d,

[xd1
1 · · ·xdµ

µ · wdw ]1, di ≥ 0, dw < D,
µ∑︂

i=1
di < d,

[1]2, . . . , [xµ]2, [w]2.
}︃

2. Commit (f, srs1, srs2) := [f(x1, . . . , xµ)]1 (identical to the first scheme)

3. Open (pp, srs1, srs2, D, d, c, ᾱ(1), . . . , ᾱ(t) ∈ Fµ, r ∈ F<t[X1, . . . , Xµ])

a) Both P and V compute a Gröbner basis of an ideal I and combine the
basis polynomials into one polynomial B ∈ F[X1, . . . , Xµ, W ]:

i)

I := ⟨b̃1, . . . , b̃µt⟩, where b̃k :=
t∏︂

i=1

(︂
Xσk(i) − α

(i)
σk(i)

)︂
.

ii) (b1, . . . , bµt)← (Buchberger’s algorithm on (b̃1, . . . , b̃µt))
iii)

B :=
D∑︂

i=0
biW

i.

b) P computes polynomials hi satisfying:

f(X̄)− r(X̄) =
D∑︂

i=0
hi(X̄)bi(X̄),
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and combines them to one polynomial H ∈ F[X1, . . . , Xµ, W ] :

i) h1, . . . , hµt ←(Multivariate Division Algorithm on (f−r, b1, . . . , bµt))
ii)

H :=
D∑︂

i=0
hi(X̄)W D−i

c) P computes HL, HR, satisfying:

H(X̄, W ) = HL(X̄, W ) + HR(X̄, W )W D/2,

where HL, HR are polynomials with variable W in exponent ≤ D/2
d) P computes fL, fR satisfying:

(HL(X̄, W ) + HR(X̄, W )W D/2) ·B(X̄, W ) =
fL(X̄, W ) + fM(X̄, W ) + fR(X̄, W )W D+1,

where fL, fR are polynomials with variable W in exponent < D,
fM is polynomial with variable W in exponent = D

e) P sends commitments to HL, HR, fL, fR to V :

P V
Commit(HL,srs1,srs2),Commit(HR,srs1,srs2)−−−−−−−−−−−−−−−−−−−−−−−−−−→

P V
Commit(fL,srs1,srs2),Commit(fR,srs1,srs2)−−−−−−−−−−−−−−−−−−−−−−−−−→

f) V sends randomly chosen γ̄ ∈ Fµ+1 to P

P V
γ̄=(γ1,...,γµ,ω)←−−−−−−−−

g) P sends to V values HL(γ̄), HR(γ̄), fL(γ̄), fR(γ̄), f(γ̄).
h) P and V run the Open of the protocol from section 3.1 with one evaluat-

ing point γ̄, where Open runs separately for each HL, HR, fL, fR with
commitments from part e), for f with commitment from Commit part.

i) V verifies:

(HL(γ̄)+HR(γ̄)ωD/2)B(γ̄) = fL(γ̄)+(f(γ̄)−r(γ̄))ωD+fr(γ̄)ωD+1. (4.1)

j) V outputs accept only if equation 4.1 is correct and in step h) outputs
accept in all Open subprotocols.
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4.2 About the protocol
The difference is to cope with more evaluating points. Hence, the computation
of the ideal I is more complicated.

By to Section 1.2, the number of polynomials in the basis of the ideal I is µt.
In this case, P would have to send all h1, . . . , hµt . In the protocol, we avoid this
inconvenience by combining basis polynomials to one polynomial B by adding a
new variable W :

B =
D∑︂

i=0
biW

i.

Vice versa the decomposition of the polynomials bi is uniquely determined by
B. Similarly to the first protocol, P still has to compute polynomials hi s.t.

f(X̄)− r(X̄) =
D∑︂

i=0
hi(X̄)bi(X̄).

Polynomials hi are also combined to one polynomial H with one extra variable
in the following way:

H =
D∑︂

i=0
hiW

D−i.

The polynomial H orders the elements in the opposite way than polynomial
B. This allows us to use the form of product B · H. Additionally, P divides
H(X̄) to two parts, according to the degree in variable W . This detail is more
precise discussed next.

(HL(X̄, W ) + HR(X̄, W )W D/2) ·B(X̄, W ) = (4.2)
fL(X̄, W ) + (f − r)(X̄, W )W D + fR(X̄, W )W D+1

The term with variable W to the power D exponent is exactly the polynomial
(f − r)(X̄).

f(X̄)− r(X̄) =
D∑︂

i=0
bihi.

Hence, P convinces V about the knowledge and correctness of the above
polynomials appearing in eq. (4.2). However, while avoiding to send the whole
polynomials. For this purpose, we use the first protocol from section 3.1, P
commits to each polynomial and convinces V about the correctness of values
HL(γ̄), HR(γ̄), fL(γ̄), fR(γ̄), f(γ̄).
P computes commitments to HL, HR, fL, fR. The commitment to f is already

known. Then, V sends a random value γ̄ ∈ Fµ+1 and obtains a Prover’s answer
with HL(γ̄), HR(γ̄), fL(γ̄), fR(γ̄), f(γ̄).

By following Open part form the first protocol, P has to compute and sends
[h1(X̄)]1, . . . , [hµ+1(X̄)]1 for all committed polynomials (in total 5∗(µ+1) elements
are sent by the Prover).
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P V
[h(f)

1 (x̄)]1,...,[h(f)
µ (x̄)]1−−−−−−−−−−−−→

[h(HL)
1 (x̄)]1,...,[h(HL)

µ (x̄)]1−−−−−−−−−−−−−−→
[h(HR)

1 (x̄)]1,...,[h(HR)
µ (x̄)]1−−−−−−−−−−−−−−−→

[h(fL)
1 (x̄)]1,...,[h(fL)

µ (x̄)]1−−−−−−−−−−−−−−→
[h(fR)

1 (x̄)]1,...,[h(fR)
µ (x̄)]1−−−−−−−−−−−−−−→

We emphasize that only the Open part from the previous scheme is used. The
values [hi(x̄)]1 are computed by srs1 from the scheme for multiple evaluation
points (Section 4.1).

At the end of each Open subprotocol, V returns accept or reject.
Finally, Verifier evaluates the Equation (4.2) in challenge point γ̄ to be con-

vinced about the correctness of the equation.

4.2.1 SRS structure
In this section, we explain the correctness of SRS generated in the Setup.

Using srs1, P computes commitments to f(X̄), HL(X̄, W ), HR(X̄, W ),
fL(X̄, W ), fR(X̄, W ).

At first, a total degree of f(X̄) is upper bounded by d from the protocol
assumption. Hence, for creating the commitment to polynomial f , we need:

srs1 = [xd1
1 · · · xµ

µ]1, di ≥ 0,
µ∑︂

i=1
di < d.

Next, we estimate the total degree of polynomials HL(X̄, W ), HR(X̄, W ),
fL(X̄, W ), fR(X̄, W ).

We can estimate the total degree of polynomial r(X̄), as r is an interpolation
polynomial for each variable separately. Since the interpolation is computed for t
evaluation points, the polynomial has at most degree t in each variable. Overall,
we can upper bound the total degree of polynomial r by µ · t.

The difference of two polynomials preserves the total degree. Polynomial f(X̄)
has total degree d, polynomial r has total degree µ · t. Hence, (f − r)(X̄) has
total degree max{d, µ · t}.

Using the Multivariate Division Algorithm(Algorithm 1), P computes poly-
nomials hi(X̄). From the algorithm we have the following estimate:

lm(f − r) = max{lm(bi)lm(hi)| i = 1, . . . , µt}.

Thus the total degree of h1, . . . , hµt is also max{d, µ · t}.
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Polynomials HL, HR preserve the total degree in variables X1, . . . , Xµ. Poly-
nomials fL, fR are part of the decomposition of H ·B consisting of terms bihj, for
some i, j ∈ {1, . . . , µt}. We can use the estimate as:

lm(f − r) = max{lm(bi)lm(hi)| i = {1, . . . , µt}.

Thus, each term appearing in H ·B has a total degree bounded by max{d, µ · t},
so fL, fR have the same limitation.

Additionally, we have to describe exponents in variable W . As the next section
explains, we have to upper bound SRS exponents in variable W by D = µt − 1.

In conclusion, to compute commitments to HL, HR, fL, fR we need to have
the following form of srs1:

srs1 = {[xd1
1 · · ·xdµ

µ · wdw ]1, di ≥ 0, dw < D,
µ∑︂

i=1
di < max{d, µ · t}}

In step h), both parties run the Open part of protocol from Section 3.1, where
P has to compute [h(HL)

i ]1, [h(HR)
i ]1, [h(fL)

i ]1, [h(fR)
i ]1, for i = {1, . . . , µ}. From the

structure of the protocol follows that the above defined srs1 suffices to compute
these values.

Finally, V has to use srs2 for computing (x1 − γ1), . . . , (xµ − γµ), (w − ω).
Hence, srs2 consist of

srs2 = {[1]2, [x1]2, . . . , [xµ]2, [w]2}.

4.2.2 Omitting the limitation of degree in variable W

This section explains why we require the limitation of the degree in element w
given in the SRS. The discussed part of SRS is

srs1 =
{︂
[xd1

1 · · · xdµ
µ · wdw ]1, di ≥ 0, dw < D,

µ∑︂
i=1

di < d
}︂
.

SRS is constructed so that only polynomials including terms with variable W
in degree at most D − 1 can be committed correctly.

The necessity of this requirement is shown in the following example.
Example. Assume the protocol with the ”unlimited” SRS, i.e., it is possible to
compute a commitment to every polynomial, even including monomials where W
has a degree larger than D.

Let f = X2
1 − X1 + 3 be the polynomial which does not satisfy f(ᾱ) = r.

Following parametres are established before the Open part of the protocol or
could be computed by both parties (P cannot change these values during Open
protocol): D = 2, r = 5, B = (b1, . . . , bD), the Gröbner basis of the ideal I.
Nevertheless, P can choose any polynomial H and compute H ·B. For example,
P chooses:

H ·B = (X1 + X2) + (X3
1 )W + (X2

2 )W 2 + (X1X2)W 3 + (X1X
2
2 )W 4.
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If P participates honestly in the rest of protocol, P sends commit-ments to
fL = (X1 + X2) + (X3

1 ) and fR = (X1X2) + (X1X
2
2 )W . Then V outputs reject at

the end of the protocol, because the equation 4.1 would not be correct.

However, if we allow to commit to a term including W with a degree larger
than D, P can change the middle term according to committed polynomial f .

We have f − r = X2
1 − X1 − 2. Then P can compute polynomials fL =

(X1 + X2) + (X3
1 )W + (X2

2 − X2
1 + X1 + 2)W 2, fR = (X1X2) + (X1X

2
2 )W and

send their commitments. The left part of the equation stays the same, only the
decomposition to fL, fR has been changed:

H ·B = fL + X2
1 −X1 − 2 + fRW 3.

If P follows the rest of the protocol correctly, these commitments are correct,
and V output accept after each Open subprotocols.
The equation

H(γ̄)B(γ̄) = fL(γ̄) + (f(γ̄)− r(γ̄))wD + fr(γ̄)wD+1

is also correct, because polynomials fL, fR have been modified in the way that
both sides of the equation are equal. In conclusion, P can pass the protocol with
any polynomial f .

In particular, the SRS limitation of the degree in variable W , makes the
decomposition of H ·B to fL, fM = (f − r), fR unique.

4.3 Completeness
Suppose the prescribed P proceeds correctly during the Open protocol.
The Prover’s honesty implies the following:

i) commitment is correct, i.e, Commit (f, srs1, srs2) = [f(x1, . . . xµ)]1

ii) ∀i ∈ [t] : f(ᾱ(i)) = r(ᾱ(i)).

By Hilbert’s weak Nullstellensatz (Theorem 1) and eq. (1.1) the second as-
sumption implies that

∀i ∈ [t] : f(X1, . . . Xµ)− r(X1, . . . Xµ) ∈ Iᾱ(i) = ⟨(X1 − α
(i)
1 ), . . . , (Xµ − α(i)

µ )⟩
⇒ f(X1, . . . Xµ)− r(X1, . . . Xµ) ∈ I =

⋂︂
i∈[t]

Iᾱ(i) .

It implies that there exists the decomposition

f(X1, . . . Xµ)− r(X1, . . . Xµ) =
µt∑︂

i=1
higi,

where gi are basis polynomials of ideal I and hi are polynomials in F[X1, . . . , Xµ].
To achieve this composition, in the section Open a) Prover P computes the

Gröbner basis of ideal I. First, the Prover computes

I := ⟨b̃1, . . . , b̃µt⟩, where b̃k :=
t∏︂

i=1

(︂
Xσk(i) − α

(i)
σk(i)

)︂
.
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Using Buchberger’s algorithm, P computes polynomials b1, . . . , bµt which is Gröb-
ner basis of the ideal I.

In the section Open b), Prover P uses the Multivariate Division Algorithm
(Algorithm 1) with Gröbner basis b1, . . . , bµt as the algorithm input and gets the
polynomials h1, . . . , hµt as the result. By Lemma 2, ∑︁µt

i=1 hibi is the required
decomposition of polynomial f − r.

Prover P combines both sequences of polynomials to

B =
D∑︂

i=0
biW

i, H =
D∑︂

i=0
hiW

D−i

and computes the product: H(X1, . . . , Xµ, W ) · B(X1, . . . , Xµ, W ). Since we
have the following expression of the terms in the product H ·B

i ≤ D :
i∑︂

j=0
bjhD+j−iW

i

i ≥ D :
2D−i∑︂
j=0

hjbD+j−iW
i

⇒ i = D :
D∑︂

j=0
bjhjW

D = f(X1 . . . , Xµ)− r(X1 . . . , Xµ)W D,

we can divide the product into three parts

H ·B = fL + (f − r)W D + fR ·W D+1, (4.3)

where fL, fR ∈ F[X1, . . . , Xµ, W ] contain terms of degree at most D − 1 in
variable W . This allows the Prover to compute Commit (fL, srs1, srs2), Commit
(fR, srs1, srs2).

After dividing H(X̄, W ) to part HL(X̄, W ), HR(X̄, W ) via

H(X̄, W ) = HL(X̄, W ) + HR(X̄, W )W D/2, (4.4)

both HL, HR are polynomials of degree at most D − 1 in variable W . Hence, P
can compute Commit (HL, srs1, srs2), Commit (HR, srs1, srs2).

Prover follows Open from the commitment scheme (section 3.1) with one
evaluation point γ̄ = (γ1, . . . , γµ, ω) ∈ Fµ+1 and polynomials fL, fR, HL, HR, f .

Since Open protocol for one evaluation point has completeness (proved in
section 3.3), Verifier outputs accept at the end of each Open protocol.

The correctness of the equation

(HL(γ̄) + HR(γ̄)ωD/2)B(γ̄) = fL(γ̄) + (f(γ̄)− r(γ̄))ωD + fr(γ̄)ωD+1

follows directly from the correctness of equations 4.3 and 4.4.
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4.4 Knowledge soundness
We show that there exists an extractor E as needed to satisfy Definition 13.
Assume an algebraic adversary outputs a commitment c ∈ G1. An algorithm
E given access to a linear combination c = ∑︁s

i=1 vili, where v̄ = v1, . . . , vs is
coefficient vector provided by algebraic A and l1, . . . , ls is list of all elements in
srs1.Then E outputs witness polynomial

f =
s∑︂

i=0
viX

i.

However A is a cheating adversary, so (f, c, ᾱ(1), . . . , ᾱ(µ), r) /∈ R for some
i ∈ [t]. Hence

f(ᾱ(i)) ̸= r(ᾱ(i)), for some i ∈ [t]. (4.5)
The Adversary A runs the Open protocol with values (d, c, ᾱ(1), . . . , ᾱ(t), r)

and tries to convince V to decide accept. We show that it comes with probability
at most negl(λ).

The ideal I is uniquely determined by evaluating points ᾱ(1), . . . , ᾱ(t). Gröbner
basis b1, . . . bµt of the ideal I is computed by both A and V in the protocol part
a). Thus, A has to proceed in the rest of Open with these b1, . . . , bµt .

At this point, suppose that the adversaryA computes polynomials HL, HR, fL,
fR satisfying the equation 4.2:

(HL(X̄, W ) + HR(X̄, W )W D/2) ·B(X̄, W ) =
fL(X̄, W ) + (f − r)(X̄, W )W D + fR(X̄, W )W D+1.

Let H(X̄, W ) := HL(X̄, W )+HR(X̄, W )W D/2. And denote the terms in H(X̄, W )
by hi as follows: H(X̄, W ) = ∑︁D

i=0 hiW
D−i.

Since SRS upper bounds the degree of variable W by D− 1, we can uniquely
compare monomials including W D:

D∑︂
i=0

hibiW
D = (f − r)(X̄)W D ⇒

D∑︂
i=0

hibi = (f − r)(X̄)

Polynomials b1, . . . , bµt form a basis of ideal I. Hence (f−r)(X̄) ∈ I, what is in
a contradiction with the equation 4.5. It implies, that polynomials HL, HR, fL, fR

satisfying eq. (4.2) do not exist.
Nevertheless, A outputs commitments to (HL, Hr, fL, fR). Verifier V sends

a random challenge γ̄ ∈ Fµ+1 and using Open protocol from the first scheme
(Section 3.1), the adversary A convinces V that HL(γ), HR(γ), fL(γ), fR(γ), f(γ)
are correct evaluation of polynomials HL, HR, fL, fR, f .

From knowledge soundness of the first protocol (Theorem 5), A convinces V ,
where

(HL, cHL, γ, HL(γ)) /∈ R, or

(HR, cHR, γ, HR(γ)) /∈ R, or

(fL, cfL
γ, fL(γ)) /∈ R, or

(fR, cfR
, γ, fR(γ)) /∈ R, or

(f, cf , γ, f(γ)) /∈ R,
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with only negl(λ) probability.
In the final step, V verifies the correctness of equation Equation (4.1) with

values H(γ̄), f(γ̄), fL(γ̄), fR(γ̄), f(γ̄).
To show that knowledge soundness holds for the entire Open protocol, we have
to estimate the probability that the Verifier outputs accept, even if the equation
4.2 doesn’t hold.

We can use Schwartz–Zippel lemma (Proposition 3). Let

fSZ := (HL + HRW D/2) ·B − fL − (f − r)W D − fRW D+1

be a polynomial from the equation 4.1. The total degree of fSZ is at most d · 2D.
Let S = F be subset of F, in this case equal to F.

In protocol step f) a point γ̄ = (γ1, . . . , γµ, ω) is randomly chosen from S.
Then using Schwartz–Zippel lemma we obtain

Pr[fSZ(γ1, . . . , γµ, ω) = 0] ≤ d · 2D

|F|
.

We have estimation for parameters d, D and |F| by security parameter λ.

d, µ = poly(λ)
D = µt − 1
|F| = 2ω(λ)

If we suppose t is poly(λ), the fraction

d · 2D

|F|
= 2d(µt − 1)

|F|
= poly(λ)poly(λ)

2ω(λ) = negl(λ).

Furthermore, if we limit the parameter t to be a constant, we can suppose a
smaller size of the finite field |F| = λω(1), and we have the following estimation:

d · 2D

|F|
= 2d(µt − 1)

|F|
= poly(λ)

λω(1) = negl(λ).

In both case Pr[fSZ(γ1, . . . γµ, ω) = 0] ≤ negl(λ). Thus, the Verifier V accepts
the equation 4.1 with only probability negl (λ).

4.5 Summary
Theorem 9. Assuming Setup generates additive groups G1,G2 for which the Q-
DLOG assumption holds. Then the scheme defined in the section 4.1 is a Poly-
nomial commitment scheme - based on SRS, where Open part is an interactive
argument of knowledge with respect to the relation R, defined in 2.1.
Proof. The scheme includes all three parts Setup, Commit, Open from the defini-
tion Polynomial commitment scheme (Definition 19). To be Open an interactive
argument of knowledge, we have to prove completeness (Definition 11) and know-
ledge soundness (Definition 13).

The completeness is proved in Section 4.3 and the knowledge soundness sup-
posing the Q-DLOG assumption for G1,G2 is proved in Section 4.4. Note that
the Q-DLOG assumption is not directly used in Section 4.4, but the proof refers
to Section 3.4, where the Q-DLOG assumption is essential.
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4.5.1 Binding
Since the Commit part is the same as Commit in the scheme for one evaluating
point (defined in Section 3.1), we just refer to Section 3.5.1.

Theorem 10. Let Setup from polynomial commitment scheme defined in section
4.1 outputs G1,G2 satisfying Q-DLOG assumption. Then the scheme is binding
(Definition 9).

The proof of this theorem is identical to the proof that a polynomial commit-
ment scheme for one evaluation point is biding (Theorem 6).

Theorem 11. Assuming Setup generates additive groups G1,G2 for which Q-
DLOG assumption holds. The polynomial commitment scheme defined in section
4.1 is evaluation binding (Definition 20).

Proof. The knowledge soundness property is shown in the section 4.4. Then
we can use Theorem 3, which states that if a polynomial commitment scheme is
binding and has knowledge soundness property, then the polynomial commitment
scheme is also evaluation binding.

4.6 Scheme complexity
Theorem 12. The polynomial commitment scheme defined in the section 4.1 has
the following properties:

i) srs1, srs2 consist of D ·
(︂

µ+d
µ

)︂
G1 elements and µ + 2 elements of G2.

ii) For integer n ≤ d and f ∈ F<n[X1, . . . , Xµ].
Computation Commit (f, srs1, srs2) requires

(︂
µ+n

µ

)︂
multiplications in G1.

iii) Prover P sends (4 + 5 · µ) elements of G1 and 5 elements of F.

Proof.

i) Additionally to SRS from the first scheme (section 3.1), each element in srs1

is multiplied by w0, w, w2, . . . , wD−1. Hence, we have D ·
(︂

µ+d
µ

)︂
elements in

G1. srs2 is simply consist of [1]2, [x1]2, . . . , [xµ]2, [w]2, i.e., µ + 2 elements of
G2.

ii) Commit part is the same for both schemes. We can use the same argument
as in Theorem 8, section ii).

iii) During Open protocol, Prover sends commitments to HL, HR, fL, fR, i.e., four
G1 elements. Then Prover runs five times Open protocol from the scheme
with one evaluating points. By Theorem 8 section iii), in total we have 5 · µ
elements from G1. The Prover also has to send f(γ̄), fR(γ̄), fL(γ̄), HR(γ̄),
HL(γ̄), i.e., 5 elements of F.
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5. Prover’s Communication
Complexity
This chapter provides a comparison of the Prover’s communication complexity
across the other related polynomial commitment schemes presented by Bünz et al.
[2019] and Boneh et al. [2020].

In the first table, it is assumed the scheme is performed with only univariate
polynomials.

Table 5.1: Prover’s communication complexity in Open protocol with univariate
polynomials (µ = 1)

1 evaluating point t evaluating points
This work 1G1 9G1 + 5F
Bünz et al. [2019] 2log(d)G + 2 log(d)Zp 2 log(d)G + (t + 1) log(d)Zp

Boneh et al. [2020] 1G1 1G1

The second comparison is focused on schemes with multivariate polynomials.
The scheme presented by Boneh et al. [2020] is missing since the variant with
multivariate polynomials is not suggested.

Table 5.2: Prover’s communication complexity in Open protocol with multivariate
polynomials

1 evaluating point t evaluating points
This work µG1 (4 + 5µ)G1 + 5F
Bünz et al. [2019] µ2 log(d)G + µ2 log(d)Zp µ2 log(d)G + µ(t + 1) log(d)Zp

5.1 Building a multivariate scheme from a uni-
variate scheme

In this section, we discuss a possibility of an extension of Boneh et al. [2020]
scheme, towards a multivariate version.

Bünz et al. [2019] presented an idea to transform a commitment scheme for
polynomials with one variable into a version with multivariate polynomials. The
idea is based on running the Open protocol for univariate polynomials in many
rounds. Scheme present Open protocol multivariate polynomials which uses Open
subprotocol for univariate polynomials.

Starting with µ-multivariate polynomial, in each round, one variable is re-
duced. In the next step, the same Open protocol is running again with a new
polynomial with µ− 1 variables. This process repeats until one variable remains.
In the a simple protocol for univariate polynomial is running, and Verifier outputs
accept or reject.

We present the technique from Bünz et al. [2019] in more detail. The crucial
point is using an appropriate encoding, which uniquely encodes each variable.
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Suggested encoding of polynomial f is f(q), an evaluation of polynomial f in
sufficiently large F element q.

In the encoding for multivariate polynomials, each variable is raised to the
power of q. The range of the powers for each variable is different with no overlap.

Enc(f(X1, . . . , Xµ)) = f(q1, . . . , qµ),

where qi = q(d+1)(i−1), for each i ∈ [µ] and f(X1, . . . , Xµ) has degree d in each
variable.
In addition, suggesting encoding is suitable for Commit part, since commitment
is computed in following way:

Commit(f(X1, . . . , Xµ)) = gf(q1,...,qµ),

where g is a group element. The encoding satisfies the property:

Commit(f(X1, . . . , Xµ)) = Commit(Enc(f(X1, . . . , Xµ))).

In each round of Open protocol for multivariate polynomials, one variable is
reduced. More precisely, in the first step polynomial is encoded in each variable
except last one.

f̂(Xµ) := f(q1, . . . , qµ−1, Xµ)

Using Open subprotocol for univariate polynomial, the commitment of f̂(Xµ)
is verified with respect to the last variable. In the case Verifier accepts, the
polynomial is backward decoded to µ− 1 variables polynomial.

f̃(X1, . . . , Xµ−1) = Dec(f̄),

where f̄ is single element in F, since f̄ is the value in the end of the protocol for
univariate polynomial, where the degree of polynomial is decreasing to a constant
polynomial.

Important is that decoding of f̄ is unique under defined range of coefficients,
so the polynomial f̃(X1, . . . , Xµ−1) is uniquely determined.

In the next round, Open protocol runs with polynomial f̃(X1, . . . , Xµ−1).
Step by step, all variables except one are reduced. The final step is running

protocol for univariate polynomial, where in the end, Verifier outputs accept
or reject. In conclusion, the protocol for multivariate running the protocol for
univariate polynomials for each variable separately using appropriate encoding.

A natural question is whether the same technique could be used directly for
the Boneh et al. [2020] scheme. In that case, the same technique allows us to
obtain Prover’s communication complexity for multivariate polynomials equal to
Prover’s communication complexity for univariate polynomials multiplied by µ,
e.g., µG1.

It is not necessary to introduce the Boneh et al. [2020] scheme deeply, because
this work used the same Commit algorithm.

Commit(f(X1, . . . , Xµ)) = [f(x1, . . . , xµ)]1
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We point out that compared to the previous protocol Bünz et al. [2019], elements
x1, . . . , xµ are secret for both participant Prover and Verifier.

In addition, secret elements x1, . . . , xµ are independent of each other. In
comparison to encoding in Bünz et al. [2019] protocol, where q1, . . . , qµ are each
a power to predefined q.

Even though it still holds that

Commit(f(X1, . . . , Xµ)) = Commit(f(x1, x2, . . . , xµ−1, Xµ),

the value f(x1, x2, . . . , xµ−1, Xµ) cannot be computed in the Open protocol by
none of the participants as in the Bünz et al. [2019]. For the same reason, it
cannot be performed by any of the participant decoding Dec([f(x1, . . . , xµ)]1).

Hence, we cannot fix a variable in the same way as in the Bünz et al. [2019]
protocol, and the technique of Bünz et al. [2019] is not applicable for Boneh et al.
[2020] protocol.

37



Conclusion
We presented new polynomial commitment schemes, which extend the previously
studied scheme from Boneh et al. [2020] and enable Prover to commit to multi-
variate polynomials.

In the first scheme (defined in section 3.1), Verifier can verify polynomial
evaluation only in one evaluation point. The Open protocol of the first scheme
also served as an essential part of the Open protocol in the second polynomial
commitment scheme.

The second scheme (defined in section 4.1) is designed for more evaluation
points. Once the Prover commits to a polynomial f , Verifier obtains the polyno-
mial r, equal to the committed polynomial f in all evaluating points. After that,
the correctness of the obtained polynomial could be verified by running a single
Open protocol.

Our work is mainly focused on reducing Prover’s communication. Since Boneh
et al. [2020] did not present a scheme for multivariate polynomials, we compare the
Prover’s communication complexity during Open protocol with another studied
protocol presented in Bünz et al. [2019]. In their protocol, Prover has to send
µ · 2 log(d) group elements with (t + 1) log(d) element from a finite field. In our
work, Prover’s communication is reduced to 4+5µ group elements and 4 elements
from a finite field.

We present proofs that both schemes satisfy properties completeness and
knowledge soundness. However, the knowledge soundness is shown in the Alge-
braic group model, which gives more restrictions to the adversary than the
Standard model. One open question is how the knowledge soundness could be
proved in the Standard model, where an adversary does not have to recover the
representation of group elements.

Boneh et al. [2020] presented scheme which enables committing to more than
one polynomials. It is done by adding a random element from the finite field,
which uniquely combines committed polynomials. Our scheme could be possibly
extended in a similar way.
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