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Chapter 1

Introduction

This Ph.D. thesis is dealing with classical actuarial non life techniques, it
discusses their limitation and suggests their generalisation and alternative
approaches using the feasible statistical and econometrical methods.

The goal of the work is to suggest new approaches for computation of
technical reserves and later implement the proposed method in practical sit-
uation as well. The thesis is organised as follows.

In the first chapter, there the basic background for technical reserves in
non life insurance is given. In subsequent second chapter we gave overview
of standard actuarial techniques. Quite large attention is given there to
Biithlmann’s model of claims reserving that is very detailed and enables a lot
of stochastic outputs. However from practical purposes chain ladder is used
more in practice. This method is described later on.

Third chapter deals with recent development of Chain ladder regarding
Munich and Multivariate models what is continued by author’s views on
generalisation of Munich Chain Ladder that were summarised in the fourth
Chapter.

Fifth Chapter presents author’s work on multivariate generalisation of
Munich Chain ladder. Econometrical generalisation of technical reserves
computation with alternative ways of modelling relation between paid and
incurred data are given in sixth chapter. Finally seventh chapter presents
application of simultaneous equation models for estimation of the claims vol-

ume.



1.1 Fundamental aspects of technical reserves

Technical reserves play significant role in insurance sector. Their value is
important for overall economic results of the company and adequate level
of technical reserve is reviewed by supervisory authority, auditors and other
subjects in order to be sure that the insurance company will cover its liability.

Technical reserves are thus regulated in law and secondary legislative acts.
Basic division of technical reserve could be as follows.

1. Unearned premium reserve (UPR) is set up in order to divide the col-
lected premium into two parts. The first part is related with risk that
might occur in the same year as the premium is paid. However if the
policy contract remains valid in the following year(s) as well and the

. premium is paid prospectively for the whole time of insurance cover

{ then the part of premium related to successive year(s) has to be given

into the UPR. The usual method for its calculation is pro rata tem-

{ poris method. For example if we have motor third part liability (also

| MTPL) contract written on 1st April 2008 with yearly premium 6000

| CZK, written premium in 2008 is 6000 CZK, however only 4500 CZK

consists for earned premium in 2008. The rest 1500 CZK will be given
into UPR.

9 Claims reserve are divided onto RBNS and IBNR reserve. The whole
thesis deals with this type of technical reserves

3. Equalisation Reserve is set up in that lines of business where loss ratios
differs quite a lot across the years. In the year where loss ratio is low the
reserve is set up and in the adverse years the amount is used in order

( to improve the results of that years. However the importance of this
reserve is decreasing now what is connected with the fact that according
§ to International Reporting Standards (IFRS) the equalisation reserve
is not indeed reserve and the fluctuation of claims amount should be

assumed in capital requirements.

4. Reserves covering CKP’s liability
Special type of reserves that are set up by insurance companies writ-
ing MTPL policies in order to cover standard not yet paid liabilities




arising from already occurred claims of Czech Insurers’ Bureau (CK-
P) that deals with MTPL losses caused by uninsured and unknown
drivers and also covers deficit of run-off MTPL business before 2000. It
might be interesting that this reserve is from the point of view of CKP
seen as assets that cover standard claims reserve of CKP arising from
liabilities to damage parties. For evaluating its liabilities standard or
new actuarial methods could be used and also it was found useful to
use some statistical methods for evaluating and detection of uninsured
cars, people, etc. These results could be seen in Jedlicka (2007). From
the point of view of CKP member companies Reserve covering CKP’s

liability is indeed reserve.

| 5. Other Reserves are set up in order to cover other specific liability and
their setting has to be usually allowed by Czech National Bank (CNB)
which play the role of supervisory institution for Czech insurance sector.

Non life Insurance companies are obliged to set up claims technical re-
serves for not yet unpaid claims which occurred in the past calendar years.
The respective delay until the claim is paid is caused by the time between
the date of accident and the date of reports to the insurer and moreover it
will take another more time to settle the claims. In order to give realistic
financial picture of the overall volume of the claims two types of technical

reserves are set up.
1. RBNS (Reported but not Settled)

2. IBNR (Incurred but not Reported)

IBNER reserve is related to Incurred but not enough reserved claims and
usually it is calculated together with ” pure” IBNR.

1.2 Historical background for IBNR

Overview of historical development connected with application of IBNR world-
wide and in Czech Republic was given in the paper of prof. Mandl (2005).

1 It states that one of the first publications regarding the Incurred but not

| reported reserves dates to 1933 (see T. F. Tarbell (1933). The basic principles
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written there are valid so far. First of all it is the fact that the estimation
of IBNR is mathematical or statistical task. The method suggested there
is related to recording the claims that were reported after the end of years
of occurrence. IBNR is estimated according to the past development of the
financial amount of that claims. In this article it is also stated that the
estimate of IBNR might be quite easy for lines of business with fast compen-
sations as property insurance where method as some percentage of RBNS
might be even used. However the IBNR for lines of liability insurance with
long time until the end of claims handling is rightly seen as more difficult
task also in this very first paper.

In the paper of Tarbell, there is not worked with run-off triangle schemes
only "recording” of IBNR claims is applied. This paper also takes into ac-
count the possibility of changes in frequency or severity of IBNR claims. The
term of run-off triangle that is crucial for IBNR computation now was firstly
introduced in the work of H.G. Verbeek (1972) as is again said in the work
of Mandl (2005).

Moreover this article also describes development of technical reserves in
Czech Republic for non life lines of business. After 1945 insurance sector was
nationalised and only one insurance company remained after 1952. Technical
reserves were practically limited to reserve fund that was similar to present
equalisation reserves. In the good year when state insurance company made
a profit, the part of the profit was taken to state budget and the rest was
given into this reserve fund. In adverse years, if the collected premium was
insufficient to pay compensation, the part of reserve fund was used to cover
the liabilities. No claims reserves were applied and state insurance company
worked on calendar year basis. However if the estimate of future liabilities
was necessary (for example in case of handling a foreign claims arising e.g.
from international motor liability insurance), the estimate was performed
and the result might be used as a source for technical reserves of foreign
partner.

The reserve funds interpretable as equalisation reserve remained some
time after Velvet revolution when insurance sector was demonopolisated. In
1994 the law introduced obligation for insurance companies to create RBNS
and IBNR types of reserves. Overview of present situation including also
liability adequacy test for non life lines of business could be seen in the



paper of Svab (2005).

1.3 Claims reserves

RBNS reserve is set up for Reported But Not Settled claims and IBNR re-
serve deals with the problem of Incurred But Not Reported claims. The
first one may be determined by individual estimates for each known not paid
claim regarding the experiences and expert opinion of future compensation
that is usually made by employee of claims department. The latter reserve
could be determined only via mathematical methods using the known de-
velopment of paid compensation and RBNS reserve. If RBNS reserve is not
set up individually as estimate of future paid compensation for each and ev-
ery claim, an actuary can use only data describing the development of paid
compensation and estimate the sum of RBNS and IBNR reserves together.

1.4 Run off triangle schemes

We will mark Y;;, ¢ = 0,...,n, j = 0,...,n — 1 for data of paid claim
or incurred where n notifies the dimension of the data sets. It is assumed
that there is no development if n periods after accident pass. If we want
to distinguish type of triangle we will add upper indices Yz’; for data of
paid compensation or Yifj for incurred data (sum of paid compensation and
corresponding value of RBNS reserve). These data are usually analysed in
the so called run-off triangles which could be seen as a matrix where only
data in the upper left triangle are known and our aim is to estimate the
future development in the lower right triangle. Each row is interpreted as
one accident period and each column as a single development period (i.e. the
variable Y; ; shows us overall paid or incurred value of all claims occurred in
period 7 and paid or reported until j periods after the accident happened).
Thus figures of each diagonal corresponds to one single calendar period.
Typical run-off triangle is defined as follow:
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Chapter 2

Traditional reserving methods

Reserving method could be classified in many ways. The basic division might
be on stochastic and deterministic models. Some of the most known are
briefly described below. Their description could be also find in standard
actuarial textbooks as Cipra (1999) or Mandl (1999). Some of the presented
methods are deterministic and the other are stochastic. Chain Ladder that
will be generalised in many ways in the following chapters is described at the
end of the chapter.

2.1 Loss Ratio Method

Loss Ratio method could be seen as the most straightforward reserving
method. Let us denote [ or more concretely [; loss ratio that is assumed gen-
erally for all accident years together or different for various accident years.

Then the overall claims reserve is computed as

R;=EP,- ;- Y},

n—1

where EP; stands for earned premium with respect to year 4. It is crucial
that the loss ratio must be known or assumed l; so this method is rather
cyclical one and is used in the cases where available data are not sufficient

for performing another methods.

11



2.2 Biithlmann’s model of claims reserving

We would like to remind this model to ensure that the roots for recent de-
velopment in calculation of technical provision go back to the beginning of
1980’s and that ”only” the lack of data, changes of the methodologies etc.
and other practical difficulties force us to implement more aggregate methods
that are better useful in practical situations.

This model could be seen as one of the first stochastic approaches how
to model claim reserves based on run-off triangles. Moreover it works with
time between paying the compensation and claims occurrence as well as time
between paying the compensation and claims report and requires individual
data of each claims evolution.

To be able to perform individual development, notation Z;-""j’(k) interpreted
as amount paid (or incurred) on behalf kth claim occurred in time ¢ and
reported to insurer after following m periods will be introduced. Aim of the
model is to predict the claim process for each claim since its report until
finalisation of claim settlement.

Apart from that modelling, estimate of number of all claims that occurred
in accident year 7 is important together with evolution of their reporting time
to insurer. Model assumes that number of claims occurred in 7 is a random
variable NN; and also we will mark TF as calendar period when the £ th claim
is reported.

After that we have

Jj N;

Y=Y > I =m].Z75®.

m=0 k=1

Paid compensation on behalf of reported claims occurred in 7 and paid until
j following periods (i.e. until calendar periods ¢t = ¢+j ) can be rewritten as a
sum of paid compensation on behalf of the claims occurred in i and reported
until time ¢ + j. We will also mark

N;
T k m,(k
Yo=Y NT" =m)- 23
k=1

the overall amount paid after j periods on behalf of claims occurred in ¢ and
reported after m periods only.

12



Similarly as above final value for each claim is also defined:

Z8 = pm 2 | 1<icq

Jj—00 b

that is to be estimated. Based on this definition it holds true that

oo N;
Y, = Z ZI[Tz’(k) Z(k Z I

m=0 k=1 m=0

where Y™ corresponds to whole amount of liability (regardless if it has been
already paid) for accident period ¢ and reported after m periods only. Also

N;
o ZI[T;UC) ] m]Zim’(k).
k=1

In that model run-off related to claim reports is considered as well. So

we can write

N;

Ni;j = ZIT(k

k=1

-

is interpreted as number of claims occurred in ¢ and reported j periods after
occurrence.

As we know, estimate of reserve R;; = Y; — Y;; is a general task. If
Y are interpreted as Paid data we obtain the estimate of overall claims re-
serves (sum of RBNS and IBNR). If Y are interpreted as incurred data we
obtain estimate of IBNR only. In that situation however we are sometimes
interested how to separate IBNR onto pure IBNR (estimating the value of
really unreported claims) and IBNER (Incurred But Not Enough Reserved).
IBNER reflects fact that some claims could be hardly reserved in the whole
amount soon after claims reporting. It holds for example for bodily injury
claims in motor insurance where the scope of liability is known after longer
period. Amount of lump sum compensation (e.g. pain and suffering) could
be evaluated after end of medical treatment and the annuity compensation
could be paid even for dozen of years.

Estimate of IBNR R;; = Y; — Y;; (if Y are Incurred data) could be
rewritten

] 00 N;
Ri;=Y,-Y= EJ: Yo Y4y Y P =mly P

m=0 m=3+1 k=1

13



The first summand corresponds to IBNER (mark I'; ;) and the latter one to
pure IBNR (A, ;).

It is also important to have some assumptions for above defined random
variables or processes describing claim settlement if one has to implement
the model.

In the article it is assumed the claim number distribution N; is Poisson
with parameter V;.v interpreted as volume of risk in underwriting period ¢
and v is unknown parameter interpretable as loss frequency. For example in
homogeneous portfolio one could use number of insured and loss frequency
for v parameter if we do not assume that more than one claim from one
contract could arise.

Other important assumptions are independence of number of claim oc-
currences N and respective times of accident 7' and also independence of
random process of claims reporting and claims settlement among different
accident periods.

Moreover random sequences describing claims development

)k y
Yo i ma

are for various claims independent and identically distributed and so we do
not have to work with index k
In addition time of claims report Ti(k) are for various k i.i.d. with distri-

bution function marked
F(m) = P(T{" <m)
so probability that the claim is reported just after m periods p(m) is
p(m) = F(m) — F(m — 1).

It is thus assumed that claims reporting is not dependent on time of occur-
rence.

Last assumption of basic model is connected with expected amount of
paid compensation through so far reported claims

E[zm®|zm® m < d < j] = AP 20"

1,7+1 1,]

and its variability

14



708 m < d < 4] = (o) F(1Z0,

va‘r[Zz Jj+1 I J 1,]

where f > 0.

In extensions of the method leading to application some more assumptions
are made as well. Probabilistic distribution of incurred amount of each claim
is assumed to be logarithmic-normal so it holds for amount put in reserve or
paid immediately after report that

In(Z,) ~ N(pm + (i = 1).In(1 +9), o?)

If we re apply this we will get conditional distribution under knowledge
of pattern since report to time of reserve calculation (Z7,, Zi 415 - - Z7)
as

In(Zij+1) ~ N(y; + n(¥5), 7507)

After transformation we get for expectation

o2

E(Z7 |25, .. Z0) = 215 exp(v;(1 + = 5

—)) = ZijA;
and for conditional variance

Var(Z 1|25 s Zig) = Z{,"j.cr]?

It is seen as important simplification if

112

VDY

and also
2 2
(07")" =
However this means that claim payment pattern reported after m periods
depends only on delay after claims occurrence and not on delay after time of

report. That does not need to be held in practical implications.
Initial values in the time of setting up the reserve could be formulated as

1%

2
+ 20)(1 4 8)6D

E(Z]},) = exp(ptu 5

where claim inflation is considered as well.

15



2.2.1 Parameters estimates

As stated above, our aim is to estimate ”separately” pure IBNR and IBNER
based on information of Y;; where j < n —i. We have to estimate both

components of the sum
Hipo=Uin it Dini 1=1,...,n.

The estimate of IBNER is possible to write as

z H /\ 'Ln z—z;l(Hfrln“l)Y;,ﬁ

m=1 j>n—1

Pure IBNR A, ,_; might be estimated as

o0

S° pm).B(ZP) Vi

m=n-+1

Estimates of parameters v, p(m) are straightforward.

e Zn+1 m

p(m) v = Zn-{-l mv

i=1

and also

—

= Zp(m).v

m=1

Estimate of A" is proposed as

Zﬂ—j+1 YT, j sz

—~ =1 U
A= s (2.2.1)
J —j+1 (¥i3)?
Z:LZ]? Ui,m

where U ,, states for number of claims occurred in 7 and reported just after

m periods after occurrence that is
Ui,m S Ni,m - Ni,m——l

and we define NV; o = 0.
This estimate of )\'" is according to previous assumption BLUE. Obviously
expected value of —i—-— equals A7 for all ¢ a its conditional variance if one
J

does not know function f could be rewritten as

Utm

me j g (?)2-Ui,m



Presented estimate 2.2.1 could be seen as special case of parameters estimate
in linear model theory X; ~ (u,0;), that is

/:‘L___ Z?:lXi'o.’tj_z
= =2
> ie10;
So we can determine estimate of overall paid amount for each claim oc-
curred in i and reported after m period as E(Z]") = E (Z{f’m 1= )\’-”). As

J=m
we know that E(Z%,) = cm(1 +9)"" it is sufficient to estimate parameters

6 and ¢,
These estimates 6, c,, will be derived if one minimises following error

function

)= (X;}'mm e S)i‘1)2Ui,m

i,mi+m<n
Estimates for fixed ¢ are solution of that problem:
>t X (1+6)
Sy Uiml(1+8)1)2
Optimal estimate ¢ is determined via minimising of function Q(é,CZ\@).
This solution could be obtained numerically.

cm(0) =

2.2.2 Conclusion of the model

This model formulated more than 25 years ago is really detailed and gives
realistic description of whole process of claims settlement and justifies the
importance of setting up the all types of loss reserves and its interpretation.

However the structure of data and its complexity could be seen as draw-
back of the model. At least we have to use n run-off triangles where each of
them considers known development of claims settlement according to period
of claims report m,m = 1,...,n. For large values of m not much different
from n the problem of lack of data and related influence or result could occur.

2.3 Standard Chain Ladder Method

That is the most widely used method in loss reserving used for each single
run-off triangle. It originates from intuitive deterministic assumptions which
were later generalised to obtain stochastic model of chain ladder.

17



2.3.1 Standard Chain Ladder - deterministic approach

This method is described in the actuarial textbooks, e.g. Cipra (1999) or
Mandl (1999) and is based on the assumption that ratios of following values
in one raw are approximately constant independently on accident period :
(but dependent on development period j). That is

Y,-,j+1"=“Yi,j.fj,z'-——O,...,nj:O,...,n——l (231)
Regarding the fact that we know only data Y ; if i +j < n estimate f] could
be based on values Y; j41, 1 =0,...,n—j—land Y, i=1,...,n—7 only.

Individual development factors are defined as F; ; = %;L:fi, e ot
0,...,n — 1. Intuitive estimate }; could be formulated as arithmetic mean
1 n—j-—1
e F,;, 7=0,...,n—1.
f] — ; ijr J n

However the most popular estimate is different

= naly.,

Fi= Ezjf_ L (2.3.2)
Its mathematical interpretation could be seen later, based on article Mack
(1993). Our aim is to estimate ultimate values of paid or incurred data which
is done according to following formulae:

n-1
V=Y H Fei=1 . .

j=n—i

and corresponding IBNR or sum of IBNR and RBNS reserves could be gained
by subtracting the ultimate and diagonal figures:

':}/‘i,n“)fi,n—i) Z‘_‘-‘l)"',n'

No reserve for accident year 0 is made since we assume that the claim han-
dling is finished after n periods after accident.

Example

Let us assume following run-off triangle schemes representing Paid compen-

sation development

18
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Figure 2.1: Run - off triangle representing cumulative Paid data

The development of this process is relatively ”smooth” that can be true for
short tail non life business what is not the case of Motor Third part liability
where separate analyses of property damage (short tail) and bodily injury
claims (long tail) may be appropriate. Corresponding incurred portfolio is

as follows.
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Figure 2.2: Run - off triangle representing cumulative Incurred data

Underlying triangle of numbers of claims is presented below:

—
o 2502| 8482 11388} 12 15612 8 127781 812 13 7341 2811 B
] | o2es| san 7551] 8828) 840 §483] 5434 5238 s220| 7428
(2| | 5028] 11012]13 768) 14 874] 14 872] 14 4231 waraa|iagsie s 14 10432 7eea s
_g_ 4533| 13182] 18 550) 17 00417 478| 17 808|123 ¢ 17 340]17 18797 2 18 485} 17 24717 084
L x523| 20480(23 324]23 74325 23724 S54]25 7 2% 520|25 42|25 281 24 71424 45824 358
A& | 732 1azzire 15 343] 13 318] 18 144]18 7 20 242120 440]20 397 18 207]13 174
(8] | 10151]19 54223 505|26 270128 033[28 481{28 7 26 88828 75128 452 25078
__7_ 1071822 878]23 228]24 182]23 725)3¢ 285]34 4 28 345|358 275]34 328
(8] | 15332|37 45743 285148 335147 355147 381[4E T 48 513]45 70845 383
g g792| 2430427 57128 10228 228 |28 248|258 677
(19 ] 1rr47]2s 23829 848)31 810[32 20t 32083
_A8] | 15210]35 030|39 254)40 28240 785
(121 ] 1033430 484 38 818138 244
33 3954[28 782 25 888|32 357
o RESE R 8|37 382137 318
18] | 18245140 208 4538144 533
18] | 1e742)38 789 4t 158
n W REE R
18] | 0540|3880

»
3




voa] 3ts] 4s0] 48] =] f30] ses] sea) so| ses| seal ssal eco| aonl ecz| eca] sodl sos] Ay 234)
Tl aal 3221 25| 273] avel  3st]  4oa| 40%] 4| izl 3| 40 qz0f  4as] 430} 4220 42| 423

207| 48] 37| 71| #&it] sas| erst ezl o] vpel el o7] T 7241 Taa] el s T

o T B T B B T B T T S T T T D T

B B T e D e e T I B B s 8ol ¢ 1snl 118

aas) mnai asy| 724) 78l sea| s43] ser] =] syvl svel se2| eoaf w3l m@

oal el sl toza| tosi] rane] vus] gk 1 naa] 1a4s] 1 152) 1 144] 1978 3 80

s8] 10wl vane] sans] v eas| rszr] o sas] o see] 1878 158 assz?t?mnm

waz| s 27al 1845| 1832] 1857) voor] sren] v 7eel 17| o+ ren] s 7sa] s ece] ]
a3l %l 1o7al 1 sl 1 ar] 1 es| v ziel vzes] a1 2| 1 2] i

R R e L L B i R R ]
w71] 1 2e3] 1 aam] o 435 1 40] %0z 1 %e4) 147 1857
are] s oaz] 1 222) 1253) 1 238) v ae] 1323 130
0] et 7e] 1 040] 1078 1 18] 1124
£40] 2 182 13200 1 334] 1 425) 1 422
127] T A04] 1%82] 1e38] 1AL
zagl 1 232) 1373 1487
£85] 1 081] 1178
01| 1 228
781

e s
e

Figure 2.3: Run - off triangle representing cumulative numbers of claims

This run-off schemes will be used for basic illustration of chain ladder
and its possible drawbacks. Firstly development factors for Paid triangle

were computed:

i

3.20] 1,67

1,02

Figure 2.4: Estimates of development factors for paid triangle

We apply these standard estimates to complete available triangle into
square what gives us following estimates of paid compensations for the future:
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Figure 2.5: Projection of paid triangle

We can learn even from this portfolio that Chain ladder is generally not
suitable method due to large variability and large emphasis onto first obser-
vation for later accident periods

Better results could be obtained for triangle of numbers of claims where
following estimates of development factors were computed:

ki i e J[ G

52111161108 10¢]1.02] 102] 1.02] 1.01] 1.01

ZAs
1.02] 1.0

Figure 2.6: Estimated of development factors for triangle of numbers of claim-

S

2.3.2 Standard Chain Ladder - stochastic model

In addition to previous approach we can obtain not only the point estimates
of reserves but the variability and mean square error which will imply un-
der normality assumption knowledge of overall distribution. Adequacy of
normality assumption should be tested but it does not seem to contradict
a reality due to Central limit theorem as run-off development is a sum of

individual figures for each claim or policy contract.
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The stochastic model was firstly presented in the article Mack (1993) and
is based on 3 probabilistic assumptions regarding expectation, variability and
inter row independencies.

It is assumed that for random vector Y holds

E(}/i,j-kln/i,j:}/i,j-—l;---;)/i,O) Z)/,;,j'fj, izO,...,n, ]ZO,TL—I
and for its variability holds that
Var(Y; 1Y, Yijots - Yao) =03.Yi4, =0,...,m, §=0,,..n—1.

To simplify the notation we will define Y;(j) = (Yi, .-, Yij)-
We can rewrite this into a linear model for each development period

Yiin=Yfit+e;i=0,...,n (2.3.3)

with notation E(e;;|Yi(j)) = 0 and Var(e; ;|Yi(j)) = o07.Yi;. Moreover it is
assumed in Mack (1993) that loss development between different accident
years are uncorrelated, that is Covr(Y;, ;,Yi, ;) = 0, @1 # %

Using Aitken estimate for model (2.3.3) we obtain fj as

n— ] 1Y
= 2izo =0 St (2.3.4)
Zi:g )/”‘1.7

SH)

since from the theory of linear models is derived
fi= (W VY)YV Y ) =

n—j-1 n—j-1
= (0723 Yi5 Vi)™ ) 07Ya Y Yign.
i=0 i=0
It is now easy to obtain (2.3.4), using notation Y_; = (Yo, .- -, Ya—j-1,5) Y j+1 =
(Yoj+1,-++» Yn—j-1,4+1) and V = Var(e ;) = o3 2(Y ;) for covariance matrix.

111 this univariate case there is no need of 012 estimate for computation
of f;. However it is used for computing mean square error of the reserve.
Mack (1993) suggested following straight forward estimate of variability of

development factors

s j+1 ~\?
s 0] A
— __1 Z:; ( ( V., f,) ) (2.3.5)
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We can apply this formula to compute mean square error of the overall reserve
what is again performed in the same article Mack (1993)

N.
n — o 1 1
mse(R) = (YVin)? D L |+ == (2.3.6)
R Yik Z?:l Yi;

Example

We can continue to work with data sets from previous example dealing with
deterministic approach to Chain ladder. Its intuitive result that paid devel-
opment factor could not be assumed as stable is verified through computation
of standard deviation. We got following results:

t) |15.54] 2.20] 1.67 1.0 | 1,62 | 1.02| 1.02

10111011100

1,01

s_j | 8s01] 1763] 1195| 8%8] 47| 333] 218] 184 116] s8] 122] 41.¢] <81] 28] 30f 2y 382

18.7

Figure 2.7: Standard deviation of development factors for Paid data

Moreover the results for Incurred scheme are not much better:

¢ |220]112}104{102]101]100)100]100)100]08S 0880989 [(088] 100088

0,981 088
83,5 183

s | 1298] 352] 240| 164] 97.8] 101] 114] 79.4] 722 95,11 £0,3] 102 75.4] 103] 132

141

Figure 2.8: Standard deviation of development factors for Incurred data

However variability of development factors coming from claims number

triangle is quite low and useful for practical purposes:

1.04 1021102 101|101 100}100{102|100}100]1CC] 100] 100

Lok
f 1,18

1.00

1.00

s £.3] 1.38 0.1 0.47] 0.21] 0.21] 0.2¢] 0.14] o8] 0.08] 0.22] ¢.04] 003 0.03f 0.08] €03

Figure 2.9: Standard deviation of development factors for count data

23



Chapter 3

Recent Development in claims

reserving

3.1 Munich Chain Ladder

3.1.1 General description

We could apply now stochastic model of Chain Ladder separately to Paid
and Incurred data and we would expect that the ultimates of both triangles
should be comparable since after sufficiently long development all claims are
paid and almost no RBNS reserve should be booked. Since it does not hold
in practice, paper Quarg (2004) introduced method analysing both triangles
and their interdependencies simultaneously. Bachelor thesis describing this
method with some illustrative examples based on data of MTPL sector was
defended in 2005, see Fikar (2005).

We remind that we use upper right indices to distinguish values and
parameters of each type of triangle, e.g. YZ’;, J’ ,of etc. Inter triangular
dependencies are modelled via ratios of paid and incurred values

P

'Yi’j
Qij = (P/1)ij = YL

Average ratio for development period j is later defined as

Pico Yi
g = (P/1); = —fr(l?zl
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If Standard Chain Ladder method (SCL) is used instead of Munich Chain
Ladder method (MCL) the problem with inconsistence exists for known da-
ta as well as for prediction. More accurately, it can be proved that if paid
incurred ratio is under average in the time of estimate it will persist in the
prediction for this accident year and vice versa what is claimed in the follow-
ing theorem taken from Quarg (2004).

Theorem .1. For every accident period i hold that ratio of observed and av-
erage paid to incurred ratio for last known development period and respective
ratio for following prediction remain constant, or

P/Lij _ P/Liag
P/Ij P/Ia(z)

Proof. 1t is quite obvious that for j > a(z) holds true

P P P . . P
15/\1..=Yi,j ___Yia(i)' a(@d) 0 Jy-1
1,7 }/il_ YI : /I\
J i,a(i)" a(z) S |
Moreover also
o n s n—s—1 n
% e O A (3.1.1)
1=0 1=0 1=n—S
Zn—os 1 i n—s—1 n IR
L s+
= S 1),’ 0 Yok 30 fY (3.12)
Z s+l 1=0 i=n—s
n—s—1
Z Yien + Z Y (3.1.3)

Thus it is possible to extend the sum that is used for estimates of devel-
opment factors onto

Z?:O }/i{:+l 1 Zz =0 1, a+1
e A
Z;;O }/l,Ps ’ Zz =0 YI

For simplicity of notation we do not distinguish between estimates and ob-
served data. The right sort of data is implied by the value of calendar period.

=

25



If we apply results presented above onto (3.1.1) we will get

n iy F

Yiljl(i)' an_oyl’l’
(P/1)ij=— im0 el
Y] I B

i’a'(i) . Z?:OY

1,a(i)
This result is equivalent with following
P/I;  P/l(i)

what proves the theorem.
O

MCL solves this problem very elegantly adjusting the developments fac-
tors. This adjustment is based on thought that if current paid to incurred
ratio is low (i.e. below average) it means that it is not paid enough or is
reserved more than usually comparing to another accident years. So it is ex-
pected that the amount of payments will be increased in future period which
implies that the corresponding paid development factor should be increased
and corresponding incurred factor should be lower than usual. If oppositely
paid and incurred ratio is above average it may be interpreted that the future
payment will be lower or increase of incurred will be substantially higher.

These types of dependencies are modelled for all development period after
standardisation. Thus we use residual values with mean 0 and standard

deviation 1 since

X - E(X|CO)
o(X|C)
We formulate two regression models which finally produce following estimates

Res(X|C) =

of development factors.

Y-P
E (Res ( z”'“lYi‘“(s)) IBi(s)) = A" - Res(Q;,1Y"(9))

and
I

E (R (Y m'(s>) |Bz-(s)> = A Res(Qs |V (7).

1
Yis

It was switched from paid incurred ratio Q;, to incurred paid ratio Q. .
in order to obtain positive correlation in both cases. B;(s) notifies two di-
mensional process (Y;(s)?,Yi(s)?) of both data types in the time of reserve

estimates.
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e (’ff"Y()), frm e
E( 'BZ( )) _fs +)‘ 0_( i,sl}/i(s) ) ( 1,8 E(Qi,slx(s) ))
(3.1.4)

B (Yi{sﬂlB( )) =l o ( z:’:’IY(S) ) Q. ~ B0 Y3
i(8) | = J; (0 ,',SIYi(S)) (Qis — E(Qis|Yi(s)))-

Moreover we assume that vectors B;, (s) and B, (s) are stochastlcally inde-

pendent if i; # i». Let us assume that Q; ; is defined as —,?- Parameters A\”

1]

and M determine then the adjustment of SCL development factors.
For practical implementation we have to obtain further estimates of o'(Q;, HY:(9)4),
o(Qis|Yi(s)!) and o(Q; Yi(s)"). Estimate of E(Qss|Yi(s)") is formulated as

n—s

=Y. Yif:/nif Y.
1=0 1=0

Estimate of variability of paid incurred ratio o(Q;s|Yi(s)!) is suggested as

follows
(,03) zn—sz (@i = &)

In the same way we can obtain that
n—s
Z DY
i=0

estimates E(Q;, |Yi(s)") and also

using

ps/
is estimate of o(Q;, |Y;%;) using
e 1 n—s
e ~—1
() = Xvh- @ a7y
1=0
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3.1.2 Remarks to MCL

Estimate of regression parameters \* and A\’ was originally in the article
Quarg (2004) obtained by ordinary least square method (OLS). If one changes
theoretical values by above presented estimates the final projection could be
easily obtained.

Despite the undoubtable benefits of MCL there are some open questions
in that field. Some of them will be suggested to solve later in that thesis.

1. The underlying regression models for Paid (see formula 3.1.4) and In-
curred data are regarded in practice as rather volatile. It could imply
the question if the OLS method is appropriate for the data or even for-
mulated model based on the Paid to Incurred ratios is the most proper

one.

2. From practical point of view the information regarding the known value
of reserves is useful for amount of payments in future periods but it
does not have to be valid that so far paid amounts are useful to predict
future development of incurred. That idea was mentioned by Verdier
and Klinger (2005). Moreover it could be more more appropriate to
use the value of reserve only as relevant information for Paid projection
instead of whole incurred since in fact already paid amount, that is part
of incurred amount, gives us no more information beyond standard

chain lader model.

3. The consequences of the problem if the run-off is not ended after n
period after claims’ occurrence was mentioned in Quarg (2004). If we
assume that outstanding reserve is set up adequately after n periods of
development one could increase Paid value in upper right cell of triangle
to match the paid and incurred data in that position and transformed
value of Y()l,)n is to be interpreted as final payment for accident year
0. However in some examples of data with significant reserve develop-
ment the run-off reserve model should be also mentioned in order to

implement tail as well.
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3.1.3 Example

If we continue with data from previous examples regarding the chain

ladder we get following results for dependency of residuals in the case
of paid scheme:

anid

U
N

Res(Paid)

I/P Residuals

Figure 3.1: MCL Residuals - Paid data

In that situation sample correlation among standardised paid compen-
sation and ratio I /P is approximately 0.5. On the other hand situation
with correlation of incurred residuals and ratio P/I is much weaker,
sample correlation is 0.08 only with following graphical demonstration:
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Figure 3.2: MCL Residuals - Incurred data

Similar results are obtained in the most of other run-off triangles schemes
what implies that this kind of modelling is more suitable for Paid com-

pensation than for Incurred process. Following graph shows the differ-

ence in the ratios of final prediction based on Paid or Incurred schemes

depending on the type of method (SCL or MCL).

Differences in Ultimates' Paid to Incurred Ratio

180%

170% -

160% o Stanfiard
B Munich

1 2 3 4 5 6 7 8 9 101112 13 14 1516 17 18 19 20
accidentyears

Figure 3.3: Paid to Incurred Ratios

The respective projection are thus much closer if we use MCL. However
the fit is not completely done since the paid process is not finished even
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for the oldest accident year and so we have no experience to observe
complete fit close to 1 for known data. See following graph for final
presentation of all estimates depending on the method.

Comparing of Ultimates Projections

70 +
@ ultimate Paid SCL

B ultimate Paid MCL

50 | O ultimate Incuured SCL
O ultimated Incurred MCL

Millions
FS
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
accident years

Figure 3.4: Comparing of ultimates

3.2 Multivariate Chain Ladder

3.2.1 Recall of approach suggested by Schmidt

Multivariate analogy of Chain Ladder model introduced in Prohl and
Schmidt (2005) is again based on stochastic assumption of original

Mack’s model. Column vector

Y:; = (Y} ...,}/if;)'

(K
represents cumulative amount of claims occurred in period 7 and devel-

oped after j period after occurrence for all K simultaneously analysed
insurance portfolios. Moreover following notation was also used

Ti,j e dlag(Y,d)

Obviously Y;j = Y, ;1, where 1 marks union vector of dimension K.
Generalisation of one-dimensional formula Y; ;11 = Y;; - Fi; is then

obviously
Yijn = Tij-Fij
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! . - . - . .
where F;; = (F};,..., F[5) represents multivariate version of individ-

ual development factor.

3 basic stochastic assumptions proposed by Mack (1993) had to be also
extended to multivariate cases:

(a) conditional expectation
(b) conditional variance

(c) developments of different rows of triangles are independent

If Y;(j) represents available information based on j period of develop-
ment, generalisation of the assumption suggested by Schmidt might be
understood in the following ways.

1. There exists K-dimensional development factor independent on year

of occurrence that holds

E(Yij+|Yi(4) =Tij - £

2. There exists matrix X; so that
Cov(Yagar, Yooy Ya (), Ya(i) = Tif' S0y
if i = 4; = i and also
Cov(Yir 41, Yizj+1|Yir(4), Yia(4)) = 0

otherwise.

These assumption imply that
E (Fi;| Y1) =

and
COV(Fil,j+la Fi2,j+l |Yi1 (j), Yo (])) - Ti-;/ziji_’;/z,

that is obvious analogy of one-dimensional formulae
B(F|Y(3) = ;
and
Var(F,|Y:(j)) =02/Yi; i=0,...,n  j=0...n— 1
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We recall that in one-dimensional case of Mack’s model estimate of f;

is to be found as
n—j—1

fi= ) wFi
1=0

This estimate is unbiased if Z;:Oj ~lw; = 1. Linear model theory im-

plies that OLS estimate is achieved if

Yi;
—n—j-1
Yo Yig

That gives us univariate Chain ladder estimator.

w; =

In multivariate case Schmidt suggested estimator f; as

n—j—1

f;= ) Wk,

1=
o . . . . : —i-1
Conditionally unbiased estimate is achieved if Y /" W; =1
Estimator that minimises mean square error is derived form linear mod-
el theory as

1

n—j—1 n—j—

T 1/2¢—1~01/2 1/2¢—1~n1/2

fj = ( 15X, Tm) Y TGy
1=0 1=0

We suppose that estimator of 3; is important for practical purposes as
well. However its specification is not included in the mentioned paper
of Schmidt and Prohl (2005).

We could use classical estimator as
1 n—j—1 .
= 2 (ET Vol i
5=y & (00 (Fa-8))- (T (Fs-£))
1=0

Drawback of that approach might be seen that i\J is not well defined
if j > n — k what implies limited benefit of that method.
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3.2.2 Recall of approach suggested by Kremer

Multivariate model in the paper of Kremer (2005) is suggested as fol-

lows

Yiin=Yi;.fi+€i ES
E(E:i,jl‘) =0 Var(ai,j‘-) = 0']21/;,]

Thus it is assumed that Vj holds

Yo=Y ey ri=0an 0 k=1, K

So original linear model is assumed for all of K analysed run-oft trian-

gles. Moreover it is assumed
k1 kZ k1,k2 k1l k2
Covr(eij ei5l) = Ci ™ -\ Yiy - A/ Yi

Var(ef;|) = a;-“’2.

and

If 4, # iy or j; # Jjo then residuals are assumed to be uncorrelated, that
1S
k1
Covr(e €i1,51) 12,]2| ) =

Not only the estimate of development factor but also the estimator
of variance is stressed in that approach. Estimate of f; is suggested as
Aitken’s estimator since it corresponds to regression estimate with non-
constant variance of residuals. However as is stated in Schmidt (2006)
this approach could be seen as not effective enough since computation
of large-dimensional inverse matrix gl might be time consuming.

In the proposed model, estimators of fJ’~C are firstly calculated for each
triangle separately. These estimators would be the optimal ones if
Ck1 k2 — OVi, j, ki1, ko For each run-off triangle £ = 1,..., K variabili-
ty estlmdtor corresponding above mentioned estimates of development
factor is derived through following formulae

— n—j—1 /7‘7
0_2,k o Z:i:lJ (K{CJ‘H T fj )/1]:3)2 (3 ) 1)
T n—j3—1 sty



and also covariance estimator as

-j-1
g _ St (G — FYEN (Y, — FPYE)
1

n—-j-1 [y k1 [y k2

Note that the formula 3.2.1 is different from 2.3.5 suggested in original
stochastic model for SCL.

In [th step the calculated estimators are used for updating a correla-
tion structure that implies new estimator of development factors f}lH

—

: e ok Sk1,k2 L .
based on inverse matrix ;" and Cj !, This iterative procedure

is repeated until the parameters estimates converge.

3.2.3 Example

Now we will illustrate the concept of iteration suggested by Kremer for
situation of two triangle describing run-off of paid compensations:

1 2 3 4 5 6 7 3

1 7203703 | 2158108 | 2318 157 | 2396965 | 2435242 | 2466969 | 2477963 | 2499354
2 1591765 | 2402618 | 2594 197 | 2676422 | 2698553 | 2743589 | 2771520
3 | 1538127 | 2352495 | 2558737 | 2657903 | 2718632 | 2772654
4 1406971 | 2103387 | 22650689 | 2344572 | 2388 100
5 1422361 | 2179732 | 2365049 | 2434525
) 1504316 | 2256844 | 2396 263
7 | 1655792 | 2326276
8| 1605873

Figure 3.5: Paid triangle portfolio 1

and also
1 2 3 4 5 8 7 8

1 203103 | 2 168 108 | 2316 157 | 2396965 | 243 242 | 2456 969 | 2477 963 | 2499 354
3| 7591765 | 2402616 | 2594 137 | 2676422 | 2698553 | 2743589 | 2771520
3 1538 127 | 2352495 | 2558737 | 2657903 | 2718632 | 2772 554
4 1406971 | 2103387 | 2260689 | 2344572 | 2388 100
3 1422361 | 2179732 | 2365049 | 2434525
6 | 1504316 | 2256844 | 2396 263
7 1655792 | 2326276
8| 1605873

Figure 3.6: Paid triangle portfolio 2

If we apply two separated univariate SCL computations to these tri-
angles we would obtain for example fél) = 1.52866 and comparing of
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standard deviation depending on method (3.2.1 or 2.3.5) is presented
in the tables and graph below

 Differences in standard deviation estimates - Paid data k =1
‘development

i 0 1 2 3 4 5
Mack 738 95054| 13.9695441] 599102295 9.06160553] 8,9406618] 1.871301
‘Kremer 119 970602| 12.8265038] 5 3910063] 6.87672608] 7.18964907| 1.321199

Figure 3.7: Differences in variance estimates 1

| "If')iffewréﬁ“ce‘s'in standard deviation estimates - Paid data k=2
dev.elopment 0 1 p - 4 5
period
Mack 62 78267| 17.22121| 4,75921| 3.681599 5 286392| 5.816385
Kremer 57 34894| 16.59576| 4.13301| 3.072739] 4.258274 4,79914
Figure 3.8: Differences in variance estimates 2
Differences of standard deviation estimates
20
18 o Mack k=1
16 OKremerk =1
‘ @ Mack k=2
Y1 O Kremerk =2

3
development peiod

Figure 3.9: Differences in variance estimates 3

Application of iteration procedure gives following sequence of estimates
for f()
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development factors 1
iteration: 1 2 3 4
k =1 1.52865678| 1.51307772| 1,51307672| 1.51307671
k =2 1,50441857| 1.4388684| 1.48837377| 1.4888737%

Figure 3.10: Iteration for paid data 1 - development factors

and respective variability structure

variability and covariance 1

iteration: 1 2 3
k=1 14 410.971 174.538] 14 392.923 174 858] 14 392.945| 174.859
k =2 174.538| 3 302.180 174.858| 3288967 174 859| 3 288 901

Figure 3.11: Iteration for paid data 1 - variability

Similar iterations were performed for other development periods result-

ing in
develobment'f‘actdrs 2
iteration: 1 2 3 4 5
k =1 107729843| 107744324  1.077435] 1.07743495| 1,07743495
k =2 107731527| 1.07497313] 1.07500419] 1.07500439] 107500439

Figure 3.12: Iteration for paid data 2 - development factors

variability and covariance 2

iteration: 1 2 3 4
k=1 164 696] 35.725] 164 520 33.817| 164.519] 33828 164.519| 33.829
k =2 35 725 325 329| 33.817] 275505] 33.828| 275420 33.829| 275.419

Figure 3.13: Iteration for paid data 2 - variability

for 7 =1 and

development factors 3

iteration: 1 2 3
k =1 1 034189] 1.0341917| 1.0341917
k =2 1.0312292| 1.0311109] 1.0311109

Figure 3.14: Iteration for paid data 3 - development factors
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variability and covariance 3

iteration: 1 2
k=1 29,063 -0.183 29.063| -0.188
k =2 -0.183 17.084 -0.188| 17.082

Figure 3.15: Iteration for paid data 3 - variability

if j = 2. Iterations were not performed if j > 3 due to lack of observa-

tion.

The presented example quite well demonstrated that the iteration in
that situation makes sense and that the computation is not so demand-
ing since the requested number of iteration is very small.
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Chapter 4

Univariate Munich Chain
Ladder

Based on the evaluation in previous chapters we present some proposals
how to solve possible drawbacks of MCL.

4.1 Methods how to estimate the slope
parameters A in MCL

In our opinion the proposed OLS method for estimating slope param-
eters A and A\ for all data is not the most suitable as was mentioned
previously in Verdier and Klinger (2005) who suggested implementa-
tion of different mean and slope parameters of the model depending on
development periods what on the other hand contradict the parsimony
of the model stressed by Quarg and Mack (2004). In our approach
we will try not to change the general construction of the model 3.1.4
but we will adjust the value of the slope parameters by omitting the
outliers which may occur in this kind of situation generally across all
development periods, see also Jedlicka (2006).

We try to compare original ordinary least squares estimates of A pa-
rameters with estimates obtained by some robust methods. We de-
cided to use Huber’s robust regression approach, bi square methods

39



and Least trimmed squares (LTS) methods. Generally speaking the
first two methods evaluate each observation and the outliers "receive”
lower weight. Apart from this approach LTS method directly cuts off
the outlying observation which does not correspond with probabilistic
model. Differences between LTS1 and LTS2 are based on numbers of
observations that are assumed not to contradict the model. It is about
60% in first situation and 75% approximately in the latter case.

LTS estimator or regression model parameters (see Cizek (2001) for
more details) is generally defined as

h
BHTS = arg min Zrﬁ-](ﬁ),
1=1

ﬂERP+1

where 77 (3) represents i-th smallest value among r?(8),...,r2(B) and
ri(B) = vyi — z;0, represents thus OLS residuals. It is important to
specify how to select the value of trimming constant h. Generally holds
2 < h < n that agrees with our assumption that 75% and 60% data

does not contradict the model.

Even in the motivation example presented in Quarg (2004) could be
seen significant difference between regression projection using OLS and
LTS method in case of Paid data, see following graphs.

Paid OLS

N

agn

D
‘-\
*
*
,\\

gl ISR 05 a0 065 t:.%45 2
"/TA ¢ y = 0,6479x - 0,0486
e ' RZ=0.3784
- +5

Figure 4.1: Regression model MCL Paid - OLS estimates
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. Paid OLS

1 I poe. I I I
. - ,o—ﬁ// i . 5
15 4 o al 0e5 1 15 2
;0
4

y = 0,6479x - 0,0486
v R?=0,3784

Figure 4.2: Regression model MCL Paid - LTS estimates

However as stated in the graph below no significant difference is pre-
sented in case of Incurred data in this specific situation:

Incurred OLS

y=04558x+00982 . _ | ..
R?=0,1949 e

o

e o v
* 4 L 4

h ¥

*

4 4 =

e )

-~

-z

Figure 4.3: Regression model MCL Incurred - OLS estimates
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incurred OLS

~

y =0,4558x +0,0982
R?=0,1949 .

44

(6 1

e

Figure 4.4: Regression model MCL Incurred - LTS estimates

Numerical Example

Parameter estimates of three different portfolio including original da-
ta used in the article Quarg (2004) and two another portfolios are
moreover presented in this example. We used above mentioned robust
methods, original approach to MCL and SCL.

The results of our calculation of parameters estimate and ultimate val-

ues can be seen in the following table.
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0.00 0.64 0.64 0,64 1 17 0.77

31463 32371 32378 32 381 32 329 32 509

0.00 0,44 0.43 043 055 0,22

33071 32 688 32693 32696 32 901 32816

95% 99% 99% 99% 98% 99%

0,00 0.59 0.56 0,56 0.44 0.45

680 614 181/ 516 229 574| 517 841 075| 517 821 077 530 909 088 532 450 325
0.00 0,14 0.16 0.15 025 0.28

553 855 313| 564 472 802| 566 233 742| 566 237 793| 580 567 131| 582 096 967
123% 91% 91% 91% 91% 91%

0,00 0.39 0,40 0.22 0.40

746 137 779799 778 303 767 383 771384
0.00 047 0.52 0.55 0.71

816 194 773 813 771926 762 426 764 263
91% 101% 101% 101% 101%

Figure 4.5: Results of MCL based on robust regression

4.2 Elasticity of reserve

The question of interpretation of differences in the ultimate projection
depending on applied regression estimate (as shown in the previous
example) leads us to further sensitivity study of relationship between
final projection and parameter estimate values. The derivation will be
performed only for Paid data as the principles for Incurred are analo-

gous.

We started from formula (3.1.4) to define estimate of development fac-
tor used in reserve calculation as

—_~

P
P PNy N TN
=f;f)+/\P->—%(Qi,k — Gk 1)-
Pk

It is straightforward that ultimate value of pald amount due to clauns
occurred in accident period i is calculated as YP = Yii(i) g B b fm
using notation a(z) =n — 1.

If we inspect the value of paid ultimate estimate Y; ,, as a function of A¥

we can derive how strongly the ultimate values (and thus also reserve
since reserve differs only by a known diagonal value) are affected by
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the choice of appropriate estimate of \. We can write (all derivative
are understood with respect to AF):

!

Pl n—1 YP() gy ey /\ n—1 /P
PN 1,a(1 / ]
()/i,n) ™ Z P ' ( z},;) : il,:;z(i) s zn 1.0 YP _%
=) fi j=ati) Jig
Using formula FZ fk AP ( ) we can make final adjustment of
the above mentloned formula
(}/1.1;) 1 i (1 -?]1\))
Yif; AP =at &

"}? !
We further derived rather surprising result that E (—%’li|B (a (z))) =

0 if the expectation exists. That could be interpreted that there is
no systematical influence of varying the regression estimates onto the
ultimates values. It is rational that we do not see regression estimates
as random variable sin/ce\ we are interested in the sensitivity only. It is
easy to prove that E((f/,)'|Bi(s), AP ) = 0 since the model assumptions
imply that E(Q; s\Bi( ) X’\’) = ¢, independently on accident period <.

/\

Uslng again formula f,c + AP ( z,c) we get E(f le (k) AF) =
E( f,C ) Provided that both expectations exist we later obtain
7P _ P+ NP(fEY L
E | 2£|Bi(k),\ | =E Ji A(f“’“) IBi(k),\ | =
fE i
S [ G =
=1+ AE = |B;(k), AP | =1.

k

This proves the formula E ( IB (a(i ))) = 0.

‘ITL

4.3 Variability and MSE calculation

Munich Chain Ladder gave us so far only formula for E ( L B, (s ))

or E ( Lt B, (s )) and no information about the variability of devel-
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opment factors. We will derive this starting from regression model of
residual data. It is again sufficient to perform the derivation for paid
triangle only.

The standard linear model theory implies that

Y
Yo e oh-Res’ (17 (9)
Var | Res VP 1Y (s) | IBi(s) | = B
irs 3 Xjijan RES” (7’3 o )

— Y.L
= Var(\P) - Res® (-Y’_—’;|Yi”(s)) ;

It is only special case of fact that in standard regression model ¥ =
XB + ¢ holds Var(Y) = 02X (X' X)X

Rearranging this formula we obtain

) £ = Y7
Var | =255 Bi(s) | = Var(WP)-0® | 5= 1Y"(s) | Res® (YiL,/ Y[ Yils)):

This may be made in very similar way as the shift between formula

i
E (Res (YY;I |y;’(s)> zBi(s)> = A" - Res(Q;,1Y;"(4))

and the consecutive one

YiPs+1 P
Yi{;+1 4P Pa( Ym |Yi(8) ) (-1 _ “1|v (\P
E ( }/1{-: ‘B'L(S)> e fs +)‘ O_(Ql—”sl')/l(s)p) ( 1,8 E(Qi,s |Yl(s) ))

in case of conditional expectation. Actually in both cases one uses only
fact that Res(-|YF(S))|Bi(s) = Res(-|Bi(s)).

It is straightforward to substitute the theoretical parameters by their
estimates similarly as in formula for expectation and achieving that

e —

Faicl 5y, FACLy pee [ Yis
o2 = Var(3P) - T st 31V )
1,8
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This potentially enables us to calculate the mean square error for Mu-
nich Chain Ladder similarly as for Standard Chain Ladder where holds,
see Mack (1993).

A o —~ : 2 "2\ 2 O'f;% 1 1
mse(R;) = B(R; — R,|Y:(j))’ =Y > =% | =

~2 Y + n—k Y
k=n—1 fk i,k Zj:l ,J
if we substitute factors of SCL by corresponding factors of MCL we
will obtain following formula for mean square error of Paid data

—

" — . 9 /P\ n O',fk2 1 1
mse(R;) = E(R; — Ri|Bi(j))" = Y,

et
—~2 P n—k~y,p
k=n—i f5 Yk Zj:l L

4.3.1 Example

In this example we will apply Munich Chain Ladder method on this
set of Paid and Incurred schemes:

5839 289 16343 622| 22616 4 89 74 38]  3377s|  3d902]  3s98] 47457
5721 4612007 24408] 28027 32 34 515]  41202] 43373 45781
7067 348 20 300 73864] 27674 676 37 41497 d44058] 41220
7673 099 7 27 484] 31317 G54] 38 ¢ 12764 45861
7.006) 5019] 20674 25019] 29424 857]  37984] 42950
7002) 16 253 556 26197] 30425 _ 35691] 40063
7135 14 873 76| 3712 27571]  31858|

995] 76 20734 24855] 29311

525 4 37 18 612 22 504

635, 524 20263

506 7
7 421

Figure 4.6: MSE calculation - Paid data

839 289 16 343 19 62 22618 24891 274 30 13 33778] 34902 36 986 47 457
721 361] 2007 140 28027 321|362 51 3 2_0__2_] 43373 45781
7 067 4 20 30 864 27674 30676] 374 1149 33058 47227

7 % 22 67 464 377] 35654 T J2784] 45861

)06 20674 25 9 424] 03857 37904 42 950

02 16 253 1866, 2 425 35601 40063
EET 4873 5176 2 571 31858

85 76| 20 734 4 85 25 371

5'5_‘[ 4 37 168 22 504

35 524 20 2!

06, 567

421

Figure 4.7: MSE calculation - Incurred data

The results comparing Mean Square Error based on MCL with that
obtained from SCL shows us table and graph below.
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1 47 457 47 457 0 ] 47 457 0 0

2 45 781 58 742| 12 961 947 7.3% 58 736 12 955 88 0.7%
3 47 227 54 075 16 848 1034 5.1% 64 068 16 841 2 0,0%
4 45 861 65602 19741 1668 8.4%) 66219] 20358 202 1.0%
5 42 950 66243 23293 2334 10.0% 66 159| 23208 24 0.1%
6 40 063 68 627) 28 564 2526 8.8% 67 175] 27 112 115 04%
7 31858 51488 29630 3649 12.3% 60 936) 29078 56 0.2%
8 29 371 64405 35034 4067  116% 67 810] 33438 401 1.0%
] 22 504 57 267] 34 783 3865 11% 61105 38601 136 0.4%,
10 20 263 £52124] 41861 4155 9.9% £5299) 48035 222 0.5%
11 15 673 53 885] 48 212 4471 9.3% 73443 57770 427 0.7%
12 7421 66221 58 800 5275 9.0% 76 686| 69 265 795 1.1%

Figure 4.8: MSE calculation - table of results

1 2 3 4 5 6 7 8 9 10 11 12
SCL ultimate projection B SCL value of reserve 0O SCL MSE*0,5
m MCL utimate projection @ MCL value of reserve | MCL MSE*0,5
O SCL MSE % @ MCL MSE %

Figure 4.9: MSE calculation - chart of results

So extended information from both schemes lead to significant decrease

of variability.
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Chapter 5

Multivariate Munich Chain
Ladder

5.1 Theoretical derivation

In our opinion it is more convenient to use Kremer’s approach for gener-
alisation of Munich Chain ladder model in the multivariate case. Simi-
lar idea as presented in Kremer (2005) is applied for linear model that
works with slope parameters A” a A as in MCL. Thus the vector of
parameters of (A\P!, ..., APX) is to be estimated simultaneously if MCL

model assumption holds for all triangles k = 1,..., K

ok )
Res (—)—;—,;1—1m<s>*’"°> |Bi(s)* = APE-Res((QF,) 7 Yi(s)")+(eF,;Yi(s) )

In univariate case it is assumed
E(eigl-) =0

and
Var(ei,jl-) = 0’2

This could be extended into multivariate model as follows
k1 k2
COVT(5i1,j1’5i2,j2|') =0
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if 7; # i and
Covr(ef  e¥2,|) =

&€ b & ]2
if 71 # j» and for equal occurrence and development periods
k1 _k2)\ _
COVI‘( 1,]7 E” ) = Ok1,k2

and moreover we will mark

L2
Ok,k = O

In more details we could specify multivariate version of MCL via fol-
lowing linear model of regression equations.

YP,l XP,l ,Bl EP,I

YP,‘z XP,2 132 EP’2
: = o I :

YP,K XP,K /BK EP’K

we use obvious notation
y Pk \
( Res | ~%%|-
YO,O

YP,k

Res [ =%
YP’k = YO,E)

e (35221

for response variable of the k-th model of development factors MCL of Paid

data where corresponding explanatory variable is

THEAY
Res }7";9;

Res SPR|

\res (321
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and also By = APF.

Based on above mentioned assumption of uncorrelated residuals in different

periods we get

gP,l

EP’2
Var | :z@z

EP’K

Multivariate model is thus specified via set of linear regression equations and
proposed procedure for practical implementation is then as follows

1. We get standard OLS estimator likewise in univariate case

APk = b, = (XP,k’ _XP,k)—le,lc'YP,k
2. Matrix ¥ is estimated using following formula

— €. k1€ . k2

Ok = = 1)/
where & ] represents the vector of OLS calculated residuals of k1th model.

3. Estimator with non constant variance 3 = AF is derived as
B=(ZV 2 2 Y?
where U = £ QI a Z is block-diagonal matrix X**, thus

Z = diag(XP!, ..., XPK).

This process could be performed repeatedly similarly as in Kremer (2005) if
initial estimator is replaced by that one calculated in the 3th step. This is
repeated until the estimated do not converge

However this straightforward generalisation does not work in practice as

could be seen in the following example.
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Example

Let us assume two different portfolios. The development of first one could
be described by following paid and incurred run off schemes

70657 658] 106 235 024] 113790 024 116865 272|118 966 938 119483 511| 120 232 235 121575 748
84 887 287| 128 779 906 137 573849 141563 543] 143563 773| 145441033 146 913 953
93903 488] 132417 913| 144 691 088 150477 507| 154 695 §67| 156 464 575
79621 124] 118210520 127 184 148 131385 163] 134 039374
85282 458 128 295871| 138 386 846 141973 697
86071 140] 131556 922] 141 114 004
73721887 108 299 438
65 546 609

Figure 5.1: Multivariate MCL - Paid portfolio 1

113 506 251] 140 996 652] 141482399| 141929883 137 522272| 133710514] 132 341828| 135 181 646
141 696 100| 161 891 554 165 259 653 171807 922[ 176732226| 165977 422| 164 715724
154 935 075 176 102870 188 247 844| 197 597 612 195 427 283| 185 583 049
141633 570] 174 807 935] 181270807 189 366 804] 184 790 868
167 310 931] 193 109 637 201103 054] 199 637 679
162 574 602] 193 335 020 193 869 181
132 964 303] 151293 073
125 634 620

Figure 5.2: Multivariate MCL - Incurred portfolio 1

The past pattern of the second portfolio is in the sense of paid and incurred
data shown below.

10434 215 19 437 589 21 365 232 24 920 077 25 148 923 25 354 882 25 570 800 26212712
15 428 921 28 460 952 31546 437 32516 184 32 847 411 32 927 280 32 965 677
23 055 067 45 880 533 51748 640 55212771 55 702 358 58 012 581
39 709 307 69 101871 74 352 701 75976 034 76 863 092
54 707 836 83 756 779 91 237 581 95 509 093
58 397 736 88 726 332 96 131 260
61 364 456 90 923 720
67 731 526

Figure 5.3: Multivariate MCL - Paid portfolio 2

19 641 603 24277317] 28087 428 26 735956 26 926 157| 27 020 634 27 217 356 27 318 11
25 828 304 31522222 33 108 850 33540 185 33 584 823 33 609 135 33 567 454
39 339 979 59 316 077 62225 886] 65392469 66297 526| 64 630 096
61742 695 80 477 323 82 909 859 83 509 311 87 281 540
87 313 132] 108 577 637] 115885 844| 121691 530
93424 781] 121717 606] 131 966 861
89 802 273| 110 374 569
106 050 126

Figure 5.4: Multivariate MCL - Incurred portfolio 2
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If we apply separately original MCL on this portfolios we obtain A¥*! = 0.2506
and also AP? = 0.3766 with following residual dependencies:

Paid Res - Portfolio |
Lo T 4
’ -
15
i J
1 L
. . 0.8
’ o ;’/A""‘.’r
T T ‘ T .ﬁ T
2 1= 05 05 le 0,5 . 1 1,5 2
o * &
o 4 R 3
+ r
45
2 2
2.5

Figure 5.5: Multivariate MCL - initial dependency 1

Paid Res - Portfolio i
2
“ -
4 £
s
%
4 &
4 -
* <
5 0,5 O
*
L3
O
1 T . T ’ T T T
-2 -1,5 -1 T 0 0% 1 1,5 2
’ 05
— R .4 Uy PS *
* *
'
- . ~4 ry

1,5

Figure 5.6: Multivariate MCL - initial dependency 2

If we moreover calculate the first step correlation among the residual of two
portfolios we obtain value 01 = —0.04 that implies rather weak correlation
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when we have 0;; = 0.73 and 0,2 = 0.66 . After formulation of weight matrix

in the form of
0.73 —-0.04
V = I
((—0.04 0.66 )) ®

we obtain the same results A\*! = 0.2506 and also \P? = 0.3766.

Unfortunately this result holds generally as well due to specific structure of
variance matrix in this very specific case as stated in the theorem stated
in Cipra (1984) based on Econometric theory and properties of Kronecker
matrix product.

So it is necessary to make the multivariate generalisation in a different way.
Intuitive option would be that the explanatory residuals in the MCL regres-
sion model

YE
E (Res( e IYz-(s)P> |Bi(3)> = A" - Res(Q;|Yi(s)")

P
Yis

would be based on the values of Paid to Incurred ratios of all analysed port-
folios. That is something like

K
> weRes(Q;, " [Yi(s)™)
k=1

K
where ), wi = 1.

This idea was tested on some data sets, however the results were poor if the
underlying cause of paid to incurred ratio values for various portfolios is in
some sense different. Then the results were similar as for following sets of 2

portfolios:

Paid traingle portfolio |

585 810] 867 277| 926 051 950 953| 966 917 973 521| 937 856 995 360
539 531 998 282|1 084 328|1 125 190/ 1 153 382|1 172 550 1 178 857
719 557]1 103 149| 1 207 451[ 1 242 294| 1 269 409] 1 281 502
741 477(1 204 523[ 1 302 308| 1 346 757| 1372 547
920 817|1 379 273[ 1 497 516] 1 540 386
1039 810/ 1 523 180[ 1 605 089

- 1031 155[ 1 466 639
| 939083

Figure 5.7: Multivariate MCL - Paid portfolio 1
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Paid traingle portfolio |
585 810| 867 277 926 051| 950 953] 966 917| 973 521| 987 856 995 360
639 531| 998 262| 1 084 328[1 125 190| 1 153 382| 1 172 550{ 1 178 857
719 5657|1103 149( 1 207 451|1 242 294 1 269 409| 1 281 502
741 477[1204 523| 1302 308| 1346 757({1 372 547
920 817{1 379 273 1497 516] 1 540 386
1039 8§10]1 523 180| 1 605 089
10311551466 639
939 083

Figure 5.8: Multivariate MCL - Incurred portfolio 1

Paid traingle portfolio li
1203 103]2 158 108| 2 318 157[2 396 985[2 435 242|2 456 989| 2 477 963| 2 499 354
1591 765|2 402 618/ 2 594 197|2 676 422|2 698 553| 2 743 589| 2 771 520
1 538 127| 2 352 495| 2 558 737[2 657 903| 2 718 632|2 772 554
1406 971|2 103 387| 2 260 £89) 2 344 572| 2 388 100
1422 361|2 179 732{2 365 049/2 434 525
1504 316|2 256 8442 396 263
1655 792|2 326 276
1605 873

Figure 5.9: Multivariate MCL - Paid portfolio 2

Incurred traingle portfolio |l
1789 5952 558 375|2 668 191|2 £33 489| 2 636 619| 2 590 721) 2 690 409(2 707 479
2 235 600| 2 742 948| 2 850 667|2 969 5593 010 307|2 988 958| 3 000 101
2177 712|2 758 224[3 003 116{3 189 3063 196 665|3 137 857
2 093 792| 2 657 §13| 2 835 674/ 2 982 455| 2 967 333
2 276 596|2 897 413| 3 059 559/ 3 145 055
2 407 860[2 976 998 3 102 769
2 424 122|3 008 002
2471813

Figure 5.10: Multivariate MCL - Incurred portfolio 2

It was not so bad in case of univariate MCL when we obtained
(AL, A} A%, 07 = (0.24,0.42,0.02,0.19)

However if we tried to formulate the average value of Paid to Incurred ratio
we obtained worse result for first portfolio A\p = —0.04 even with wrong
signature but slightly better results for the Paid data of second portfolio

A% = (.07 where the original result was weak.
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It is difficult to make any other statement apart from that this can be used
if there exists some aggregate behaviour explaining development of paid and
incurred values. It can be the case in the examination of reinsurance layers
on the same portfolio in the multivariate way. However we have not reliable
portfolio to test this since lack of data in the upper layers is crucial problem
that can be better managed by large reinsurers only.

The final method of multivariate MCL possibly useful for different portfolios
is based on the estimates of development factors from Kremer’s method and
its implementation onto MCL in a ”classical” way.

That could be defined more formally if we assume the result of iteration in

. . P, 1, 3 2aP)
Multivariate SCL as fj * and fj > and the results for variance as o; * and

2,1,00
j .

Adjustment of MCL model 3.1.4 is then quite easy, see following formula
where expectation and deviations of individual development factors change

in appropriate way for k th portfolio:

Y_I-’,lcl
yok o (ﬁ?ﬁ‘m(s)”)
g ( Vi 131.(3)) = L e (G B Q™)

This approach might be used in cases where multivariate structure comes
from SCL development factors rather than from similar values for paid to
incurred ratio that might be seen rather as a hypothetical task in some cases
where there is not found any direct correlation for paid to incurred ratios in

the same times.

5.2 Practical implementation

Let us assume the same data as in the example for Multivariate SCL (il-
lustration of Kremer’s approach for iterations). We will add corresponding

incurred portfolios as well:
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1 2 3 4 5 . 6 A 8
1 1769595 | 2556375 | 2666 191 | 2633489 | 2686610 | 2690721 | 2650409 | 2707479
2| 2235600 | 2742948 | 28500667 | 2969659 | 3010307 | 2988 958 | 3000101
3 | 2177712 | 2758224 | 3003 116 | 3189306 | 3196 665 | 3137857
4 2093792 | 2657813 | 2835674 | 2982455 | 2967 333
5 | 227659 | 2897413 | 3059559 | 3 145085
6§ | 2407860 | 2976998 | 3102769
7| 2423122 | 3008002
8| 2471813

Figure 5.11: Multivariate SCL - Incurred 1

1 2 3 4 5 6 7 8
1 812 282 1034568 | 1064829 | 1042494 | 1054725 | 1085409 | 1088613 | 1091268
2 951 213 1223191 | 1252336 | 1329148 | 1376532 | 1393769 | 1386340
3 1081970 | 1355115 | 1407916 | 1499065 | 1512563 | 1477926
4 1312629 | 1486078 | 1612666 | 1636749 | 1607076
5 1413018 | 1735316 | 1565698 | 10844 366
6 1627 386 | 1833106 | 1895400
7 1676 947 | 1943251
5| 162892

Figure 5.12: Multivariate SCL - Incurred 2

The iteration of development factors for this multivariate incurred scheme is

as follows
developmeﬂt factors1
iteration’ 1 2 3 4
k =1 1.272277| 1.263685] 1.263683| 1.263682
k =2 1.195504] 1.176306 1.17631] 1.17631

Figure 5.13: Process of iteration, Incurred development factors 1

variability and covariance 1 |
iteration: 1 2 3
k=1 6 685 447| 287.726|6 678.371| 2859796675417 285 989
k=2 287 726(4 584 962| 285.979|4 516.283] 285.989/4 516.190

Figure 5.14: Process of iteration, Incurred variability 1

for j = 0 and later on
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development factors 2

iteration: 1 2 3 4 5
k =1 1.055944| 1,055772| 1,055772| 1.055772| 1.055772
k =2 1.049781| 1.052481| 1.052451| 1.052481| 1.052481

Figure 5.15: Process of iteration, Incurred development factors 2

variability and covariance 2

iteration: 1 2 3 4
k=1 838 985| 49.580| 838.974| 49.381| 835.974| 49.381] 838.974| 49 361
k =2 49 580| 832.540] 49.381|830.520] 49.381| 830.520] 49.381| 830,520

Figure 5.16: Process of iteration, Incurred variability 2

for 7 = 1 and finally

development factors 3

iteration: 1 2 3
k =1 1.0348722| 1.0361997| 1.0361997
k =2 1.0206671] 1.0157373| 1.0157373

Figure 5.17: Process of iteration, Incurred development factors 3

variability and covariance 3

iteration: 1 2
k=1 1809.140] 247.194] 1808.600] 248.331
k =2 247.194| 1669.075] 248.331| 1675571

Figure 5.18: Process of iteration, Incurred variability 3

if j = 2. Following iteration were not again computed for lack of data.

If we have this iteration completed we can compare the underlying informa-
tion for MCL in both cases (univariate approach or suggested multivariate
one). Results are for second portfolio (that is more suitable for MCL) as

follows:
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Differences in underlying parameters for MCL

k=2 Paid 0 1 2
development |univariate | 1.5044186] 1.0773153] 1.0312292
factors  [multivariate | 1.4888738| 1.0750044| 1.0311109
standard  |univariate | 60.934266| 17.000378| 4.7569959
deviation  |multivariate | 57.34894| 16.595758| 4.1330096

Figure 5.19: Impact on MCL 1

Differences in underlying parameters for MCL

k=2 Incurred 0 1 2
development |univariate 1.1955036] 1.048781] 1.0206671
factors multivariate | 1.1763099] 1,0750044| 1.0157373
standard univariate 74 213888| 31.15765| 46.357444
deviation  |multivariate | 67.202601| 28.818747| 40.933743

Figure 5.20: Impact on MCL 2

After all that computation we can formulate the linear models underlying
MCL with that adjustment what gives us following model results

MCL - Multivariate v.2 - Paid
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Figure 5.21: Multivariate MCL regression results Paid 1
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MCL - Multivariate v.2 - Incurred
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Figure 5.22: Multivariate MCL regression results Incurred 1

what is much better result than the result of "naive” multivariate generali-
sation, see following graphs:

MCL - Multivariate v.1 - Paid

<~

1
T

wm

&
BN
d

>
>
¢

3

[eo]

i
N
-]

'
s
K

'
-
-]

*

'
o
o

[eo]

¢
-
o

G.

“J\

s

-]

b

&2

N

o

*
n’_

n

Figure 5.23: Multivariate MCL regression results Paid 2
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MCL - Multivariate v.1 - Incurred
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Figure 5.24: Multivariate MCL regression results Incurred 2
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Chapter 6

Alternative ways how to model
Paid and Incurred data

In addition to previously suggested generalisation of reserving methods we
would like to continue now with further generalisation based on some econo-
metrical methods that are suitable for application in claims reserving.

6.1 Bivariate time series

The further derivation is based on theory of vector auto regression as is
described by Hamilton, see Hamilton (1994). Of course model of Chain
Ladder is usually not stationary one and the claims evolution could not be
seen as autoregressive process. However some analogy could be seen using
the fact that development factor for the same level of delay is for various
accident years the same. We will try to incorporate this onto multivariate
process as well.

Firstly we have to review some basic facts concerning the vector autoregres-

sion. Hamilton defines p th order vector auto regression as
Yi=c+ Pryi1+ .- Ppye—p + &

where 1, corresponds to n th dimensional vector and ® are interpreted as
square matrices of auto regressive coefficients. It is assumed that the distri-

61



bution of €, is multivariate normal, E(¢;) = 0 and Var(e;) = 2. We denote
M =(c,®...9,)
for simplification of further derivation.

Our goal is to achieve maximum likelihood estimates of Il and ¥ which is
based on assumption of multivariate conditional normal distribution of y;

ytlyt_l ce y—p+1N(HI$t, Q)

After that maximum likelihood estimate of II is derived as follows:

T T -1
> v [y
t=1 t=1

In order to check the statement we can start from the last element of log

likelihood -
Z [ - 5Ut (yt - Hlﬂft)]

t=1

T
- Z [(Ut - ﬁ’sz + ﬁlwt - Hlxt)lﬂ—l(yt ~ 'z, + 1Tz, - H’xt)]

t=1

Z[[et—}- (- 1) 2] Q& + (T - 1) a:t]]

t=1
Obviously OLS computed residuals are defined as & = y; — IT'z,. The above
mentioned expression can be adjusted via multiplication onto

~

T T T
S oga e +2) FQNI- M)z, + Y a(ll - QI - 1) z
t=1 t=1 t=1

Using properties of trace operator we can get for first part of the formula
i 2
£Q (1 - 1) z, = trace Zat (M-I z,| = (6.1.1)
t=1 ]
e -

= trace | Y Q7 N([1-11)'z&,| = (6.1.2)

Lt=1 J

QY I-1m) ) :vt?t] (6.1.3)

t=1

= trace
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Due to the fact that 2;& = 0 we can simplify the formula to

Z [ )y, — H’xt)] - (6.1.4)

t=1
,
a0 a+ Z (11 — MQ~Y(I - 1) (6.1.5)
t=1 t=1

If we define zj = (ﬁ —1I1)'z, we can then use the fact that =} Q'z; > 0 and
equals to 0 if [T = IT which concludes the proof.

If we want to obtain maximum likelihood estimate of 2 we have to review
likelihood function jointly after obtaining the estimate of II, that is

T
L(Q, 1) = —(Tn)/2log(2r) + T/2log|Q7"| — (1/2) Y &Q7'&
t=1
We can perform

aL(, 11
Q-1

dlog|x™!| 1/2) L 08015
901 901

t=1

=T/2

-
= T/20 — (1/2)> &/
t=1

Maximum of likelihood is then achieved if

T
Q=1/T) &
t=1

6.2 Proposal of bivariate model in claims re-

serving

As was previously said, classical Chain Ladder model is NOT autoregressive

model of order 1
Xe=c - Xyt

Certain analogy however might be seen in the fact that we have the same

development factor for various accident years

Xi,j = ¢~ Xij-1+Eij
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for that we used OLS estimate taking attention to non constat variance. Our
aim here will be to construct such a kind of the model for bivariate series
representing claims process as well.

For that purpose we start form the reserving model of Schnieper (1991) that
was reviewed and extended by Huijuan Liu in 2007. We will work with basic
evolution for incurred data I;; = Y/,

lij = ILij1 = Dij+ Ny

where N; ; stands for amount of newly detected claims which from accounting
point of view could be seen as the amount of expenses for setting up the
reserve Rfj On the other hand D ; is interpreted as positive development of
claims from the point of view of the insurer. From the accounting perspective
it can be seen as a surplus achieved due to reducing the reserve without

respective payment Rffj

Schnieper suggested following assumption for that model for expectations:

E(N‘i,jlli,j—l) - EZ)\j
E(D;;|Lij-1) = 1i,j-19;

It means that relative amount of new claims is proportional to adequately
selected volume of risks that is assumed to be known and positive. Devel-
opment evolution reminds chain ladder one with different lagged explaining

variable.
Assumptions about model variance are also similar to chain ladder type of
model, that is proportionality to volume of explaining variable:

Var(Ni,j |Ii,j—1) = Ezo'?

Var(D; j|Lij-1) = Yij17}

and no other distribution properties are presented expect from the fact that
the random sequences (N, j, D;;) are assumed to be independent for various
accident years.

From that assumption it is quite rational that suggested estimators are also
quite similar to chain ladder since the process of derivation would be the same
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under application of Aitken estimator as in Chapter describing the classical
Chain Ladder:

n+l—j
X] = Zi:l : Nl;] v]
n+l—j
Zi:l JEi
. ntl=j .
5‘ — 21:1 1,] \Vl]

J n+l—j
n—j+1

1 1 i |
0']2 = n —j Z —E—; (Ni,j — /\]E1)2v‘]

1=1

1 "&E 2

~2 ~ .
ey }: A (D,-,j - 5j[i,j—1) v
i=1 »J

Estimates of the projection could be then derived naturally using the basic
formula of the model I, ; = I; ;1 — D;; + N;; which implies one step ahead

prediction as
1/2; = E(I‘Z,n|12,n—l) - E(I2,n—1 - D2,n + NZ,nIIZ,n—l)

= I’Z,n—l + /\nE‘Z = I2,ﬂ—1(1 - 6”) + )‘TLEQ

Two step prediction could be written as
)?;1 = Xyn2(1 = 6n1)(1 = 0n) + E3(1 = n)An—1 + EsAn

and further generalisation is quite straightforward.

In Huijuan Liu (2007) distribution assumptions were added to the model in

Ni,' 02
()~ (»7)
and also A

o))
2L ~N|6;,——
(Ii,j—li ? 1) 7L

Under that assumptions MLE and OLS estimators will be the same and

the following way

variance of the process was derived as
: 2
Var(l; jo|Iij) = (1 — 02 Var(lijae-1Lig) + 7B (Liaemlfig) + Eio},,
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and then error of estimates is formulated as

Var(lij40) = 1240 Var(8j4:) +  (6.2.1)

+(1 = 8j40)*Var(L j411) + Var(8;4¢)Var(I; j4-1) + E*Var(X 1) (6.2.2)

and respective mean square error of the overall reserve

MSE(R|) = Var(R|") + Var(R|") Z\/ar LilL,) + (6.2.3)

n—-1 n

-I-Z\/ar in +2ZZCOVI‘ iy, m) (6.2.4)

t=1 s=t

See Huijuan Liu (2007) for more details and alternative approach using the
Monte Carlo simulation techniques.

Our work regarding the approach for setting the reserve evolution was done
independently on work of Huijuan Liu as both contribution were presented
in the same time, see Huijuan Liu (2007) and Jedlicka (2007). We started
from the basic equation similarly as Huijuan Liu

R
Rij1=Rij— z]+1 + R — Ry
and model for reserve development is then seen as
T _ Cy_ 2p
Ri,j - R = Rij + 5”, Var(gi,j) =ocRi;

which is derived via

1?1',1"*'1 R; J 1J+1 + Rz J+1 Rzﬁj+1 = (625)
R, j — a;jRi; + Rz e+l Rz1+1 + 5 i = (6.2.6)
BiRi; + Ei,j (6.2.7)

Our approach is thus more general than in the paper of Schnieper and Hui-
juan Liu (2007) since we split incurred identity equation into actual both
component (paid and reserve process) and we moreover modelled their de-

pendencies as is shown later on.
Moreover quite natural assumption about payment development as a propor-

tion of reserve was used

d
Pi’j+1 =o;R;; + E
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Using the simplest model
Rijy1=BiRij+epy,  Var(el;) = opRi;
reminding Chain Ladder for reserving process with following restrictions
,Bj +a; — ] = Vj

and also

B
]

c __ A

€ = €ij + £

6.2.1 Numerical illustration

Following example shows us how useful might be suggested two alternative
generalisations in case we have unfinished schemes for the oldest accident
years that are not properly fitted by any of MCL alternatives:

% Ji Ny
39325 4193
46 778| 47 860 49939 51897 029 56 045
47 350] 50 974] 53 669] 55342 59 96 258] 62298
51485] 55328 210 742 649 6 130L
54152] 57151 659 489 63 38

Figure 6.2: Incurred run-off triangle

The ultimates values may be determined by using of the so far presented
method starting with SCL to this alternative approaches. Results for Paid

triangle are for accident years as follows:
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Projection of Paid triangle - Overview

80000 - b
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1 2 3 4 5

accident year

Figure 6.3: Projection Paid run-off triangle

Triangle of incurred values give us in addition following projections:

Projection of Incurred triangle - Overview

O estimate incurred aiti

90 000 4 mestimate incured altli
W sci

80 000 mel

70 000 {1 Mincurred so far

100 000

6 7
accident year

Figure 6.4: Projection of Incurred run-off triangle

We can see that the value of ultimates projection differ quite a lot. Overall fit
is to be evaluated by the standard ratio. This fit of projection in alternative
model (as expressed by Paid to incurred ratio) is better since we can well
model the further development of RBNS

68



P/l Ratio - Overview
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Figure 6.5: Paid to Incurred Ratio Alternative results

RBNS evolution |l
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Figure 6.6: RBNS pattern

6.3 Concept of Granger Causality

In that subsection we will briefly remind the concept of Granger causality
as stated in Hamilton (1994). We will restrict presented results on bivariate
case only and so we are interested if one variable helps to predict the another

one. Let us assume two time series
Ly Tp—15 Lt—2y - -

and also
Yt, Yt—-1, Yt—2y -« -
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The fact whether prediction of z;,; might be improved by y; and their lagged
values is naturally measured via mean square error if we are restricted to the

linear predictors only.

So we say that y fails to Granger cause z if
MSE [E(%¢4s|Tt, Te—1 - . .)] = MSE [E(Ztss| e, o1+ 5 Yt Y1, - - )]

which is the same as to say that z is exogenous in the time series sense with
respect to y.
This situation might be seen in the point of view of bivariate time series

theory as follows

(1) (2)
Ty 1 0 Ty 0 T2
. + {0 4] +{,@ o) Foaw
Yt C2 21 29 Yt—1 21 929 Yt—2
o0 (T L[
o) o) e

If we multiply the first row of the formula we have optimal one period ahead

prediction as

1 1
E(zeq1|Te, Te—1y - - Yt Y1 - - J=c+ ¢§1)$t + w§1):vt-1 + ...+ U)g)fﬁt—pﬂ

Similarly also s ahead forecast depends on z only. So y does not Granger-
cause z if ¥ is lower triangular Vj .

The probably mostly used statistical or econometric test for significance of
Granger causality is based on classical F test of null hypothesis in the model

Ty = Tp1 + QT2+ ...+ QQTep T Biyi—1 + Poy—2 + - - + BpYr—p + Ut
The F test is then based on null hypothesis
H()Zﬁlzﬁzz...:,@p:o
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We can calculate the sum of squares in the full model
T
RSS =) @
t=1
and also in the sub model without variables y which is
T
RSSy =) e
t=1

Test statistics is then constructed as
S . (RSS() — RSS])/p
YT RSS /(T —2p—1)

which fulfills under the validity of Hy hypothesis F distribution with p and
T — 2p — 1 degrees of freedom.

6.4 Inspection of causality in bivariate claims

models

So far we have presented two basic model for Paid claims development. The

first one is the classical Chain Ladder
Pija=1fi-Pj+tei
and the second one is based on alternative reserve development
Pijw1=Pj+ajR;+ei; P

If we combine both these two univariate approaches to generalised bivariate

one, we can formulate

P\ _ (fi o) (B L (e
Rij d; B R; ; el
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