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Introduction
During the software development process, we may come to a point where splitting
a large monolithic codebase into smaller, well-defined modules is necessary to
maintain the growth of our software. Using existing systems and connecting
them is also a viable approach to building software. [13] In both cases, we end
up with many applications and services that work as one.

This approach reduces complexity and demands on software developers as
each part can be maintained, deployed, and tested separately. Each developer
team must know only the portion they maintain and the nearest surrounding.
The surrounding is then defined by a set of rules - an agreement specifying the
data which flows between the systems.

Those rules must be created, documented, and kept up-to-date, which can be
a long, error-prone task. The result of the process is usually a set of data schemas
and documentation for developers. Especially the schemas need to be designed
carefully to be, if possible, consistent in format and naming.

Data schemas are computer-readable documents that define the format of the
data. They specify how data are structured and how individual properties are
named with their possible values. The schemas are used to validate data produced
by the application to ensure its correct format and can be used by humans to
understand the desired format.

As an example, consider a company selling and distributing its own goods.
The goods are stored in warehouses and then shipped to customers. For the
shipping process, the warehouse workers need to know the properties of the items
they require to send. Similarly, customers need to know the properties of items
they are buying. This scenario is denoted in Figure 1.

Goods
management system

Warehouse
management

system

Online
shop

list of goods
with relevant info

list of goods
with relevant info

order information

number of items in stock

Figure 1: Example of the company architecture. The nodes are individual systems
that communicate with each other.

To describe the data that are being sent between the goods management sys-
tem and both the online shop and the warehouse, we need to make two "agree-
ments." Although both describe goods, the warehouse may require different prop-
erties than the shop. The name and weight of the items are essential for both
systems, but the shop also requires the price, contrary to the warehouse, which
needs storing requirements.

Furthermore, these properties are also reflected in a database schema design
of the individual modules. The goods management has a database of goods,
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whether warehouse management only stores the position of individual goods in
the warehouse and the information about warehouses, which is sent to the shop.

Designing the schemas together with supporting documentation by hand is
a tedious task, and we may find several obstacles during the process, especially
when the schema design is not made carefully:

1. We need to describe the same thing for every schema that uses it. Hence
doing the same work multiple times. From the example above, the name
and weight of the item are used in two different schemas.

2. There is a high chance of inconsistency. We may name the semantically
identical things differently, which may confuse software engineers who came
in touch with multiple system parts. For example, the "name" of the item
sold can be interchanged with "label" or "title" in another schema.

3. It is hard to introduce changes as we need to address all affected areas
and modify them. If the change is made incrementally, we may lose the
context of what is outdated and what is new.

In addition to these obstacles, it is hard to provide supporting documentation,
diagrams, and examples.

JSON is an example of a popular format that is widely used to exchange
data between the server and the web page as it is natively supported by the web
browser. To specify the structure, we can use JSON schema (see Figure 2), a
document written in JSON format.

Diagrams are images that visually explain the domain or the data structure.
Figures 2.6 and 4.2 can be considered as examples of diagrams that may help
to better understand the structure. Diagrams are especially helpful in showing
relations between various things that are used in schemas. For example, the order
is made by a user, consisting of goods stored in warehouses.

Examples can be provided on two levels. Programmers may appreciate sam-
ple data that are valid against the schema and can be used to test their appli-
cations. Figure 2.11 is an example, although it would be better to provide more
than two items. Examples can be provided for individual things as well. Some-
one may not be sure how long the ideal description is or what is the naming
convention of items.

The documentation would describe each property of the schema in more
detail in human-readable form. For instance, documentation may be a website
with multiple pages where the schema, diagrams, and examples are included,
and all properties are described in formatted text. Individual things may be
interlinked to ease the discovery of related things.

Future modifications to the system or changes in user requirements may en-
force altering the schemas. Formally, the process of changing schemas is called
evolution. The evolution is complex, as there can already be existing data
that conform to the changed schemas. In that scenario, properly implementing
a change in a user requirement requires modifying affected schemas, documenta-
tion, and all the data (in case the data are stored in the given format).
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{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"title": "Item",
"description": "Single item that can be sold in the store.",
"type": "object",
"required": [],
"properties": {

"name": {
"type": "string",
"title": "Item full name",
"description": "Descriptive, short text, usually provided

by the manufacturer."
},
"price": {

"type": "object",
"title": "price",
...

}
}

}

Figure 2: Example of JSON Schema that may describe the data being sent be-
tween the Goods management system and the online shop.

As an example, suppose that the address provided by a customer to deliver the
goods is represented in multiple parts such as street, city, zip code, etc. We may
decide that it would be more reasonable to have everything in one field as some
parts of the address may be missing or not granular enough. In this case, the
evolution would mean changing all the schemas, documentation, and examples to
reflect the new structure and possibly creating transformation scripts to convert
old data to the new format.

Ontology
The whole process of designing schemas needs to be perceived on two levels. (i)
On a technical level, where a user creates the schemas and describes the rules,
(ii) and on a conceptual level, where the things and the relations between them
are defined. The latter is called an ontology.

An ontology describes and names relations between the concepts from real
life without the technical details. Concepts are, for example, order, customer, or
goods in our case. Relations then specify, for example, that the order belongs to
a customer and consists of goods.

Having an ontology properly defined is a step in the right direction as it
gives us a template for schema modeling. All things we may need to employ are
described in the ontology, ensuring consistency across schemas and helping to
avoid mistakes.
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With the data on the web [2] trend in the last few years, even ontologies are
becoming accessible publicly. Popular formats include RDFS (or RDF Schema)
1, OWL2, UFO [7], schema.org, and Wikidata3. For example, schema.org is a
proprietary format describing valuable data for search engines, such as events,
organizations, or places.

Using pre-defined ontologies in a semi-automatic way of defining schemas is
beneficiary because a schema designer may focus entirely on the schema structure
and not on the domain semantics.

An alternative problem
In the section above, we have introduced a problem behind data modeling dur-
ing software development as it is hard and time-consuming to design schemas
properly. Nevertheless, schema design may be used in a broader to create recom-
mendations for publishing various data in a unified format.

This task is usually undertaken by the state administration to ensure interop-
erability between various state and private organizations. The European Union
enforces this in the directive 2019/1024 of the European Parliament, that data of
public institutions shall be published as open data on the Internet in all formats
it was created and, if possible, in a machine-readable format.

Open data Open data is a term for data published on the web without any
restrictions on use. This means that anyone can use, modify and distribute the
data for any reason, including commercial use.

The definition of open data is very loose but can be further specified by a
5-star scheme designed by Sir Tim Berners-Lee. Each star adds a restriction up
until the fifth star describing the Linked Open Data.

1 ⋆ Data are published on the web and can be used freely.
2 ⋆ Data are structured and in a machine-readable format.
3 ⋆ The format is not proprietary; hence anyone can open them.
4 ⋆ Data uses RDF and SPARQL standards from W3C.
5 ⋆ Data are linked to other data creating a network of data.

The act then specifies FOSes4 (Formal Open Standard) as recommendations
for publishing selected categories of data, such as information about Tourist des-
tinations and Sports centers. The purpose of these documents is to standardize
how these data are published, usually by defining JSON and XML schemas along
with textual documentation.

The process of designing those recommendations is comparable to designing
schemas for a software system mentioned above - the designer needs to create
schemas and documentation for them with examples and diagrams.

1https://www.w3.org/TR/rdf-schema/
2https://www.w3.org/OWL/
3https://www.wikidata.org/
4https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32019L1024
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Besides the different use cases, the process of designing the specification is
slightly different, as we need to provide multiple formats to not restrict the pub-
lishers by using specific technology, compared to the previous example, where a
single format of data is sufficient. This brings us to several other challenges that
are usually related to ease of the publications of the data:

1. As there are multiple different formats, we need to design tools that can con-
vert data between those formats. Because the conversion depends strictly
on the schema, it is related directly to the schema modeling.

2. To ensure the publishers that data are published correctly, we shall provide
them with a platform for testing. This is also significantly related to schema
modeling, as the purpose of the platform is to visualize the provided data
to show that everything works.

Focus of the work
This thesis analyzes and implements a tool Dataspecer [19], and formally de-
fines and analyzes its internal framework, which follows the previous research
[10, 11, 14–16] in the XML data modeling area and extends it to support new
requirements.

The purpose of the tool is to ease the process of creation and management
of data specifications, such as XSD, JSON Schema, and CSV Schema, and the
creation of supplementary documents. The tool shall help users model schemas
by providing relations and entities from the chosen ontology and letting them
focus on the modeling part only.

Supplementary documents are automatically generated files from the modeled
schemas, such as the documentation, examples, diagrams, transformation scripts,
and others.

The tool is part of the larger ecosystem of tools, libraries, and frameworks for
data modeling, which is being developed by the same authors.

Due to the complexity of the topic, this thesis does not attempt to cover and
implement all features, as some of them will be kept for the authors’ future work.

The purpose of this thesis is to provide basic formalisms and findings for the
next work in this area.

The rest of the thesis is organized as follows. The following chapter 1 intro-
duces the previous research as the common ground this work will follow - precisely
the model-driven approach for data modeling and evolution of XML documents.
The succeeding chapter 2 analyzes new requirements for the tool and proposes a
solution to some of them. The rest in chapter 3 is only briefly analyzed to set a
direction for future development. The solution is then formalized in chapter 4.
The next chapter 5 identifies key implementation decisions and describes them.
Then chapter 6 examines related work in the area of data modeling. The last
chapter 7 evaluates the tool in the context of use in modeling FOSes for the
government of the Czech Republic.
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1. Previous research
This short chapter introduces the core concepts of the previous research carried
out by the XML and Web Engineering Research Group (XRG) at the Faculty of
Mathematics and Physics of the Charles University from 2012 to 2015. Those
concepts will be used for further analysis in the following chapters.

In 2012 XRG formalized a novel approach1 to modeling XML schemas [16]
for a particular domain ontology by integrating Model Driven Development [8]
(specifically Model Driven Architecture) techniques to separate a conceptual mo-
del describing the domain ontology and a structural model which described the
concrete XML schema.

Model-Driven Architecture MDD is a software engineering technique that
abstracts software development into several levels (models) to allow flexibility by
separating the business domain from platform decisions. MDA [17, 18] introduced
by Object Management Group (OMG) is a specialization of MDD focusing on
the automation of the development of software systems.

MDA introduces four models. The topmost level CIM (Computation Inde-
pendent Model) expresses the business logic and has no formal representation,
as it is only a concept, hence the name computation independent. As a second
level, PIM (Platform Independent Model) models the business logic in UML. It
does not specify a concrete platform or technology but only the concepts in a
formalized way. PSM (Platform Specific Model) reflects the formalized concepts
from PIM in a platform-specific environment, such as in XML Schema, C# or
Java code, or a database schema.

The key concept is a transformation as the process of mapping the upper layer
to the lower one. The transformation from CIM to PIM must be done by hand
as CIM does not formally exist. More interesting is PIM to PSM transformation,
as it can be automated. The transformation keeps the mapping to preserve the
semantics between the models. The last level is Implementation Specific and only
represents different implementations of PSM.

XRG used PIM and PSM in their architecture. PIM represented the domain
ontology in UML-like notation2, as it is independent of the platform as XML.
PSM then defined the given schema in their own designed grammar, which was
translated into a final schema, such as XSD (which formally corresponds to the
Implementation Specific level).

The major benefit of the strategy presented is a shared conceptual model be-
tween various XML schemas, as other works at that time had a single conceptual
model for every schema. This was not practical as usually multiple schemas are
applied in a single software. Authors have also formalized the model and have
proven that their approach is correct. That means that (i) every conceptual
schema models XML schema, (ii) their translation algorithm from the internal

1The work builds on previous work of the same authors, who introduced the XSEM model
[14], which was later a subject of their study.

2Formal definition of PIM and PSM levels is in chapter 4.
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PIM schema

PSM schema 1 ... PSM schema N

XML schema 1 ... XML schema N

XML queries ... XML queries

XML documents ... XML documents

Platform-
specific level:

Platform-
independent level:

Schema/Logical level:

Operational level:

Extensional level:

Figure 1.1: The five-level framework proposed by XRG in [16]. A shared PIM
layer with a conceptual model is used by multiple PSMs, where schemas are
defined in their own grammar. The grammar is then translated into schemas
that conform to XML documents in the last level.

model to schema respects introduced rules and is reversible, and (iii) their nor-
malization and optimization algorithms produce semantically same schema.

Their primary use case was creating schemas for the government, such as
the National Register for Public Procurement (NRPP) information system for
publishing public contracts.

Modeling To create a schema, a user must first create an ontology of desired
entities as PIM. Then, multiple schemas can be made as PSM trees by selecting a
schema root and then adding entities and setting their properties. The resulting
XML schemas can then be exported from the application.

Evolution of schemas The focus of XRG was also directed to the evolution
[15] of their proposed model to minimize the work of the data designer. As already
stated in the introduction of the thesis, changes may be inevitable (either from
the user requirements or the surrounding environment) in large and complex
systems, and propagating even a tiny change from the domain ontology to all
affected schemas is time-consuming and error-prone.

They proposed, formalized, and later implemented a solution in restricting
the changes in PIM and PSM models to only atomic operations - simple changes
in the model, such as creating a new class, updating a name of the association,
or removing an attribute. Those operations are not intended to be used by the
user directly but are simple enough to be formally defined and mapped to the
corresponding operations in the level below. The proposed mapping is then used
to propagate changes in the model to the schema level, more precisely from PSM
to PIM, which is then translated to the schema level. They implemented only top-
down propagation of changes as the propagation from XML documents is usually
not meaningful when modeling from ontology (but theoretically possible).
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Figure 1.2: Preview of the eXolutio tool. The left panel shows the PIM model
as a UML class diagram, while the right panel represents a PSM schema in a
tree-like structure that can be converted to an XML schema.

Implementation Their result was implemented in two tools XCase [10] and
eXolutio [11]. The former one was simpler, focused only on modeling. The latter
then supported schema evolution as described in the previous section. Tools let
users define the ontology from which the schemas and operations were derived
for XML documents.

The tools were designed only for XML, hence are not usable for other lan-
guages, such as JSON, which is very popular at the time of writing this thesis, as
being used by many server-centered applications to communicate with the server
through the REST API [6], for no-SQL databases3,4 and more. Nevertheless, we
can use their findings and generalize the model for other formats.

They focused on the correctness and completeness of the model, which in some
cases may be a limitation, such as more complex implementation and processing
of the model not to allow a user to create a schema that is not valid.

Lastly, the tools didn’t support sharing and collaboration, as this was not
considered standard practice in the industry at that time.

3https://www.mongodb.com/
4https://rethinkdb.com/
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2. Requirement analysis
This chapter summarizes the expectations for the application in the form of re-
quirements. The requirements are analyzed, and in the following chapter, the
solution is proposed with a focus on a formal description of the framework.

As stakeholders, we would consider data analysts, programmers, or at least
individuals interested in the area of data modeling, since the typical use case
of the application is (i) to design schemas for a large system of interconnected
subsystems or modules or (ii) to design a recommendation for publishing data.
Both these use cases are described in the introduction of this chapter.

Because of the stakeholders’ knowledge in the area of data modeling, we may
keep the UI of the application more technical as the intent of all operations may be
intuitive for them. Nevertheless, the basic functionality does not require advanced
knowledge in the abovementioned fields, so we propose an "expert mode." The
user will be asked whether they feel like an expert in the area, which would
make available more advanced application features while keeping the UI simple
for those interested in the basics of data modeling.

2.1 General schema
Requirement 1. A user shall be able to easily derive a general schema struc-
ture from the existing ontologies and then translate the structure into different
known schema languages, such as JSON Schema, XSD, and CSVW Schema and
it shall be possible to add support for others easily.

The basic idea behind this requirement was already explained in the Introduc-
tion. From an ontology specifying the relations between things from a real world,
it should be easily possible to select things and relations between them that de-
scribe a schema. The schema then defines a structure of data that represents
those things from an ontology.

Ontology

General schema 1 ... General schema N

XML
schema

JSON
schema

CSV
schema

... XML
schema

JSON
schema

CSV
schema

Figure 2.1: Diagram showing the core workflow behind the data modeling from an
ontology. Users can create general schemas (blue rectangles) from the ontology.
From those schemas, the tool creates data schemas in known formats, such as
XSD, CSV Schema, or JSON schema.

We aim to design a model for a general schema that can describe most of
the serialization data formats. This model will be used as a mapping from the
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ontology to the desired schema. The model must be robust enough to support
different formats, as we want to use the same general schema for all of them,
which corresponds to MDD as an abstraction layer.

There are many formats for data exchange, the most famous being JSON,
XML, CSV/TSV, and RDF. Data formats can be categorized into the following
categories based on the structure model:

• The hierarchical model stores data in a tree-like structure, having one
root class with properties that may recursively contain other classes. It has
been one of the most common models for data serialization in the past few
decades, as it is easy to understand and interpret and is suitable for most
types of data. XML and JSON are examples of formats that use this model.

• Relational model uses a set of tables to store data. Each table represents
a sequence of similar things, each on one row with columns as properties.
Rows may point to rows in other tables to link data. The relational model
is also famous for its simplicity in CSV and TSV files, which can be eas-
ily parsed. The relational model is also used in relational databases (the
databases that use SQL query language).

• Graph model represents data in a general graph structure with nodes
and edges. RDF (Resource Description Framework) became a popular for-
mat using the graph model, where nodes usually represent things or literal
values, and edges connect them as properties.

As our primary intent is to support JSON and XML, we will use the first type
of model to represent the data in our general format. The translation from that
format to individual schemas in the hierarchical model would be implicit (and
will be described later in the text).

Supporting translation from the general schema, which is in the hierarchical
model, to the formats in the relational and graph models should be possible in a
limited way1, which is sufficient and follows the requirement to have one general
schema.

The graph model is not even necessary to generate as we use the ontology
that is already in the graph model; hence, we can use the ontology directly as
the schema to validate our data.

2.1.1 Analysis of the formats
We will analyze the standard formats to properly design a user interface for the
schema modeling and the underlying general schema model capable of describing
those formats.

JSON (JavaScript Object Notation) is a simple format with two complex
data types: objects and arrays. The objects represent data in key-value pairs with
values that can have any type, including other objects and arrays. Arrays then

1That means we may not be able to reverse translation from a specific schema to the general
schema, or it may not be possible to use the full power of the given specific schema. However,
this is not important to us, as our target is the support of basic use cases.
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represent lists, and both arrays as objects may be in the root of the document
tree. Semantically, objects represent things with their values as properties.

XML (Extensible Markup Language) is similar to JSON since both for-
mats are hierarchical. XML tags wrap parts of the document representing either
things or properties of things and can be nested similarly to the JSON format.
In contrast to JSON, XML tags can have attributes.

{
"id": 3758,
"title": "Chair",
"variants": [

{
"title": "Black",
"price": 200,
"color": "black"

},
{

"title": "White",
"price": 200,
"color": "white"

}
]

}

(a) JSON document - braces {} wraps
object and brackets [] wraps array

<Good id="3758">
<title>Chair</title>
<Variant>

<title>Black</title>
<price>200</price>
<color>black</color>

</Variant>
<Variant>

<title>White</title>
<price>200</price>
<color>white</color>

</Variant>
</Good>

(b) XML document - <Good> tag serves
as a class wrapper, whether <title>
has a property meaning

Figure 2.2: Comparison of JSON and XML format both showing data about the
same chair.

As seen in Figure 2.2, the XML format is more complex, as it supports tag
attributes (see id="3758" attribute), and arrays can be written in two distinct
ways. We can place elements of the array directly in the parent container, as we
can see with the <Variant> tag, or we can wrap them into another container for
clarity (for example, into <variants> tag).

JSON Schema is a JSON document that describes the data structure we can
expect from other JSON documents. For this part of the thesis, it is sufficient
to know that the schema defines which root object we can expect and a set of
allowed properties and their types for each object.

Suppose that we have chosen a structure very similar to JSON Schema to
be our general structure format. We are interested only in how it describes the
document’s structure. Because JSON is simpler than XML, we can use our model
to describe only some XML documents, as we are missing constructs that would
describe advanced XML features.

For example, the object property x with primitive value y would represent
an XML tag <x>y</x>; if y is an object, we will apply this rule recursively.
The object property x with an array of yi would represent multiple XML tags
<x>y1</x><x>y2</x>...<x>yn</x>. Finally, we will start with the root tag,
which was <Good> in our case.
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To describe and distinguish between more advanced XML features, we would
need to add XML-specific options to our model, such as:

1. For every object property with a primitive value, there should be an option
that the given property becomes an attribute of the parent tag. For exam-
ple, the id property of the chair may be either the attribute id="3758" of
the parent or the full tag <id>3758</id> inside the parent.

2. For every array property, there should be an option that the given list of
tags will be wrapped.2

3. XML, compared to JSON, recognizes the order of the elements in the doc-
ument. This means that we may decide whether we want to enforce the
specific order or not, which can also be fixed by another option in the parent.

Comparing the structure of JSON and XML once again, we can let a user use
the JSON Schema-like structure with optional annotations for advanced XML
features. This allows us to have a simple model which is easy to understand and
operate and can be annotated by other options for specific languages, as we have
shown for XML.

CSV (Comma-Separated Values) or TSV stores the data in tables. Un-
fortunately, this means that the structure is entirely different from the case of
JSON and XML. Because having a separate schema would cause complications
against other requirements, we will analyze whether it is possible to translate our
general structure format from a hierarchical model to a relational one.

In the general case, there are existing approaches [3, 9] to map the hierarchical
model to relational. Therefore, we will only show a brief example. Suppose that
our general structure format contains objects, properties, and arrays. From each
object type, we will create a table with columns as properties. Each table must
have a primary key so that the tables can be linked together. If the schema con-
tains an array, we will link children to the parent table; thus, the array properties
will not have a column.

id title
3758 Chair

good-id title price color
3758 Black 200 black
3758 White 200 white

Figure 2.3: Document of two CSV tables representing the same data as in Fig-
ure 2.2. The left table contains the root.

Because all tables represent arrays, we cannot formally convert the schema
with an object in the root. We simply suppressed this in Figure 2.3 by wrapping
the schema root into the array.

To support CSV documents containing unrelated data (and possibly other
unrelated data in the relational model), specifically CSV tables, that do not
reference each other, we may need to have a schema with multiple roots. Multiple

2This may not be necessary as we can add the wrapper class to the general schema by
ourselves. This, however, is not the correct solution as the meaning of the wrapper class is not
semantical but rather syntactical and only specific for XML.
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root schemas may be helpful in some advanced data-modeling problems. We will
keep the question behind this open as there are not enough use cases right now.

Although we have not dealt with advanced cases, the model is robust enough
for most of them.

2.1.2 Designing the model
So far, we have shown that a JSON Schema-like model with format-specific an-
notations is sufficient for describing the structure of JSON, XML, and CSV docu-
ments. In general, we cannot have too strict requirements on the model, as some
other formats may not require all the information or might be too simple. This
pushes us to define the schema in the most elementary way.

We will allow only classes to be a root of schemas and instead add an option
that the root can be an array. This simplifies the work with the model, as we
may always expect a class.

Classes then have an ordered list of properties. This is different from JSON,
where properties have no order. A property may be an attribute or association.
An attribute has a primitive type, such as a string or a number. Association is a
property with another class. Because we have forbidden using arrays in the root,
we omit them entirely as an array of primitive values and classes can be achieved
by the cardinality of attributes and associations, respectively. Cardinality is an
interval specifying how many values a property can have. 1..1 is for required
properties, 0..1 for optional, and 0..∗ for arrays.

We can use two different approaches to visualize the model’s hierarchical struc-
ture. The previous tools XCase and eXolutio used graph visualization, where
nodes were used to show classes and edges to show associations. An alternative
approach is to use a textual "bullet-list" representation, as the model is usually a
tree.

The latter approach is easier to understand, as the final product is a schema
for documents that has a similar structure as the representation. It is easier
to implement, more compact in size on the screen, and easier to work with on
smaller devices. Also, the order of the properties is more intuitive, and we can
use more styling options for advanced constructs.3 However, in the general case,
users may benefit from the graph view if the schema refers to another schema
(see Requirement 5) multiple times or contains cycles because this can be easily
denoted in the graphical interface (see Figure 2.4).

Because the primary use case is to generate simple or moderately advanced
schemas, the textual approach is preferred. Nevertheless, the graph view might
be implemented in the future.

As shown in Figure 2.4, the schema may be represented as a "bullet list" where
each class, association, or attribute is on a separate line. Classes have a list of
properties under the class name. Associations point directly to other classes and,
therefore, can be merged with the class name on a single line. Other attributes,
including format-specific, will be on the line next to the item name.

3So far, we have described only a basic schema structure. See other requirements for
advanced constructs.
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root class

association 1 association 2

referenced class
(a) Graphical representation

root class
- association 1 to

referenced class
- association 2 to

referenced class

(b) Hierarchical representation

Figure 2.4: Figure showing a schema referencing the same subschema twice, es-
sentially creating a cycle in an unoriented graph. Two different representations
are shown - graph and hierarchical. The former shows that both associations
refer to the same subschema, which later representation cannot show explicitly.

class Good
- attribute id[1..1]: string
- attribute title[1..1]: string
- association variants[0..*]: Variant

- attribute title[1..1]: string
- attribute price[1..1]: number
- attribute color[1..1]: string

Figure 2.5: Proposition for how the general schema may be represented for the
example that validates data with the chair.

It shall be possible to change the order of the properties by dragging them.
Options for given items shall be available next to them. Attributes and associ-
ations shall be distinguished both by color and supporting graphics. More ad-
vanced constructs may have unique styling options to provide more information
if necessary.

2.2 Ontology
Requirement 2. As many ontologies are located on the web in formats such
as OWL (Web Ontology Language), RDFs (RDF Schema), and UFO (Unified
Foundational Ontology), the application shall support reading them.

It may seem that designing the ontology directly in the tool is beneficial
because a user does not need to use other tools, and the application may contin-
uously build the schema, which is feedback to the user. This approach was used
in tools XCase and eXolutio, as seen in Figure 1.2 in the left panel. However, it
has the following drawbacks:

1. Designing an ontology is a well-defined problem. There are many great and
time-proven tools we could not cope with.

2. Even if the intent is to use the ontology only to generate the schemas, it
may be worthy of publishing it anyways as others may benefit from it.
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3. It is better to split a complex problem into smaller ones.

On the other hand, not having direct access to the ontology, as it will be on
the web, has the following impacts:

1. The ontology may not always be available. Unavailability should not
prevent us from generating the schemas and making minor changes to them
if those changes are not directly related to exploring the ontology.

2. The concepts in the ontology may point to another ontology according
to the Linked Data principles.

For the reasons mentioned above, the preferred workflow is to design the
ontology separately in the external tool, publish it on the Web, and then model the
schema in the application. There is Requirement 8 later in the text specifying that
a user can make modifications directly in the application. This is not inconsistent
with the statements, as it deals with minor changes instead of defining a complete
ontology.

The term ontology has already been defined in the introductory chapter, and
we will formally define it in the next chapter.

It shall be easy to implement support for other types of ontologies, and all of
them shall be linkable according to the LD principles.

2.2.1 Format of the ontology
In the above requirement, several different formats were proposed for the ontology.
This section will analyze the minimal requirements for any ontology format and
how we will treat additional information in them. Because the core goal is to
design schemas, we will start with a model proposed in Requirement 1. The
schema consists of classes and their properties. A class corresponds to a thing
from real life. An attribute is a literal that belongs to the given class only. On
the other hand, an association is a link between two (not necessarily different)
classes. From this point of view, the association is an independent entity.

Associations are usually oriented, and some ontologies may specify a title and
a description for a reverse direction. For example, in RDFS, the association (or
property in the RDFS terminology) is an entity of type rdf:Property having
domain and range classes and a title and description. Therefore, it only describes
the forward direction. We can, of course, create a property in the other direction
as well, but there would not be a connection between a forward and a reverse
one. Hence, we would not know that those are semantically the same properties.
UFO (Unified Foundational Ontology), as an example of a more complex ontol-
ogy, introduces relators. Relators are relationships between two or more things
connected by mediation. The mediation can be described, giving us a way to
describe both directions differently.

Although the latter approach is more complex, using simple concepts for as-
sociations may be disadvantageous for the aforementioned reason. Therefore, we
will follow the pattern of UFO, and any other simpler ontologies, such as RDFS,
will not have the reverse direction described.
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An ontology in the context of this requirement is a set of classes that have
attributes. The associations then connect two classes together. The connected
classes may not have the same ontology.

As some formats specify the ontology more complexly, the application may
use the additional information to design the schema better. This statement is
more defined in the following chapters.

«class»
Good

«class»
Good variant

«attr»
id

«attr»
title

«attr»
title

«attr»
price

«attr»
color

◀ is variant of
«association»

has variant ▶

Figure 2.6: Schematic diagram of an ontology that could be used for the schema
from Figure 2.5.

2.3 Data modeling analysis

2.3.1 Type coherency
As already mentioned, an ontology is not just a supporting source for the modeling
process but rather the only source we can use to create schemas. The schema
then represents a mapping to the ontology for further processing.

Because parts of the schema are mapped, we can check whether the attributes
and associations belong to the given class. This allows us to check whether the
schema is being built correctly and to provide the appropriate help during the
modeling based on the type of the classes.

Although the problem may seem trivial, there are advanced scenarios that
must be considered.

1. We may want to add additional attributes and associations directly into the
schema without a connection to the ontology. This is a schema-modeling
problem as we may need, for example, to wrap several properties into an
additional object (JSON) or a tag (XML) or add another property because
the data we validate contains it.

2. If A is associated with B and we have a schema with the class A having
B, then it may be possible to move attributes4 from A into B. Because
for each B, we know to which A it belongs, we do not lose any information
during this process.

As an example of the second case, suppose that our ontology has Goods and
their Variants. Variants are colors, sizes, and materials for the given item. Indeed,
all variants are made by one manufacturer. Therefore, it makes sense that the

4Moving of properties to different classes will be kept as future work. Nevertheless, to
cover some use cases, we employ a simpler construct of dematerialization. Association that
is dematerialized is removed from the generated result, and all properties from the associated
class are moved to its place.
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manufacturer attribute would be associated with the Goods class, whether the
color with the Variants. This may not be a beneficiary for all data consumers.
Therefore, a schema with the manufacturer attribute moved into the Variants
class might be a better solution.

{
"title": "Chair",
"variants": [

{
"price": 200,
"color": "black",
"manufacturer": "IKEA"

}
]

}

{
"customerId": "12",
"personal-info": {

"name": "John",
"surname": "Doe"

},
"contact-info": {

"address": ...,
"phone": ...

}
}

Figure 2.7: Examples of data with some attributes moved. The former moves the
attribute manufacturer from the parent into the other class that has a counterpart
in the ontology. The latter takes attributes such as name and address and wraps
them with additional objects that do not correspond to the ontology.

However, this is too complex for the current state of development, but it gives
us a chance to think about the problem in a more general way.

2.3.2 Data modeling process
So far, we have only described the desired structure of an ontology and a schema
model, but we did not tackle the actual process of how the schema is created.

A user starts by selecting a root of the schema. Schema under the given
root would then describe one entity of the given type, or a list of those entities,
depending on the later configuration. Because a set of possible root classes is not
limited in any way (or, we can say that the root has the most general type, hence
can be specialized), the most suitable option is to let the user search for the class
by its name, descriptions, or other parameters, depending on the given ontology
format.

As soon as the root is placed in the schema, we get a context because the
following attributes and associations to other classes depend on the class where
the properties are being added. For that, we use a prompt dialog where it is
possible to select those properties to be added.

Although we did not enforce that an ontology must support inheritance, most
of them do. Therefore, the dialog also allows adding properties of the parent
class.

The process of adding properties can be more automated in the future. The
tool can propose to automatically add all attributes and associations with nonzero
cardinality, as it may be the desired behavior. We can perform this action even
recursively to automatically design the whole schema just from the root and select
a few options where the recursion shall stop.
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In general, there might be cases with hundreds of available entities to add
where only some of them are relevant to the current user. This is further sup-
ported by the fact that anyone can extend our ontology by introducing their
classes associated with ours. To properly understand the relevance of different
entities, a user profile from past choices needs to be built. This is an area of rec-
ommended systems, with many focusing specifically on model-driven engineering
[1], and we will consider them in our future work.

Requirement 3. The application shall create supporting documents for the gen-
erated schemas.

The main goal of the tool is to model schemas from a given ontology. Never-
theless, to better understand the generated schema, the documentation, possibly
with diagrams and examples, is very beneficial.

A structure of the documentation was already described in the introductory
chapter and can be easily derived, as it only describes used concepts that are
mapped from the schema.

Regarding examples, for the schema in Figure 2.5, Figures 2.2 and 2.3 could
be automatically generated. This would require additional knowledge from the
ontology as the application needs to understand that the title should be a buyable
item (hence chair and not sitting for example) and the price should be reasonable
to the item’s actual price (because it may confuse users when the price would too
low or too high).

2.4 Data transformations
Requirement 4. The application shall support generating transformations be-
tween different data conforming to supported schemas and RDF representation.

Data transformations were also introduced at the beginning of this thesis as
the necessity for the latter use case of interoperability of public institutions. Data
transformations are generally used to convert data (not schemas, but data that
conform to given schemas) from one schema to another without changing its
meaning.

One example may be to convert CSV to a JSON array of objects, where each
object represents a row in the CSV. There are plenty of online tools to do this,
but they do not understand the context of the data. Because both schemas were
derived from one general schema in the tool, we may correctly map columns from
CSV to the fields in a JSON object, not necessarily from a single-table CSV
schema.

In the context of this tool, transformation means both (i) transformation be-
tween different schemas under the same general schema and (ii) between different
general schemas, if possible (as we may exploit the knowledge of the mapping
to the original ontology). As an example of the second case, we may have two
general schemas for the same thing, where one is simpler than the other. For ex-
ample, suppose the schema from Figure 2.5 and similar with more attributes and
associations, possibly with a different order of properties and labels. It is then
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possible to convert the data from the more complex schema to the simpler one
by losing the information. If default values are provided or additional properties
are optional, the transformation in the other direction should also be possible.

Regarding the transformation process, there are plenty of ways to transform
the data:

1. Data engineers use Python with support for many formats using libraries.
In this case, the transformation would mean a generated Python script
with a predefined interface that takes data from one format and outputs in
another. Depending on the use case, the script may be configurable (besides
the possibility to configure the generation of transformation itself).

2. There is XSLT (Extensible Stylesheet Language Transformations) language
to transform between XML documents or from XML to XML-like, plain-
text, or CSV documents. XSLT is an XML document that can be executed
with an input document by an XSLT processor, producing the resulting
document. A disadvantage is that the input document must be in XML
format; hence, it cannot be used alone for bidirectional JSON and CSV
transformation.

3. There are mapping tools and languages, such as RML [4] (RDF Mapping
Language), designed explicitly for mapping purposes. RML maps common
serialization frameworks, such as XML, CSV, and JSON, to RDF from a set
of rules written in RDF. The translation mechanism is similar to the XSLT.
Specifically for JSON, there is JSON-LD5 with simple directions to set
mapping to RDF. Conversion tools are available in multiple programming
languages. There is CSVW6 for CSV as an alternative to the previously
mentioned JSON-LD.

Although RML is a ready-to-use solution with support for all three technolo-
gies, it requires its own transformation toolchain. This is also valid for JSON-LD
and CSVW technologies. On the contrary, XSLT is a well-known technology
among people working with XML and is widely supported. Our primary goal is
to have transformations that are easy for stakeholders to use in their systems.
Therefore, we will implement XSLT for XML while keeping RML for later.

Similar to the translation of a human text, there are two approaches. Either
create a transformation for each pair or have one standard format where all the
others can be transformed and vice versa. The latter method requires only one
transformation for each new format added and is easier to debug, as there is a
middle format. Because schemas are built from ontologies whose primary source
is RDF, we will exploit this and have RDF as the middle format, which is another
format in which we can transform data.

We categorize two types of transformation, lifting and lowering. Lifting is
a process of converting semi-structured data such as JSON, XML, or CSV into
RDF. Lowering is the opposite process. By combining them, we can achieve a
transformation between various formats. That means that even if we want to
transform XML to CSV, which would be possible by a single XSLT document for
simple structures, we would need to execute two transformations.

5https://json-ld.org/
6https://csvw.org/
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Figure 2.8: Example of data transformation. An XML document that conforms
to XML schema may be lifted to RDF representation, which conforms to the
ontology. The RDF can then be lowered to another format.

2.5 Data specification
The following requirements urge us to group similar general schemas into a project
that we call a data specification. Schemas in the data specification may share
some configuration or depend on each other, as we specify later. Each schema
belongs to exactly one data specification. We will not determine in this thesis
which schemas should share a data specification and which should not because
there are currently no limitations that would state otherwise. However, this may
change in the future as new requirements arise.

Requirement 5. It shall be possible to refer to other schemas to use them as
building blocks for larger ones. Schema reference shall be treated as a reference
to the resulting schemas and documentation as well.

Referencing other schemas is crucial for advanced use cases where it is essen-
tial to split large schemas into smaller blocks that can be published and used
separately.

For most schema languages, it should be sufficient to refer to the other schema
as is. For example, in JSON, we can use the $ref keyword with a path to the
referenced schema. On the other hand, data transformations may not always be
able to handle this approach. Hence, having a full copy of the schema might
be necessary. Referencing a schema would thus require access to all data in its
specification.

To avoid problems with tracking references and knowing which data specifi-
cation needs to be loaded to generate artifacts properly, a user would need to
set a given data specification that is being reused explicitly. Similarly to
the Requirement 2 with the ontology, we do not require that the reused data
specification be always available. The application shall work even if the data
specification is not available at the moment if the presence of the specification is
not required directly, such as for creating a new reference or generating artifacts
that depend on it.

Requirement 6. The list of supported schemas, transformations, documents,
and other files generated from the general schema shall be easily expandable to
adapt the tool to different use cases.
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Figure 2.9: Example of reusing of specifications. All schemas from a reused
specification become available to refer from local schemas. Only the root of the
schema may be referred to.

The generation of schemas is robust enough to be used in every common
scenario. Therefore for most users, we do not expect they may want to intervene
in the process besides the standard configuration, such as indentation, using of
comments, or a default language.

On the other hand, documentation is a very vague concept that neither we
have adequately specified. Sometimes simple Markdown documentation may be
sufficient, while elsewhere, the user may require a strict format of multiple doc-
uments in HTML.

Transformations have similar issues. There are multiple ways and technolo-
gies that transform data between different schemas. We have already mentioned
transformation through the RDF format, either by RML or custom scripts, such
as XSLT for XML. For the more demanding user, it is even possible to create
transformation scripts between pairs of different serialization formats, such as
between XML and CSV.

We will expose a way the user can register their own generator that can create
a set of files in a filesystem from the given schema.

To support the linking of generated files, generators may use others to modify
their results, further expand them, or create a link to them. This is specifi-
cally useful for documentation, as it should contain links and possibly a copy of
generated schema.

2.5.1 Artifacts
There is little difference between generated schemas, data transformations, doc-
umentation, and other output files. Based on the general schema and provided
configuration, if any, the application shall create a set of files that can either be
published on the Web or stored in the file system. All generated files will be
denoted as artifacts and created by generators.

We will distinguish two types of artifacts. (i) Specification artifacts do not
depend on a concrete schema but use the whole specification. Documentation may
be an example of a specification artifact because it generates a single document
concerning all schemas. Of course, schema-specific documentation is possible, and
it purely depends on user requirements. (ii) The schema artifacts are bound
to a concrete general schema and are used to generate transformations or schema
documents.
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Figure 2.10: Schemas, documentation, and other generated files are artifacts.
Artifacts are either schema-specific, generated for every schema, or specification-
specific for a given data specification.

2.6 Inheritance
Requirement 7. The tool shall support class inheritance on a general schema
level and in generated schemas.7 That means it shall be possible to design a
schema that validates data where both the base and derived classes can be used.
The derived class may have additional properties.

We will start directly with an example. Suppose that the warehouse also
distributes foods in addition to general goods. Food is a type of good, but it
may have additional attributes for storage purposes, such as storing temperature
or expiration date. Suppose that we want to design a schema for a JSON list
of goods, as seen in Figure 2.11. The document is an array of objects, where
each object has basic properties such as name and price. If the object represents
food, we want it to have additional attributes. JSON Schema format is capable
of supporting this.

[
{

"name": "Chair",
"price": 100,
"type": "furniture"

},
{

"name": "Ice-cream",
"price": 10,
"type": "food",
"expirationDate": "2022-07-21",
"storingTemperature": "frozen"

}
]

Figure 2.11: Example of JSON data we want to validate. Based on the type of
good, the object may have additional properties.

7See Figure 8.1 for screenshots from the tool with this requirement implemented.
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Without any additional information, we can only say that if the object con-
tains only one of those additional properties, it is not valid because there is no
such class that has only one of them. This allows us to validate cases when one
property is missing. Nevertheless, we can add a property that specifies the type
(or category) of goods and use this to validate the object. Based on the type, we
are then able to use the correct class for validation, ensuring that the object has
the correct properties.

This requirement impacts the application at three different levels. (i) The
general schema model must have constructs representing the required problem.
This is analyzed mainly in the following sections. (ii) We must somehow represent
the inheritance in the user interface. By this, we mean how to show that the class
has a specialization in the "bullet list" representation (see Figure 2.5). (iii) All
generators shall understand them and generate a schema that corresponds to the
intended result.

An advanced reader may point out that the problem can be generalized by
introducing a disjunction to the schema. As we will show in the following text,
this assumption is correct. However, designing schemas only with disjunction is a
cumbersome and complicated task for less advanced users and does not preserve
the intent of extending the class. Therefore, we still want to provide the ability
to work more efficiently with the inheritance.

In ordinary cases, a more general class shares its properties with all its descen-
dants. This can be seen in the example, where the Ice-cream has all properties
a Chair has. In UML modeling and most programming languages, copying the
properties is unnecessary as they are inherited. We want to achieve a similar
thing in our schema representation by not polluting the page with redundant
information. This, however, restricts the use of inheritance because we cannot
select the order of properties in the descendant class if the properties are not
shown.

To formalize the restriction, a descendant class implicitly has all properties of
the parent in the same order, and those properties are before any other properties
of the descendant class. This is a limitation for XML and CSV documents as
JSON does not depend on the order of properties. However, order generally does
not play a huge role in modeling, and if it does, in most cases, the properties are
sorted from most general to most specific, hence using our proposed solution. For
advanced use cases, the low-level constructs introduced later can be used.

The rule is applied through the whole chain of inheritance. If there are classes
A, B, and C, where C is a descendant of B and B is a descendant of A, then C
has properties of A, properties of B, and then its own properties.

In some situations, we might want to omit the parent class from a schema.
Let us have a base class B and its two descendants M and N . So far, we can
model a schema with all B, M , and N , where B provides properties to both M
and N . B may not represent a real thing per se. It may correspond to an abstract
class that serves only as a base for the other classes. In that scenario, we only
want to allow M and N to be used.

Because we do not want to show inherited properties, the descendant classes
must visually belong to their parent to indicate that it shares its properties.
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Hence, we propose that if a class has a specialization in a schema, the special-
ization will be shown after the properties of the parent. If the base class should
be omitted from the schema but has some properties, it will be shown visually
differently.

class Good
- attribute name[1..1]: string
- attribute price[1..1]: number
specialization Food

- attribute expirationDate[1..1]: string
- attribute storingTemperature[1..1]: number
specialization Fruit and Vegetables
...

specialization Drink
...

Figure 2.12: Proposition for representing an inheritance in the schema. The row
with specialization classes is below the property list and does not belong to it.

So far, the internal schema model, although not formally defined, does not
support constructs for the purpose of inheritance. We can build on the current
proposal of the UI, but this approach is not robust enough. We want to com-
pose the desired results from low-level constructs as it lets us use them in other
situations as well.

2.6.1 Disjunction in schemas
First, we introduce the concept of a disjunction. The disjunction in a schema
context is a set of rules (or subschemas) where exactly one rule must be satisfied.
The disjunction serves as the "OR" operator in the schema. We can use it in our
inheritance problem to create an association to a disjunction of classes that have
a common ancestor. It nicely solves part of the inheritance problem and can be
used for other things, as well. For example, the title can be either a string or an
object of language and translation pairs.

Both the JSON Schema and the XML Schema support some types of disjunc-
tion. JSON Schema has the anyOf keyword, which specifies that the given value
must match at least one rule, effectively creating an OR. XSD has xs:choice
element doing a similar thing.

There are two ways to implement the OR operator in our proposed hierarchical
model: on a class level and property level. The former approach allows the
OR operator to be placed anywhere where classes can be placed. Either in the
root of the schema or in the association. The OR is then a set of classes. The
latter approach is more flexible, allowing users to specify the disjunction between
tuples of properties.

The former model is more common for programmers, as in some languages
(such as TypeScript), it is possible to specify a type of property in this particular
way as an OR of multiple types. On the other hand, the latter approach is more
well known in data modeling, as XSD’s xs:choice works exactly the same way.
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or

C1

... A1 ...

C2

... A2 A3 ...

(a) Class-level OR

C

... or

A1 A2 A3

...

(b) Property-level OR

Figure 2.13: Comparison of two models of the semantically same subschemas of
class C having either attribute A1, or both A2 and A3.

The model using a property-level OR cannot use the disjunction in the root
of the schema, which is an essential disadvantage as there may be use cases for
those schemas. On the other hand, this model is better suited for the Cartesian
product of multiple disjunctions in a single class. Suppose a schema for class C
having the following attributes: the first attribute is either A11 or A12, and the
second attribute is either A21 or A22.

or

C1

A1
11 A1

21

C2

A2
11 A2

22

C3

A3
12 A3

21

C4

A4
12 A4

22

(a) Class-level OR

C

or

A11 A12

or

A21 A22

(b) Property-level OR

Figure 2.14: Comparison of two models for the Cartesian product of disjunctions.

As seen in Figure 2.14, the model with a class-level OR tends to have wider
trees for Cartesian products of disjunctions because we have to create (automat-
ically, of course) each combination.

Moreover, the "attribute or association" construction with class-level OR is
harder to achieve as we need to use the OR on the parent class with one class
having the attribute and the other the association. In the case of property-level
OR, this can be done locally.

2.6.2 Include in schemas
Before proceeding with the disjunctions further, we will solve the rest of the
problem with inheriting properties. We already stated that we do not want to
show the inherited properties in descendant classes as it is redundant information.
Nevertheless, we still need a construct specifying that the properties are inherited
from other classes as we only have OR with no semantic meaning.

The most straightforward way is to implement classical inheritance, as is
known from programming languages, between the physical classes in the model.
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However, this limits us in some schemas where the order of the attributes matters.
Therefore, we will use a new construct include, which can "copy" all properties
of the given class and insert them in the place where the include is located.
Include is hence a part of class properties alongside attributes and associations.
The include with the class-level OR can be fully used to implement the desired
inheritance.

All classes that participate in the inheritance are internally under the same
OR, as only one of those classes is used in the resulting data representation. Each
class, except the base class, has an include as a first property in the property list.
The include then points to the nearest parent class.

or

Good

name price

Food

include
exp.
date

storing
temp.

Figure 2.15: Proposed schema model that handles the inheritance problem with
an include and an OR constructs.

Besides the common use, having the include construct allows us to overcome
the problem of the cartesian product of disjunctions, which is shown in Fig-
ure 2.14. This is, however, not a proposed solution as we currently do not have
a use case where solving this problem is important. Because the include extracts
properties of the included subject, we may combine include to OR to a set of
classes, which according to the defined logic, would extract properties of one of
the included classes.

C

include

or

C

A11

C

A12

include

or

C

A21

C

A22

Figure 2.16: Using include-to-or construction to achieve the same thing as in
Figure 2.14b. The OR selects one of the two classes and the include copies the
content to the parent.
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2.6.3 Type coherency
Although both OR and include constructs add complexity to the model, it is
still possible to ensure basic type safety rules, which are necessary to check the
model’s correctness and provide relevant information for the user. For example,
if a user would like to add a class to OR, the UI shall list only the classes that
are suitable in that context.

To begin with include, its purpose is to take all properties of a given class
and insert them in the place where include is located. Suppose that class A
includes B. As A gets all the properties of B, B’s type, as the included class,
can only be the ancestor or self. This even nicely works with classes that
were not created from the ontology (hence not having a type), as those classes
may contain some technical properties that can be included by any class.

By doing a similar analysis with OR, as OR is linked to an association, each
class inside that OR may have a descendant or self type. Hence, we say
that the type of OR is the nearest common ancestor of all classes. This works
well with root as well, as it can have an arbitrary type; hence the classes in the
OR can also have any type. Nevertheless, for that scenario, we would probably
like to restrict the type to a parent class anyways, as this is mostly the desired
behavior.

It may seem that things work. Unfortunately, there is an exception when we
combine these two constructs together. As we have already shown in Figure 2.16,
using include-to-or may be beneficial but does not work with the introduced rules
as include requires ancestor or self type, but OR provides descendant or self type.
However, this is specific only to include construct, which can easily be fixed by
having two kinds of ORs, let’s say generalization OR and specialization OR. We
will keep these problematics for future work as there are not enough use cases to
evaluate whether this approach is beneficial or not. So far, we thus only allow
specialization OR that can be placed into a root, at the end of the association,
or can be referenced from another schema.
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3. Future requirements
The following requirements in this chapter are analyzed because they may affect
the final model that will be discussed in the next chapter. But due to its com-
plexity, full implementation and analysis will be kept as authors’ future work,
and this thesis covers only the necessity not to introduce technical debt. The
requirements follow the authors’ intention of creating a whole ecosystem that
supports advanced features of sharing and managing schemas.

3.1 Ontology modifications
Requirement 8. The approach of previous tools for creating the ontology di-
rectly in the application is not required, but there should be support for some
modifications.

As stated in Requirement 2, the preferred way is to create a complete ontology
externally and keep it up to date and valid against the requirements of all involved
parties.

However, there may be scenarios where it may be beneficial to change the
ontology directly. Some of them are the following:

1. The ontology is wrong and does not describe the domain correctly. - Then,
a correct way would be to fix the ontology.

2. The ontology describes only a subset of the domain. Either only the core of
the domain or the ontology is complete, but only for one domain, whether
in another, something may be missing. - If the desired ontology is strictly
a superset of the domain, we can exploit the linked data features to add
missing annotations in our own structured data. Then we would use the
new ontology.

3. The ontology is not granular enough. Some entities can be represented in
more detail than they currently are or vice versa. - We would need to create
a copy of affected classes or use an advanced tool if it exists.

Suppose the example with goods in the delivery company. Although the goods
may be identified by EAN (barcode on items), the software team may prefer their
own internal identifiers. There may be reasons for not including the identifier in
the ontology, as it is too specific for only a software team, for example. This would
correspond to the second category from the list above. The missing attribute then
may belong to either the original class or the new extended class in the modified
ontology. The third category may represent the case where, for example, we need
to replace an address with a set of more specific attributes such as street, number,
city, country, etc.

Although in all scenarios, the preferred way would be to create a new ontology
or modify the remaining, it can be too cumbersome and time-consuming, espe-
cially if the data modeler wants to try something with an altered ontology, or if
a small error needs to be fixed quickly. Therefore, the opportunity of modifying
the ontology should be possible.
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Allowing such changes must be done carefully as it may interfere with some
mechanisms.

1. If the original ontology changes, the local overwrites may need to be changed
as well; otherwise, they may become invalid. Overwritten data may be
removed or moved elsewhere. The evolution mechanism (that is described
in more detail in Requirement 10) hence must work with the overwrites as
well.

2. Moreover, the overwritten data may change, which can lead to two scenar-
ios. Either the user wishes to keep the local version as if nothing happened,
or they may want to discard the local version as the new version fixes the
issue that caused the modification in the first place.

This issue is too complex, and due to the nature of the requirement, it must
be solved directly in the application. We keep the question behind this problem
open and focus only on simple modifications, as this will cover most use cases.1

3.2 Ontology alignments
Requirement 9. As there shall be a support for data transformations between
different schemas, the data transformations shall respect various ontology align-
ments to transform data between different ontologies. Alignments shall also be
created during user modification of the ontology, between the modification and
the original ontology.

Alignment, as defined in [5] is a set of relations between entities, usually
from different ontologies. These relations specify the semantic equivalence be-
tween them and create a mapping that can be used to transform data from one
representation to another.

There are already well-known RDF predicates that can cover basic align-
ment. For semantically identical entities, we may use owl:equivalentClass or
skos:exactMatch. A more useful RDF predicate is rdfs:subClassOf to specify
that the given class extends others by specializing its type.

The latter is already used in the previous Requirement 7. Subclasses (i)
reuse attributes and associations from their parent class but also semantically
denote that (ii) the subclass can also be treated as "the parent class." The second
point is an example of a simple ontology alignment. In the context of data
transformations, we can take the more specific class and convert it to its base
type.

As an advanced example, suppose again the address property that is used for
delivery purposes. The address can be represented as one multi-line string value
or as its parts such as street, number, etc. The most straightforward mapping
would split the string by commas and new lines and join them back, respectively.

The user can then decide whether they want to use the first or the second
group of entities, and the transformation script would still be able to transform
data between those two representations.

1From our specific use case on the Semantic government vocabulary (SGOV), most local
changes consist of adding a missing cardinality or fixing labels and descriptions.
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«class»
Contact information 1

«class»
Contact information 2

«attr»
address

«attr»
street

«attr»
number

«attr»
city

«alignment»
{address}={street}, {number}\n{city}

Figure 3.1: Example of mapping between different representations of address.

The primary purpose of alignments is to use them for better data transfor-
mations, as different general schemas may use different parts of the ontology. By
connecting them with alignment, we may be able to transform the data between
a wider variety of schemas. We shall note that using multiple syntactically dif-
ferent ontologies in modeling is not our use case as our primary focus is to use
ontology designed primarily for modeling. Nevertheless, there are some scenarios
where some alignments are useful.

In general, we can use alignments directly from various ontologies (see Re-
quirement 2) if the ontology supports it. As we have pointed out, we already use
subclassing from the supported ontologies.

In addition to explicit use, alignments are also crucial for local modifications
(see Requirement 8). As we decide to introduce a new entity or modify others, it
will be beneficial to keep the information that those entities are somehow related
to the original ontology. Suppose the example with the address. We find that
the address as a single field is not sufficient. Therefore, we split the address into
individual parts and use them. The alignment together with the transformations
still produces valid RDF data according to the original ontology.

This approach can even be used to create transformation scripts between old
and new data if the ontology changes (see Requirement 10).

3.3 Evolution
Requirement 10. It shall be possible to perform an evolution of schemas and
other artifacts from an ontology. The evolution shall be automatic, if possible,
and shall also transform the data that conform to the given schemas and deduce
the changes from an ontology that does not support versioning.

Although designing the schemas with the documentation may seem like a one-
time job, later management of the schemas is also essential. User requirements
may change, resulting in a change in the ontology and underlying schemas. The
change may be as simple as adding a new property but can also be more complex,
such as splitting classes, moving attributes, or changing their semantics.

As the tool’s purpose is to support the whole process of designing the schemas,
it shall also provide the possibility to change the schemas in the future easily. We
can analyze this requirement on two levels: how to change the schemas and how
the change is reflected.
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Our current goal is not to create a complex model capable of any change but
rather to create a simple, easy-to-maintain solution that can handle most cases.
Moreover, for complex changes, it may be cleaner to recreate the schemas from
scratch without the need for any evolution mechanism.

Changing the schemas The source of the change is the ontology, as we are in-
terested only in a top-down (from the ontology to schemas) modeling. Because we
want to support all kinds of ontologies, we cannot have additional requirements,
such as the history of changes. Therefore, the tool needs to have a mechanism to
analyze the ontology in the current state and generate a list of changes.

Having a list of changes and the previously designed schemas, we can perform
the evolution. Depending on the context and the user preferences, some changes
may be performed automatically. For example, suppose that name of the goods
is changed to the title. This change is simple, and since we are performing the
evolution, we probably want the change to be applied as is. On the other hand,
some changes may be more complex, where user interaction is necessary.

In any case, the result of the evolution is a new general schema that conforms
to the ontology. We can use this general schema to re-generate documentation
and schemas for desired languages. In some cases, this may be sufficient, and the
work ends here.

Reflecting the changes Nevertheless, some users may not be satisfied with
just a new version of schemas and documentation, as it may be difficult to find
out what has changed and how. To painlessly apply the changes in their systems
and to understand the change, they may require:

1. Data transformations between the old and new schemas to easily
convert the data to a new representation. This may be useful as a tempo-
rary workaround to switch to a new format without actually changing the
application that uses it. Transformations, of course, can be used to convert
all data to the current format if data are stored in it.

2. A document describing what has changed to easily understand and
apply those changes. The document format can be, for example, an HTML
file containing the table of renamed attributes, associations, and classes
with a textual description of more advanced changes. The purpose of the
document can be similar to the documentation and may link other docu-
ments and transformation scripts.

Data transformations are de facto already handled by the previous require-
ments. We will not modify the existing schema during the evolution but rather
create a copy. Because both schemas use the same ontology (possibly with align-
ments), we can generate data transformations between them with RDF as the
central format.

Generating documents would probably require a new type of generator that
would work on two schemas at once. This, however, is too complex for the current
state of the project. Therefore, we will keep this problem for later.
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3.4 Interoperability
Requirement 11. The tool shall support working with general schemas that are
not directly stored in it but may be located in another instance, on the web, or
in Solid Pods2.

We have already discussed data on the web principle regarding ontology (see
Requirement 2), as it is preferred to have data published on the web to be easily
accessible by anyone. Although this can be achieved in other ways (such as public
API, regular dumps, etc.), the great benefit lies in the fact that those data are
independent of the tool that created them. Those data can be easily modified
and accessed by other tools (if the given tool understands its structure) and, if
necessary, moved under a different database.

Similarly, we would like to achieve this with all data representing the schema’s
state. Specifically, we mean the structure of the general schema, configuration of
all artifacts, other configurations, and helper files. Instead of having an enclosed
application that stores all data internally and only provides a way for exporting
and importing them, we would like to have ways to read schemas from other
sources similarly as they are local and modify them as well if the user is allowed
to do so.

This approach allows data modelers to create their own schemas that can be
reused by anyone else on the internet. Because the schemas would be hosted by
their infrastructure, there is no need for a centralized service that would need
to deal with user accounts, GDPR, payments for schema hosting, integration of
other tools, etc. Of course, this also means that there would be no repository
with search functionality for the schemas.

In most cases, storing data externally should not be a problem, as we need
to read them from somewhere anyway. If the external storage is inaccessible,
the application shall still provide most of its functionality and try to obtain the
data later. For example, this may mean that it would not be possible to generate
some artifacts, and part of the schema in the UI would not be visible. Because
we have introduced data specifications as projects, the problem would only occur
when referencing a subschema from a data specification that is stored in the
problematic source.

This approach may be challenging if we begin changing the schemas. In the
current state of the implementation, schemas can be referenced. If the referenced
schema changes (either by evolution or directly by user), the reference may be-
come broken, and referencing schema becomes invalid. In sections 2.3.1 and 2.6.3
we already tickled type coherency and when schema becomes invalid.

This, together with the fact that schemas may be modified outside the tool,
has significant implications as some checks on schemas must be performed con-
tinuously and not just during the construction of the schema. Generally, that
would mean that schemas may be invalid/broken at any time, and the tool shall
still be able to work with them.

2Solid (https://solidproject.org/) is a specification for storing data in decentralized
places called Pods. Users may create Pods in their own servers or use services that provide that
option. It is an alternative to services like Facebook or Google that stores data on their servers
only.
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3.5 Schema inheritance
Requirement 12. It shall be possible to extend any existing general schema by
adding or modifying some of its parts. The extended schema shall remain linked
to the original one and allow propagation of changes if the original schema is
modified.

As an example, suppose someone designs and publishes a general schema (not
the generated JSON or XML schemas, but the data specification with the general
schema itself).

• The most common scenario is that we work with data that conforms to the
schema as is. For example, the author of the schema publishes the data in
one of the formats, and we only need to process them. For this, we only
need to generate schemas from the published general schema.

• An advanced scenario is that we need to wrap the data and send them
elsewhere. Hence we need to create a new schema containing the original
one. In this case, the schema reference (see Requirement 5) is sufficient as
we do not modify the content of the payload. This is shown in Figure 3.2b.

• This requirement addresses a scenario where the payload is somehow mod-
ified. For example, we may want to create a proxy that removes personal
information from the payload if the user is not logged in. This is depicted in
Figure 3.2c. Other examples are to add a timestamp directly to the payload
or add additional information to some parts of the data.

{
"name": "John Doe",
"role": "customer",
"e-mail": "jd@example.com"

}

(a) JSON data that conforms to the original schema. (the payload)
{

"recipientPerson": {
"name": "John Doe",
"role": "customer",
"e-mail": "jd@example.com"

},
"message": "Summer sale!"

}

(b) JSON data containing the unal-
tered payload from above.

{
"name": "John Doe",
"role": "customer",
"e-mail": null

}

(c) JSON data of the payload with cen-
sored e-mail as it is the personal infor-
mation.

Figure 3.2: Example of the second and third scenarios from Requirement 12.

Similar to reference in schemas (Requirement 5), it shall be possible to ex-
tend any schema from any data specification. Without the need for evolution
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(Requirement 10), it is sufficient to simply copy the whole data specification and
modify it directly. But in situations where the data depend on other data that
conforms to the specification, it is better to have schemas linked to propagate the
changes automatically.

As in the previous requirements, we are interested only in minor changes, as
for large modifications, it may be impossible to perform evolution, and if so, there
would be many possible solutions, which would effectively undermine the whole
purpose of the schema extension, which is to not create additional work for the
data modeler.

Below we show a sample set of operations for which, under some conditions,
it should be simple to implement the evolution. The detailed analysis of the
problem is left for future work.

Removal of an entity If an entity is removed from the derived schema, then
any changes to that entity shall simply be ignored. Change of order of properties
on the parent class can be performed without a problem simply by applying the
new order without the removed property (as the entity must be connected to
some class by association). Nevertheless, if the entity is later used somewhere
else (for example, in another class by including it), there can be two appropriate
actions. Either not include it as it was removed or include it normally as it was
meant to be removed from the parent’s property list only.

Addition of new property Creating new entities does not bring any issues
as those entities cannot collide with those from the child schema. If the entity is
added to a list of properties, it is still possible to change the order in the parent
schema as the added property, for example, can keep its absolute position in the
list.

Changing the options Restricting cardinalities, changing titles, and speci-
fying names and descriptions should be possible. If the parent schema changes
those values, the tool shall ask the user whether to accept the change or not.
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4. Formal background
This chapter proposes modifications to the framework layers introduced by pre-
vious tools XCase and eXolutio and formally describes them. Some problems are
further analyzed as the reasoning depends on the framework structure and not
just user requirements.

As mentioned in previous chapters, not everything has been implemented yet
due to the complexity of the problem. Nevertheless, it is crucial to properly
design and plan everything in advance to minimize the technical debt.

In contrast with the approach introduced in XCase and eXolutio tools, the
process of creating the domain ontology is moved from the application to the
external tools. The application then only uses those ontologies if required.

To fulfill the introduced requirements, we have modified the previously intro-
duced five-level framework in the following way:

• We have added a new top-most level CIM (from Computational Indepen-
dent Model). CIM represents the remote ontology on the web according
to Requirement 2. Although the level is part of the framework design, it
is important to stress that it has no direct representation in the tool as it
represents data on the web. Because we suppose ontologies respect LD prin-
ciples, we can see them as a single graph, not multiple independent sources.
To be strict, our definition of CIM does not correspond to the definition
from MDA, as CIM shall be only a concept with no representation. Hence
our CIM is more like an online-PIM level, but due to simplicity, we keep
the naming as we proposed.

• The previous PIM layer is used as a copy of the CIM layer, and only the
necessary entities are copied to it. This approach is compatible with the
design of the previous tools, which used PIM as the source of the ontology.

This modification brings several advantages:

1. As the ontology is copied, we can use the tool seamlessly without depending
on the ontology. We can generate artifacts and modify the schema. Only
the operations related to directly using the ontology depend on CIM.

2. The mechanism that derives a list of changes during the evolution (see
Requirement 10) may use the PIM layer as a comparison.

3. The layer still separates the ontology from the rest of the model, simplifying
the design of the whole framework. For example, the other layers may refer
to information in PIM.

PSM, as a second level from the five-level framework, then represents the
general schema.

In previous chapters, we defined data specification as a project containing
multiple schemas, configurations for generators, and metadata, such as a list of
reused specifications. This would mean that individual PSMs belong to a concrete
data specification. To simplify the architecture, we state that exactly one PIM
is part of the specification with multiple PSMs.
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Ontology

PIM 1 PIM 2

Schema A Schema B Schema C Schema D

CIM:

PIM:

PSM:

Figure 4.1: Schema of the new framework structure (without the lower levels
containing artifacts). The topmost level represents the ontology; then, different
PIMs serve as copies of the ontology for different data specifications that are
symbolized by dashed rectangles. The third level represents the general schemas.

4.1 Conceptual levels
We will start by defining PIM, as the definition of CIM depends on it.

Definition 1 (PIM). PIM is a quadruple C = (Cc, Cattr, Cassoc, Cend) of sets of
classes, attributes, associations, and association ends, respectively (we will call
them as entities), with a set of annotation functions such that:

• Attribute a ∈ Cattr belongs to exactly one class c ∈ Cc, which is denoted by
annotation function class : Cattr → Cc as class(a) = s.

• Association r ∈ Cassoc has a tuple of two distinct association ends denoted
by end : Cassoc → Cend × Cend. Each association end belongs to exactly one
association. Each association end has one class defined by class : Cassoc →
Cc.

PIM entities can be decorated by other various semantic and syntactic anno-
tations. We do not require that an annotation must be defined for every entity
if not stated otherwise.

• Classes, attributes, associations, and association ends may have title and de-
scription, (for example title(c) = ”Tourist destination”@en) or potentially
other describing properties that are not directly used in schema generation.
However, the title may be used to propose the naming of entities’ labels at
the PSM level.

• Each class has a set of classes that extends by annotation extends : Cc →
P(Cc). (see Requirement 7)

• Attributes and association ends have cardinalities cardmin : Cattr ∪ Cend →
N0 and cardmax : Cattr ∪ Cend → N ∪ {∞}, where cardmin(i) ≤ cardmax(i),
where the comparison operator works the same as in the extended real
number system.

• Attributes have data types datatype : Cattr → D where D is a set of data
types, usually specified by an IRI.
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The purpose of annotations is to bring additional information to the model
that is not essential for the generation. As we stated in the previous chapter,
there are various ontologies, some of which may lack the support of some con-
struct. We have already mentioned that RDFS does not allow naming the reverse
direction of an association. Some ontologies may not support cardinalities or in-
heritance (although most of them do). Similarly, some artifacts may not use all
the information from PIM. For example, data transformations do not need a title
and description to work with.

We do not provide a complete list of all annotations as the intention is to let
programmers use their own if necessary, either when creating a new generator or
adding support for the new format of an ontology.

The purpose of PIM entities should be clear, as we have described all essential
concepts in chapter 2.

class
title: Goods

description: Represents goods
that can be bought.

attribute
title: title

type: xs:string
cardinality: 1..1

class
title: Goods variant

description: Variant of goods, such
as color or material.

class
title: Food

description: Goods
that are edible.

class

extends

association

association end
title: is variant of

cardmin: 1
cardmax: 1

association end
title: has variant

class

class

end[0]

end[1]

Figure 4.2: Example of the PIM model shown as a graph. Rectangles represent
entities. An Italic font inside the rectangle or on the arrow represents the given
annotation function with the given value.

Because during the modeling process, CIM (specifically ontologies under dif-
ferent formats) is being copied to PIM, it would be reasonable to define the CIM
in a way that is compatible with PIM.

First, we need to define an interpretation that will be used to connect entities
from PIM with those in CIM.

Definition 2 (interpretation). Let us have an annotation interpretation : E →
I ∪ {∅} from all entities to I, a set of CIM entities. We say that PIM entity I is
interpreted if and only if annotation interpretation(I) ̸= ∅.

Definition 3 (CIM). CIM O is an ontology for which function CIM adapter A
exists, such that A(O) = C is a valid PIM, where every PIM class, attribute, and
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association has a different defined interpretation representing the CIM entity, and
that interpretation is stable over time. That means if the CIM entity is changed
but still represents the semantically same thing, then the interpretation of the
corresponding PIM entity shall stay the same.

The definition tells us that the CIM can be viewed as a PIM with an inter-
pretation as a pointer to the original thing in the ontology. In practice, it is the
IRI of the entity in the ontology.

If the CIM changes, entities shall keep their original IRIs to stress that the
given entity is semantically still the same. Only the representation may have
changed. This will help us, for example, to detect changes and properly propagate
them in the model.

For simplification, in the rest of the thesis, we may omit that CIM needs to
be transformed to PIM and suppose that it is already in PIM-like format.

The definition does not require association ends to be interpreted as some
ontologies consider the whole association as a single entity. Nevertheless, each
association end belongs to its association which is interpreted. Hence the link to
CIM exists.

4.2 Structural level
Ontology is represented on conceptual levels on CIM and PIMs. The constructed
schemas then belong to the structural level. During the analysis of Requirement 1
we have already decided on the hierarchical structure of the general schema as
our target schemas also have a hierarchical structure.

We will introduce PSM (platform-specific) level to represent the schemas.
PSM level is highly inspired by the PSM level from the previous tools, but we
must take into account different serialization formats PSM level is generated into.

Definition 4 (PSM). PSM is a tuple S = (Sr, Sc, Sref, Sor, Sattr, Send, Sincl) with
a set of annotation functions such that:
(let C := Sc ∪ Sref ∪ Sor be a set of objects and P := Sattr ∪ Send ∪ Sincl set of
properties)

• Sr ̸= ∅ is a set of roots of the schema, each having annotation root : Sr → C
specifying the root object.

• Sc is a set of classes with annotation function parts : Sc → P n that returns
a tuple of class properties. Each property belongs to exactly one class.

• Sref is set of all references to other PSMs with annotation function ref :
Sref → S × Sr that returns the referenced PSM and one of its roots.

• Sor is a set of ORs with annotation function choices : Sor → P(C) that
returns the set of all possible choices of the OR.

• Sattr is set of attributes with annotation function technicalLabel : Sattr →
string that returns the label of the attribute.
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• Send is a set of association ends with two annotation functions (i)
technicalLabel : Send → string that returns the label of the association and
(ii) end : Sassoc → C that returns the associated object.

• Sincl is a set of all includes with annotation function includes : Sincl → C
that returns the included class.

The definition puts together the findings from previous chapters, where we
analyzed the structure and individual concepts of the general schema. The def-
inition re-introduces well-known terms from PIM, such as class, attribute, and
association end. Association itself has no counterpart in PSM as we are only
interested in one specific direction. References are a necessary concept for the
implementation part as their meaning is to reference outside of the PSM, whether
referring to entities inside PSM is implicit. As decided, class-level OR is used to
support disjunction, hence belonging to object types that can be associated and
placed as schema roots.

For advanced cases, we allow multiple roots for a single schema, such as cre-
ating a database model of multiple tables. For most schemas, however, only one
root is allowed. Hence, the general schema with root R is PSM S with a single
root Sc = {R} with all other entities being part of the chain originating from the
class.

Although it may seem that the PSM is a forest (tree for every root), the
PSM is neither DAG nor a connected graph. We have already discussed the
include construct (see Figure 2.15) as it takes properties from another existing
class, hence creating a diamond shape in the graph. We also did not restrict
that two different association ends may point to the same object. Nevertheless,
we also allow oriented cycles. For example, a class may have an association end
referencing the class itself. This allows us to design schemas for data structures
containing, for example, serialized trees, as a tree can be arbitrarily deep. All
properties, on the other hand, such as attributes, association ends, and includes
belong to a given class, and hence may not be referenced multiple times.

To keep the relation between entities from PSM and PIM, we will introduce
the same concept of interpretation for PSM with a slightly different meaning.
On PIM, interpretation means that the entities are de facto the same. On PSM,
however, we need to say that the given PSM entity is only semantically the same
as the corresponding PIM entity.

Definition 5 (interpretation on PSM). Let us have an annotation interpretation
defined as follows on the set of PSM classes Sc → Cc ∪ {∅}, attributes Sattr →
Cattr ∪ {∅} and association ends Send → Cend ∪ {∅}.

Interpreted PSM entities are linked to their PIM counterpart, which seman-
tically means that they were constructed from it. ORs, includes, and references
cannot be interpreted as they do not represent concepts from the ontology.

Both definitions of interpretation annotation imply the existence of non-
interpreted classes, attributes, and associations. We will discuss the meaning
of the non-interpreted PIM entities later in subsection 4.3.2, but non-interpreted
PSM entities might be used to introduce additional properties to the schema.
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For example, suppose that our data are wrapped in another class with prop-
erties payload and status. Status informs if the request succeeded and the payload
contains the required data. Then, the wrapper class, the status attribute, and
the payload association would be non-interpreted.

4.2.1 Format-specific PSM constructs
It is essential to mention that both PIM and PSM may be extended in the future
by adding new types of entities. This was already indicated in Requirement 9
that the alignment construct might be added to PIM.

Whereas this is not causing issues in the PIM, as an additional construct
may be simply ignored if not understood by the rest of the application, we must
proceed with caution if we want to extend PSM. PSM schema must be understood
completely to correctly generate artifacts from it. Hence even a small change may
impact many other parts of the application and also possible third-party plugins,
which are expected to read PSM.

This is an issue only if we intend to generate schemas in various formats from
the PSM. If the use case is to use PSM to generate a single format, such as XML
schema, then there is no problem with using XML-specific constructs that may
break the generation of JSON and CSV schemas. Nevertheless, it is advised that
any format-specific option shall be used as an annotation, if possible, to not break
the generators.

As an example, XML schema has <xs:sequence> and <xs:all> model groups
that specify whether the elements are ordered or not. Although on the XSD
level, those are different things, on the PSM level, we may introduce annotation
ordered : SC → {false, true} to achieve the same effect.1

On the other hand, one may want to add support for comments. Although
comments are usually intended to be bound to a specific element, hence anno-
tation might be enough; it is possible to introduce them as standalone entities.
This would require reimplementing all generators as they need to understand the
concept of this new entity.

Similar to PIM, PSM entities, as well as the PSM itself, may have additional
annotations. Besides that, generators may exploit interpretation to PIM to obtain
additional info about entities. This usually means, for example, that interpreted
PSM entities do not need to define title, description, or cardinality, as those
can be extracted from PIM. We still must allow those annotations on PSM for
non-interpreted entities or for overrides.

Regarding the definitions It may seem that, in general, the definitions are
too permissive or incomplete. This is intentional, as any introduced restriction
may limit some functionalities in the future. Hence, we prefer this robust model
and move the burden to generators to decide whether the schema is invalid in the
current context or whether generating an artifact with a warning message is still
possible.

1This is not entirely correct as XSD may specify that only some elements are ordered,
whereas others may have random order. This is an example of a feature that is currently too
complex to be handled by our general schema model.
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In fact, from the perspective of incremental development of the tool and ex-
tendibility of the model, this is a preferred behavior. Suppose, for example, that
some generators may not understand the concept of OR, as it is not trivial to
handle. In that case, the generator may simply ignore it and generate at least the
rest of the schema/artifact. Users then get an incomplete result (with a warning)
which they may fix by hand. A similar rule is applied implicitly to annotations,
as generators use only the known, keeping the other ignored.

4.3 Changes on the framework levels

4.3.1 Changes in CIM
So far, we have introduced PIM and CIM layers and only tackled how the frame-
work would work. Before we move further, we will analyze how Requirement 10
on evolution and 8 on ontology modifications would impact the framework.

Because the CIM is used only for building the PIM, the tool does not need to
know that the ontology has changed as it works mostly only with PIM. However,
to further expand the schema, the tool must fetch other parts of the ontology,
which may collide with the PIM.

Having PIM strictly as a copy of CIM may help in this process as we can
compare the two levels and, based on the difference, somehow generate a sequence
of operations that modifies the PIM. The modifications may be as simple as
changing a class title or changing an association cardinality to the complex ones,
such as joining two attributes into one or moving an attribute to another class.
It is essential to have the changes that complex as they carry the information on
how the schemas and their data should be modified, not just the final state. We
will describe the operations later.

To formally describe the difference, we will introduce the concept of consis-
tency.

Definition 6 (consistency). We say that the annotation of interpreted PIM entity
is consistent with CIM if the corresponding CIM entity exists and the value is
equal to the value in CIM or, in the context of the annotation, is a superset2 of
the value in CIM. We say that interpreted PIM entity is consistent with CIM if
the CIM entity exists and all annotations are consistent with CIM. Finally, PIM
is consistent with CIM if all interpreted entities are consistent.

Based on the use case, most of the changes in the CIM that are worth prop-
agating are simple and well-isolated. This may ease the process of inferring
differences between PIM and CIM by finding those isolated sets of entities and
then creating a sequence of changes based on a predefined set of rules.

As mentioned in the analysis, for complex changes, it would be easier to
generate a delete-and-create set of operations instead of trying to figure out what
has changed. This would remove affected entities entirely from created schemas
after propagating, and a user would add new entities back to desired places in
the schema structure.

2Formally, each annotation shall define its own rules, whether is consistent or not. Consider,
for example, extends. As we want PIM to be a subset, we allow extends to be a subset of all
classes the given class extends.
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We will leave the problematics of making PIM consistent for the authors’
further work. So far, we will suppose that the CIM is constant and cannot be
changed.

4.3.2 User modifications
Direct modification of PIM (see Requirement 8) may break the previous approach
because the mechanism that tells us what has changed would also try to revert
all the changes made by the user.

To be more specific, we are interested only in those entities that have inter-
pretation - entities that are linked to CIM. All other non-interpreted entities are
so far ignored.

Formally, it may seem that changing an interpreted entity (and still keeping it
interpreted) should not be allowed as the changed entity itself does not represent
the ontology anymore. As this may be true, there are still some cases when the
change is necessary, especially when the CIM does not give us all the information
we need (such as missing cardinality or missing description) or there is an obvious
error that needs to be fixed.

Nevertheless, we expect only minimal changes to be made by the user because
of the abovementioned reasons. Due to the same reasons, those user modifications
shall be checked every time the PIM is being made consistent because the change
in the ontology may fix the same problem as the user modification, hence making
the modification resolved and irrelevant.

Because of that, we allow editing of the PIM directly as this is the
simplest option that will satisfy the requirements under the expected use case.

Create and update operations are simple and are summarized below. To make
modifications complete, we also need to delete the entities. As we have defined
PIM as a subset of CIM, simply deleting the entity would not be enough, as we
would not know whether the entity is deleted or just not discovered. Therefore
we introduce a new annotation that marks the entity as deleted. Deletion is a
purely cosmetic feature, as, without it, the sufficient approach would be to ignore
the entity. It only forbids users to use it in the lower levels.

Definition 7 (deleted). PIM annotation deleted : I → {false, true}, where I is
a set of interpreted classes, associations, and attributes, denotes that the inter-
preted entity is deleted and must not be used in the lower levels.

The introduced approach provides us with the following options for modifying
the PIM:

• We can create new entities by simply adding them to PIM without inter-
pretation.

• Existing entities can be edited directly while keeping them interpreted.
This, however, will collide with the evolution mechanism and must be ex-
plicitly excluded from it every time the evolution is performed.

• To remove an interpreted entity, we must mark it as deleted. Non-inter-
preted entities can be removed directly.
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We have already provided reasons why modifying PIM is a relatively good
idea, such as when the ontology contains minor errors that need to be fixed im-
mediately. PIM also allows the creation of new entities, which is similar to PSM;
hence it may not be clear which level to use. In general, using PIM means that
multiple schemas may interpret the created entity, and therefore, it shall be pos-
sible to generate data transformations between them. Hence, entities that seem
to be part of the domain ontology shall be created on PIM. Entities on
PSM have more structural meaning. For example, if the schema requires
some entities wrapped in another class. This is a purely structural requirement
that should not have a representation in the ontology, hence shall be created only
in PSM.

4.3.3 Ontology alignments
To complete the walkthrough through requirements, we must analyze how Re-
quirement 9 on ontology alignments will impact the framework in the future.

In general, because the alignments may be arbitrarily complex, we will use a
new type of construct to represent those alignments. For example, the alignment
from Figure 3.1 that maps addresses between different representations would be
a single PIM entity that contains that information.

Some readers may object that the annotation extends used for the inheritance
of classes is not consistent with this approach. In the previous chapter, we said
that inheritance might be considered a form of alignment. Nevertheless, unlike
the other alignments, inheritance is an important concept that is used in many
places in the tool. Therefore we will keep this as an annotation for now and
consider reimplementation of this concept in the future when implementing the
support for other alignments.

E

E1 A E2 E3

e1 e2 e3

CIM:

PIM:

PSM:

Figure 4.3: Example of three different schemas having entities e1, e2, and e3,
respectively. The first two schemas use the same PIM, while the third uses
another. Because E2 and E3 interpret the same entity E (hence are semantically
identical), it is possible to map e2 to e3 as those entities interpret the former ones.
Although E1 does not interpret E, there is an alignment A, which also allows to
map e1 to e2 and hence to e3.

4.3.4 Evolution
Requirement 10 on the evolution and Requirement 2 on the ontology changes
brought the necessity to synchronize the layers of the framework as changes on
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the upper level may impact the lower levels. This means that we cannot change
data on a given level simply by replacing them with new data, as it would be
hard to perform the appropriate change on the other levels.

To solve this problem, we allow modifying the levels (PIM and PSM) only
through operations. Operations are pre-defined functions that modify data on
the given level and are simple enough that they can be translated to the operation
on the level below.

As an example, suppose that an attribute is removed from an ontology. First,
the tool compares the CIM with PIM and generates a delete operation on the
corresponding PIM attribute. Depending on the context and user preferences, a
user may be notified whether the tool may proceed. Then, the tool executes the
operation on PIM (making PIM consistent) and transforms the operation into a
set of delete operations on PSM that removes the attributes there. (There might
be more than one attribute, hence multiple operations.)

We will omit a complete list of operations in this thesis as they depend on
the requirements that are not fully addressed yet. However, it must be possible
to transform the operation into a set of operations on the lower level.

We do not enforce that the set of operations must be minimal, and no op-
eration cannot be composed of others. Nevertheless, each operation must be
translatable to the operations below.

Having more complex operations may be beneficial, as they preserve the origi-
nal intent rather than the performed steps. More complex operations may reduce
the computational difficulty as some actions from the user may lead to hundreds
of operations on the model, according to research on previous tools [15].

For example, wrap PSM object with OR may be a valid operation used for
purposes of inheritance (see Requirement 7). An alternative consisting of more
atomic operations may be as follows: (1) create a standalone OR (2) connect the
target object to OR (3) set OR as the target object. The alternative consists of
3 times more operations and is also harder to evaluate as the connect operation
needs to check whether the reconnection is possible due to type coherency. On
the other hand, wrapping an object with OR has no precondition rules and can
always be performed. Some other operations may be even more complex in their
base form. As mentioned, more complex operations preserve the context, as it is
clear that the intention is to wrap the object, not move it.

In Requirement 11 on schemas on the web, we have considered data specifi-
cations as an atomic unit that is always stored at once. This approach solves the
problem with the execution of evolution, as the layers of the framework depend
only on those in the same data specification. Hence, we can directly update them
at once.

Referencing other schemas is also without problem as the only thing that may
change is the type of referenced class.

4.4 Inheriting schemas
Nevertheless, there might be use cases described in Requirement 12 where reusing
layers from other data specifications would be useful. Consider a data specifica-
tion that models a general schema for any format. This specification is published
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on the web. Someone else would like to use that schema to modify it slightly. For
example, to add another attribute to the given class. Now, if the author of the
original schema modifies anything, we would like to modify the derived schema as
well. This, however, is not possible as the tool may not be aware of the existence
of the derived schema nor may not have write access to it. (Because the schemas
may be stored somewhere else, for example.)

For this particular scenario, we would need to keep a list of executed operations
on given schemas. The reused schema would then remember the last executed
operation of the parent, which should be sufficient to recreate the steps that
were performed on the parent schema in the derived schema. We have already
proposed in Requirement 12 how the evolution can work for some simple tasks.

There is one prominent solution that would nicely work with the already
introduced concept of annotation.

We can copy the whole PSM, where each entity gets a new IRI, with all the
references between them adequately updated and an interpretation annotation
set to the original entity (not PIM). This may work, but we also need our own
PIM as we cannot update theirs. But having two PIMs may cause problems, as
we stated that the interpretation on the PIM level must be unique; hence only
one entity can represent a given thing in CIM. A possible fix may be introducing
a new annotation inheritsFrom on both PIM and PSM, which would point to
the original entity. Both PIM and PSM then would be copied with new IRIs,
and the interpretation would work as right now; the copied PSM would interpret
the copied PIM. This would preserve backward compatibility (as by ignoring the
introduced annotation, this is ordinary PIM and PSM) and enables us to perform
evolution through the inheritsFrom annotation.

The key finding here is that supporting this requirement should not require
breaking changes to the framework besides storing the list of executed operations,
which is useful for other purposes, such as ability to revert changes or analyze
them later.

Concept in
an ontology

Original
PIM entity

Copied
PIM entity

Original
PSM entity

Copied
PSM entity

CIM:

PIM:

PSM:

inheritsFrom

inheritsFrom

Figure 4.4: Proposition on how to handle schema inheritance. PSM with PIM
is copied, and the links are preserved through inheritsFrom annotation. Possible
evolution paths are denoted by pink arrows.
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5. Implementation
This chapter aims to provide implementation details of the fundamental concepts
introduced during the analysis in chapter 2 and formalized in chapter 4, hence
closing the reasoning process. Its purpose is not to replace complete technical
documentation, which can be found in a project repository (see the end of this
thesis for more information).

The work intends to build a solid foundation for an ecosystem of tools with
the core framework for schema modeling. The key elements that shall be followed
to achieve this goal are:

1. All model data and configuration shall be stored in RDF. - There is already
an ecosystem of tools that can work with RDF. It is easily shareable and
linkable.

2. The core framework shall work on its own. - It shall be possible to integrate
into other applications. The tool is only a user-friendly interface to execute
the framework.

3. Generators shall work as plugins for the core framework. - The idea is that
anyone can design generators for their specific purpose.

4. The model shall be robust and extensible.

Due to the current use case and state of development, our primary focus is to
create a tool where is easy to design schemas and generate the required artifacts.
Hence the goals above are not met yet, but some design decisions were made to
fulfill them later easily.

Figure 5.1 depicts the most zoomed-out view of the tool’s architecture, where
the tool is shown in the context of other applications. We have noted several
times that we focus only on schema modeling, whereas conceptual modeling is
done elsewhere. We also plan that multiple instances of the tool may exist, each
using its own database, yet still be able to provide all the functionality, such as
schema reference and evolution.

Container structure Currently, the tool consists of a backend, manager, edi-
tor, and a CLI service.

The backend is a Node.js server that provides functionality for some genera-
tors, such as a documentation generator that requires a Python module to build
the resulting HTML file. The backend also serves as the storage for modeled
schemas. (see the bottommost layer of Figure 5.2) We also plan to use other
types of storage, such as personal Solid Pods, triplestores in general, or read-only
documents stored on the internet.

The manager is a React application that can manage schemas stored in the
backend and execute generators. It then opens an editor under a given configu-
ration which is another React application purely designed for schema editing. A
CLI service is a command line tool used for semi-automated testing of generated
schemas and transformations.
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Figure 5.1: Context of the tool with other systems. Dataspecer only reads the
ontology, which is modeled in other tools. The dashed line shows the intent to
make the tools interoperable across the Internet as the tools shall be able to reuse
and inherit specifications from each other.
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Figure 5.2: Schematic structure of the core framework and the tool. Below, there
are various schema databases. Currently, there is only Dataspecer’s backend, but
others are planned, such as Solid Pods or Triplestores. Each database is read
by store, which formally consists of schema stores containing exactly one PIM or
PSM schema with all entities. All stores are merged for easier manipulation, such
as executing operations. We have also implemented React library to integrate the
store into React ecosystem. Based on the data specification, the configuration
selects the stores that should be loaded.
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Framework structure The operation execution with schema generation is
bundled into the tools, as it is just a TypeScript library. Hence the tools do
all the work, and the backend serves as a simple database. This is a sufficient
solution for now (and necessary for most backends, such as triplestore or Solid
Pods), but the structure of operations and the whole framework allows for ex-
ecuting the operations remotely on the server as well. This may be especially
useful for large schemas during the evolution process when the difficult part can
be performed safely by the server and the client only updates the local copy.

5.1 Model representation
As model data are represented by entities that shall be serialized in RDF, we
introduce a schema store as an abstraction layer. The schema store can read and
write resources, where the resource is a document/object that contains arbitrary
data. In the context of PIM and PSM, the entity is a resource. Resources are
identified by their IRI, which is an IRI of the corresponding RDF resource.

Entities can be read from the schema store, but writing is limited to opera-
tions. Operations that were executed are saved in the schema store to provide a
history of the model at any given point in time. The schema store must contain
exactly one schema resource. A schema resource is a resource that identifies
all other entities in the schema store, formally creating a set of resources.

Schema stores are managed in stores. The store is an interface for reading
resources by their IRI and executing operations on a given schema resource. The
store is asynchronous and represents a database of resources. For example, a
store may be an interface on the SPARQL endpoint, a file system, a read-only
dump on the internet, or just data in local memory.

The current implementation of the tool uses stores that are synchronized with
the server through a simple GET-PUT API.1 Stores on the server are saved into
individual files in the filesystem. Each store contains only one schema store for
better granularity, as the file must be read and written atomically.

The store also shall generate new IRIs that can be later assigned to entities.
IRIs needs to be generated in advance to be part of the operation, so we can later
identify which entities were created. Depending on the store, the IRIs may have
different structures.

The current implementation only supports simple access by IRI. This will be
changed in the future for more advanced query operations, such as reverse lookup
for the entity.

Stores’ interface allows the creation of federated stores, hence allowing to
have only a single interface for reading and writing any entity. This simplifies
the application’s design, as we may have a complex system of shared and reused
data specifications, some of them possibly read-only, from different sources, still
available under one interface.

In previous chapters, we considered PIM as the general layer (PIM layer)
and the set of PIM entities we have formally defined (PIM schema). The PIM
schema is represented by one specific schema store. Similarly, one schema store

1This de facto implicitly supports Solid Pods as a type of store.
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also represents the PSM schema (possibly having multiple roots). To simplify
the design, the schema resource that is necessary for every schema store will also
define the PIM or PSM schema. To make the previous sentence clear, suppose
PSM schema S. The schema contains entities such as classes, ORs, etc. Those
entities are represented by resources. But the schema itself, which contains, for
example, a set of roots, also needs to be represented by a resource. And the
resource will be the schema resource.

This all means that if a user creates a data specification with two schemas,
three schema stores are created: one for the PIM schema and two for the PSM
schemas. Hence three stores represented by three files are made as well.

As we have noted, operations can be executed remotely. The current im-
plementation of the store contains logic for local operation execution; hence all
operations are evaluated on the client, and only the final result is sent to the
server. It is, however, possible to send the operations to the server and fetch the
changes. This approach is useful for better synchronization of different clients as
two clients may execute operations at the same time, possibly causing a collision.

Unfortunately, we cannot go any further by executing complex operations on
the server, as different schemas may be stored in different stores. A possible
solution would be to introduce a proxy server, that would perform these complex
operations on the given stores remotely.

Although it may seem that the whole specification may go to an invalid state
after only one store was modified (for example, when an application crashes),
this is not an issue. The individual schema stores are well separated and formally
connected only through evolution. Hence even if only the PIM store is updated,
the individual PSMs became only inconsistent, not invalid literally.

Data specification Data specifications are also identified by IRIs, but they
are not resources in the same sense as PIM or PSM entities. We do not require
write-through-operations access and are also read in different situations. Current
implementation stores them in SQL database for fast access (which is against the
first rule that everything shall be stored in RDF).

A data specification contains, namely, (i) a set of reused data specifications’
IRIs, (ii) a PIM schema’s IRI, (iii) a list of PSM schemas’ IRIs, and (iv) a set
of stores’ IRIs where the appropriate schemas can be found and (v) an artifact
configuration.

5.2 Layers for simplifying the model
Reading the model may be too complex, as the entities may not exist, reading
them requires asynchronous access, and to obtain the value of all annotations,
we usually need to go to the PIM layer. Letting individual generators access
the model is, of course, necessary, but for most generators, this would mean
implementing many helper functions for easier access. To reduce the burden on
generators, we introduce conceptual and structural models whose purpose is to
provide a more user-friendly interface for reading the model.
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Conceptual model The conceptual model is relatively simple as it only sim-
plifies access to PIM, which is simple by itself. Its structure is similar to PIM, but
attributes and associations are referenced directly from the class as properties.
The whole model is constructed in advance; therefore, we can check whether it
is correct and not need to do it during the querying. But mainly, we can access
everything synchronously.

Structural model Structural model employs a different approach to schema
structure than PSM. As PSM is highly inspired by schemas, it also has a more
schema-like structure. For example, include is valid class property, but from an
object-oriented view, it has more semantic meaning. The structural model we
use tends to be more object-oriented.

Classes also have properties, but the properties represent only attributes and
associations. Include is translated to class inheritance, as it works almost precisely
the same as inheriting properties from a parent class. The only difference is
that the position of the include cannot be preserved. This, however, for most
generators, is not an issue.

To simplify the work with disjunction, we exploit the fact that OR on one
element is the same as the element without OR. Hence, all associations have
an array of referred classes as individual OR choices. This won’t introduce new
objects that need to be specially handled and allows domain-specific generators
to ignore the concept at all if it is not required. (although this is a bad design in
general)

It may seem that the object-oriented interface goes against our design. Our
intent is, however, to have a robust model that can handle a wide range of use-
cases and rather create a layer for easier access.

Transformations Conceptual and structural models provide various transfor-
mations2 that modify the model or obtain additional data for a given generator.

• It is possible to flatten the structural model by copying properties from
parent to child classes. This transformation may simplify the work for
developers of generators as they do not need to handle inheritance anymore
(hence the include). Of course, this would cause the artifact to grow as the
entities are not reused but may be helpful in an early stage of development
as simplification.

• As some information lies in PIM, such as naming, description, default car-
dinality, or datatype, there is a transformation that fetches this information
to the structural model.

• Associations marked as dematerialized (dematerialization is an annotation
on the association that specifies that all properties from the associated
class shall be put into a parent class) may be "unpacked" to the parent class
instead of the association itself.

2Do not confuse with data transformations from Requirement 4. In fact, individual struc-
tural models can be considered as levels in MDD architecture. Transformations then correspond
to MDD transformations that convert one layer into another.
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Format-aware structural models As there is usually a whole ecosystem of
generators that work with a given technology, such as XML, it is crucial to let
the designers extend or even alter the model’s interface on their own, making it
format-aware. We already use this technique for XML to add namespace infor-
mation to the entities. In general, the transformation may change the interface
of the structural model to suit the generator’s needs better. The transformation
may, for example, add a new type of class property that was extracted from PSM.

5.3 Artifacts generation
We have utilized the following interface to properly generate artifacts that can
reference each other, which is a crucial feature for the documentation and to keep
the artifacts highly configurable. First, its configuration must be provided. The
configuration consists of:

1. IRI of the given artifact.

2. IRI of the generator to be used to create a given artifact.

3. Output path, as the generated artifact has to be stored somewhere. (a
directory can be provided for generators that create more than one file)

4. Public URL, as we expect, that the artifacts will be uploaded on the Inter-
net. In most cases, the public URL shall be the same as the output path,
which creates relative paths between the artifacts.

5. Generators that reference other artifacts require their IRIs. (this is neces-
sary as, in general, we can create multiple similar artifacts, possible with a
different configuration; hence the generator needs to know which to include)

6. For schema artifacts, the IRI of the PSM schema is required.

To construct the array of configurations, ArtifactConfigurator is used. The
configurator itself is configured from data specification. The standard options
are whether to generate all schemas, how the file structure should look or the
configuration for individual generators, such as whether CSV schema shall use
multiple tables for the given schema.

5.4 CIM adapter
Currently, we support only one CIM adapter (with others planned) for Semantic
Government Vocabulary (SGOV) [12], as we have no use cases that would require
others. In general, which adapters (multiple can be used) are used for a given
schema are configured in data specification. Although this may not be necessary,
and all adapters can be used all the time, we still want to limit this as the user
may accidentally select a concept from a wrong ontology, and all the ontologies
would have to be queried.

To follow the definition of CIM, the CIM adapter returns resources as a read-
only temporary store containing PIM entities. Those PIM entities are then in-
serted into the actual PIM through the operations. For example, when a user
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searches ontology for a root class, the adapter returns a list of PIM classes from
the search query. The user then picks one PIM class which is passed to the com-
plex operation that creates atomic operations on both PIM and PSM levels and
properly adds the class to the schema.

Besides the search operation, the CIM adapter provides functions for obtaining
the class surroundings, complete hierarchy, or CIM adapter-specific properties.
The last functionality provides data that are not stored in PIM but may be handy
to display additional information about resources. For example, a URL to the
resource on the Internet (as not always the IRI gives access to the resource info
with human-friendly results).

Our SGOV adapter also returns tags for the resources. These tags are then
shown in the UI to help the user better understand which resources to choose, as
sometimes, there can be multiple resources with the same name. Nevertheless,
we currently do not store the tags in the PIM to be accessible by generators.
In general, this3 would need to be analyzed concerning the evolution and local
modifications and what would it mean if they change.

All resources returned from the CIM adapter are consistent with CIM, not
identical. This means that the returned resource, for example, may not contain
all extended classes (in the case of searching for the resource, this is unnecessary).

5.5 React libraries
We have also implemented React libraries for easier access to resources from the
React framework. The individual resources are stored in the component state,
and because the federated store implements an observer pattern, the component
may listen for the changes in the store (for example from the executed operations)
and appropriately update its state. All this functionality is provided from a React
hook

const {resource, isLoading} = useResource(iri);

that returns the given resource and info, whether the resource is being loaded. If
the resource updates, it provides the last known value until new is loaded not to
cause visual flashing when a new resource is not available immediately.

The library also provides a hook for accessing any amount of resources and
memoizing the result until any of the queried resources changes. This is used for
advanced features, such as determining whether the OR can be replaced with a
more user-friendly representation of a class having specializations (see Figure 8.1).

const {result, isLoading} = useResourcesInMemo(
async getResource => {

// Use getResource arbitrarily in the function
// const resource = await getResource(iri);

}, [dependencies]);

3We mean any additional properties that have no impact on the data conforming to gener-
ated schemas.
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6. Related work
6.1 Enterprise Architect
Sparx Systems Enterprise Architect is a tool for visual modeling and design based
on OMG’s UML. It supports software engineers during the whole development
process by providing constructs for modeling business logic, diagrams, the archi-
tecture of software, use case diagrams, and others. It has a proprietary license,
and the product is paid.

EA supports the basics of MDA, which was introduced in chapter 1. Users
can create PIM directly in the tool by modeling the relations between the classes
(creating a UML class diagram), and then the tool transforms PIM into PSM
representation. Transformation is, however, only elementary, and it seems that it
is not possible to choose which part of PIM shall be transformed into PSM. It also
does not provide the variety of options we are planning. PSM can represent XML
only by default, but there is support for plugins that can extend this functionality.
EA focuses more on the programming languages as, besides the XML, PSM may
describe C#, C++, Java, PHP, and NUnit elements.

Although it should be possible to implement most of the desired functionality
directly into EA, the proprietary license and the fact that the tool is too general
for our use case makes it not unusable.

6.2 OSLO
OSLO1 - Open Standards for Linked Organisations is an initiative that originated
in Flanders, the Dutch-speaking northern portion of Belgium, to promote the
use of technical standards for the data exchange between various organizations,
governments, and local governments. The goal of OSLO is to maintain and
create the standards through the open process (hence everyone can intervene),
keep the rules respected, provide a publication platform and support the adoption
of the standards. So far, OSLO contains over 18 different domains consisting of
definitions from 107 organizations.

The initiative developed a toolchain to ease the standards’ publication pro-
cess. The standards are modeled in Enterprise Architect UML software and then
converted into an RDF representation with their tool2. The following tool then
generates artifacts (resulting files) that are automatically published on one cen-
tralized server https://data.vlaanderen.be/ns. The artifacts contain HTML
documentation, RDF vocabulary, SHACL3 templates for validation of RDF, and
a JSON-LD context for developers that prefer JSON formats. Their toolchain
uses the GitHub platform for storing their documents and triggering the rest of
the toolchain. They also provide tools for organizations to validate their data
against the standards to check that data are machine-readable without errors.

1https://joinup.ec.europa.eu/collection/oslo-open-standards-linked-organis
ations-0/about

2https://github.com/Informatievlaanderen/OSLO-EA-to-RDF
3https://www.w3.org/TR/shacl/
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OSLO also focuses on the interoperability of services that provide those data
so that every service has a generic hyper-media-driven API.

Compared to our approach, OSLO’s primary focus is on the interoperability
of public services and their data in LOD format. Their goal is to provide a set of
tools to create and later validate open data effectively. Our approach is to design
a general tool (hence it can be used for any related purpose, such as software
development process) for services that use non-RDF formats, such as CSV or
XML files, and provide tools to convert them to linked data format.

As noted in the introduction chapter, we also focus on the public sector, but
only as one of many use cases. Hence, in general, their approach is better suited
for the public sector as their tool may better fit the problem.

6.3 LinkML
LinkML is a general-purpose language and a tool using YAML for modeling
schemas that can be converted to various formats such as JSON, CSV, SQL,
and RDF schemas, or Python Dataclasses. It also generates human-readable
documentation with diagrams and can validate the data in different formats. It
is written in Python.
classes:

Person:
attributes:

id:
identifier: true

full_name:
required: true
description: name of the person

phone:
pattern: "^[\\d\\(\\)\\-]+$"

age:
range: integer
minimum_value: 0
maximum_value: 200

Figure 6.1: Example of part of the YAML configuration file for LinkML.

The core concepts in their model are classes with properties. Classes then
support inheritance, and the model, in general, supports many options for the
data types, cardinalities, regular expression patterns, and others.

Nevertheless, the primary input of the framework is the YAML file, where the
ontology needs to be defined. This is an entirely different concept than we have,
as the ontology already exists, and we model the schemas. The tool seems not to
let the user choose what to include to the schema in such granularity as our tool
does.

Based on how the framework is used, we suppose that it targets the former
use case from the introduction: to create schemas for (micro)service architecture.
The lack of UI makes it difficult to use outside this case.
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Enterprise
Architect OSLO LinkML XCase &

eXolutio Dataspecer

Shared ontology no yes with toolchain no yes
Custom schema structure no yes no yes yes
Schema extension n/a ? n/a no planned
Evolution no ? no yes planned
Custom artifacts in their DSL no by plugin no by plugin
User interface graph graph YAML graph tree
Pricing paid paid due to EA free free free

Table 6.1: Comparison of all the introduced tools with Dataspecer. The compared aspects are those that are important for us either by
the use case or the requirements from chapters 2 and 3.

Shared ontology - Whether the tool can use a pre-defined ontology that is shared on the Web. The tools that do not support this
requirement usually require the user to download it manually or create it directly in it.
Custom schema structure - If it is possible to define your own structure of schema and not have to have it generated automatically
from the conceptual model.
Schema extension - Whether the tool supports modifying schemas by creating their copy but keeping the semantic linking between
them that could be used for evolution. (see Requirement 12)
Custom artifacts - If it is possible to extend the tool’s functionality so custom artifacts can be generated. For example, domain-specific
documentation or schemas.
User interface - How the schema is being modeled and with which part of the application the user spends most of the time. graph means
visual graph representation of the structure whether tree is for the bullet-list representation discussed in Requirement 1.



7. Evaluation
To ensure that the framework for modeling and transformation works as desired,
we have employed several automated unit tests that covered basic functionality.

We also continuously test the group of transformation generators against each
other to quickly find a mistake. For that, we have developed the already men-
tioned CLI interface, which allows us to create artifacts from a schema, imme-
diately validate test data against the given schema, then transform them into
RDF using lifting, store them into a triplestore, use generated SPARQL query
to obtain data back to RDF, execute lowering back to given format and again,
compare validity against the schema and original data. This is, so far, performed
only for XML as we are still working on the other formats.

The application is also in active use to create FOSes (see the introduction
chapter) for the Czech government. Our current goal, by which the development
was highly affected, is to design a tool that would create them automatically,
meeting all requirements, just by modeling schemas from an existing ontology
that is being modeled [12] in the Czech Republic.

Currently existing FOSes1 (or OFNs from Otevřené formální normy in Czech)
consists of JSON schemas linked to other subschemas and an HTML technical
document (similar looking to W3C recommendation documents, for example) in
ReSpec2 containing a description of all concepts used in a schema together with
their meaning. Some FOSes also include XML schema, JSON-LD context, and
an overview of the RDF structure, as the intent is to map data to RDF, and
SPARQL queries. Also, examples of SPARQL queries and data in given formats
may be present.

So far, these specifications were made by hand with the help of several scripts
for generating structured texts, such as an overview of schema structure. This
was, of course, not suitable for wider use, as large parts still needed to be created
by hand.

The goal of this chapter is to evaluate the tool in a real-world application and
compare the results with the existing FOSes.

7.1 Register of rights and obligations
One well-defined group of FOSes is the Register of rights and obligations (RPP),
which currently contains 13 specifications.

During the modeling, a few additional specifications were added that could
be later reused by others. Reusing was used extensively, and it was also needed
to reuse schemas from other FOSes than the RPP. This was not an issue as
all schemas were designed in one instance of the application where individual
groups of FOSes were separated by tags. However, in general, even this simple
use case already shows that the governmental specifications are interconnected a
lot and may be beneficial to have multiple instances of the tool under different
institutions, each modeling its own specifications, yet still be able to reuse them.

1https://data.gov.cz/ofn/ (only in Czech)
2https://respec.org/
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Management of schemas The evaluation also shows that there was no data
specification that would have more than one schema. In this thesis, we haven’t
exactly specified how data specifications and data schemas shall be used to create
schemas. The mentioned approach was used because each data specification has
its documentation, and the modeler can choose which specifications will be reused,
as reuse works on the specification level, not the schema level.

Although it may seem that the chosen approach was correct, there is still one
schema for specification. In the language of the framework levels, each schema
(PSM) had its own PIM.

1. That means that during the evolution in the future, a user would need to
evolve all schemas separately, which may cause a problem if one schema is
forgotten during the process. On the other hand, evolving the whole set
of schemas at once may be challenging as there would be many changes
that need to be propagated, and it may be difficult to exclude changes from
some schemas.

2. Having a user interface ready for multiple schemas but always using one
may be confusing for some users as they can ask a similar question as we
do: "When do we need more than one schema?" The answer depends on
how we decide the schemas are structured in data specifications. If exactly
one schema belongs to a data specification, then we do not need more.
But having all schemas under one specification is also a viable approach,
especially when designing API for modules, as was introduced in the former
example in the introduction chapter. Then, each module would correspond
to one data specification having multiple schemas.

Furthermore, the current approach does not support generating artifacts,
specifically documentation, for a group of specifications. This is, for example,
used by the current documentation of the RPP, as there is one general document
that refers to other specifications.

It appears that the problem of schemas belonging to data specifications must
be further analyzed as it may not be sufficient enough for larger projects, es-
pecially when designing schemas for a government that has multiple branches
working more independently yet still needs to share specifications.

Possible solutions would include generalizing a concept of data specification
to a project directory, where each schema belongs to one project, and the project
may belong to another one (not creating a cycle). However, this would require
analyzing how the PIM level shall work, whether each directory shall inherit (see
section 4.4) it from the parent and how the evolution shall work.

Schema modeling Regarding the modeling, about half of the schemas con-
tained maximally ten entities, and their purpose was to be referenced from oth-
ers. The other half had about 20 or 30 entities at most. Most schemas used
only standard constructs, such as classes, attributes, associations, and reverse
associations. See Figure 8.2 with a screenshot from the application with one of
the schemas. About a third of the schemas referenced others. The references did
not have cycles, but some of them had lengths of three.

Three schemas required disjunction, specifically the inheritance of classes as
specified in Requirement 7, and one schema required the inheritance on the root
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level. Although the sample is small, it shows that in typical cases, we do not need
the disjunction per se, only the inheritance, as usually, when we need to select
between two different things, they are usually of the same type.

This specific use case of generating FOSes for the Czech government requires
that if the schema represents an array, it shall be an object containing that array.
Unfortunately, with the current state of development, this cannot be supported as
the creation of non-interpreted classes is not trivial, as it may break the generation
of transformation scripts, for example, and hence need to be further analyzed.
Currently, those affected schemas can be altered by hand by adding a wrapper
object. In the future, this problem can be addressed on two levels.

1. Either introduce a generator that does it automatically, as this is the re-
quired behavior for Czech FOSes.

2. Or add support for non-interpreted entities and model the schema with
them.

Although the latter approach may seem cleaner yet harder for the user, it may
not be correct, as adding the wrapper object may not have the desired semantics.
For example, suppose that we would like to reference such schema. Should the
wrapper object be present as it is a part of the schema, or do we want to reference
the interpreted class instead and set the cardinality correctly?

Another similar requirement is that each interpreted class shall have a type
attribute with a string value that follows specific pattern rules based on the type
of property. This is a very similar problem to the previous one, as the type may
be considered a domain-specific attribute that is generated automatically.

Documentation Some FOSes had examples that we do not support yet, and
it is a subject for future work.

Comparing the generated documentation, our results are missing some schema
unrelated info, such as the specification’s author or European Union logo. In
general, this shall be solved by introducing a new documentation generator that
works similarly but adds those missing information and sets the structure as
required.

Our tool successfully generated descriptions for the conceptual model with
diagrams (which some FOSes do not have) and the documentation of the schemas.
The schema documentation, however, is a little harder to read. Therefore we need
to focus on improving this as well.

In general, because the original documentation was hard to make by hand and
various scripts were used to generate it, it shouldn’t be challenging to achieve
almost the same result by modifying the generator accordingly.
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Conclusion
In this thesis, we have analyzed, formally described, and implemented a newly
developed framework and a tool for schema modeling and management based on
Model-Driven Architecture (MDA) and previously developed tools XCase and
eXolutio.

We have implemented the core framework functionality of complete modeling
of schemas from an ontology with support of inheritance of entities and disjunc-
tion. We have created an easy-to-use user interface that provides all the concepts
for the modeling and management of schemas in specifications and artifact gen-
eration.

Next, this thesis laid the foundations for future work in this area, which was
described and analyzed in chapters 3 and 4, such as the use of non-interpreted
entities, evolution, and inheritance of schemas or use of recommendation systems
in modeling. These topics were complex to be analyzed alongside the core func-
tionality of the tool and would require separate work, but they were necessary to
be considered to implement the framework properly.

The tool is constantly used for modeling recommendations for publishing open
data of public institutions and the government of the Czech Republic.

Dataspecer is open-source and developed on GitHub.
Technical documentation is part of the repository. User
documentation with running instance and additional infor-
mation about the project, and the link to the repository is
available at the project website dataspecer.com.
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8. Attachments

(a) General schema with OR in the root of the schema and several includes.

(b) Same general schema visualized as one base class with specializations.

Figure 8.1: Screenshots from the tool comparing a general schema of a Public
place with two specializations according to Requirement 7. The variants show the
plain view, consisting of OR and include, and a user-friendly view hiding those
constructs. The example shows one of the FOSes that we are trying to model.
For the purpose of this example, the schema was simplified, some classes were
contracted, and labels were translated to English.

64



Figure 8.2: A real-life example of a general schema of one of the RPP FOSes,
that were described in section 7.1. You can see that the schema consists of only
a few associations and attributes. There are two references to the other schema
denoted by [refers to] text.
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