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Abstract

The continuum function α 7→ 2α on regular cardinals is known to have great
freedom. Say that F is an Easton function iff for regular cardinals α and β,
cf(F (α)) > α and α < β → F (α) ≤ F (β). The classic example of an Easton
function is the continuum function α 7→ 2α on regular cardinals. If GCH
holds then any Easton function is the continuum function on regular cardi-
nals of some cofinality-preserving extension V [G]; we say that F is realised
in V [G]. We say that κ is F (κ)-hypermeasurable iff there is an elementary
embedding j : V →M with critical point κ such that H(F (κ))V ⊆M ; j will
be called a witnessing embedding. Our original results concern two topics:

Compatibility of a continuum function given by F and of measurable car-
dinals. We will show that if GCH holds then for any Easton function F
there is a cofinality-preserving generic extension V [G0] such that if κ, closed
under F , is F (κ)-hypermeasurable in V and there is a witnessing embedding
j such that j(F )(κ) ≥ F (κ), then κ will remain measurable in V [G0].

Compatibility of a continuum function given by F and of singular strong
limit cardinals failing SCH.

• We will show that if GCH holds then for any Easton function F there
is a cardinal-preserving generic extension V [G1] such that if κ, closed
under F , is F (κ)-hypermeasurable in V and there is a witnessing em-
bedding j such that j(F )(κ) ≥ F (κ), then κ has cofinality ω in V [G1]
and V [G1] |= 2κ = F (κ). V [G1] is a generic extension of V [G0] ob-
tained by a forcing which adds an unbounded ω-sequence to each such
κ.

• We will show that if GCH holds then for any Easton function F which
satisfies some mild restrictions and preserves all Mahlo cardinals there
is a cardinal-preserving generic extension V [G2] realising F such that
if κ is F (κ)-hypermeasurable in V , then κ has cofinality ω in V [G2]
and V [G2] |= 2κ = F (κ). The mild restrictions mentioned above
require that F preserves GCH at some places, which contrasts with
the restriction placed on F in V [G1]. The forcing used to obtain this
model is the extender based Prikry forcing.

• We say that F is toggle-like if for all regular cardinals α, F (α) is
either α+ or α++ (F “toggles” GCH on and off). Let Σ be a subclass
of κ++-hypermeasurable cardinals. We will show that if GCH holds
and F is toggle-like and F (κ+) = κ++ for every measurable cardinal
κ, then there is a cardinal-preserving generic extension V [G3] realising
F where SCH fails exactly on elements of Σ. It is our conviction that
the restriction F (κ+) = κ++ for every measurable cardinal κ can be
removed, thus obtaining an almost optimal result.
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1 Introduction

This thesis deals with the following problem: Given an Easton function F
defined on regular cardinals, what does F (and the universe V ) have to
satisfy so that there is a class generic extension V ∗ so that

1. V ∗ has the same cofinalities as V , F is realised in V ∗ and the large
cardinal structure of V is preserved in V ∗ (we shall concentrate on
measurable cardinals).

2. V ∗ has the same cardinals as V , F is realised in V ∗ and some global
pattern of failures of SCH is achieved in V ∗ which corresponds to the
large cardinal structure in V .

These questions are a generalization of the results of W.B.Easton in [4].
We are motivated by the conviction that large cardinals play an important
role in set theory and so it is of great interest to find out how they interact
with the continuum function. The same holds for the failure of SCH at
singular cardinals, which is inherently a large cardinal problem.

The original results answering, at least partially, the above questions are
given in Theorems 5.7, 5.17, 6.6, 6.21, and 6.28. The argument for Theorems
5.7 and 5.17 was accepted for publication [7].

The thesis is divided as follows: In Section 2 we review the original
proof in [4] and some basic notions and concepts concerning extenders and
hypermeasurable (strong) cardinals. In Section 3 we show that preservation
of large cardinals introduces new and important considerations if we want to
realise an Easton function F (we for instance show that the original forcing
in [4] may actually kill many large cardinals). In Section 4 we review and
generalize slightly a new way how to preserve measurable cardinals while
failing GCH. This technique is based on [9]. In Section 5, we prove original
results concerning the question 1. above. In Section 6, we prove original
results concerning the question 2. above.
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2 Preliminaries

In this section we review some background results and techniques which are
referred to later in the text.

2.1 Notational conventions

Our notation is standard, following [18]. In particular, Pκ = 〈(Pα, Q̇α) |α <
κ〉 denotes a forcing iteration of length κ where Pα+1 = Pα ∗ Q̇α for every
α < κ. If α < κ then Pα denotes the restriction of Pκ to α. For each α < κ,
we can factor Pκ into the forcing Pα and the tail iteration of length κ \ α
defined in V Pα ; we write this as

Pκ ∼= Pα ∗ Pκ \ Pα, (2.1)

where Pκ \ Pα is the tail iteration.
Similarly, if Gκ is a generic filter for Pκ, we denote as Gα its restriction

to Pα. Very often we use capital G to refer to a generic filter for an iteration,
while small g refers to a generic filter for a successor step of an iteration:
for instance a generic Gα+1 for Pα+1 factors as Gα ∗ gα.

To avoid confusion, we explicitly state that we are going to use the
notions κ-distributive, κ-closed and their variants for <κ-distributive and
<κ-closed (just as κ-cc is in fact used for antichains of size <κ).

We denote as On the class of ordinal numbers, and sometimes we denote
as Reg the class of regular cardinals.

2.2 Easton class forcing

We will shortly review an original result of Easton [4] who showed that
there is very little ZFC can prove about the continuum function on regular
cardinals. It should be emphasized that this result really holds just for ZFC,
and fails badly for extensions of ZFC of the type ZFC + (there are large
cardinals).1 See discussion in Section 3 and following.

Definition 2.1 A class function F defined on all regular cardinals is called
an Easton function if it satisfies the following two conditions Let κ, µ be
arbitrary regular cardinals:

1. If κ < µ, then F (κ) ≤ F (µ);

2. κ < cf(F (κ)).
1By the rather vague term “large cardinal” we will generally mean a cardinal which

implies the existence of a non-trivial embedding from V to some transitive model M (hence
we will start from a measurable cardinal).
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Note that Cantor’s theorem κ < 2κ = F (κ) is implied by (2) above.
We say that an Easton function F is realised in some cardinal-preserving

extension V ∗ ⊇ V of V if F is the continuum function α 7→ 2α in V ∗, i.e.
for every α in the domain of F , V ∗ |= 2α = F (α).

Theorem 2.2 (Easton) Assume GCH. If F is an Easton function then
there is a cofinality-preserving forcing extension realising F . Hence the two
conditions in Definition 2.1 above are the only conditions provable in ZFC
about the continuum function.

We will not give a detailed proof of the theorem (see for instance [22])
but will emphasize some points which are interesting for us with respect to
the forcing which Easton used to prove the theorem.

Definition 2.3 Let α be a regular cardinal and β an ordinal greater than
0. Then Add(α, β) denotes the forcing for adding β-many Cohen subsets
of α. For notational convenience we will construe Add(α, β) as the < α-
supported product of Add(α, 1) of length β, where conditions in Add(α, 1)
are functions from α to 2 with domain of size less than α.

Easton used the product of Add(λ, F (λ) for regular λ’s to achieve the
desired result. He used a special kind of support, which is now called the
Easton support (denoted by the superscript

∏E):

E∏
λ∈Reg

Add(λ, F (λ)) (2.2)

Definition 2.4 We say that a product
∏
λ∈Reg Pλ for some forcing notions

Pλ in V has the Easton support if the support of p ∈
∏
λ∈Reg Pλ is bounded

below each λ ∈ Reg.

Notice that we could say equivalently that the support of p is bounded below
each regular limit cardinal λ (conditions are trivially bounded if λ is a suc-
cessor cardinal). Since Easton started with a ground model satisfying GCH,
a regular limit cardinal is the same as a (strongly) inaccessible cardinal, and
hence the Easton support is a non-trivial requirement only if inaccessible
cardinals are present in V .

Remark 2.5 Every condition in the forcing (2.2) is a proper class and so
the product (2.2) formally does not exist (as it would contain as elements
proper classes). In order to rectify this situation, we will identify (2.2) with
the union

PF =df

⋃
λ∈Reg

PF≤λ, (2.3)
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where PF≤λ equals to
∏E
λ∈Reg∩λ+1 Add(λ, F (λ)). To define ordering on PF ,

we identify PF≤λ̄ with the pointwise image of the obvious complete embedding
from PF≤λ̄ to PF≤λ (whenever λ̄ < λ are regular). In practice, however, we
will use the “naive” representation in (2.2). Even with the formally correct
representation in (2.3), it is still not automatic that a generic extension via
PF satisfies all the axioms of ZF since PF is a proper class. The forcing
PF is however very mild, in particular it factors at each regular λ into a
λ+-closed upper part (a proper class) and a λ+-cc lower part (a set); see
below (2.4). The closure of the upper part (in combination with Lemma 2.6
(1)) is enough to conclude that the axioms of ZF are satisfied in a generic
extension via PF . A detailed account can be found in [18], p. 236, or in [6],
p. 39.

The preservation of cofinalities in a generic extension via PF follows
from the following product analysis (this lemma is often called “Easton’s
lemma”).

Lemma 2.6 Assume P,Q ∈ V are forcing notions, and P is κ-cc and Q is
κ-closed. Then the following holds:

1. 1P  Q̌ is κ-distributive;

2. 1Q  P̌ is κ-cc;

3. As a corollary, if G is generic for P over V and H is generic for Q
over V , then G×H is generic for P×Q, i.e. G and H are mutually
generic.

Proof. Ad (1). Assume ḟ is forced by 〈p̃, q̃〉 to be a P × Q-name for a
function from µ < κ into ordinal numbers. We will find a condition q∞ ≤ q̃
such that for every G generic for P containing p̃ and H generic for Q over
V [G] containing q∞, the condition q∞ defines the function ḟG×H in V [G].

The proof is an analogue of the proof of the fact that a κ-closed forcing
notion does not add a new µ-sequence for µ < κ, except that instead of
determining a single value of ḟ(α), <κ different values – corresponding to
an antichain in P – will be found.

In preparation for the argument define for each α < µ < κ and some
qα ≤ q̃ ∈ Q the following procedure. Simultaneously construct a decreasing
sequence 〈qξα | ξ < ζα〉 of conditions in Q and a sequence of pairwise incom-
patible conditions below p̃, Aα = {pξα | ξ < ζα}, and ordinals aξα for ξ < ζα
such that 〈qξα, pξα〉  ḟ(α) = aξα. As P is κ-cc, the construction will terminate
– yielding a maximal antichain Aα – at some ζα < κ. Let q̃α be the lower
bound of qξα for ξ < ζα (such bound exists as Q is κ-closed).

By induction carry out the above procedure for all α < µ, making sure
that the resulting conditions q̃α form a decreasing sequence 〈q̃α |α < µ〉. Let
q∞ be the lower bound of this sequence.
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Let G be a generic for P containing p̃ and H generic for Q over V [G]
containing q∞. It follows that ḟG×H(α) = x iff x is identical to aξ0α , where
pξ0α is the unique element of Aα in G (Aα is a maximal antichain below p̃,
and so is hit by all generics G containing p̃). This definition takes place in
V [G] and hence ḟG×H ∈ V [G].

Ad (2). Assume q̃ ∈ Q forces that Ȧ is a sequence of length κ of elements
of P in V Q. Construct by induction a decreasing sequence 〈qξ | ξ < κ〉 of
conditions below q̃ such that qξ decides the value of Ȧ at ξ, i.e. qξ  Ȧ(ξ) =
aξ. At limit stage of the construction, we can take a lower bound as Q is
κ-closed. It follows that Ã = {aξ | ξ < κ} is an antichain, if q̃ forced Ȧ to be
an antichain. This is a contradiction.

Ad (3). It is enough to show that G hits all maximal antichains of P
in V [H]. As by (2) P is still κ-cc in V [H], and Q does not add new <κ
sequences, it follows that the maximal antichains in V [H] coincide with the
the maximal antichains in V .

Note. The forcing notion Q may be a class forcing, providing that the
forcing relation is definable so that the truth lemma for Q holds. Sufficient
conditions are identified in the standard reference book for class forcing [6].
The forcings we will be dealing with will satisfy these sufficient conditions.

(Lemma 2.6) �

Lemma 2.6 has an immediate application to PF : if λ ∈ Reg then the
product PF can be factored as

PF ∼=
∏E
λ′∈Reg∩λ+1 Add(λ′, F (λ′))×

∏E
λ′∈Reg\λ+1 Add(λ′, F (λ′)) (2.4)

Denote
∏E
λ′∈Reg∩λ+1 Add(λ′, F (λ′)) by PF≤λ and

∏E
λ′∈Reg\λ+1 Add(λ′, F (λ′))

by PF>λ.2 PF>λ is obviously λ+-closed. Assuming GCH, a ∆-lemma argument
combined with the Easton support of PF≤λ implies that PF≤λ is λ+-cc. The
argument that PF preserves cofinalities is now straightforward:

Sketch of the proof of Theorem 2.2. We will show that the forcing PF
preserves all cofinalities. Let G be a generic filter for PF and assume for
contradiction that some regular cardinal κ is singularized in V [G] and has
cofinality λ. Since λ is regular in V [G], it must be regular in V as well.
Factor PF as PF≤λ × PF>λ and write G = G≤λ × G>λ. There are two ways
how to argue now, using either the item (1) or the item (2) in Lemma 2.6.

The proof usually refers to (2) and the argument is in the “non-reverse”
order, i.e. we look at PF as PF>λ×PF≤λ. PF>λ is λ+-closed in V , and so it must
be the forcing PF≤λ which adds a cofinal subset to κ of length λ. However, by
(2) of Lemma 2.6 the forcing PF≤λ is λ+-cc in V [G>λ] and hence regularity of
all cardinals µ ≥ λ+ is preserved. In particular κ > λ cannot be singularized
by forcing with P≤λ over V [G>λ]. Contradiction.

2See Remark 2.5 for a formally correct way of representing PF
>λ.
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Though less common, it is possible to view the product PF in the “reverse
order”, i.e. we look at PF as PF≤λ × PF>λ and use item (1) of Lemma 2.6.
Let λ < κ be as in the previous paragraph. The forcing PF≤λ preserves
regularity of all cardinals µ ≥ λ+, and in particular of κ. The forcing PF>λ
is however still λ+-distributive in V [G≤λ] by (1), and so it cannot add a
new cofinal subset to κ of size λ when forced over V [G≤λ]. Contradiction.

(Theorem 2.2) �

Remark 2.7 We will see in Section 3 that PF typically destroys large car-
dinals since it is a product of forcing notions existing in V . In order to
preserve large cardinals, it is necessary to use iteration (see Sections 3 and
4).

We close this subsection with a definition of a notion which a strength-
ening of the κ-cc condition. We say that a forcing notion P is κ-Knaster if
every subset X ⊆ P of size κ has a subfamily Y ⊆ X of size κ such that all
elements of Y are pairwise compatible.

Lemma 2.8 If P is κ-Knaster and Q is κ-cc, then P×Q is κ-cc.

Proof. It suffices to show that 1P  Q is κ-cc. Assume p̃  Ȧ is an
antichain in Q of size κ. Define a set X = {pα |α < κ} of conditions below
p̃ such that pα  Ȧ(α) = qα for some qα. By κ-Knasterness of P, there
is a subfamily X ′ = {pαξ

| ξ < κ} of X such that the conditions in X ′ are
pairwise compatible. It follows that the set A′ = {qαξ

| pαξ
∈ X ′} is an

antichain in V . This is a contradiction. �

2.3 Extenders and hypermeasurable cardinals

As the topic of this thesis is centered around preservation of large cardinals
in forcing extensions, and in particular of measurable cardinals, we will
review some facts concerning measurable and hypermeasurable (or strong)
cardinals.

If j : V →M is a measure ultrapower via some U ⊆ P(κ) then U is not
an element of M . It follows that measure ultrapowers capture only a “small”
segment of the Vα-hierarchy of V – Vκ+1 ⊆ M , but Vκ+2 6⊆ M . Extenders
enable us to capture an arbitrarily large initial segment of the Vα-hierarchy
of V . Extenders are thus useful in dealing with hypermeasurable, or strong,
cardinals.

Definition 2.9 A cardinal κ is λ-hypermeasurable (or λ-strong), where λ is
a cardinal number, if there is an elementary embedding j with a critical point
κ from V into a transitive class M such that λ < j(κ) and H(λ)V ⊆M .
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Remark 2.10 Note that Definition 2.9 is slightly different from the def-
inition found in [18] or [20], where κ is called κ + α or just α-strong if
Vκ+α is included in M . The main difference is that we use the Hα = H(α)
hierarchy instead of the Vα hierarchy to measure the strength of the embed-
ding j. Note that under GCH, there is a straightforward correspondence
between the measurement of the strength of an embedding using the struc-
tures H(κ+α) and Vκ+α for an inaccessible κ and ordinal number α. It holds
that if M is an inner model of ZFC then Vκ+α ⊆ M holds iff H(κ+α) ⊆ M
holds. This correspondence is however lost if GCH fails.

Starting with some j : V →M , we define a (κ, λ)-extender derived from
j which will capture the desired initial segment of M (and if M contains
some desired segment of V , we capture this segment of V as well). Our
definition of extenders is standard, see for instance [20] or [1]. We stress
some useful points which are not usually made explicit.

Assume that j : V →M (M transitive) is an elementary embedding with
a critical point κ and λ < j(κ) is a V -cardinal. We define the (κ, λ)-extender
ultrapower ME derived from j to be the transitive collapse of XE ⊆ M ,
where3

XE = {j(f)(a) | f : [κ]<ω → V, a ∈ [λ]<ω} (2.5)

Standard arguments show that XE is a model of ZFC since it is the direct
limit of an ω-directed system of models of ZFC

〈(Xa, ida,b) | a, b ∈ [λ]<ω, a ⊆ b〉, (2.6)

where Xa ⊆M for each a ∈ [λ]<ω and the embeddings are the identity, i.e.
Xa ≺ Xb for a ⊆ b. Each Xa is an isomorphic copy the measure ultrapower

X̄a = {[f ]Ua | f : κ→ V }, (2.7)

where Ua = {X ⊆ [κ]|a| | a ∈ j(X)} and ja : V → X̄a is the respective
elementary embedding. If we set

ia([f ]Ua) = j(f)(a) (2.8)

then
Xa = ia[X̄a] (2.9)

The models X̄a themselves also form an ω-directed system together with the
natural projections πa,b from b→ a for a ⊆ b

〈(X̄a, πa,b) | a, b ∈ [λ]<ω, a ⊆ b〉 (2.10)

3We shall use the expression in (2.5) interchangibly with XE = {j(f)(a) | a ∈ [λ]<ω, f :
[κ]|a| → V }.
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It follows that the following embeddings commute

V
j

//

ja   
AA

AA
AA

A
jb

((PPPPPPPPPPPPPPPP M

X̄a πa,b

//

ia

66nnnnnnnnnnnnnnn
X̄b

ib

>>||||||||

The direct limit of the system (2.6) is the class XE defined in (2.5) above,
and it holds that

j : V → XE is elementary, or equivalently XE ≺M (2.11)

If kE is the transitive collapse of XE , then if we define jE : V →ME by

jE = k−1
E ◦ j (2.12)

then the following diagram commutes:

V
j

//

jE

''PPPPPPPPPPPPPP M

ME

kE

OO

and moreover

ME = {jE(f)(a) | f : [κ]<ω → V, a ∈ [λ]<ω} (2.13)

As λ is obviously included in XE (every α < λ can be expressed as
j(id)(α)), the following observation is immediate.

Observation 2.11 If we assume GCH, then H(λ)M is included in ME.

Proof. It is immediate that H(λ)M is a subset of XE (since H(λ)M has size
λ in M by GCH), and consequently the transitive collapse kE is the identity
on H(λ)M . (Observation 2.11) �

Corollary 2.12 If M contains H(λ) of V , then ME also contains H(λ) of
V .

We have as yet ignored the question what are the closure properties of
ME as regards sequences existing in V .

Observation 2.13 Let j : V →M with critical point κ be as above. If the
cofinality of λ is at least κ+ and H(λ)V is included in M , then

κME ∩ V ⊆ME (2.14)

In particular, if cf(λ) ≥ κ+ and κ is λ-strong, then ME is closed under κ
sequences existing in V .
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Proof. We use the following variant of XE :

X∗E = {j(f)(a) | f : [κ]<κ → V, a ∈ ([λ]<λ)M} (2.15)

The direct limit analysis of X∗E still applies, hence X∗E is a model of ZFC.
However, the directed system

〈(Xa, ia,b) | a, b ∈ ([λ]<λ)M , a ⊆ b〉 (2.16)

is now cf(λ)-directed under the inclusion relation (as [λ]<λ of V is included
in M). Assume now that 〈xα |α < κ〉 ⊆ X∗E is a sequence of elements in
V and each xα is in some Xaα for some aα ∈ ([λ]<λ)M . If the cofinality of
λ is at least κ+ then there is some a0 such that aα ⊆ a0 for each aα. By
the standard analysis of the closure of a measure ultrapower, Xa0 is closed
under κ-sequences in V and contains 〈xα |α < κ〉. (Observation 2.13) �

Note that if GCH holds below κ in V , then in fact

XE = X∗E (2.17)

To argue for (2.17), let h be any bijection h : [κ]<κ → κ such that for each
cardinal κ̄ < κ the restrictions of h to κ̄<κ̄ is a bijection from [κ̄]<κ̄ to κ̄.
Then there is in M a bijection j(h)�λ between ([λ]<λ)M and λ, immediately
yielding the identity X∗E = XE . If GCH does not hold below κ, X∗E may be
bigger than XE .

The representation using the finite tuples of λ, i.e. XE = {j(f)(a) | f :
[κ]<ω → V, a ∈ [λ]<ω}, is in this sense the least possible, and also canonical
in the sense that [λ]<ω of V is always included in M . The canonicity is also
used in the abstract definition of an (κ, λ)-extender which does not refer to
any j : V →M (see for instance [20]).

To conclude, as we will start with GCH, we can think ofXE (with respect
to some fixed j) as a uniquely defined class closed under κ-sequences in V
if the cofinality of λ is at least κ+.

2.4 Lifting of embeddings

As regards preservation of measurability (and more) of a given cardinal κ in
generic extensions, it turns out that very often we can argue for preservation
by lifting an embedding existing in the ground model. This strategy is very
useful for forcings which are sufficiently closed (see Section 5), but there
are notable examples where it cannnot be used: for instance iterations of
Prikry-type forcing notions (see Section 6 for an argument for preservation
of measurability in this case).

We will review some basic results in this section (this review is based on
a similar review in [1]).
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Definition 2.14 Let P ∈ M be a forcing notion and j : M → N an ele-
mentary embedding from M to N , both transitive models of ZFC. Let G be
an M -generic filter for P, and H an N -generic filter for j(P). We say that
j∗ lifts the embedding j if j∗ is an elementary embedding j∗ : M [G] → N [H]
extending j.

There is a simple sufficient condition which guarantees the existence of
a lifting j∗. The following lemma is due to Silver.

Lemma 2.15 (Lifting lemma) Let P ∈ M be a forcing notion and j :
M → N an elementary embedding from M to N , both transitive models of
ZFC. Let G be an M -generic filter for P, and H an N -generic filter for j(P).
If j[G] ⊆ H, i.e. if the pointwise image of G under j is included in H, then

1. j lifts to j∗ : M [G] → N [H], and

2. j∗(G) = H.

Proof. Ad (1). Define j∗(ẋG) = (j(ẋ))H . This definition is sound since
if ẋG = ẏG, then there is p ∈ G forcing ẋ = ẏ; by the assumption that
j[G] ⊆ H, j(p) is in H and forces j(ẋ) = j(ẏ), implying (j(ẋ))H = (j(ẏ))H .
Now let ϕ(x0, . . .) be an arbitrary formula: M [G] |= ϕ(ẋG0 , . . .) iff there is
some p ∈ G such that p  ϕ(ẋ0, . . .) iff j(p)  ϕ(j(ẋ0), . . .) then N [H] |=
ϕ(j∗(ẋG0 , . . .), again by the inclusion j[G] ⊆ H. Conversely, if M [G] 6|=
ϕ(ẋG0 , . . .), then M [G] |= ¬ϕ(ẋG0 , . . .) and we may conclude as above that
N [H] 6|= ϕ(j(ẋ0), . . .).

j∗ extends j since if x ∈ M then j∗(x) = (j(x̌))H and by elementarity
j(x̌) = ˇj(x) and so ( ˇj(x))H = j(x).

Ad (2). If Ġ is the canonical name for the generic filter G, j(Ġ) is by
elementarity the canonical name for the generic filter H. (Lemma 2.15) �

As we will be dealing with extender embeddings, it is useful to notice
that by using names for the elements of M [G], we can argue that if j is an
extender embedding, then so will be the lift j∗:

Lemma 2.16 Let the assumptions of Lemma 2.15 hold. Assume further
that j : M → N is an extender embedding, i.e. N = {j(F )(a) |F ∈ M,F :
A → V, a ∈ B ⊆ j(A)}. Assume j∗ : M [G] → N [j∗(G)] is a lift of j. Then
j∗ is also an extender embedding, and moreover the parameters A and B of
the extender embedding j remain the same, i.e.

N [j∗(G)] = {j∗(F )(a) |F ∈M [G], F : A→M [G], a ∈ B}. (2.18)

Proof. Let x ∈ N [j∗(G)] = N [H] be given. We need to show that there
is F̄ : A → M [G] in M [G] and a ∈ B such that x = j∗(F̄ )(a). As j is an
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extender embedding, the name ẋ ∈ N for x can be expressed as ẋ = j(F )(a)
for some F : A → M and a ∈ B. W.l.o.g. we may assume that the range
of F contains only names. Define in M [G] a function F̄ as follows: F̄ (a) =
(F (a))G for each a ∈ A. By elementarity of j∗, j∗(F̄ )(a) = (j∗(F )(a))H for
every a ∈ B. It follows:

x = ẋH = (j(F )(a))H = (j∗(F )(a))H = j∗(F̄ )(a) (2.19)

(Lemma 2.16) �

Remark 2.17 If j∗ : M [G] → N [j∗(G)] is a lift of an embedding j : M → N
which witnessed measurability of κ in M (i.e. j is definable in M), then κ
is still measurable in M [G], providing that j∗ is definable in M [G].

Remark 2.18 Assume j∗ : M [G] → N [j∗(G)] is a lift of an embedding
j : M → N which witnessed measurability of κ in M . Assume further
that j∗ is definable in M [G]. Let Uj = {X ⊆ κ |X ∈ M,κ ∈ j(X)} be
the normal ultrafilter derived from j. Then Uj∗ extends the ultrafilter Uj :
Uj ⊆ Uj∗ . Note however that the extension Uj∗ is in general very difficult
to find4 unless some powerful structural information such as the embedding
j is available.

In view of the Lifting lemma 2.15, the crucial part of the arguments
dealing with the preservation of measurability consists in finding an N -
generic H containing the pointwise image of G. This may be rather difficult
in some cases, but if the forcing notion P is sufficiently distributive and the
embedding to be lifted is an extender embedding, the existence of such an
H is straightforward.

Lemma 2.19 Assume j : M → N is an extender embedding as in Lemma
2.16 and N = {j(F )(a) |F ∈ M,F : A → V, a ∈ B ⊆ j(A)}. Let G be M -
generic for a forcing notion P ∈M . If M satisfies that P is |A|+-distributive,
then

H = {q ∈ j(P) | ∃p ∈ G, j(p) ≤ q}

is N -generic for j(P) and contains the pointwise image of G.

Proof. H is obviously a filter. We show it is a generic filter. Let D = j(F )(d)
be a dense open set. We may assume that the range of F consists of dense
open sets in P. Let {aξ | ξ < |A|} be the enumeration of A. By distributivity,
X =

⋂
ξ<|A| F (aξ) is dense. Let p ∈ X be in G; then M |= ∀a ∈ A, p ∈ F (a),

and by elementarity it follows that N |= ∀a ∈ j(A), j(p) ∈ j(F )(a). In
particular, j(p) ∈ j(F )(d) = D. (Lemma 2.19) �

4With the notable exception when the forcing notion P is of size <κ; in this case any
normal ultrafilter U in M generates a normal ultrafilter in the generic extension.
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However, it is not true conversely that if P fails to be |A|+-distributive,
then H cannot be in some sense generated from the generic filter G. In
fact, the construction in [9] shows that in the context of Sacks forcing,
distributivity can be replaced by the weaker property of |A|-fusion (diverting
from the notation in this case, |A|-fusion refers to sequences of length |A|
and not < |A|; see Lemma 4.3 below).

We close this preliminary section by a technical lemma which is useful
in constructing generic filters and is tacitly used throughout the arguments.

Lemma 2.20 Assume N ⊆M are inner models of ZFC and λN ∩M ⊆ N ,
i.e. N is closed under λ-sequences in M . If P ∈ N is λ+-cc in M and G is
P-generic over M , then N [G] is closed under λ-sequences in M [G].

Proof. Note that G is clearly a generic filter for P over N as well. To
show that N [G] is closed under λ-sequences in M [G], we first show that it
is enough to consider closure under sequences of ordinals. Assume N̄ ⊆ M̄
are inner models of ZFC, then

If λOn ∩ M̄ ⊆ N̄ then λN̄ ∩ M̄ ⊆ N̄ (2.20)

Given a sequence s in λN̄∩M̄ , choose in N̄ some large enough (H(λ′))N̄ such
that s ⊆ (H(λ′))N̄ and choose a wellordering < of (H(λ′))N̄ also existing in
N̄ . Considering a suitable (γ,∈) which isomorphic (in N̄) to ((H(λ′))N̄ , <),
it is obvious that the sequence s can be captured as some λ-sequence of
ordinals in γ. Hence (2.20) follows.

Assume now that P ∈ N satisfies the assumptions of the lemma. It is
enough to show that every λ-sequence s of ordinals existing in M [G] has a
P-name existing N . Let ṡ be a P-name existing in M for s, and assume for
simplicity that the empty condition forces that ṡ is a λ-sequence of ordinals.
For each α < λ, let Aα be a maximal antichain in P containing conditions p
in P such that there is some ξ ∈ On and p  ṡ(α) = ξ. Define a name ṡ∗ by

ṡ∗ = {(p, [α, ξ]) | p ∈ Aα, p  ṡ(α) = ξ}, (2.21)

where [·, ·] is a canonical name for an ordered pair. It is immediate that
1P  ṡ = ṡ∗. Since P is λ+-cc, the size of ṡ∗ is at most λ and this implies
that ṡ∗ lies in N , as desired. (Lemma 2.20) �

Note that by (2.20) the closure under sequences is “upwards absolute”
because it is determined by λ-sequences of ordinal numbers: if N ⊆M and
N is closed under λ- sequences in M , then every model N̄ of ZFC between
N and M , i.e. N ⊆ N̄ ⊆M , is also closed under λ-sequences in M . Also, if
N is closed under λ-sequences in M and P ∈M is λ+-distributive in M and
G is a generic filter for P then N is still closed under λ-sequences in M [G].
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3 Forcing and preservation of large cardinals

As our main interest is the behaviour of the continuum function (on regular
cardinals) with respect to large cardinals, we will focus on forcings which
add a prescribed number of new subsets to regular cardinals α. The results
in this section are folklore (although it is difficult to give exact references).
Unlike the results in Section 2, however, they are more specific to our topic.

Recall the original forcing of Easton [4], reviewed in Section 2.2. We now
show that this “product-style” forcing will typically destroy large cardinals.

First notice that preservation of a large cardinal κ when adding many
new subsets of κ requires some sort of forcing preparation below the cardinal
κ.

Observation 3.1 Assume κ is a measurable cardinal and γ < κ is a suc-
cessor ordinal. If 2κ = κ+γ then there is a X ⊆ κ of inaccessible cardinals
such that 2α ≥ α+γ for each α ∈ X and X is an element of some normal
measure at κ.

Proof. Let U be a normal measure at κ and j : V → M be the ultrapower
embedding derived from U . As all subsets of κ are included in M , 2κ in M
must be at least (2κ)V = κ+γ : M |= κ+γ ≤ 2κ < j(κ) by the inaccessibility
of j(κ) in M . By the Los theorem, X = {ξ < κ | ξ is inaccessible, ξ+γ ≤ 2ξ}
is in the measure U .

Notice that if 2κ = κ+γ for some γ which is “simply” describable, we
may include γ’s greater than κ as well (γ may also be a limit ordinal of
cofinality at least κ+). For instance if 2κ = κ+(κ+), then the set {ξ <
κ | ξ is inaccessible, ξ+(ξ+) ≤ 2ξ} must be big. This analysis in principle
captures all possible values of 2κ, but the formulation is less elegant as we
need to refer to the specific measure U used in the argument: Assume 2κ =
κ+γ for some ordinal γ (either a successor ordinal, or with cofinality at least
κ+). Fix a normal measure U and the corresponding ultrapower embedding
j : V → M . As before we obtain γ ≤ κ+γ ≤ (2κ)M < j(κ); in particular
there is some fγ : κ→ κ representing γ in M , i.e. [fγ ]U = γ. It follows that
the set {ξ < κ | ξ is inaccessible, ξ+fγ(ξ) ≤ 2ξ} is in U . (Observation 3.1) �

It may consistently happen that even adding a single new subset of κ
requires some forcing preparation (see [16]).

Observation 3.2 Assume V = L[U ] where U is a normal measure at κ. If
P is a κ-distributive forcing notion which adds a new subset of κ then κ is
no longer measurable in V P.

Proof. Let G be a generic filter for P and assume that κ is still measurable
in L[U ][G] and let j be an embedding witnessing measurability of κ. By
the definition of L[U ][G], j is an embedding from L[U ][G] to L[j(U)][j(G)]
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and j(G) is a generic filter over L[j(U)] for j(P). Note that L[U ][G] and
L[j(U)][j(G)] must contain the same subsets of κ. By Kunen’s iteration
arguments, we know that L[j(U)] is an iterate of L[U ] and in particular
L[j(U)] ⊆ L[U ] and (P(κ))L[U ] = (P(κ))L[j(U)]. It follows that every new
subset of κ added by G must be added by the forcing j(P) over L[j(U)]. But
by elementarity, j(P) is j(κ)-distributive in L[j(U)], contradiction. (Ob-
servation 3.2) �

However, even with preparation we may lose measurability in the final
generic extension if we use product-style forcing. We first proof an observa-
tion which is interesting in its own right (see [1]).

Observation 3.3 Assume κ is not measurable in some inner model M and
there is some P in M such that P forces that κ is measurable in MP. Then
P × P contains antichains of size κ in M , or equivalently P contains an-
tichains of size κ in MP. In particular P must have size at least κ (in M).

Proof. Let G ⊆ P be an M -generic filter and U̇ a name forced by 1P to be a
measure in M [G]. We will construct in M [G] a κ-sequence of incompatible
conditions in P.

First notice that if p forces Ẋ ∈ U̇ and the membership in U̇ of all Ẏ
such that p forces Ẏ ⊆ Ẋ is decided uniquely by all q ≤ p, i.e. for all q ≤ p,
q  Ẏ ∈ U̇ or for all q ≤ p, q  Ẋ \ Ẏ ∈ U̇ then

W = {A ⊆ κ |A ∈M,p  A ∩ Ẋ ∈ U̇} (3.1)

is a measure existing in M . We will use (3.1) in our construction.
To start the construction, choose X0 ⊆ κ (X0 can be taken in M) and

p0, p̄0 with p0 in G such that p0  X0 ∈ U̇ and p̄0  (κ \ X0) ∈ U̇ ; this
is possible otherwise by (3.1) there would be a measure in M . In the next
step apply the above procedure to X0 ∈ (U̇)G, choosing some X1 ⊆ X0

(X1 can again be taken in M) and conditions p1, p̄1 with p1 in G such
that p1  X1 ∈ U̇ and p̄1  (X0 \ X1) ∈ U̇ . Notice that p̄0, p̄1 must
be incompatible since (κ \X0) and (X0 \X1) are disjoint. Continue in this
fashion for all n ∈ ω building an antichain {p̄n |n ∈ ω} (always assuming that
the non-barred pn’s are chosen in G). At stage ω, we know that Xω =

⋂
Xn

is in (U̇)G by the κ-completeness of the measure (U̇)G in M [G]. Choose
pω ∈ G forcing Ẋω ∈ U̇ (note that Xω may exist only in M [G]). Using (3.1),
there must be Xω+1 (Xω+1 can be taken in M) and pω+1, p̄ω+1 below pω with
pω+1 in G such that pω+1  Xω+1 ∩ Ẋω ∈ U̇ and p̄ω+1  (Ẋω \Xω+1) ∈ U̇ .

Due to the κ-completeness of the measure (U̇)G we can continue the
construction for all α < κ, obtaining an antichain {p̄α |α < κ} as desired
(always assuming that the non-barred pα’s are chosen in G). Note that the
possible lack of closure of P which could otherwise block the construction
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at limit stages is compensated by the closure properties of the measure U̇ .
(Observation 3.3) �

Remark 3.4 This result is known to be optimal. Kunen showed [21] that
there is a κ-cc forcing notion S such that the product S×S is not κ-cc and S
can “revive” measurability of κ in the sense that κ is measurable in V , is not
measurable in some forcing extension V ∗, but becomes measurable again af-
ter forcing with S in V ∗ (S is a κ-Souslin tree construed as a forcing notion).
Also Cohen forcing at κ, i.e. a κ+-cc forcing, can “revive” measurability of
κ. We will use some results and definitions from Hamkins [17] concerning
the so called gap forcing to show the latter claim. We say that a forcing
notion S is a gap forcing if there is δ < κ such that S factors into Q ∗ R
where |Q| < δ is non-trivial and R is forced by Q to be δ+-closed. Assuming
GCH for simplicity, let κ be measurable in V and P be an Easton-supported
iteration of Add(α, 1) for every inaccessible α < κ. Let G be P-generic. We
will show that κ is not measurable in V [G] but becomes measurable again if
we force with Add(κ, 1) (defined in V [G]) over V [G]. Assume for contradic-
tion that κ is still measurable in V [G]. Clearly our P is a gap forcing – for
instance for δ = α+

0 where α0 is the least inaccessible cardinal. The fact that
P is a gap forcing implies the following: If j : V [G] → M [j(G)] witnesses
measurability of κ in V [G] then j is an extension of some j∗ definable in V
such that j∗ = j �V : V → M and M is closed under κ-sequences in V . In
particular M contains all subsets of κ present in V . Notice that P = j∗(P)κ
and so j(G) factors as G ∗ g where g is M [G]-generic for the iteration j(P)
in the interval [κ, j(κ)) and in particular adds a new subset of κ over M [G].
This is a contradiction since all subsets of κ existing in V [G] are present
in M [G] (since M contains all nice P-names for subsets of κ). However it
is known by work of Silver that P ∗ Add(κ, 1) preserves measurability of κ,
which proves the claim.

Now we can show that even with a preparation forcing below κ, we can
destroy a large cardinal.

Observation 3.5 Assume V = L[U ] where U is a normal measure at κ.
Let R = P × Q be a forcing notion such that P is κ-closed and adds a new
subset of κ and Q is an arbitrary forcing notion such that Q × Q is κ-cc.
Then κ is no longer measurable in V R.

Proof. Notice that if P is a Cohen forcing adding a new subset of κ and Q
is either a product or an iteration of Cohen forcings adding a new subset to
each inaccessible α < κ then the conditions of the observation are satisfied,
and it follows that κ fails to be measurable in V R.

It is enough to argue that forcing with Q over V P cannot “revive” the
measurability of κ which is killed in V P by Observation 3.2. By Easton
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lemma 2.6, Q × Q is still κ-cc after forcing with P. The proof is concluded
by applying Observation 3.3. (Observation 3.5) �

The above discussion implies that if we want to add new subsets to a
large cardinal κ and we want to have a chance of preserving the largeness
of κ in the generic extension, we should add new subsets to “many” regular
cardinals below κ, and moreover we should do it by an iterated forcing.

We will fix the following notion for the rest of the section. Let F be an
Easton function according to Definition 2.1 defined on all regular cardinals.
Our aim is to define in general terms a forcing notion which will realise
the Easton function F (making it the continuum function in the generic
extension) and satisfy the conditions discussed above.

In as much as the desired forcing must be an iteration, the iteration will
need to have some “space”: The following observation shows that iteration
on successive cardinals will tend to collapse cardinals.

Observation 3.6 Assume κ < λ are regular cardinals. If κ∗ is a cardinal
greater than λ, then forcing with Add(κ, κ∗) ∗Add(λ, 1) collapses κ∗ to λ.

Proof. Let 〈xξ | ξ < κ∗〉 be the enumeration of subsets of κ in V Add(κ,κ∗);
for each ξ < κ∗, the set Dξ = {p ∈ Add(λ, 1) | ∃α < λ, p � [α, α + κ) = xξ}
is dense. Consequently, there is a surjection from λ onto κ∗ in the generic
extension of V by Add(κ, κ∗) ∗Add(λ, 1). (Observation 3.6) �

The concept of the “space” mentioned above is technically captured by
the closure points of the function F . We say that a cardinal κ is a closure
point of F if µ < κ implies F (µ) < κ. We will enumerate in the increasing
order the closed unbounded class of closure points of F as 〈iα |α < On〉.
Note that every iα must be a limit cardinal and iβ+1 has cofinality ω for
every β. If κ is a regular closure point, then κ equals iκ.

We will now give a full definition of a forcing notion to realise an Easton
function F . It will be a combination of (reverse) Easton iteration and of
product-style Easton forcing. Later in the text we will define several variants
of this forcing (for more examples of this type of forcing see [8]).

Definition 3.7 (General form of forcing) Let an Easton function F
satisfying the conditions (1), (2) of 2.1 be given. Let 〈iα |α < On〉 be an
increasing enumeration of the closure points of F .

Define an iteration PF = 〈(Piα , Q̇iα) |α < On〉 indexed by 〈iα |α < On〉
as follows:

If α+ 1 is a successor ordinal we define

Piα+1 = Piα ∗ Q̇iα , (3.2)
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where Q̇iα is a name for the Easton-supported product

E∏
iα≤λ<iα+1

Add(λ, F (λ))

with λ ranging over regular cardinals.
If γ is a limit ordinal, then Piγ is an inverse limit unless iγ is a regular

cardinal, in which case Piγ is a direct limit (the usual Easton support).

Note that we use the same symbol, i.e. PF , for both the product forcing
in (2.2) and the iteration defined above; we will always specify which forcing
we have in mind. Also, we may later drop for notational reasons the super-
script E from

∏
which denotes the Easton support as in (2.2). Notice that

conditions in PF are proper classes; to define PF correctly, see Remark 2.5.
As regards the definition of the forcing, recall that each iα is a limit cardinal;
the forcing at iα is thus non-trivial only if iα is a regular and limit cardinal.
As we will assume GCH, such iα’s are (strongly) inaccessible cardinals.

We now show that P preserves all cofinalities.

Lemma 3.8 Assuming GCH, PF of Definition 3.7 preserves all cofinalities.

Proof. Let G be a generic filter for PF and suppose for contradiction that
some some regular cardinal κ is singularized in V [G] and has cofinality µ (µ
is a regular cardinal both in V [G] and V ). We will distinguish two cases,
mostly for notational reasons (the argument is otherwise the same in both
cases):

Case (1). µ = iα for some inaccessible iα. Factor PF as

(
PFiα ∗Add(iα, F (iα))

)
∗

( E∏
i+α≤λ<iα+1
λ∈Reg

Add(λ, F (λ)) ∗ PFtail

)
, (3.3)

where the product
∏E
i+α≤λ<iα+1

Add(λ, F (λ)), λ regular, is defined in V PF
iα ,

and PFtail is written for PF \PFiα+1. Write (3.3) as P0 ∗P1. We will show that
P0 is i+α -cc and forces that P1 is i+α -distributive.

Since iα is an inaccessible closure point of F , PFiα is included in Viα .
Due to the Easton support of PF , all conditions in PFiα have their support
bounded in iα, and it follows that PFiα is i+α -cc by the ∆-system argument:
the size of every antichain is bounded by the size of <iαViα which is iα.
Also, PFiα forces that Add(iα, F (iα)) is i+α -cc, and thus PFiα ∗ Add(iα, F (iα))
is i+α -cc.

The rest of the product
∏E
i+α≤λ<iα+1

Add(λ, F (λ)), λ regular, is forced by
P0 to be i+α -distributive, by Lemma 2.6. Furthermore, PFiα+1

clearly forces
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that PFtail is i+α+1-closed, where i+α < iα+1. It follows P1 is forced to be
i+α -distributive.

Now we reach contradiction just like in the proof of Theorem 2.2. P0

preserves regularity of all κ such that i+α ≤ κ by its being i+α -cc. However,
P1 does not add new iα-sequences, and so κ cannot have cofinality iα in
V [G]. Contradiction.

Case (2). µ is a regular cardinals between iα and iα+1, i.e. iα < µ < iα+1,
for some α, where iα may be singular. As above, we factor PF at µ:

(
PFiα ∗

E∏
iα≤λ≤µ

λ∈Reg

Add(λ, F (λ))
)
∗

( E∏
µ<λ<iα+1
λ∈Reg

Add(λ, F (λ)) ∗ PFtail
)
, (3.4)

where both the products in (3.4) are defined in V PF
iα . Write (3.4) as P0 ∗

P1. As in Case (1), we show that P0 is µ+-cc and P1 is forced to be µ+-
distributive. Even when iα is singular, PFiα is i++

α -cc by GCH. As by our
assumption i+α ≤ µ, we still have that P0 is µ+-cc, arguing as in Case (1)
(here we use the fact that

∏E
iα≤λ≤µ Add(λ, F (λ)), λ regular, is forced by PFiα

to be i++
α ≤ µ+-cc). Exactly as in Case (1), P1 is µ+-distributive over V P0 .

This yields a contradiction. (Lemma 3.8) �

Remark 3.9 Referring to Remark 2.5, the fact that PF factors into P0 ∗P1

at every regular cardinal, where the second forcing is sufficiently distributive
over V P0 , is enough to argue that a generic extension by PF preserves all
axioms of ZF(C).

Before we move on, notice that if PF should stand a chance of preserving
a measurable cardinal κ, for instance, the Easton function F used in the
definition of PF must behave “reasonably” below κ: cf. Observation 3.1.
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4 Failure of GCH at a measurable cardinal

It is known, see [14] (see Section 4.2 for a short discussion), that failure
of GCH at a measurable cardinal is consistency-wise much stronger than
measurability. As we aim to realise an arbitrary Easton function F and
preserve large cardinals (for instance measurable cardinals), it is obvious
that we have to take this restriction into account.

The first consistency proof by Silver used the supercompact cardinal to
obtain a measurable cardinal where GCH fails (for a proof see for instance
[18]). It was Woodin (unpublished) who found how to achieve the same re-
sult from a much weaker hypothesis: hypermeasurability. His idea included
a technique of a modification of a generic to allow for lifting (for review, see
[1], or [3]).

The concept of modification however seems rather restrictive and so we
introduce another technique in this section for producing a measurable car-
dinal failing GCH which includes a Sacks forcing, developed in [9]. Our
review will focus on issues which are relevant for our original results later in
the text.

4.1 Sacks forcing at inaccessible cardinals

The original results in Section 5 are centered around the technique developed
in [9] which uses the Sacks forcing instead of the Cohen forcing in the lifting
arguments. We will give a brief review here in a slightly generalized setting.

Though the concept of a perfect tree can be formulated for an arbitrary
regular cardinal, see also [19], we will use the forcing at inaccessible cardinals
only and this introduces further simplifications.

Definition 4.1 If α is an inaccessible cardinal, then p ⊆ 2<α is a perfect
α-tree if the following conditions hold:

1. If s ∈ p, t ⊆ s, then t ∈ p;

2. If s0 ⊆ s1 · · · is a sequence in p of length less than α, then the union
of si’s belongs to p;

3. For every s ∈ p there is some s ⊆ t such that t is a splitting node, i.e.
both t ∗ 0 and t ∗ 1 belong to p;

4. Let Split(p) denote the set of s in p such that both s ∗ 0 and s ∗ 1
belong to p. Then for some (unique) closed unbounded set C(p) ⊆ α,
Split(p) = {s ∈ p | length(s) ∈ C(p)}.

A perfect α-tree is an obvious generalization of the perfect tree at ω or-
dered by inclusion; there is only one non-trivial condition, and this concerns
the limit levels of the tree: if s ∈ p is an element at a limit level and the
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splitting nodes t ⊆ s are unbounded in s, then s must be a splitting node
as well (continuous splitting). As α is inaccessible, and consequently every
level of p is of size <α, the trees obeying (4) above are dense in the trees
having continuous splitting.

Generalized perfect trees can be used to define a natural forcing notion.

Definition 4.2 The forcing notion Sacks(α, 1) contains as conditions per-
fect α-trees, the ordering is by inclusion (not the reverse inclusion), i.e.
p ≤ q iff p ⊆ q. Or generally, the forcing notion Sacks(α, λ), where 0 < λ is
an ordinal number, is a product of length λ of the forcing Sacks(α, 1) with
support of size at most α, i.e. a condition p in Sacks(α, λ) is a function from
λ to Sacks(α, 1) such that {ξ < λ | p(ξ) 6= 1Sacks(α,1)} has size at most α.

For p a condition in Sacks(α, 1), let 〈αi | i < α〉 be the increasing enu-
meration of C(p) and let Spliti(p) be the set of s in p of length αi. For
p, q ∈ Sacks(α, 1) let us write p ≤β q iff p ≤ q and Spliti(p) = Spliti(q) for
i < β. In the generalization for the product Sacks(α, λ) we write p ≤β,X q
(where X is some subset of λ of size less than α) iff p ≤ q (i.e. for all
i < λ, p(i) ≤ q(i)) and moreover for each i ∈ X, p(i) ≤β q(i).

We will define several useful notions and state some properties.

Lemma 4.3 The forcing Sacks(α, λ) satisfies the following α-fusion prop-
erty: Suppose p0 ≥ p1 ≥ . . . is a descending sequence in Sacks(α, λ) of length
α and suppose in addition that pi+1 ≤i,Xi pi for each i less than α, where
Xi form an increasing sequence of subsets of λ of size less than α whose
union is the union of the supports of pi’s; such a sequence will be called a
fusion sequence. Then the pi’s have a lower bound in Sacks(α, λ) (obtained
by taking intersections at each component).

Proof. Note the role of Xi’s in the lemma. It is not required that in the step
from pi to pi+1 we keep all splitting levels ≤i in the trees in the support of pi:
we are allowed to thin out more at some coordinates (in supp(pi)\Xi),5 pro-
viding we eventually “catch” all coordinates, i.e.

⋃
i<αXi =

⋃
i<α supp(pi).

The proof itself is obvious: if ξ < λ is a coordinate in
⋃
i<α supp(pi) there

is some j < α and Xj such that ξ ∈ Xj . As the Xi’s form an increasing
chain, we have that pi+1(ξ) ≤i pi(ξ) for all j ≤ i < α. This is enough to
conclude that the decreasing sequence at the coordinate ξ has a lower bound
p̃ξ. This works for every ξ ∈

⋃
i<α supp(pi), so the desired condition p̃ is

defined to have the support
⋃
i<α supp(pi) and for each ξ in the support we

set p̃(ξ) = p̃ξ. (Lemma 4.3) �

5As we require that each Xi has size less than α (for reasons which will be apparent
in Lemma 4.6), this difference will have size α if the support of pi has size α.
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Definition 4.4 Assume p is a condition in Sacks(α, λ), X is a subset of λ
of size less than α and β is less than α. Then an (X,β)-thinning of p is an
extension of p obtained by thinning each p(i) for i ∈ X to a subtree consisting
of all nodes compatible with some particular node on the β-th splitting level
of p(i).

Definition 4.5 Assume D is a dense open set in Sacks(α, λ). We say that
p ∈ Sacks(α, λ) reduces D iff for some subset X of λ of size less than α and
some β < α any (X,β)-thinning of p meets D.

The following important property holds:

Lemma 4.6 Let {Di | i < α} be a collection of α-many dense open sets in
Sacks(α, λ). Then for each p there is a condition q ≤ p, obtained as a lower
bound of a fusion sequence, such that q reduces each Di in the above sense.

Proof. We will inductively build a decreasing sequence q = p0 ≥ p1 ≥ . . .
of length α and an increasing sequence X0 ⊆ X1 ⊆ . . . of subsets of λ of
size less than α such that

⋃
i<αXi =

⋃
i<α supp(pi). At stage k < α, first

take a lower bound of all pk′ for k′ < k and denote this lower bound as rk.
According to some fixed suitable strategy fixed at the beginning choose some
Xk of size less than α satisfying the properties above. Let 〈fζ | ζ < µ〉 be an
enumeration of P =

∏
ξ∈Xk

(Splitk(rk(ξ))×{0, 1}), where |P | = µ < α. Build
a decreasing sequence of conditions rk ≥ rf0k ≥ . . . (taking lower bounds at
limits) of length µ < α such that each rfζ+1

k extends rfζ

k and satisfies (4.1):

the restriction of rfζ+1

k to nodes fζ meets Dk, (4.1)

and for ξ ∈ Xk, r
fζ+1

k (ξ) is identical to r
fζ

k (ξ) except for the subtrees at
the nodes determined by fζ . Note that the supports of rfζ

i ’s are increasing
and may be bigger than Xk (at coordinates outside Xk we do not need to
preserve the k-th splitting level so we keep thinning out as needed to satisfy
(4.1)).

Since µ < α, there is a lower bound to the sequence rk ≥ rf0k ≥ . . ., and
this will be the desired pk. (Lemma 4.6) �

Note that Sacks(α, λ) is obviously α++-cc (by the GCH at α) and α-
closed. It follows that under GCH forcing with Sacks(α, λ) preserves all
cardinal (and cofinalities), except perhaps α+. We use Lemma 4.6 to argue
the case for α+.

Lemma 4.7 Forcing with Sacks(α, λ) preserves α+.
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Proof. Let ḟ be forced to be a function from α to α+. We argue that the
empty condition forces that the range of ḟ is bounded in α+. This follows
directly from the argument in Lemma 4.6: LetDi for each i < α be the dense
open set of conditions deciding the value of ḟ(i). If G is a generic filter, by
Lemma 4.6 there is a q ∈ G reducing all Di’s. Clearly, for every i < α the
reduction of Di determines less than α many choices for the interpretation
of ḟ at i and this suffices. (Lemma 4.7) �

Notice that Sacks(α, λ) adds λ-many new subsets of α (the intersection
of all trees in a generic filter at a given coordinate determines a unique
subset of α; this subset in turn determines the whole generic at the given
coordinate).

As discussed after Lemma 2.19, it is the α-fusion property which is strong
enough to replace the restrictive condition of distributivity in Lemma 2.19.
We will briefly review here the argument of [9] in a slightly more general
setting (for details consult [9]).

Theorem 4.8 (GCH) Let κ be a λ-hypermeasurable cardinal with λ greater
than κ and of cofinality at least κ+. Assume further that there is a witnessing
embedding j and a function fλ : κ → κ such that j(fλ)(κ) = λ. Then there
is a forcing iteration S = 〈Sα |α ≤ κ+1〉 of generalized Sacks forcings which
preserves measurability of κ and forces 2κ = λ. Moreover, the generic for
the j(κ)-th stage of the iteration j(S) is in some sense “generated” from the
generic at stage κ of S.

We will give a sketch of the proof. Fix a λ-hypermeasurable extender
embedding j : V → M with critical point κ; we may still assume that
j(fλ)(κ) = λ. As the cofinality of λ is at least κ+, M can be taken to be
closed under κ-sequences. Also, by GCH we have that λ < j(κ) < λ+. We
define the iteration S = 〈Sα |α ≤ κ + 1〉 as an Easton-supported forcing
iteration of length κ + 1 which at every inaccessible α < κ adds fλ(α)-
many new subsets of α using the forcing Sacks(α, fλ(α)) and at stage κ
adds λ-many new subsets of κ using Sacks(κ, λ). Let us write the generic
Gκ+1 for 〈Sα |α ≤ κ + 1〉 as G ∗ g, where G is Sκ-generic over V and g is
Sacks(κ, λ)-generic over V [G].

Our aim is to lift the embedding j to V [G ∗ g]. Using the fact that
j(fλ)(κ) = λ, we can proceed as in [9] to lift partially to j : V [G] →
M [G ∗ g ∗H], where H is a generic for the iteration in the interval (κ, j(κ)).

Now it remains to find a generic h for Sacks(j(κ), j(λ)) over M [G∗g∗H]
containing the pointwise image of g. Denote j[g] by h∗. As g is a set of
conditions in Sacks(κ, λ) of V [G], h∗ is a set of conditions in Sacks(j(κ), j(λ))
of M [G ∗ g ∗ H]. The following lemma describes the “intersection” of the
conditions in h∗.
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Lemma 4.9 For α < j(λ) let tα be the intersection of the trees j(p)(α), p ∈
g. If α belongs to the range of of j, then tα is a (κ, j(κ))-tuning fork, i.e. a
subtree of 2<j(κ) which is the union of two cofinal branches which split at κ.
If α does not belong to the range of j, then tα consists of exactly one cofinal
branch through 2<j(κ).

Proof. First notice that the intersection of
⋂
C∈V [G] j(C) where C is a closed

unbounded set in κ is equal to {κ}. The intersection obviously contains κ.
Now let Cfλ

⊆ κ be the closed unbounded set of closure points of fλ, i.e.
for all ξ ∈ Cfλ

, fλ(x) < ξ for each x ∈ [ξ]<ω (without loss of generality, all
elements of Cfλ

are limit cardinals). As j(fλ)(κ) = λ and
⋂
C∈V [G] j(C) ⊆

j(Cfλ
), it is obvious that any element ξ of the intersection in the interval

(κ, j(κ)) must be a limit cardinal greater than λ. But any such hypothetical
ξ can be expressed as j(f)(x) for some f : [κ]<ω → κ and x ∈ [λ]<ω. If
Cf is the closed unbounded set of closure points of f , it is immediate that
j(Cf ) cannot contain ξ = j(f)(x). Notice that not only j(f)(x) = ξ is not
in j(Cf ), but the whole interval [λ, ξ] is disjoint from j(Cf ) (as x ∈ [λ]<ω,
the least closure point of j(f) above λ must be greater than ξ). It follows
that there is for each ξ < j(κ) a closed unbounded set Cξ = Cfλ

∩ Cf such
that

(κ, ξ] ∩ j(Cξ) = ∅. (4.2)

The analysis of the intersection of closed unbounded sets is important
as the following fact holds. If C is a closed unbounded subset of κ in V [G]
and X is a subset of λ of size at most κ, then any condition p ∈ Sacks(κ, λ)
in V [G] has an extension q such that for all i ∈ X, C(q(i)) (= the set of
splitting levels of the tree q(i)) is a subset of C. As every α < j(λ) can be
expressed as some j(f)(a) where f is a function from [κ]<ω to λ, by applying
the above fact with X = rng(f) we obtain that C(j(q)(α)) is a subset of
j(C). It follows by (4.2) that there is for each ξ < j(κ) a condition rξ in g
such that the tree j(rξ)(α) does not split between κ and ξ (though it may
split at κ).

As M [G ∗ g ∗H] contains all subsets of κ existing in V [G ∗ g], it follows
that the intersection tα of the j(p)(α), p ∈ g, is a subtree of 2<j(κ) which is
the union of at most two cofinal branches which can only differ at κ.

If α is in the range of j than it is obvious that all trees j(p)(α), p ∈ g, do
branch at κ (by elementarity and by the “continuous splitting” of a perfect
tree). If α is not in the range of j, then the intersection tα does not split at
κ (the proof can be found in [9]). (Lemma 4.9) �

Definition 4.10 For α < j(λ) in the range of j, let (x(α)0, x(α)1) be the
branches that make up the (κ, j(κ))-tuning fork at α, where x(α)0(κ) = 0
and x(α)1(κ) = 1. For α < j(λ) not in the range of j let x(α)0 denote the
unique branch constituting the intersection of the j(p)(α), p ∈ g.
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Lemma 4.11 Let h consist of all conditions p in Sacks(j(κ), j(λ)) of M [G∗
g ∗H] such that for each α < j(λ), x(α)0 is contained in p(α). Then h is
generic for Sacks(j(κ), j(λ)) of M [G ∗ g ∗H] and contains j[g].

Proof. Let D be a dense open set in Sacks(j(κ), j(λ)) in M [G ∗ g ∗H]. As
an element of M [G ∗ g ∗ H], it can be written as j(f)(d) for some f and
d ∈ [λ]<ω. Without loss of generality we may assume that f(a) is a dense
open set in Sacks(κ, λ) for every a ∈ [κ]<ω.

Using Lemma 4.6, there is a condition q ∈ g such that q reduces all dense
open sets f(a). By elementarity, j(q) reduces all dense open sets j(f)(a) for
a ∈ [λ]<ω and in particular reduces j(f)(d) = D.

In M [G ∗ g ∗ H] choose a subset X of j(λ) of size less than j(κ) and
α < j(κ) such that any (X,α)-thinning of j(q) meets D. Now for each
i ∈ X thin j(q) by choosing an initial segment of x(i)0 on the α-th splitting
level of j(q)(i). As this sequence of choices is in M [G ∗ g ∗H] (for proof see
[9]), it follows that this thinned out condition belongs to h and meets D.
So h is generic for Sacks(j(κ), j(λ)) of M [G ∗ g ∗ H] over M [G ∗ g ∗ H] as
desired.6 (Lemma 4.11) �

Amongst the main advantages of [9], apart from the fact that we avoid
the “modification” argument as in the Woodin-style approach (see for in-
stance [1] or a slightly different argument in [2]) is that we don’t have to
enlarge the universe V [G ∗ g] to complete the lifting. This adds a degree of
uniformity which will be used later in this thesis.

4.2 The optimal strength for failure of GCH on a measurable
cardinal

In [14], M.Gitik (using the ideas of Mitchell concerning coherent sequences of
measures) identified the following optimal consistency strength of a measur-
able cardinal κ failing GCH: as regards consistency, the assumption o(κ) =
κ+α is necessary for a measurable cardinal κ such that 2κ = κ+α, α ≤ 2.
This restrictions is optimal in the sense that using the hypothesis we for
instance have that o(κ) = κ++ is enough to build a generic extension where
κ is measurable and 2κ = κ++ (see [13]). Note that by [9], the forcing with
the Sacks forcing can also be used to force 2κ = κ++ with κ remaining
measurable from the assumption o(κ) = κ++.

Anticipating a little, in Theorem 5.7, we realise an Easton function F
and preserve some measurable cardinals. Since we also realize F on successor
cardinals, it seems that we need the full strength of hypermeasurability to lift
the embedding. For instance if F (κ) = κ++, F (κ+) = κ+3 and F (κ++) =
κ+4, then we need an embedding j : V → M such that H(κ++)V ⊆ M to

6One must also verify that any two conditions in h are compatible with each other; for
argument, see [9].
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lift j to the generic extension (see argument in Lemma 5.9). Thus it is an
open question for us whether in the above particular example it suffices to
start with o(κ) = κ++ and realise F on κ, κ+ and κ++.
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5 Easton functions and large cardinals

In this section we show some original results which concern the interac-
tion between an Easton function F defined on regular cardinals and large
cardinals in the universe V .

Before we start, we provide two observations on hypermeasurable cardi-
nals which do not seem to fit elsewhere. For brief review of hypermeasurable
cardinals, see Section 2.3.

Assume that F is an Easton function. The following observation can be
shown easily, for instance using the arguments in [20].

Observation 5.1 (GCH) If κ is F (κ)-hypermeasurable, where F is an Eas-
ton function, and j : V → M is a witnessing embedding, then j can be
factored through some jE : V → ME and k : ME → M such that jE
is an extender embedding with A = [κ]<ω and B = [F (κ)]<ω witnessing
the F (κ)-hypermeasurability of κ. Moreover, if j(F )(κ) ≥ F (κ), then also
jE(F )(κ) ≥ F (κ).

Proof. Consider the following commutative triangle:

V
j

//

jE

''PPPPPPPPPPPPPP M

ME

k

OO

By the construction of the extender, it follows that k is the identity on
F (κ). The following holds: k(jE(F )(κ)) = k(jE(F ))(k(κ)) = k(jE(F ))(κ) =
j(F )(κ). If µ = jE(F )(κ) < F (κ) were true, then k would be the identity at
µ, implying that j(F )(κ) = µ, which is a contradiction. (Observation 5.1) �

The above fact allows us to use only extender embeddings in our argu-
ments and these will be used tacitly throughout.

The second observation concerns the properties of a singular λ in M ,
where M is the target model for λ-hypermeasurability. Perhaps surprisingly,
λ can be regular (and more).

Observation 5.2 (GCH) Let j : V → M for some transitive M be an
embedding with critical point κ such that H(λ)V ⊆ M , κ < λ < j(κ) and
λ is inaccessible in M (such an embedding exists for example if κ is λ-
hypermeasurable for some V -inaccessible λ > κ). Then there exists λ̄ ≤ λ
singular in V and an embedding k : V → N which witnesses that κ is λ̄-
hypermeasurable and λ̄ is inaccessible in N .
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Proof. Without loss of generality assume that j is an extender embedding,
that is M = {j(f)(a) | f : [κ]<ω → V, a ∈ [λ]<ω}. If λ is singular in V ,
then we are done. So assume that λ is regular (and hence inaccessible) in
V . For each f : [κ]<ω → κ define a function θf : [λ]<ω → λ by setting
θf (a) = j(f)(a) if j(f)(a) < λ and θf (a) = 0 otherwise. Working in V ,
let Cf ⊆ λ by a closed unbounded set of limit cardinals closed under θf ;
as κ+ < λ and the number of all θf is κ+, the intersection C =

⋂
f Cf is

a closed unbounded set in λ. Let λ̄ be some singular cardinal in C greater
than κ and let H = {j(f)(a) | f : [κ]<ω → V, a ∈ [λ̄]<ω}. If π : H ∼= N is
the transitive collapse map, we obtain that π ◦ j : V → N witnesses that
κ is λ̄-hypermeasurable. We are done once we show that λ̄ is regular in N .
This will follow from the fact that H ∩ λ = λ̄. Let α ∈ H ∩ λ be given; it
is of the form j(f)(a) for some f : [κ]<ω → κ and a ∈ [λ̄]<ω. As α < λ,
j(f)(a) = θf (a) < λ̄ by the selection of λ̄ in Cf . Conversely, if α < λ̄, then
α = j(id)(α). Finally, without loss of generality we may assume that there
is some fλ such that j(fλ)(κ) = λ and hence λ ∈ H. Since then π(λ) = λ̄,
the observation follows. (Observation 5.2) �

5.1 Preservation of measurable cardinals

Recall that a class function F defined on regular cardinals is called an Easton
function if it satisfies the following two conditions which were shown by
Easton to be the only conditions provable about the continuum function on
regular cardinals in ZFC. Let κ, µ be arbitrary regular cardinals:

1. If κ < µ, then F (κ) ≤ F (µ);

2. κ < cf(F (κ)).

As discussed above if a given large cardinal κ should remain measurable
in a generic extension realizing a given Easton function F , the properties
of the cardinal κ and the properties of the function F need to combine in
a suitable way which requires more than the conditions given in Definition
2.1. See Section 3.

We capture a sufficient condition for preservation of measurability in the
following definition.

Definition 5.3 We say that a cardinal κ is good for F , or shortly F -good,
if the following properties hold:

1. F [κ] ⊆ κ, i.e. κ is closed under F ;

2. κ is F (κ)-hypermeasurable and this is witnessed by an embedding j :
V →M such that j(F )(κ) ≥ F (κ).
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Our forcing to realise a given Easton function F will be a combination of
the Sacks forcing Sacks(ᾱ, β̄) (see Definition 4.2) and of the Cohen forcing
Add(α, β), where ᾱ, α are regular cardinals and β̄, β are ordinal numbers.
For notational convenience we will construe Add(α, β) as the < α-supported
product of Add(α, 1) of length β, where conditions in Add(α, 1) are functions
from α to 2 with domain of size less than α.

As our aim is the preservation of large cardinals, we cannot use the
standard Easton product-style forcing, but we need to use some kind of
(reverse Easton) iteration. We will define our forcing according to Defintion
3.7 with one modification: we will use the Sacks forcing Sacks(α, F (α)) for
every regular closure point α of F .

Definition 5.4 Assume GCH. Let an Easton function F satisfying the con-
ditions (1), (2) of 2.1 be given. Let 〈iα |α < On〉 be an increasing enumer-
ation of the closure points of F .

We will define an iteration PF =
〈
〈Piα |α < On〉, 〈Q̇iα |α < On〉

〉
in-

dexed by 〈iα |α < On〉 such that:

• If iα is not an inaccessible cardinal, then

Piα+1 = Piα ∗ Q̇iα , (5.1)

where Q̇iα is a name for ∏
iα<λ<iα+1

Add(λ, F (λ)),

where λ ranges over regular cardinals and the product has the Easton
support.

• If iα is an inaccessible cardinal, then

Piα+1 = Piα ∗ Q̇iα , (5.2)

where Q̇iα is a name for

Sacks(iα, F (iα))×
∏

iα<λ<iα+1

Add(λ, F (λ)),

where λ ranges over regular cardinals and the product has the Easton
support.

• If γ is a limit ordinal, then Piγ is an inverse limit unless iγ is a regular
cardinal, in which case Piγ is a direct limit (the usual Easton support).

Lemma 5.5 Under GCH, PF preserves all cofinalities.
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Proof. See the proof of Lemma 3.8. The only new feature of PF compared
to Lemma 3.8 is the inclusion of the Sacks forcing. It is enough to show that
Sacks(κ, F (κ)) × Add(κ+, F (κ+)) preserves cofinalities. The product is κ-
closed and κ++-cc, hence just the cardinal κ+ needs a special argument. For
this, it suffices to use the usual fusion-style argument for the Sacks forcing
in V Add(κ+,F (κ+)). (Lemma 5.5) �

In fact, working harder we can show that Sacks(κ, α) forces that the Co-
hen forcing Add(κ+, β) (for arbitrary ordinals α, β) remains κ+-distributive.
This will be useful in further arguments.

Lemma 5.6 Let κ be an inaccessible cardinal and α an ordinal number. Let
P be any κ+-closed forcing notion.

1. Sacks(κ, 1) forces that P̌ is κ+-distributive.

2. Or more generally, Sacks(κ, α) forces that P̌ is κ+-distributive.

Proof. Ad (1). Denote S = Sacks(κ, 1). The proof is a generalization of the
usual argument which shows that a κ+-closed forcing notion does not add
new κ-sequences. The difference is in the treatment of the Sacks coordinates
in S× P which are obviously not κ+-closed; however, they are closed under
fusion limits of length κ, and this will suffice to argue that new κ sequences
cannot appear between V S and V S×P.

Let 〈s, p〉 force that ḟ : κ → On. It is enough to find a condition
〈s̃, p̃〉 ≤ 〈s, p〉 such that if 〈s̃, p̃〉 ∈ G×H, where G×H is a generic for S×P,
then ḟG×H = f can be defined in V [G].

We will define a decreasing sequence of conditions 〈〈sα, pα〉 |α < κ〉
deciding the values of ḟ(α) for α < κ where s̃ will be the fusion limit of
〈sα |α < κ〉 and p̃ will be the lower bound of 〈pα |α < κ〉.

Set 〈s0, p0〉 = 〈s, p〉. Assume 〈sα′ , pα′〉 are constructed for α′ < α and
let first 〈s̄α, p̄α〉 be a lower bound of 〈sα′ , pα′〉’s; we show how to construct
〈sα, pα〉. Let Sα denote the set of splitting nodes of rank α in s̄α (the first
splitting node has rank 0). Pick some t ∈ Sα, and considering its immediate
continuations t∗0 and t∗1, find conditions 〈rt∗0, pt∗0〉, 〈rt∗1, pt∗1〉 and ordinals
αt∗0, αt∗1 such that the following conditions hold:

1. p̄α ≥ pt∗0 ≥ pt∗1;

2. rt∗0 ≤ s̄α � t ∗ 0, rt∗1 ≤ s̄α � t ∗ 1;

3. 〈rt∗0, pt∗0〉  ḟ(α) = αt∗0 and 〈rt∗1, pt∗1〉  ḟ(α) = αt∗1.

Continue in this fashion considering successively all t ∈ Sα, taking care
to form a decreasing chain p̄α ≥ pt∗0 ≥ pt∗1 . . . ≥ pt′∗0 ≥ pt′∗1 ≥ . . ., for
t, t′ ∈ Sα (where t′ is considered after t) in the Cohen forcing. We define:
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1. pα = the lower bound of p̄α ≥ pt∗0 ≥ pt∗1 . . . ≥ pt′∗0 ≥ pt′∗1 ≥ . . .;

2. sα = the amalgamation of the subtrees rt∗0, rt∗1 for all t ∈ Sα.

Finally, define 〈s̃, p̃〉 as the fusion limit of sα’s at the first coordinate and
as the lower bound at the second coordinate.

Let G × H be a generic for S × P containing 〈s̃, p̃〉. In V [G] define a
function f ′ : κ→ On as follows: f ′(α) = β iff β = αt∗i, for i ∈ {0, 1}, where
t is a splitting node of rank α in s̃ and t ∗ i ⊆

⋃
s∈G stem(s).

It is straightforward to verify that f ′ = f = ḟG×H .
Ad (2). The proof proceeds in exactly the same way as (1) except

that a generalized fusion is used for the Sacks(κ, α) forcing (it is essen-
tial here that the conditions in the Sacks forcing can have support of size
κ). (Lemma 5.6) �

We can now state the main theorem.

Theorem 5.7 Assume GCH and let F be an Easton function according to
Definition 2.1. Then the generic extension by PF preserves all cofinalities
and realises F , i.e. 2κ = F (κ) for every regular cardinal κ. Moreover, if a
cardinal κ is good for F , then it will remain measurable.

The proof will be given in a sequence of lemmas.
It is obvious that the Easton function F is realised in V PF

. It remains
to prove that each F -good cardinal κ remains measurable in the generic
extension. Let an F -good cardinal κ be fixed. Fix also a j : V → M an
F (κ)-hypermeasurable extender embedding witnessing the F -goodness of κ.

V
j

//M

The properties of the Easton function F imply that cf(F (κ)) > κ, so in
particular M is closed under κ-sequences in V . It also holds that F (κ) <
j(κ) < F (κ)+, j(F )(κ) ≥ F (κ) (by goodness), M = {j(f)(a) | f : [κ]<ω →
V, a ∈ [F (κ)]<ω}, and H(F (κ))V = H(F (κ))M . Note that M is not closed
even under κ+-sequences in V , but the correct capturing of H(F (κ)) implies
that <cf(F (κ))H(F (κ)) ⊆ M , so M is closed under < cf(F (κ))-sequences
providing that they refer to objects in H(F (κ)).

We fix some notation first. Let G be a generic for PF . As usual, we will
write Gα for the generic G restricted to Pα. The generic for Q̇α taken in
V [Gα] will be denoted as gα; it follows that Gα+1 = Gα ∗ gα.

For reasons of notational simplicity, we write PM for j(PF ). Recall that
PF is defined as an iteration along the closure points 〈iα |α < On〉 of F ; by
elementarity, PM is defined using the closure points of j(F ), which we will
denote as 〈iMα |α < On〉. Since j is the identity onH(κ), the closure points of
F and j(F ) coincide up to and including κ, i.e. 〈iα |α ≤ κ〉 = 〈iMα |α ≤ κ〉.
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Because κ is regular, we also have that iκ = κ. By elementarity, j(κ) is
closed under j(F ), and as j(κ) is regular in M , it follows that j(κ) = iMj(κ)
and so in particular F (κ) ≤ j(F )(κ) < iMκ+1 < j(κ) < F (κ)+ < iκ+1.

The general strategy of the proof is to lift the embedding j to V [G].
This amounts to finding a suitable generic for PM . As the cardinal structure
between V and M is the same up to and including F (κ), it follows that the
generics for the V -regular cardinals ≤F (κ) need to be “copied” from the
V [G]-side. The forcing PM at the M -cardinals in the interval (F (κ), j(κ))
(and at F (κ) if F (κ) is singular in V but regular in M) will be shown
to be sufficiently well-behaved so that the corresponding generics can be
constructed in V [G]. The next step is the forcing PM at j(κ) where the task
is twofold: not only do we need to find a generic, but we need to find one
which contains the pointwise image under j of gκ. Precisely to resolve this
difficult point, we have included the Sacks forcing Sacks(κ, F (κ)) at stage κ
because by [9] the point-wise image of the generic gκ (or rather of its Sacks
part) will (almost) generate the correct generic for j(κ). Finally, we lift to
all of V [G] using Lemma 2.19.

We will first lift the embedding j to V [Gκ]. As H(κ)V = H(κ)M , Pκ =
PMκ and it follows we can copy the generic Gκ.

Note: In order to keep track of where we are, we will use the following
dotted arrow convention to indicate that we are in the process of lifting the
embedding j to V [Gκ], but we have not yet completed the lifting. Once we
lift the embedding, the arrow will be printed in solid line.

V [Gκ]
j

//M [Gκ]

Recall by the definition of PF that the next step of iteration Qκ in V [Gκ]
is the product Sacks(κ, F (κ)) ×

∏
κ<λ<iκ+1

Add(λ, F (λ)), where λ ranges
over regular cardinals in V and the product has the Easton support; the
corresponding forcing in M [Gκ], to be denoted QM

κ , is Sacks(κ, j(F )(κ)) ×∏
κ<λ<iMκ+1

Add(λ, j(F )(λ)), where λ ranges over regular cardinals in M .

Remark 5.8 For typographical reasons, we employ the following notation
for Qκ and QM

κ .

– We write i(κ+ 1) for iκ+1 and iM (κ+ 1) for iMκ+1;

– If λ is a regular cardinal in V in the interval [κ, i(κ + 1)), then Qλ

stands for the forcing Sacks(κ, F (κ)) if λ = κ, and for the forcing
Add(λ, F (λ)) if λ 6= κ;

– If µ < µ′ are cardinals in V (µ, µ′ may be singular) in the interval
[κ, i(κ+ 1)) then we write

∏
[µ,µ′)Qλ for the product Qκ restricted to

the interval [µ, µ′) (and similarly for other intervals (µ, µ′) etc.). Thus
for instance

∏
[κ,i(κ+1))Qλ = Qκ.
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– Analogously, if λ̄ is a regular cardinal inM in the interval [κ, iM (κ+1)),
then QM

λ̄
stands for the forcing Sacks(κ, j(F )(κ)) in M [Gκ] if λ̄ = κ,

and for the forcing Add(λ̄, j(F )(λ̄)) in M [Gκ] if λ̄ 6= κ;

– If µ < µ′ are cardinals in M (µ, µ′ may be singular in M) in the
interval [κ, iM (κ+1)) then we write

∏M
[µ,µ′)QM

λ̄
for the M [Gκ]-product

QM
κ restricted to the interval [µ, µ′) (and similarly for other intervals

(µ, µ′) etc.);

– Generic filters for these forcings (once they are found in the case of
the forcing in M [Gκ]) shall be denoted in the same fashion using the
notation g[µ,µ′) and gM[µ,µ′), respectively.

Now we return to the proof. We will proceed to show that g[κ,F (κ)] can
be used to find in V [Gκ] an M [Gκ]-generic for

∏M
[κ,iM (κ+1))QM

λ̄
.

We will first correct the possible discrepancy between the values of F (λ)
and j(F )(λ) for V -regular λ in the interval [κ, F (κ)] (recall that λ ≤ F (κ)
is a cardinal in V if and only if it is a cardinal in M , but F (κ) may be
regular M but singular in V , so we need to remember in which universe
we are: V or M). By elementarity of j, j(κ) is closed under j(F ) and by
the F -goodness of κ, F (κ) ≤ j(F )(κ) < j(κ). Let λ0 be the least regu-
lar cardinal greater than κ such that F (κ) < F (λ0) (λ0 ≤ cf((F (κ)) as
F (cf(F (κ))) has cofinality greater than cf(F (κ)) and therefore cannot equal
F (κ)). For a regular λ ∈ [κ, λ0), F (λ) = F (κ) ≤ j(F )(κ) ≤ j(F )(λ). Also
λ < λ0 ≤ cf(F (κ)) ≤ F (κ) < j(κ) and j(κ) is closed under j(F ); it follows
that j(F )(λ) < j(κ) and hence F (λ), j(F )(λ) both have V -cardinality F (κ).
Any bijection between F (λ) and j(F )(λ) for a given λ generates an isomor-
phism between the forcings Sacks(κ, F (κ)) and Sacks(κ, j(F )(κ)) if λ = κ
and between Add(λ, F (λ)) and Add(λ, j(F )(λ)) otherwise. Denote these
isomorphic forcings as Q∗λ, i.e. Qλ

∼= Q∗λ. If a V -regular λ lies in the interval
[λ0, F (κ)], then j(F )(λ) < j(κ) < F (κ)+ ≤ F (λ) and so j(F )(λ) < F (λ).
It follows we can truncate the product Qλ at the ordinal j(F )(λ); let Q∗∗λ
denote this truncation. It is immediate that∏

[κ,F (κ)]Q
+
λ =df

∏
[κ,λ0)Q∗λ ×

∏
[λ0,F (κ)]Q∗∗λ (5.3)

is completely embeddable into
∏

[κ,F (κ)]Qλ and so there is a generic filter,
to be denoted g+

[κ,F (κ)], existing in V [G], which is
∏

[κ,F (κ)]Q
+
λ -generic over

V [Gκ]. The generic g+
[κ,F (κ)] will be used to find a generic for

∏M
[κ,iM (κ+1))QM

λ̄
.

The manipulation to obtain
∏

[κ,F (κ)]Q
+
λ ensures agreement for λ ≤ F (κ)

between the lengths of the products Qλ and QM
λ in V [Gκ] and M [Gκ],

respectively, but a word of caution is in order. For instance if F (κ) > κ+

is regular,
∏

[κ,F (κ)]Q
+
λ is never identical with

∏M
[κ,F (κ)]QM

λ̄
: Already for

F (κ) = κ++ the forcing Add(κ++, j(F )(κ++)) in M [Gκ] fails to capture all
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conditions in Add(κ++, j(F )(κ++)) in V [Gκ] as the supports in this forcing
are κ+-sequences extending above κ++, and some such sequences are missing
in M [Gκ] (for instance if F (κ) = κ++, (κ+3)M has cofinality κ+ in V ).
Accordingly, we only have (when F (κ) is regular in V greater than κ+)∏M

[κ,F (κ)]QM
λ̄
⊆

∏
[κ,F (κ)]Q

+
λ .

We will deal separately with the two cases: F (κ) regular in V , and F (κ)
singular in V .

Lemma 5.9 Assume F (κ) is regular in V . There is in V [Gκ ∗ g[κ,F (κ)]] an
M [Gκ]-generic for

∏M
[κ,iM (κ+1))QM

λ̄
, which we will denote as gM

[κ,iM (κ+1))
.

Proof. As F (κ) is regular in V , it is also regular in M . Consequently,
the forcing

∏M
[κ,F (κ)]QM

λ̄
is F (κ)+-cc in M [Gκ] and as

∏M
(F (κ),iM (κ+1))QM

λ̄

is F (κ)+-closed, the forcings are mutually generic in the sense of Lemma
2.6. It follows that we can deal with

∏M
[κ,F (κ)]QM

λ̄
and

∏M
(F (κ),iM (κ+1))QM

λ̄
separately.

A) The product
∏M

[κ,F (κ)]QM
λ̄

.
We will use g+

[κ,F (κ)] to obtain the required generic; in fact we will show

that the intersection gM[κ,F (κ)] = g+
[κ,F (κ)] ∩

∏M
[κ,F (κ)]QM

λ̄
is M [Gκ]-generic for∏M

[κ,F (κ)]QM
λ̄

.

We will argue that a maximal antichain A ∈M [Gκ] in
∏M

[κ,F (κ)]QM
λ̄

will
stay maximal in

∏
[κ,F (κ)]Q

+
λ , and so will be hit by g+

[κ,F (κ)].
For p ∈

∏
[κ,F (κ)]Q

+
λ write

supp(p) = {〈λ, α〉 | p(λ)(α) 6= 1}, (5.4)

where 1 stands for the empty condition in the relevant forcing, and analo-
gously for A ⊆

∏M
[κ,F (κ)]QM

λ̄
,

supp(A) = {〈λ, α〉 | ∃p ∈ A, 〈λ, α〉 ∈ supp(p)}. (5.5)

We will show that if A ∈M [Gκ] is a maximal antichain in
∏M

[κ,F (κ)]QM
λ̄

and
p ∈

∏
[κ,F (κ)]Q

+
λ is arbitrary, then

X = supp(p) ∩ supp(A) ∈M [Gκ] and p�X ∈M [Gκ]. (5.6)

Providing we know (5.6), p �X must be compatible with some a ∈ A, and
because p and a are compatible on the supports, they must be compatible
everywhere. It follows that A stays maximal in V [Gκ]. To argue for (5.6),
the F (κ)+-cc of

∏M
[κ,F (κ)]QM

λ̄
in M [Gκ] implies that the size of supp(A) in

M [Gκ] is at most F (κ). Since the size of supp(p) is strictly less than F (κ),
(5.6) will follow from the following property (5.7).

If a set x ∈M [Gκ] has size at most F (κ) in M [Gκ],
then <F (κ)x ∩ V [Gκ] ⊆M [Gκ]. (5.7)



36

Let f : x→ F (κ) be a 1-1 function, f ∈M [Gκ], and let ~s ∈ <F (κ)x ∩ V [Gκ]
be given. Working in V [Gκ], it is obvious that f [~s] ∈ H(F (κ)). Since
H(F (κ)) is the same in V [Gκ] and M [Gκ], f [~s] ∈ M [Gκ]. But as f is in
M [Gκ], so is f−1[f [~s]] = ~s.

B) The product
∏M

(F (κ),iM (κ+1))QM
λ̄

.

Notice that every dense open set of
∏M

(F (κ),iM (κ+1))QM
λ̄

in M [Gκ] is of
the form (j(f)(a))Gκ , a ∈ [F (κ)]<ω, where j(f)(a) is a PMκ -name, for some
f : [κ]<ω → H(κ+). Without loss of generality, we may assume that the
range of all such f contains just names for dense open sets.7 For each such
f , the set {〈j(f)(a), 1〉 | a ∈ [F (κ)]<ω} is a PMκ -name in M , which interprets
as a family {(j(f)(a))Gκ | a ∈ [F (κ)]<ω} of at most F (κ) many dense open
sets in M [Gκ] – it follows the intersection Df =

⋂
a∈[F (κ)]<ω (j(f)(a))Gκ is

dense in
∏M

(F (κ),iM (κ+1))QM
λ̄

since the forcing notion
∏M

(F (κ),iM (κ+1))QM
λ̄

is
F (κ)+-distributive in M [Gκ]. As there are only (κ+)κ = κ+ such f ’s, and
M [Gκ] is closed under κ-sequences in V [Gκ], we can construct a generic in
V [Gκ] meeting all the dense sets Df for all suitable f . Let us denote this
generic as gM

(F (κ),iM (κ+1)
.

We finish the proof by setting gM
[κ,iM (κ+1))

= gM[κ,F (κ)] × gM
(F (κ),iM (κ+1))

.
(Lemma 5.9) �

Lemma 5.10 Assume F (κ) is singular in V with cofinality δ < F (κ) (recall
that κ+ ≤ δ by the definition of Easton function). There is in V [Gκ∗g[κ,F (κ))]
an M [Gκ]-generic for

∏M
[κ,iM (κ+1))QM

λ̄
, which we will denote as gM

[κ,iM (κ+1))
.

The singularity of F (κ) implies that M [Gκ] may not be closed in V [Gκ]
under <F (κ)-sequences of elements of F (κ), but just under <δ-sequences.
It follows that the argument given in Lemma 5.9, in particular (5.7), cannot
be used as it stands. However, we will argue that the desired generic can
be constructed via “approximations” by induction along some sequence of
regular cardinals cofinal in F (κ).

In preparation for the argument, we will define a certain procedure which
will be used in the argument. Let 〈γi | i < δ〉 be a sequence of regular
cardinals cofinal in F (κ), with δ < γ0 (we may assume that this sequence
belongs to M if F (κ) is singular in M , as in that case, F (κ) has the same
cofinality in M as it has in V ). Generalizing our notation, if γi+1 < µ, where
µ is an M -cardinal (µ will in fact be always either F (κ) or iM (κ+ 1)), and
p ∈

∏M
[κ,µ)QM

λ̄
is a condition, let pγi denote p restricted to

∏M
[κ,γi]

QM
λ̄

(the

“lower part of p”) and pγi denote p restricted to
∏M

(γi,µ)QM
λ̄

(the “upper part

7Formally, f(s) will be a name for a dense open set in the forcing Pκ, and so j(f)(a)
for a ∈ [F (κ)]<ω will be a name for a dense open set in PM

j(κ). We will abuse notation and

identify every j(f)(a) with a Pκ-name for a dense open set in
QM

(F (κ),iM (κ+1))Q
M
λ̄ .
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of p”) (the parameter µ will be understood from the context). Note that for
each γi,

∏M
(γi,µ)QM

λ̄
is γ+

i -closed and
∏M

[κ,γi]
QM
λ̄

is γ+
i -cc in M [Gκ].

Let γi, f : [κ]<ω → H(κ+), and a ∈ [γi]<ω be arbitrary and assume that
j(f)(a) is a PMκ -name for a dense open set in

∏M
[κ,µ)QM

λ̄
, where µ is either

F (κ) + 1 or iMκ+1. Let us denote (j(f)(a))Gκ as D. Assume further that p is
a condition in

∏M
[κ,µ)QM

λ̄
.

Definition 5.11 q ∈
∏M

(γi,µ)QM
λ̄

is said to γi-reduce D below p if the fol-
lowing holds:

1. q extends the upper part of p, i.e. q ≤ pγi in
∏M

(γi,µ)QM
λ̄

;

2. The set D = {q ≤ pγi ∈
∏M

[κ,γi]
QM
λ̄
| q ∪ q ∈ D} is dense open in∏M

[κ,γi]
QM
λ̄

below the lower part of p.

We will show how to construct such a reduction q (the argument is
essentially the one used to prove the Easton lemma 2.6 (1)). Choose some
(r0, s0) such that r0 ∪ s0 ∈ D and r0 ≤ pγi and s0 ≤ pγi . At stage ξ of
the construction, let r′ξ be any condition which is incompatible with the
set of all previous conditions {rζ | ζ < ξ} (if there is such) and let s′ξ be
a lower bound of 〈sζ | ζ < ξ〉. Choose rξ ≤ r′ξ and sξ ≤ s′ξ such that
rξ ∪ sξ ∈ D. The construction is well-defined since

∏M
[κ,γi]

QM
λ̄

is γ+
i -cc and

consequently the process will stop at some ρ < γ+
i . Set q to be the lower

bound of all sζ for ζ < ρ. We will show that q indeed γi-reduces D below
p according to Definition 5.11. We only need to check the condition (2) as
(1) is obvious. Let q ≤ pγi be given. It follows from the construction that
there is some rζ such that q and rζ are compatible with some lower bound
r̃. Also, rζ ∪ sζ ∈ D and consequently r̃ ∪ q ∈ D by openness. Note that
as p ∈M [Gκ] by assumption, the construction can be carried out in M [Gκ]
and consequently q will also be in M [Gκ].

We will need to distinguish several cases which will be handled in a se-
quence of Sublemmas. Notice that by Observation 5.2, we cannot disregard
the possibility that F (κ) is singular in V while it is regular in M .

Sublemma 5.12 If the cofinality of F (κ) in V is κ+ and F (κ) is singular
in V (F (κ) can be either regular or singular in M) then there is in V [Gκ ∗
g[κ,F (κ))] an M [Gκ]-generic for

∏M
[κ,iM (κ+1))QM

λ̄
.

Proof. Fix the two following sequences:

1. Sequence 〈γi | i < κ+〉 of regular cardinals cofinal in F (κ), where κ+ <
γ0;



38

2. Sequence 〈j(fα) |α < κ+〉, where 〈fα |α < κ+〉 enumerates all f :
[κ]<ω → H(κ+) such that f(s) is a name for a dense open set in Pκ for
every s ∈ [κ]<ω; j(f)(a) for a ∈ [F (κ)]<ω will thus range over names for
dense open sets in PMj(κ) but we will abuse notation and identify every

j(f)(a) for a ∈ [F (κ)]<ω with a name restricted to
∏M

[κ,iM (κ+1))QM
λ̄

in
M [Gκ].

By induction on i < κ+, we will construct conditions pi ∈ M [Gκ] the
tails of which will reduce all dense open sets in

∏M
[κ,iM (κ+1))QM

λ̄
according

to Definition 5.11. We will also consider their limit – a “master condition”
– p∞ (possibly outside M [Gκ]) .

Fix in advance some wellordering <0∈ M [Gκ] of the pairs in κ+ ×
[F (κ)]<ω such that the restriction of <0 to k × [γk]<ω for each k < κ+

has order type γk. Assume that pi have been constructed for all i < k and
we need to construct pk. First let rk be a lower bound of pi for i < k and
work below this condition. Carry out the following construction in M [Gκ].
By induction on <0 restricted to k × [γk]<ω construct a decreasing chain
of conditions q(ξ,a) in

∏M
(γk,iM (κ+1))QM

λ̄
as follows. At stage (ξ, a), let first

r(ξ,a) be the lower bound of q(ξ′,a′) for (ξ′, a′) <0 (ξ, a). Using the argument
below Definition 5.11, set q(ξ,a) to be a condition which γk-reduces the dense
open set with the name j(fξ)(a) below (rk)γk

∪ r(ξ,a). Since the induction
has length γk and we consider only the initial segment of order type k of the
functions in the sequence 〈j(fξ) | ξ < κ+〉 (which exists in M [Gκ]), the lower
bound of all q(ξ,a) exists in M [Gκ]. Denoting this lower bound q, we set pk
to be equal to the union of the lower part of rk and q, i.e. pk = (rk)γk

∪ q.
Set p∞ to be a lower bound of 〈pi | i < κ+〉 (p∞ may exist only in V [Gκ]).

Let us write p←∞ for p∞ restricted to the interval [κ, F (κ)) and p→∞ for the
rest of p∞ defined at the interval [F (κ), iMκ+1). Note that p←∞ is an element
of the forcing

∏
[κ,F (κ))Q

+
λ , while p→∞ is not an element of any of the forcings

introduced so far (it is just a union of certain conditions which exists in
V [Gκ]).

Define the desired generic gM
[κ,iM (κ+1))

as follows. Assume now that h is
a

∏
[κ,F (κ))Q

+
λ -generic filter over V [Gκ] containing the condition p←∞, and set

h′ = {p→∞}∪{q ∈
∏M

[F (κ),iM (κ+1))QM
λ̄
| p→∞ ≤ q}. We claim that gM

[κ,iM (κ+1))
=

(h× h′) ∩M [Gκ] is M [Gκ]-generic for
∏M

[κ,iM (κ+1))QM
λ̄

.
Let D = (j(f)(a))Gκ dense open be given, where a ∈ [γk′ ]<ω for some

k′ < κ+. We will show that gM
[κ,iM (κ+1))

meets D. Assume that the set
D was dealt with at substage (ξ, a) of the inductive construction of p∞ at
stage k ≥ k′, where j(f) is considered. Under this notation, recall that
the set D = {q ≤ (rk)γk

| q ∪ q(ξ,a) ∈ D} is dense in M [Gκ] below (rk)γk
in∏M

[κ,γk]QM
λ̄

. If A is a maximal antichain contained in D, then

A remains maximal in
∏

[κ,γk]Q
+
λ in V [Gκ] (5.8)
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To see that (5.8) is true, we argue as in Lemma 5.9 (5.6): Since A is a
maximal antichain contained in a dense set, it is a maximal antichain in the
whole forcing

∏M
[κ,γk]QM

λ̄
. As

∏M
[κ,γk]QM

λ̄
is γ+

k -cc in M [Gκ] and a support
of a condition p in

∏
[κ,γk]Q

+
λ has size < γk, the closure property of M [Gκ]

If a set x ∈M [Gκ] has size at most γk in M [Gκ],
then <γkx ∩ V [Gκ] ⊆M [Gκ] (5.9)

ensures that (5.8) is true. It follows that h restricted to
∏

[κ,γk]Q
+
λ must hit

A; let a be an element of h such that aγk
∈ D. It follows that aγk

∪ q(ξ,a)
meets D. As both a and p←∞ are in h, there is some a′ ∈ h below both of
them. But then a′∪p→∞ ∈ h×h′ and a′∪p→∞ ≤ aγk

∪q(ξ,a), and so aγk
∪q(ξ,a)

is in gM
[κ,iM (κ+1))

and meets D.
We finish the proof by arguing that g+

[κ,F (κ)) can be used to find in V [G]
some such generic h containing p←∞. By the homogeneity8 of the forcing∏

[κ,F (κ))Q
+
λ there is r ∈ g+

[κ,F (κ)) and an automorphism π :
∏

[κ,F (κ))Q
+
λ
∼=∏

[κ,F (κ))Q
+
λ such that π(r) = p←∞; it now follows that h = π[g+

[κ,F (κ))] is∏
[κ,F (κ))Q

+
λ -generic containing p←∞ as desired. (Sublemma 5.12) �

Sublemma 5.13 If the cofinality of F (κ), which we denote δ, is greater
than κ+ in V , and F (κ) is singular in V , then there is in V [Gκ ∗ g[κ,F (κ))]
a M [Gκ]-generic for

∏M
[κ,iM (κ+1))QM

λ̄
.

Proof. We will need to distinguish two cases.

Case (1): F (κ) is regular in M .
Recall the sequences 〈γi | i < δ〉, where κ+ < γ0, and 〈j(fα) |α < κ+〉

which we used in the inductive construction in Sublemma 5.12. Unlike in
Sublemma 5.12, we do not make the assumption that δ = κ+. Thus the
two inductions cannot be merged together as in Sublemma 5.12 and a more
complicated argument is called for. We will construct the desired generic
for

∏M
[κ,iM (κ+1))QM

λ̄
in two steps.

A) The forcing
∏M

[κ,F (κ)]QM
λ̄

.

Intuitively, we need to define a generic for
∏M

[κ,F (κ)]QM
λ̄

by building a
decreasing list of conditions using induction along 〈γi | i < δ〉 and simultane-
ously along 〈j(fα) |α < κ+〉.9 As both inductions can lead the construction

8In fact, we need homogeneity only for the Cohen forcing part of the forcingQ
[κ,F (κ))Q

+
λ above γ0 as the master condition p←∞ is trivial below γ0. This implies that

we can disregard the Sacks forcing here.
9This time, j(f)(a) for a ∈ [F (κ)]<ω will be identified with Pκ-names for dense open

sets in
QM

[κ,F (κ)]Q
M
λ̄ .
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outside the model M [Gκ], we need to find a way to compatibly extend
conditions “locally” without leaving the class M [Gκ]. We shall do this by
dividing the supports of the conditions into segments corresponding to some
elementary substructures existing in M [Gκ].

Let mα for α < κ+ denote the following elementary substructure of some
large enough H(θ)M [Gκ] which is closed under <F (κ)-sequences existing in
M [Gκ]:

mα = SkolemHullH(θ)M [Gκ]({ M∏
[κ,F (κ)]

QM
λ̄ }∪F (κ)+1∪{j(fξ) | ξ ≤ α}

)
. (5.10)

Notice that each mα has size F (κ) in M [Gκ] and contains as elements all
dense open sets of the form (j(fξ)(a))Gκ for a ∈ [F (κ)]<ω and ξ ≤ α.

We will build a matrix of conditions {pi,α | i < δ, α < κ+} in
∏M

[κ,F (κ)]QM
λ̄

with δ-many rows each of length κ+ such that the conditions will be de-
creasing both in the rows and the columns. Moreover, for every i < δ and
every α < κ+, the sequence of conditions in the α-th column up to i, i.e.
〈pk,α | k < i〉, will exist in mα. We will construct the matrix in δ-many steps,
each of length κ+ (i.e. we will be completing rows first).

The first “square” of the matrix p0,0 will be filled in as follows. By
definition of m0, all dense open sets in

∏M
[κ,F (κ)]QM

λ̄
of the form (j(f0)(a))Gκ

for a ∈ [γ0]<ω are in m0; by elementarity, they are dense open in m0.
Working insidem0, carry out the reduction argument described in Sublemma
5.12. In particular, p0,0 will γ0-reduce all dense open sets (j(f0)(a))Gκ for
a ∈ [γ0]<ω (below the trivial condition 1 as we are filling in the first square).
The square p0,1 will be filled in in exactly the same way (considering f0

and f1), but working below the condition p0,0 which is present in m1. In
particular p0,1 will γ0-reduce below p0,0 all dense open sets of the form
(j(f1)(a))Gκ for a ∈ [γ0]<ω. Proceed this way at every successor ordinal,
obtaining p0,α+1. At a limit ordinal λ < κ+, first take a lower bound q of
〈p0,α |α < λ〉 which by the closure properties of mλ exists in mλ, and then
work below this lower bound; the resulting p0,λ will γ0-reduce below q all
dense open sets of the form (j(fξ)(a))Gκ for a ∈ [γ0]<ω and ξ ≤ λ. After κ+

steps we have completed the 0-th row of the matrix. Note that the limit of
〈p0,α |α < κ+〉 may not exist in M [Gκ].

We now need to complete row 1. In order to complete the first square
in row 1, we need to find p1,0 compatible with all conditions in the 0-th row
of the matrix. Though the lower bound of these conditions may not exist in
M [Gκ], we will argue that an intersection of the union of the conditions (or
more precisely of their supports) in the 0-th row with m0 is in M [Gκ], and
even in m0, i.e.

m0 ∩
⋃
α<κ+ supp(p0,α) ∈ m0 (5.11)
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To see that (5.11) is true, we argue similarly as in Lemma 5.9. Each p0,α is
obviously in M [Gκ], and consequently supp(p0,α) ∩m0 is in M [Gκ] and in
particular in m0. The intersection (5.11) can thus be viewed as the union of
a κ+-sequence of elements in m0. But as m0 has size F (κ) in M [Gκ], such
a sequence exists in M [Gκ] due to the following closure property

κ+
F (κ) ∈M [Gκ], (5.12)

which is implied by the F (κ)-hypermeasurability of κ and the fact that κ+

is smaller than the cofinality of F (κ).
It follows there is p1,0 which γ1-reduces all dense open sets (j(f0)(a))Gκ

for a ∈ [γ1]<ω below the condition
⋃
α<κ+ p0,α restricted to m0. In general

for α < κ+, the condition p1,α will reduce the relevant dense open sets below
the common lower bound of

⋃
α<κ+ p0,α restricted to mα and the union of

previous p1,β for β < α.
It is immediate that the above construction can be repeated for any

successor ordinal i+ 1 below δ, i.e. if the matrix has been completed up to
the stage i, we can fill in the i+ 1-th row by the above argument.

Assume now that i < δ is a limit ordinal. First consider the sequence
〈pk,α | k < i〉 for a single α < κ+. As the sequence is of length less then
cofinality F (κ) in M [Gκ] and contains elements from mα, which has size
F (κ) in M [Gκ], we can infer from

iF (κ) ∈M [Gκ] (5.13)

that the sequence exists in M [Gκ], and in particular in mα. Let qi,α ∈ mα

denote the lower bound of the sequence 〈pk,α | k < i〉 for each α < κ+. Now
repeat the above argument for the successor step considering the restrictions
of

⋃
α<κ+ qi,α to mβ’s for β < κ+.

We finish the construction by taking the limit of the whole matrix
{pi,α | i < δ, α < κ+}, obtaining some set p∞ existing in V [Gκ] (for instance
first taking limits of the rows and then the single limit of this sequence). Let
p←∞ denote the restriction of p∞ to the interval [κ, F (κ)) (note that p←∞ is a
condition in

∏
[κ,F (κ))Q

+
λ ) and p→∞ the restriction of p∞ to {F (κ)} (note that

p→∞ is a union of conditions in (Add(F (κ), j(F )(F (κ))))M [Gκ] which exists
in V [Gκ]). Arguing as at the end of Sublemma 5.12, we find a

∏
[κ,F (κ))Q

+
λ -

generic h, where p←∞ is in h, and define h′ to be generated by p→∞, such that
h×h′∩M [Gκ] is

∏M
[κ,F (κ)]QM

λ̄
-generic over M [Gκ]. Let us denote this generic

as gM[κ,F (κ)].

B) The forcing
∏M

(F (κ),iM (κ+1))QM
λ̄

in M [Gκ].

The regularity of the cardinal F (κ) in M implies that
∏M

[κ,F (κ)]QM
λ̄

and∏M
(F (κ),iM (κ+1))QM

λ̄
are mutually generic. Working in V [Gκ], we construct
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the generic gM
(F (κ),iM (κ+1))

for
∏M

(F (κ),iM (κ+1))QM
λ̄

exactly as in case B) of
Lemma 5.9.

It follows that gM
[κ,iM (κ+1))

= gM[κ,F (κ)] × gM
(F (κ),iM (κ+1))

is the desired

M [Gκ]-generic for
∏M

[κ,iM (κ+1))QM
λ̄

.

Case (2): F (κ) is singular in M .
Recall once again the sequence 〈γi | i < δ〉, where κ+ < γ0, and the

sequence 〈j(fα) |α < κ+〉 which we used in the inductive construction in
Sublemma 5.12 and Case (1) of the present Sublemma.

The singularity of F (κ) in M [Gκ] introduces an important simplification
into the construction: 〈γi | i < δ〉 can be picked in M [Gκ] this time. Just run
the argument in Sublemma 5.12 with the following modification: Start with
j(f0) and run the argument using just this one function j(f0), obtaining
some master condition pf0∞. Since the sequence 〈γi | i < δ〉 is in M [Gκ],
so is pf0∞. Now deal with j(f1) and so on by induction on α < κ+. At
each α < κ+ we can take the lower bound of the conditions pfβ

∞ for β < α
as we have closure under κ-sequences. Denote the constructed generic as
gM
[κ,iM (κ+1))

. (Sublemma 5.13) �

This also ends the proof of the whole lemma. (Lemma 5.10) �

It follows we have completed one more step in finding suitable generics
for PM .

V [Gκ]
j

//M [Gκ ∗ gM[κ,iM (κ+1))
]

In order to construct another generic, we need to verify that we have pre-
served closure under κ-sequences of M [Gκ ∗ gM[κ,iM (κ+1))

] in V [Gκ ∗ g[κ,F (κ)]].

Lemma 5.14 M [Gκ ∗ gM[κ,iM (κ+1))
] is closed under κ-sequences in V [Gκ ∗

g[κ,F (κ)]].

Proof. As mentioned above, M [Gκ] remains closed under κ-sequences in
V [Gκ] as the forcing Pκ is κ-cc. Let us denote as gS the projection of
g[κ,i(κ+1)) to the Sacks forcing. By Lemma 5.6, the forcing Add(κ+, F (κ+))
is κ+-distributive after the Sacks forcing Sacks(κ, F (κ)), and consequently
it is enough to show closure just in V [Gκ ∗ gS ]. Recall the “manipulation”
argument just before Lemma 5.9 which removes the discrepancy between
the values F (κ) and j(F )(κ); the modification of Sacks(κ, F (κ)) changes
this forcing to S∗ = Sacks(κ, j(F )(κ)). Due to closure of M [Gκ] under κ-
sequences, S∗ is the same in V [Gκ] and in M [Gκ] and is the first step of
the product

∏M
[κ,iM (κ+1))QM

λ̄
in the iteration PM at stage κ. We are going

to work in V [Gκ ∗ g∗S ] = V [Gκ ∗ gS ], where g∗S is the generic for S∗, and as
such is present in M [Gκ ∗ gM[κ,iM (κ+1))

].
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Let X be a κ-sequence of ordinal numbers in V [Gκ ∗ g∗S ], and let this
be forced by some p0 ∈ g∗S . By the fusion argument (carried out in V [Gκ]),
there is for every r ≤ p0 some pX ≤ r such that if pX is in g∗S , then X can be
uniquely determined from pX and g∗S restricted to the support of pX . Since
such pX are dense below p0, some such pX is in g∗S , and as pX and g∗S are
present in M [Gκ ∗ gM[κ,iM (κ+1))

], so is X. (Lemma 5.14) �

The preservation of closure allows us to prove:

Lemma 5.15 We can construct in V [Gκ ∗g[κ,F (κ)]] an M [Gκ ∗gM[κ,iM (κ+1))
]-

generic for the stage PM
[iMκ+1,j(κ))

.

Proof. As in Lemma 5.9, case B), work in V [Gκ ∗ g[κ,F (κ)]] and construct by
recursion a generic filter H hitting all dense sets. (Lemma 5.15) �

It follows we can lift partially to V [Gκ]:

V [Gκ]
j

//M [Gκ ∗ gM[κ,iM (κ+1))
∗H]

The next step is to lift to the
∏

[κ,i(κ+1))Qλ-generic g[κ,i(κ+1)) over V [Gκ].
Again due to Lemma 5.6, coupled with Lemma 2.19, the only non-trivial

part of this step is to lift to the generic filter gS for Sacks(κ, F (κ)). This
follows directly from the technique in [9], which is reviewed (and sufficiently
generalized) in Section 4.1 (note that the condition j(fλ)(κ) = λ in the proof
of Theorem 4.8 can be easily replaced by our assumption that j(F )(κ) ≥
F (κ)).

Let us denote the generic generated by j[gS ] as h0. It follows we can lift
to V [Gκ ∗ gS ]:

V [Gκ ∗ gS ]
j

//M [Gκ ∗ gM[κ,iM (κ+1))
∗H ∗ h0]

We finish the lifting by an application of Lemma 2.19 in two stages, first to
the rest of the product

∏
[κ+,i(κ+1))Qλ and then to the rest of the iteration

PF :
V [G]

j
//M [j(G)]

This proves Theorem 5.7 and shows that κ remains measurable in the generic
extension by PF .

5.2 Preservation of strong cardinals

In [24], Menas showed using a “master condition” argument that locally
definable (see Definition 5.16 below) Easton functions F can be realised
while preserving supercompact cardinals. We will show how to adapt his
result to strong cardinals using the above arguments.
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Definition 5.16 An Easton function F , see Definition 2.1, is said to be
locally definable if the following condition holds:

There is a sentence ψ and a formula ϕ(x, y) with two free variables such
that ψ is true in V and for all cardinals γ, if H(γ) |= ψ, then F [γ] ⊆ γ and

∀α, β ∈ γ(F (α) = β ⇔ H(γ) |= ϕ(α, β)). (5.14)

Theorem 5.17 (GCH) Assume F is locally definable in the sense of Defin-
ition 5.16. If PF is the forcing notion as in Definition 5.4, then V PF

realises
F and preserves all strong cardinals.

Proof. First note that since ψ is true in V , there exists a closed unbounded
class of cardinals Cψ such that if β ∈ Cψ, then H(β) |= ψ. It also holds that
the closed unbounded class Cψ is included in the closed unbounded class CF
of closure points of F .

Assume κ is a strong cardinal. We first show that κ is closed under F .
Choose some β greater than κ such that H(β) satisfies ψ and let j : V →
M be an embedding witnessing β-hypermeasurability of κ; in particular
H(β)V ⊆ M and β < j(κ). Notice that for every α < κ, the following
equivalence is true by elementarity of j:

∃ξ ∈ (α, κ), ξ closed under F iff ∃ξ ∈ (α, j(κ)), ξ closed under j(F ) (5.15)

Since β in the interval (α, j(κ)) was chosen to satisfy ψ and thus it is closed
under F (and j(F )), we conclude that the closure points of F are unbounded
in κ, and consequently κ is closed under F .

Let G be a generic filter for PF . Assume that β > κ is a singular
cardinal such that H(β) satisfies ψ (it follows that β is a closure point of
F ). We claim that every extender embedding j : V → M witnessing the
β++-hypermeasurability of κ can be lifted to a j∗ : V [G] → M [j(G)] with
H(β+) of V [G] included in M [j(G)], thereby witnessing that κ is still β+-
hypermeasurable in V [G]. As β can be arbitrarily large, this implies that κ
is still strong in V [G].

Let β > κ singular such that H(β) |= ψ be given. Let j : V → M be
a β++-hypermeasurable witnessing embedding; that is β++ < j(κ) < β+++

and M = {j(f)(a) | f : [κ]<ω → V, a ∈ [β++]<ω}. Since κ is closed under F ,
j(κ) is closed under j(F ). Moreover, since j(F ) is locally definable in M via
the formulas ψ and ϕ(x, y) andH(β)M = H(β)V , it follows thatH(β)M |= ψ
and consequently F and j(F ) are identical on the interval [ω, β); in particular
β is closed under j(F ). The fact that H(β++) is correctly captured by M
implies that PF and j(PF ) coincide up to stage β, i.e. PFβ = j(PF )β, and
thus we may “copy” the generic Gβ, i.e. G restricted to β, and use it as a
generic for j(PF )β . Moreover, as PFβ is β++-cc, all nice PFβ -names for subsets
of β+ in V are included in M , and consequently all subsets of β+ existing
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in V [Gβ] are also present in M [Gβ ]. It follows that H(β++) of V [Gβ] equals
H(β++) of M [Gβ].

Applying the notation of the previous section, we denote β = i(β̄) =
iM (β̄), where i and iM enumerate the closure points of F and j(F ), respec-
tively, and β̄ ≤ β is some ordinal. The singularity of β in M implies that
the next step of the iteration, the product QM

β in M [Gβ], is trivial at β, and
so

QM
β =

∏M
[β+,iM (β̄+1))QM

λ̄
(5.16)

is the Easton-supported product of Cohen forcings in the interval [β+, iM (β̄+
1)), where iM (β̄ + 1) < j(κ) is the next closure point of j(F ) after β.

Due to Lemma 2.6, we know that the forcing notion
∏M

[β+,β++]QM
λ̄

, i.e.
(Add(β+, j(F )(β+)))M [Gβ ] × (Add(β++, j(F )(β++)))M [Gβ ] and the forcing
notion

∏M
[β+3M ,iM (β̄+1))QM

λ̄
are mutually generic, and hence we can deal with

them separately.
As β++ ≤ F (β+) ≤ F (β++) and the size of j(F )(β+) and j(F )(β++) is

β++ in V (due to closure of j(κ) under j(F )), we can “manipulate” the forc-
ing Add(β+, F (β+))×Add(β++, F (β++)) of V [Gβ ] just like in (5.3) before
Lemma 5.9. We obtain a forcing notion

∏
[β+,β++]Q

+
λ and a V [Gβ ]-generic

g+
[β+,β++]

for
∏

[β+,β++]Q
+
λ . Since H(β++) of V [Gβ] is correctly captured in

M [Gβ ], we can argue as in Lemma 5.9, case A) that maximal antichains in∏M
[β+,β++]QM

λ̄
existing in M [Gβ ] remain maximal in

∏
[β+,β++]Q

+
λ . It follows

that

g+
[β+,β++]

∩M [Gβ] is M [Gβ]-generic for
∏M

[β+,β++]QM
λ̄
. (5.17)

Arguing as in Lemma 5.14, M [Gβ ] is easily seen to be still closed under
κ-sequences in V [Gβ]. Consequently, we may construct a M [Gβ]-generic for∏M

[β+3M ,iM (β̄+1))QM
λ̄

just like in Lemma 5.9, Case B). Similarly, we construct
a generic for the iteration j(PF ) up to the closure point j(κ) (see Lemma
5.15). We finish the proof by first lifting to the Sacks forcing at κ, using [9]
and the generalization in Section 4.1 of this paper, and then to the rest of
the forcing above κ (see the end of the proof for Theorem 5.7, just before
this Section 5.2), finally obtaining

j∗ : V [G] →M [j∗(G)]. (5.18)

Notice that M [j∗(G)] captures all subsets of β in V [G], and hence κ is still
β+-hypermeasurable in V [G]. (Theorem 5.17) �

Remark 5.18 As mentioned in Section 4.2, the proof of the Theorem 5.7
and 5.17 uses heavily the assumption that H(F (κ))V is included in M to
argue that κ remains measurable (or strong). It is an open question for us
if the theorem can be proved just from the assumption o(κ) = F (κ).
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6 Easton functions and global failure of SCH

In Theorem 5.7 we have shown that the final model V PF
realises a given

Easton function F and preserves measurability of some (the so called “F -
good”) large cardinals. It is natural to ask if it is possible to globally change
the cofinality of all measurable cardinals in V PF

while preserving all cardi-
nals. Thus, if κ is measurable in V PF

and GCH fails at κ, SCH will fail at
κ if it remains a strong limit cardinal with cofinality ω. We show that this
is indeed possible, by iterating a forcing developed by K.Prikry in [25], see
Definition 6.1 here, along (some) measurable cardinals. In fact, in Section
6.1 we shall show two ways of doing it: (i) an application of the iteration
with full support developed by M. Magidor ([23]) and (ii) an application
of the Easton-supported iteration developed by M. Gitik (see for instance
[11]).

However, the use of the forcing as in Definition 6.1 implies that the
cardinal κ where we want to fail SCH needs to be first a measurable cardinal
failing GCH. We have observed above in Observation 3.1 that this implies
failure of GCH on a measure one set below this cardinal κ. This limits
unnecessarily the eligible Easton functions F if we aim at obtaining cardinals
failing SCH and not care to have them measurable first. There exists a more
complicated Prikry-style forcing developed by M. Magidor and M. Gitik in
[10] which achieves this task: it cofinalizes a sufficiently large κ to a cofinality
ω and simultaneously blows up its powerset. We study the iteration of this
type of forcing in Section 6.2 obtaining some original results in this area.

6.1 Iteration of the simple Prikry forcing

We first review the definition of the forcing which we will call “simple Prikry
forcing”, and denote as Prk(κ).

Definition 6.1 A condition in Prk(κ) is of the form (s,A) where s is a
finite sequence in κ and A is a subset of κ which lies in some fixed normal
κ-complete ultrafilter U on κ. We assume that max(s) < min(A). We say
that (s,A) is stronger than (t, B), (s,A) ≤ (t, B), if s end-extends t, A ⊆ B
and s \ t ⊆ B. We say that (s,A) directly extends (t, B), (s,A) ≤∗ (t, B), if
(s,A) extends (t, B) and moreover s = t.

In the terminology of [11], Prk(κ) is the canonical example of a Prikry
type forcing notion, that is P is a Prikry type forcing notion if there are
orderings ≤∗⊆≤ of P , where ≤∗ is called a direct extension and ≤ an exten-
sion and for every p ∈ P and a sentence σ there is q ≤∗ p deciding σ. The
ordering ≤∗ is typically more closed than ≤.

All antichains in Prk(κ) have size at most κ<ω = κ, and hence Prk(κ)
is κ+cc (this does not require GCH). The direct extension relation ≤∗ is
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κ-closed which implies that Prk(κ) does not add new subsets of κ. If follows
that Prk(κ) preserves all cardinals.

We will now describe how to iterate the forcing Prk(κ). Essentially, there
are two options: the full support, and the Easton support. We first review
the full support iteration:

Definition 6.2 (Full support iteration) An iteration with full support
Rfull = R = 〈(Rα, Ṙα) |α ∈ On〉 is defined by recursion along α < On. We
will suppress the superscript notation “full” in Rfull if there is no risk of
confusion.

For every α < On let Rα be a set of all elements p of the form 〈ṗγ | γ <
α〉, where for every γ < α,

p�γ = 〈ṗβ |β < γ〉 ∈ Rγ (6.1)

and p�γ “ṗγ is a condition in Ṙγ,” where Ṙγ is either Prk(γ) or a trivial
forcing.

Let p = 〈ṗγ | γ < α〉 and q = 〈q̇γ | γ < α〉 be elements of Rα. Then p is
stronger than q, p ≤ q, iff

1. for every γ < α,
p�γ  ṗγ ≤ q̇γ in Ṙγ ; (6.2)

2. there exists a finite subset b ⊆ α so that for every γ ∈ α \ b,

p�γ  ṗγ ≤∗ q̇γ in Ṙγ . (6.3)

If the set in item (2) is empty, the we call p a direct extension of q and
denote it as p ≤∗ q.

Note that even if κ is a Mahlo cardinal, the forcing Rfull
κ fails to be κ-cc.

However, in certain applications (see [12]), it is useful to have κ-cc at the
stage κ of an iteration. We may achieve this by requiring that the conditions
have the Easton support; Definition 6.3 is due to M. Gitik.

Definition 6.3 (Easton support iteration) An iteration REaston = R =
〈(Rα, Ṙα) |α ∈ On〉 is defined by recursion along α < On. We will suppress
the superscript notation “Easton” in REaston if there is no risk of confusion.

For every α < On let Rα be a set of all elements p of the form 〈ṗγ | γ ∈ g〉,
where

1. g ⊆ α;

2. g has the Easton support, i.e. for every inaccessible β ≤ α, β > |g∩β|,
provided that for every γ < β, |Rγ | < β;
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3. for every γ ∈ g,
p�γ = 〈ṗβ |β ∈ g ∩ γ〉 ∈ Rγ (6.4)

and p �γ “ṗγ is a condition in Ṙγ,” where Ṙγ is either Prk(γ) or a
trivial forcing.

Let p = 〈ṗγ | γ ∈ g〉 and q = 〈q̇γ | γ ∈ f〉 be elements of R. Then p is stronger
than q, p ≤ q, iff

1. g ⊇ f ;

2. for every γ ∈ f ,
p�γ  ṗγ ≤ q̇γ in Ṙγ ; (6.5)

3. there exists a finite subset b ⊆ f so that for every γ ∈ f \ b,

p�γ  ṗγ ≤∗ q̇γ in Ṙγ . (6.6)

If the set in item (3) is empty, the we call p a direct extension of q and
denote it as p ≤∗ q.

By results in [11], both iterations Rfull and REaston are themselves Prikry-
type, i.e. if p is a condition in either of the forcings and σ is a sentence then
there is a direct extension q ≤∗ p deciding σ.

Lemma 6.4 Both iterations preserve (under some mild cardinal arithmetic
assumptions in case of REaston) all cardinals, and also all axioms of ZFC:

1. At each cardinal κ, Rfull = R factors into Rκ+1∗R\Rκ+1 such that Rκ+1

is κ+-cc and R \ Rκ+1 does not add new subsets of κ+. In particular,
R preserves all axioms of ZFC and all cardinals.

2. Assuming SCH, at each cardinal κ, REaston = R factors into Rκ+1 ∗
R\Rκ+1 such that Rκ+1 preserves cardinals λ ≥ κ+ and R\Rκ+1 does
not add new subsets of κ+. In particular R preserves all axioms of
ZFC and all cardinals.

Proof. Ad (1). Let us denote R = Rfull, and let κ be a cardinal. The
interesting case is when κ is a limit of non-trivial stages of the iteration R,
i.e. if there is a λ ≤ κ and an increasing sequence of cardinals 〈κα |α < λ〉
such that κ = sup(〈κα |α < λ〉) and each Ṙα is a name for the simple
Prikry forcing. Since we are dealing with a full support iteration, we do
not need to distinguish the cases when κ is regular, or singular. Rκ is κ+-
cc by the following argument: if p ∈ Rκ then there exists a finite subset
b ⊆ κ where the the first coordinate of the condition in the Prikry forcing is
non-trivial (at coordinates outside b there are only direct extensions of the
empty condition, and these are compatible), i.e. there is a finite sequence of
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names 〈ṡα |α ∈ b〉 with ṡα being a name for a non-empty finite sequence in
κα. As there are only κ<ω = κ many such sequences, it follows that there
are at most κ many incompatible conditions, and hence Rκ is κ+-cc. Since
Ṙκ is either trivial or the simple Prikry forcing, we also have that Rκ+1 is
κ+-cc. The fact that R \ Rκ+1 does not add new subset of κ+ follows from
the fact that R\Rκ+1 satisfies the Prikry condition and the direct extension
relation in R \ Rκ+1 is κ++-closed.

This is enough to argue that R preserves all cardinals: assume that some
κ+ is collapsed to κ and factor R into Rκ+1 and R \ Rκ+1. Since R \ Rκ+1

cannot collapse κ+, it must be Rκ+1, but this is impossible as Rκ+1 is κ+-cc.
Preservation of axioms of ZFC follows similarly as in Remark 2.5 using the
fact that R \ Rκ+1 does not add new subsets of κ+ for every κ.

Ad (2). Let R = REaston, and let κ be the interesting case as above in
(1). Unlike in (1) we cannot argue that every p in Rκ is determined as
regards compatibility by a finite sequence of names 〈ṡα |α ∈ b〉. We need
to distinguish the cases when κ is regular and singular. Notice that in
both cases, κ needs to be strong limit since it is the limit of a sequence
〈κα |α < λ〉, λ ≤ κ, of inaccessible cardinals.

Case 1: κ is regular. In this case κ is strong limit and regular, and hence
inaccessible. It follows that κ<κ = κ and by Easton support of Rκ, this
is enough to conclude that Rκ is κ+-cc. In fact, if κ is Mahlo, a standard
argument shows that Rκ is κ-cc. Since Ṙκ is either trivial or the simple
Prikry forcing, also Rκ+1 is κ+-cc.

Case 2: κ is singular. In this case κ is a strong limit singular cardinal.
Since Rκ has size 2κ, it is obviously (2κ)+-cc. By SCH (this is the only
place where we need an additional assumption), 2κ = κ+ and so Rκ is κ++-
cc. It follows that Rκ preserves all cardinals λ ≥ κ++. We need a special
argument to show that κ+ is preserved as well. This is a standard argument
based on the Prikry properties of Rκ using the fact that the cofinality of κ
is some δ < κ and hence if Rκ collapsed κ+, it would need to add a cofinal
δ-sequence to κ+.10

Preservation of axioms of ZFC and of cardinals follows exactly as in (1).
(Lemma 6.4) �

Remark 6.5 Notice that Rfull has the following nice property: every two
direct extensions p, q in Rfull of an empty condition 1Rfull = 1 are compatible.
This is very useful in showing that the initial segment Rfull

κ of the iteration
10In fact, it is known from the results in inner model theory that it is very hard to

collapse successors of singular cardinals. Thus if we for instance assume that there is no
inner model with a Woodin cardinal in our universe, κ+ cannot be collapsed by a general
inner model argument.
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preserves measurability κ (see the first proof of Theorem 6.6). This contrasts
with REaston which fails to have this property.

Now we can show:

Theorem 6.6 Let F be an Easton function as in Definition 2.1 and PF
a forcing iteration as in Definition 5.4. Let ∆ denote the class of F -good
cardinals as in Definition 5.3. Assume that GCH holds in V . Then: There
is a forcing iteration R of the simple Prikry forcing such that in the generic
extension by PF ∗ R all cardinals are preserved, the function F is realized
and if κ is in ∆, then its cofinality is changed to ω.

We will first review the properties of the generic extension V [G] by PF :

1. V [G] is a cofinality preserving extension of V realizing F .

2. V [G] satisfies SCH.

3. All F -good cardinals of V , i.e. all κ ∈ ∆, remain measurable in V [G].

4. The measurability of κ ∈ ∆ is witnessed in V [G] by some extender
embedding j∗ : V [G] → M [j∗(G)], where j∗ lifts some extender em-
bedding j : V →M witnessing F -goodness of κ in V .

We will give two proofs of the theorem. The author first constructed a
proof given as Proof 2 using an iteration with the Easton support. Then
M.Magidor in personal communication suggested to the author that in the
case of the simple Prikry forcing it is much more elegant to use an iteration
with full support, as in [23] – this is the Proof 1.

Proof 1: Full support iteration
The first proof is be based on the full support iteration of the simple

Prikry forcing Prk(κ). Work in V [G] and let R be defined as in Definition
6.2, with Ṙα being a name for the forcing Prk(α) whenever Rα forces that
α is measurable. By Lemma 6.4, R preserves cardinals, and obviously does
not change the continuum function in V [G] – hence F is still realized in a
generic extension by R. It remains to verify that all elements of ∆ will be
cofinalized to a cofinality ω. In fact, we show that all measurable cardinals
in V [G] will be cofinalized.

Let us denote by M the class of measurable cardinals in V [G]. Note
that in general ∆ ⊆ M , but ∆ = M may not be true. Clearly, it is enough
to show

For every α ∈ M ,Rα  α is measurable. (6.7)

The proof uses the following property of the full support iteration R of the
simple Prikry forcing (where 1 denotes the greatest, or equivalently empty
condition in the relevant forcing):

For all p, q ≤∗ 1, p, q are compatible. (6.8)



51

Let κ in M be fixed. We shall show that Rκ forces that κ is measurable.
Let Hκ be a generic for Rκ. Define a measure U on κ in V [G][Hκ] as follows:

X ∈ U iff ∃p ∈ Hκ,∃p′ ≤∗ 1 ∈ j∗(Rκ) \ Rκ, p
ap′  κ ∈ j∗(Ẋ), (6.9)

where Ẋ is a Rκ-name for a subset of κ and 1 = 1j∗(Rκ)\Rκ
. We claim that

U is a κ-complete ultrafilter in V [G][Hκ]. In the paragraphs below a primed
condition (e.g. p′) will refer to elements of j∗(Rκ) \ Rκ, while a non-primed
condition (e.g. p) will refer to elements of Hκ ⊆ Rκ (unless stated otherwise).

We first state a simple fact:

Fact 6.7 If σ is a sentence then there are r, r′, such that r ∈ Hκ, r′ ≤∗
1j∗(Rκ)\Rκ

and rar′ decides σ.

Proof. By the Prikry property of j∗(Rκ)\Rκ, the greatest condition 1Rκ in Rκ

forces for some r′ ≤∗ 1j∗(Rκ)\Rκ
in j∗(Rκ)\Rκ the sentence “r′  σ∨r′  ¬σ”.

Since Hκ is a generic filter, there is some r ∈ Hκ forcing either r′  σ or
r′  ¬σ, or equivalently rar′ decides σ. (Fact 6.7) �

We finish the first proof of Theorem 6.6 by the following lemma:

Lemma 6.8 U defined in (6.9) is a κ-complete ultrafilter in V [G][Hκ].

Proof. U is correctly defined. Note that if Ẋ0 and Ẋ1 are two names and they
interpret as the same subset of κ in V [G][Hκ], i.e. (Ẋ0)Hκ = (Ẋ1)Hκ , then
they are decided in the same way by conditions according to (6.9): Assume
for contradiction that there are ra

0 r
′
0 and ra

1 r
′
1 such that ra

0 r
′
0  κ ∈ j∗(Ẋ0)

and ra
1 r
′
1  κ 6∈ j∗(Ẋ1). Let p ∈ Hκ force that Ẋ0 = Ẋ1; j(p) is of the form

pap′ where p′ is a direct extension of 1 (because there is only finite number
of coordinates with non-direct extensions in p and hence these coordinates
are bounded in κ). It follows that all these three conditions ra

0 r
′
0, r

a
1 r
′
1, p

ap′

are compatible which is a contradiction.
U is a filter. The empty condition in j∗(Rκ) forces that κ ∈ j∗(κ), and

so κ ∈ U . Let X,Y be in U and let Ẋ, Ẏ be their respective names. If pap′

forces that κ is in j∗(Ẋ) and rar′ forces the same for j∗(Ẏ ) then clearly the
common lower bound forces that κ is in the intersection. Also trivially, if
X ⊆ Y are subsets of κ, then by the maximality principle we can choose
names Ẋ, Ẏ such that the empty condition forces that Ẋ ⊆ Ẏ . It follows
that X ∈ U implies Y ∈ U : if pap′  κ ∈ j∗(Ẋ), then also pap′  κ ∈ j∗(Ẏ ).

U is an ultrafilter. Let X be a subset of κ. Choose names Ẋ and Ẋc

such that the empty condition forces that Ẋc is the complement of Ẋ. Then
1j∗(Rκ)  κ ∈ j∗(Ẋ ∪ Ẋc). As Hκ is generic and j∗(Rκ) \ Rκ satisfies the
Prikry property, the are pap′ and rar′ as in Fact 6.7 deciding whether or not
κ is in j∗(Ẋ) or j∗(Ẋc), respectively. By the compatibility of pap′ and rar′,
it must be that exactly one of these conditions decides its relevant sentence
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positively, otherwise we could consider a common lower bound and derive a
contradiction.

U is a κ-complete ultrafilter. Let 〈Xα |α < δ〉 be sets in U for some δ < κ.
By definition (6.9), there are pa

α p′α, α < δ, forcing that κ is in j∗(Ẋα). Let
rar′, r ∈ Hκ, r′ ≤∗ 1j∗(Rκ)\Rκ

decide the sentence κ ∈
⋂
α<δ j

∗(Ẋα). We
claim that rar′ must decide the sentence positively. Assume otherwise. Let
p̄ be the greatest lower bound of p′α’s and s′ a condition ≤∗ below r′ and p̄.
Then also ras′ decides κ ∈

⋂
α<δ j

∗(Ẋα) negatively. There must be some
r0 ≤ r in Hκ and s′0 ≤ s′ and α such that ra

0 s
′
0 forces κ 6∈ j∗(Ẋα). However,

this is a contradiction since ra
0 s
′
0 is compatible with pa

α p′α. (Lemma 6.8) �

This ends the first proof of Theorem 6.6 (note that GCH or SCH was
never used in the argument).

Proof 2: Easton support iteration
Now we will give an alternative proof of Theorem 6.6. Work in V [G]

and let R be defined as in Definition 6.3, with Ṙα being a name for the
forcing Prk(α) whenever Rα forces that α is measurable and an element of
∆. By Lemma 6.4, R preserves cardinals, and obviously does not change the
continuum function in V [G] – hence F is still realized in a generic extension
by R. It remains to verify that all elements of ∆ will be cofinalized to a
cofinality ω. Clearly, as in the first proof, it is enough to show

For every α ∈ ∆,Rα  α is measurable. (6.10)

Let κ ∈ ∆ be fixed. κ is a measurable cardinal in V [G] and this is
witnessed by an embedding j∗ : V [G] →M [j∗(G)] =df M

∗ which is a lift of
an embedding j : V → M in V . Recall that the original j was an extender
embedding, i.e.

M = {j(f)(a) | f : [κ]<ω → V, a ∈ [F (κ)]<ω} (6.11)

The lifted j∗ is also an extender embedding so that

M∗ = {j∗(f∗)(a) | f∗ : [κ]<ω → V [G], a ∈ [F (κ)]<ω} (6.12)

Note that each f∗ is defined from some f ∈ V with its domain containing
only PF -names by setting

f∗(a) = (f(a))G, for each a ∈ dom(f) (6.13)

Preservation of measurability of κ by Rκ follows directly from [11], p.91,
if F (κ) = κ+ (or if the cofinality of F (κ) is κ+). We provide a general
argument which works for arbitrary F (κ) (assuming κ ∈ ∆). Before we start
the proof, recall that the Easton-supported iteration REaston fails to satisfy
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the property that all direct extensions of a given condition are compatible.
Thus we cannot proceed as in the first proof of Theorem 6.6.

In order to show that κ remains measurable in Rκ we have to define
a measure at κ. Following the argument in [11] we will find a family of
conditions in j∗(Rκ) which will answer compatibly the questions

“is κ in j∗(Ẋ), ” (6.14)

where Ẋ’s are Rκ-names for subsets of κ. If F (κ) > κ+, then there are
more than κ+-many such names Ẋ and this prevents us from taking lower
bounds when constructing the (to-be) compatible family of conditions (M∗ is
closed only under κ-sequences in V [G]). A standard way to circumvent this
obstacle is to group the≤∗-dense open sets (see Definition 6.9) corresponding
to the relevant questions into κ+-many segments such that each segment can
be determined by a single condition (each segment will typically have size
greater than κ+).

The basic idea of the proof is to show that this grouping can be achieved
by considering a family {fα | fα : κ → H(κ)V , α < κ+} in V which deter-
mines a family {f∗α | f∗α : κ→ H(κ)V [G], α < κ+} of functions in V [G] which
is universal in that the ranges of j∗(f∗)’s capture all ≤∗-dense opens sets
in j∗(Rκ) \ Rκ+1 (and in particular the ≤∗-dense open sets corresponding
to the questions (6.14)). Thus we will “borrow” some degree of GCH at κ
from the original V .

Definition 6.9 1. D ⊆ Rκ is ≤∗-dense open if D is open and for every
p ∈ Rκ there is d ∈ D and d ≤∗ p.

2. We say that p and q are ≤∗-compatible (or direct compatible) if there
is a direct extension below p and q. We say that p and q are ≤∗-
incompatible, p ⊥∗ q, if there is no direct extension below p and q.

3. A ⊆ Rκ is a ≤∗-antichain if all elements of A are ≤∗-incompatible. A
is a maximal ≤∗-antichain if a 6∈ A implies that there is some ā ∈ A
such that a and ā are direct compatible.

4. We say that Rκ is κ∗-cc if all ≤∗-antichains are smaller than κ.

Note that a≤∗-antichain may not be an antichain in the usual≤-relation.
However, every antichain is also a ≤∗-antichain. But a maximal antichain
may not be a maximal ≤∗-antichain.

As regards the κ∗-cc chain condition, notice by way of example that
Prk(κ) is still κ+∗-cc as conditions with the same first coordinate are direct
compatible.

The usual correspondence between dense sets and antichains still holds:

Lemma 6.10 Assume G ⊆ Rκ hits all ≤∗-maximal antichains. Then it hits
all ≤∗-dense open sets (but may miss some usual dense open sets).
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Proof. It is enough to show that if D is ≤∗-dense open and A ⊆ D is a
maximal ≤∗-antichain in D, then it is maximal in Rκ. Let a 6∈ D be given;
we want to show that there is ā ∈ A such that a and ā are direct compatible.
By ≤∗-density of D, there is some d ∈ D, d ≤∗ a. If d is in A, set ā = d.
If d is not A, by the maximality of A in D there is some ā ∈ A and r such
that a ≥∗ d ≥∗ r and ā ≥∗ r, and hence ā and a are direct compatible.

(Lemma 6.10) �

The reason for introducing ≤∗-antichains is that there are generally
smaller than ≤∗-dense open sets in Rκ.

Lemma 6.11 Rκ is κ∗-cc.

Proof. Emulate the usual proof for Easton-supported iteration (see for in-
stance [18], Theorem 16.9 and 16.30). The basic setup of the argument is
that using the Fodor theorem one can thin out every κ-sequence of conditions
in Rκ to a subsequence 〈pα |α < κ〉 such that there are γ < ξ < η < κ with
supp(pξ)∩ξ ⊆ γ, supp(pη)∩η ⊆ γ and moreover supp(pξ) ⊆ η. By induction
hypothesis Rγ is κ∗-cc and hence there is some q ∈ Rγ ≤∗-extending pξ ∩Rγ

and pη ∩Rγ . Above γ the supports of pξ and pη are disjoint and by the defi-
nition of the direct extension in Easton support (outside support everything
is direct) there is a direct extension below pξ and pη. (Lemma 6.11) �

Let Hκ be a generic filter for Rκ. It is also a generic filter for j∗(R)κ
over M∗. Let us assume that j∗(Rκ) is defined at κ, that is Ṙκ is Prk(κ).
As j(F )(κ) ≥ F (κ),11 the least measurable cardinal above κ is greater than
F (κ) and hence Prk(κ) forces over M∗[Hκ] that j∗(Rκ) \ Rκ+1 is F (κ)+

≤∗-closed.

Lemma 6.12 Let σ in M∗ be a j∗(R)κ+1-name (where j∗(R)κ+1 = Rκ ∗
Prk(κ) in M∗) for a maximal ≤∗-antichain in j∗(Rκ) \ j∗(R)κ+1. We claim
that there is a name σ̄ such that j∗(R)κ+1 forces σ̄ = σ, and moreover
for some f in V and a ∈ [F (κ)]<ω, f : [κ]<ω → H(κ)V , we have that
j∗(f∗)(a) = σ̄ (see (6.12) and (6.13) for the meaning of f∗). In particu-
lar there are only (κκ)V = κ+ functions f∗ which enumerate (names for)
maximal ≤∗-antichains in j∗(Rκ) \ j∗(R)κ+1.

Proof. By the definition of M∗, σ = j∗(f∗)(a) = (j(f)(a))j(G) for some f in
V . It is enough to show that in fact f can be taken to be a mapping from
[κ]<ω to H(κ).

We first argue that we can choose for σ an equivalent name σ̄ which is
an element of H(j(κ)) in M∗: By Lemma 6.11 applied to j∗(Rκ) we know

11Surprisingly, this condition seemed accidental due to PF forcing, but in fact it seems
essential even here.
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that j∗(R)κ+1 forces that σ is an antichain of size less than j(κ), i.e. that
it is an element of H(j(κ)) in the generic extension of M∗ by j∗(R)κ+1.
W.l.o.g we can identify elements of H(j(κ)) with bounded subsets of j(κ).
Hence we know that j∗(R)κ+1 forces in M∗ that σ is a bounded subset of
j(κ). Moreover since j∗(R)κ+1 is κ+-cc in M∗, it forces a bound on σ; let
ασ < j(κ) be this bound:

M∗ |= j∗(R)κ+1  σ ⊆ ασ < j(κ) (6.15)

Hence there is a nice j∗(R)κ+1-name for σ, to be denoted as σ̄, which is an
element of H(j(κ)) of M∗. We again identify σ̄ with some bounded subset
of j(κ) in M∗.

Going back to the original V , notice that because σ̄ is a bounded subset
of j(κ), it must have been added by the iteration j(PF )j(κ) over M . By
j(κ)-cc of the forcing j(PF )j(κ) in M , we can choose a nice j(PF )j(κ)-name
¯̄σ for σ̄ which itself can be identified with a bounded subset of j(κ), this
time in M .

As a bounded subset of j(κ) in M , ¯̄σ is an element of H(j(κ)) of M .
It follows we can write ¯̄σ as j(f)(a) for some f : κ → H(κ), f ∈ V . By
defining f∗(a) = (f(a))G for all a in the domain of f , we obtain

j∗(f∗)(a) = (j(f)(a))j(G) = (¯̄σ)j(G) = σ̄, (6.16)

as desired. (Lemma 6.12) �

Work in V [G][Hκ], where Hκ is a generic for Rκ. To finish the proof
of the Theorem 6.6, define the following construction: let 〈f∗α |α < κ+〉 be
some enumeration of the relevant f∗’s as identified in Lemma 6.12. For each
α, the family of names for ≤∗-antichains in the forcing j∗(Rκ) \ j∗(R)κ+1

in M∗[Hκ] determined by j∗(f∗α), i.e. {(j∗(f∗α)(a))Hκ | a ∈ [F (κ)]<ω} =df

{Aαγ | γ < F (κ)}, exists in M∗[Hκ] and has size less or equal F (κ). We can
assume that the empty condition in Prk(κ), 1Prk(κ), forces that each Aαγ is
a maximal ≤∗-antichain.

By induction construct for each j∗(f∗α) a sequence of conditions 〈qαγ ∈
j∗(Rκ) \ j∗(R)κ+1 | γ < F (κ)〉 such that qαγ ’s are forced by 1Prk(κ) to form
a ≤∗-decreasing chain in j∗(Rκ) \ j∗(R)κ+1. Choose each qαγ so that it is
forced by 1Prk(κ) to be a direct extension of some element in the maximal
≤∗-antichain Aαγ (this can be arranged as each Aαγ is (forced to be) a
maximal ≤∗-antichain).

Let q̄α be the limit of qαγ ’s. Arrange the construction so that 1Prk(κ)

forces that for α < κ+, q̄α’s form a ≤∗-decreasing chain. Set

Q = {q ∈ j∗(Rκ) \ j∗(R)κ+1 | ∃α < κ+, 1Prk(κ)  q̄α ≤∗ q} (6.17)

The conditions in Q (compatibly) meet all maximal ≤∗-antichains in
j∗(R) \ j∗(R)κ+1, and by Lemma 6.10 they meet all ≤∗-dense open sets in
the same forcing.
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Define a measure U as follows, where X is a subset of κ in V [G][Hκ]:

X ∈ U iff ∃r ∈ Hκ,∃p ≤∗ 1Prk(κ), and ∃q ∈ Q such that rapaq  κ ∈ j∗(Ẋ)
(6.18)

The argument that U is a measure is practically identical to the argument
in the first proof for (6.9) providing we modify Fact 6.7 as follows:

Fact 6.13 If σ is a sentence that there is r ∈ Hκ, p ≤∗ 1Prk(κ), and q ∈ Q
such that rapaq decides σ.

Proof. By the Prikry property of Prk(κ) and j∗(Rκ) \ j∗(R)κ+1, the empty
condition 1Rκ

a1Prk(κ) forces that “the set of all conditions in j∗(Rκ)\j∗(R)κ+1

deciding σ is a ≤∗-dense open set”. By the construction of Q, there is
some q ∈ Q capturing this dense open set, i.e. 1Rκ

a1Prk(κ) forces “q 
σ ∨ q  ¬σ”. As in Fact 6.7 this successively translates into the desired
claim. (Fact 6.13) �

This ends the alternative proof of Theorem 6.6.

Remark 6.14 One can argue (see [11]) that the models obtained in Proof
1 and Proof 2 are different. We do not know so far whether one can find an
interesting statement related to cofinalization which distinguishes these two
models.

6.2 Iteration of the extender based Prikry forcing

In the previous section we have shown (in a global setting) how to obtain a
strong limit cardinal κ (a former larger cardinal) which has cofinality ω and
fails SCH. However, since κ was at one stage of the construction a measurable
cardinal failing GCH, by reflection properties of measurable cardinals, this
implies that GCH will fail on a big set of cardinals below κ.

In [10], M.Magidor and M.Gitik showed how to obtain such a cardinal
κ without failing GCH below, using the so called extender based Prikry
forcing. However, at least prima facie some GCH type assumptions on
cardinals below κ are in fact necessary to show that this forcing behaves
reasonably at κ (see Theorem 6.21), at least if arbitrary F ’s are considered.

We will use the results in Theorem 5.7 to prove some results concerning
the realisation of an Easton function F in the context of global failure of
SCH.

We first review the definition of the extender based Prikry forcing fol-
lowing [11], with some small corrections according to [5] in Definitions 6.17
and 6.18.

Let κ < λ be cardinals, κ regular and λ of cofinality at least κ++.

Definition 6.15 A commutative system of embeddings is called a nice sys-
tem for (κ, λ) if the following conditions hold:



57

1. 〈λ,≤E〉 is a κ++-directed partial order, i.e. if {αξ | ξ < κ+} is a subset
of λ then there is some ᾱ < λ such that αξ ≤E ᾱ for all ξ < κ+.

2. 〈Uα |α < λ〉 is a Rudin-Keisler commutative sequence of κ-complete
ultrafilters over κ with projections 〈παβ |β ≤ α < λ, α ≥E β〉.

3. For every α < λ, παα is the identity on a fixed set X̄ which belongs to
every Uβ, β < λ.

4. (Commutativity) For every α, β, γ < λ such that α ≥E β ≥E γ there
is Y ∈ Uα so that for every ν ∈ Y

παγ(ν) = πβγ(παβ(ν)) (6.19)

5. For every α < β, γ < λ if γ ≥E α, β then

{ν ∈ κ |πγα(ν) < πγβ(ν)} ∈ Uγ (6.20)

6. Uκ is a normal ultrafilter.

7. κ ≤E α when κ ≤ α < λ.

8. (Full commutativity at κ) For every α, β < λ and ν < κ, if α ≥E β
then πακ(ν) = πβκ(παβ(ν)).

9. (Independence of the choice of projections to κ) For every α, β, κ ≤ α,
β < λ, ν < κ

πακ(ν) = πβκ(ν) (6.21)

10. Each Uα is a P -point ultrafilter, i.e. for every f ∈ κκ, if f is not
constant mod Uα, then there is Y ∈ Uα such that for every ν < κ,
|Y ∩ f−1({ν})| < κ.

The existence of a nice systems for (κ, λ) follows in a straightforward
way if κ is a λ-hypermeasurable cardinal and GCH holds. Implicit in [10]
is the following weakening of the hypermeasurability assumption (and of
GCH) which also implies the existence of a nice system for (κ, λ).

Observation 6.16 Let κ be a regular cardinal and λ > κ a cardinal with
cofinality at least κ++. Assume that 2κ = κ+. Assume further that there
exists an embedding j : V →M with a critical point κ such that

1. M is closed under κ-sequences in V

2. j(κ) > λ

3. ([λ]κ
+
)V ⊆M
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4. |[λ]κ
+ | = λ in M (and hence also in V )

5. For some fλ : κ→ κ, j(fλ)(κ) = λ

Then there exists a nice system for (κ, λ).

Proof. Define for κ ≤ α ≤ β < λ that α ≤E β iff j(f)(β) = α for some f :
κ→ κ. The single interesting property which may fail to hold in this context
(when we use a weaker embedding than a λ-hypermeasurable embedding)
is (1) in Definition 6.15, i.e. that 〈λ,≤E〉 is a κ++-directed partial order. It
is enough to verify that there exists in V an enumeration h such that j(h)
enumerates [λ]κ

+
in V and M in λ-many steps so that each subset of λ of

size at most κ+ occurs cofinally often in the enumeration. To this effect
define h with a domain κ to satisfy (where µα = |[fλ(α)]α

+ | in V ): If α is a
Mahlo cardinal, then h restricted do µα enumerates [fλ(α)]α

+
so that each

subset of fλ(α) of size at most α+ occurs cofinally often in the enumeration.
Then j(h) restricted to (µκ)M = |[j(fλ)(κ)]κ

+ |M = j(fλ)(κ) = λ enumerates
[λ]κ

+
both in V and M in λ-many steps and with cofinal repetitions.

See the construction of a nice system in [11] or [10] for the other prop-
erties. (Observation 6.16) �

Before we define the forcing notion, we first need some auxiliary defini-
tions related to the nice system in Definition 6.15. Let us denote πακ(ν) by
ν0, where κ ≤ α < λ and ν < κ (this is independent of α). By 0-increasing
sequence of ordinals we mean a sequence 〈ν1, . . . , νn〉 of ordinals below κ so
that

ν0
1 < ν0

2 < . . . < ν0
n (6.22)

For every α < λ we shall always mean by writing X ∈ Uα that X ⊆ X̄, in
particular it will imply that for ν1, ν2 ∈ X if ν0

1 < ν0
2 then the size of {α ∈

X |α = ν0
1} is < ν0

2 . The following weak version of normality holds since Uα
is a P -point: if Xi ∈ Uα for i < κ then also X = {ν | ∀i < ν0, ν ∈ Xi} ∈ Uα.

Let ν < κ and 〈ν1, . . . , νn〉 be a finite sequence of ordinals below κ. Then
ν is called permitted for 〈ν1, . . . , νn〉 if ν0 > max({ν0

i | 1 ≤ i ≤ n}).
Now we are ready to define the extender based Prikry forcing notion.

Definition 6.17 The extender based Prikry forcing PrkE(κ, λ) is defined as
follows. The set of forcing conditions consists of all the elements p of the
form {〈γ, pγ〉 | γ ∈ g \ {max(g)}} ∪ {〈max(g), pmax(g), T 〉}, where

1. g ⊆ λ of cardinality ≤ κ which has a maximal element in ≤E-ordering
and 0 ∈ g. Further let us denote g by supp(p), max(g) by mc(p), T by
T p and pmax(g) by pmc (“mc” for maximal coordinate).

2. For γ ∈ g, pγ is a finite 0-increasing sequence.
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3. T is a tree with a trunk pmc consisting of 0-increasing sequences. All
the splittings in T are required to be on sets in Umc(p), i.e. for every
η ∈ T , if η ≥T pmc then the set

SucT (η) = {ν < κ | ηa〈ν〉 ∈ T} ∈ Umc(p). (6.23)

We also require that for η1 ≥T η0 ≥T pmc

Tη1 is a subtree of Tη0 , (6.24)

where Tη denotes the set of σ such that ηaσ belongs to T .

4. For every γ ∈ g, πmc(p),γ(max(pmc)) is not permitted for pγ.

5. For every ν ∈ SucT (pmc)

|{γ ∈ g | ν is permitted for pγ}| ≤ ν0 (6.25)

6. πmc(p),0 project pmc onto p0, in particular pmc and p0 are of the same
length.

The ordering ≤PrkE(κ,λ)=≤ is defined as follows:

Definition 6.18 We say that p extends q, p ≤ q if

1. supp(p) ⊇ supp(q).

2. For every γ ∈ supp(q), pγ is an end-extension of qγ.

3. pmc(q) ∈ T q.

4. For every γ ∈ supp(q): pγ\qγ = πmc(q),γ”((pmc(q)\qmc(q) � length(pmc)\
(i+ 1)), where i ∈ dom(pmc(q)) is the largest such that pmc(q)(i) is not
permitted for qγ.

5. πmc(p),mc(q) maps T p to a subtree of T q.

6. For every γ ∈ supp(q), for every ν ∈ SucT p(pmc) if ν is permitted for
pγ, then

πmc(p),γ(ν) = πmc(q),γ(πmc(p),mc(q)(ν)). (6.26)

The ordering ≤∗PrkE(κ,λ)=≤
∗ is defined as follows:

Definition 6.19 Let p, q ∈ PrkE(κ, λ). We say that p is a direct extension
of q (p ≤∗ q) if:

1. p ≤ q.

2. For every γ ∈ supp(q), pγ = qγ.
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We state without a proof the following facts:

Fact 6.20 Assume that the universe V satisfies the conditions set out in
Observation 6.16. Then the following holds of PrkE(κ, λ):

1. PrkE(κ, λ) is κ++-cc.

2. ≤∗ is κ-closed.

3. (PrkE(κ, λ),≤,≤∗) satisfies the Prikry property.

4. PrkE(κ, λ) preserves cardinals.

5. PrkE(κ, λ) does not add new bounded subsets of κ and the cofinality
of κ is ω in the generic extension.

6. κω = 2κ = λ in the generic extension.

As regards (6), note that λ ≤ 2κ is true by the way the forcing PrkE(κ, λ)
is set up. The other direction, i.e. 2κ ≤ λ follows from the number of nice
names for subsets of κ: by κ++-cc of the forcing, this is λκ

+
. Thus a direct

way to ensure that 2κ = λ is to have λκ
+

= λ. In Theorem 6.21 this is
achieved by restricting F to be trivial at κ+ (for κ a Mahlo cardinal). This
restriction is also important to ensure that PrkE(κ, λ) behaves correctly over
some generic extensions (see Theorem 6.21).

The following Theorem is an application of the results in Theorem 5.7. In
contrast to Theorem 5.7 and Theorem 6.6, however, Easton functions F al-
lowed in Theorem 6.21 are less restrictive in one significant aspect: we no
longer require that F should satisfy some reflection properties below a large
cardinal in question – cf. the assumption in Theorem 5.7 that if κ should re-
main measurable then we need to have some j : V →M witnessing “correct
behaviour” of F below κ. This less restrictive formulation is made possible
by the inclusion of the extender based Prikry forcing into the argument.
Note however that the inclusion of the extender based Prikry forcing brings
with it restrictions of its own. We will discuss these restrictions, and possi-
ble ways of eliminating some of them, in Remark 6.26 after the proof of the
theorem.

Let κ+-hypermeasurable mean that κ is measurable. Also let us in-
troduce the following notation: Θ = {κ |κ is F (κ)-hypermeasurable} and
Lim(Θ) = {κ ∈ Θ |κ is a limit point of Θ}.

Theorem 6.21 Assume GCH. Let F be an Easton function which satisfies
the following properties:

1. F preserves Mahlo cardinals, i.e. for all α Mahlo, F [α] ⊆ α;
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2. For all Mahlo cardinals α, F (α+) = max(F (α), α++);

3. For all κ ∈ Lim(Θ), F (κ) = κ+.

If F satisfies these properties then there is a cardinal-preserving extension
V ∗ such that the continuum function in V ∗ satisfies:

1. If κ in V is a regular cardinal which is not Mahlo then 2κ = F (κ) in
V ∗.

2. If κ in V is in Θ then 2κ = F (κ) and κ is a singular strong limit
cardinal with cofinality ω in V ∗.

3. If κ in V is a Mahlo cardinal not in Θ then 2κ = κ+ in V ∗.

The proof will be given in a sequence of lemmas. The general strategy is
as follows: The desired forcing P will be of the form P ∗R, where P realises
F everywhere except on Mahlo cardinals, and R realises F on elements of
Θ by a combination of the simple Prikry forcing Prk(κ) if F (κ) = κ+, or of
the extender based Prikry forcing PrkE(κ, F (κ)) otherwise. The remaining
Mahlo cardinals not handled by R will be left to satisfy GCH (see Remark
6.26).

Definition 6.22 Let P be defined as PF in Definition 5.4 with the following
modifications:

1. The domain of P includes all regular cardinals except Mahlo cardinals
and successors of Mahlo cardinals, i.e. the forcing is empty at all Mahlo
cardinals and their successors.

2. The iteration points iα’s (see Definition 5.4) will not depend on F
and always be the Mahlo cardinals of V , i.e. P will be an iteration of
products of the Cohen forcing at regular cardinals which are not Mahlo
and the points of iteration will be the Mahlo cardinals in V .

Lemma 6.23 The forcing P preserves cofinalities and realises F on all reg-
ular cardinals except Mahlo cardinals (and their successors). Also, if κ is
in Θ then κ remains measurable in V P if F (κ) = κ+, or if F (κ) > κ+

then κ retains sufficient “largeness” so that the forcing PrkE(κ, F (κ)) can
be defined at κ and satisfies properties in Fact 6.20.

Proof. Let G denote the generic filter for P. P obviously realises F every-
where except at Mahlo cardinals (and their successors) and preserves cofi-
nalities, so we need to show that it preserves relevant properties of elements
in Θ.

Case 1: κ ∈ Θ and F (κ) = κ+.



62

The intended forcing R in the second stage will use just the simple Prikry
forcing Prk(κ): thus it is enough to verify that κ remains measurable in
V [G]. This is an easy application of the argument in Theorem 5.7: let j :
V →M in V witness the measurability of κ, in particular κ+ < j(κ) < κ++.
We will lift j to j∗ : V [G] → M [j∗(G)]. Since Pκ = j(P)κ, we can use the
generic Gκ for j(P)κ in M . Since P is not defined at Mahlo cardinals, j(P)
is trivial at the Mahlo cardinal κ in M , and also at κ+ since F is trivial at
successors of Mahlo cardinals. It follows that j(Pκ)\ j(P)κ is a κ++M -closed
iteration in M [Gκ] which has j(κ)-cc in M [Gκ]. Since j(κ) has size κ+ in
V [Gκ] we can build in V [Gκ] a M [Gκ]-generic H for j(Pκ) \ j(P)κ in κ+-
many steps. The forcing P \ Pκ is κ+-distributive in V [Gκ] and so we may
lift j to the whole model V [G] by applying Lemma 2.19.

Case 2: κ ∈ Θ and F (κ) > κ+.
We want to show that κ retains sufficient “largeness” for a reasonable

definition of PrkE(κ, F (κ)) in V [G]. We show that if we lift j witnessing
F (κ)-hypermeasurability to j∗ using the argument in Theorem 5.7 then j∗

will satisfy all properties identified in Observation 6.16. This will imply that
there exists a nice system for (κ, F (κ)) in a generic extension by P.

We clearly have that 2κ = κ+ in V [G] since the forcing P avoids Mahlo
cardinals (and Mahlo cardinals remain strongly inaccessible in V P).

We will analyze the forcing j(P) in order to show that the lifting argu-
ment in Theorem 5.7 applies here. Recall the notational conventions em-
ployed in the proof of Theorem 5.7 in Remark 5.8 (with the understanding
that we are avoiding Mahlo cardinals). In particular let for λ ∈ [κ, F (κ)]
denote Qλ the forcing Add(λ, F (λ)) of the pertinent model, and the same
for QM

λ . Also, let iκ+1 = i(κ + 1) denote the next Mahlo cardinal in V
greater than κ, and similarly for iMκ+1 = iM (κ+ 1).

Since κ = iκ = iMκ is a Mahlo cardinal in both V and M , P factors to
Pκ ∗ P \ Pκ, and as in Theorem 5.7, we have Pκ = j(P)κ and so the generic
filter Gκ be be used as an M -generic filter for j(P)κ. By the definition of
F , the next Mahlo cardinal i(κ + 1) above κ is strictly greater than F (κ).
It follows that in M , the next Mahlo cardinal iM (κ + 1) after κ must be
≥ F (κ) (no new Mahlo cardinals can appear in the interval (κ, F (κ)) in
M). Note that by the argument Observation 5.2 (the proof of Observation
5.2 works the same if the word “inaccessible” is replaced by “Mahlo”) we
cannot exclude the possibility that F (κ) is a Mahlo cardinal in M .

As in the proof of Theorem 5.7, see the argument after Remark 5.8 be-
fore (5.3), work in V [Gκ] and let

∏
[κ,F (κ)]Q

+
λ denote the forcing completely

embeddable into
∏

[κ,F (κ)]Qλ with the property that the length of the prod-
ucts in Q+

λ and QM
λ of M [Gκ] for λ in the interval [κ, F (κ)] agrees.12 This is

possible since for all λ ∈ [κ, F (κ)] it holds that F (λ) has size at least F (κ) in

12Since κ is Mahlo in M and V , the forcing Q+
λ and QM

λ is actually empty at λ = κ, κ+.
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V and j(F )(λ) < j(κ) < F (κ)+ has size at most F (κ) in V . We obtain that∏M
[κ,F (κ)]QM

λ̄
of M [Gκ] is a subset of

∏
[κ,F (κ)]Q

+
λ of V [Gκ]. Let us denote as

g[κ,F (κ)] the generic for
∏

[κ,F (κ)]Qλ (note that by the complete embeddabil-
ity of

∏
[κ,F (κ)]Q

+
λ into

∏
[κ,F (κ)]Qλ this generic filter ensures the existence

of a generic filter for
∏

[κ,F (κ)]Q
+
λ ). We may conclude by arguments as in

Lemma 5.9 and 5.10 (concentrating on the case when the cofinality of F (κ) is
> κ+) that there is in V [Gκ ∗g[κ,F (κ)]], and hence in V [G], an M [Gκ]-generic
filter for

∏M
[κ,iM (κ+1))QM

λ̄
, which we denote as gM

[κ,iM (κ+1))
.

Since P and j(P) are empty at κ, M [Gκ ∗ gM[κ,iM (κ+1))
] is clearly closed

under κ-sequences in V [Gκ ∗ g[κ,F (κ)]]. Thus we may finish lifting j by the
application of Lemma 5.15 to j(P)j(κ) (Note that if F (κ) = iM (κ + 1) is
a Mahlo cardinal in M then the forcing j(P) is empty at F (κ) and so the
forcing j(Pκ)\ j(P)iM (κ+1) is still F (κ)+-distributive in M [Gκ ∗gM[κ,iM (κ+1))

.)
Now we my lift to the whole forcing j(P) by applying Lemma 2.19 to P \Pκ
which κ+-distributive over V [Gκ]. We write j∗ : V [G] → M [j∗(G)] for the
lifted embedding.

It is clear that this j∗ witnesses the first two conditions in Observa-
tion 6.16 from the following list (identifying V with our V [G] and M with
M [j∗(G)], j∗ with j, and F (κ) with λ):

1. M [j∗(G)] is closed under κ-sequences in V [G]

2. j∗(κ) > F (κ)

3. ([F (κ)]κ
+
)V [G] ⊆M [j∗(G)]

4. |[F (κ)]κ
+ | = F (κ) in M [j∗(G)] (and hence also in V [G])

5. For some fF (κ) : κ→ κ, j∗(fF (κ))(κ) = F (κ)

Condition (5) can be assumed w.l.o.g. for the original j, so it holds for our
j∗ as well.

It remains to verify conditions (3) and (4).
To verify (3), let X be a subset of F (κ) of size at most κ+ in V [G]. By

the definition of F , the cofinality of F (κ) is at least κ++ and so there is
some α < F (κ) such that X ⊆ α. Since P is trivial at κ and κ+, X must be
added by Pκ. But now (3) follows since if Ẋ is a nice Pκ-name for X ⊆ α,
then Ẋ ∈ H(F (κ)), and so Ẋ ∈M ; as also Pκ = j(P)κ and Gκ is M -generic,
we obtain that ẊGκ = X ∈M [j∗(G)].

Now also (4) follows easily: we argued in the proof of (3) that all subsets
of F (κ) of size at most κ+ have nice names which are included in H(F (κ));
this is also true in M and since M satisfies GCH, H(F (κ)) has size F (κ) in
M , and so the number of nice j(P)κ = Pκ-names is F (κ). This implies (4)
as desired. (Lemma 6.23) �
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We know turn to the forcing R which will cofinalize elements of Θ and
simultaneously realise F on elements of Θ (and their successors).

Definition 6.24 R is defined just as REaston in Definition 6.3 such that if
α 6∈ Θ then Ṙα is a trivial forcing, and if α ∈ Θ, then

1. If F (α) = α+ and Rα forces that α is measurable then Ṙα is a name
for the simple Prikry forcing Prk(α);

2. If F (α) > α+ and Rα forces that there exists a nice system for (α, F (α))
then Ṙα is a name for the extender based Prikry forcing PrkE(α, F (α)).

This iteration R satisfies the Prikry property by a general argument for
Prikry type forcing notions (see [11]).

Lemma 6.25 Let G be a generic over V for P as in Lemma 6.23. Then R
applied over V [G] has the following properties:

1. Preserves all cardinals.

2. Preserves the continuum function in V [G] on cardinals realised by the
forcing P.

3. Changes the cofinality of all elements of Θ to ω and realises F on Θ
(and on their successors).

Proof. Ad (1). As in Lemma 6.4(2) it holds that if κ is a cardinal, then R
factors to Rκ+1 and R \Rκ+1 so that Rκ+1 preserves all cardinals greater or
equal to κ+ and R \ Rκ+1 does not add new subsets of κ+. If κ is as in 6.4
(2) and is regular, then Rκ is κ+-cc by the Easton support. If κ is a singular
cardinal, then Rκ has at most (2κ)+-cc. Since V [G] satisfies SCH at all
singular cardinals, this means that Rκ is κ++-cc. A special, but standard,
argument for the iteration of Prikry type forcing notions implies that κ+ is
preserved as well.13

Note that the preservation of cardinals would be more problematic if R
was defined with the full support as in Definition 6.2. Since it is no longer
true as in Lemma 6.4 that any two conditions extending the empty condition
are compatible iff they are compatible on the finite set of coordinates with
the non-direct extensions, the chain condition of Rκ for a regular κ would
be (2κ)+-cc. Even if 2κ = κ+ is true in V [G], the preservation of κ+ would
still not be automatic due to the regularity of κ.

Ad (2). Obvious.
13In fact, it is known from the results in inner model theory that it is very hard to

collapse successors of singular cardinals. Thus if we for instance assume that there is no
inner model with a Woodin cardinal in our universe, κ+ cannot be collapsed by a general
inner model argument.
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Ad (3). It remains to verify that if κ is in Θ then the iteration Rκ up to κ
forces that κ retains sufficient “largeness” so that the relevant Prikry forcing
can be defined.

Case 1: Assume first that F (κ) > κ+. By the definition of F , κ is not a limit
point of Θ. This implies that there is some β < κ such that Rκ\Rβ is trivial.
A standard argument shows that in this case it is easy to lift the embedding
j∗ in V [G] witnessing the largeness of κ so that all conditions identified in
Observation 6.16 still hold in V [G]Rβ = V [G]Rκ and so PrkE(κ, F (κ)) can
be correctly defined here.

Case 2: Assume that F (κ) = κ+ and that κ is a limit point of Θ (if it is not
a limit point, reason as in Case 1). We argue essentially as in the proof 2 of
Theorem 6.6 but with the following simplification (let j∗ : V [G] →M [j∗(G)]
be an embedding witnessing for the measurability of κ): Since GCH holds
at κ in V [G], we can list all nice Rκ-names for subsets of κ in κ+-steps and
handle them in a compatible fashion, using the fact that j∗(R) \ j∗(R)κ+1

is κ+-closed in the direct extension relation. Note that since κ is a limit
point of j∗(Θ) in M [j∗(G)], j∗(R) is the simple Prikry forcing at κ, so any
two direct extensions at κ are compatible (or alternatively we could use a
(j∗)′ : V [G] →M∗ so that κ is not measurable in M∗). (Lemma 6.25) �

This ends the proof of Theorem 6.21 (Theorem 6.21) �
We end this section with some notes on possible generalizations of the

Theorem. As a general comment notice that unlike the F ’s allowed in The-
orem 6.6, which required that GCH fails often below κ’s to be cofinalized,
Theorem 6.21 requires the opposite, i.e. that F should retain some substan-
tial degree of GCH below such κ’s.

Remark 6.26 We believe that with more work, Theorem 6.21 could be
improved to include a larger class of Easton functions F . The following list
includes some tips, comments and restrictions which are relevant to Theorem
6.21 and may possibly suggest some improvements. For the purposes of this
Remark, let us say that F is suitable if it satisfies the conditions in Theorem
6.21.

1. It seems accidental and not at all necessary to demand that some
Mahlo cardinals end up with GCH (or equivalently, that F is not
realised on some Mahlo cardinals). However, there are some technical
considerations which make it difficult to eliminate this restriction. (i)
It is hard to include all Mahlo cardinals in the forcing P or R since
the lifting arguments for P or R may fail (for instance the forcing Rκ

would no longer be bounded below κ ∈ Θ with F (κ) > κ+). (ii) If we
attempt to force F on these Mahlo cardinals in V P∗R we may collapse
cardinals since this model may not satisfy SCH: Assume for instance
that κ is a singular limit of ω-many Mahlo cardinals κi’s cofinal in κ
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and 2κ = κ+4. Let us force F on κi’s for i < ω, for instance by the
iteration of Cohen forcings. Then the chain condition of the forcing
up to κ would be (2κ)+ = κ+5 and it is not obvious why for instance
κ+3 should not be collapsed to κ+2.

2. Assume j : V → M is an embedding with a critical point κ. The
special role which is played by Mahlo cardinals in the definition of
suitable F ’s is of course brought about by the fact that Mahlo cardinals
are perhaps the simplest way how to “talk” about κ in M ; compare
this with the assumption of F -goodness in Definition 5.3. Since κ is in
fact a limit of Mahlo cardinals in M , Theorem 6.21 might be improved
by replacing “Mahlo” by ”Mahlo limit of Mahlo cardinals”.

3. The restriction on F demanding that suitable F ’s are trivial at suc-
cessors of Mahlo cardinals is necessitated by the requirement that the
≤E relation in the definition of a nice system (see Definition 6.15) is
κ++-directed. A straightforward way how to ensure κ++-directedness
is to control the way new κ+-sequences in F (κ) are added (see the
proof of 6.23, Case 2). In [10], M. Magidor and M. Gitik claim (with-
out proof) that the definition of the extender based Prikry forcing
PrkE(κ, λ) can done just from the assumption of κ+-directedness of
≤E . Hence it seems possible that the restriction on the behaviour of
a suitable F on successors of Mahlo cardinals could be eliminated.

4. It seems more difficult to eliminate the assumption that if κ is a limit
point of Θ then F (κ) = κ+. It seems impossible to argue that κ
retains sufficient largeness for the definition of PrkE(κ, F (κ)) in Rκ by
simply lifting to Rκ the embedding witnessing the existence of a nice
system in V P (as we do when Rκ is bounded below κ). A strategy
with a chance of success should rather follow the argument as in Ad
(3), Case 2 of Lemma 6.25 but instead of a single measure, define a
nice system of measures. However, this seems to be very difficult if
only because j∗(R) at κ could be the extender based Prikry forcing
which does not have the property that any two direct extensions of
the empty conditions are compatible.

We can formulate more compelling results if we focus on Easton functions
F which just “toggle” GCH on or off. We say that an Easton function F is
toggle-like if for all regular cardinals α, F (α) = α+ or α++.

Before we prove a theorem about toggle-like Easton functions we state
the following observation which follows from arguments in [15]:

Observation 6.27 Assume GCH and let Σ be an arbitrary subclass of κ++-
hypermeasurable cardinals. Then there is a cardinal preserving generic ex-
tension where SCH fails exactly at elements of Σ. In particular, the pattern
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of the failure of SCH can be the same as the pattern of any subclass of
κ++-hypermeasurable cardinals.

Proof. Let R be an iteration with the Easton support of the forcings
PrkE(κ, κ++) for κ ∈ Σ. It suffices to show that if κ is in Σ then Rκ forces
that there is an embedding j∗ satisfying the conditions in Observation 6.16.
The key observation is that we can choose in V an embedding j : V → M
witnessing that κ is κ++-hypermeasurable such that the Mitchell order of κ
in M is ≤ κ++. In particular, κ is not κ++-hypermeasurable in M (which
is equal to the Mitchell order κ++ + 1). It follows that j(Rκ) is trivial at
κ. Using arguments from [15] we can then argue that this j can be used
to show that κ remains κ++-hypermeasurable in V Rκ , and thus satisfies the
conditions in Observation 6.16.

For completeness of the argument we briefly review here the relevant
parts of [15]. Assume 2κ = κ+ and let j : V → M witness κ++-hyper-
measurability of κ, κ++ < j(κ) < κ+3. Assume further that 2κ

+
= κ++ in

M (this is for instance true if GCH holds in V ). W.l.o.g. j is an extender
emebedding. Let R be the forcing above. We show that κ is still κ++-
hypermeasurable in V Rκ . Let Gκ be Rκ-generic. Since j(Rκ) is trivial at
κ, κ+, and κ++, the tail forcing j(Rκ) \ Rκ is (κ+3)M -≤∗-closed in M [Gκ]
(i.e. the direct extension relation is (κ+3)M -closed). Thus we can hit all ≤∗-
dense open sets in j(Rκ)\Rκ in M [Gκ] in κ+-many steps using the following
construction: If f is a function f : [κ]<ω → H(κ+) with its range containing
just ≤∗-dense open sets of Rκ, then j(f) � [κ++]<ω determines in M [Gκ] a
family {Dα |α < κ++} of κ++-many ≤∗-dense open sets in j(Rκ) \ Rκ. By
closure of the ≤∗-ordering, the intersection

⋂
α<κ++ Dα is ≤∗-dense. Since

there are only κ+-many functions from [κ]<ω → H(κ+), we can build in
V [Gκ] a sequence of conditions 〈rα |α < κ+〉 in j(Rκ) \ Rκ hitting all ≤∗-
dense open sets in j(Rκ) \ Rκ.
Definition of an extender. First notice that all countable subsets of κ++ in
V [Gκ] are included in M [Gκ] (since all Rκ-nice names for such subsets are
in M and the forcing j(Rκ)\Rκ does not add new countable subsets of κ++

over M [Gκ]). Thus if a is a countable subset of κ++ in V [Gκ], let ȧ be a
nice j(Rκ)-name for it in M . For such a define in V [Gκ] a measure Ea as
follows: if Ẋ is a Rκ-name for a subset of [κ]|a|, then

X ∈ Ea iff ∃p ∈ Gκ,∃α s.t. parα  ȧ ∈ j(Ẋ) (6.27)

By compatibility of all rα’s it is routine to verify that each Ea is a κ-complete
measure and moreover if a ∈ V , then Ea extends the original measure E′a
obtained from j by setting X ∈ E′a iff a ∈ j(X). The natural projections
πa,b between a ⊆ b ∈ [κ++]≤ω determine a directed system of embeddings

〈(Ult(V [Gκ], Ea)), πa,b | a ⊆ b ∈ [κ++]≤ω〉 (6.28)
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with a direct limit M∗. Because we have built the directed system using
countable a’s and all such a’s have their names in j(Rκ), the direct limit M∗

must be wellfounded (otherwise we could find an ill-founded epsilon chain in
one of the measure ultrapowers). Let j∗ : V [Gκ] → M∗ be the correspond-
ing embedding, and M∗ = {j∗(f)(a) | f ∈ V [Gκ], f : [κ]≤ω → V [Gκ], a ∈
[κ++]≤ω}. The embeddings j and j∗ are connected in the following way:

M∗ |= ϕ(j∗(f)(a), . . .) iff ∃p ∈ Gκ, α ∈ κ+, parα  ϕ(j(ḟ)(ȧ), . . .) (6.29)

H(κ++)V is included in M∗. The key claim is the following: Let g ∈ V [Gκ]
from [κ]≤ω → H(κ)V be such that for each inaccessible α < κ, the restriction
of g to [α++]≤ω is a function with its range included in H(α++)V . Then for
each a ∈ [κ++]≤ω there is some h in V and b ∈ [κ++]≤ω in V such that

j∗(g)(a) = j∗(h)(b) (6.30)

To argue for (6.30), notice that if ġ is a name for g, then we can assume

1j(Rκ)  j(ġ)(ȧ) ∈ (H(κ++))M = (H(κ++))V (6.31)

By the closure under κ++-sequences of the direct ordering in j(Rκ)\Rκ, com-
bined with the fact that H(κ++) has size κ++ in M [Gκ] (by the assumption
that 2κ

+
= κ++ in M), there must be some t ∈ H(κ++)V , p ∈ Gκ, and

α < κ+ such that
parα  j(ġ)(ȧ) = ť (6.32)

As such t can be expressed as j(h)(b) for some h ∈ V and b ∈ V we obtain

parα  j(ġ)(ȧ) = j(h)(b) (6.33)

which by (6.29) means that j∗(g)(a) = j∗(h)(b). Using the representation in
(6.30), we can argue by induction on H(κ++)V that j∗(h)(a) = j(h)(a) for
each j(h)(a) ∈ H(κ++)V , h, a ∈ V . Hence H(κ++)V is in M∗ as desired.
H(κ++)V [Gκ] is included in M∗. It suffices to argue that Gκ is in M∗. We
will argue that there is some g ∈ V [Gκ] such that Gκ ⊆ j∗(g)(κ) (this implies
the desired claim). Let g be defined by g(α) = Gκ∩Rα. Let p ∈ Gκ. Clearly
there is some α such that

parα  p ∈ j(ġ)(κ) (6.34)

Since p is in H(κ), we can write p = j(h)(a) = j∗(h)(a) for some h, a in V ,
and so

parα  j(h)(a) ∈ j(ġ)(κ) (6.35)

which by (6.29) proves the desired claim p ∈ j∗(g)(κ). (Observation 6.27) �
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Notice that in Observation 6.27 GCH holds everywhere in a generic ex-
tension by R except at elements of Σ . We may ask if we can achive the same
result if we allow an arbitrary toggle-like behaviour of the continuum func-
tion on regular cardinals. In Theorem 6.28 we show that is indeed possible,
with one small restriction.

Let us set for a toggle-like F : Let Σ be a subclass of κ++-hypermeasurable
cardinals, ΣA = {κ ∈ Σ |κ is κ++-hypermeasurable and there is some
j : V →M such that j(F )(κ) ≥ F (κ)} and ΣB = Σ \ ΣA.

Theorem 6.28 Assume GCH. Let F be toggle-like and such that

1. If κ ∈ Σ then F (κ) = κ++.

2. If α = κ+, where κ is a measurable cardinal, then F (α) = α+.

Then there is a cardinal-preserving forcing extension realising F where all
elements of Σ have cofinality ω (and hence fail SCH).

The proof will be given in a sequence of lemmas. The forcing notion will
be of a form P∗R∗Q, where P will be cofinality-preserving and will realise F
on regular cardinals excluding ΣB, R will realise F on ΣB and simultaneously
cofinalise elements of ΣB, and finally Q will cofinalise elements of ΣA.

Define P as PF in Definition 5.4 with the following modifications:

1. P is trivial (empty) at all elements of ΣB.

2. P is trivial (empty) whenever F (α) = α+ for a regular α except in the
following case when you do force with Add(α, α+):

• α = κ++ for κ ∈ Σ.

Lemma 6.29 P is cofinality preserving and realises F on all regular cardi-
nals except ΣB. Moreover all elements of Σ remain κ++-hypermeasurable (as
witnessed by embeddings lifted from V ) and there is a nice (κ, κ++)-system
for all elements of ΣB so that PrkE(κ, κ++) can be defined.

Proof. Let G be a generic filter for P. P is obviously cofinality-preserving
and realises F on all regular cardinals except at ΣB. We argue that elements
of Σ remain κ++-hypermeasurable separately for ΣA and ΣB.

Elements of ΣA: Let κ ∈ ΣA be fixed. In particular let j : V → M with
the critical point κ witness κ ∈ ΣA such that κ++ = F (κ) ≤ j(F )(κ) = κ++.
We argue as in Theorem 5.7 that j can be lifted to j∗ : V [G] → M [j∗(G)]
to preserve measurability of κ (note that this works even in the case when
F (κ++) = κ+3 and j(F )(κ++) = κ+4M as we do force at κ++ in V in this
case). Moreover, since κ is measurable in both V and M , the forcings P and
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j(P) are trivial at κ+, and so H(κ++) of V [G] is included in M [j∗(G)], i.e.
κ is still κ++-hypermeasurable in V [G].

Elements of ΣB: Let κ ∈ ΣB be fixed. Let j : V → M witness the fact
that κ ∈ ΣB, in particular κ+ = j(F )(κ) < F (κ) = κ++. By the definition
of P, P is empty at κ and κ+ in V , and also j(P) is empty at κ and κ+ in
M (κ is measurable in M). It follows we can lift as in the argument for
ΣA. Arguing as in Lemma 6.23, at the end of Case 2, we also conclude that
the conditions (1) to (5) on page 63 hold in V [G] and so in particular there
is a nice (κ, κ++) system in V [G] which allows for the correct definition of
PrkE(κ, κ++). (Lemma 6.29) �

Let us define R in V [G] as the Easton-supported iteration of the extender
based Prikry forcing PrkE(κ, κ++) for κ ∈ ΣB. We know that this forcing
satisfies the Prikry property and preserves cardinals (see Lemma 6.25).

Lemma 6.30 R applied applied over V [G] realises F on elements of ΣB

and simultaneously cofinalises them to the cofinality ω. In particular F is
realised in V [G]R.

Proof. It suffices to show that if κ is a limit point of ΣB then Rκ forces that
there is a nice system for (κ, κ++) so that PrkE(κ, κ++) can be defined. Let
us fix a j∗ : V [G] →M [j∗(G)] witnessing for κ++-hypermeasurability of κ in
V [G]. The existence of a nice system for (κ, κ++) in V [G]Rκ follows exactly
as in [15], see a brief review here in Observation 6.27, since 2κ = κ+ in V [G],
2κ

+
= κ++ in M [j∗(G)], and j(Rκ) is trivial at κ since j(F )(κ) < κ++.

(Lemma 6.30) �

Let H be a generic for R. Let Q be the full support iteration of the
simple Prikry forcings Prk(κ) defined in V [G ∗H] with the domain ΣA.

Lemma 6.31 Q applied in V [G ∗H] preserves cardinals and cofinalises all
elements of ΣA.

Proof. Exactly as in Theorem 6.6, proof 1. (Lemma 6.31) �

This concludes the proof of the theorem. (Theorem 6.28) �
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Recall Remark 6.26, item (3), where we suggested that perhaps the or-
dering ≤E needs to be only κ+-directed in order to define PrkE(κ, κ++).
This leads to the following conjecture.

Conjecture 6.32 Assume GCH. Let F be toggle-like and Σ a subclass of
κ++-hypermeasurable cardinals. Assume that

• If κ ∈ Σ then F (κ) = κ++.

Then there is a cardinal-preserving forcing extension realising F where all
elements of Σ have cofinality ω (and hence fail SCH).
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