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1 INTRODUCTION

1.1 Semi-uniform and closure spaces

The most of basic definitions considering semi-uniform and closure spaces used in my thesis come from
the monograph [3] by Eduard Čech, revised by Zdeněk Froĺık and Miroslav Katětov.

Semi-uniformities are one of possible ways of gereralizing uniformities. They, contrary to uniformities,
need not satisfy the ”triangular inequality”, and the induced closures need not be topological.

In [3] semi-uniform spaces are defined, and then described in terms of uniformly continuous semi-
pseudometrics.

The relationship between semi-uniformities and the induced closures is examined. Many interesting
properties of semi-uniformities are set, e.g. that a semi-uniform space is semi-pseudometrizable if and
only if it has a countable base, or that a closure space is semi-uniformizable if and only if it is symmetric.

The concept of uniformly continuous mappings for semi-uniform spaces, and continuous homomor-
phisms for topological groups is given there.

Initial and final structures are defined and explored, here they are called projectively and induc-
tively generated structures, namely subspaces, products, sums, quotients, suprema and infima of semi-
uniformities or closures.

The category of topological spaces is shown to be bireflective subcategory of closure spaces, the
bireflection is called topological or t-modification, the category of uniform spaces is shown to be bireflective
subcategory of semi-uniform spaces, the bireflection is called uniform modification.

In Appendix of [3] completeness and compactness of uniform spaces and relationship between them
are explored. Completeness is defined in terms of extension of uniformly continous mappings on dense
subspaces. The equivalent conditions with Cauchy filters and ultrafilters are given. Cauchyness is proved
to be invariant under uniformly continuous images. The category of complete uniform spaces is closed
under the formation of products and closed subspaces.

Finally, every uniform space has a completion (complete uniform space, in which it is embedded).

Several results from uniform spaces are applied to topological groups, whose topology is induced
by several uniformities. Every topological group is shown to have a group completion (complete in its
two-sided uniformity group, in which it is embedded).

1.2 Quasi-uniform spaces

Another concept of generalized uniformities are quasi-uniformities, see e.g. [16]. They, contrary to
uniformities, need not satisfy the symmetry condition.

Many basic facts about the category of quasi-uniform spaces and quasi-uniformly continuous maps
are contained in the monograph [9] of P. Fletcher and W. F. Lindgren.

In the last three decades many results in the area of quasi-uniformities and quasi-pseudometrics were
presented, many of them concerning extensions and completions of quasi-uniform spaces. Most of them
can be found in the survey paper [16] by H. P. A. Künzi, see .

There are several types of completions of quasi-uniform spaces:

For the concept of standard completion, so called bicompletion, see e.g. [9]:
If U is a quasi-uniformity on X then so is the filter U−1 = {U−1, U ∈ U} (the conjugate quasi-

uniformity of U), and U ∪ U−1 is a subbase of a uniformity, which is the coarsest uniformity finer
that U , and is used to be denoted by Us. If this uniformity is complete the quasi-uniform space X is
called bicomplete. Each T0-space has (up to isomorphism) a T0-bicompletion, in which it is embedded.
Futhermore quasi-uniform mappings to other bicomplete spaces can be (uniquely) extended onto the
bicompletions.
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Some of the definitions, that we use in the thesis, are already known under other names:

Filters that we call semi-Cauchy are called PS (that is, Pervin-Sieber)-Cauchy, see e.g. [9], or U-
Cauchy, see e.g. [8], and a quasi-uniform space is called PS-complete (or complete) provided that each
PS-Cauchy filter has a cluster point. For locally symmetric quasi-uniform spaces this is equvalent to the
condition that each PS-Cauchy filter converges. This property is called convergence completeness in [9].

Filters that we call Cauchy are called left K-Cauchy, see e.g. [16]. A quasi-uniformity is called left
K-complete provided that each left K-Cauchy filter converges.

Relationships between various completions were examined, we recall some of them, which can be
found e.g. in [16]:

A quasi-uniform space is compact if and only if it is precompact and left K-complete.

A regular left K-complete quasi-pseudometric space is a Baire space.

PS-completeness implies left K-completeness.

It seems unlikely that a simple theory of K-comletion exists, since in general convergent filters are not
left K-Cauchy. The same holds in semi-uniformities. Every convergent filter is semi-Cauchy, but it need
not be Cauchy.

M. B. Smyth, see [24], endowed a quasi-uniform space (X,U) with a topology τ that is not necessarily
the topology induced by U , but is linked to U by some additional axioms. He defined Cauchy (so
called S-Cauchy) filters on such (so called topological quasi-uniform) spaces and called them complete
(S-complete) if every round S-Cauchy filter is a τ -neihgborhood filter of a (unique) point. The idea
of S(Smyth)-completion of topological quasi-uniforms T0-spaces yields a satisfactory theory from the
categorical point of view.

D. Doitchinov investigated a D(Doitchinov)-completion: A filter G is called D-Cauchy on a quasi-
uniform if there exists a co-filter F on X (that is, if for each U ∈ U there are F ∈ F and G ∈ G that
F × G ⊂ U). Then (F ,G) is called a Cauchy filter pair.

A quasi-uniformity is called D-complete provided each D-Cauchy filter converges.

Dotchinov showed, see [5], that each quiet quasi-uniform T0-space has a standard D-completion. Each
quasi-uniformly continuous map into an arbitrary quiet D-complete quasi-uniform T0-space has a unique
quasi-uniformly continuous extension.

Quietness is a rather restrictive property, thus other classes of quasi-uniform spaces that have canonical
D-complete extensions were considered.

A filter F on a quasi-uniform space (X.U) is called stable if
⋂

F∈F

U(F ) ∈ F whenever U ∈ U .

A quasi-uniform space is called stable provided each D-Cauchy filter is stable, see [6]. Doitchinov
constructed a canonical D-complete extension for an arbitrary stable quasi-uniform T0-space.

Stability is a strong property for quasi-pseudometrizable quasi-uniform spaces, see [11]. There the
following can be found among other things:

Each completely regular pseudocompact stable quasi-pseudometric space is compact, and for a stable
quasi-pseudometric space the following conditions are equivalent: separable, ccc, weakly Lindelöf and
pseudo-ℵ1-compact.

In the literature several modifications of completeness properties were considered where (co-)stable
filters were replaced by weakly Cauchy filters, which means something else than our weak Cauchy filters
(a filter F is weakly Cauchy on a quasi-uniform space (X,U) provided

⋂

F∈F

U−1(F ) 6= ∅, for each U ∈ U).

Authors also created further completeness properties by using supconvergence instead of ordinary
convergence, see e.g. [20] or [23]. Other autors worked under weakened forms of quietness, see e.g. [4] or
[22].
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1.3 Paratopological groups

The concept of topological groups is connected with uniformities as well as paratopological groups are
connected with quasi-uniformities. Most about the research on paratopological groups can be found in
the survey paper [15] of H. P. A. Künzi.

A paratopological group is a group equipped with a topology such that its group operation (multipli-
cation) is continuous.

Clearly, the topology of a paratopological group is induced by several (e.g. two-sided or right) quasi-
uniformities, and its topology has a conjugate topology that is defined by algebraic inversion. The
associated supremum topology gives rise to a topological group.

Generalizing many results from the theory of topological groups, J. Maŕın and S. Romaguera con-
ducted a systematic study of quasi-uniformities on paratopological groups. In [19] they proved for instance
the following theorem:

The ground set of the bicompletion of the two-sided quasi-uniformity of a paratopological (T0-)group
carries the structure of a paratopological group. Moreover the quasi-uniformity of that bicompletion
yields the two-sided quasi-uniformity of the constructed paratopological group.

Other concepts of completion, e.g. D-completion of the two-sided quasi-uniformity of paratopological
groups, were examined, too, see [17]:

The two-sided quasi-uniformity of a regular paratopological group is quiet. The D-completion of
the two-sided quasi-uniformity of an abelian regular paratopological group can be considered an abelian
paratopological group.

The research about quasi-uniformities on homeomorphism groups were conducted, see e.g. [14], where
H. P. A. Künzi proved the following theorem:

If (X,U) is a quasi-uniform space and Q(X) is the group of all quasi-uniform self-isomorphisms of
(X,U) equipped with the quasi-uniformity QU of quasi-uniform convergence, then QU is the right quasi-
uniformity of the paratopological group (Q(X), ◦, τ(QU )); its two-sided quasi-uniformity is bicomplete if
U is bicomplete.

1.4 T-semi-uniform spaces and quasi-topological groups

If a semi-uniformity is a uniformity then the induced closure is topological, but the condition is not
necessary. This fact gives rise to the concept of t-semi-uniform spaces, which are precisely those semi-
uniform spaces whose closures are topological, and are dealt with in the thesis.

We study completion of t-semi-uniform spaces. Completion is defined in terms of Cauchy filters.
A t-semi-uniform space is called complete provided every Cauchy filter converges. We examine several
types of Cauchy-like properties, which are equivalent in uniform spaces. All the Cauchy-like properties,
contrary to the situation in quasi-uniformities, give a satisfactory theory from the categorical point of
view:

The category of Hausdorff complete semi-uniform spaces is shown to be epireflective subcategory of
Hausdorff semi-uniform spaces. But there is no reflective subcategory of Hausdorff semi-uniform spaces,
in which all reflection arrows are embeddings.

On the other hand if we omit the T1-property, the situation is not the same for all the Cauchy-like
properties:

The category of all complete t-semi-uniform spaces is an almost reflective subcategory of all semi-
uniform spaces, for some of used Cauchy-like properties. All the almost reflection maps can be chosen to
be embeddings.

The same is true for T1-spaces.
For the other Cauchy-like properties we show examples of spaces that do not have completion, in

which they are embedded.

In the last sections of the thesis we study quasi-topological groups, which are another concept of
generalized topological groups. Their topologies are induced by semi-uniformities.
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We use the theory of Hausdorff complete semi-uniform spaces and show that Hausdorff complete in
their two-sided semi-uniformity quasi-topological groups form an epireflective subcategory of Hausdorff
quasi-topological groups. We show that reflection arrows need not be embeddings.

For several types of Cauchy-like properties we show examples of quasi-topological groups that cannot
be embedded into a group that is complete in its two-sided semi-uniformity.

Unfortunately, the construction of an almost reflection in complete spaces (for the other Cauchy-like
properties) for non-Hausdorff semi-uniformities cannot be used in quasi-topological groups, and we still
do not know whether there is another possibility to construct group completions with embeddings for
non-Hausdorff quasi-topological groups.
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2 T-SEMI-UNIFORM SPACES

2.1 Basic properties

The definitions of semi-uniform and uniform spaces can be found in [3]. It was shown there that a semi-
uniformity on a set induces a closure and a uniformity induces a topology. But it is not necessary to
suppose that the explored semi-uniformity is a uniformity in order to induce a topology. We will describe
the semi-uniformities inducing topologies and call them t-semi-uniformities. The t-semi-uniformities will
be the main subject of our investigation in this work. The t-semi-uniformities together with uniformly
continuous maps form a category TSUnif of t-semi-uniform spaces. It is a concrete category over the
category Top of topological spaces and it is a bireflective subcategory of the category SUnif of all semi-
uniform spaces (and contains Unif as a bireflective subcategory).

First let us recall the definitions of a semi-uniformity and a uniformity and add the definition of a
t-semi-uniformity.

Let U be a set of some relations on a set X. Denote

U [x] = {y; (x, y) ∈ U} for x ∈ X,U ∈ U ,

U [A] =
⋃

x∈A

U [x] for A ⊂ X,U ∈ U ,

Ux = {U [x];U ∈ U} for x ∈ X,

U−1 = {(x, y); (y, x) ∈ U},

U2 = {(x, y); (x, z), (z, y) ∈ U for some z ∈ X},

P(X) = {A;A ⊂ X} .

Definition 2.1 A nonvoid set U ⊂ P(X × X) is called a semi-uniformity on a set X if

(i) (∀U ∈ U)(∆X ⊂ U), where ∆X = {(x, x);x ∈ X},

(ii) (∀U, V ∈ U)(U ∩ V ∈ U),

(iii) (∀U ∈ U)(∀V ∈ P(X × X))(U ⊂ V ⇒ V ∈ U),

(iv) (∀U ∈ U)(U−1 ∈ U).

The couple (X,U) is called a semi-uniform space.
If moreover:

(v) (∀U ∈ U)(∀x ∈ X)(∃V ∈ U)(∀y ∈ V [x])(U [x] ∈ Uy)

then U is called t-semi-uniformity on the set X and the couple (X,U) is called a t-semi-uniform space,
where the letter t stands for topological.

If in addition to (i)-(iv)

(vi) (∀U ∈ U)(∃V ∈ U)(V 2 ⊂ U)

then U is called a uniformity on the set X and the couple (X,U) is called a a uniform space.

We shall now prove some basic properties of t-semi-uniformities and recall properties of semi-uniformities
from [3]. Examples of various t-semi-uniformities are given in Subsection 2.4.

The next assertion is trivial.

Proposition 2.2 Every uniformity on X is a t-semi-uniformity on X.

Proof: We will show that: (vi) ⇒ (v). Let U ∈ U , x ∈ X. If (vi) holds then there exists V ∈ U such
that V 2 ⊂ U . For y ∈ V [x], z ∈ V [y] one has z ∈ U [x]. V [y] is a subset of U [x] thus U [x] ∈ Uy.

3
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Definition 2.3 Let (X,U) be a semi-uniform space. A set B ⊂ U is called a base of the semi-uniformity
U if for each set U ∈ U there exists a set B ∈ B such that B ⊂ U .

A set S ⊂ U is called a subbase of the semi-uniformity U if for each set U ∈ U there exists a finite
subset T ⊂ S such that

⋂

T ⊂ U .

Clearly, the system of symmetric elements of a semi-uniformity U is its base. The next two results
can be found in [3].

Proposition 2.4 Let X be a set and B ⊂ P(X ×X),B 6= ∅. Then B is a base for a semi-uniformity on
X if and only if:

(a) (∀B ∈ B)(∆X ⊂ B),

(b) (∀B,C ∈ B)(∃D ∈ B)(D ⊂ B ∩ C),

(c) (∀B ∈ B)(∃C ∈ B)(C ⊂ B−1).

Corollary 2.5 Every system of reflexive and symmetric relations on a set X (i.e., of symmetric subsets
of X × X containing the diagonal of X) is a subbase for a semi-uniformity.

Proposition 2.6 Let X be a set and B ⊂ P(X × X),B 6= ∅. Then B is a base for a uniformity on X if
and only if

(a) (∀B ∈ B)(∆X ⊂ B),

(b) (∀B,C ∈ B)(∃D ∈ B)(D ⊂ B ∩ C),

(c) (∀B ∈ B)(∃C ∈ B)(C ⊂ B−1),

(d) (∀B ∈ B)(∃C ∈ B)(C2 ⊂ B).

For t-semi-uniformities, the assertion about bases is similar:

Proposition 2.7 Let X be a set and B ⊂ P(X × X),B 6= ∅. Then B is a base for a t-semi-uniformity
on X if and only if

(a) (∀B ∈ B)(∆X ⊂ B),

(b) (∀B,C ∈ B)(∃D ∈ B)(D ⊂ B ∩ C),

(c) (∀B ∈ B)(∃C ∈ B)(C ⊂ B−1),

(d) (∀B ∈ B)(∀x ∈ X)(∃C ∈ B)(∀y ∈ C[x])(B[x] ∈ Uy).

As shown in [3], every semi-uniformity U on a set X induces a closure operator u on X:

u(A) = A
U

=
⋂

U [A] , for A ⊂ X .

Equivalently, the neighborhood system at x ∈ X coincides with Ux. Clearly, one can use a base B instead
of U in the description of u (for instance, all symmetric members of U).

Theorem 2.8 A semi-uniform space (X,U) is t-semi-uniform if and only if the closure in the semi-
uniformity U is topological, i.e. it satisfies the condition

(∗) (∀A ⊂ X)((A
U
)
U

= A
U
) .

Proof: Suppose first that a semi-uniform space (X,U) is topological. Let x ∈ (A
U
)
U

. We will show that

x ∈ A
U
, i.e., there exists a point z ∈ U [x] ∩ A, for each symmetric U ∈ U .

Choose an arbitrary symmetric set U ∈ U .

Since U satisfies (v) in the Definition 2.1 of the t-semi-uniformity there exists V ∈ U such that
(∀y ∈ V [x])(∃Wy ∈ U)(Wy[y] ⊂ U [x]). We can assume all Wy to be symmetric.
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As x ∈ (A
U
)
U

there must exist y0 ∈ V [x] ∩ A
U
, which means that for each symmetric W ′ ∈ U there

exists a point z ∈ W ′[y0] ∩ A.

Take W ′ = Wy0
. Then there exists a point z ∈ Wy0

[y0] ∩ A ⊂ U [x] ∩ A.

The converse implication:

For the contrary suppose that a semi-uniform space (X,U) satisfies (∗) and is not topological. If (X,U)
is not topological then there is such a set U ∈ U and x ∈ X that for each symmetric V ∈ U , V ⊂ U there
exists yV ∈ V [x] (equivalently x ∈ V [yV ]) such that U [x] /∈ UyV

, which means that for each symmetric
W ∈ U there is z ∈ W [yV ] − U [x]. Thus yV ∈ W [z] (because W is symmetric) for some z ∈ X r U [x],
for every W ∈ U . That means that yV ∈

⋂

W∈U

W [X − U [x]].

Recall that x ∈ V [yV ], for all V , because V are symmetric.

Thus x ∈
⋂

V ∈U

V [
⋂

W∈U

W [X − U [x]] = X − U [x]
U
U

. The equality (∗) implies that x ∈ X − U [x]
U

which means that there is y′ ∈ U [x] ∩ (X − U [x]) = ∅. 3

The topology induced by a t-semi-uniformity U is denoted by τU .

The previous proof could be given by means of a characterization of topological spaces among the
closure ones by means of neighborhoods which is, in fact, described in the property (v).

Recall from [3] that a closure space X is semi-uniformizable (i.e., there is a semi-uniformity on the
set X inducing the closure of X) iff it is symmetric, i.e. x ∈ {y} iff y ∈ {x}, for every couple of points
x, y ∈ X. We shall repeat the assertion for t-semi-uniformities.

Proposition 2.9 A topological space is semi-uniformizable iff it is symmetric.

Uniformly continuous mappings Let us recall the definition of a uniformly continuous mapping
from [3]:

Definition 2.10 Let (X,U), (Y,V) be semi-uniform spaces. A mapping f : (X,U) → (Y,V) is called
uniformly continuous if for each set V ∈ V there exists a set U ∈ U such that (x, y) ∈ U ⇒ (f(x), f(y)) ∈
V , for any couple of points x, y ∈ X.

By [3] any composite of two uniformly continuous mappings is uniformly continuous. Another result
in [3] asserts that every uniformly continuous mapping is continuous between the corresponding induced
closures. For the sake of completeness we shall repeat it for our t-semi-uniform spaces.

Proposition 2.11 If a mapping f of a t-semi-uniform space (X,U) into a t-semi-uniform space (Y,V)
is uniformly continuous then f is continuous with respect to the topologies τU , τV .

Definition 2.12 Semi-uniform spaces (X,U), (Y,V) are called uniformly equivalent (isomorphic) if there
exists a bijective mapping e : (X,U) → (Y,V) such that both e and its inverse e−1 are uniformly
continuous. The mapping e is then called a uniform equivalence (isomorphism).

A uniformly continuous mapping e : (X,U) → (Y,V) is called a uniform embedding if the restriction
e : X → e(X) is a uniform equivalence.

2.2 Categories of semi-uniform spaces

Let us denote by Top the category whose objects are topological spaces and morphisms are continuous
mappings, Clos the category whose objects are closure spaces and morphisms are continuous mappings,
Unif the category whose objects are uniform spaces and morphisms are uniformly continuous mappings,
TSUnif the category whose objects are t-semi-uniform spaces and morphisms are uniformly continuous
mappings, SUnif the category whose objects are semi-uniform spaces and morphisms are uniformly
continuous mappings.
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Theorem 2.13 We have the following diagram, where all the horizontal arrows denote full bireflective
embedding functors and vertical arrows denote forgetful functors assigning f : (X, τU ) → (Y, τV) to
f : (X,U) → (Y,V).

Unif −−−−→ TSUnif −−−−→ SUnif




y





y





y

Top Top −−−−→ Clos

Proof: The facts about vertical arrows follow from Proposition 2.11 and the comment before it. The
definition of our categories gives directly that all the horizontal arrows are full embeddings. It remains
to prove the bireflectivity, which is done in [3] for Unif→ SUnif and Top→ Clos. We must prove that
TSUnif is bireflective in SUnif.

Take a semi-uniform space (X,U) and define a sequence tαU for ordinals α < (22|X|

)+ in the following
way:

Let t1U be a semi-uniformity with the base
{U = U−1 ∈ U ; (∀x ∈ X)(∃V = V −1 ∈ U)(∀y ∈ V [x] : U [x] ∈ Uy)},
tα+1U = t1(tαU),
tαU =

⋂

β<α

tβU for a limit α.

There exists such an κ that tκ+1U = tκU because there are at most 22|X|

semi-uniformities on the set X.

If U is a semi-uniformity then so is t1U . The conditions (i), (iii), (iv) in Definition 2.1 of the semi-
uniformity t1U are clear. We must prove (ii). Let U, V ∈ t1U , x ∈ X. Then there are U1, V1 ∈ U such
that U [x] ∈ Uy for every y ∈ U1[x], V [x] ∈ Uy for every y ∈ V1[x]. Thus U [x] ∩ V [x] ∈ Uy for every
y ∈ U1[x] ∩ V1[x] = (U1 ∩ U2)[x] and U ∩ V ∈ t1U .

Clearly tαU is a semi-uniformity for every limit α and tU = tκU is a t-semi-uniformity.
It is a maximal t-semi-uniformity contained in U . Every uniformly continuous map f from (X,U) into a
t-semi-uniform space (Y,V) is uniformly continuous on (X, tU).

Thus (X, tU) is a bireflection of (X,U) in t-semi-uniform spaces. 3

Instead of bireflection in TSUnif of a semi-uniformity U we often speak about t-modification of U .

Corollary 2.14 The category TSUnif is complete and hereditary in SUnif.

Hereditariness means closedness under taking subspaces (see the next subsection).

2.3 Initial and final t-semi-uniformities

As we said in the previous part the category TSUnif is a bireflective subcategory of the category SUnif.
Thus it is initially closed in SUnif and also finally complete (the finally generated structure in TSUnif is
the bireflection in TSUnif of the finally generated structure in SUnif). Example 2.27 shows that TSUnif
is not closed under the formation of quotients in SUnif. For readers’ convenience we describe initial and
final t-semi-uniformities.

Initial t-semi-uniformities The family of all t-semi-uniformities on a set X is ordered by the inclusion
⊂. Instead of being smaller or bigger for semi-uniformities or t-semi-uniformities, one often says coarser
and finer.

Proposition 2.15 Let (Xi,Ui) be a t-semi-uniform space for each i ∈ I. Let X be a set and fi : X → Xi

be a map for each i ∈ I. Then there exists a coarsest t-semi-uniformity U such that the map fi : (X,U) →
(Xi,Ui) is uniformly continuous for each i ∈ I; U has for its subbase S = {(fi×fi)

−1(Ui); i ∈ I, Ui ∈ Ui}.

Proof: By Corollary 2.5 the system U = {(fi × fi)
−1(Ui); i ∈ I, Ui ∈ Ui} is a subbase for a semi-

uniformity U . We shall show that U is a t-semi-uniformity. Let U ∈ U , x ∈ X. Then there is a finite
subset F ⊂ I such that

⋂

i∈F

(fi × fi)
−1(Ui) ⊂ U . As each (Xi,Ui) is a t-semi-uniform space there exists

11



Vi ∈ Ui such that Ui[fi(x)] ∈ Uiyi
for each yi ∈ Vi[fi(x)]. But now

⋂

i∈F

(fi × fi)
−1(Ui)[x] ∈ Uy and

U [x] ∈ Uy for each y ∈ V [x] where V =
⋂

i∈F

(fi × fi)
−1(Vi). Thus the condition (v) in Definition 2.1 is

satisfied.
If V is another t-semi-uniformity on X such that all fi : (X,V) → (Xi,Ui) are uniformly continuous

then each set (fi × fi)
−1(Ui) must be in V. Thus U ⊂ V. 3

Definition 2.16 The t-semi-uniformity U from the previous proposition is called the initial t-semi-
uniformity on X with respect to the maps fi : X → (Xi,Ui), i ∈ I.

Since t-semi-uniformities are initially closed in semi-uniformities, the next result follows directly from
the corresponding result for semi-uniformities and closures.

Proposition 2.17 Let (Xi,Ui) be a t-semi-uniform space for each i ∈ I. Let U be the initial t-semi-
uniformity on a set X with respect to the maps fi : X → (Xi,Ui), i ∈ I. Then the topology τU induced by
U coincides with the initial topology on X with respect to the maps fi : X → (Xi, τUi

), where τUi
is the

topology on Xi induced by Ui for each i ∈ I.

The following result is a special case of general characterizations of initial structures formulated for
t-semi-uniformities.

Proposition 2.18 (Universal property) Let (Xi,Ui), i ∈ I, be a family of t-semi-uniform spaces, U a
t-semi-uniformity on a set X, fi : X → Xi a map for each i ∈ I. Then the following statements are
equivalent:

(a) U is an initial t-semi-uniformity on X with respect to the maps fi : X → (Xi,Ui), i ∈ I.

(b) For each t-semi-uniform space (Y,V) a map g : (Y,V) → (X,U) is uniformly continuous iff all the
maps fig : (Y,V) → (Xi,Ui), i ∈ I, are uniformly continuous.

Definition 2.19 Let (X,U) be a t-semi-uniform space, S ⊂ X. The initial t-semi-uniformity U/S on S
with respect to the inclusion map : S → (X,U) : x 7→ x is called the subspace t-semi-uniformity on S
induced by U and (S,U/S) a subspace of (X,U).

Products of structures are defined categorically. The next result describes products by means of initial
structures and follows again from the corresponding result for semi-uniformities.

Proposition 2.20 Let (Xi,Ui), i ∈ I, be a family of t-semi-uniform spaces. The initial t-semi-uniformity
U on the cartesian product X =

∏

i∈I

Xi with respect to the canonical projections πk : X → (Xk,Uk) :

(xi)i∈I 7→ xk, k ∈ I, is the product t-semi-uniformity on X. Thus U has for its subbase

{(πk × πk)−1(Uk); k ∈ I, Uk ∈ Uk} .

It is known that the set of all semi-uniformities on a set X is a complete lattice when ordered by
inclusion. Since t-semi-uniformities are bireflective in SUnif, the set of all t-semi-uniformities on a set
X is also a complete lattice when ordered by inclusion. Moreover, the suprema of t-semi-uniformities in
TSUnif are the same as in SUnif, because of initial closedness. Again for completeness we describe the
suprema here:

Proposition 2.21 Let X be a set and (Ui), i ∈ I, be a family of t-semi-uniformities on X. The supremum
of the t-semi-uniformities Ui, i ∈ I, is the initial t-semi-uniformity on X with respect to the identity maps
idX : X → (X,Ui) : x 7→ x, i ∈ I and has for its subbase the collection

⋃

i∈I

Ui.

Corollary 2.22 Every symmetric topological space has the finest semi-uniformity inducing it.

We shall investigate the above finest semi-uniformities in Subsection 2.4.
At he end of this part we want to mention that every bireflective subcategory of TSUnif is closed

under taking initial structures by maps having codomain in the subcategory. Thus it is productive and
hereditary and contains the indiscrete structures (in fact, these properties characterize bireflectivity).
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Final t-semi-uniformities Final structures are dual to the initial ones and so we shall summarize
needed results and not repeat general details from the previous part. As for the description of final
structures in TSUnif, they are t-modifications of the final structures constructed in SUnif.

Proposition 2.23 Let (Xi,Ui) be a t-semi-uniform space for each i ∈ I. Let X be a set and fi :
Xi → X be a map for each i ∈ I. Then there exists a finest t-semi-uniformity U such that the map
fi : (Xi,Ui) → (X,U) is uniformly continuous for each i ∈ I and it coincides with the t-modification of
the semi-uniformity {U ⊂ X × X; (fi × fi)

−1(U) ∈ Ui for each i}.

Proof: Let M be the set of all t-semi-uniformities U on X such that the map fi : (Xi,Ui) → (X,U) is
uniformly continuous for each i ∈ I. Let U = sup

V∈M

V. As U satisfies the universal property it is also in

M and it is the finest t-semi-uniformity with this property. 3

Definition 2.24 The t-semi-uniformity U from the previous proposition is called the final t-semi-uniformity
on X with respect to the maps fi : (Xi,Ui) → X, i ∈ I.

We will see in Example 2.28 that the corresponding result to Proposition 2.17 is not true; τU is coarser
than the final topology τ on the space X with respect to maps fi : (Xi, τUi

) → X, i ∈ I and it may be
strictly coarser.

The corresponding dual to Proposition 2.18:

Proposition 2.25 (Universal property) Let (Xi,Ui), i ∈ I, be a family of t-semi-uniform spaces, U a
t-semi-uniformity on a set X, fi : Xi → X a map for each i ∈ I. Then the following statements are
equivalent:

(a) U is a final t-semi-uniformity on X with respect to the maps fi : (Xi,Ui) → X, i ∈ I.

(b) For each t-semi-uniform space (Y,V) a map g : (X,U) → (Y,V) is uniformly continuous iff all the
maps gfi : (Xi,Ui) → (Y,V), i ∈ I, are uniformly continuous.

Definition 2.26 Let (X,U) be a t-semi-uniform space and q : X → Y a map onto a set Y . The final
t-semi-uniformity on Y with respect to q : (X,U) → Y is called the quotient t-semi-uniformity on Y along
q.

Example 2.27 (TSUnif is not quotient stable in SUnif.) Take the real line R with its standard unifor-
mity which has a base consisting of the sets Uε = {(x, y) ∈ R2; |x−y| < ε}, ε > 0, and a quotient mapping
q : R → P ∪ {0} such that q(x) = 0 for x rational, q(x) = x for x irrational (P). Let U ′

ε = (q × q)(Uε)
for every ε > 0. Then U ′

ε(0) = P ∪ {0} for every ε > 0 and 0 ∈ U ′
ε(x) for every x irrational. But none

of U ′
ε(x) 6= P ∪ {0}, x ∈ P, is a neighborhood of 0 and so, the quotient in SUnif of R along q is not a

t-semi-uniformity.

Example 2.28 (Quotients do not preserve topology in TSUnif.) Take a discrete space D and its coarse
t-semi-uniformity U (See the subsection 1.5.3.), which has a subbase formed by sets S = {(x, x)} ∪
(D r {x}) × (D r {x}), x ∈ X. Let q be a mapping D onto a set X that is not finite-to-one. Let
{y} = q(A) be a singleton for some infinite set A ⊂ D such that D r A is infinite. The quotient
topology on X is clearly discrete. If this topology is induced by a t-semi-uniformity V on X then
V = {(y, y)} ∪ (X r {y}) × (X r {y}) ∈ V. But (q × q)−1(V ) = A × A ∪ (D r A) × (D r A) because
A = q−1(y). As D r A is infinite V is not in U .

We shall now describe disjoint sums (coproducts) in STUnif.

Proposition 2.29 Let (Xi,Ui), i ∈ I, be a family of t-semi-uniform spaces. The final t-semi-uniformity
U on the disjoint sum X =

∑

i∈I

Xi with respect to the canonical injections inji : (Xi,Ui) → X, i ∈ I is the

coproduct t-semi-uniformity on X. Thus U equals to {U ⊂ X × X;U ∩ (Xi × Xi) ∈ Ui}.

It follows directly from the last Proposition that forming disjoint sums of t-semi-uniform spaces is the
same in both SUnif and TSUnif. Also it commutes with topology, i.e., the topology of a disjoint sum of
t-semi-uniformities is the disjoint sum of the topologies induced by the corresponding t-semi-uniformities.
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Proposition 2.30 Let X be a set and {Ui}, i ∈ I, a family of t-semi-uniformities on X. The final
t-semi-uniformity inf

i∈I
Ui on X with respect to the identity maps idX : (X,Ui) → X : x 7→ x, i ∈ I, is the

infimum of the t-semi-uniformities Ui, i ∈ I. It is the t-modification of
⋂

i∈I

Ui.

Example 2.31 (TSUnif is not infimum stable in SUnif.)
Let τ, σ be such symmetric non-indiscrete topologies on an infinite set X that he infimum topology
τ ∧ σ = τ ∩ σ is the indiscrete topology on X, take for instance the coarse T1 topology and the topology
consisting precisely of the whole space, empty set and an infinite set A and its infinite complement. Take
any semi-uniformities Uτ , resp. Uσ, on τ , resp. σ. Neighbourhoods of points x ∈ X in the infimum
semi-uniformity Uτ ∧ Uσ are of the form G ∪ H where G,H resp., are neighbourhoods of x in τ, σ, resp.,
for instance a set containing the set A and having an infinite complement is a neighbourhood of a point
a ∈ A. But neighbourhoods in τ ∩ σ are just X and ∅.

As one can see from Example 2.31, the category SUnif is not infimum stable. But infimum in TSUnif

preserves topologies:

Proposition 2.32 The topology induced by the infimum t-semi-uniformity coincides with the infimum
topology.

Proof:

Let X be a set and {Ui}, i ∈ I, a family of t-semi-uniformities on X. Then U = inf
i∈I

Ui is the

t-modification of
⋂

i∈I

Ui, which is also the supremum of all t-semi-uniformities contained in
⋂

i∈I

Ui.

Let τ =
⋂

i∈I

τi be the infimum topology on X, where τi are topologies induced by Ui, i ∈ I, τU the

topology induced by U .

Denote by V ⊂
⋂

i∈I

Ui a t-semi-uniformity inducing τ . Such a semi-uniformity V exists. In fact, there

is some semi-uniformity W inducing τ because (X, τ) is symmetric. Take V = W ∩ (
⋂

i∈I

Ui), which is

the infimum of W and
⋂

i∈I

Ui in SUnif. It induces τ because infima in SUnif preserve closures. It holds

V ⊂ U , and thus τ ⊂ τU .

But from the definition of the infimum topology τ it follows that τU ⊂ τ . Thus τU = τ . 3

Corollary 2.33 Let Ui be a semi-uniformity on a symmetric topological space X, for every i ∈ I. Then
inf
i∈I

Ui induces the original topology on X and equals to
⋂

i∈I

Ui = {
⋃

Ui∈Ui

Ui}.

Corollary 2.34 Every symmetric topological space has the coarsest semi-uniformity inducing it.

Recall that the corresponding assertion does not hold for uniform spaces on completely regular spaces.
We shall deal with the above coarsest semi-uniformity on X in Subsection 2.4.

Theorem 2.35 Let X be a symmetric topological space. Then the set TSUnif(X) of all semi-uniformities
on X is a complete lattice.

Proof: See 2.21 and 2.33. 3

Unlike the initial case, final generation does not commute with inducing topologies. It is easy to
see that the topology of a disjoint sum of t-semi-uniformities is a disjoint sum (in Top) of the induced
topologies. But quotients do not commute with taking the topology. Another characterization of bireflec-
tive subcategories of TSUnif is that they are closed under suprema and under forming initial structures
generated by one map.
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2.4 Special t-semi-uniformities on symmetric
topological spaces

In this part, X is a symmetric topological space. First we shall define several new classes of t-semi-
uniformities, namely t-semi-uniformities having open–like or closed–like bases (all of them contain the
class of uniformities. Let TSUnif(X) be the set of all semi-uniformities on the space X. We showed in
Theorem 2.35 that (TSUnif(X),⊂) is a complete lattice. We shall now describe the minimal and maximal
elements of (TSUnif(X),⊂) (they will be called the fine and the coarse semi-uniformities on X). A cover
semi-uniformity on a symmetric topological space will also be defined. The fine semi-uniformity is shown
to be a discrete object in the concrete category TSUnif over the category Top.

2.4.1 Pointwise open and pointwise closed t-semi-uniformities

Uniform spaces have bases consisting of open sets or of closed sets and those properties were shown to
be very useful. Our t-semi-uniform spaces need not have such bases (e.g., some coarse spaces defined
later in this part) and so it may be convenient to investigate subclasses of t-semi-uniform spaces having
at least a weak form of those properties.

Definition 2.36 We say that a set U ⊂ X ×X is pointwise open (or pointwise closed) if U [x] is open (or
closed, resp.) in X for each point x ∈ X. We say that a t-semi-uniform space (X,U) is pointwise open
(or pointwise closed or open) if there exists a base of U consisting of pointwise open sets (or pointwise
closed sets, or open subsets of X × X resp.).

Clearly, it suffices to assume that a subbase has the corresponding property instead of a base. It is
also clear that every discrete or indiscrete semi-uniform space is open (thus pointwise open) and pointwise
closed.

We do not know an ansver to the natural question:

Question 1 Has every pointwise open space a basis consisting of pointwise open and symmetric sets?

Obviously, every uniformity is open and pointwise closed.
We shall see in Example 2.44 that not every t-semi-uniform space is pointwise open, and in Example

2.53 that not every regular t-semi-uniform space is pointwise closed.

Proposition 2.37 The full subcategory of pointwise open t-semi-uniform spaces is bireflective in TSUnif.

Proof: Suprema of pointwise open t-semi-uniformities are pointwise open. If f : (X,U) → (Y,V) is
initial and V is pointwise open, then U has the same property because ((f ×f)−1(V ))(x) = f−1(V (f(x)))
and f is continuous. 3

The same assertion with almost the same proof is true for pointwise closed t-semi-uniformities and
for open semi-uniformities.

Proposition 2.38 The full subcategory of pointwise closed t-semi-uniform spaces is bireflective in TSUnif.

Corollary 2.39 The full subcategory of t-semi-uniform spaces that are both pointwise open and closed is
bireflective in TSUnif.

Proposition 2.40 The full subcategory of semi-uniform spaces having an open base is bireflective in
TSUnif.

Proposition 2.41 The classes of pointwise open or of pointwise closed or of open semi-uniformities are
productive and hereditary in TSUnif. They are closed under disjoint unions and not under quotients.

Proof: The first assertion follows from the bireflectivity of our classes. The preservation under disjoint
unions is trivial. The last assertion follows from the fact that every semi-uniformity is a quotient of a
discrete semi-uniformity (see [3], 37.A.8). 3
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2.4.2 Fine t-semi-uniformity

Proposition 2.42 Let X be a symmetric topological space. Then Uf = {U ∈ P(X × X);U [x], U−1[x]
are neighborhoods of x in X for each x ∈ X} is the largest t-semi-uniformity on X with respect to the
order ⊆.

Proof: We will show that

1. Uf is a semi-uniformity on the set X,

2. Uf induces the original topology on X,

3. Uf is the largest semi-uniformity that induces the original topology on X.

1. The conditions from Definition 2.1 of semi-uniformities follow almost immediately from the prop-
erties of neighborhoods of points (a point x is in every its neighborhood, intersection of two neigh-
borhoods of x is a neighborhood of x). The item (iv) follows from the fact (U−1)−1[x] = U [x].

2. Let τ be the topology of X and U ∈ Uf , a ∈ X. It is clear that U [a] is a neighborhood of a
in τ . Conversely, let an open set Ga be a neighborhood of a point a ∈ X in τ . Since X is a
symmetric topological space, for every y /∈ Ga there exists a neighborhood Gy such that a /∈ Gy.
Let us take for every y /∈ Ga such a neighborhood Gy and for every z ∈ Ga put Gz = Ga. Take
U = (

⋃

x∈X

{x}×Gx)∪ (
⋃

x∈X

Gx ×{x}) ∈ Uf . It is now easy to see that U [a] = {y ∈ X; y ∈ Ga or a ∈

Gy} = Ga.

3. If V is a semi-uniformity on X then V [x], V −1[x] are neighborhoods of x for each x ∈ X and V ∈ V.
Then V ∈ Uf , and Uf is the largest member of TSUnif(X).

3

Definition 2.43 The t-semi-uniformity described in the previous proposition will be called the fine t-
semi-uniformity on X.

Example 2.44 (Fine t-semi-uniformity that has no pointwise open base.) Let X be the space of all real
numbers with the standard interval topology. Let V = {(x, y) ∈ X×X;x = 0∨y = 0∨x < 2y < 4x} ∈ Uf .
Now V is a symmetric set, V [x] = ( 1

2x; 2x) ∪ {0} for each x > 0, V [x] = (2x; 1
2x) ∪ {0} for each x < 0

and V [0] = X. Thus V [x] is a neighborhood of x for each x ∈ X, and V is in the fine t-semi-uniformity
on X. There is no pointwise open set contained in V . Let there be such a set U ∈ Uf . Then there is a
symmetric W ∈ Uf such that W ⊂ U . If 0 6= z ∈ W [0] then 0 ∈ U [z]. But there is no neighborhood of
0 contained in U [z] and U [z] is not open. Thus U is not pointwise open, and Uf has no pointwise open
base.

Theorem 2.45 Let X be a symmetric topological space, Uf its fine t-semi-uniformity. Then any con-
tinuous mapping of X to a t-semi-uniform space (Y,V) is uniformly continuous with respect to Uf and
V.

Proof: Let V ∈ V such that V is symmetric. Then U = (f × f)−1(V ) is symmetric and U [x] =
f−1(V [f(x)]). Since f is continuous and V [f(x)] is a neighborhood of f(x), the sets U [x] = U−1[x] are
neighborhoods of x. Thus U ∈ Uf . 3

The previous theorem says that any t-semi-uniform space (X,Uf ) is a discrete object in the concrete
category TSUnif over the category Top. It also implies the next assertion:

Corollary 2.46 The full subcategory of fine t-semi-uniform spaces is coreflective in TSUnif and, thus,
closed under disjoint unions and quotients.

The full subcategory of fine t-semi-uniform spaces is not productive (see Example 2.47); unlike the
situation in Unif, it is hereditary (see Corollary 3.32).
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Example 2.47 (Product of fine t-semi-uniformities that is not a fine t-semi-uniformity.)
Take the positive real line R+ with the Euklidean metric d, let X1,X2 = R+, and let U1(U2) be the fine
semi-uniformity on X1(X2). Let Y be the cartesian product Y = X1 × X2 with its fine semi-uniformity
U .

Take an arbitrary point x0 in X1.

Denote by U ⊂ Y × Y such a set that U [(x0, y)] = {(u, v) ∈ Y ;D((x0, y), (u, v)) < 1
y
}, where D is the

Euclidean metric on Y , U [(x, y)] = Y for x 6= x0, y ∈ X2.

We will show that U is in the fine semi-uniformity U on Y but not in the product semi-uniformity U1×U2.

The set U is not symmetric. To prove that U ∈ U it suffices to show that U [(x, y)] and U−1[(x, y)] are
neighbourhoods of (x, y), for every (x, y) ∈ Y :

It follows from the definition of U that U [(x, y)] is a neighbourhood of (x, y).

For (u, v) ∈ Y it holds: U−1[(u, v)] = {(x, y) ∈ Y ; (x 6= x0) ∨ (D((x, y), (u, v)) < 1
y
)}.

If u 6= x0 then there is a positive number r that x 6= x0 whenever d(x, u) < r, which implies that
(u, v) ∈ U [(x, y)] = Y whenever d(u, x) < r. Thus the neighborhood {(x, y) ∈ Y ; d(x, u) < r} of (u, v) is
a subset of U−1[(u, v)].

If u = x0 then the neighborhood G = {(x, y) ∈ Y ; d(y, v) < 1
v+1} of (u, v) is a subset of U−1[(u, v)].

In fact, if d(y, v) = |v − y| < 1
v+1 then y < v + 1

v+1 < v + 1 and then 1
v+1 < 1

y
.

Now if d(y, v) < 1
v+1 then d(y, v) < 1

y
. Thus if (x, y) ∈ G then either x 6= x0 and (u, v) ∈ U [(x, y)] = Y ,

or x = x0 and D((x, y), (u, v)) = d(u, v) < 1
y

and (u, v) ∈ U [(x, y)].

Finally we show that U is not in the product semi-uniformity U1 ×U2. For the contrary let there be such
sets U1 ∈ U1 and U2 ∈ U2 that

(π1 × π1)
−1(U1) ∩ (π2 × π2)

−1(U2) ⊂ U.

As U1 =
⋃

x∈X1

{x}×U1[x], U2 =
⋃

x∈X2

{x}×U2[x] it is U ⊃
⋃

x∈X1,y∈X2

{x}×{y}×U1[x]×U2[y].

Thus U1[x0] is such a neighbourhood of x0 that {x0} × {y} × U1[x0] × U2[y] ⊂ U for every y ∈ X2, i.e.
U1[x0] × U2[y] ⊂ U [(x0, y)]. But for any x ∈ U1[x0], x 6= x0, we find y ∈ X2 that D((x0, y), (x, y)) =
d(x0, x) ≥ 1

y
. Thus (x, y) /∈ U [(x0, y)], which is the contrary.

2.4.3 Coarse t-semi-uniformity

Proposition 2.48 Let X be a symmetric topological space. For a ∈ X and its neighborhood G define
Ua,G = (G × G) ∪ (X r {a}) × (X r {a}) . Then {Ua,G; a ∈ X,G a neighborhood of a} forms a subbasis
for the smallest t-semi-uniformity on X.

Proof: Let us denote by S the suggested subbase and Uc the filter generated by S. By Corollary 2.5, Uc

is a semi-uniformity. We shall now show that Uc induces the topology of X. Let U = Ua,G ∈ S, x ∈ X.
If x = a then U [x] = G. If x 6= a and x ∈ G then U [x] = X. If x /∈ G then U [x] = X r {a}. In the last
case, assume that U [x] is not a neighborhood of x. Then a belongs to every neighborhood of x. As X is
symmetric, x belongs to every neighborhood of a, which contradicts to x /∈ G. Conversely, let a set G be
a neighborhood of a point x ∈ X in the original topology τ . Then G = U [x] for U = Ux,G.

If now V is a semi-uniformity on X and U = Ua,G ∈ S then there is a symmetric set V ∈ V such that
V [a] ⊂ G, which implies V ⊂ U . Then U ∈ V and Uc is thus the smallest semi-uniformity on X. 3

Definition 2.49 The t-semi-uniformity described in the previous proposition will be called the coarse
semi-uniformity on X.

Recall that a completely regular space has a coarse uniformity iff it is locally compact.

Proposition 2.50 Any coarse t-semi-uniformity on a has an open base.
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Proof: Let U = Ua,G ∈ S such that G is an open neighborhood of a. Then U = (G × G) ∪ (X r {a}) ×
(X r {a}) is an open set in X × X. 3

Corollary 2.51 The pointwise open and open bireflections preserve T1-topologies.

Therefore for every T1-topology there exist the finest pointwise open and the finest open semi-
uniformities among all semi-uniformities inducing the topology. This assertion is valid for every symmetric
topology, as we shall see in 2.64.

Example 2.52 (Coarse t-semi-uniform space that is not pointwise open.)
Let in a symmetric topological space X exist a point x and a nbhd G of x such that {x},X r G are

infinite. Then the set Ux,G is not pointwise open. If the coarse t-semi-uniformity Uc on X is pointwise

open then there is a pointwise open set V ∈ Uc such that V ⊂ Ux,G. But that means that V [y] ⊂ X r{x}
for each y ∈ X r G. That means that V [y] has an infinite complement for infinitely many points, which
is a contradiction to the definition of the coarse t-semi-uniformity Uc.

The situation is different for pointwise closed semi-uniformities. It is seen from the next description
that coarse semi-uniformities are rarely pointwise closed and that the pointwise closed bireflections need
not preserve topology.

Example 2.53 (Coarse t-semi-uniformity on R is not pointwise closed.)
Let us take the real line with its standard topology. Let Uc be its coarse t-semi-uniformity. Then

there is no pointwise closed set U ∈ Uc contained in ] − 1, 1[×] − 1, 1[∪(R r {0}) × (R r {0}).

We showed that every continuous mapping is uniformly continuous with respect to the fine t-semi-
uniformities. The corresponding result is not true for coarse t-semi-uniformities, as the next example
shows.

Example 2.54 Let X,Y be symmetric topological spaces, Uc,Vc their coarse semi-uniformities. Take
such a mapping f : (X,Uc) → (Y,Vc) that there is a point y ∈ Y with an infinite f−1(y). Let H be such
a neighborhood of y that X r f−1(H) is infinite. Let there be U ∈ Uc such that (f(x), f(x′)) ∈ Uy,H for
each (x, x′) ∈ U . Then U [x] ⊂ f−1(H) for each x ∈ f−1(y). Thus X r U [x] is infinite for infinitely many
x ∈ f−1(y). That is a contradiction.

For instance, the map sin : R → R satisfies the above assumptions.

One could see from the previous example, which continuous maps into coarse semi-uniformities may
be uniformly continuous.

Proposition 2.55 Let X,Y be symmetric topological spaces, Vc the coarse t-semi-uniformity on Y and
f : X → Y be a continuous finite-to-one map. Then f : (X,U) → (Y,Vc) is uniformly continuous for
every semi-uniformity U on X.

Proof: Let X,Y be symmetric topological spaces, Uc, resp. Vc, the coarse semi-uniformity on X, resp. Y ,
U a semi-uniformity on X. Take such a mapping f : X → Y that all points y ∈ Y have finite f−1(y). Take
V = Vy,H ∈ V. Then U = (f×f)−1(V ) = (f−1(H)×f−1(H)) ∪

⋂

x∈f−1(y)

((Xr{x})×(Xr{x})) ∈ Uc ⊂ U .

3

Corollary 2.56 Restrictions of coarse t-semi-uniformities to subsets are coarse.

It is not difficult to show that coarse t-semi-uniformities are not productive (see Example 2.57) and
not closed under infinite disjoint sums (see Example 2.58), but closed under quotients (see Proposition
2.59).

Example 2.57 (Coarse t-semi-uniformities are not productive.)
Take X, Y = R, CX , CY their coarse semi-uniformities. Let G,H resp., be some open sets in X,Y resp.,
with infinite complements. Denote by C the coarse semi-uniformity on X × Y , CX × CY the product
semi-uniformity of CX and CY on X × Y .
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Take some points a ∈ G, b ∈ H. Denote C1 = G × G ∪ (X r {a}) × (X r {a}) ∈ CX , C2 = H × H ∪
(Y r {b}) × (Y r {b}) ∈ CY .

Take C = {((x, y, )(u, v)) ∈ X × Y × X × Y ; (x, u) ∈ C1 ∧ (y, v) ∈ C2} ∈ CX × CY .

Let for the contrary C ∈ C. Then it contains a set D = G′ × H ′ × G′ × H ′ ∪ (X × Y r {(c, d)}) × (X ×
Y r {(c, d)}), where G′(H ′) is a neighbourhood of x(y) in X(Y ) and (c, d) ∈ X ×Y . We can assume that
G′ ⊂ G,H ′ ⊂ H.

If (a, b) 6= (c, d) then D[(a, b)] = X × Y or D[(a, b)] = X × Y r {(c, d)}, which is not contained in
C[(a, b)] = G × H, and that is the contrary.

If (a, b) = (c, d) then take x = a, y /∈ H, u /∈ G, v = b. Now the point ((x, y), (u, v)) ∈ D r C, and that
is the contrary.

Example 2.58 (Coarse t-semi-uniformities are not infinitely coproductive.)
It is clear beacuse an infinite sum of sets of the form Gi × Gi ∪ (Xi r {xi}) × (Xi r {xi}) is not in the
coarse semi-uniformity on the topological sum of spaces Xi, i ∈ I.

Proposition 2.59 Quotients of coarse t-semi-uniformities are coarse t-semi-uniformities.

Proof: Take a symmetric topological space X and its coarse semi-uniformity Uc. Take a set Y and a
mapping q of X onto Y .

Take a symmetric set U from the quotient t-semi-uniformity w.r.t. q on Y . There are such sets
Ci = Gi × Gi ∪ (X r {xi}) × (X r {xi}), where Gi is a neighbourhood of xi ∈ X, i = 0, .., n, and

xi 6= xj for i 6= j, that C =
n
⋂

i=0

Ci ⊂ (q × q)−1(U). (For every V there are such Ci because the quotient

t-semi-uniformity is contained in the quotient semi-uniformity.)

As X is symmetric we can take such neighborhoods Gi that xj /∈ Gi for i 6= j, i = 0, .., n.

First we show that D =
n
⋂

i=0

( q(Gi) × q(Gi) ∪ (Y r {q(xi)}) × (Y r {q(xi)})) ⊂ U.

Take (u, v) ∈ D and show that (u, v) ∈ U .
If (u, v) ∈ q(Gi) × q(Gi) = (q × q)(Gi × Gi) for some i = 0, .., n then (u, v) ∈ (q × q)(C) ⊂ U . In fact,
Gi × Gi ⊂ C for every i = 0, .., n because xj /∈ Gi for i 6= j, i, j = 0, .., n.

If (u, v) /∈ q(Gi) × q(Gi) = (q × q)(Gi × Gi) for every i = 0, .., n then (u, v) ∈
n
⋂

i=0

(q × q)((X r {xi}) ×

(X r {xi})) ⊂ (q × q)(C) ⊂ U .

The set q(Gi) need not be a neighborhood of q(xi) in the quotient topology on Y . But if we take
U [q(xi)] instead of q(Gi) in the definition of D we only add points (q(xi), y) and (y, q(xi)), where y ∈

U [q(xi)], which are in U . Thus U ⊃
n
⋂

i=0

( U [q(xi)] × U [q(xi)] ∪ (Y r {q(xi)}) × (Y r {q(xi)})) and

U is in the coarse semi-uniformity inducing the quotient topology on Y . 3

2.4.4 Cover t-semi-uniformity

Definition 2.60 A semi-uniformity on a symmetric topological space X is called a cover semi-uniformity
if it has a base consisting of sets of the form

⋃

H∈H

H × H, where H is an open cover of X.

Clearly, one can take a subbase in the previous definition instead of a base. It is known that every
uniformity is a cover semi-uniformity. Clearly, every cover semi-uniformity on a space X has an open
base.

We should notice in the above definition that one must take such a system of open covers of X that
the corresponding cover semi-uniformity induces the topology of X (i.e., every neighborhood of any point
must contain its star with respect to a chosen cover).

The next result shows that there exists the finest cover semi-uniformity on every symmetric topological
space.
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Proposition 2.61 Let X be a symmetric topological space. The system Ucv having a base {
⋃

H∈H

H ×H,

H is an open cover of X}, is a semi-uniformity on X that is the finest cover semi-uniformity on X.

Proof: Let B = {
⋃

{H × H;H ∈ H};H is an open cover of X}. Then B is a base for a semi-uniformity
U inducing the original topology τ on X. Indeed, if G is an open neighborhood of x ∈ X then G = B[x],
where B = (G×G) ∪ ((X r {x})× (X r {x})); conversely, B[x] is an open neighborhood of x, for every
x ∈ X and B ∈ B. Thus U induces the topology τ .

The assertion that Ucv is the finest among all cover semi-uniformities on X follows from the fact that
we take all the open covers for its description. 3

Let us remark that if X is paracompact then the cover t-semi-uniformity Ucv is the finest uniformity
on X. If X is not paracompact, then Ucv is not a uniformity.

The next result is analogous to that for fine semi-uniformities.

Proposition 2.62 Let (X, τ), (Y, σ) be symmetric topological spaces, let Ucv be the finest cover t-semi-
uniformity of (X, τ) and V be a cover semi-uniformity on (Y, σ). Then every continuous mapping f :
X → Y is uniformly continuous with respect to Ucv and V.

Proof: Let V ∈ V. Then there is an open cover H of Y such that
⋃

H∈H

(H×H) ⊂ V . Then (f×f)−1(V ) ⊃
⋃

H∈H

(f−1(H) × f−1(H)) ∈ Ucv because f is continuous (and thus {f−1(H);H ∈ H} is an open cover of

X). 3

As we could see in Example 2.52, the coarse semi-uniformity on X need not be pointwise open
and, thus, a cover semi-uniformity. For T1-spaces X, the coarse semi-uniformity on X is a cover semi-
uniformity, because the basic sets Ua,G can be expressed in the form (G × G) ∪ (X r {a}) × (X r {a}),
and both sets G and X r {a} form an open cover of X. Such an expression suggests a description of the
coarse cover semi-uniformity on X, which will be also the coarsest open and the coarsest pointwise open
t-semi-uniformity on the space X:

Proposition 2.63 For a symmetric topological space X, the sets (G×G)∪ (X r{a})× (X r{a}), where
G is open in X and a ∈ G, form a subbase for the coarsest pointwise open t-semi-uniformity on X.

Proof: Let U be a pointwise open semi-uniformity on the space X. Let a ∈ X,G be an open nbhd of
a. Denote V = (G × G) ∪ (X r {a}) × (X r {a}). We will show that V ∈ U . We know that there is
U = U−1 ∈ U such that U [a] ⊂ G because U induces the original topology on X. As U is pointwise open
there is a pointwise open U ′ ∈ U such that U ′ ⊂ U . We will show that U ′[x] ⊂ V [x] for every x ∈ X.

(i) For x = a it is clear.

(ii) Let x 6= a, x ∈ G. Then V [x] = X ⊃ U ′[x].

(iii) Let x /∈ G ⊃ U [a]. Then a /∈ U [x] because U is symmetric. Then a /∈ U ′[x], which is open. And
thus U ′[x] ∩ {a} = ∅. Now U ′[x] ⊂ X r {a} = V [x].

3

Proposition 2.64 The cover semi-uniformity on X described in the previous proposition is also the
coarsest t-semi-uniformity on X having an open base and the coarsest cover t-semi-uniformity on X.

Proof: It follows from the fact, that every cover t-semi-uniformity is open and every open t-semi-
uniformity is pointwise open. And the described t-semi-uniformity is a cover t-semi-uniformity on X.

3

Proposition 2.65 The cover t-semi-uniformities are productive, hereditary, coproductive and they are
not closed under quotients.
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Proof:

The subbase of the product semi-uniformity of semi-uniformities Ui, i ∈ I, consists of sets U =
(πi × πi)

−1(Ui), Ui ∈ Ui, i ∈ I. If Ui are cover semi-uniformities then U = (πi × πi)
−1(

⋃

Hi∈Hi

Hi × Hi) =

⋃

Hi∈Hi

π−1
i (Hi) × π−1

i (Hi), where Hi is an open cover of Xi, and thus {π−1
i (Hi)} is an open cover of the

product of the spaces Xi, i ∈ I.

{H ∩X,H ∈ H} is an open cover of a subspace X of the space Y , whenever H is an open cover of Y .
Thus the subspace semi-uniformity of the cover semi-uniformity is a cover semi-uniformity.

{
∑

i∈I

Hi;Hi ∈ Hi} is an open cover of a the coproduct of the spaces Xi, i ∈ I, whenever Hi are

open covers of Xi, i ∈ I. Thus the coproduct semi-uniformity of the cover semi-uniformities is a cover
semi-uniformity.

The last assertion follows from the fact that every semi-uniformity is a quotient of a discrete semi-
uniformity (see [3], 37.A.8), which is a cover semi-uniformity.

3

2.4.5 Categorical summary

We shall denote by TSUnifpo (or TSUnifo, TSUnifc) the full subcategory of TSUnif consisting of pointwise
open semi-uniformities (or uniformities having an open base, or cover semi-uniformities, resp.).

Theorem 2.66 All the arrows in the next diagram are full bireflective embeddings:

Unif −→ TSUnifc −→ TSUnifo −→ TSUnifpo −→ TSUnif .

Proof: We show that TSUnifc is a bireflective subcategory of TSUnif. It is sufficient to show that it is
closed under suprema and under forming initial structures generated by one map. (See the remark below
2.35). The first one follows from the fact that finite intersections of members of open covers form an open
cover. The other one is clear because (f × f)−1(H × H) = f−1(H) × f−1(H), and f−1(H) is open for
an open set H. 3

As one can see from Example 2.52, the above bireflections preserve T1-topologies and need not pre-
serve non-T1-topologies (indeed, the coarse semi-uniformity need not be pointwise open and so, e.g., its
pointwise open bireflection is strictly coarser in this case and cannot induce the same topology).

But the bireflections of the fine semi-uniformities preserve topologies since they are finer than the
coarsest cover semi-uniformity. Consequently, for any of the above categories K, every symmetric topolog-
ical space X is induced by the finest semi-uniformity belonging to K. Moreover, this finest semi-uniformity
is a discrete object with respect to K over Top(X).

3 COMPLETENESS OF T-SEMI-UNIFORM SPACES

In this chapter we will follow the classical approach to study the completeness in t-semi-uniform spaces.
It means first to define a class of filters that we want to play a role of Cauchy filters. Complete spaces
will be those t-semi-uniform spaces in which every corresponding filter from our class converges. One
of the properties we want to be fulfilled is that such Cauchy-like filters coincide with Cauchy filters on
uniform spaces and that a uniform space is complete as a t-semi-uniform space iff it is complete in the
classical sense.

Characterizations of Cauchy filters in uniform spaces may not longer be equivalent when we transfer
them to t-semi-uniform spaces. In the next we will restrict our consideration to several such basic
characterizations. Certainly our selection is not exhaustive.

We would like to maintain properties of completeness for uniform spaces also in t-semi-uniform setting,
mainly the existence of completion. We will see later that it is not always possible.

We will compare this approach with another generalization of completeness, namely with absolute
closedness. Recall that in uniform Hausdorff spaces, a space is complete iff it is absolutely closed, i.e.
closed in every uniform superspace. Some relations between our completeness and absolute closedness
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will be proved, e.g., every (Cauchy) complete pointwise open t-semi-uniform space is absolutely closed in
Hausdorff t-semi-uniform spaces, but not vice versa.

3.1 Basic properties

Recall that a filter f in a uniform space (X,U) is said to be Cauchy if for each U ∈ U there is an F ∈ f

such that F × F ⊂ U . That is iff for each U ∈ U there is an x ∈ X such that U [x] ∈ f. Clearly, the
first defining property of Cauchy filters implies the second one also in t-semi-uniform spaces, but not
conversely. If we take any property between those two, it will certainly coincide with Cauchy property
on uniform spaces.

Definition 3.1 Let (X,U) be a t-semi-uniform space.

1. A filter f on a space X is called a classic Cauchy filter on (X,U) if for every U ∈ U there exists
F ∈ f such that F × F ⊂ U .

2. A filter f on a space X is called a Cauchy filter on (X,U) if for every U ∈ U there exists F ∈ f such
that for every x ∈ F holds U [x] ∈ f.

3. A filter f on a space X is called a weak Cauchy filter on (X,U) if for every U ∈ U and every F ∈ f

there exists x ∈ F such that U [x] ∈ f.

4. A filter f on a space X is called a semi-Cauchy filter on (X,U) if for every U ∈ U there exists x ∈ X
such that U [x] ∈ f.

Clearly, it suffices to take U from a base of U and, in the first two cases, from a subbase of U .
It may be convenient to realize that if a filter f on X has one of our Cauchy-like properies except the

third one then every larger filter on X has the same property. Every filter containing a singleton has
each of our Cauchy-like properties.

Some of the previous Cauchy-like filters are known under other names in other situations. E.g., for
quasi-uniform spaces Cauchy filters in our sense are sometimes called K-Cauchy (in fact, left and right
K-Cauchy filters are defined there), our semi-Cauchy fiters are sometimes called PS-Cauchy or U-Cauchy
filters in quasi-uniform space (X,U) - see [9].

Proposition 3.2 Let X be a t-semi-uniform space, f a filter in X.

1. If f is convergent in X then it is semi-Cauchy on X.

2. If f is classic Cauchy on X then it is Cauchy on X.

3. If f is Cauchy on X then it is weak Cauchy on X.

4. If f is weak Cauchy on X then it is semi-Cauchy on X.

Proof: (1) If a filter f converges to a point x ∈ X then U [x] ∈ f for each U ∈ U . (2)-(4) are clear. 3

Diagram. Let X be a t-semi-uniform space, let cl.Cauchy,Cauchy,w.Cauchy, s-Cauchy, conv be
sets of all classic Cauchy, Cauchy, weak Cauchy, semi-Cauchy, converging filters on X, respectively. From
the previous proposition we get the following diagram, in which all the arrows denote inclusions.

cl.Cauchy −−−−→ Cauchy −−−−→ w.Cauchy −−−−→ s−Cauchy ←−−−− conv

Example 3.5 shows a convergent and thus semi-Cauchy filter that is not weak Cauchy. Example 5.18
shows a weak Cauchy filter that is not Cauchy. Example 3.6 shows a Cauchy filter that is not classic
Cauchy. Thus no of the arrows in the previous diagram can be reverted. As it is well-known, for uniform
spaces all the arrows except the last one are identities.

Later we will need the preservation of Cauchy-like filters by uniformly continuous mappings.

Lemma 3.3 Let (X,U), (Y,V) be semi-uniform spaces. Let f be a uniformly continuous map with respect
to U and V. Let f be a classic Cauchy (resp. Cauchy, resp. weak Cauchy, resp. semi-Cauchy) filter on
(X,U). Then f([f]) := {f(F );F ∈ f} is a classic Cauchy (resp. Cauchy, resp. weak Cauchy, resp.
semi-Cauchy) filter base on (Y,V).
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Proof: For a classic Cauchy filter: Let f be a classic Cauchy filter on X, V ∈ V. There is U ∈ U such that
f(U [x]) ⊂ V [f(x)] for each x ∈ X. And as f is classic Cauchy there is a set F ∈ f such that F × F ⊂ U .
Let G = f(F ). Now G × G ⊂ (f × f)(U) ⊂ V .

For a Cauchy filter: Let f be a Cauchy filter on X, V ∈ V. There is U ∈ U such that f(U [x]) ⊂ V [f(x)]
for each x ∈ X. And as f is Cauchy there is a set F ∈ f such that U [x] ∈ U for each x ∈ F . Let G = f(F ).
Now V [y] ⊃ f(U [x]) ∈ f([f]) for each y = f(x) ∈ G ∈ f([f]).

For a weak Cauchy filter: Let f be a weak Cauchy filter on X, V ∈ V, G ∈ f([f]). There is U ∈ U such
that f(U [x]) ⊂ V [f(x)] for each x ∈ X and F ∈ f such that f(F ) = G. And as f is weak Cauchy there is
x ∈ F such that U [x] ∈ f. Now f(x) ∈ G and V [f(x)] ⊃ f(U [x]) ∈ f([f]).

For a semi-Cauchy filter: Let f be a semi-Cauchy filter on X, V ∈ V. There is U ∈ U such that
f(U [x]) ⊂ V [f(x)] for each x ∈ X. And as f is semi-Cauchy there is a point x ∈ X such that U [x] ∈ f.
Let y = f(x). Now V [y] ⊃ f(U [x]) ∈ f([f]). 3

3.2 Convergence and Cauchy-like property

In uniform spaces every convergent filter is Cauchy. We shall show now that in t-semi-uniform spaces this
holds for semi-Cauchy property only, or for special t-semi-uniform spaces defined in the previous section.

Proposition 3.4 Let f be a convergent filter in a t-semi-uniform space (X,U).

1. f is semi-Cauchy.

2. If U is a pointwise open semi-uniformity then f is Cauchy.

3. If U has an open base then f is classic Cauchy.

Proof:

1. coincides with Proposition 3.2.1.

2. Let (X,U) be a pointwise open t-semi-uniform space, a filter f converge to a point x ∈ X. Take a
pointwise open U ∈ U . There is a symmetric set V ∈ U such that V ⊂ U . If y ∈ F = V [x] ∈ f then
x ∈ V [y] ⊂ U [y] and U [y] ∈ f because it is a neighborhood of all its points. Thus f is Cauchy.

3. If f converges to a and U ∈ U is an open subset of X × X, then there is an open neighborhood G
of a with G × G ⊂ U . Clearly, G ∈ f and the proof is finished.

3

We shall now show that the previous assertions cannot be improved (in the realm of our special
properties).

Example 3.5 (Convergent filter that is not weak Cauchy.)
Let X be the space of all real numbers with its standard interval topology, let Uf be the fine t-semi-

uniformity on X. Let f be a filter with the base {U [0] r {0};U ∈ U}. The filter f is convergent but not
weak Cauchy on (X,Uf ). In fact, let V = {(x, y) ∈ X × X;x = 0 ∨ y = 0 ∨ x < 2y < 4x} ∈ Uf . Now
V [x] = (1

2x; 2x) ∪ {0} for each x > 0, V [x] = (2x; 1
2x) ∪ {0} for each x < 0 and V [0] = X. If f is weakly

Cauchy then for U ∈ Uf there is x ∈ U [0] r {0} such that V [x] ∈ f. But for each x 6= 0 there is no set
U ′ ∈ U such that (U ′[0] r {0}) ⊂ V [x]. Thus V [x] /∈ f and f is not weakly Cauchy.

Example 3.6 (Convergent in a pointwise open semi-uniform space and thus Cauchy filter that is not
classic Cauchy.)

Let X be the space of all real numbers with its standard interval topology, let UR be its standard
uniformity and V = {(x, y) ∈ X × X; 1

2 < y
x

< 2 ∨ − 1
4 < y

x
< 1

4 ∨ − 1
4 < x

y
< 1

4} ∪ {(0, 0)}. Let U

be the t-semi-uniformity with the subbase UR ∪ {V }. It is easy to show that it is a pointwise open
semi-uniformity inducing the standard interval topology on the real line.

The filter U0 is not classic Cauchy. In fact, there is no set F ∈ U0 such that F × F ⊂ V .

In the next example we construct a t-semi-uniform space that is not pointwise open but every its
convergent filter is classic Cauchy.
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Example 3.7 Let X be the set of all real numbers with the standard interval topology. Let Uc be its
coarsest t-semi-uniformity. Let S = Uc ∪ {U0}, where U0 = {(x, y) ∈ X ×X; |x− y| ≤ 1}. S is a subbase
for a semi-uniformity U on the set X.

U is a t-semi-uniformity on X because it induces the original topology on X. In fact, any neighborhood
G of a point x ∈ X is equal U [x] for some U ∈ Uc. On the other hand, U [x] is a neighborhood of x for
every x ∈ X and U ∈ Uc. And U0[x] = [x − 1, x + 1] is also a neighborhood of x for every x ∈ X.

Let f be a filter on X that converges to a point x ∈ X. Is f classic Cauchy? Let U = Ua,G ∈ Uc.
If x = a then G ∈ f and G × G ⊂ U . If x 6= a then H = X r {a} is a neighborhood of x such that
H × H ⊂ U . For U0 take a set G =]x − 0.5, x + 0.5[ that is an open neighborhood of x, and thus G ∈ f.
Clearly G × G ⊂ U0 and f is classic Cauchy.

(X,U) is not a pointwise open space. Indeed, U0 contains no subset V ∈ U such that for each x ∈ R

the set U0[x] is a neighborhood of V [x], since there are always points x with U0[x] = [x − 1, x + 1].

Diagram. Let TSUnifcC (or TSUnifC or TSUnifwC or TSUnifsC) be the full subcategory of TSUnif
generated by those t-semi-uniform spaces in which every convergent filter is classic Cauchy (or Cauchy,
or weak Cauchy, or semi-Cauchy, resp.).

From Proposition 3.4 we get the following diagram, in which all the arrows denote embedding functors.
According the previous examples, no diagonal arrow going down left can exists, and the last example
implies that no vertical arrow is onto (thus no arrow is onto).

TSUnifo −−−−→ TSUnifpo −−−−→ TSUnif




y





y

∥

∥

∥

TSUnifcC −−−−→ TSUnifC −−−−→ TSUnifsC

3.3 Cauchy-like filters and clusters

In uniform spaces, every Cauchy filter converges to its cluster point. That need not be true for our
Cauchy-like filters on t-semi-uniform spaces.

First we will show that there are cover semi-uniform spaces containing Cauchy-like filters that do not
converge to any of its clusters. To show that we need a lemma:

Lemma 3.8 Let X be a symmetric topological space, Uc its coarse semi-uniformity.

(i) Classic Cauchy filters on (X,Uc) coincide with Cauchy filters on (X,Uc) (which are filters on X that
either have an empty intersection or converge to every point of their intersection).

(ii) Weak Cauchy filters on (X,Uc) are filters that contain a singleton provided their intersection contains
a point isolated in some member of the filter.

(iii) Semi-Cauchy filters on (X,Uc) are filters that contain a singleton provided their intersection contains
an isolated point in X.

Proof: Recall that Uc has for its subbase all the sets U = Ua,G = (G×G)∪ (X r{a})× (X r{a}) where
a ∈ X and G is a neighborhood of a.

A filter containing a singleton has each of our Cauchy-like property.
(i) Denote by K the filter on X consisting of cofinite subsets. Clearly, K is classic Cauchy and,

thus, every filter on X having empty intersection is classic Cauchy. If x ∈
⋂

k and k → x then every
neighborhood V of x belongs to k. If we choose Ua,G and x ∈ G then G × G ⊂ Ua,G; if x /∈ G then
F = X r {a} ∈ k and again we have F × F ⊂ Ua,G. So, such filters are classic Cauchy.

Suppose conversely, that f is Cauchy and has a nonempty intersection. If f is Cauchy then for every
U ∈ Uc there is a set F ∈ f that U [x] ∈ f for all x ∈ F . Let x ∈

⋂

f. Then x ∈ F and U [x] ∈ f.
(ii) By (i), every filter on X having empty intersection is weak Cauchy. Let f be a filter containing

no singleton and having a nonempty intersection. Then no point of
⋂

f is isolated in some F ∈ f. Take
U = Ua,G.
If a ∈

⋂

f and F ∈ f then there is a point b 6= a that b ∈ F ∩ G. Then U [b] = X ∈ f.
If a /∈

⋂

f then there is a set F ∈ f that a /∈ F . Then either U [x] = X ∈ f or U [x] = X r {a} ⊃ F ∈ f, for
every x ∈ F . Consequently, f is weak Cauchy.
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Suppose conversely, that f is weak Cauchy and has a nonempty intersection that contains a point x
isolated in some F ∈ f. Thus there is an open set G such that G ∩ F = {x}. There must be some y ∈ F
such that Ux,G[y] ∈ f. Clearly, y must coincide with x and, thus, G ∈ f.

(iii) By (i), every filter on X having an empty intersection is semi-Cauchy. Let a ∈
⋂

f. Let U = Ua,G.
If a is an isolated point in X then, by the assumption, the filter contais a singleton and is semi-Cauchy.
If a is not an isolated point in X then for every nbhd G of a there is y ∈ G r {a}, and U [y] = X ∈ f.

Suppose conversely, that f is semi-Cauchy and has a nonempty intersection that contains a point x
isolated in X. Let G = {a}, U = Ua,G. Now U [a] = {a}, U [x] = X r {a} for x 6= a. Then {a} ∈ f

because X r {a} /∈ f.
3

Example 3.9 (Classic Cauchy filter in a cover semi-uniformity that does not converge to its clusters.)
Let X be an infinite Hausdorff space without isolated points. Let Uc be the coarsest t-semi-uniformity

on X. Let f be a filter of sets with finite complements in X. By the previous Lemma (i), f is classic
Cauchy. Clearly, every point in X is a cluster of f and, thus, f has no limit point according our assumption
on X.

There are nice classes of t-semi-uniform spaces where every Cauchy filter converges to any of its
clusters as we can see from the next two assertions.

Proposition 3.10 Let (X,U) be a pointwise closed t-semi-uniform space. Then each Cauchy filter on
(X,U) converges to its clusters.

Proof: Let f be a Cauchy filter on X, x ∈ X be its cluster. Thus x ∈ F for each F ∈ f. Let us choose an
arbitrary set V ∈ U . Without loss of generality we can assume that V is symmetric. Then there exists a
pointwise closed set U ∈ U such that U ⊂ V . As the filter f is Cauchy we can find a set F ∈ f such that
U [y] ∈ f for each y ∈ F . But x ∈ U [y] for each y ∈ F because U is pointwise closed and x is a cluster of
f. As V is symmetric y ∈ V [x] for each y ∈ F . Thus F ⊂ V [x] and, consequently, V [x] ∈ f, which was to
prove. 3

Proposition 3.11 Let X be a regular space and U be a semi-uniformity on X containing the sets (G ×
G)∪ ((X r H)× (X r H)) for all open sets G,H with H ⊂ G. Then every semi-Cauchy filter on (X,U)
converges to its clusters.

Proof: Let f be a semi-Cauchy filter on (X,U), let x ∈ X be its cluster. Let G ⊂ X be an open
neighborhood of x. If X is a regular space then there exist open neighborhoods K,H of x such that K ⊂
K ⊂ H ⊂ H ⊂ G. Then the sets U = (G×G)∪((X rH)×(X rH)), V = (H×H)∪((X rK)×(X rK))
are in U . If f is semi-Cauchy then there is y ∈ X such that (U ∩ V )[y] ∈ f. Thus U [y] ∈ f and V [y] ∈ f.
Now U [y] = G for y ∈ H, V [y] = X r K for y ∈ X r H. As x is a cluster of f and K ∩ (X r K) = ∅, the
second possibility is excluded. Thus G ∈ f and f converges to x. 3

Every fine semi-uniformity or fine cover semi-uniformity on a regular topological space satisfies the
condition of the previous Proposition.

The following example shows that Cauchyness in Proposition 3.10 cannot be weakened.

Example 3.12 (Weak Cauchy filter on poinwise closed t-semi-uniform space that does not converge to
its clusters.)
Take a quasi-topological group from Example 5.22. There is a non-converging weak Cauchy filter with a
non-void intersection described. Points from the intersection are clusters of the filter. If we take for X in
this example a compact space, the group will be a subspace of the product of compact spaces, and thus
regular. In quasi-topological groups regularity and pointwise closedness of the induced semi-uniformity
(see the section 4.1) are equivalent.

The regularity in Proposition 3.11 also cannot be weakened:

Example 3.13 Take an infinite Abelian group X with the cofinite (thus not regular) topology. In
Example 5.18 a weak Cauchy filter in every group semi-uniformity is described that has two points in its
intersection (thus two clusters) and no limit point. There are no open sets H,G that H ⊂ G except for
H = G = X. Thus every semi-uniformity on X satisfies the condition in the Proposition 3.11.
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3.4 L-filters

To avoid repeating various properties for Cauchy-like filters, we will now comprise several basic properties
that are valid in uniform spaces and are needed to get completions with requested properties. We will
refer to this section also in the part where we deal with categorical approach to completeness. Because
our main task is to deal with completions (also from categorical point of view), we shall often restrict
our consideration to Hausdorff spaces. The category of Hausdorff t-semi-uniform spaces from a category
K will be denoted as K2 (e.g., TSUnif2 or TSUnifpo2

).

Definition 3.14 Let K be a full subcategory of TSUnif2 and L assign to every space X from K a class of
filters L(X) on X (such a map will be called a filter operator). The following is a definition of properties
of L on K (we assume that X,Y ∈ K): L is said to have

(P1) if L(X) contains all convergent filters in X;
(P2) if every f ∈ L(Y ) is a base of a filter from L(X) whenever Y ⊂ X,Y ∈ K;
(P3) if G ∈ L(X) whenever G is a filter on X containing f ∈ L(X);
(P4) if [f] ∩ Y = {F ∩ Y ;F ∈ f} ∈ L(Y ) whenever f ∈ L(X), Y ⊂ X,Y ∈ K, [f] ∩ Y is a filter on Y ;
(P5) if the space X is a subspace of a t-semi-uniform space Y ∈ K such that f converges in Y whenever

f ∈ L(X) is a non-converging filter in X ;
(P6) if f([f]) = {f(F );F ∈ f} is a base of a filter from L(Y ) whenever f : X → Y, Y ∈ K is uniformly

continuous mapping, f ∈ L(X).

In case K = TSUnif2 the category K need not be specified.
An investigation of (P5) is postponed to Proposition 3.38.

Proposition 3.15

(1) Classic Cauchy filters have properties (P2), (P3), (P4), (P6)(and (P1) on TSUnifo2
).

(2) Cauchy filters have properties (P2), (P3), (P4), (P6) (and (P1) on TSUnifpo2
).

(3) Weak Cauchy filters have properties (P2), (P6) (and (P1) on TSUnifpo2
).

(4) Semi-Cauchy filters have properties (P1), (P2), (P3), (P6).

Proof: The facts about (P1) follow from Proposition 3.4 and those about (P6) follow from Lemma 3.3.
(1)

(P2) If F × F ⊂ U ∩ (A × A) then F × F ⊂ U .
(P3) is clear.
(P4) If F ∈ f and F × F ⊂ U then G = F ∩ A ∈ [f] ∩ A and G × G ⊂ U ∩ (A × A).

(2)
(P2) If U [x] ∩ A ∈ f for each x ∈ F ∈ f then U [x] ∈ f for each x ∈ F ∈ f.
(P3) is clear.
(P4) If U [x] ∈ f for each x ∈ F ∈ f then U [x] ∩ A ∈ [f] ∩ A for each x ∈ F ∩ A ∈ [f] ∩ A.

(3)
(P2) If U [x] ∩ A ∈ f then U [x] ∈ f.

(4)
(P2) If U [x] ∩ A ∈ f then U [x] ∈ f.
(P3) is clear. 3

It follows from Example 3.5 that the class of weak Cauchy filters (and thus of Cauchy or classic
Cauchy filters) does not satisfy (P1).

The next example shows that weak Cauchy filters need not satisfy (P3), (P4) and that semi-Cauchy
filters need not satisfy (P4).

Example 3.16 Let (X,UR) be the uniform space of real numbers with its standard uniformity. Let
V = {(x, y) ∈ X × X;x = 0 ∨ y = 0 ∨ x < 2y < 4x}. The set V is symmetric. Let U be the t-semi-
uniformity with the subbase UR ∪ {V }. V [x] = (1

2x; 2x) ∪ {0} for each x > 0, V [x] = (2x; 1
2x) ∪ {0} for

each x < 0 and V [0] = X. Thus V [x] is a neighborhood of x for each x ∈ X. The filter f = U0 is a weak
Cauchy filter because in every U [0] there is x = 0 such that U [x] ∈ f.

The filter G with the base {U [0]r{0}}U∈U si not weak Cauchy because for V there is no x ∈ U [0]r{0}
such that V [x] ∈ G. Therefore, (P3) is not satisfied.
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Let A = X r {0}. Now [f] ∩A = {U [0] r {0}}U∈U is a filter on A but it is not semi-Cauchy on A. In
fact, let there be a point x ∈ X r {0} such that V [x] ∩ A ∈ [f] ∩ A. Since V [x] ∩ A = ( 1

2x; 2x) for each
x > 0, V [x] ∩ A = (2x; 1

2x) for each x < 0, one has V [x] /∈ [f] ∩ A for each x 6= 0. Thus [f] ∩ A is not
semi-Cauchy in A.

3.5 Completeness

This part is devoted to the completeness of t-semi-uniform spaces defined classically by means of Cauchy-
like filters.

Definition 3.17 Let L(X) be a class of filters on a t-semi-uniform space (X,U). The space (X,U) is
called L–complete if every filter from L(X) converges. In particular (we omit the word “Cauchy”):

(1) A semi-uniform space (X,U) is called classically complete if every classic Cauchy filter in (X,U)
converges.

(2) A semi-uniform space (X,U) is called complete if every Cauchy filter in (X,U) converges.

(3) A semi-uniform space (X,U) is called weakly complete if every weak Cauchy filter in (X,U) converges.

(4) A semi-uniform space (X,U) is called semi-complete if every semi-Cauchy filter in (X,U) converges.

There are several general results about L-completeness:

Proposition 3.18 Let L(X),K(X) be classes of filters on a t-semi-uniform space (X,U). Let (X,U) be
L complete. If K(X) ⊂ L(X) then (X,U) is K complete, too.

Corollary 3.19

(1) If a t-semi-uniform space (X,U) is semi-complete then it is weakly complete.

(2) If a t-semi-uniform space (X,U) is weakly complete then it is complete.

(3) If a t-semi-uniform space (X,U) is complete then it is classically complete.

Proposition 3.20 If L has (P6), (X,U) is L-complete and V is finer than U and both induce the same
topology, then (X,V) is L-complete.

Proof: If (X,U) is L-complete and V is finer than U then the identity map id : (X,V) → (X ,U) is
uniformly continuous. Thanks to (P6) every L−filter on (X,V) is an L−filter on (X,U) and thus it
converges. 3

3.6 Completeness of special t-semi-uniformities

We examine completeness of fine and coarse t-semi-uniformities.
We shall use total boundedness and precompactness in the following meaning:

Definition 3.21

A t-semi-uniform space (X,U) is called totally bounded if for every U ∈ U one can find a finite K with
U [K] = X.

A t-semi-uniform space (X,U) is called precompact if for every U ∈ U one can find a finite cover
{A1, ..., An} of X such that

⋃n
i=1 Ai × Ai ⊂ U .

The next assertion is trivial but useful.

Lemma 3.22 If every ultrafilter on X belongs to L(X,U) and (X,U) is L-complete, then (X,U) is
compact.

Corollary 3.23

If (X,U) is totally bounded and semi-complete, then (X,U) is compact.

If (X,U) is precompact and classically complete, then (X,U) is compact.
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First we look at the completeness of coarse t-semi-uniformities. Every coarse t-semi-uniform space is
precompact, so it is compact whenever it is classically complete. The converse need not be true:

Theorem 3.24 Let X be a T2-topological space, Uc the coarse t-semi-uniformity on X. Then the fol-
lowing conditions are equivalent:

1. (X,Uc) is classically complete.

2. (X,Uc) is complete.

3. (X,Uc) is weakly complete.

4. (X,Uc) is semi-complete.

5. X is a compact space having at most one accumulation point.

Proof: Clearly, 4 ⇒ 3 ⇒ 2 ⇒ 1. Assume now that (X,Uc) is classically complete. The compactness of
X follows from the preceding note. By Proposition 3.8, the filter k of cofinite subsets of X is a classic
Cauchy filter and, so, it converges to a point a. It means that the neighborhood system of a coincides
with complements of finite sets K 6∋ a. Thus, X is either finite or it has the unique accumulation point,
namely the point a.

Suppose now that X is an infinite compact space having a unique accumulation point a. Let f be a
semi-Cauchy filter on (X,Uc). Then, by Proposition 3.8, f either has an empty intersection (and then it
converges to a) or an isolated point b belongs to f (then f converges to b) or the intersection of f is the
point a (then f converges to a). 3

For T1-space the above characterization is not true:

Proposition 3.25 The coarse semi-uniformity of an infinite coarse T1-space X is complete (thus clas-
sically complete) and not weakly complete (thus not semi-complete).

Proof: By Proposition 3.8, the only non-convergent Cauchy filters could be those with empty intersection.
Such filters converge to any point on coarse T1-spaces.

By the same Proposition, every filter {F ⊂ X;A ⊂ F}, where A,X r A are infinite, is weak Cauchy
and non-convergent. 3

Now we look at the completeness of fine t-semi-uniformities.

Since every paracompact space (in fact, every Dieudonné complete space) has a complete fine unifor-
mity, we have the following result following from Proposition 3.20:

Proposition 3.26 The fine t-semi-uniformity of a paracompact topological space is semi-complete.

The next two examples shows the expected situation that there is a non-paracompact space the fine
t-semi-uniformity of which is complete in some sense.

Example 3.27 (ω + 1 has semi-complete (thus weakly complete, complete, classically complete) fine
semi-uniformity.)
Take the space X = ω + 1 with its standard interval topology, U the fine semi-uniformity on X.
Let f be a semi-Cauchy filter on (X,U). Let f has no limit point in X.
For every x ∈ X there is a neighbourhood Mx of x that does not belong to the filter f. For n ∈ ω we
can take Mn = {n}. Denote U =

⋃

x∈X

Mx. Then V = U ∪ U−1 is in the fine semi-uniformity U on X.

If f is semi-Cauchy then there must be a point x ∈ X such that V [x] ∈ f. For ω it is V [ω] = U [ω] /∈ f,
because there is neither n ∈ N that ω ∈ U [n] = {n}. Thus there is n0 ∈ ω that V [n0] = {n0} ∪ {ω} ∈ f.
Take M ′

ω = Mω r {n0} /∈ f, M ′
n = Mn for n ∈ ω, U ′ =

⋃

x∈X

M ′
x. Then V ′ = U ′ ∪ (U ′)−1 is in the fine

semi-uniformity on X. And there must be a point x′ ∈ X such that V ′[x′] ∈ f. Similarly as for V we
have n′

0 ∈ ω that V ′[n′
0] = {n′

0} ∪ {ω} ∈ f. Clearly n′
0 6= n0. As f is a filter the set V [n] ∩ V ′[n′] = {ω}

has to be in f, which is a contrary.

We show one more example of a non-paracompact space that is complete in some sense:
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Example 3.28 (Mrówka space has weak complete (thus complete and classically complete) fine semi-
uniformity.)
Take the Mrówka space described in [7],3.6.I(a):
Let {Ns}s∈S be an infinite family of infinite subsets of N (N is the set of positive integers) where S is
an uncountable set such that S ∩ N = ∅ and Ns ∩ Nt is finite for every couple s, t of distinct elements of
S. The Mrówka space is the space X = N ∪ S with the topology generated by the neighbourhood bases
{B(x)}x∈X , where B(n) = {{n}} for n ∈ N and B(s) = {{s} ∪ (Ns r {1, 2, .., i})}∞i=1 for s ∈ S. X is
non-normal, thus non-paracompact.

Let f be a weak Cauchy filter on (X,U), where U is the fine semi-uniformity on X. Let f has no limit
point in X. First we show that S ∈ f.
For every x ∈ X there is a neighbourhood Mx of x that does not belong to the filter f. For n ∈ N we
can take Mn = {n}. Denote U =

⋃

x∈X

Mx. Then V = U ∪ U−1 is in the fine semi-uniformity on X.

If f is weak Cauchy then it is semi-Cauchy and there must be a point x ∈ X such that V [x] ∈ f. For
s ∈ S it is V [s] = U [s] /∈ f, because there is neither n ∈ N that s ∈ U [n] = {n} nor s′ ∈ S, s′ 6= s
that s ∈ U [s′] ⊂ {s′} ∪ N. Thus there is n0 ∈ N that V [n0] = {n0} ∪ {s;n0 ∈ Ms} ∈ f. Take
M ′

s = Ms r {1, .., n0} /∈ f for s ∈ S, M ′
n = Mn for n ∈ N, U ′ =

⋃

x∈X

M ′
x. Then V ′ = U ′ ∪ (U ′)−1 is

in the fine semi-uniformity on X. And there must be a point x′ ∈ X such that V ′[x′] ∈ f. Similarly as
for V we have n′ ∈ N that V ′[n′] = {n′} ∪ {s;n′ ∈ M ′

s} ∈ f. Clearly n′ > n0. As f is a filter the set
V [n0] ∩ V ′[n′] ∈ f. Then S ∈ f because S contains V [n0] ∩ V ′[n′].

From the fact that f is weak Cauchy it follows that there must exist s ∈ S such that V [s] = U [s] ∈ f,
which is a contrary.

3.7 Absolute closedness and (P5)

We shall define absolutely closed structures. All the definitions and results in the next part can be achieved
in a more generally situations, namely for categories having a closure operator and embedding morphisms
satisfying some properties. Nevertheless, in this part all the categories will be full subcategories of TSUnif
or of Top with the usual closures of their (induced) topologies and embeddings.

Definition 3.29 Let B be a category. An object A ∈ B is called B-closed if A is closed in any object
B ∈ B in which it is embedded.

For B = Top2, B-closed objects are called H-closed spaces.

Proposition 3.30 If M is a subcategory of B then each B-closed object of M is also M-closed.

In our situation, B-closed objects have a reasonable sense for structures bearing Hausdorff topology
only. For instance, if B = TSUnif then B-closed objects are empty spaces only.

It should be recalled that the next lemma does not hold for uniform spaces (e.g., for some fine
uniformities).

Lemma 3.31 Let (X,U) be a t-semi-uniform space and the corresponding topological space X be a topo-
logical subspace of a symmetric topological space Y . Then there exists such a t-semi-uniformity V on Y
that U is the subspace semi-uniformity on X induced by V.

Proof:There exists the coarsest semi-uniformity W2 on the underlying set |Y | of the topological space Y
such that U is the subspace semi-uniformity on X with respect to W2. Indeed, W2 = {U∪(Y ×(Y −X))∪
((Y −X)×Y );U ∈ U}. Take V = sup{W1,W2}, where W1 is the coarse t-semi-uniformity on Y . Clearly,
U is finer than the restriction of V to X since the restriction of W1 to X is the coarse semi-uniformity
on X (see Corollary 2.56), and it is also coarser since the restriction of W2 to X coincides with U .

It remains to show that V induces the original topology on Y . But W2 induces a coarser closure on
Y and W1 induces the topology of Y . Since suprema in SUnif preserve closures, the semi-uniformity V
induces the topology of Y . 3

Corollary 3.32 Restrictions of fine t-semi-uniformities to subsets are fine.
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Proof: Let U be the subspace semi-uniformity on the set X ⊂ Y with respect to the fine semi-uniformity
Vf on Y . Let V be the superspace semi-uniformity on Y with respect to U defined in the proof of Lemma
3.31. And let V ′ be the superspace semi-uniformity on Y with respect to Uf defined in the proof of
Lemma 3.31, where Uf is the fine semi-uniformity on X.

As U ⊂ Uf it is V ⊂ V ′ ⊂ Vf (see the proof of Lemma 3.31). And the same holds for subspace
semi-uniformities:

U ⊂ Uf ⊂ U .
3

Corollary 3.33 A t-semi-uniform space is TSUnif2-closed if and only if its topology is H-closed.

Proof: Let (X,U) be a TSUnif2-closed space, Y a Hausdorff topological superspace of X. Then by the
previous lemma there is a t-semi-uniformity V inducing the topology of Y such that U is the subspace
semi-uniformity on X with respect to V. As (X,U) is TSUnif2-closed then X is closed in Y . The other
implication is clear. 3

For corresponding definitions used in the next results see Subsection 3.4.

Proposition 3.34 If a filter operator property L has properties (P1) and (P4) in B then every Hausdorff
L-complete space X ∈ B is B-closed.

Proof: Let X ∈ B be a subspace of a Hausdorff t-semi-uniform space (Y,U) ∈ B. Let y ∈ X. Then
by (P1) the filter Uy is Cauchy on (Y,U). Since X is dense in X and the (P4) holds then the filter
[Uy]∩X = {U [y]∩X;U ∈ U} is a filter and [Uy]∩X ∈ L(X). Then [Uy]∩X converges to some x ∈ X in
X and, thus, in Y . Since Y is Hausdorff we have x = y. Consequently, X = X and X is B-closed. 3

After Proposition 3.15 we showed that none of the properties defined in Subsection 3.4 satisfies both
(P1) and (P4) in TSUnif2. Classic Cauchy filters or Cauchy filters satisfy (P1) and (P4) in TSUnifo2

or
in TSUnifpo2

, respectively.

Corollary 3.35

Every Hausdorff pointwise open semi-uniform space X that is complete is H-closed.

Every Hausdorff open semi-uniform space X that is classically complete is H-closed.

The next result shows a converse situation to Proposition 3.34.

Proposition 3.36 If a property L has the property (P5) in B then every B-closed space is L-complete.

Proof: Let X be a B-closed space. Let f ∈ L(X). Let (Y,U) be such a t-semi-uniform space that X is a
subspace of (Y,U) (with its subspace semi-uniformity w.r.t. U) and that f converges in Y . By (P5) such
a space (Y,U) exists. If f converges to y ∈ Y then y ∈ X. Since X is absolutely closed X = X and X is
L-complete. 3

Corollary 3.37 If a property L has the property (P1), (P2) and (P5) in B then a Hausdorff t-semi-
uniform space is B-closed space iff it is L-complete.

Unfortunately, none of our special completeness is of such a type:

Proposition 3.38 Neither classic Cauchy or Cauchy or weakly Cauchy or semi-Cauchy filters satisfy
the property (P5) in TSUnif2 (or in TSUnifpo2

, TSUnifo2
).

Proof: It follows from Theorem 3.24 that there are compact Hausdorff spaces (e.g., the interval [0, 1]),
thus H-closed spaces, having its coarse semi-uniformity (thus an open uniformity) non-complete. 3

In fact, it follows from the preceding proof that even in much more restrictive classes of semi-uniform
spaces the property (P5) is not satisfied for our Cauchy–like filters.
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3.8 Categorical approach

The second assertion of the next Proposition is, in fact, Proposition 3.34. We repeat it because of
completeness.

Proposition 3.39

(i) Let X be a closed subspace of an L-complete space Y . If L satisfies (P2) then X is L complete.

(ii) Let X be an L-complete subspace of a Hausdorff semi-uniform space Y . If L satisfies (P1) and (P4)
then X is closed in Y .

Proof:

(i) Let Y be an L-complete t-semi-uniform space and X be a closed subset of Y . Let f be an L filter
on X. Then by (P2) f is an L-filter base on Y . Since Y is L complete f converges to some point
x ∈ Y . If X is closed then x ∈ X and U [x] ∩ X ∈ f for each U ∈ U . Thus f is convergent in X and
X is L-complete.

(ii) See Proposition 3.34.

3

Proposition 3.40 Let L satisfy (P6) on t-semi-uniform spaces Xi, i ∈ I. If all of the spaces Xi are
L-complete then their product

∏

i∈I

Xi is also L-complete.

Proof: Denote X =
∏

i∈I

Xi. Let f be an L-filter on X. Then πi(f) is an L-filter on Xi for each i ∈ I

because πi are uniformly continuous. As Xi is L-complete for each i ∈ I then πi(f) converges to a point
xi ∈ Xi. We will prove that f converges to the point (xi)i∈I .

Take semi-uniform neighborhoods Ui of ∆Xi
for a finitely many indices i. Then Ui[xi] ∈ πi(f) for each

Ui ∈ Ui and i ∈ I, which implies π−1
i (Ui[xi]) ∈ f. As f is a filter, the finite intersection of the last sets

belong to f. These finite intersections form a base of neighborhoods of the point (xi)i∈I . Consequently,
the point (xi)i∈I is a limit of f. 3

Definition 3.41 The category of all Hausdorff L-complete t-semi-uniform spaces with uniformly con-
tinuous mappings will be denoted by ComplL.

Theorem 3.42 If the property L satisfy (P2) and (P6) then the category ComplL is an epireflective
subcategory of the category TSUnif2.

Proof: The proof follows from a general categorical result that ComplL is closed under the formation of
products and closed subspaces in TSUnif2. For readers’ convenience we shall give a proof here.

Let X be an arbitrary Hausdorff t-semi-uniform space. First let us remind that the cardinality of the

closure of a space X in any Hausdorff superspace is less or equal to 22|X|

where |X| denotes the cardinality
of X. Let M be the set of all uniformly continuous maps X to an L-complete t-semi-uniform space Y

where |Y | ≤ 22|X|

and O will be a set of all such spaces Y each of them as many times as many uniformly
continuous maps X to Y exist. Let a map r′ be the product

∏

f∈M

f : X →
∏

Y ∈O

Y . The reflection arrow

for X will be the restriction r′ : X → r′(X).
From the previous lemmas we know that

∏

Y ∈O

Y is an L complete t-semi-uniform space and so is its closed

subspace r′(X).
Now let Y be any space from C2 and f : X → Y a uniformly continuous map. We know that |f(X)| ≤

22|X|

. Thus f(X) has its representative in O. Then there is a unique map (projection) π : r′(X) → Y
such that f = πr. 3

Corollary 3.43 Either of the classes of classically complete or complete or weakly complete or semi-
complete spaces, resp., is epireflective in TSUnif2.

Proof:According to Proposition 3.15, every mentioned filter operator has properties (P2) and (P6). 3
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3.9 Emreflective subcategories

The previous Subsection brought the result about epireflectivity of our completeness. Nevertheless,
completeness in uniform spaces has one more property, namely the reflective maps are embeddings. We
shall now look at that possibility.

In the next, let B be a subcategory of Top2 or of TSUnif2 (as usually our subcategories are full and
isomorphism closed).

Recall that monomorphisms in Top2 are one-to-one continuous maps, monomorphisms in TSUnif2 are
one-to-one uniformly continuous maps, epimorphisms in Top2 are continuous maps with dense images.

Proposition 3.44 Epimorphisms in TSUnif2 are uniformly continuous maps with dense images.

Proof: If a map has a dense image then it is clearly an epimorphism in TSUnif2 (because it is an
epimorphism in Top2, see, e.g., [1]).

If a map f : (X,U) → (Y,V) has not a dense image we define two different uniformly continuous maps
g, h : (Y,V) → (Z,W) such that gf = hf .

Let Z be the topological quotient of the disjoint sum Y1 + Y2, where Y1 = Y2 = Y (simply Y + Y ),
obtained by identifying the same points of f(X), denote q the corresponding quotient map.

It is clear (and known) that the topology of Z is Hausdorff.
Denote by W the image of V+V under q×q, where V+V is the sum semi-uniformity of (Y,V)+(Y,V).

Then it is easily checked that the closure induced by W is equal to the closure induced by the topology
of Z (cf. also Theorem 37D.11 in [3]).

Define g = q j1, h = q j2, where ji : Y → Y1 + Y2 is the i-th injection, i = 1, 2.
3

Definition 3.45 A reflective subcategory R of a category B is called emreflective subcategory of B if all
reflection arrows are embeddings.

Lemma 3.46 Let R be an epireflective subcategory of the category B. Let X be a B-closed object such
that its reflection arrow is an embedding. Then X ∈ R.

Proof: Let X be such an object and r : X → rX be a reflection arrow of X. As r is an epimorphism we
can take r(X) = rX ∈ R.

As X is B-closed it is r(X) = r(X).
As r is an embedding we can identify X = r(X) = rX and, therefore, X ∈ R. 3

Lemma 3.47 Every emreflective subcategory R of B is epireflective.

Proof: Since every embedding is a monomorphism, R is monoreflective. And every monoreflective
subcategory of B is bireflective. 3

The previous lemmas entail the following result.

Theorem 3.48 Let R be an emreflective subcategory of B. Then every B-closed object belongs to R.

Corollary 3.49 If each object of a category B embedds as a closed subspace into a product of B-closed
objects, then the only emreflective subcategory of B is B itself.

Example 3.50 Let B be the category of completely regular Hausdorff spaces. Since there are nontrivial
emreflective subcategories (e.g., the subcategory of compact spaces), not every completely regular Haus-
dorff space embeds as a closed subspace into a product of B-closed spaces. Of course, in our case B-closed
spaces coincide with compact spaces and they form the least emreflective subcategory of B.

Example 3.51 Let B be the category of Hasdorff topological spaces. It is not difficult to show that
every Hausdorff space embedds as a closed subspace into an H-closed space. Indeed, for any Hausdorff
space X take its Alexandroff double Y (Y = X × {0, 1} with X embedded onto X × {0}, the subspace
X × {1} open discrete, and if U is a neighbourhood of x in X, then U × {0, 1} − {(x, 1)} is a typical
neighbourhood of (x, 0). Then X is closed in the Katětov hull τY of Y .

The previous example gives the following (known) result.
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Proposition 3.52 There is no emreflective subcategory of the category Top2 different from Top2.

Example 3.53 Let B = TSUnif2. Let X ∈ TSUnif2. By Corollary 3.33 the situation is the same as in
the category Top2. If we take the space τY from the previous example then by Lemma 3.31 there is a
t-semi-uniformity on τY such that X is a t-semi-uniform subspace of it. Since τY is H-closed it is also
TSUnif2-closed.

The previous example gives the following result.

Proposition 3.54 There is no emreflective subcategory of the category TSUnif2 different from TSUnif2.

Example 3.55 Let B = Unif2. We know that there is an emreflective subcategory of B, namely the
subcategory of complete separated uniform spaces. Then by Corollary 3.49 there exists a separated
uniform space that cannot be embedded as a closed subspace into a Unif2-closed uniform space. This
assertion is clear because a separated uniform space is Unif2-closed iff it is complete iff it can be embedded
into some Unif2-closed space as a closed subspace.

Example 3.56 Let B = TopGrp2 be the category of all Hausdorff topological groups with continuous
homomorphisms. We know that there is an emreflective subcategory R of B where reflective arrows
have dense images, namely the subcategory of Hausdorff topological groups complete in their two-sided
uniformities. Each reflection arrow in R is a homomorphic embedding with a dense range, and, thus,
despite the fact that epimorphisms in TopGrp2 need not have dense ranges, see [25], the emreflective
subcategory R is closed under the closed subojects.

We can substitude ”reflective with reflective arrows with dense images” for ”epireflective” in Lemma
3.46. In the proof r(X) = rX because r has a dense image.

We can substitude ”emreflective with reflective arrows with dense images” for ”emreflective”. in
Theorem 3.48 and Corollary 3.49.

Proposition 3.57 There exists a Hausdorff topological group that cannot be embedded as a closed sub-
space into a (product of) TopGrp2-closed Hausdorff topological group.

The following corollary follows also from Proposition 3.38.

Corollary 3.58 If L is any of our four special filter operators, the category ComplL of all L-complete
Hausdorff t-semi-uniform spaces with uniformly continuous mapping is epireflective but not emreflective
subcategory of the category TSUnif2 of all Hausdorff t-semi-uniform spaces with uniformly continuous
mappings.

4 Completion of t-semi-uniform spaces

We have seen that there is no possibility to construct Hausdorff completions of Hausdorff t-semi-uniform
spaces that would all be embeddings. Even if we change to other possibilities of Cauchy filters or to other
definitions of completeness (e.g., to weaken convergence of Cauchy filters), we cannot get the requested
result.

There is still chance to construct non-Hausdorff completions that would be embeddings. In the former
case, categorical methods do not help too much and so, we now return to classical procedures, i.e., adding
to X non-converging Cauchy-like filters on X.

We can see in Example 5.16 a T1-semi-uniform space (a quasi-topological qroup) that has not a weak,
and thus not a semi-completion. On the other hand we construct classic completion and completion for
all t-semi-uniform spaces.

Definition 4.1 Let L be a filter operator on TSUnif and X be a t-semi-uniform space. Every L-complete
space Y containing X as a dense t-semi-uniform subspace is called an L-completion of X. In particular
(we omit the word “Cauchy”): Every (classic, weak, semi-) complete space Y containing X as a dense
t-semi-uniform subspace is called a (classic, weak, semi-) completion of X.

First we will try to create a semi-uniformity on the set of all Cauchy filters in the same way as for
uniformities (See [21].). We do not examine completeness of the semi-uniform space (X̂, Û) because it
need not be topological as we see in Examples 4.7 and 4.8.
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Definition 4.2 Let (X,U) be a t-semi-uniform space. Let us define sets X̂, Û in the following way:
X̂ = {f; f is a Cauchy filter on(X,U)};
Û has a base consisting of sets Û that are defined in the following way:
(f, g) ∈ Û ⇔ ((∃F ∈ f ∩ g)(∀z ∈ F )(U [z] ∈ f ∩ g)), where U ∈ U .

Theorem 4.3 Let (X,U) be a t-semi-uniform space. The couple (X̂, Û) is a semi-uniform space.

Proof: We will show all the four conditions in the definition of the semi-uniformity Û are satisfied.

(i) It is clear that (f, f) ∈ Û for each Cauchy filter f ∈ X̂ and U ∈ U .

(ii) We will show that Û ∩ V̂ = ̂(U ∩ V ):
(f, g) ∈ Û ∩ V̂ iff there are sets F,G ∈ f∩ g such that U [x], V [y] ∈ f∩ g for each x ∈ F, y ∈ G. Then
(U ∩ V )[x] = U [x] ∩ V [x] ∈ f ∩ g for each x ∈ F ∩ G ∈ f ∩ g.

(iii) It is clear.

(iv) Each Û is symmetric.

3

Proposition 4.4 The mapping 1X : X → X̂ : x 7→ {F ;x ∈ F} is a uniform embedding and 1X(X) is a
dense subspace of X̂.

Proof:For the first part it is sufficient to prove that
(x, y) ∈ U iff (1X(x), 1X(y)) ∈ Û for each couple x, y ∈ X and each symmetric U ∈ U .
Let (x, y) ∈ U . Then we can define the required set F = {x, y} and now U [z] ∈ 1X(x) ∩ 1X(y) for each
z ∈ F .
Let (1X(x), 1X(y)) ∈ Û which means that there is a set F ∈ 1X(x)∩1X(y) such that U [z] ∈ 1X(x)∩1X(y),
equivalently (x, z), (y, z) ∈ U , for each z ∈ F . Then (x, y) ∈ U because F ∈ 1X(y), equivalently y ∈ F .

Let us prove the other part. Let f ∈ X̂ and U ∈ U . Let us assume that U is symmetric. Is there
x ∈ X such that 1X(x) ∈ Û [f]?
As f is a Cauchy filter on X there exists a set F ′ ∈ f such that U [x] ∈ f for each x ∈ F ′. Let us choose
such a point x and define a set F = F ′ ∩U [x]. Then z ∈ U [x] and U [z] ∈ f for each z ∈ F . But z ∈ U [x]
if and only if x ∈ U [z] if and only if U [z] ∈ 1X(x). Thus U [z] ∈ f ∩ 1X(x) for each z ∈ F and 1X(X) is
dense in X̂. 3

Since the mapping 1X from the previous proposition is a uniform embedding we will identify 1X(x)
and x for every x ∈ X, and 1X(X) and X.

Proposition 4.5 Each Cauchy filter f on X converges to the point f ∈ X̂.

Proof: Let f be a Cauchy filter on X. Let us take an arbitrary symmetric U ∈ U . Then there is a set
G ∈ f such that U [z] ∈ f for each z ∈ G. Now for any z ∈ G, we have H = G ∩ U [z] ∈ f ∩ 1X(z) and
U [v] ∈ f ∩ 1X(z) for each v ∈ H, and then (1X(z), f) ∈ Û . Thus Û [f] ⊃ G ∈ f for each U ∈ U and f

converges to f. 3

Proposition 4.6 Let (X,U) be a t-semi-uniform space. Then R =
⋂

U∈U

U is an equivalence relation on

X ((x, y) ∈ R ⇔ {x} = {y}).

Proof: R is reflexive because (x, x) ∈ U for each x ∈ X and U ∈ U .
R is symmetric because of (iv) in the definition of the semi-uniformity U .
Let us show that R is transitive.
Let (x, y), (y, z) ∈ U for each U ∈ U , which means that y ∈ {x}, z ∈ {y}, and then z ∈ {x}. 3

As we see in the next example there are spaces where the relation R defined in the previous Proposition
is not an equivalence, thus the semi-uniform space (X̂, Û) defined in Definition 4.2 is not topological.

Let us remark that x/R = {x} for every x ∈ X.
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Example 4.7 (R need not be an equivalence on (X̂, Û), thus (X̂, Û) is not a t-semi-uniform space.)
First let us observe that (f, g) ∈ R iff f ∩ g is a Cauchy filter on X. We will construct a t-semi-uniform
space (X,U) and three filters f, g, h such that (f, g), (g, h) ∈ R, (f, h) /∈ R. That means that f∩ g and h∩ g

are Cauchy, but f ∩ h is not.
Take X = (Rr{0})2. Denote I = {(x, y) ∈ X;x > 0∧y > 0}, II = {(x, y) ∈ X;x < 0∧y > 0}, III =

{(x, y) ∈ X;x < 0 ∧ y < 0}, IV = {(x, y) ∈ X;x > 0 ∧ y < 0}. Take U a t-semi-uniformity on X with
the subbase consisting of all sets of standard uniformity Us/X on X (Us is the standard uniformity on
R2) and the set U0 = (X × X) r (I × III) r (III × I). That is a pointwise open and poitwise closed
semi-uniformity inducing the standard topology on X. Take the filters
g = {U [0] ∩ X ∩ II;U ∈ Us},
f = {U [0] ∩ X ∩ (I ∪ II ∪ IV );U ∈ Us},
h = {U [0] ∩ X ∩ (II ∪ III ∪ IV );U ∈ Us}.
Now f ∩ g = f and h ∩ g = h are Cauchy filters on (X,U). In fact, take U ∈ Us. Then U [x] ∩ X ∈ f for
every x ∈ U [0]∩X ∩ (I ∪ II ∪ IV ) ∈ f. And U0[x] ⊃ I ∪ II ∪ IV ∈ f for every x ∈ I ∪ II ∪ IV ∈ f. For g

the proof is simillar.
But the filter f ∩ h = {U [0] ∩ X} is not Cauchy on (X,U) because no U0[x] ∈ {U [0] ∩ X}.

We will see in the next that we can construct a one-point T1-completion for every T1-space . However
the construction of (X̂, Û) from above does not give a t-semi-uniform space for coarse t-semi-uniformities.

Example 4.8 (R need not be an equivalence on a coarse t-semi-uniformity.)
As in the previous Example we find three filters f, g, h such that (f, g), (g, h) ∈ R, (f, h) /∈ R. That means
that f ∩ g and h ∩ g are Cauchy, but f ∩ h is not.

Take a coarse t-semi-uniformity U on a space X such that there is a point x ∈ X with a non-cofinite
nbhd H.

Remark that (f, g) ∈ Ûa,G iff G ∈ f ∩ g or X r {a} ∈ f ∩ g.
Take a filter f = Ux, a cofinite filter h, a filter g = f ∪ h.
Now f ∩ g = f and h ∩ g = h are Cauchy filters. But the filter f ∩ h is not Cauchy. In fact, H /∈ h and

X r {x} /∈ f. Thus (f, g) /∈ Ûx,H and f ∩ h is not Cauchy on (X,U).

4.1 Minimal completion of t-semi-uniform spaces

If one omits the T2-property, it is possible to construct one-point completions in a similar way to which
one constructs one-point non-Hausdorff compactifications. Since we work in symmetric topological spaces,
not every compactification can serve as a model for a completion. Moreover, a compact space need not
be complete but the symmetric one-point compactification is complete:

Theorem 4.9 Let X be a non-complete t-semi-uniform space. Take X̂ = X ∪ {∞}, Û be a filter on
X̂ × X̂ with the base consisting of all sets Û = U ∪ ({∞}× (X̂ r A)) ∪ ((X̂ r A)× {∞}) for U ∈ U , and
finite subsets A of X. Then (X̂, Û) is a completion of (X,U) that is T1 provided X is T1.

Proof: Clearly, Û is a semi-uniformity on the set X̂ because it has a symmetric base.
It is topological and contains X as a dense subspace. Indeed, the induced topology on X̂ has the base

consisting of open sets in X and of complements in X̂ of closures of finite subsets of X.
Since every Cauchy filter converges to each point of its intersection, take a Cauchy filter f on X̂ with

⋂

f = ∅. Then f contains the filter c consisting of complements of finite sets in X. Clearly, c converges to
∞ and so does f. 3

4.2 Maximal completion of t-semi-uniform spaces, weak reflection

The completion from the previous subsection is the coarsest (or minimal) completion of X. Of course, one-
point completions cannot have (up to some exceptions) the property of extending uniformly continuous
maps. To obtain completions having that property one must add much more points than just one.

Theorem 4.10 Let (X,U) be a non-complete t-semi-uniform space. Denote cX = X ∪ {f; f is a non-
convergent Cauchy filter on (X,U)} and cU be a filter on cX × cX having the base B consisting of
symmetric sets V such that V ∩ (X × X) ∈ U and V [f] = {f} ∪ F , where F is an open set from the filter
f, for each f ∈ cX r X.
Then (cX, cU) is a completion of (X,U) that is T1 provided X is T1.
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Proof: It is clear that (cX, cU) is a semi-uniformity for B consists of symmetric sets and it is closed
under finite intersections.

As f ∈ cX r X does not converge in X, it contains the cofinite filter on X. Then G = V [x] for
V = (G×G)∪ ((cX r {x})× (cX r {x})) ∈ cU for every neighborhood G of x in (X,U). Thus for x ∈ X
the neighborhood filter in U coincides with the base of the neighborhood filter of x in cU . For a filter
f ∈ cX r X and V ∈ B clearly V [f] is a neighborhood of each its point. Thus cU is a t-semi-uniformity
on cX.
Clearly X is dense in cX and cX is T1 provided X is T1.

It remains to prove that (cX, cU) is complete. Let F be a Cauchy filter on (cX, cU). If X ∈ F then
f = [F]∩X = {F ∩X;F ∈ F} is Cauchy on X and it is a base of F. Either f converges in X to a point x
(then F converges to x as well) or f ∈ cX r X and, clearly, F converges to f.

If X /∈ F then for every V ∈ B there exists FV ∈ F such that V [x] ∈ F for every x ∈ FV . Since X /∈ F,
the set FV meets cX r X; for every f in this intersection we have V [f] = {f} ∪ G for some open G in X.
It follows that the intersection FV ∩ (cX r X) consists of a unique point f that is the same for every V .
Consequently, F converges to f. 3

Theorem 4.11 Let (cX, cU) be the completion of a t-semi-uniform space (X,U) defined in the previous
theorem. Let f be a uniformly continuous mapping of the space (X,U) to a complete t-semi-uniform space

(Y,V). Then there exists a uniformly continuous extension f̂ of f onto the completion (cX, cU).

Proof: Let f be a uniformly continuous map of (X,U) to a complete t-semi-uniform space (Y,V). Take

f̂(x) = f(x) for x ∈ X and f̂([f]) ∈ lim f [f] where =f [f] = {f(F );F ∈ f} for f ∈ cX r X. Let us remark
that f [f] is a base of a Cauchy filter according to Proposition 3.15 and thus a convergent filter base on

(Y,V). Take an arbitrary symmetric set V ∈ V. Then (f̂ × f̂)−1(V ) ⊃ U = (f × f)−1(V )∪ (
⋃

f∈cXrX

{f}×

f−1(V [f̂([f])])) ∪ (
⋃

f∈cXrX

f−1(V [f̂([f])] × {f}) ∈ cU . In fact, V [f̂([f])] ∈ f [f] because f̂([f]) ∈ lim f [f]. As

(Y,V) is a t-semi-uniform space there is an open neighborhood H ∈ f [f] of f̂([f]) such that H ⊂ V [f̂([f])].

Now f−1(V [f̂([f])]) ⊃ {f} ∪ f−1(H) and it is an open neighborhood of f. 3

The next definition comes from [10].

Definition 4.12 A subcategory R of a category K is said to be almost reflective if it is closed under
retracts, and for every object X ∈ K there exists a morphism r (almost reflection) from X into rX ∈ R
such that every morphism f from X into Y ∈ R can be decomposed as gr for some morphism g.

Theorem 4.13 The category of all complete t-semi-uniform spaces is an almost reflective subcategory of
TSUnif. All the almost reflection maps can be chosen to be embeddings.

The same is true for T1-spaces.

Proof: Because of Theorem 4.11 it remains to prove that the category of all complete t-semi-uniform
spaces is closed under the formation of retracts. Let r : X → X be a retraction of X. Let f be a Cauchy
filter on r(X). As Cauchy filters have the property (P1) (see Proposition 3.15.) then f is a base of a
Cauchy filter F on X. Then F converges to a point y ∈ X.

As r is a retraction then f = r([F]) = {r(F );F ∈ F}. As r is continuous f converges to r(y) ∈ r(X)
and r(X) is complete. 3

Since every classic Cauchy filter is Cauchy, it is seen from the procedures, that the previous results of
this section are valid for classic completeness, too. The classic completion cX is then formed from classic
Cauchy filters only.

5 COMPLETION OF QUASI-TOPOLOGICAL GROUPS

5.1 T-semi-uniformities of quasi-topological groups

On topological groups there are several natural uniformities inducing the original group topology, namely
right, left, upper (two-sided) and lower (Roelke) uniformities. The situation is similar if we demand only
separate continuity of the multiplication mapping and instead of uniformities consider semi-uniformities.
First recall some basic definitions of topological structures on groups.
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Definition 5.1 Let X be a group with a topology τ .
We say that X is a right topological group if the mapping m : X ×X → X : (x, y) 7→ xy is continuous

for the left variable, which means that for each y ∈ X the mapping (the right translation) ry : x 7→ xy is
continuous.

We say that X is a left topological group if the mapping m is continuous for the right variable, which
means that for each x ∈ X the mapping (the left translation) lx : y 7→ xy is continuous.

We say that X is a semi-topological group if the mapping m is separately continuous, which means
that it is continuous for the right and left variable.

We say that X is a quasi-topological group if it is a semi-topological group and the inversion mapping
i : X → X : x 7→ x−1 is continuous.

For A,B ⊂ X let us denote AB = {xy;x ∈ A ∧ y ∈ B}.
For A ⊂ X,x ∈ X let us denote xA = {x}A, Ax = A{x}.
For A ⊂ X let us denote A−1 = {x−1;x ∈ A}.

Proposition 5.2 A group X with a topology is a right, resp. left topological group iff all the right, resp.
left translations are homeomorphisms.

Proof: Every ry is injective and ry−1 = r−1
y . 3

Proposition 5.3 Any right topological group with a continuous inversion map is a quasi-topological
group.

Proof: Let X be a right topological group with a continuous inversion map. That means that the
mappings ry : x 7→ xy and i : x 7→ x−1 are continuous for every y ∈ X. But ly : x 7→ yx = (x−1y−1)−1,
thus ly = i ◦ ry−1 ◦ i is also continuous for every y ∈ X. 3

Corollary 5.4 A group X with a topology τ , in which Ue is a neighbourhood filter of the unit e, is a
quasi-topological group if and only if the following conditions are satisfied:

(1) U−1 ∈ Ue for each U ∈ Ue,

(2) {Uy;U ∈ Ue} is a neighbourhood filter of y for each y ∈ X,

(3) {yU ;U ∈ Ue} is a neighbourhood filter of y for each y ∈ X.

Lemma 5.5 Let X be a quasi-topological group with a topology τ , in which Ue is a neighbourhood filter
of the unit e. Then the system of sets R = {RU ;U ∈ Ue}, resp. L = {LU ;U ∈ Ue},
where RU = {(x, y) ∈ X ×X; yx−1 ∈ U}, LU = {(x, y) ∈ X ×X;x−1y ∈ U}, is a semi-uniformity on X.

Proof: Let R be such a system. We will prove the four conditions in the definition of a semi-uniformity.

(i) Clear because xx−1 = e ∈ U,∀U ∈ Ue.

(ii) Clear because for U1, U2 ∈ Ue is U1 ∩ U2 ∈ Ue.

(iii) is clear.

(iv) If the mapping i is continuous, then U−1 ∈ Ue whenever U ∈ Ue.

It holds: R−1
U = {(x, y) ∈ X × X; yx−1 ∈ U} = {(x, y) ∈ X × X;xy−1 ∈ U−1} = RU−1 .

For L the proof is similar.

3

Definition 5.6 The semi-uniformity R, resp. L from Lemma 5.5 will be called the right, resp. left
semi-uniformity on the group X.

Supremum L ∨R is also a semi-uniformity on X, see Proposition 2.21, and it is called the two-sided
(or upper) t-semi-uniformity on X.

Infimum L ∧ R is also a semi-uniformity on X, see Propositions 2.30 and 2.33, and it is called the
Roelke (or lower) t-semi-uniformity on X.
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Clearly, semi-uniformities L,R,L ∨ R,L ∧ R on any quasi-topological group are t-semi-uniformities
(they induce the original topology on the group) and they are pointwise open.
Regularity and pointwise closedness of semi-uniformities L,R,L ∨ R,L ∧ R are equivalent ( Ux =

Ux, xU = xU, for every x from the group and every U from the neighbourhood filter of the neutral
element.

In the next we examine only the two-sided semi-uniformities, which are used in the definition of
complete quasi-topological groups.

Proposition 5.7 Let X, Y be quasi-topological groups, f : X → Y a continuous homomorphism. Then
f is uniformly continuous with respect to the right, resp. to the left, resp. to the two-sided, resp. to the
lower semi-uniformities on X and Y .

Proof: Let eX , resp. eY be the neutral element in X, resp. Y . Let UeX
, resp. VeY

be the neighbourhood
filter of eX in X, resp. eY in Y . Let V ∈ VeY

. If f is continuous then there exists a set U ∈ UeX
such

that f(U) ⊂ V .
Now (x, y) ∈ RU ⇔ yx−1 ∈ U ⇒ f(yx−1) = f(y)f(x−1) = f(y)(f(x))−1 ∈ V ⇔ (f(x), f(y)) ∈ RV . The
mapping f is uniformly continuous with respect to the right t-semi-uniformities.
The proof for the other semi-uniformities are similar. 3

5.2 Initial t-semi-uniformities on groups

Proposition 5.8 Let (Xi, τi) be a quasi-topological group for each i ∈ I. Let X be a group and fi : X →
Xi be a homomorphism, for each i ∈ I, τ the initial topology on X w.r.t. the maps fi : X → (Xi, τi). Then
(X, τ) is a quasi-topological group. Its right t-semi-uniformity coinsides with the initial semi-uniformity
w.r.t the maps fi : X → (Xi,Ri), where Ri is the right t-semi-uniformity on (Xi, τi), i ∈ I. The same
holds for the left and two-sided t-semi-uniformities.

Proof: From the universal property of the initial topology τ it follows that the right translation ry is
continuous iff the composition fi ◦ ry = rfi(y) ◦ fi is continuous for all fi. Similarly for the inversion map
i.

The fact about the right semi-uniformity holds because for every basic neighbourhood U =
n
⋂

i=1

f−1
i (Ui)

of the neutral element e is y ∈ Ux iff fi(y) ∈ Uifi(x), for all i = 1, .., n. 3

Proposition 5.9

(a) The subgroup of a quasi-topological group with the subspace topology is a quasi-topological group.

(b) Let (X, τi) be quasi-topological groups, i ∈ I. The group (X, τ) with the supremum topology τ = sup
i∈I

τi

is a quasi-topological group.

(c) Let (X, τi) be quasi-topological groups, i ∈ I. The topological product (
∏

i∈I

Xi,
∏

i∈I

τi) is a quasi-

topological group.

Proposition 5.10 A closure of a subgroup X of a quasi-topological group Y is a quasi-topological sub-
group of Y .

Proof: Let X is a subgroup of a quasi-topological group Y .

Let x, y ∈ X. Then there are nets {xα}, resp. {yβ} in X converging to x, resp. to y. Then
xyβ ∈ lim xαyβ , and thus each xyβ is in X. Thus xy ∈ lim xyβ ⊂ X.

Let x ∈ X. Then there is a net {xα} in X converging to x. Then x−1 ∈ lim x−1
α ⊂ X.

3
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5.3 Categories of Hausdorff complete groups

Recall that every (Hausdorff) topological group is embedded in a (Hausdorff) topological group that
is complete in its two-sided uniformity. The Hausdorff complete (in the two-sided uniformity) groups
form an epireflective subcategory of the category of all Hausdorff topological groups with continuous
homomorphisms, the reflection arrows are embeddings. We will examine the situation in quasi-topological
groups.

Definition 5.11 A quasi-topological group is called (clacsic, semi, weak) complete if it is (classic, semi,
weak) complete in its two-sided semi-uniformity.

Notation. Denote by (cl, s, w)ComplGrp the category of all (classic, semi, weak) complete Hausdorff quasi-
topological groups with continuous homomorphisms, QGrp the category of all Hausdorff quasi-topological
groups with continuous homomorphisms.

Theorem 5.12 The categories clComplGrp, sComplGrp, wComplGrp, ComplGrp are epireflective subcategories
of QGrp.

Proof: It follows from the fact that complete spaces are closed under products and closed subspaces in
quasi-topological groups and closures of subgroups are subgroups (see 5.10). 3

5.4 Completion of quasi-topological groups

We showed that Hausdorff complete (for all of our definitions) quasi-topological groups form an epireflec-
tive subcategory of Hausdorff quasi-topological groups. In the category of Hausdorff topological groups
the reflection arrows (to complete reflections) are embeddings. Example 5.14 shows that in all the cate-
gories (cl, s, w)ComplGrp the situation is different.

Definition 5.13 Let X be a quasi-topological group. A (classic, semi, weak) complete quasi-topological
group that contains X as a dense subgroup is a group (classic, weak, semi-) completion of the group X.

We show that not every Hausdorff quasi-topological group has a Hausdorff group classic completion,
which means that the reflection arrows in Hausdorff (classic, weak, semi-) complete quasi-topological
groups need not be embeddings:

Example 5.14 Take the Abelian group R × R. Denote e = (0; 0) and an = ( 1
n
, sin 1

n
) ∈ R × R, n ∈ N,

where N is the set of positive integers. Denote Bε = {x ∈ R × R; d(x, e) < ε}, where d is the Euclidean
metric on R × R.
For all points x ∈ R × R define sets Bx:

for x = e ∈ R × R let Bx = {Bε r {an,−an}n∈N}ε>0,

for x ∈ R × R let Bx = {Ge + x}Ge∈Be
.

First we show that the system {Bx}x∈X generates a topology on R × R. It suffices to show that
if y ∈ Gx ∈ Bx then there is a Gy ∈ By that Gy ⊂ Gx, see Proposition 1.2.3 in [7]. In fact, if
y ∈ Gx = G r {an + x,−an + x}n∈N, y 6= x, where G is a standard open neighborhood of x in R × R,
then there is a standard open neighborhood H of y that H ⊂ G. As {an + x}n∈N and {−an + x}n∈N

converge to x in the standard topology, which is Hausdorff, we can assume that H contains only finitely
many an + x,−an + x, and thus we can take H without points an + x,−an + x. Now H ⊂ Gx.

Take X = R × R with the the topology τ generated by the neighborhood system {Bx}x∈X . Clearly,
it is a Hausdorff quasi-topological group, see Corollary 5.4.

Take the filter f generated by the set {{an;n ≥ n0}, n0 ∈ N}.
We show that f is classic Cauchy on X (with the right (denoted by R), left or two-sided semi-

uniformities, which are the same on Abelian groups).
Take U ∈ Be and RU = {(x, y) ∈ X×X;x−y ∈ U} ∈ R. We find a set F ∈ f that F ×F ⊂ RU , which

means that we find a number n0 ∈ N that (an, am) ∈ RU for all n,m ≥ n0. As U = Gr{an,−an}n∈N for
some standard neighborhood G of e and the sequence {an, n ∈ N} converges to e, and thus it is Cauchy,
in the standard topology, there is an n0 ∈ N that an − am ∈ G for all n,m ≥ n0.

There is no p ∈ N that an − am = ap. In fact, it would mean that there is a p ∈ N that 1
n
− 1

m
= 1

p

and sin 1
n
− sin 1

m
= sin 1

p
, and thus sin 1

n
− sin 1

m
= sin

(

1
n
− 1

m

)

= sin 1
n

cos 1
m

− sin 1
m

cos 1
n
, which is
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impossible because the function h(x) = sin x
1−cos x

is injective in the interval [0; π
2 ]. Thus an − am ∈ U for

all n,m ≥ n0, and f is classic Cauchy, and, of course, it has no limit in X.

If there is a Hausdorff classic completion Y of the space X the filter f is classic Cauchy on Y , see
Proposition 3.15, and it converges to a point y ∈ Y . We show that e and y cannot be separated. Let
there be disjoint open sets G,H ⊂ Y such that e ∈ G, y ∈ H. First remind that every neighborhood G
of e intersects every neighborhood of every point an, n ≥ n0 for some n0 ∈ N. As f converges to y, and
thus the sequence {an, n ∈ N} also converges to y, we can take such n0 that an ∈ H for all n ≥ n0, and
thus H is a neighborhood of all an, n ≥ n0. That is a contrary.

The quasi-topological group X has no (classic, weak, semi-) completion containing X as a subgroup.

In the previos section we constructed a completion (weak reflection) for all non-complete semi-uniform
spaces. But there constructed completion cannot be a quasi-topological group:

Lemma 5.15 Let X be a quasi-topological group that is not complete. The weak reflection constructed
in Theorem 4.10 is not a quasi-topological group, for any semi-uniformity on X.

Proof: Let e be the neutral element e of X. The set X is an open neighborhood of e in the completion
cX defined in Theorem 4.10. Then fX must be an open neighborhood of a non-convergent Cauchy filter
f ∈ cX, and fX ⊂ cX r X because X should be a sugroup of cX. That is a contrary to the fact that X
is dense in cX. 3

So, there is a question, whether another weak reflection in groups exists.
We show an easy example of T1 quasi-topological group that has not a weak (and thus not a semi-)

completion (in t-semi-uniform spaces), and consequently it has not a group weak (and thus not a semi-)
completion:

Example 5.16 (T1 quasi-topological group that has not a weak (and thus not a semi-) completion.)

Let X be an Abelian quasi-topological group of integers with the cofinite topology, which is T1.

The filter f = {F ⊂ X; |X r F | < ω ∧ {a, b} ⊂ F} is a weak Cauchy filter on the right (equivalently
on the left, two-sided or lower) t-semi-uniformity on X, for every couple a, b ∈ X, a 6= b.
In fact, let U be an arbitrary neighbourhood of the neutral element 0, F ∈ f.
The sets a − U, b − U,F have finite complements, and, thus, a non-empty intersection. Take an element
z from this intersection. Now z ∈ F and a, b ∈ z + U . Then U [z] = z + U ∈ f, and f is weak Cauchy.

If the space X has a weak completion Y , then the filter f is a base of a weak Cauchy filter F on Y ,
see Proposition 3.15, (P2). As Y is weakly complete, the filter F converges to a point y ∈ Y . This means

that every neighborhood of y belongs to the filter F, and thus it contains the points a, b. Now y ∈ {a}
Y

,

which is equivalent to a ∈ {y}
Y

, because the space Y is symmetric. From a ∈ {y}
Y

and y ∈ {b}
Y

it

follows that a ∈ {b}
Y

. This is a contradiction to the topology of X.

Proposition 5.17 If a pointwise open t-semi-uniform space X has a pointwise open semi-completion,
resp. a pointwise open weak completion, then every semi-Cauchy, resp. weak Cauchy, filter on X must
be Cauchy on X.

Proof: Let Y be a pointwise open semi-completion of X, f be a semi-Cauchy filter on X. Then f generates
a filter f′ that is semi-Cauchy on Y (see 3.15) and thus convergent on Y . Then f′ is Cauchy on Y (see
3.4) and thus Cauchy on X (see 3.15).

The proof for the weak completion is the same. 3

Recall that each of t-semi-uniformities L,R,L ∨ R,L ∧ R on a quasi-topological group is pointwise
open.

Example 5.18 (Weak (and semi-) Cauchy filter which is not Cauchy.)
Let X be an Abelian quasi-topological group of integers with the cofinite topology. The filter f = {F ⊂
X; |X r F | < ω ∧ {a, b} ⊂ F} is a weak Cauchy but not a Cauchy filter in the right (equivalently in the
left, two-sided or lower) t-semi-uniformity on X for every couple a, b ∈ X, a 6= b.
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Proof: In Example 5.16 we showed that f is weak Cauchy.
Let us prove that f is not Cauchy.
For a contrary let f be a Cauchy filter. That means that it converges to any point in

⋂

f = {a, b}. That
is a contrary because X r {b} is a neighbourhood of a that is not in f. 3

The previous example also shows that there described T1 quasi-topological group has not a group
weak (and thus not semi-) completions, which we proved in Example 5.16. In fact, if it had a group weak
(semi-) completion, weak (semi-) Cauchy filters would coincide with Cauchy ones, see Proposition 5.17
and the comment after it.

The next examples show that in Hausdorff quasi-topological groups there are also groups that do not
have group (classic, weak and semi-) completions.

First recall examples of quasi-topological groups described in [2] and [12]:

Example 5.19 (Orbits as quasi-topological groups.)
Let (G,+) be an Abelian group, Z a Hausdorff topological space. If φ : G × Z → Z is an action (i.e.,
φ(0, z) = z, φ(a, φ(b, z)) = φ(a + b, z) for every a, b ∈ G, z ∈ Z, and φ(a,−) : Z → Z is a continuous
mapping for every a ∈ G), then every orbit (O(z0) = {φ(a, z0); a ∈ G} ⊂ Z) form a semi-topological
group. (See[2] par. 3.)

If G is an Abelian group of order 2, the orbits will be quasi-topological groups.

A special orbit is described in [12], Theorem 4:

Example 5.20 (Korovin’s orbit.)
Let (G,+) be an Abelian group, X a Hausdorff topological space such that |Gω| = |G| ≥ |X| · ω. In the
previous example let Z = XG, φ be the shift φ(a, f)(b) = f(a + b).

Denote by A the set of all finite subsets of G, F(A) the set of all mappings of A to X for A ∈ A,
F =

⋃

{F(A);A ∈ A}. Denote by A(f) such a set from A that f ∈ F(A(f)), for f ∈ F .
Denote τ = |G| = |A| = |F|.
Take {fα;α ∈ τ} a numeration of the set F .

By transfinite induction we pick a subset {gα : α ∈ τ} of G that the family {gα + A(fα) : α ∈ τ} is
disjoint:

Suppose that for an ordinal β ∈ τ we have a subset {gα : α ∈ β} of G such that the family {gα+A(fα) :
α ∈ β} is disjoint.

Take an element gβ ∈ G r H, where H is a minimal subgroup of G containing the set {A(fα) : α ≤
β} ∪ {gα : α < β}. G r H 6= ∅ because |H| ≤ |β| · ω < τ = |G|.

Now the family {gα + A(fα) : α ≤ β} is disjoint.

Then take a mapping f ∈ XG such that f |gα+A(fα) = fα ◦ l−1
gα

|gα+A(fα) for any α ∈ τ .

The subspace Y = {fg = f ◦ lg; g ∈ G} of the space XG is a semi-topological group, its elements are
functions fg, g ∈ G, where fg(a) = f(g + a), for a ∈ G, with the group operation fg + fh = fg+h. The
neutral element is f0 = f , invers elements are −fg = f−g.

The subbasic neighbourhoods of the neutral element f = f0 are sets Uf
c = {fg; fg(c) = f(g + c) ∈ U},

where U are neighbourhoods of f(c) in X. The subbasic neighbourhoods of an element fg are sets

U
fg

c = {fh; fh(c) = f(h + c) ∈ U} = {fg+k; fg+k(c) = f(g + k + c) = fk(g + c) ∈ U} = fg + Uf
g+c, where

U are neighbourhoods of fg(c) = f(g + c) in X.

If we take for G a group of order 2 then Y is a quasi-topological group. (Here l−1
g = lg.)

Lemma 5.21 Take G, X, f from the previous example. For any finite sets {x0, ..., xm} ⊂ X and
{d0, ..., dm} ⊂ G, where di 6= dj for i 6= j, i, j = 0, ...,m, there is a gα ∈ G (chosen by the transfinite
induction in the previous example) such that fgα

(di) = f(gα+di) = xi, i = 0, 1, ...,m. Moreover gα+di 6= 0
for all i = 0, ...,m.

Proof: For the finite mapping h assigning xi to di, i = 0, ...,m, there must exist an α ∈ τ that h = fα ∈ F
and A(fα) = {d0, ..., dm}. From f |gα+A(fα) = fα ◦ l−1

gα
|gα+A(fα) it follows that fgα

(di) = f(gα + di) = xi.
Clearly we can suppose that α 6= 0. Thanks to the construction of the family {gα+A(fα)} in the Korovin’s
orbit we have gα that is not in the minimal subgroup generated by A(fα). Thus gα, d1+gα, ..., dm+gα 6= 0.

3
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Example 5.22 (A Hausdorff quasi-topological group that has not a group weak (and semi-) completion.)

Take the Korovin’s orbit Y described in the previous example. Let G be a group of order 2 so that Y
would be quasi-topological.

Denote by f the filter generated by the set consisting of all the sets Fc0,...,cn
= {fg; fg(ci) = f(ci), i =

0, ..., n}, where c0, ..., cn 6= 0.
For f is Fc0,...,cn

∩ Fd0,...,dm
= Fc0,...,cn,d0,...,dm

∈ f and f is in
⋂

f. Thus f is a filter on Y .

First we show that f is weak Cauchy. Take an arbitrary set Fc0,...,cn
∈ f and a basic neighbourhood

Uf
d0,...,dm

= {fg; fg(di) ∈ Ui, i = 0, ...,m} of f0 = f , where Ui are neighbourhoods of f(di) in X, di ∈ G,
i = 0, ...,m.

If di 6= 0 for all i = 0, ...,m then Uf
d0,...,dm

⊃ Fd0,...,dm
∈ f. We have f0 = f ∈ Fc0,...,cn

and

f0 + Uf
d0,...,dm

= Uf
d0,...,dm

∈ f.

Take now d0 = 0. Thanks to the previous Lemma we find such an α 6= 0 that fgα
(ci) = f(ci), i =

0, ..., n (which means that fgα
∈ Fc0,...,cn

) and fgα
(di) = f(di), i = 0, ...,m and gα, d1+gα, ..., dm+gα 6= 0.

The set Fgα,d1+gα,...,dm+gα
= {fg; fg(di + gα) = f(di + gα) = f(di) = fgα

(di + gα), i = 0, ...,m} ∈ f. The

last set is included in a neighbourhood U
fgα

d0+gα,...,dm+gα
= Uf

d0,...,dm
+fgα

of fgα
, which finaly must belong

to the filter f.
Filter f is weak Cauchy.

It cannot be Cauchy. In fact the function f = f0 is in
⋂

f and if f were Cauchy it would converge to f .
It does not because thanks to the previous Lemma for any point x ∈ XrV , where V is a neighbourhood of
f(0) in X, and any Fc0,...,cn

, where c0, ..., cn 6= 0, we find an α < τ such that f(ci+gα) = f(ci), i = 0, ..., n,
and f(gα) = x. Thus the neighbourhood V f = {fd; fd(0) ∈ V } of f is not in the filter f because for every
Fc0,...,cn

from the base of the filter f we can find a function fgα
∈ Fc0,...,cn

r V f .

From the last example it follows that Korovin’s orbits are not topological groups because in topological
groups Cauchy, weak Cauchy and semi-Cauchy filters coincide.

There still remains an important question:

Question 2 Do quasi-topological groups have group classic completions or completions?
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[1] J. Adámek, H. Herrlich, G. E. Strecker: Abstract and Concrete Categories, Wiley, New York 1990.
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