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3.1 Bézier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 B-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Tessellation 27
4.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Our Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Implementation Specifics 32
5.1 Floating point representation . . . . . . . . . . . . . . . . . . . . 32
5.2 Degenerate Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Conclusion 36

Bibliography 37

A B-spline examples 39

B More results 41

1



Introduction

Tessellation is the process of covering a surface with simple geometric tiles without
any gaps or overlap. Specifically, in computer graphics it refers to generating
polygonal meshes to simplify further processing. Our work focuses on tessellating
NURBS surfaces used predominantly in CAD/CAM.

Computer-Aided Design(CAD) and Computer-Aided Manufacturing(CAM)
are long-established fields in both industry and academia, that lately also started
to appear in consumer market with the introduction of relatively cheap 3D
printers. Particularly in academia, the term Computer-Aided Geometric De-
sign(CAGD) is being used as a study of accurate representation and efficient
processing of geometric objects, such as curves, surfaces and volumes, on a com-
puter.

Traditionally, reviewing and judging new designs required a manufacturing
of prototypes. Although scaled mockups and clay models still have its place in
the production process, designers increasingly switch to using computer graphics
visualizations, especially since the introduction of virtual reality devices. This
introduces additional constraints and demands on tessellation algorithms.

Overview
In this thesis, we start with relevant mathematical definitions of curves and sur-
faces. Next, we present standard algorithms to evaluate and manipulate the de-
fined objects. Following in chapter 4, we describe our tessellation algorithm and
show the results. We finish with discussion on implementation details necessary
to develop software for visualizing CAD data.

Acknowledgment
This thesis was written as part of my internship at Škoda Auto a.s. under the
supervision of Mgr. Antońın Mı́̌sek, Ph.D. at the Virtual Techniques depart-
ment(EGV/5), which focuses on presenting CAD data in virtual reality(VR) and
creating photorealistic renderings for assessing future vehicle designs. These tasks
are accomplished by developing a custom software application VRUT, capable of
producing real-time visualizations, driving simulations and virtual trainings, to
name a few. My assignment was to design and implement tessellation algorithm
in VRUT suitable for rendering in regards to performance and visual quality.
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Chapter 1

Geometry of Curves

In this chapter we present basic definitions and concepts used throughout the
thesis. Readers familiar with the concept of approximation curves are free to
skip this chapter. This chapter is intended to provide a gentle introduction.
More thorough treatment of this subject can be found in [1], [2] or [3].

Notation
We distinguish vector quantities from scalars using bold letters, e.g. d is a scalar
while d is a vector. Furthermore, we use bold capital letters for points. Functions
can be defined using both, uppercase and lowercase letters.

1.1 Parametric Curves
Parametric curve is defined as a smooth function from some real interval I ⊆ R
to Rn.

C(t) : t ∈ I ↦−→ x ∈ Rn

We usually think of t as a parameter of time. Therefore C(t) is the position,
C ′(t) := d

dt
C(t) velocity and C ′′(t) := d

dt
C ′(t) acceleration at time t.

We can define tangent and normal unit vectors at point t as

T (t) = C ′(t)
∥C ′(t)∥ N (t) = T ′(t)

∥T ′(t)∥
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Curvature can be computed as (see [4] for more details)

k(t) = ∥C ′(t) × C ′′(t)∥
∥C ′(t)∥3

Let’s focus our attention on how we might go about defining a parametric
curve suitable for computer-aided design. Ideally, we would like the curve to
have several important properties:

1. Ease of computation:
• It should be algorithmically easy to compute values on the curve.
• It should be easy to evaluate derivatives.
• All the computations mentioned above should be numerically stable

in the context of floating point arithmetic.

2. Intuitive manipulation:
• We would like the curve to be geometrically intuitive to manipulate

and do small, local adjustments.

3. Geometrical expressiveness
• Considering a class of all reasonable curve shapes, one should be able

to represent them exactly or at least with suitable accuracy.

4. Smoothness
• Generally, smooth curves are required with the ability to create sharp

corners.
Looking at the first property, the obvious choice would be to use a polynomial

C(t) =
n∑︂

i=0
ti Pi = P0 + tP1 + t2P2 + · · · + tnPn (1.1)

where t ∈ R is the parameter of the curve and Pi are the control points. This
type of curve is easy and fast to evaluate and compute all derivatives. On the
other hand, it is difficult to see how the control points correspond to the shape
of the curve. If we consider t to be in range [0, 1], then P0 is the starting point
and P1 gives the tangent at the start. However, the geometric meaning of the
control points gets more and more obscure with each point.

1.2 Bézier Curves
Given a sequence of n + 1 control points P0, . . . , Pn, a Bézier1 curve is defined as

C(t) =
n∑︂

i=0
Bi,n(t) Pi =

n∑︂
i=0

(︄
n

i

)︄
ti(1 − t)n−i Pi 0 ≤ t ≤ 1 (1.2)

The Bi,n(t) are called Bernstein2 polynomials. The first sum emphasizes that
the curve is a linear combination of control points weighted by functions Bi,n(t),
therefore, the curve inherits all of the basis function properties.

1Named after the French engineer Pierre Bézier, who developed and used functionally equiv-
alent curves at Renault in the 1960s.

2Soviet mathematician Sergei Bernstein utilized the polynomials in a proof of Weierstrass
approximation theorem in 1912.
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Basis function properties
1. Non-negativity: Bi,n(t) ≥ 0 ∀i, n 0 ≤ t ≤ 1

2. Partition of unity:
n∑︂

i=0
Bi,n(t) = 1 0 ≤ t ≤ 1

3. Endpoints: B0,n(0) = Bn,n(1) = 1

4. Recursion: Bi,n(t) = (1 − t)Bi,n−1(t) + tBi−1,n−1(t)

5. Derivative:
d
dt

Bi,n(t) = B′
i,n(t) = n

(︂
Bi−1,n−1(t) − Bi,n−1(t)

)︂
Using these facts we can show important properties of Bézier curves.

Curve properties
• C(0) = P0 and C(1) = Pn (follows from the endpoints property)

• Bézier curve with n + 1 control points has degree n

• The entire curve lies in the convex hull of its control points. Since basis
functions are non-negative and sum to one, every point on the curve C(t)
is a convex combination of its control points.

• Curve shape is invariant under affine transformations(translations, rota-
tions, scaling). The significance is that instead of transforming the whole
curve, we can just apply the transformation to control points and construct
the curve in the transformed location. This follows from the partition of
unity property. Assume T (x) = Ax + b is an affine transformation. Then

T
(︂
C(t)

)︂
= A

(︂ n∑︂
i=0

Bi,n Pi

)︂
+ b =

n∑︂
i=0

Bi,n APi +
n∑︂

i=0
Bi,nb

=
n∑︂

i=0
Bi,n (APi + b) =

n∑︂
i=0

Bi,n T (Pi)

• Control points P0, . . . , Pn form a piecewise linear approximation to the
curve.

• Derivative of C(t) is a Bézier curve of degree n − 1. Using the derivative
property of Bernstein polynomials

d
dt

C(t) = C ′(t) =
n∑︂

i=0

d
dt

Bi,n(t) Pi

=
n−1∑︂
i=0

Bi,n−1(t) n
(︂
Pi+1 − Pi

)︂
=

n−1∑︂
i=0

Bi,n−1(t) Qi

where Qi := n
(︂
Pi+1 −Pi

)︂
are the new control points. We can use the same

process to find higher order derivatives.
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Figure 1.1: Bézier curve defined on the control points P0, . . . , P6.

Cubic Bézier Curve
One of the most used form in computer graphics is the cubic Bézier curve

C(t) = (1 − t)3 P0 + 3(1 − t)2t P1 + 3(1 − t)t2 P2 + t3 P3

Notice that every control point has exceptionally intuitive geometric meaning.
P0 and P3 are start and end points, while P1 and P2 define tangent direction at
the endpoints respectively. These properties make it ideal for graphical user in-
terfaces(GUI) where smooth curve is required such as in animation or color curve
controls. Another useful application is in vector graphics and fonts, especially for
its compact representation.

Unfortunately, there are a few limitations with Bézier curves. Let C(t) be a
Bézier curve with control points P0, . . . , Pn. Consider moving a control point Pk

in the direction d. The resulting curve can be written as

Cd(t) =
n∑︂

i ̸=k

Bi,n(t) Pi + Bk,n(t)
(︂
Pk + d

)︂

=
n∑︂

i=0
Bi,n(t) Pi + Bk,n(t)d

= C(t) + Bk,n(t)d

Since Bk,n(t) is non-zero on the interval (0, 1), the whole curve is moved except
for the endpoints.

This property makes it impossible to do a local change to a small part of
a curve. Another problem is the dependence of curve degree on the number
of control points, since n-th degree Bézier curve has n + 1 points. Complex
shapes require large number of control points, which in turn makes the curve
unnecessarily smooth with high degree and causes computation to be numerically
unstable. Moreover, we often need to include sharp corners in our shape design.
To solve these issues, we can join several low degree Bézier curves into a spline.
However, this solution is not completely satisfactory. Notice, that we need to
make sure the endpoints between neighboring curves are the same to achieve C0

continuity. We might also need to make sure tangents are the same to achieve C1
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Figure 1.2: B-spline curve with knot values t0 ≤ t1 ≤ t2 ≤ t3 showing the separate
segments in color.

and so on for higher Cn continuity. Although it is possible to use such a system,
maintaining constraints between curves for desired continuity becomes tedious,
clunky and prone to errors. There is a better way.

1.3 B-spline Curves
Given a sequence of n + 1 control points P0, . . . , Pn and m + 1 knot values
t0 ≤ · · · ≤ tm, a B-spline curve of degree p := m − n − 1 is defined as

C(t) =
n∑︂

i=0
Ni,p(t) Pi t0 ≤ t ≤ tm (1.3)

where Ni,p(t) are B-spline basis functions of degree p defined by the Cox-de Boor
recursion formula

Ni,0(t) :=
⎧⎨⎩1 if ti ≤ t < ti+1

0 otherwise

Ni,p(t) := t − ti

ti+p − ti

Ni,p−1(t) + ti+p+1 − t

ti+p+1 − ti+1
Ni+1,p−1(t)

with fractions 0/0 defined to be 0.

Knot Vector
The knots t0 ≤ · · · ≤ tm are usually referred to as a knot vector {t0, . . . , tm}. The
same knot ti can be repeated several times. The number of repetitions is called
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Figure 1.3: Two B-splines with the same control points are shown. Knot vector
is the only difference, open(top), clamped(bottom).

multiplicity. The half-open interval [ti, ti+1) is the i-th knot span. Without any
additional constraints a knot vector will generate an open B-spline curve, where
start and end do not coincide with control points, see figure 1.3. To solve this
issue the curve is clamped, which is achieved by increasing multiplicity of the first
and last knot. The resulting knot vector has the form

{a, . . . , a⏞ ⏟⏟ ⏞
p+1

, tp+1, . . . , tm−p−1, b, . . . , b⏞ ⏟⏟ ⏞
p+1

}

Basis functions for open and clamped curves share the same properties, however
for open curves, some of them are valid only for tp ≤ t < tm−p. Appendix A shows
manually computed basis functions and their graph with an open knot vector.
We will only use clamped B-splines in this text unless stated otherwise. Knot
vector is said to be uniform if all interior knots are equally spaced, i.e., every knot
span has the same length. Although it can simplify basis function computation,
it is rarely used.

Basis function properties
To better appreciate the B-spline basis function properties it is helpful to look at
the definition as a pyramid/triangular scheme shown in figure 1.5.

1. Degree: Ni,p(t) is a polynomial of degree p

• Notice that Ni,p is computed as a sum of Ni,p−1 and Ni+1,p−1, both
multiplied by a linear function in t, therefore the degree is increased
at each level of the pyramid.

2. Non-negativity: Ni,p(t) ≥ 0 ∀t ∈ R

8



Figure 1.4: B-spline basis functions of degree 3 on the knot vector
{0, 0, 0, 0, 1, 2, 3, 3, 3, 3}, and corresponding knot spans mapped below.

Figure 1.5: This diagram shows a pyramid of B-spline basis functions and their
computational dependence. At the bottom are the 0-th degree basis functions
with their associated knot spans. The blue trapezoid shows the support of N1,3,
while the orange one shows the local computation property of [t2, t3).
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3. Local support: Ni,p(t) = 0 outside the interval [ti, ti+p+1)
• Another important property is the support, i.e. interval where the

function is non-zero. Bottom level basis functions Ni,0 have support
on [ti, ti+1). Therefore, Ni,1 is non-zero on [ti, ti+2) since it is a linear
combination of non-negative functions Ni,0 and Ni+1,0. We can follow
this argument by induction to conclude that, in general, the B-spline
basis function Ni,p(t) is non-zero on [ti, ti+p+1), which can be easily
seen in the diagram below.

4. Local computation: On the knot span [ti, ti+1), only Ni−p,p(t), . . . , Ni,p(t)
are non-zero

• It would be nice to have the opposite property to local support. We
would like to know which basis functions are non-zero given the knot
span [ti, ti+1). Borrowing the argument from above, Ni,0 is used by
Ni−1,1 and Ni,1. Proceeding to the next degree, Ni,0 is transitively
used by Ni−2,2, Ni−1,2 and Ni,2. Following this scheme until the de-
gree p, Ni,0 is used in the recursive definition of p + 1 basis functions
Ni−p,p, . . . , Ni,p. Note that for some i < p, not all of those functions
exist, so generally, there are at most p+1 non-zero B-spline basis func-
tions of degree p on [ti, ti+1). Again, this scheme is easy to see in the
diagram below.

5. Partition of unity:
i∑︂

j=i−p

Nj,p(t) = 1 ∀t ∈ [ti, ti+1), for all knot spans

6. Knot multiplicity:
• At knot value ti with multiplicity k, Ni,p(t) is Cp−k continuous.

7. Derivative:
d
dt

Ni,p(t) = N ′
i,p(t) = p

(︄
Ni,p−1(t)
ti+p − ti

− Ni+1,p−1(t)
ti+p+1 − ti+1

)︄

Curve properties
• Clamped B-spline curve satisfies C(t0) = P0 and C(tm) = Pn

• B-spline curve is a piecewise polynomial of degree p, where number of con-
trol points, n + 1, and number of knots, m + 1, satisfy m = n + p + 1.

• The entire curve lies in the convex hull of its control points. Looking at
a knot span [ti, ti+1), only Ni−p,p(t), . . . , Ni,p(t) are non-zero. Therefore,
only Pi−p, . . . , Pi contribute to the sum. Since these basis functions are
non-negative and sum up to one, the curve is a convex combination of the
corresponding control points.

• Modifying a control point Pi influences the curve only on the interval
[ti, ti+p+1). Assume that we move Pk in the direction d. Then the new
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curve

Cd(t) =
n∑︂

i ̸=k

Ni,p(t) Pi + Nk,p(t)
(︂
Pk + d

)︂

=
n∑︂

i=0
Ni,p(t) Pi + Nk,p(t)d

= C(t) + Nk,p(t)d

Since Nk,p(t) is non-zero only on the interval [tk, tk+p+1), the curve stays
unchanged everywhere else. Therefore, we achieved local control over small
part of the curve, which was missing in Bézier curves.

• Knot multiplicity controls continuity between knot spans. B-spline curve
is infinitely differentiable inside the intervals. At knot values ti with multi-
plicity k, C(ti) is Cp−k continuous.

• B-spline curve with knot vector {0, . . . , 0, 1, . . . , 1} is a Bézier curve

• Curve shape is invariant under affine transformations. The argument is
identical to the one for Bézier cuves, see section 1.2.

• Control points P0, . . . , Pn form a piecewise linear approximation to the
curve, which can be improved by knot insertion or degree elevation, see
chapter 3.

• Derivative of a clamped B-spline curve is another B-spline curve of degree
p − 1 with n new control points and m − 1 knot values.

d
dt

C(t) = C ′(t) =
n∑︂

i=0

d
dt

Ni,p(t) Pi

=
n−1∑︂
i=0

p
Ni+1,p−1(t)

ti+p+1 − ti+1

(︂
Pi+1 − Pi

)︂
=

n−1∑︂
i=0

Ni+1,p−1(t) Qi

where Qi := p
Pi+1 − Pi

ti+p+1 − ti+1
are the new control points.

By removing first and last knot we obtain a B-spline curve

C ′(t) =
n−1∑︂
i=0

Ni,p−1(t) Qi

Note that this only works for a clamped knot vector. More detailed deriva-
tion can be found in Appendix A

So far, we have looked at smoothness, ease of design, manipulation and ease
of computation properties. However, we have overlooked if these curves can
represent geometric objects we might find useful. One of those are conic sections
- circles, ellipses, hyperbolas. Let us look at a circle. It is a fact[] that one cannot
describe every conic section, including circles, using simple polynomials. Since
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all curves we have described so far are polynomial, none of them can represent
circles exactly. This might sound as a serious drawback given that circle is one
of the simplest and most useful objects. Nevertheless, in the world of CAGD
tolerance is always present and it is common to see approximations of a circle
within some small epsilon. In spite of that, we would like to be able to represent
conic sections exactly, and for that we need rational functions. For example,
circle can be parametrized using stereographic projection as(︄

t2 − 1
1 + t2 ,

2t

1 + t2

)︄
− ∞ ≤ t ≤ ∞

1.4 Rational Bézier Curves
Given a sequence of n+1 control points P0, . . . , Pn and n+1 weights w0, . . . , wn,
a rational Bézier curve is defined as

C(t) =

n∑︂
i=0

Bi,n(t)wi Pi

n∑︂
i=0

Bi,n(t)wi

0 ≤ t ≤ 1 (1.4)

where Bi,n(t) are Bernstein polynomials. To make it easier to see that this is a
rational function, assume Pi =

(︂
xi, yi

)︂
∈ R2 and define polynomials

X(t) =
n∑︂

i=0
Bi,n(t)wixi Y (t) =

n∑︂
i=0

Bi,n(t)wiyi W (t) =
n∑︂

i=0
Bi,n(t)wi

then we can see that

(︄
X(t)
W (t) ,

Y (t)
W (t)

)︄
=

n∑︂
i=0

Bi,n(t)wi

(︂
xi, yi

)︂
n∑︂

i=0
Bi,n(t)wi

= C(t)

Curve properties
Most of the properties are identical to non-rational Bézier curves. Here we will
only list new and more general properties.

• If all the weights are set to constant c, i.e., wi = c ∀i we have a non-
rational Bézier curve.

• Setting wk = 0 will ”disable” the control point Pk, i.e., Pk will have no
influence on the curve shape. Furthermore, increasing wk will move the
curve closer to Pk, while decreasing wk will move it further away.

• Rational Bézier curves are projective invariant. Applying projective trans-
formation to a curve is equivalent to applying it to the points only and then
evaluating the curve with the transformed points.

12



Homogeneous Coordinates
Rational curves in d-dimensional Euclidean space can be embedded into d-dimensional
projective space as a polynomial curve by using homogeneous coordinates. This
allows us to replace point P =

(︂
x, y, z

)︂
and weight w with homogeneous point

Pw =
(︂
wx, wy, wz, w

)︂
. The original point P can be obtained from Pw by per-

spective division

P = H{Pw} = H
{︂(︂

a, b, c, w
)︂}︂

=
(︄

a

w
,

b

w
,

c

w

)︄

Now we can represent rational curve in Rd with polynomial curve in Rd+1 as

Cw(t) =
n∑︂

i=0
Bi,n(t) Pw

i 0 ≤ t ≤ 1

This allows us to work with rational curves the same way we do with polynomials
ones. To see that the curves are identical consider applying perspective division
to homogenous curve

H{Cw(t)} = H
{︄(︄

n∑︂
i=0

Bi,n(t)wixi,
n∑︂

i=0
Bi,n(t)wiyi,

n∑︂
i=0

Bi,n(t)wi

)︄}︄

=

⎛⎜⎜⎜⎜⎝
n∑︂

i=0
Bi,n(t)wixi

n∑︂
i=0

Bi,n(t)wi

,

n∑︂
i=0

Bi,n(t)wiyi

n∑︂
i=0

Bi,n(t)wi

⎞⎟⎟⎟⎟⎠ =

n∑︂
i=0

Bi,n(t)wi

(︂
xi, yi

)︂
n∑︂

i=0
Bi,n(t)wi

= C(t)

When we combine all the tricks from above (spline, knot vector and weights),
we end up with the definition of Non-Uniform, Rational B-Spline curve.

1.5 NURBS Curves
Given a sequence of n + 1 control points P0, . . . , Pn, n + 1 weights w0, . . . , wn

and m + 1 knot values t0 ≤ · · · ≤ tm, a NURBS curve of degree p := m − n − 1
is defined as

C(t) =

n∑︂
i=0

Ni,p(t)wi Pi

n∑︂
i=0

Ni,p(t)wi

t0 ≤ t ≤ tm (1.5)

where Ni,p(t) are the B-spline basis functions of degree p defined in section 1.3.
Using the rational basis function

Ri,p(t) := Ni,p(t)wi
n∑︂

j=0
Nj,p(t)wj

allows us to write
C(t) =

n∑︂
i=0

Ri,p(t) Pi t0 ≤ t ≤ tm

13



Curve properties
Generally we assume weights are positive, however, setting a weight to zero or
a negative number can have interesting effects. NURBS properties are, not sur-
prisingly, similar to those of B-spline curves. We will only list some that are
different.

• setting all the weights to a constant c, i.e., wi = c ∀i produces a non-
rational B-spline curve.

• Setting wk = 0 will ”disable” the control point Pk, i.e., Pk will have no
influence on the curve shape. Furthermore, increasing wk will move the
curve closer to Pk, while decreasing wk will move it further away.

• NURBS curves are projective invariant. Applying projective transformation
to a curve is equivalent to constructing it from the transformed points.

• Local modification and convex hull properties are only valid for non-negative
weights.

Homogeneous representation

Cw(t) =
n∑︂

i=0
Ni,p(t) Pw

i t0 ≤ t ≤ tm

Homogeneous coordinates offer compact storage and more efficient computation
on a computer. Additionally, instead of creating new formulas and algorithms
specifically for NURBS curves, it is easier to reuse B-spline ones and applying
perspective divide at the end. For the rest of this thesis, we will use homogeneous
form when referring to a NURBS curve, unless stated otherwise.
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Chapter 2

Geometry of Surfaces

2.1 Parametric Surfaces
Parametric surface is a smooth function of the form

S(u, v) : u, v ∈ R2 ↦−→ x ∈ R3

We will denote partial derivatives of the surface as

Su(u, v) := ∂

∂u
S(u, v) Sv(u, v) := ∂

∂v
S(u, v)

Normal vector at parameters u, v is defined by

N = Su × Sv

∥Su × Sv∥

Tensor Product Surfaces
Tensor product surface is one of the simplest type of parametric surfaces. Imagine
we have a curve

S(u) =
n∑︂

i=0
Fi(u) Pi

defined on some basis functions Fi(u) and control points Pi. Now, consider the
control points Pi to be functions of independent parameter v, and define Pi,j to
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be (n + 1) × (m + 1) net of control points. Then for some Gj(v) we have

Pi(v) =
m∑︂

j=0
Gj(v) Pi,j

and putting it all together we get the tensor product surface

S(u, v) =
n∑︂

i=0

n∑︂
i=0

Fi(u)Gj(v) Pi,j (2.1)

The name comes from function space point of view. The equation 2.1 represents
a space of functions denoted F ⊗ G, i.e. the tensor product of basis function
spaces F and G, spanned by {Fi(u)Gj(v)}.

Tensor product surfaces inherit properties of the univariate basis functions,
making it easy to examine their behavior. Additionally, most operations per-
formed on these surfaces are extensions of the curve algorithms applied to each
row or column of the control points.

2.2 Bézier Surfaces
Given a (n + 1) × (m + 1) net of control points Pi,j, a Bézier surface is defined as

S(u, v) =
n∑︂

i=0

m∑︂
j=0

Bi,n(u)Bj,m(v) Pi,j 0 ≤ u, v ≤ 1 (2.2)

where Bi,n(u) and Bj,m(v) are the Bernstein polynomials defined in section 1.2.

Properties
• P0,0, Pn,0, P0,m and Pn,m are the corner points of the surface, i.e.

S(0, 0) = P0,0 S(1, 0) = Pn,0

S(0, 1) = P0,m S(1, 1) = Pn,m

• S(u, v) lies in the convex hull of its control points.

• The net of control points forms a piecewise linear approximation to the
surface.

• Bézier surface is invariant under affine transformations.

2.3 B-spline Surfaces
Given a (n + 1) × (m + 1) net of control points Pi,j, h + 1 knot values in u-
direction u0 ≤ · · · ≤ uh and k + 1 knot values in v-direction v0 ≤ · · · ≤ vk, a
B-spline surface of degree p × q is defined as

S(u, v) =
n∑︂

i=0

m∑︂
j=0

Ni,p(u)Nj,q(v) Pi,j
u0 ≤ u ≤ uh

v0 ≤ v ≤ vk
(2.3)
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where p := h − n − 1, q := k − m − 1 and Ni,p(u), Nj,q(v) are the B-spline basis
functions defined in section 1.3. As before, we assume both knot vectors are
clamped, that is

u0 = u1 = · · · = up and uh−p = · · · = uh−1 = uh

v0 = v1 = · · · = vq and vk−q = · · · = vk−1 = vk

Properties
Following are just a generalization of the curve and B-spline basis function prop-
erties.

• P0,0, Pn,0, P0,m and Pn,m are the corner points of the surface, i.e.

S(u0, v0) = P0,0 S(uh, v0) = Pn,0

S(u0, vk) = P0,m S(uh, vk) = Pn,m

• S(u, v) lies in the convex hull of its control points.

• The net of control points forms a piecewise linear approximation to the
surface.

• B-spline surface is invariant under affine transformations.

• Modifying a control point Pi,j only affects the surface locally in the rectangle
[ui, ui+p+1) × [vj, vj+q+1).

• B-spline surface with both knot vectors of the form {0, . . . 0, 1, . . . , 1} is a
Bézier surface.

2.4 NURBS Surfaces
Given a (n + 1) × (m + 1) net of control points Pi,j, (n + 1) × (m + 1) net of
weights wi,j for each control point, h + 1 knot values in u-direction u0 ≤ · · · ≤ uh

and k + 1 knot values in v-direction v0 ≤ · · · ≤ vk, a NURBS surface of degree
p × q is defined as

S(u, v) =

n∑︂
i=0

m∑︂
j=0

Ni,p(u)Nj,q(v)wi,j Pi,j

n∑︂
i=0

m∑︂
j=0

Ni,p(u)Nj,q(v)wi,j

u0 ≤ u ≤ uh

v0 ≤ v ≤ vk
(2.4)

where p := h − n − 1, q := k − m − 1 and Ni,p(u), Nj,q(v) are the B-spline basis
functions defined in section 1.3. We assume both knot vectors are clamped. By
defining the rational surface basis functions as

Ri,j(u, v) := Ni,p(u)Nj,q(v)wi,j
n∑︂

r=0

m∑︂
s=0

Nr,p(u)Ns,q(v)wr,s
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allows us to write
S(u, v) =

n∑︂
i=0

m∑︂
j=0

Ri,j(u, v) Pi,j

Up until this section, every surface we defined was a tensor product surface.
However, hold your horses, because rewriting the definition with rational surface
basis functions reveals that NURBS surface is not a tensor product surface, since
it cannot be written as a product of two univariate basis functions. Nevertheless,
we can use homogeneous coordinates (see section 1.4) to transform it to a B-spline
surface defined on a net homogeneous control points Pw

i,j as

S(u, v) =
n∑︂

i=0

m∑︂
j=0

Ni,p(u)Nj,q(v) Pw
i,j

which is clearly a tensor product surface. We shall use this definition for a NURBS
surface, unless stated otherwise.

2.5 Bézier Triangles
Tensor product surfaces are inherently defined on a rectangular domain, which
forces a surface to have a square topology. Therefore, all such surfaces look like
a wavy sheet of paper. One way to solve this issue is to deform an edge of the
control points net into a single point, e.g. setting P0,0 = P1,0 = · · · = Pn,0.
Topologically, it is still a square but visually this forms a triangle. The problem
with this approach is that some algorithms might not work with such a degeneracy
in mind, producing wrong results. Instead, let’s look at how a triangular domain
surface can be constructed.

Figure 2.1: Arrangement of Bézier triangle control points.

Bézier triangle of degree n with
(︂

n+2
2

)︂
(triangular number) control points Pi,j,k

arranged in a triangle as shown in a figure 2.1 is defined as

S(u, v) =
∑︂

i+j+k=n
i,j,k≥0

Bn
i,j,k(u, v, 1 − u − v) Pi,j,k

0 ≤ u, v ≤ 1
u + v ≤ 1 (2.5)

where Bn
i,j,k are triangular Bernstein polynomials defined on barycentric coordi-

nates α + β + γ = 1 as

Bn
i,j,k(α, β, γ) =

(︄
n

ijk

)︄
αiβjγk = n!

i!j!k!α
iβjγk i + j + k = n

i, j, k ≥ 0
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This concept can be generalized with B-splines and weights. For more details see
[5], [6], [7].

2.6 Trimmed Surfaces
Another important requirement in CAD/CAM is the ability to model holes and
cuts. Since the number of holes in a surface change its genus, it would be difficult
to define such a surface mathematically. Instead, an engineering solution is used,
where curves are used to delineate parts that are to be ”trimmed” away. There
are two types of simple closed curves used. Outer curves specify the boundary of
the surface, while inner curves specify holes. Each surface can have at most one
outer curve and any amount of inner curves. In addition, inner curves must lie
completely inside the outer boundary and have mutually disjoint interiors. Figure
2.2 shows this idea. Every data format defines its own semantics for interior and
exterior of closed curves. Often, interior is to the left side of the direction of curve
travel.

Figure 2.2: An example of a parametric domain with 1 outer curve and 3 inner
curves.

Trimmed surface is a NURBS surface S(u, v) with an outer curve Co(t) and
k ≥ 0 inner curves Ci(t). If no outer curve is specified, we implicitly construct one
from the four boundary edges of the parametric rectangle. The curves produce
values in the surface domain as

C : R ↦−→ R2

C(t) = (u, v)
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Chapter 3

Algorithms

This chapter will focus on algorithms to work with curves and surfaces defined
in the previous chapters. One could do computations directly from definition,
however, properties of basis functions allow us to reduce the amount of arithmetic
operations that are needed and provide better numerical stability. We will show
standard algorithms mainly for computing points, although, derivatives will also
be discussed.

3.1 Bézier
Let’s compute a point on Bézier curve C(t) defined by n + 1 control points
P0, . . . , Pn. By using the recursion property 4 of Bernstein polynomials we can
write it as a linear interpolation of lower degree Bézier curves as

C(t) = (1 − t)Ca(t) + tCb(t)

where Ca(t) is defined on P0, . . . , Pn−1 and Cb(t) is defined on P1, . . . , Pn. Re-
peating this process until the last point and collecting the terms bottom-up to
reuse already computed values yields the deCasteljau1 algorithm.

deCasteljau(P: Array, n: Int, t: Real) -> Point
{

let Q = P;

for (j = 0; j < n; ++j)
for (i = 0; i < n - j; ++i)

Q[i] = lerp(Q[i], Q[i+1], t);

return Q[0];
}

This algorithm has a beautiful geometric interpretation shown below.
Similarly, for a Bézier surface we compute the intermediary points using the

deCasteljau’s algorithm in the u direction and then once again on the new points
in the v direction.

1Paul de Casteljau independently formalized and developed Bézier curves at Citroën in 1959.
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Figure 3.1: de Casteljau’s algorithm on a 3rd degree Bézier curve, where Pj,i is
the i-th control point on j-th iteration, i.e. Pj,i = lerp(Pj−1,i, Pj−1,i+1, 0.7).

deCasteljauSurface(
P: Array, n: Int, m: Int, u: Real, v: Real

) -> Point
{

let Q = Array(m + 1);

for (j = 0; j <= m; ++j)
Q[j] = deCasteljau(P[][j], n, u);

deCasteljau(Q, m, v);

return Q[0];
}

3.2 B-spline
Let C(t) be a B-spline curve of degree p with control points P0, . . . , Pn and
clamped knot vector T = {t0, . . . , tm}. Evaluating a point at some parameter
t, it would be wasteful to follow the definition, since most of the sum factors
would be zero as a result of local support property. Better approach is to find all
non-zero basis functions and only use those. To that end, we first need to find
the knot span [ti, ti+1), given the parameter t. Generally, there are two options,
linear or binary search. Although binary search might seem like an obvious choice,
knot vectors are quite small in practice and linear search can be faster in some
circumstances.
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findKnotSpanIndex(T: Array, m: Int, p: Int, t: Real) -> Int
{

if (t == T[m - p])
return m - p - 1;

let low = p;
let high = m + 1;
let mid = (low + high) / 2;

while (t < T[mid] || t >= T[mid + 1])
{

if (t < T[mid])
high = mid;

else
low = mid;

mid = (low + high) / 2;
}

return mid;
}

The check at the start is for handling the case when t = tm, since we are using
half-open intervals.

Next, we present an algorithm to compute all non-zero basis functions on
interval [ti, ti+1).
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bSplineBasisFunctions(
T: Array, m: Int, p: Int, t: Real, i: Int

) -> Array
{

let N = Array(p + 1);
let L = Array(p + 1);
let R = Array(p + 1);

N[0] = 1.0;
for (j = 1; j <= p; ++j)
{

L[j] = t - T[i + 1 - j];
R[j] = T[i + j] - t;

let result = 0.0;
for (k = 0; k < j; ++k)
{

let w = N[k] / (R[k + 1] + L[j - k]);
N[k] = result + w * R[k + 1];
result = w * L[j - k];

}

N[j] = result;
}

return N;
}

Finally, evaluating point is just a matter of calling the functions above.

evaluateBsplineCurve(
P: Array, n: Int, T: Array, m: Int, p: Int, t: Real

) -> Point
{

let i = findKnotSpanIndex(T, m, p, t);
let N = bSplineBasisFunctions(T, m, p, t, i);

let C = 0.0;
for (j = 0; j <= p; ++j)

C += N[j] * P[i - p + j];

return C;
}

For completeness, we also provide code for evaluating point on a B-spline
surface with (n + 1) × (m + 1) control points Pi,j U r s
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evaluateBsplineSurface(
P: Array, n: Int, T: Array, m: Int, p: Int, t: Real

) -> Point
{

let i = findKnotSpanIndex(T, m, p, t);
let N = bSplineBasisFunctions(T, m, p, t, i);

let C = 0.0;
for (j = 0; j <= p; ++j)
C += N[j] * P[i - p + j];

return C;
}

One of the most important algorithm and a basic block for other procedures
is knot insertion. The result is a new curve with knot t inserted into knot vector
r times. We will provide an implementation taken from [1].
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knotInsertion(
P: Array, n: Int, T: Array, m: Int, p: Int, t: Real, r: Int

) -> { Array, Int, Array, Int }
{

let s = p - r;
let newT = Array(mp + r);

// Fill in the new knot vector
for (i = 0; i <= k; ++i)

newT[i] = T[i];
for (i = 1; i <= r; ++i)

newT[k + i] = t;
for (i = k + 1; i <= n + p + 1; ++i)

newT[i + r] = T[i];

for (i = 0; i <= k - p; ++i)
newP[i] = P[i];

for (i = k - s; i <= n; ++i)
newP[i + r] = P[i];

let R = Array(p + 1);
for (i = 0; i <= p - s; ++i)

Rw[i] = P[k - p + i];

for (j = 1; j <= r; ++j)
{

let L = k - p + j;
for (i = 0; i <= p - j - s; ++i)
{

let a = (t - T[L + i]) / (T[i + k + 1] - T[L + i]);
R[i] = lerp(R[i], R[i + 1], a);

}
newP[L] = R[0];
newP[k + r - j - s] = R[p - j - s];

}

for (i = L + 1; i < k - s; ++i)
newP[i] = R[i - L];

return {newP, new_n, newT, m+r};
}

3.3 NURBS
We have already mentioned that we use homogeneous representation for NURBS
curves and surfaces, so we will only provide couple of examples on how to deal
with projective division with derivatives.
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evaluateNURBSCurve(
Pw: Array, n: Int, T: Array, m: Int, p: Int, t: Real

) -> Point
{

let Cw = evaluateBsplineCurve(Pw, n, T, m, p, t);
return Cw.xyz / Cw.w;

}

The same idea holds for evaluating a point on a NURBS surface. It is similar for
derivatives, however, we have to remember to use chain rule.

S(u, v) = w(u, v)S(u, v)
w(u, v) = Sw(u, v)

w(u, v)

where w(u, v) is the weight of the homogeneous point computed at (u, v). Com-
puting derivative we obtain

Su(u, v) = Sw
u (u, v) − wu(u, v)S(u, v)

w(u, v) (3.1)
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Chapter 4

Tessellation

This chapter contains discussion about different tessellation strategies and re-
quirements found in the CAD/CAM industry. We mention use cases and provide
relevant references for each specific domain. Next, we describe our tessellation
algorithm and motivation behind certain architectural choices. Finally, at the
end of the chapter we present the results of our algorithm.

4.1 Use Cases
The first step in designing any kind of algorithm is to define a set of design goals
and requirements put on the computation and the results. This is especially true
for tessellation, since a little change in design goals might lead to completely
different runtime performance and quality of the resulting polygonal mesh. The
design generally revolves around what further computations are to be performed
on the mesh. Some application require very uniform tessellation, while others are
better off with large triangle size disparities. In the following list, we describe the
most common application and their requirements.

Simulation
Simulation is undoubtedly one of the backbones of the CAD/CAM industry.
Producing and machining complex parts is very expensive and time consuming
process. Additionally, designing and testing a new product might require tens
or hundreds of prototypes to optimize required parameters, giving an economic
incentive to simulation. By modeling the part on a computer we can compute
pretty much all of the physical properties, ranging from static ones like volume,
surface area and mass to dynamic quantities like stress, load distribution or ther-
mal conductivity. Recently, advances in computer performance allowed to directly
optimize the shape for certain constraints and properties.

Most of these are implemented by solving partial differential equations(PDEs)
on the part’s surface or volume. Solving these equations requires a geometrical
description simple enough to facilitate analytical solutions. The most common
technique used is the Finite Elements Method(FEM). It works by building the
approximate solution from individual triangles on a tessellated mesh. Denser
tessellations produce better solutions, however, equilateral triangles of uniform
size are required for the best results. More detailed explanation of FEM can be
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found in [8]. There is also research on grid-free methods for solving PDEs inspired
by Monte Carlo techniques from photorealistic rendering, see [9].

Visualization
The other big use case for tessellation is visualization. From the beginning of
CAD/CAM, users working on a computer needed to see the data to be able
to meaningfully interact with it. This was facilitated by custom hardware and
rendering subroutines in the early days. However, the introduction of GPUs to
consumer market gave rise to tessellation approach we use today. The idea is to
compute the slow tessellation offline and use the mesh for fast real-time rendering.
In recent years, virtual reality devices further necessitated performance optimiza-
tions to make the actual rendering as fast as possible. On the other hands, there
are still use cases for offline rendering. Although we can and often do ray-tracing
on the tessellated mesh, there is also a possibility to do ray-NURBS itersections
directly. The problem with ray-tracing parametric surfaces is inability to find an
exact analytical solution. This means that we need to use numerical methods to
find the precise intersection point. Most used approach is the Newton’s method
with a good initial starting point. See [10] and [11].

4.2 Our Algorithm
Out goal was to implement an algorithm suitable for visualization purposes, tar-
geting ray-tracing and real-time rendering. The requirements on the triangular
mesh are similar for both, minimize the amount of triangles and create detail only
where necessary. One important concept in tessellation is the always present ϵ
tolerance. This is one of the inputs of our algorithm and specifies the maximum
allowed distance between the parametric surface and the resulting mesh. It is not
very hard to satisfy this constraint, however, keeping the triangle count low with-
out breaking this constraint can be challenging. We proceed with the description
of tessellating NURBS surfaces, next, we show how trimming curves come into
play and will finish this section discussing removal of unwanted gaps.

Surface Tessellation
Uniform grid sampling of the surface is the easiest method of tessellation, where
we increase the grid resolution until the tolerance constrained is satisfied. Clearly,
this will produce unnecessarily large amount of samples on flat parts of a surface.
Ideally, we would sample points according to the local curvature, producing more
samples in highly curved areas, while creating relatively few in flat areas, as can
be seen in [12]. Nevertheless, computing curvature or ideal parametrization can
be costly. Another common approach is to compute bounds on the second partial
derivatives, see [13], to approximate flatness of the given region and get an upper
bound of triangle edge length. We have followed [14] and utilized a quadtree
structure. At each level we check for approximate flatness and decide if we need
to subdivide further. One minor issue with quadtrees is the requirement to split
both parametric dimensions, even if the surface is completely flat in one direction.
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However, we observed that this did not produced relevant differences in out tests,
while benefiting from a simpler implementation.

Trim Curves
The introduction of trimming curves complicates things a bit. At first, we need
to tessellate individual trimming curves into polygons to simplify inside/outside
queries. Then we can remove surface samples that are trimmed by the curves.
And finally, we can connect curve polygons with the quad grid.

We use a modification of the knot insertion algorithm to produce a piecewise
linear approximation of curves. It works by recursively splitting until we are in
tolerance, and only keeping the necessary points. In some applications, it might
be useful to specify a standalone tolerance just for tessellating boundary curves
to give users ability to choose the required quality of small details like logos and
text in relation to the overall shape of the model.

After removing all samples lying outside we join the polygon boundary with
the grid. This can be done by iteratively adding points by finding the triangle it
lies in and splitting it into 3 more triangles while keeping the constraints on the
boundary edges. Unfortunately, this will result in very narrow triangles creating
complications further in line. This is a classic problem in computational geometry
that can be solved with the help of Constrained Delaunay Triangulation(CDT).
We opted for the algorithm presented in [15]. We try to avoid unnecessary com-
putation of Delaunay triangulation in the whole interior and try to limit edge
swapping to boundary areas, since we do not need perfect mesh for visualization.
On the other hand, some authors, e.g. [16], go the other way and optimize the
mesh in R3 to create very regular tessellation, mainly for FEM applications.

Sewing
One annoying characteristic of trimmed NURBS surfaces is the lack of precision at
the boundaries, since surface intersections require insanely high degree curves to
be exact, and are therefore only approximated with NURBS curves. This problem
is further magnified by creating a piecewise linear polyline in the algorithm. This
results in undesirable cracks and holes between neighboring patches. We solve
this issue by joining individual meshes together. One has to be careful to avoid
merging boundaries with sharp angle to prevent normal smoothing along that
edge.

The sewing algorithm is pretty simple. For every patch we find the boundary
edges and vertices. Non-boundary edges are contained in exactly two faces, so by
iterating all faces and keeping the counts, we can quickly get our result. Then by
utilizing boundary boxes, we filter out every pair of patches that are too far apart
and merge the rest. Merging is done asymmetrically by iterating through every
boundary edge and searching for boundary vertices inside the sewing tolerance
distance on the other mesh. If such a vertex exists, we split the triangle and
create a new vertex. The same procedure is then applied the other way around.
This ensures that we reliably stitch arbitrarily complex boundaries coming in and
out of contact.

29



4.3 Results

Figure 4.1: Tessellation of Škoda Kodiaq.

Figure 4.2: Interior design of a car; diffuse lighting is applied at the top and
tessellated wireframe is shown at the bottom.
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Figure 4.3: Exterior tessellation of Škoda Superb model.

Figure 4.4: A random trunk door; left: diffuse color, right: tessellated wireframe.
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Chapter 5

Implementation Specifics

In this chapter we will discuss and illustrate challenges associated with developing
software utilizing CAD data and tools for visualization, optimization, simulation
or other computational tasks. It is provided mainly as a means of familiarizing
with the world of CAD/CAM for people outside the industry.

5.1 Floating point representation
There are several factors to consider when choosing between IEEE 754 32-bit
float and 64-bit double types. One has to balance accuracy and precision with
performance and memory requirements to suit the application specifications.

It can be difficult to judge performance differences on modern CPUs and
GPUs. Therefore, we conducted a series of benchmarks comparing accuracy, per-
formance and memory characteristics of float and double data types on common
NURBS operations. The result were different for each computation model and
each machine, and we suggest to do your own experiments if performance mat-
ters. We have observed that most of the CAD systems use double as their default
type and as a result, exported data files, sometimes only implicitly, depend on
this fact. Nevertheless, using float type might still be a viable option for certain
scenarios. Working with many different data files showed it is mostly ok to use
for visualization, however, we encountered some occasional problems:

• Control points are specified too far from the origin, i.e. large values, re-
sulting in loss of accuracy. This problem is hard to diagnose, since such a
surface might collapse to a single point or a line without any obvious errors
and will not appear on the screen at all.

• Control points that are too close together will be parsed as the same float
value, despite having distinct double representations. This might be fine
for evaluating points, however, problems arise with tangent and normal
vector computations, since the difference between these two points will be
zero, producing incorrect results.

5.2 Degenerate Surfaces
A robust tessellation algorithm must keep in mind that not all data are well-
behaved and satisfy all necessary assumptions. In this section we will briefly men-
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tion some problems we have observed and suggest a fix or a possible workaround.
We have already discussed the problem with rectangular domains in section

2.5. To quickly recap, sometimes it is necessary to create a triangular surface,
commonly used in the corners of bevels, chamfers and fillets. Typically, this is
done by collapsing a boundary edge into a single point, thus creating an illusion of
a triangle. However, the topology is still rectangular and this creates a problem
when computing a normal vector at the degenerate edge. Since the difference
between any two points on that edge is a zero vector, one of the tangent vectors
will also be zero. To combat this problem, we check for this condition and choose
a different pair of isoparametric curves to compute the tangents from if needed.

In the section 2.6, we have mentioned ordering of the trimming curves. Each
simple closed curve is often composed of several smaller curves connected in
order. On rare occasions, this order would be completely wrong, breaking the
closed curve assumption. Similarly, the assumption of a simple curve, i.e non-
intersecting curve, would occasionally not be met either. This problem is difficult,
if not impossible, to solve and so we elected to choose the strategy: garbage in,
garbage out.

5.3 Data formats
Considering large economic worth of the CAD/CAM industry, it is not surprising
to see fierce competition in the market with every company selling proprietary
hardware and software. This leads to everyone and their grandma developing
new data formats, despite some effort to standardize. Furthermore, libraries
to work with these formats are slow and archaic1, and even the paid ones are
exhibiting ignorance or incompetence. On the other hand, it is very difficult,
if not impossible, to design a format suitable for every part of the industry,
ranging from 2D electrical designs and 3D component packages, through railway
construction and car design, all the way to huge turbines and tanker propellers.
Here we provide a list of data formats that we encountered the most.

IGES (.igs, .iges)

The oldest format in this list, first published in 1980 with the latest version 5.3
dating to 1996. Despite its age it is still widely used and supported by most if not
all CAD software, partly because of its simplicity. The file consists of lines, 80
ASCII character long, with the last 8 columns on every line specifying the section
and line number, making it easily human-readable. There are 5 sections in total.
The first two, Start and Global, provide information about the file. Followed by
the Directory Entry and Parameter Data sections, where the actual CAD data is
stored. Lastly, the Terminate section provides a primitive sum check. The data is
divided into simple logical and geometric entities, e.g. Line, CurveOnSurface or
TransformationMatrix, that are referencing each other to construct more complex
objects.

1Some libraries we encountered do not support multithreading and any attempt at paral-
lelism causes dismay.
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STEP (.stp, .step)

STEP started as a successor to IGES trying to solve some of the drawbacks of
its predecessor. One of the main advantages of STEP over IGES is the ability
to represent solid objects, as opposed to the boundary representation in IGES
that can leave gaps in the model due to approximation errors. STEP defines
many Application Protocols(AP) having a wide range of functionalities to suit
the needs of the whole CAD industry. Each AP has an associated schema written
in EXPRESS data modeling language. This makes it possible to create a tool2
that reads a schema and generates source code for working with the data. Some
industry domains have settled on two most common APs in CAD, AP214 used in
automotive and AP203 in aerospace industry. Lately, there has been an incentive
to merge some APs into one.

https://www.iso.org/standard/63141.html

JT (.jt)

JT is an open binary format for CAD data exchange. Models are described
using Logical Scene Graph(LSG) containing shapes, components and metadata
in hierarchical structure, forming a directed acyclic graph. JT extensively em-
ploys compression on multiple levels, and combined with its binary form leads to
remarkably small file sizes compared to text files, such as IGES.

Link to JT specification

CATIA (.CATPart, .CATProduct)

Proprietary binary format. It is commonly separated into a product file(.CATProduct)
functioning as a root, and several part(.CATPart) files. Third party CAD soft-
ware applications supporting this format generally require that the user has Catia
with the appropriate license installed.

STL (.stl)

Undoubtedly the most simple file format on this list, nowadays utilized frequently
in consumer 3D printing market. Each object is a polygonal surface mesh de-
scribed by a sequence triangles consisting of 3 vertices and 1 normal vector with-
out any additional structure. File can be specified either in an ASCII text form
or in a binary form to reduce file size. Tessellation is required when exporting
freeform surfaces into this format.

Wavefront (.obj)

Relatively simple text format for specifying geometry of one or more objects
used mainly in computer graphics. Stores a list of vertices and optionally a
list of normals and texture coordinates. Topology information is stored as a
list of faces, where each face is a polygon(usually triangle or quad) specified by
indices from vertex data segment. This format can also provide simple material
information stored in an accompanying MTL file. Additionally, Wavefront OBJ
file format supports freeform structures, including Bézier, B-spline and NURBS

2https://github.com/stepcode/stepcode
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curves/surfaces with corresponding connectivity details. Note that this format is
most commonly used for polygonal meshes, whereas freeform surfaces are rarely
observed.

http://fegemo.github.io/cefet-cg/attachments/obj-spec.pdf

openNURBS (.3dm)

openNURBS is an open source toolkit for reading and writing .3dm files native
to Rhino 3D, a commercial CAD software. Making the toolkit open source is
meant to make it easier to transfer CAD geometry data between different pieces
of software. To directly quote the authors: ”... 3D market is stifled because of
the inability to reliably transfer 3D geometry between applications.”.

https://github.com/mcneel/opennurbs
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Conclusion

In this thesis, we presented fundamental definitions of approximation curves and
surfaces necessary for understanding and working with CAD/CAM data. We
carefully curated a collection of basic algorithms to serve as an easily digestible
reference for future implementations of CAD software. We also discussed imple-
mentation challenges in the industry and provided references for more details.
The tessellation algorithm presented in chapter 4 was successfully implemented
in a commercial application, being used in production on real data.
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ric Design, 3(2):83–127, 1986.

[6] Wolfgang Dahmen, Charles A. Micchelli, and Hans-Peter Seidel. Blossoming
begets b-spline bases built better by b-patches. Mathematics of Computation,
59(199):97–115, 1992.

[7] Hong Qin and Demetri Terzopoulos. Triangular nurbs and their dynamic
generalizations. Computer Aided Geometric Design, 14(4):325–347, 1997.

[8] C. Johnson. Numerical Solution of Partial Differential Equations by the
Finite Element Method. Dover Books on Mathematics Series. Dover Publi-
cations, Incorporated, 2012.

[9] Rohan Sawhney and Keenan Crane. Monte carlo geometry processing: A
grid-free approach to pde-based methods on volumetric domains. ACM
Trans. Graph., 39(4), 2020.

[10] Daniel L. Toth. On ray tracing parametric surfaces. SIGGRAPH Comput.
Graph., 19(3):171–179, jul 1985.

[11] Oliver Abert, Markus Geimer, and Stefan Muller. Direct and fast ray tracing
of nurbs surfaces. In 2006 IEEE Symposium on Interactive Ray Tracing,
pages 161–168, 2006.

[12] Luca Pagani and Paul J. Scott. Curvature based sampling of curves and
surfaces. Computer Aided Geometric Design, 59:32–48, 2018.

[13] X. Sheng and B.E. Hirsch. Triangulation of trimmed surfaces in parametric
space. Computer-Aided Design, 24(8):437–444, 1992.

37
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Appendix A

B-spline examples

B-spline basis functions example
Let {0, 1, 2, 3, 4, 5} be a knot vector. Corresponding B-spline basis functions are
manually computed below.

N0,0(t) =
⎧⎨⎩1 0 ≤ t < 1

0 otherwise
. . . N4,0(t) =

⎧⎨⎩1 4 ≤ t < 5
0 otherwise

N0,1(t) = t − 0
1 − 0N0,0(t) + 2 − t

2 − 1N1,0(t) =
⎧⎨⎩t 0 ≤ t < 1

2 − t 1 ≤ t < 2

N1,1(t) = t − 1
2 − 1N1,0(t) + 3 − t

3 − 2N2,0(t) =
⎧⎨⎩t − 1 1 ≤ t < 2

3 − t 2 ≤ t < 3

N2,1(t) = t − 2
3 − 2N2,0(t) + 4 − t

4 − 3N3,0(t) =
⎧⎨⎩t − 2 2 ≤ t < 3

4 − t 3 ≤ t < 4

N3,1(t) = t − 3
4 − 3N3,0(t) + 5 − t

5 − 4N4,0(t) =
⎧⎨⎩t − 3 3 ≤ t < 4

5 − t 4 ≤ t < 5

N0,2(t) = t − 0
2 − 0N0,1(t) + 3 − t

3 − 1N1,1(t) =

⎧⎪⎪⎨⎪⎪⎩
1
2t2 0 ≤ t < 1
1
2(t − 0)(2 − t) + 1

2(3 − t)(t − 1) 1 ≤ t < 2
1
2(3 − t)2 2 ≤ t < 3

N1,2(t) = t − 1
3 − 1N1,1(t) + 4 − t

4 − 2N2,1(t) =

⎧⎪⎪⎨⎪⎪⎩
1
2(t − 1)2 1 ≤ t < 2
1
2(t − 1)(3 − t) + 1

2(4 − t)(t − 2) 2 ≤ t < 3
1
2(4 − t)2 3 ≤ t < 4

N2,2(t) = t − 2
4 − 2N2,1(t) + 5 − t

5 − 3N3,1(t) =

⎧⎪⎪⎨⎪⎪⎩
1
2(t − 2)2 2 ≤ t < 3
1
2(t − 2)(4 − t) + 1

2(5 − t)(t − 3) 3 ≤ t < 4
1
2(5 − t)2 4 ≤ t < 5
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Figure A.1: B-spline basis functions of degree 2 on the open knot vector
{0, 1, 2, 3, 4, 5}
and their sum.

Derivative of a B-spline curve
Let C(t) be a B-spline curve of degree p with n + 1 control points P0 . . . , Pn and
m + 1 clamped knot values {t0, . . . , tm}. Then the derivative

d
dt

C(t) = C ′(t) =
n∑︂

i=0

d
dt

Ni,p(t) Pi

=
n∑︂

i=0
p

(︄
Ni,p−1(t)
ti+p − ti

− Ni+1,p−1(t)
ti+p+1 − ti+1

)︄
Pi

=
n−1∑︂
i=−1

p
Ni+1,p−1(t)

ti+p+1 − ti+1
Pi+1 −

n∑︂
i=0

p
Ni+1,p−1(t)

ti+p+1 − ti+1
Pi

= p
N0,p−1(t)
tp − t0

P0⏞ ⏟⏟ ⏞
= 0 on clamped knots

+
n−1∑︂
i=0

p
Ni+1,p−1(t)

ti+p+1 − ti+1

(︂
Pi+1 − Pi

)︂
− p

Nn+1,p−1(t)
tn+p+1 − tn+1

Pn⏞ ⏟⏟ ⏞
= 0 on clamped knots

=
n−1∑︂
i=0

p
Ni+1,p−1(t)

ti+p+1 − ti+1

(︂
Pi+1 − Pi

)︂
=

n−1∑︂
i=0

Ni+1,p−1(t) Qi

Removing t0 and tm from the knot vector yields a B-spline curve of degree p − 1
with n control points Q0, . . . , Qn−1 and m−1 clamped knot values {t1, . . . , tm−1}

C ′(t) =
n−1∑︂
i=0

Ni,p−1(t) Qi

40



Appendix B

More results

Figure B.1: Floor segment of a car; left: diffuse color, right: tessellated wireframe.

Figure B.2: Front panel design; top: diffuse color, bottom: tessellated wireframe.
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