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Abstrakt: Tato práce se zaob́ırá se správou virtuálńı paměti v Linuxovém ker-
nelu. Soubory nebo zař́ızeńı mohou být mapována do virtuálńı paměti pomoćı
systémového voláńı mmap(), které je také schopné vytvořit takzvané anonymńı
mapováńı. Ty nic nemapuj́ı a slouž́ı pouze jako metoda alokace paměti, která
může specifikovat ochranu paměti a př́ıznaky pro vytvořenou anonymńı oblast
virtuálńı paměti (VMA). Mapováńı lze sloučit nebo rozdělit v závislosti na jeho
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demonstrováno, že ve většině př́ıpad̊u lze s přiměřeným úsiĺım odstranit překážky
a dojde k sloučeńı.
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Introduction
The Linux kernel manages virtual address space of each process using Virtual
memory area (VMA) structures to represent mapped ranges. Each area can map
a part of a file or be anonymous which makes it basically just a block of usable
memory.

The memory areas can be created, removed, resized, split or merged as a result
of mmap(), munmap(), mremap(), mprotect() and other syscalls. Ideally, each vir-
tually contiguous range mapping a single linear file segment, or anonymous mem-
ory, with single set of attributes such as read-write-protection, would be always
represented with a single VMA. However, for anonymous memory ranges, the cur-
rent implementation may not merge their VMA structures after non-contiguous
ranges become contiguous due to implementation limitations. Thus in processes
utilizing mremap() heavily this limitation results in extra memory and CPU over-
head due to the need to manage larger amounts of VMA structures. An unaware
application can even gradually create lots of mappings and eventually exhaust the
mapping limit. Also due to another limitation in mremap() implementation, it’s
impossible to mremap() areas that should be contiguous, but consist of multiple
VMA structures, in a single syscall.

This thesis is about low-level details of the kernel’s memory management. The
target audience are kernel developers and daring students. The reader should al-
ready be familiar with the virtual memory concepts including the process memory
structure, the address translation and paging, parallelism including locking, sys-
tem calls and operating systems in general. Understanding the Linux kernel is
no easy task because the documentation is scarce and incomplete. Also, getting
the community to thoroughly review the code is sometimes close to impossible.
The only way leading to a success are therefore incremental changes, debugging
and testing to slowly acquire the knowledge and experience needed to get to the
bottom of it, however deep the bottom is.

Document structure
This chapter is a short summary of what you can find in individual chapters.
If you already have a good grasp of the kernel, feel free to skip Analysis and
continue directly to Design and other chapters.

Analysis
This chapter briefly introduces Linux as an OS and its development process.
Then, it dives into the development tools necessary for the analysis of memory
management from the memory mapping point of view. This contains description
of individual functions and structures, as well as more high level point of view of
the whole system.
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Design
The design describes changes to the kernel that were necessary to address the
current VMA merge shortcomings. This includes the design of individual helper
functions, as well as a complex description of the individual patches, including
vma_merge() refactor, page offset update, different anon_vma merge, mremap()
expansion merge and tracing.

Testing
Testing describes all tests including merge tests, analytic programs and other
specialized tests. The tests are added as an attachment to this thesis.

Results
This chapter presents all results of this thesis. Specifically, it provides an overview
of the hardware and software used for the measurements, speed and successful
merge count results, and of course the final summarization of advantages and
limitations.

Problem specification
When merging two VMAs, a number of conditions have to be met. Most impor-
tantly, the second area has to follow the first without an empty space between
them. This is checked using the sizes of the areas and their start addresses. If
the memory is a mapping of a file then also the page offsets in the file have to
follow. For example, if the first area contains, in order, pages number 4, 5 and
6, then the second area has to follow with page number 7 and possibly others.
And of course both areas must be mapping the same file. Unfortunately, there
is no exception for anonymous mappings regarding the page offsets and so this
condition is required even when the mapping has nothing to do with files.

The page offsets of anonymous mappings are initially set equal to the virtual
address of the mapping with page bits removed. This is done as the mmap() call
creates the area. The offset is left unchanged when the area is moved using the
mremap() call after at least one page in the mapping has already been faulted.
Later, when a merge is attempted between this and another VMA, the page offset
may not follow up, because it was not updated after the move operation. Such
a VMA cannot merge with basically any other VMA, which causes unnecessary
and long term mapping fragmentation.

Additionally, because VMAs can be shared among processes and can be cre-
ated and removed pretty easily, there is a structure called Anonymous VMA
structure (AV), which is referenced from a VMA and also from each page. When
merging two VMAs, their references must point to the same AV. A VMA can
map pages belonging to different AVs only in certain cases, for details see What
prevents merges (page 35). Therefore, if the VMAs point to different AVs, the
merge also fails. Unfortunately, in many cases two VMAs that would otherwise
be perfect match for a merge do not share the same AV and cannot be merged.
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The last identified opportunity for a merge is when the mremap() call ex-
pands an already existing mapping and this growth causes the adjacent gap to
disappear. In this case, a merge attempt with the next VMA might succeed, but
unfortunately, the current kernel omits the necessary call to vma_merge() in such
a situation.

Implementation brief
The solution is theoretically quite simple. Update the page offset during
mremap(), modify the anon_vma check and call vma_merge() after the mapping
expansion. Unfortunately nothing in kernel is easy. The page offset is not only
saved in the VMA itself, but also in page structs that represent physical pages,
specifically its page→index field. Updating the page offset therefore implies up-
dating index in all the page structs. This means locating all of them by the means
of page tables, which can be walked using the page walk mechanism already im-
plemented in the kernel. Another problem is that these pages might be shared
e.g. due to the Copy on write (COW) mechanism, in which case changing the
page offset is not possible as it would change for all the VMAs mapping it and
that would affect other processes than the one actually calling mremap(). Sharing
can be detected by looking at the AV relations and physical pages themselves.

Merging two VMAs linked to two different AVs is also problematic and again
requires changes to the page structures and so the pages must not be shared as
well. The AV pointer is stored in page→mapping and can be updated using an
already existing function. We again use the page walk to get to the page itself.

The only relatively easy part is the last change, which just means to call
vma_merge() after a mapping is expanded.
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1. Analysis
This chapter presents the Linux kernel, its development process, the coding style
and the debugging tools. It also describes the high-level memory management in
the kernel and also the individual functions and mechanism related to the map-
pings that must be understood before the patches can be explained. This whole
chapter is based on kernel version v5.18. Skilled kernel memory management
developers can jump directly to Design (page 35).

1.1 Linux
Today’s Linux distributions are open-source Unix-like operating systems consist-
ing of the Linux kernel and supporting software libraries and packaging systems.
The resulting product is therefore a combination. Although there are big soft-
ware differences between individual distributions, all the main distributions use
the same Linux kernel. Any change or upgrade to the kernel means an upgrade
to all such distributions and can potentially have a huge impact.

1.1.1 Linux kernel
The kernel was initially released on 5th of October 1991 and nowadays is the
fastest growing operating system in the world, supporting various devices includ-
ing embedded, mobile, personal, servers and even supercomputers.

1.1.2 Development process
The most up to date public version of the Linux Kernel can be found in the git
repository created by the Linux Foundation1. If anyone wants to commit to the
kernel, he/she has to make changes against some specific version as is described
in the Documentation/process folder and especially in the submitting-patches.rst
file located in the git repository itself. As a result, all changes in the kernel can
be seen as individual commits, at least for several last years. This is very useful
when trying to understand the changes because it is easy to find the corresponding
changes in other parts of the kernel and usually a commit message explaining the
idea behind it. Git itself was created by Linus basically for kernel development
and is therefore embedded deeply in the development process.

When the work is done, the commits are converted into patches and are then
send as emails to the Linux mailing list2 and also directly to the people responsible
for the part of the kernel changed. There is a tree system of maintainers and if the
patch is to get merged into the mainline, it has to go through one branch from the
bottom to top where Linus performs final check. When a given maintainer agrees
with the patch, he/she just adds his sign-off signature to the email message/patch.
All of the approved patches are then merged with the mainline to create a testing

1Linux repository - https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/

2Richman [2021]
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version. Apart from several test frameworks, most of the testing is done by just
running the test version on as many devices as possible. It is made possible
by quite a big community of kernel testers that voluntarily install and use this
unstable version. This is mostly regression testing to ensure everything that
worked before still works, stability is required much more than new features.

All of the development communication is done by sending emails, which nowa-
days seems as a really obsolete development tool. At the first glance at thousand
of emails daily with patches and other discussions about kernel, it really is over-
whelming. If they were not well-formatted git patches that were being send
around, most probably everyone would have gotten lost by now. The trick is also
to use the right set of filters, spam blockers and if everyone follows the rules it
just works. The fact the kernel is a functioning and widely used OS can serve as
a proof.

1.1.3 Tools used for development
This is a list of tools that can be used for easier development.

vim

Vim is a modified version of vi, which stands for visual. It is a command line
text editor and can edit all kinds of documents including source files in this case.
It can be used as an editor to make simple changes, but vim can do much more
than that. The editor is packed with commands that can be used to copy or
move text, search patterns of text, replace text, traverse multiple files and most
importantly create macros that are basically saved series of command that can
do several simple tasks at once to achieve a complex change. When using several
tabs with several files opened, you might want to consider using view command
as a read-only variant of vim. Otherwise navigating to function definition might
try to open a file for writing which is already opened for writing, which results
in an error.

grep

Grep is a shell command used for finding patterns in its input, which is usually a
file. This is probably the most useful tool to find definitions of functions, macros
and variables. Additionally it can be used to find the correct function if you just
guess part of the name or something that might appear in a comment nearby.

git

Git is a fast and distributed version management system. It is usually composed of
upstream and local repositories. Local repositories are located at the development
devices of individual contributors, upstream repository is usually located at a
server either on premise or supplied by a third party.

A git repository consists of individual commits as small and compact change
blocks and these commits together build up a graph with branches representing
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individual features. Branches are usually merged back into the mainline branch
called master.

Local repository is fully functioning copy and can use wide scheme of git
commands. The history can be modified using rebase or cherry pick commands.
This enables any user to achieve a clear and obvious step by step development
history.

Concurrent modifications can also create conflicts when trying to merge two
versions together. This is usually problematic but with git, it can in many cases
be fully automatic and even if manual resolving of conflicts is needed, it is often
quite straight forward.

Third party providers like GitHub or GitLab provide web frontends to man-
age the project and also offer many additional features that can enhance the
development process like CI/CD.

ctags

This tool can process source files and create tags for individual elements like func-
tions and properties. This allows for a quick search of definitions for function calls,
which is used usually by client tools like vim (ctrl+] to find definition and ctrl+t
to return). This upgrades vim to very useful source file viewer and dramatically
decreases the time and effort needed to find definitions of helper functions used
in the kernel. Unfortunately, it is not always accurate and sometimes fails to find
the definition completely. Accuracy is problematic when multiple definitions for
the same function are provided for different architectures or configurations. If the
user does not pay attention, he might not realize the definition is valid only for
the specific architecture. Another problem is with macros, where the localization
of definitions sometimes fails completely and the only solution is using grep.

1.2 Running the kernel
This section contains the whole process from getting the source files to building,
running and debugging a modified kernel.

1.2.1 Getting source files
The most recent source files can be found in Linus’s git repository3. However for
normal uses the stable releases are ideal. This basically means to not use release
candidates versions ending with the rc suffix.

1.2.2 Building
Before building the source files, the kernel build has to be configured properly de-
pending on your hardware and preferences, producing the .config file. This can

3torvalds/linux git repository - https://github.com/torvalds/linux/commits/master
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be quite hard for an inexperienced user but there are tools to do this automati-
cally like genkernel for Gentoo. The generated configuration is not as optimized
as if it was created by a skilled administrator, nonetheless the result is a functional
configuration. The compilation itself can take some time, although on faster de-
vices it should not be too long. Additionally, thanks to make, recompilation of
partially modified kernel only recompiles the modified files.

1.2.3 Running the kernel in a virtual machine
When making changes to the kernel code and especially in the early phases, it is
not a good idea to run the kernel on physical HW, as the code is most probably
not completely flawless. Therefore it is best to run the kernel first virtually
using qemu or its wrapper virtme. This will quickly reveal badly malfunctioning
versions without threatening any real system. It is also quicker and overall more
convenient to start a virtualized system. However, after the code seems to work
more or less, it can be tested in a normal environment doing to get rid of the
remaining bugs.

1.2.4 Debugging the Kernel
From my point of view, the documentation seems mostly incomplete or hid-
den very deep in the git commit messages. Some parts of code are quite well
commented and understandable, but other are rather unintuitive. Most of the
compact documentation on the internet is sometimes obsolete and sometimes it
is hard to distinguish if it is obsolete or just incomplete. When you finally seem
to understand what you need to do and you create a patch that builds and even
solves the problem, you are left with debugging the side effects causing bug re-
ports in kernel or other problems. Judging by my experience, it is usually very
hard to pinpoint the source of the problem and create an appropriate fix. And
when you do, you cannot be sure if it really helped, because replicating the prob-
lem is often not possible and you just have to wait if the problem reoccurs again
or if it was truly resolved by the fix. One thing that can help is to add warnings
or bug calls for any unexpected state of things, an overview can be seen in Table
1.1.

When you want to run the modified kernel on a hardware device, you have to
choose an appropriate Linux distribution that supports custom kernel versions.
Usually it is possible for almost every distribution, however, some distributions
make it very easy as Gentoo did for me.
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Name Description
BUG Usually calls some special or invalid instruction. This in-

terrupts the execution of the system call and the kernel
is not responding properly to future requests, although
the OS is not completely frozen. Specific behaviour de-
pends on the architecture and the kernel version.

WARN Basically prints similar information as BUG but does not
interfere with execution. Although the same problem
that triggered the warning might cause other problems
in kernel.

BUG_ON Internally calls BUG.
VM_WARN_ON Internally calls WARN_ON if CONFIG_DEBUG_VM is set.
VM_BUG_ON Internally calls BUG_ON if CONFIG_DEBUG_VM is set.
VM_BUG_ON_PAGE Dumps the given page and internally calls BUG if

CONFIG_DEBUG_VM is set.
VM_BUG_ON_FOLIO Dumps the given folio and internally calls BUG if

CONFIG_DEBUG_VM is set.
VM_BUG_ON_VMA Dumps the given VMA and internally calls BUG if

CONFIG_DEBUG_VM is set.
VM_BUG_ON_MM Dumps the given memory descriptor and internally calls

BUG if CONFIG_DEBUG_VM is set.

Table 1.1: Overview of bugs and warnings calls.

1.2.5 Kernel coding style
This subsection is abbreviated as all the important and usually up-to-date in-
formation is located directly in the Linux kernel’s git repository. According to
GitLab’s statistics, the kernel and related scripts in the repository are mostly
written in C ( 98.5%), Assembler takes up about 1 %, makefiles and other scripts
take the rest. Coding style is more or less standard for C and is quite extensively
described in the Documentation/process folder in the files coding-style.rst and
4.Coding.rst.

The first and obvious difference against probably any modern code is the use
of gotos, which is not recommended in modern coding style. But their use in
kernel is quite reasonable and prevents problems when changes are necessary. It
is often used for clean up at the end of a function and because of some possible
errors there might be several exit points. All of these can be directed to the right
code at the end of the function via mentioned gotos. This saves unnecessary code
duplication and ensures clean up is done thoroughly in all cases. There might be
several labels for gotos to enable for gradual clean up depending on how deep in
the function the thread gets before encountering an error. This is of course not
the only use for gotos. A more complex application might be the context switch
and other tricks in the deepest levels of the kernel.

The rest of the coding style is quite normal and can be easily found in the
git repository as mentioned before. However, not all parts follow the standard as
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mostly the older code remains in the state as it was written years ago as there is
no good reason to modify code just because of coding style.
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1.3 Memory management in the Linux kernel
The main role of the memory management is to distribute the available memory
among the running processes and collect the unused memory, either indicated by
a process or from a finished or a killed process.

Today’s devices usually have gigabytes of memory. Although in some cases,
like embedded computers, the actual amount can be a lot lower. Memory is split
into addressable units which are usually several bytes, e.g. 64-bit processors have
natively 64-bit addressable units, although in some cases it might be possible to
operate with smaller units like 32-bit.

1.3.1 Virtual memory
All of the memory resides in an address space, but because it would be impractical
for all processes to use the same address space and it might cause interference
between the processes, virtual address spaces are used. This means that every
process has its own address space and individual addresses are translated by the
CPU when they are accessed. This address space is called virtual address space
and the memory is therefore called virtual memory.

In the address space, the memory is divided into areas, which usually share
some parameters like access rights and other flags, which depend on what is
actually stored in the memory.

1.3.2 Program memory anatomy
As mentioned before, program’s memory is virtualized and addresses are trans-
lated into their physical counterparts using page tables.

The address space of each process can be split into several main parts. These
parts are the kernel space, the stack, the memory mappings including mapped
files and mapped libraries, the heap and the uninitialized and initialized static
variables and of course the binary image of the process’s code.

The individual memory mappings of a process can be examined by reading the
/proc/$pid/maps file and also /proc/$pid/smaps, which is even more detailed.
The $pid can also be replaced with self for some use cases.

Kernel space

The kernel space is used to store kernel’s data and code and is part of the virtual
address space, but it maps to the same physical memory in all processes. The
kernel space is not directly accessible by a process, such an attempt will result
in a page fault. Instead, a system call must be made to ask the kernel to do
something for the calling process. This ensures that potentially malfunctioning
or even insidious software will not be able to cause serious harm. On the other
hand, user space, which contains all other parts of the address space, can be
directly accessed by the process and usually changed as needed.

13



Stack

The stack is used to store local variables and function parameters. When a func-
tion call is made, all parameters (except for those passed directly in registers) are
pushed to the stack and vice versa when the function returns. Stack is therefore
dynamically growing and shrinking as needed. If many function calls are made,
the stack might need to grow too large and exceed the maximum stack size. When
this happens, the process is killed by the kernel. The limit ensures the stack will
fit in the address space and not collide with any neighbouring memory segments.
Each thread has its own stack and therefore even with plenty of available memory,
multi-threaded applications might take up lots of address space.

Memory mappings

This is the part of process’s memory where files can be mapped into virtual
memory. This can be done using the mmap() system call and is usually used to
map extensively used file data. Dynamic libraries are also mapped in this way,
and, for this thesis most importantly, anonymous memory mappings. The name
itself is quite confusing, because it is not really a mapping but rather just a block
of memory available for program’s data.

Heap

The heap is used for runtime memory allocation that is not bound to function
lifetime and can be used via pointer. Heap can be used to allocate bigger data
segments like arrays and data can also be shared with other threads. Allocation
is usually done via the malloc call. Heap can be extended using the brk system
call if it runs out of space. After several cycles of allocating and freeing memory
blocks, there might remain gaps which can be too small to use. This is called
heap fragmentation and can be quite problematic in languages without garbage-
collection.

Static variables

Static variable are divided into two segments. The first contains the uninitialized
static variables, which are stored in an anonymous memory area. The second
contains initialized static variables, which are stored in the binary file which is
mapped using a private memory mapping, which ensures that potential changes
are not reflected in the underlying file and static variables are initialized to values
defined in the source code in the next run.

Binary image

The last is the binary image, which stores all the code and also string literals like
error messages and so on. It is again private memory mapped binary file, which
ensures immutability of the code.

A more detailed explanation can be found in an article at
manybutfinite.com4.

4Duarte [2009a]
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Figure 1.1: Memory descriptor struct. Source: https://manybutfinite.com

1.4 Memory descriptor
In Linux, every process is implemented as an instance of task_struct structure.
Memory itself is described in mm_struct, which is accessible through the mm field
in the mentioned task_struct. mm_struct contains the start and end addresses
of all the segments mentioned in the previous subsection as can be seen in Figure
1.1, the number of physical memory pages of the process, the size of virtual
address space total_vm and other data.

Most importantly mm_struct contains a pointer to a list of virtual memory ar-
eas
struct vm_area_struct *mmap and pointer to page tables pgd_t *pgd. Also
important is the lock struct rw_semaphore mmap_lock, which locks the whole
structure during mmap() or mremap() calls.

The stack grows down from start_stack and so do memory mapped areas
from mmap_base. The heap grows up from start_brk and has also an end pointer
called brk. The data segment is restricted by start_data and end_data, the code
block is restricted by start_code and end_code, these segments do not grow
in any direction, because they are immutable. Each of these areas is internally
implemented as vm_area_struct and can be traversed via vm_next as can be seen
in Figure 1.2, vm_area_struct is in more detail explained in Virtual memory
area (page 22).

A more detailed explanation of the memory descriptor and the source of figures
is in How the kernel manages your memory5.

5Duarte [2009b]
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Figure 1.2: Memory descriptor and areas. Source: https://manybutfinite.com

1.5 struct page
This structure is a representation of a physical page, which usually has a size of
4096 bytes as it has been since the very first Linux kernel, and contains a number
of various flags and other properties. The following two paragraphs describe only
the two most important properties for this thesis, which are index and mapping.
Useful functions operating with struct page can be viewed in Table 1.2

The page→index property stores an offset of this page within its mapping.
Imagine we are mapping a second half of a file containing altogether 10 pages,
then the indices of the pages will be 5, 6, 7, 8 and 9. If they all reside in a single
VMA then the VMA’s vm_pgoff (page offset) will be the page offset of the first
page that is 5. In the case of the anonymous mappings, that do not map any
files, the page offset also exists and is e.g. used during Rmap walk (page 33) to
pinpoint the correct VMA from the list of VMAs related to the AV of the page;
the AV is accessible via page→mapping explained next.

The page→mapping property can store a pointer to anon_vma and also two flags
(PAGE_MAPPING_ANON and PAGE_MAPPING_MOVABLE) in the lowest two bits.
anon_vma itself can be access through page_get_anon_vma() function if it is
assigned to the page. PAGE_MAPPING_ANON is set if the page is anonymous and
mapped into a user virtual memory area. PAGE_MAPPING_MOVABLE is used during
migration. A combination of the previous two bits is defined as
PAGE_MAPPING_KSM, which means the page is a KSM shared page and in this case
page→mapping points to a private structure of the KSM. The bits are defined in
include/linux/page-flags.h. In case of a page shared among several process
through the COW mechanism, the mapping property points to the root anon_vma.
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Function/Constant Description
page_mapcount() The number of times given page is referenced by a

page table.
page_swapcount() The number of references to the given page that

are in swapped out state.
follow_page() The function used to locate and return a page

based on its VMA and virtual address. It per-
forms an operation similar to a page walk to get
the correct PTE. When working with the PTE, it
locks it using pte_offset_map_lock() and also
waits for possible page migration to end if the
FOLL_MIGRATION flag is set.

vm_normal_page() Simplified follow_page that gets a direct pointer
to the PTE and therefore does not have to perform
a page walk. Also omits some checks compared to
follow_page().

PAGE_SHIFT Determines the page size and is used to shift the
virtual address to remove page offset bits. It’s
value for standard 4096 (212) byte page is 12.

Table 1.2: Overview of some page functions and a constant.

Compound page

Compound page is a group of two or more physically contiguous pages that can
in many aspects be treated as one large page. This is used to create transparent
huge pages, but can be used for other purposes as well.

The page flags are used to mark a compound page and distinguish between
head and tail pages. This differs for 32-bit and 64-bit systems, but the functions
PageCompound(), PageHead() and PageTail() create a common interface.

The page offset, which is normally saved in the page→index, is saved in the
page→index of the head page. The tail pages can reuse the page→index for other
metadata like page order in case of page[1] (second compound page). Functions
thp_nr_pages() or compound_nr() for general compound pages can be used to
get number of regular pages in the transparent huge/compound page. Compound
pages are covered by a LWN article6.

Folio

Folios are an abstraction level to cover pages and compound pages under a com-
mon interface. Otherwise when a function works with a page that is a part of
a compound page, it might expect a head or a tail page. Page folios create a
common interface for all functions that operate with normal or compound pages.
The functions using folios are guaranteed that they will receive a normal page or
a head page in the case of compound page and therefore do not have to check

6Corbet [2014]
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each time. This is quite a new concept7 and therefore there is still old code not
fully using folios.

1.5.1 Page tables, page translation
Entries PGD, P4D, PUD, PMD and PTE are all parts of the virtual address and
are levels of indirect addressing. Full names of the shortcuts follow.

• Page global directory (PGD)

• Page level 4 directory (P4D)

• Page upper directory (PUD)

• Page middle directory (PMD)

• Page table entry (PTE)

Page middle directory (pmd)

PMD level is important because migration waiting (see Migration (page 21)) is
done at this level and also transparent huge pages take up a whole PMD range
and can be accessed using the PMD entry.

Page table entry (pte)

PTE is the lowest level and each PTE entry represents a single page or a subpage
of a compound page (see Compound page (page 17)). Page struct is obtainable
using the vm_normal_page() function. Not every PTE necessarily points to a
page struct, as it is possible that the page is swapped out, as can be determined
using is_swap_pte() in which case the PTE can be converted to a Swap entry
(page 20) using pte_to_swp_entry() function. Another case when PTE does not
point to a page is during migration. If a page is present or not can be determined
by checking the PTE entry bits, which is done using the pte_present() function.
What bits precisely are checked depends on the architecture. Converting PTE
to a page struct inside vm_normal_page() function is done by shifting the PTE
value and treating it as an index into the mem_map array, where the page structures
are stored8.

Everything is pretty nicely described in Mel Gorman’s book9 and a more up
to date LWN article10.

7Corbet [2021]
8see Documentation/admin-guide/kdump/vmcoreinfo.rst → mem map
9Gorman [2004a]

10Corbet [2017]
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1.5.2 Pagewalk
The pagewalk mechanism walks page tables and applies user defined callbacks.
There are multiple entry functions, with the main two being walk_page_range()
and walk_page_vma(). The pagewalk goes recursively through all page table
levels (from pgd to pmd and pte). The walk is directed by the mm_walk structure,
which contains page_walk_action, vm_area_struct, mm_walk_ops and other
parameters. The mm_walk_ops structure contains, among other things, entries
for all page table levels and entries that are called before and after entering a
VMA.

walk→action

An action is a mechanism that allows user-specific callbacks to instruct the page-
walk core on further actions. ACTION_CONTINUE can be used to skip PTE action
when PMD action is successful. This is useful when PMD represents a transparent
huge page and the desired operation is performed at this level and further action
on PTE does not make sense or would break something. ACTION_AGAIN can be
used to repeat certain action if previous attempt at the given page table level
fails. The default setting is ACTION_SUBTREE, which continues with actions on
lower page table levels.

walk pte range inner()

This function calls a predefined pte_entry operation on each PTE in a for-cycle.

walk pte range()

This function calls pte_offset_map_lock() or pte_offset_map() to protect the
whole PMD. Walks through PTEs by calling walk_pte_range_inner().

walk pmd range()

This function walks through the PUD range, goes through an array of PMDs and
calls walk_pte_range() for each. If the PMD holds a hugepd, then
walk_hugepd_range() is called.

1.5.3 Forking and Copy-on-write
When forking a process, fork will not create copies of all the necessary data
immediately, but the two processes (parent and child) will share some pages as
long as they do not write to them. When the page is to be written for the first
time after the fork, then the page is first copied and only afterwards modified.
This saves memory that would otherwise be wasted for duplicate copies and also
saves some operation time that would be consumed for the copying itself at that
time. This is especially important when the first thing the new process does is
calling exec to load a new program, which would make all the copying completely
useless. More details can be found in an article at Halolinux.us11

11Frazier [2022]
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During mremap() or vma_merge() mmap_lock is locked and therefore forking
cannot interfere with either of the mechanisms.

1.5.4 Kernel samepage merging
KSM is a de-duplication mechanism that can merge private anonymous pages
with identical content. The KSM daemon periodically scans areas of memory
specified by a madvise call and if duplicates are found, they are replaced by a
single write-protected page. If the page is modified later then it is automati-
cally copied before the modification itself. This mechanism is mainly used in
virtualization to prevent duplication between individual instances but can be
used anywhere. It can be quite demanding though in terms of processing power,
so it should be used with care. To activate the daemon, value 1 has to be
saved into the /sys/kernel/mm/ksm/run file. Also other important parameters
must be set in order for the daemon to work properly, these are pages_to_scan
and sleep_millisecs located in the same folder. The pages_to_scan param-
eter specifies how many pages should be scanned, low value can dramatically
increase the time needed for the daemon to find duplicates, the same goes for
sleep_millisecs, which prolongs waiting time.

More details about KSM can be found in the kernel documentation12 in the
git repository.

1.5.5 Swap
Swapping is the process of removing pages from memory and storing them to a
long-term storage device. This is usually done to acquire free memory that is
needed for other purposes. A more precise term for swap is page out, which is
also sometimes used in the kernel. For the purposes of this work, it is necessary
to be aware of swapping as it means some pages might not be present in memory
when merge is attempted and such a situation is reflected in the state of the
concerned kernel structures, most importantly the swap entry.

Swap entry

Normally, when a page is mapped into virtual memory, there is a PTE point-
ing to this page. However, when the page is not mapped, the PTE internally
holds an instance of a swap entry. The swap entry can be converted into the
swap_info_struct to get the number of processes referencing it either as mapped
or as unmapped (swapped out).

Swap map

The swap_info_struct structure has a variable called swap_map, which is an
array of reference counts of the swapped page. Each cell can hold the maximum
value of SWAP_MAP_MAX, which is 0x3e. If the reference count gets higher, a special
mechanism using continuation pages is used to extend the maximum possible
value. Continuation pages can be allocated several times to support very high
reference counts that can be caused by e.g. swapped out KSM pages.

12see ”Documentation/admin-guide/mm/ksm.rst”
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Swap cache mechanism

This mechanism ensures consistency between memory and swap space when a
shared mapping is created among several processes and one of the pages is being
swapped out. This can happen even for a private mapping as it can be shared
using the COW mechanism after a fork call.

When attempting to swap out a page, the page is first added to the swap
cache and then an attempt is made to unmap it for all the processes using it. The
Rmap walk (page 33) is used for this purpose and it is done by converting the
appropriate PTEs to instances of a swap entry.

Until this is done, the swap cache is being used to ensure consistency. This is
necessary as the whole process can take some time and in the meantime one of
the other processes might try to write to the page. The swap cache ensures that
such a write is successfully written to the backing storage.

If the unmap fails for even one process, the whole swapping attempt is can-
celled as it would not make any sense because the page has to remain in memory
as long as even a single process has it mapped.

Another use for the swap cache is in the reversed situation, when a shared
page is swapped out and one process accesses it. In this case the page is swapped
back in and the PTE of the faulting process is marked as present. However, the
other processes do not get notified and still see this page as swapped out and the
swap cache again ensures that possible changes in memory from one process are
not overwritten by an outdated version in the backing storage.

More details are available in Mel Gorman’s book13

kswapd()

The kswapd() function is responsible for swapping when running out of memory
or already out of memory. kswapd() is started as a kernel thread at the boot
and continuously monitors memory. The pageout() function actually performs
the action but kernel first jumps through a series of other functions doing the
necessary preparations.

1.5.6 Migration
The migration mechanism can be used to move physical pages between memory
of separate NUMA nodes or during memory compaction14. If the page is being
moved then all PTEs mapping the page are set to a migration entry that signals
the operation is in progress. The underlying page struct cannot be accessed at
such time.

13Gorman [2004b]
14Zhang [2021]
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1.6 Virtual memory area
The virtual memory area or shortly VMA is at the center of memory management
in kernel and also this thesis. As the name states it describes a memory area as
a part of the virtual memory of a process. Sometimes VMA is referred to as a
mapping. Each VMA has a start and an end address, a file pointer and also a page
offset, referring to an offset in a file in number of memory pages. Other attributes
include protection rights, a pointer to an address space, the embedded node of a
red black tree containing other VMAs, a number of flags and most importantly
a pointer to its anon_vma and a linked list of anon_vma_chain structures as
described in the following section Anonymous virtual memory area aka AV (page
22).

1.6.1 Flags
When creating a virtual memory area a number of mmap() call flags can be used.
The individual flags are described in the mmap() manual page, but I will mention
some of them here as well. The most important one for us is MAP_ANONYMOUS,
which creates a mapping that is not backed by a file and basically provides a chunk
of memory to the caller. An anonymous mapping can be used in combination with
MAP_PRIVATE to create a private mapping not shared with other processes. On the
contrary MAP_SHARED creates a mapping shared among several processes and can
be used to share data, communicate etc. Another useful flag is MAP_FIXED, which
enforces the use of the specified address parameter, that is normally only taken as
a hint, any existing mapping standing in the way is discarded. More details about
various flags are described in the mmap() syscall manual page. Each mapping
also has an attribute called vm_flags which holds similar flags, but not quite
identical. All vm_flags flags are defined and described in include/linux/mm.h.
Conversion between the two sets of flags is defined by the mmap() implementation.

1.7 Anonymous virtual memory area aka AV
The anon_vma heads a list of private ”related” VMAs. These VMAs are related
because they usually originated from a single VMA either by forking or splitting.
When mmap() is called on a range adjacent to an already existing VMA then the
anon_vma of the already existing VMA can be reused when the new mapping is
faulted to enable future merge when both VMAs share flags and other parameters.

The AV structure is important because VMAs come and go as they are split
and merged in mprotect(), mremap() and other syscall calls. The anon_vma
serves as a relatively stable structure that anonymous pages can point to and
anon_vma then points to a list of the VMAs. For example when we want to swap
out a page, we need to unmap it from all the VMAs mapping it. Which is easily
and efficiently done using the pointer to the AV and then by going through its
VMAs.

The list (internally a red black tree) of VMAs can be traversed through the
rb_root variable. More details follow.
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Figure 1.3: AVC overview.

1.7.1 Structure anon vma chain
Copy on write can cause an anon_vma to become associated with several processes
and therefore even several VMAs. Furthermore each child VMA must have its
own anon_vma. When child process writes to a page then the page is copied (by
COW) and the copy is assigned to child’s own anon_vma. This means that the
relation goes both ways, each VMA can be related to several anon_vma and each
anon_vma can be related to several VMAs. This is where AVC (anon_vma_chain)
comes in.

In figure Figure 1.3 we can see a simple example consisting of two VMAs
sharing a common AV, e.g. as a result of a fork. The top line belongs to the
parent process and the other items belong to the child. The child VMA also has
its own AV. Generally speaking each AVC points to its VMA and to its anon_vma
(black links). Each VMA can have several AVCs that are linked together through
a linked list (red links) starting in anon_vma_chain variable in a VMA struct. On
the other hand each AV can also have several AVCs that are organized in a red
black tree (blue links) with root stored in rb_root variable in the AV structure.

Quite good, although slightly outdated, article about anonymous VMAs and
their relations called The case of the overly anonymous anon_vma15 can be
found at lwn.net.

15Corbet [2010]
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1.8 The mmap() function
void *mmap(void *addr,

size_t length,
int prot,
int flags,
int fd,
off_t offset)

This is the central syscall of the whole work. As the manual page says the
mmap() call can be used to map files or devices into memory, but apart from that
it can also created mapping which do not map any files and are basically just an
allocation of memory or rather the first step in the process. These special map-
pings are called anonymous and are created using the appropriate flag argument
called MAP_ANONYMOUS.

For the purposes of this thesis we will not deal with the file or device mappings
directly, but sometimes we will come across them, so it is important to keep their
existence in mind.

mmap() only creates the VMA but does not allocate anything. This a lazy
approach betting on the possibility that the memory might not be used or maybe
not fully at this time. Also allocating big amounts of memory instantly might
seem slow and it can be better to allocate the memory over a period of time as
needed. This is closely connected to anon_vma allocation, which is not created
during the mmap() call, but later after the first page fault. A fault can either
allocate a new anon_vma or it can reuse one already being used by a neighbour-
ing VMA, if it has identical vma policies and other flags. This is checked by
find_mergeable_anon_vma() function, which is called through series of func-
tions from handle_pte_fault(). Reuse is important, because areas with differ-
ent anon_vmas can never merge as merging of two VMAs with different anon_vmas
is not allowed.

The actual properties of the created mapping can be specified by the call
parameters, which include the desired address and length, the protection setting,
the file descriptor and the offset in the file. For this thesis, file mappings will be
just marginal topic as it mostly concentrates on anonymous mappings.

Even though page offset originally meant offset inside of the mapped file, the
anonymous mappings use it as well. However the value is set as a page offset from
zero address and is therefore calculated as address >> PAGE_SHIFT. This is very
important when it comes to merging later as page offset is one of the parameters
compared before a successful merge.
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1.9 The vma adjust() function
int __vma_adjust(struct vm_area_struct *vma,

unsigned long start,
unsigned long end, pgoff_t pgoff,
struct vm_area_struct *insert,
struct vm_area_struct *expand)

This function rearranges VMAs locally, effectively performing a merge, or
reassigns part of one VMA to another. The vma_adjust() function is just a
wrapper for __vma_adjust(), which contains the implementation. All the pa-
rameters are more or less self-explanatory except for insert, which holds a new
VMA that is to be inserted into the VMA interval tree and other structures when
the vma_adjust() call is a result of a split operation. Other less understandable
parameter is expand, which marks which VMA should be expanded when merging
two or three VMAs together.

For the purposes of this section I will use the variable names from the code.
First, the parameters start and end are compared with the next VMA to de-
termine the intersection and set the appropriate remove_next and adjust_next
variables, which are later applied. There is also the importer-exporter mech-
anism, which ensures that when moving pages between two VMAs, where the
receiving VMA does not have an anon_vma assigned to it, then the providing
VMA’s anon_vma is used.

When preparations are ready, the actual adjusting is to be done. This consists
of basically 2 parts. The first part is locking and unlocking of appropriate locks
and adjusting boundaries and other parameters. The second part is removing the
obsolete merged structures and cleaning up, the more sensitive part of the clean
up is done before releasing the locks. When the vma is to be merged with not
one but two following VMAs, which is indicated by remove_next value, then the
adjusting is repeated twice, once for each of the merged VMAs. This is necessary
because the presented code is capable of merging only two VMAs at once and
therefore the merge is basically done twice.
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1.10 The vma merge() function
struct vm_area_struct *vma_merge(

struct mm_struct *mm,
struct vm_area_struct *prev,
unsigned long addr,
unsigned long end,
unsigned long vm_flags,
struct anon_vma *anon_vma,
struct file *file,
pgoff_t pgoff,
struct mempolicy *policy,
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name)

Function vma_merge() is used for attempted merging of VMAs. This function
is called when a new VMA is created or when an already existing VMA is moved,
resized or otherwise modified and there is a chance it might be merged with
another VMA. Possible candidates are the previous and the following VMA. If
the VMA in question neatly fills the hole between the two VMAs, all three of
them might be merged together.

A number of conditions have to be fulfilled before the merge itself can be
executed. First, the VMAs have to be adjacent, this in case of the previous VMA
means that prev→vm_end == addr and for next VMA it means
next→vm_start == end. Apart from this, both VMAs also have to be compatible
in regard of their policies and also other flags and parameters including page off-
sets. This is checked in two special functions (Function can vma merge before()
(page 27) and Function can vma merge after() (page 28)), which depend on
whether the VMA being merged is before or after the VMA we are merging
to.

A big issue preventing merging of VMAs is impossibility to merge two VMAs
linked to two different AVs. This is because it is problematic to change to which
AV a particular VMA is linked to. Every physical page, respectively every struct
page representing it, has a pointer to its AV and so each physical page may be
linked to only one AV. But the page might be used by several processes and there-
fore several VMAs. Each VMA has only one main AV, but can have several other
AVs connected via AVCs. These other AVs are the result of a COW operation
where VMA inherits AVs of its parent. One of the AVs has to be the same as is
stored in the physical pages of the VMA in question. Assigning the physical pages
to a different VMA (as a result of the merge) would imply adding new AV to the
merged VMA. This would enlarge the AVCs and slow down their traversal, but
most importantly it would break the invariant that additional AVs are inherited
from ancestors.
Another option is to instead change the AV of the physical pages. This would
be impossible if another VMA with a different AV were using it too. When the
other VMA is linked to the same AV, we might change the AV for both of them,
but finding all concerned VMAs might take some time and gets complicated.
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On the other hand there are simple cases in which none of the above mentioned
problems occur and they might be merged, however, in the current kernel two
VMAs linked to two different AVs cannot be merged no matter what.

1.10.1 The is mergeable vma() function
static inline int is_mergeable_vma(

struct vm_area_struct *vma,
struct file *file,
unsigned long vm_flags
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name)

Compares a given VMA A and given VMA flags and other parameters that
describe VMA B. The check determines if these two VMAs can be merged to-
gether. VMA B is represented only by its parameters because in some cases it
does not yet exist.

1.10.2 The is mergeable anon vma() function
static inline int is_mergeable_anon_vma(

struct anon_vma *anon_vma1,
struct anon_vma *anon_vma2,
struct vm_area_struct *vma)

When trying to merge an already existing VMA A and a possibly not-yet-
existing VMA B, this function compares their AVs, which have to be the same.
An exception is when at least one of the AVs does not exist (meaning that its
VMA is not yet faulted) and at the same time VMA A does not exist or VMA A
references only a single AV.

Function can vma merge before()

static int can_vma_merge_before(
struct vm_area_struct *vma,
unsigned long vm_flags,
struct anon_vma *anon_vma,
struct file *file,
pgoff_t vm_pgoff,
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name)

This function receives a list of parameters representing VMA B that might
not yet exist and also an already existing VMA A that B should be merged
to. In this before case B is or will be lying before A. This function internally
calls functions is_mergeable_vma() and is_mergeable_anon_vma(), described
above, and additionally checks if the page offsets are compatible.
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Function can vma merge after()

static int can_vma_merge_after(
struct vm_area_struct *vma,
unsigned long vm_flags,
struct anon_vma *anon_vma,
struct file *file,
pgoff_t vm_pgoff,
struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
struct anon_vma_name *anon_name)

Same as can_vma_merge_before() with the difference of VMA B being after
VMA A.
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1.11 The mremap() function
void *mremap(void *old_address,

size_t old_size,
size_t new_size,
int flags,
... /* void *new_address */)

The mremap() syscall is used to remap a memory mapping, which means to
shrink or expand it and potentially also move it at the same time. The mremap()
call takes up to five arguments, which correspond to what task mremap() is
supposed to perform. They are the old size and the old address, the new size and
potentially also the new address. The last argument is an integer representing
flags, they are only three compared to dozens of flags in the case of the mmap()
syscall.

The new address can be either specified in combination with the
MREMAP_FIXED flag, or, if not, the kernel will find a suitable new address on
its own when moving is necessary and MREMAP_MAYMOVE is set to allow moving.
When moving is not allowed but is necessary, because expansion in place is not
possible, mremap() will fail and return an error value.

mremap() can be an opportunity for a merge, because in many cases the new
location might be adjacent to a compatible mapping. However, in the current
kernel, the merge never happens for anonymous mappings, because the page offset
is not updated in mremap() and prevents the merge. On the other hand, for file
mappings, this works when the mappings map the same file and are adjacent.

Code structure

As it was mentioned above, mremap() can do several things defined by the flags
and other parameters and also by the circumstances of the chosen location.

The first thing done is evaluation of flags in combination with other parameters
to die quickly in case of incompatible combinations. In such cases, -EINVAL is
returned. Next, the VMA at the given address is found and if no such VMA
exists, EFAULT is returned.

Now there are several cases of what needs to be done. In case of flags
MREMAP_FIXED or MREMAP_DONTUNMAP, VMA will be moved either because the
caller wanted it or because we have to preserve an old mapping. This is done
in the mremap_to() function, described in the next subsection. If that is not
the case it might be possible to shrink or expand the mapping in place. The
shrinking is easy and it just means to unmap the range between the old and the
new end address. The expansion is more complicated because it might interfere
with the next VMA. If old length is exactly to the end of the area then it is
possible to just expand the mapping when it will not intersect with the next
area. On the other hand if the old length is not to the end or expansion would
intersect with another area, it is necessary to find a suitable unmapped area using
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get_unmapped_area() and move the VMA to the new location, which is done
using the move_vma() function.

1.11.1 The mremap to() function
static unsigned long mremap_to(

unsigned long addr,
unsigned long old_len,
unsigned long new_addr,
unsigned long new_len,
bool *locked,
unsigned long flags,
struct vm_userfaultfd_ctx *uf,
struct list_head *uf_unmap_early,
struct list_head *uf_unmap)

This function moves the VMA mapping to a new location and optionally
shrinks or expands it. This happens in mremap(), if the new location is either
enforced by MREMAP_FIXED flag or, if the old mapping should not be unmapped, in
case of MREMAP_DONTUNMAP flag. Basically, it just calls move_vma(), but it does a
number of checks and preparations first. It unmaps the already-existing mappings
in the target location and also exceeding part of the source mapping if the VMA
is being not only moved but also shrinked, the rest of the source mapping is
unmapped in the move_vma() as part of the move process (this is of course omitted
if MREMAP_DONTUNMAP is set). If the new location is not fixed, the new location is
chosen as the first suitable location found by get_unmapped_area() call.

1.11.2 The get unmapped area() function
get_unmapped_area(struct file *filp,

unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags)

Finds an unmapped area of the required length either at the specified location,
if it is unmapped or flag MAP_FIXED is set, or anywhere where there is enough
space.

1.11.3 The move vma() function
static unsigned long move_vma(

struct vm_area_struct *vma,
unsigned long old_addr,
unsigned long old_len,
unsigned long new_len,
unsigned long new_addr,
bool *locked,
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unsigned long flags,
struct vm_userfaultfd_ctx *uf,
struct list_head *uf_unmap)

This function takes a VMA pointer, the old and the new addresses and the
length, and moves the given VMA to the new specified location. It assumes the
new location is already prepared and there is no mapping there. This is solved by
the caller either by unmapping the old mapping or by finding a suitable unmapped
area. Internally, the move is done by calling copy_vma(), which creates a copy
in the new location (it might possibly be merged to its neighbours). Either way,
the next step is to move the page table entries from the old to the new VMA,
which is handled by move_page_tables(), it might happen that this fails and in
that case move_page_tables() is called again in the opposite direction.

1.11.4 The copy vma() function
struct vm_area_struct *copy_vma(

struct vm_area_struct **vmap,
unsigned long addr,
unsigned long len,
pgoff_t pgoff,
bool *need_rmap_locks,
bool *update_pgoff)

Creates a copy of a VMA in the specified location defined by the address, the
length and the page offset. Other arguments needed are taken from the old VMA.
If the VMA is anonymous and not yet faulted, the page offset is updated to corre-
spond to the new address, this means recalculated as new_addr >> PAGE_SHIFT.
After that, the vma_merge() is called, which tries to merge the not-yet-created
VMA with its soon-to-be neighbours. If the merge succeeds, it might happen that
the copy in the new location is actually merged with the old VMA, this might
happen when the new location is precisely next to the old one. In this case,
the pointer to old VMA must be updated. When the merge does not succeed, a
duplicate VMA is created using parameters from the old VMA.

1.11.5 The move page tables() function
unsigned long move_page_tables(

struct vm_area_struct *vma,
unsigned long old_addr,
struct vm_area_struct *new_vma,
unsigned long new_addr,
unsigned long len,
bool need_rmap_locks,
bool update_pgoff)

The move_page_tables() function is charged with replicating the page tables.
This is done preferably at the PUD level if possible, but e.g. smaller VMAs do
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not take up whole PUD, in which case the move is done at PMD or even PTE
level. The page table move is done regardless whether we merge the VMA with
its neighbour or not.
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1.12 Other kernel memory mechanisms
1.12.1 Rmap walk
Rmap walk is a mechanism that goes through all mappings of a page and performs
an arbitrary action. Because VMAs can easily be merged or split, pages do not
reference their mappings directly. Instead, each anonymous page has a pointer to
an AV, which serves as a bridge between pages and their mappings as described
in more detail in Anonymous virtual memory area aka AV (page 22). The rmap
walk basically goes through all the VMAs via the AV and compares the page
offset values as can be seen in Figure 1.4. It is important to realise that VMA’s
position in virtual memory and therefore also virtual address can change during
mremap() call, but VMA’s page offset is immutable the same way as the page
offset values stored in individual pages. For KSM pages and file mapping pages
the implementation is a bit different.

Figure 1.4: Rmap walk identifying the correct VMA using AV and the page offset.

Rmap walk is used during migration to replace the page table entries with
migration entries for the time of migration. Another usage is during unmapping
of a page to find and replace the page table entries with swap entries.

1.12.2 The do munmap() function
int do_munmap(struct mm_struct *mm,

unsigned long start,
size_t len,
struct list_head *uf)

Unmaps a range at the given address with the given length. This unmaps
all the VMAs residing there and might also split up to two VMAs, one at the
beginning and one at the end of the range, if the range just intersects them.

1.12.3 Brk syscall
Enlarges or shrinks program break, which is the end of program’s data segment.
This is used to allocate more or less memory for the running program with regard
to maximum data size limitation.

Function do brk flags()

This subfunction internally allocates a new mapping, or, if possible, enlarges the
old one, creating an opportunity for a merge.
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1.12.4 The split vma() function
int __split_vma(struct mm_struct *mm,

struct vm_area_struct *vma,
unsigned long addr, int new_below)

Splits a VMA into two based on the addr address using vma_adjust().
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2. Design
The goal of this project was to discover why VMAs sometimes do not merge
even though it might be possible and to resolve such cases in as many situations
as possible. In this part, we are going to summarize what decisions were made
and what obstacles had to be overcome, including a detailed explanation of the
final solution. This means everything from choosing the appropriate points of
entry, verifying the conditions to implementing the actual changes including using
already available solutions for partial problems.

2.1 Analysis of the problem
This section concentrates on where the problem is located and outlines the process
necessary to solve it.

2.1.1 What prevents merges
When analysing the kernel code and specific cases in which merge does not happen
for anonymous VMAs, even though it might, it comes down to these two main
reasons.

The first is the page offset, which is one of the parameters that has to be
compatible in order to merge two VMAs. This makes perfect sense for memory
mapped files, in which case it ensures that two parts of a single file represented
by two individual VMAs can merge together only if the parts follow up and the
resulting merged VMA would be one continuous file part. On the other hand, for
anonymous mappings, dealing with the page offset is mostly just a side effect of
using identical kernel mechanism for both anonymous and file mappings. When
anonymous mapping is created, its page offset is identical to its virtual address
with the page bits removed. This is fine until the mapping is moved to a new
virtual address. In such a case in the current kernel, the page offset is updated
only if the mapping has not been accessed by a process and therefore none of its
pages have been faulted. In other cases, the page offset remains at the original
value that does not correspond to its new virtual address. If two mappings are
moved next to each other then this inconsistency prevents any possible merge
even if all other conditions are met. This means that the first main change has to
enable the update of the page offset when moving a mapping, which it turns out
is not easy and for some cases sharing pages between processes not even possible.

The second main reason is the AV to which the VMA belongs. In current
kernel it is possible to merge only those VMAs that belong to identical AV. The
most obvious reason why this is not allowed is that if such a merge would happen,
it would mean updating all involved pages. This is necessary because every
normal anonymous page stores a pointer to its AV in the mapping property and
this property would need to be updated during such a merge. This is complicated
because traversing and locking pages during the merge process is not supported
and most importantly the changes at the VMA, AV and page level should be
done atomically at least from the Rmap walk (page 33) point of view. Allowing
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different AV merging does not only help when moving a mapping but also when
the mapping is only modified in terms of flags or access protection in place e.g.
in mprotect() call.

Moreover, these two reasons can apply simultaneously and so removing only
one of them would yield fewer additional successful merges. And unfortunately
both cases require update at the level of physical pages, which turns out to be
problematic and probably the reason it has not been implemented yet. A detailed
explanation is in dedicated sections for each of the problems.

One last small identified problem preventing more merges is a missing
vma_merge() call in mremap() when expanding an already existing mapping, in
which case a merge might be possible with the following mapping. An overview
of system calls potentially benefiting when the problems are resolved are summa-
rized in Table 2.1.

System call Description
mremap()[PAE] Expanding and/or moving an already existing

mapping may relocate it next to another mapping
and enable a merge.

mmap()[A] New mapping being created next to a compatible
neighbouring mapping may result in a merge in-
volving both its neighbours with potentially differ-
ent AVs.

brk()[AE]
sbrk()[AE]

Modifies the program break which can enlarge a
mapping and enable a merge with a new neighbour.

mprotect()[A]
pkey_mprotect()[A]

Modifies memory protection and therefore can
unify the protection with a neighbouring mapping
to enable a merge.

madvise()[A]
process_madvise()[A]

Can in some cases modify flags of a mapping and
this way unify the flags with a neighbouring map-
ping.

mlock()[A] Locks pages in the address range, which can unify
flags with a neighbouring mapping.

mbind()[A] Sets memory policy for a memory range, which can
unify flags with a neighbouring mapping.

Table 2.1: Overview of system calls using vma merge() and their beneficial from
resolving problems, page offset[P], different AV[A], expansion merge[E].

2.1.2 Solution outline
As mentioned in What prevents merges (page 35), we have to update
page→index for individual pages involved in a mremap() call and also
vma→vm_pgoff for the mapping itself to enable merges for mappings with faulted
pages. Moreover, this update is necessary even when the mremap() call does not
result in a merge - this way, the page offset of the mapping is updated to enable a
merge with another mapping that might become adjacent in the future. Details
in Page offset update (page 49).
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To allow merging of VMAs with different AVs, it is necessary to perform an
update of individual pages involved in the merge so that their page→mapping
points to the correct AV after the merge is done. The resulting AV is always the
AV that belonged to one of the mappings at the beginning and so only pages of
one of the mappings need to be updated. Details in Different AV merging (page
51).

Both approaches outlined above require an update of individual pages, which
is problematic because if the pages are shared with another process, the update
would interfere with the other process as well and could require a cascade of up-
dates. This could get quite complicated and slow down the whole merge process.
Therefore, when deciding to perform the update itself, we must first check if the
pages are not shared, which is explained in Checking if VMA is shared (page 38),
and if the pages are indeed shared, then we cannot proceed with the merge.

An addition of a vma_merge() call during expanding mremap() is explained
in Allowing merge during mremap() in-place expansion (page 55).
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2.2 Checking if VMA is shared
For every VMA that we want to modify either to update page offset or to assign it
to a different anon_vma, we have to check if its physical pages are not shared with
other processes. If two VMAs usually in two different processes share the same
physical pages, we say, these VMAs are shared. There are two approaches to
effectively recognise this. The first one looks at the their AV structures that head
a list of private related VMAs and searches for a parent-child relationship. The
second approach goes through all the pages belonging to the VMA and checks
their mapcount, which indicates in how many mappings the page is involved,
however, this approach is more complicated and slower.

AV checks

In order to check if a VMA shares some pages with a different VMA from another
process, we perform the parent check and the child check. Both are described in
detail in Detecting parent-child relationship in AV trees (page 40) and work with
an AV, where the parent check checks for a parent and the child check checks for
children.

Parent check is a simple comparison of AV and its root:
vma→anon_vma→root == vma→anon_vma. If it is the same object then there is
no parent. But if it is two different objects, then the parent exists and we are
looking at a shared scenario.

Child check is complicated and involves traversing a red black tree of private
related VMAs and their AVs from the original AV point of view. The check can
be simplified by checking AV’s degree, which is always higher than one in the
shared scenario, but it is only an implication, not equivalence. Therefore if it is
higher than one, normal checks must follow.

Individual page checks

Checking if an individual page is shared is a bit complicated, because the page
might not be present in memory, can be swapped out or even worse, it can be
swapped out for one process and not for the other ones.

First, we check if the page is not swapped out in this process by looking at
the PTE’s swapped bit, which indicates if the PTE is actually a PTE or rather
a swap entry. For the case of swap entry, we check the swap map, which holds a
number of references that basically indicates how many processes reference this
page in a swapped out state. It is not so simple though as there are also some flag
bits stored in the same variable, but fortunately we only want to check if the page
is shared or not and therefore basically anything bigger than one means the page
is shared. This is true because both flags imply that the page is shared somehow.
The first flag, SWAP_HAS_CACHE with value 0x40, indicates that the swap cache is
active. This means that for some processes the page is mapped and for some it
is not, which inherently implies the page is involved with more than one process
and therefore shared. The second flag is COUNT_CONTINUED and indicates that the
reference count is too high to fit in only one instance of the variable. This again
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implies the page is necessarily shared. See Swap cache mechanism (page 21) for
more details.

In the other case, when the PTE is not swapped out and we can access the page
structure, we call functions page_mapcount() and page_swapcount(), which give
us the number of processes that map this page and the number of processes that
have this page swapped out. The sum of these two is the total number of processes
that use this page and therefore if it is higher than one then the page is shared.

In both cases, we use the page walk with flags WALK_MIGRATION and
WALK_LOCK_RMAP to go through all the necessary pages. These two flags ensure
that the page is not in the migration entry state where we would not be able
to access the above-mentioned parameters. If the page is in the migration entry
state, then the page walk first waits for the migration to end and afterwards takes
locks preventing new migration from starting until all checks are finished.
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2.3 Detecting parent-child relationship in AV
trees

Shared physical pages in case of anonymous mappings can always belong to only
one AV through their page→mapping parameter, which in this case holds a pointer
to the AV in question. On the other hand, each VMA can have several AVs,
but one of them is always the main one and is accessible through vma→anon_vma.
Sharing usually happens because of forking and the underlying COW mechanism.
Only the original VMA has its main AV identical to the AV of all of its pages.
Copies of the VMA in other processes have several AVs and the one used by the
shared pages is one of the other AVs, the main one is used only for new pages
that come into being when the VMA copy is enlarged or when the shared pages
are to be written and have to be copied. These new pages are then exclusively
owned by this VMA copy and their AV matches the main AV of the VMA copy.

The reason why the child VMAs have additional AVs is because the shared
pages are gradually replaced with new ones that can belong to a different AV
rather than the original AV, which would otherwise keep growing and unrelated
pages would unnecessarily belong to a single huge AV.

Figure 2.1: Finding two different main AVs.

The task of detecting the parent-child relationship means that we get a VMA
and must determine if it is sharing its pages with other processes. This is done by
taking its main AV and then going through all the VMAs related to this AV. If
any of these related VMAs have a different main AV from the given one, then we
have a parent-child relationship and therefore an instance of page sharing. This
process is demonstrated in Figure 2.1, the individual steps are highlighted by
different colors and their order can be seen in Figure 2.2. More details about
AVCs can be found in Structure anon vma chain (page 23).
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Figure 2.2: Phases of detecting parent-child relationship.

If all these AVs of the related VMAs are identical to the original one, then
we have a group of VMAs all associated with the same AV, but not sharing any
pages. This is the case e.g. when we split an existing mapping into two or create
two adjacent mappings that have different flags (if the flags were the same, they
would merge). An example can be seen in Figure 2.3.

Figure 2.3: Sibling VMAs associated with the same AV.

The entry point through the given VMA is vma→anon_vma and then through
anon_vma→rb_root. The red-black tree is a tree of AVCs, which is a structure
connecting an AV and a VMA. Nonetheless, we can easily get VMA through AVC
by avc→vma and then its main AV by vma→anon_vma.
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Figure 2.4: Finding only one main AV.

This whole mechanism works only in the case where the given VMA is the
parent VMA, as can be seen in Figure 2.4. If the given VMA is a child VMA in
a parent-child relationship then we determine this by accessing its main AV and
then by checking if this AV has a root AV different from itself, as can be seen in
Figure 2.5, Figure 2.6 and Figure 2.7. This is actually much easier and it is
done simply by vma→anon_vma→root. Unfortunately, we do not know if we are
looking at a child or a parent and therefore we do both checks.

Figure 2.5: Detecting parent-child relationship from child.
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Figure 2.6: Trying to detect parent-child relationship from parent using the root
method.

Figure 2.7: Phases of detecting parent-child relationship via root method.

More detailed schemas showing even support structures are demonstrated on
a child with a parent and a grandparent. Figure 2.8 gives the grandparent point
of view and Figure 2.9 gives the the grandchild point of view.
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Figure 2.8: AVC tree traversal from grandparent.
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Figure 2.9: AVC tree traversal from grandchild.
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2.4 Common helper functions
KSM impact

As mentioned in Analysis, KSM is a page de-duplication mechanism. As a result,
mapcount of a de-duplicated page can be higher than mapcount of a normal
page, which would interfere with the page checks trying to determine if the page
is shared or not. Fortunately, in the case of the page offset update, KSM is always
disabled in move_vma() for the given area by a madvise() call that sets the area
to MADV_UNMERGEABLE. This temporarily duplicates all the pages in question, but
allows for KSM to merge the pages again after mremap() is done.

On the other hand, in the case of merging two VMAs with different AVs their
pages might be in the de-duplicated KSM state. This will prevent the change
of page→mapping (holding the AV) that has to be updated during the merge.
But fortunately when they return to normal state, their page→mapping will be
reconstructed from their VMA, which will already hold the possibly updated
pointer to its AV.

2.4.1 Pagewalk flags
The pagewalk mechanism did not have a flags mechanism that would be able to
perform predefined special operations like locking if a flag is specified. Although
the action feature is somewhat similar, it does not perform any action on its
own. It only instructs the pagewalk core to repeat or skip user-defined table
entry operations.

Two flags were added. The first one for locking rmap locks to prevent rmap
walk from interfering with the page update action, which could cause failure
to find the correct VMA for the page. The second one for enabling migration
waiting. Each PTE can be in the state of migration, which is determined by
checking if PTE contains a migration entry instead of a normal PTE. Waiting
for the migration means the page walk must unlock locks needed for migrations
and lock them again after the migration has ended.

2.5 Development history
During the analysis and development, there were several solutions that turned
out not to work or at least not to work well enough and had to be redone.
This was mostly because some problems were quite specific and hard to discover
and of course because of inadequate documentation. This prolonged the whole
development process.

There are three more or less working historical versions of the patches located
in the attachment’s sources/history directory that can serve as checkpoints
along the development history described in this section.
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Only pgoff update

The original idea for a solution was to only add the updating of the page off-
set when the mapping is moved and this way enable new merges in mremap().
This was promising until tracing was added to measure the number of success-
ful merges, then it turned out that most of the merges were still not happening
because of different AVs.

Not updating pages

The next problem was that updating the page offset only in the VMA was not
enough, although it worked in most of the cases and the system seemed to work
more or less properly. Unfortunately, the inconsistency between the offset in VMA
and in the page itself causes problems when swapping out the page in question.
Therefore updating of page offset stored in page→index was added.

Adding AV update

As mentioned above, the difference between AVs of the two VMAs we are trying
to merge prevents the merge. This can be solved by allowing such merges and
then reassigning pages from one AV to another. This allows additional merges
not only in the case of the mremap() calls, but also and even in greater number
in the case of the mprotect() calls and other calls that do not move the mapping
but only change its flags.

Using follow page instead of page walk

Originally, when accessing pages that should be updated, follow_page() was
used. The disadvantage of this approach is that follow_page() internally per-
forms a full page table walk before it returns the page mapped at the given
address. This is especially a problem when going through higher numbers of
pages at the same time. follow_page() was therefore replaced using the page
walk framework1, which allows going through several PTEs (which point to a
page) at a time and saves some unnecessary page walking.

Pgoff update moved to move page tables()

Using the page walk is much better than the follow_page() call, but in the case
of page offset update, it is even better to do the page update in
move_page_tables(), which moves all the page tables anyway. This again saves
some extra traversing time.

Transparent huge pages

A problematic case is when the VMA does not map normal physical pages but
instead transparent huge pages that are basically bigger blocks of pages. Eventu-
ally, to avoid additional complexity, THPs are split and then processed as normal
pages.

1as implemented in mm/pagewalk.c
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Added waiting for migration if we have migration entry

When working with the PTEs, occasionally a PTE might be either in the swap
entry or the migration entry state. In the case of the swap entry, we can access
reference counts or swap cache to acquire the number of processes mapping the
page. Furthermore, during the page update itself, we do not need to do anything
as the mapping and the index are reconstructed from the VMA when the page
is swapped back in. More problematic is the case when PTE holds a migration
entry, which does not provide the needed information and cannot be updated. In
this case, it is necessary to wait for migration to finish and unlock locks preventing
the migration from finishing.

Added rmap walk locks to not race with rmap walk

When updating a page, the rmap locks have to be taken to prevent rmap walk
running at the same time. Otherwise the rmap walk might partially work with
the old page data and partially with the new page data.

Redone AV update

The anon_vma update in vma_adjust() had to be redone as it was inherently
wrong and was updating only some of the necessary cases. Now the update is done
in vma_adjust() only for the mprotect() cases and in move_page_tables() for
moving mremap() cases (together with page offset update). Although this was
quite a big issue, the related bugs and failures occurred only sporadically and
were hard to reproduce or pinpoint.

Pgoff update at the lowest level possible

Pgoff update in move_page_tables() has to be done at the lowest level to ensure
correct locking order of page lock, rmap locks and PTE lock. A similar thing has
to be done for all the other page walks that have a wrong locking order. This
is achieved by try-locking instead of locking pages and if needed again unlocking
all previous locks and retrying the step via the ACTION_AGAIN directive in page
walk mechanism.
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2.6 Refactoring vma merge()
The first reason for this refactor is to make the function suitable for tracing of suc-
cessful merges that are made possible by Page offset update (page 49), Different
AV merging (page 51) and Allowing merge during mremap() in-place expansion
(page 55). The second reason is to make it shorter and more understandable
by eliminating code duplicity and unnecessary indentation mainly in the case of
merge next check. This is done by first doing checks and caching the results
before executing the specific merge case itself. Exit paths are also unified.

2.7 Page offset update
This first change adjusts page offset of a VMA when it’s moved to a new location
by mremap(), which is only possible for VMAs that do not share their anonymous
pages with other processes. It is checked by going through the AV tree and looking
for parent-child relationship as described in Checking if VMA is shared (page 38).
Also if the VMA contains any transparent huge pages, they are split to avoid
dealing with them. This is all done in functions can_update_faulted_pgoff()
and is_shared_pte(). At the start, the situation may look like in Figure 2.10.

Figure 2.10: At the start we have two VMAs with an unmapped space between
them. The right VMA is to be moved next to the left one and merged.

Figure 2.11: VMA copy merged with its new neighbour. Old VMA B is still
present.

If none of the pages is shared then we proceed with the page offset update.
This means updating page offset in copy_vma(), which is then used when cre-
ating a copy of the VMA or possibly when deciding whether to merge with a
neighbouring VMA as seen in Figure 2.11, where the copy is already merged
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with its new neighbour. We also set update_pgoff to true to later update page
offsets of individual pages that are moved as seen in Figure 2.12. This is done in
move_page_tables() when moving individual PTE entries to the target VMA.
The page offset update actually forces the move to happen at the PTE level by
using function move_ptes(). It is necessary to perform the move at the lowest
possible level, because the page update must happen atomically with the move
and that is not possible when moving bigger entries like PMD or PUD.

Figure 2.12: Update of page offset of individual pages. Pages in figure are moved
only symbolically.

We do not need to update swapped out pages, because in that case the page
offset is reconstructed automatically from the VMA after the page is swapped
back in. As mentioned above, there is a small amount of time between checking
and actually updating the page offset of the pages, as well as between merging
VMAs and again updating the pages. This could potentially interfere with rmap
walk, however, in that case rmap walk will still use the existing old VMA, as it
would before the mremap() started. Any other potential changes to the VMA or
pages apart from rmap walk are prevented by mmap_lock, which prevents forking
and therefore also COW and hence creating any copies and therefore sharing
during the merge process. Keeping in mind that pages are not shared and belong
to only one process, there is no other process which might fork and in that way
create a copy of the pages in question. However, if a page is shared, we can’t
update page offset of that page, because that would interfere with the page offset
as seen from the other processes using the same page. Page offset is basically
immutable as long as the page is used by more than one process. Previously,
adjusting page offset was possible only for not yet faulted VMAs, even though
page offset matching the virtual address of the anonymous VMA is necessary to
successfully merge with another VMA.

In the end, when the page offset update results in a successful merge, then
the old VMA structure can be freed as is seen in Figure 2.13.
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Figure 2.13: Removing old VMA after successful merge.

2.8 Different AV merging

Figure 2.14: Before pgoff and AV update merge.

The goal of this change is to enable merging of a VMA even when it is linked to
a different AV than the VMA it is being merged to, however, only if the VMA in
question does not share any pages with a parent or child process. This enables
merges that would otherwise not be possible and therefore decreases the number
of VMAs of a process. The initial state can look like in Figure 2.14 or in Figure
2.15 depending on the relative position of the VMAs.

Figure 2.15: Before AV update merge.

The VMA in question is first checked at the level of AV to find out if it shares
any pages with a parent or child process, see Detecting parent-child relationship
in AV trees (page 40). This check is performed in is_mergeable_anon_vma(),
which is a part of vma_merge(). In the following two paragraphs we are using
cases 1 through 8 as described in comment before vma_merge(), which can be
seen in Figure 2.16.
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Figure 2.16: vma merge() comment.

For cases 4 through 8 and partially for case 1, the update itself is done
in __vma_adjust(). Other cases must be solved elsewhere, because
__vma_adjust() can only work with pages that already reside in the location
of the merge, in other words if VMA already exists in the location where merge
is happening. This points to the cases 2, 3 (and partially case 1 where the next
VMA is already present but the middle one is not), which happen when we are
either expanding or moving a VMA to the location of the merge. However, at
the time of the merge, the VMA is not there yet and therefore the page update
has to be done later elsewhere as there is no way how to access the pages in
__vma_adjust().

An easy subcase is if the pages do not exist yet and therefore there is nothing
to update. This happens e.g. when expanding a mapping in mmap_region() or
in do_brk_flags(), where the pages themselves are created later.

Figure 2.17: Merging copy of the VMA with its new neighbour.

On the other hand, during a mremap() call that moves an already existing and
possibly faulted mapping, the pages do exist and have to be updated. The VMA
is first copied in copy_vma() to the target location and possibly merged with a
new neighbour in __vma_adjust() as shown in Figure 2.17. In this case, the
page update is done in move_page_tables(). It is actually quite simple because
we already introduced page update in Page offset update (page 49) and therefore
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the only change is updating one more parameter as seen in Figure 2.18 compared
to Figure 2.12. If rmap walk happens between __vma_adjust() and page update
in move_page_tables(), then the old VMA and the old AV are used as it would
happen before starting the whole merge, afterwards the new (merged) VMA and
AV is used.

Figure 2.18: Page offset and AV update. Pages in figure are moved only symbol-
ically.

Let’s get back to the cases 4 through 8. These cases correspond to merges
which are a result of a mprotect() call or any other flag update that does not
move or resize the mapping. The partial result of such a merge on the level of
VMAs can be seen in Figure 2.19, where the future VMA is already expanded,
but the old one is also still existing. Together with a part of the case 1, the
update of physical pages is handled directly here in __vma_adjust() as mentioned
before. First, it is determined which address range should be updated depending
on the specific case 1, 4, 5, 6, 7 or 8. Second, the AV value to be set to the
page->mapping must be determined. However, it is always the AV belonging to
the expand parameter of the __vma_adjust() call.

Figure 2.19: Future VMA enlarged but the old is still existing.

The reason we have to update the pages is that in __vma_adjust(), the ranges
vm_start and vm_end are updated for involved VMAs and so pages can belong
to different VMA and AV from that point on.

The problem is that these two updates (VMAs and pages) should happen
atomically from the rmap walk point of view. This would normally be solved
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by using rmap locks, but at the same time, we must keep in mind that the
page migration uses rmap walk at the start and at the end and so rmap locks
might trap the migration in the middle. This would cause a PTE to not point
to any actual page and remain in the migration entry state, which would block
the page update. The solution is to page walk all the relevant pages, if necessary
drop rmap locks for time needed to allow page migration to end and update the
page->mapping (i.e. the AV) attribute of each page.

This whole page update must be done after the expand VMA is already en-
larged, but the source VMA still has its original range as seen in Figure 2.20.
This way if rmap walk starts while we are updating the pages, it will work either
with the old or the new AV and therefore also the old or new VMA.

Figure 2.20: Reassigning pages to the new AV.

If the PTE is a swap entry or points to the zero page or a KSM page, then the
page is not updated and the correct mapping is reconstructed from the VMA itself
when the page returns to normal state. Again as mentioned and explained in Page
offset update (page 49), the pages may not become shared between vma_merge()
checks and actually merging in __vma_adjust() as potential fork is prevented by
mmap_lock. Additionally, in the case where one of the VMAs is not yet faulted
and therefore does not have an AV assigned, this change is not needed and merge
happens even without it.

Figure 2.21: Removing old VMA and AV (when it is unused).

In the end, the old AV and possibly VMA is freed as seen in Figure 2.21 and
Figure 2.22 for the relevant cases.

54



Figure 2.22: Removing old VMA and AV (when it is unused).

2.9 Allowing merge during mremap() in-place
expansion

When mremap() call results in an in place expansion, it might be possible to
merge the VMA with the next VMA if it becomes adjacent. The only missing
part is a vma_merge() call after the expansion is done to try and merge.

2.10 Tracing
A new tracepoint was added to measure how many successful merges were made
because of these changes and which change or changes in particular made the
merge possible. There are three different changes and therefore also three different
tracing categories.

2.10.1 AV merging
A trace support was added to vma_merge() to measure successful and unsuccess-
ful merges of two VMAs with distinct AVs as well as the reason why the merge
was successful or unsuccessful using the vma_merge_res enum as can be seen in
the Table 2.2.

Name Description
MERGE_FAILED Merge failed for other reasons than the AV.
AV_MERGE_FAILED Merge failed because one of the VMA is shared and

the AVs are different.
AV_MERGE_NULL Merge is allowed because one of the AV is null.
MERGE_OK Equal to AV_MERGE_NULL. Implementation detail.
AV_MERGE_SAME Merge is allowed because the AVs are identical.
AV_MERGE_DIFFERENT Merge is allowed even though the AVs are different.

Table 2.2: Overview of vma merge res enum values.

2.10.2 Page offset merging
Trace support was added to copy_vma() to measure successful merges made
possible by an update of the page offset.
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2.10.3 In place expand merge
Trace support was added to mremap() to measure successful merges made possible
by the added vma_merge() call.
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3. Testing
This chapter contains a summary of tests created to ensure the patches do enable
merges under the specified conditions and at the same time do not cause any
warnings, bugs or other problems. All the source files and directories referenced
from this chapter are included in the attachment.

3.1 Merge tests
These tests check if all patches described in this thesis actually work and merges
happen when they should happen. And vice versa if the merge should not happen
because of some limitations, these tests check that the merge does not happen or
cause any other problems. They are all included directly in the patches in the form
of standard kernel self-tests. Self-tests are located in tools/testing/selftests
and can be build using make. The source file vm/mremap_test.c contains Expand
merge test (page 57) among other tests that are not part of this thesis, the file
vm/merge_tests.c contains all the other tests described below. They can both
be executed by using the executables of the same name, vm/mremap_test and
vm/merge_tests respectively.

3.1.1 Expand merge test
This test validates that the merge is called when expanding a mapping in place. A
mapping containing three pages is created and middle page is unmapped, which
splits the mapping into two. Then the mapping containing the first page is
expanded so that it fills the created hole. The two parts should merge creating a
single mapping with three pages as in the beginning.

3.1.2 Page offset update merge test
This test checks that for not shared mappings, page offset update happens and can
lead to a previously impossible merge. The test creates a mapping and unmaps
its middle part, creating two separate mappings (with an identical AV) with a
space between them. It then tries to move the second mapping next to the first
one to merge them. There is a subvariant of the test for shared mappings that
verifies that the merge does not happen for shared mappings.

3.1.3 Different AV merge test
This test verifies that for not shared mappings with different AVs, merge is pos-
sible. It creates two mappings with a gap between them to force the kernel to
assign different AVs to the mappings. It then joins the mappings by enlarging
the first one so that the only remaining obstacle is the difference between AVs.
There is a subvariant of the test for shared mappings that verifies that the merge
does not happen for shared mappings.
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3.1.4 Different AV and pgoff update merge tests
These tests check that for not shared mappings with different AVs, page offset
update happens and can lead to a merge. They are basically a combination of
the previous two tests.

3.1.5 Spacing test
The test creates mappings with spaces between them and then moves the map-
pings together. They should all merge into a single mapping if supported by the
kernel.

3.1.6 Regroup test
This test creates two separate mappings (with different AVs) with a space between
them. It then tries to move the second mapping next to the first one to merge
them.

3.2 Analytic helper programs
Scripts and programs used for testing how the kernel works. They all reside in
the sources/analytic folder in the attachment.

3.2.1 Print memory script
A simple shell script that prints the memory mappings of a process with the given
name.

3.2.2 Process memory structure print
This program creates and prints pointers to different data types to examine the
process memory structure.

3.2.3 VMA, AV and AVC print
The root process is forked and then its child is forked again, creating parent,
child and grandchild processes. The parent, child and grandchild VMAs are
printed including their supporting structures - AVs and AVCs. Printing is done
using patched mremap() call that, if used correctly, only prints the information
and does not actually affect the mappings in any way. The patch file is named
0001-Printing.patch.

3.3 Other tests
These tests cover corner cases including page offset update not necessarily linked
to a merge, merging of partially shared mappings and merging of incompatible
predecessor and successor mappings. They are again included in the patches as
kernel self-tests.
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3.3.1 Page offset update test
This test checks that for not shared mappings, page offset update happens even
when a merge is not possible for other reasons. The test creates a mapping
and unmaps its middle part, creating two separate mappings (with an identical
AV) with a space between them. It changes the memory protection of the second
mapping and then moves the second mapping next to the first one. The page offset
should be updated but no merge will happen, because the memory protection does
not match. To check that the page offset update actually happened, the memory
protection is unified to allow a merge. If the page offset update did not happen,
the merge will not happen. There is a subvariant of the test for shared mappings
that verifies that the page offset update does not happen for shared mappings.

3.3.2 Page offset and AV update partially shared merge
test

The test proves that even shared memory areas can be merged, provided they are
merged with a non-shared memory area in the correct order. The test creates a
mapping and forks to make it a COW shared mapping. It then creates another
mapping that is not shared and moves it next to the shared one. The merge
should be possible, because only the moved mapping cannot be shared.

3.3.3 Filling a gap between incompatible predecessor and
successor

This test creates two blocks with a gap in between and forks to create a parent-
child relation where memory is shared. Then it creates a new block that can fill
the gap. The block is created elsewhere and is moved into the gap after the new
block has been faulted. Merge should be possible only with one of the blocks,
namely the predecessor, not both of them. This happens because shared memory
between two processes makes it impossible to merge predecessor and successor,
which have different AVs.
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4. Results
This chapter summarizes performance improvements and successful merge count
results and also elaborates the advantages and limitations of the changes.

4.1 Software overview
This section contains an overview of software needed for most of the measure-
ments.

4.1.1 ftrace
Tracing framework ftrace listens to trace calls inside the Linux kernel. Specific
trace calls can be exposed e.g. by the trace-cmd command that interacts with
the ftrace tracer itself in the running kernel.

4.1.2 Running benchmarks
All scripts and other files needed to measure the results are located
in the attachment’s sources/benchmark directory. Most important is the
sources/benchmark/README file which contains step by step instructions to run
the benchmarks. In order to measure the performance and merges for both
modified and mainline versions, there are two sets of patches located in the
sources/benchmark/patches that both enable tracing. For a simple demon-
stration there is also a prepared virtual machine image, it is referenced from the
sources/README file.

4.2 Device overview
Device overview describes devices that are later referenced in individual tests.
There are always two versions of the kernel used for measuring results. One is a
mainline version and the other is the same version with applied patches. Specific
versions for specific devices can be seen in Table 4.1.

Name Orion Apollo
Motherboard ASROCK B450M Pro4 Dell Inspiron 15R 5521

CPU AMD Ryzen 5 3600 (6 cores) Intel Core i7-3517U (2 cores)
GPU NVIDIA T600 4GB GDDR6 AMD Radeon HD 8730M
RAM G.Skill Aegis 2x16GB 3200 MHz Samsung SODIMM 2x4GB 1600MHz
Disk WD Blue SN570 1TB Samsung SSD 850 EVO 500GB
OS Gentoo Linux Gentoo Linux

Kernel v5.18.10 v5.18.0

Table 4.1: Device overview.
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4.3 Performance and merge success rate results
These tests measure performance and number of successful merges compared to
mainline version. Results are used to calculate confidence intervals using confi-
dence level 95 % and presuming normal distribution. All measured times are in
seconds.

4.3.1 New merge opportunities
As the following benchmark results show, there can be quite a lot of new merges
when it is possible to merge two VMAs with different AVs, even if only for
the simpler case where physical pages are not shared. Originally, the motiva-
tion was to increase the number of merges during mremap(), specifically in the
copy_vma() function, but the introduced changes enable more merges even for
mmap(), mprotect() and other system calls modifying mapping’s flags.

In the case of mmap(), opportunity arises when a newly created VMA fills
a hole between two other VMAs. The newly created VMA itself has not been
faulted and therefore has no AV linked to it, but the two neighbouring VMAs
might be linked to different AVs and hence we get a merge situation involving
two different AVs.

In the case of mremap(), new merge can happen when an already-existing
VMA is moved next to or between two other VMAs. This merge situation involves
up to three different VMAs with up to three different AVs.

In the case of mprotect(), madvise(), mlock() and mbind(), the opportunity
arises when an already-existing VMA’s protection is modified and merging with
one or two neighbouring VMAs is possible. This merge situation involves up to
three different VMAs with up to three different AVs.

In the case of brk() syscall, new merge can happen when we decide to expand
an already-existing mapping during do_brk_flags() and call vma_merge() to do
so. If the expansion causes the expanded mapping to become adjacent to another
VMA, we again get a merge situation with possibly two different AVs.

4.3.2 Spacing speed test
This test performs VMA merging for VMAs linked to different or the same AVs.
It creates memory mappings with spaces between them and then moves the map-
pings together. The mappings will merge into one big mapping if it is supported
by the kernel. Only the actual moving and merging of the mappings is measured,
the creation of the mappings and spaces is not. The Spacing speed test takes two
arguments, the number of mappings to create and if they should have different
or the same AV. The results are displayed in Table 4.2 and Table 4.3.
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platform AV times CI (95 %) diff m. CI (95 %)

Apollo same
5.51s,
5.38s,
5.50s

5.40–5.53 0, 0, 0 0

p. Apollo same
2.57s,
2.64s,
2.65s

2.58–2.66 0, 0, 0 0

Apollo diff
5.53s,
5.52s,
5.52s

5.52–5.53 0, 0, 0 0

p. Apollo diff
2.53s,
2.52s,
2.55s

2.52–2.55
20000,
20000,
20000

20000

Orion same
3.41s,
3.36s,
3.37s

3.36–3.40 0, 0, 0 0

p. Orion same
1.65s,
1.66s,
1.67s

1.65–1.67 1, 0, 0 -0.20–0.87

Orion diff
3.44s,
3.41s,
3.49s

3.41–3.48 0, 0, 0 0

p. Orion diff
1.65s,
1.65s,
1.67s

1.65–1.67
20000,
20000,
20000

20000

Table 4.2: Results for Spacing speed test with 20000 mappings (part A)
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platform AV pgoff
m. CI (95 %) failed

m. CI (95 %)

Apollo same 0, 0, 0 0
40018,
40018,
40018

40018

p. Apollo same
19989,
19989,
19989

19989 0, 0, 0 0

Apollo diff 0, 0, 0 0
40018,
40018,
40018

40018

p. Apollo diff
19989,
19989,
19989

19989 0, 0, 0 0

Orion same 0, 0, 0 0
40018,
40024,
40022

40019–40024

p. Orion same
19996,
19992,
19992

19991–19996 1, 0, 0 -0.2–0.9

Orion diff 0, 0, 0 0
40024,
40022,
40026

40022–40026

p. Orion diff
19995,
19989,
19994

19990–19996
20000,
20000,
20000

20000

Table 4.3: Results for Spacing speed test with 20000 mappings (part B)

4.3.3 jemalloc stress tests
The jemalloc is a general purpose allocator trying to promote fragmentation
avoidance and scalable concurrency support. It is used by the Firefox browser
and others. In order to verifiably measure the number of merge counts, jemalloc
self-tests were used.

The source files can be downloaded from the jemalloc’s GitHub repository1.
After unzipping the folder, continue with ./configure, make and then e.g.
gmake tests_stress.

Results

The results can be seen in Table 4.4 and Table 4.5. Jemalloc version 5.3.0 was
used.

1Jemalloc releases - https://github.com/jemalloc/jemalloc/releases
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test platform times CI (95 %) diff m. CI (95 %)
unit Apollo 238.9, 238.7, 238.4 238.4–238.9 0, 0, 0 0
unit p. Apollo 240.0, 239.4, 239.1 239.1–239.9 460, 460, 460 460

integ. Apollo 114.0, 114.3, 114.3 114.0–114.4 0, 0, 0 0
integ. p. Apollo 114.6, 114.6, 114.9 114.5–114.9 310, 310, 310 310

analyze Apollo 107.4, 107.6, 107.5 107.4–107.6 0, 0, 0 0
analyze p. Apollo 107.8, 107.8, 107.7 107.7–107.8 274, 274, 274 274
stress Apollo 212.4, 212.8, 213.0 212.5–213.0 0, 0, 0 0
stress p. Apollo 213.6, 213.9, 213.4 213.4–213.9 530, 530, 530 530
unit Orion 129.9, 130.2, 130.6 129.9–130.6 0, 0, 0 0
unit p. Orion 131.3, 131.5, 131.2 131.2–131.5 487, 492, 498 487–497

integ. Orion 61.5, 61.3, 61.2 61.2–61.5 0, 0, 0 0
integ. p. Orion 61.9, 62.3, 61.6 61.6–62.3 317, 319, 322 317–322

analyze Orion 57.7, 57.3, 58.0 57.3–58.0 0, 0, 0 0
analyze p. Orion 58.1, 58.4, 58.5 58.1–58.5 274, 285, 293 275–293
stress Orion 113.8, 115.0, 114.2 113.8–114.9 0, 0, 0 0
stress p. Orion 115.7, 115.9, 115.5 115.5–115.9 546, 552, 563 546–562

Table 4.4: Stress tests results for jemalloc (part A)

test platform pgoff m. CI (95 %) failed m. CI (95 %)
unit Apollo 0, 0, 0 0 460, 460, 460 460
unit p. Apollo 0, 0, 0 0 0, 0, 0 0

integration Apollo 0, 0, 0 0 310, 310, 310 310
integration p. Apollo 0, 0, 0 0 0, 0, 0 0

analyze Apollo 0, 0, 0 0 274, 274, 274 274
analyze p. Apollo 0, 0, 0 0 0, 0, 0 0
stress Apollo 0, 0, 0 0 530, 530, 531 530–531
stress p. Apollo 0, 0, 0 0 0, 0, 0 0
unit Orion 0, 0, 0 0 1368, 1276, 1450 1284–1445
unit p. Orion 352, 376, 439 347–431 67, 67, 74 66–73

integration Orion 0, 0, 0 0 637, 645, 689 631–683
integration p. Orion 168, 150, 178 152–178 35, 28, 30 28–34

analyze Orion 0, 0, 0 0 624, 648, 664 626–664
analyze p. Orion 164, 158, 183 156–180 24, 22, 28 22–27
stress Orion 0, 0, 0 0 1308, 1264, 1290 1267–1308
stress p. Orion 312, 306, 365 298–358 61, 44, 39 37–59

Table 4.5: Stress tests results for jemalloc (part B)

4.3.4 Redis
Redis is an open source in-memory database. As such, it works quite extensively
with memory. Redis self-tests were used to measure the results. Running the
test is quite easy, all you have to do is run make and then ./runtest.
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Results

The results are summarized in Table 4.6 and Table 4.7. Redis version 7.0.2,
which was used to run the test, is available at Github2.

platform times CI (95 %) diff m. CI (95 %)
Apollo 394.3, 398.8, 397.5 394.7–399.0 0, 0, 0 0

patched Apollo 395.6, 393.2, 393.0 392.6–395.3 2, 1, 2 1–2
Orion 498.8, 499.0, 499.1 498.8–499.1 0, 0, 0 0

patched Orion 499.0, 498.8, 498.8 498.8–499.0 1, 3, 1 1–3

Table 4.6: Stress tests results for Redis (part A)

platform pgoff m. CI (95 %) failed m. CI (95 %)
Apollo 0, 0, 0 0 41, 59, 44 39–57

patched Apollo 20, 19, 29 18–28 1, 0, 0 0–1
Orion 0, 0, 0 0 36, 34, 26 27–37

patched Orion 15, 13, 18 13–18 5, 7, 10 5–10

Table 4.7: Stress tests results for Redis (part B)

4.3.5 kcbench
The kcbench is a simple benchmark script that takes given kernel source files and
compiles them several times using a different number of threads to thoroughly
measure the compile times.

Results

The test is again run on patched and unpatched kernel, performance results are
in Table 4.8 and merge count results are in Table 4.9 and Table 4.10. It is also
important to specify the kernel version used as the input source files for the
compilation. In our case it was version v5.183. The used kcbench version v0.9.5
is available at GitLab4.

2Redis releases - https://github.com/redis/redis/releases
3Linus’s git repository - https://github.com/torvalds/linux/releases/tag/v5.18
4Kcbench releases - https://gitlab.com/knurd42/kcbench/-/releases
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threads platform measured times CI (95 %)

2 Apollo
1080.49, 1080.25,
1080.13, 1080.62,
1080.62, 1081.31

1080.27–1080.87

2 patched Apollo
1090.04, 1090.09,
1090.72, 1090.76,
1089.80, 1089.68

1089.85–1090.52

4 Apollo
911.75, 911.48,
912.07, 911.27,
911.51, 912.30

911.44–912.02

4 patched Apollo
921.08, 920.67,
920.11, 920.67,
920.24, 919.52

919.98–920.78

6 Apollo
918.25, 918.55,
918.74, 918.19,
918.44, 918.56

913.30–918.61

6 patched Apollo
928.60, 927.92,
928.41, 927.44,
928.36, 928.31

927.86–928.48

6 Orion
180.29, 180.28,
181.05, 180.61,
181.34, 181.51

180.46–181.23

6 patched Orion
184.08, 183.81,
183.73, 183.84,
183.82, 183.42

183.63–183.94

9 Orion
156.60, 156.58,
156.98, 157.66,
157.36, 157.57

156.78–157.47

9 patched Orion
158.86, 158.83,
158.99, 158.90,
158.97, 158.86

158.85–158.95

12 Orion
137.59, 137.89,
138.06, 138.49,
138.97, 138.62

137.90–138.65

12 patched Orion
139.65, 139.42,
139.33, 139.58,
139.27, 139.36

139.33–139.54

15 Orion
138.72, 138.82,
139.51, 139.34,
139.23, 139.01

138.88–139.33

15 patched Orion
140.39, 140.50,
140.23, 140.33,
140.31, 140.13

140.22–140.41

Table 4.8: Performance results for kcbench.
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platform diff m. CI (95 %) pgoff m. CI (95 %)
Apollo 0, 0, 0 0 0, 0, 0 0

p. Apollo 19964, 19964, 19964 19964 245, 245, 245 245
Orion 0, 0, 0 0 0, 0, 0 0

p. Orion 23900, 23896, 23897 23896–23900.0 347, 348, 344 344–348

Table 4.9: Kcbench merge results (part A)

platform expand CI (95 %) failed m. CI (95 %)
Apollo 0, 0, 0 0 20777, 20776, 20776 20776–20777

p. Apollo 7, 7, 7 7 98, 98, 98 98
Orion 0, 0, 0 0 25018, 25029, 25026 25019–25030

p. Orion 9, 9, 9 9 178, 179, 175 175–179

Table 4.10: Kcbench merge results (part B)

Comparison

The kcbench results are probably most indicative to compare the patched and
unpatched versions and their performance. Upper and lower bounds of confidence
intervals are used to calculate a possible minimal and maximal slow down. E.g.
for a–b mainline CI and c–d patched CI the comparison is calculated as c

b
– d

a
%.

We can see that the patched kernel in this scenario is slower by 0.5–2 %, as can
be seen in the Table 4.11.

platform threads mainline CI patched CI comparison
Apollo 2 1080.27–1080.87 1089.85–1090.52 100.831–100.949 %
Apollo 4 911.44–912.02 919.98–920.78 100.873–101.025 %
Apollo 6 913.30–918.61 927.86–928.48 101.007–101.662 %
Orion 6 180.46–181.23 183.63–183.94 101.324–101.928 %
Orion 9 156.78–157.47 158.85–158.95 100.876–101.384 %
Orion 12 137.90–138.65 139.33–139.54 100.490–101.189 %
Orion 15 138.88–139.33 140.22–140.41 100.639–101.102 %

Table 4.11: Kcbench comparison.
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4.4 Evaluation
As can be deducted from results above benchmark result from Apollo are much
more compact than those from Orion. This is probably some interference from
other applications running on Orion.

The benchmarks confirm that most of the cases where merging is not possible
in the mainline kernel are resolved by this patch series, solving more than 90%
of the cases. It also turns out that allowing different AV merging alone (not in
combination with page offset update) is responsible for the vast majority of the
newly possible merges. The changes have a small impact on the performance.

However, each workload behaves differently and even small changes in bench-
marked application or choosing different application at all might produce different
results. Developers usually do not deal with memory mappings alignment directly
and therefore most of the merge opportunities depend on interactions between
compilers, libraries and the kernel itself.

4.5 Advantages
In the current kernel, merges of anonymous mappings are mostly limited to VMAs
that are either newly created (and therefore it is practically just an expand of an
already existing area) or those that are created standalone but not yet faulted
and therefore easier to merge. This basically means that any VMA that has
been written to and then moved can never merge with anything because the page
offset will not match its virtual address. And additionally, even if the page offset
is correct, the merge can fail because of the AVs not being identical for both
VMAs.

All of the above has been solved in this thesis and implemented in the at-
tached code. This means that the number of VMAs is decreased and the virtual
memory is more compact, which simplifies certain operations that must traverse
the VMAs. There is also a limited number of VMAs that can exist for one pro-
cess, which is defined as DEFAULT_MAX_MAP_COUNT and is almost equal (with some
margin) to unsigned short max value, which is 65535. This is a lot of mappings
and for most processes with common memory allocation patterns it is practically
unlimited. A typical process usually stores its data in heap and stack which
amounts for two quite big areas and maybe a few file mappings. But it is not
that hard to waste all the mappings if you want to or if this is a side effect of your
code. In fact, with the smallest possible areas of 4096 bytes, it would only take
around 255 MB of memory to reach the limit. That might seem like intentionally
pushing kernel to its limits, but imagine you do not have just a few or tenths
of gigabytes but rather terabytes of memory on some special-purpose server that
relies on creating and moving VMAs, for example in a large database, then even
with quite big VMAs the limit might run away pretty quickly.

Another added bonus is from a formal point of view. Anonymous VMAs have
page offsets calculated as virtual address with removed page bits, this means
shifting the virtual address by PAGE_SHIFT. When it is moved, the page offset in

68



the mainline kernel stays the same and does not match the address any more,
although it still matches the VMA’s page offset (also immutable) needed for Rmap
walk (page 33). This is obviously wrong and also confusing not only for new users
trying to find a bug or just simply trying to understand the code. And although
cosmetic, even this can be viewed as added benefit.

4.6 Limitations
Updating page offset during mremap() costs some time. Also, if merge conditions
are met and actual merge happens, this also takes some time and as a consequence
the kernel as a whole can be a bit slower. On the other hand, this is slightly
compensated by the decreased number of VMAs present, which speeds up some
walks e.g. during Rmap walk (page 33).

Another limitation is the impossibility to merge VMAs that are shared among
several processes. This is unfortunately a hard stop because pages have AV
pointer stored in them and can therefore belong only to one AV. A merge would
imply that the page could belong to two different AVs for two different processes,
which is impossible. It could be solved by duplicating the physical page itself, but
that would waste memory and time in case of private COW pages and actually
break the shared concept for shared pages.
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Conclusion
First, we analysed and described the kernel itself, the problems preventing suc-
cessful merges for anonymous mappings and all related kernel mechanisms. Next,
we determined which functions needed to be modified in order to enable new
merges in most of the problematic cases and successfully created a series of patches
that solve the individual problems. Finally, the whole solution was tested to ver-
ify the merges actually happen when they should happen and speed impact of
the changes on the kernel was measured.

Reception
Judging from the limited responses in the Linux kernel mailing list, it seems that
improving merge success rate for anonymous mappings does not have very strong
support among developers. This is probably because until now, when a process
moved an anonymous mapping, there was not a chance that it could ever merge
and still the system as a whole worked well, on top of that new code means
added complexity and a risk of introducing bugs into the kernel. In most cases,
the unmerged mappings did not cause any serious problems and therefore the
inclusion of the patch series as-is in the mainline is improbable, but a chance
stands in form of adding this as a conditional feature via e.g. the madvise()
flag. However, a smaller part of the changes, namely (Refactoring vma merge()
(page 49) and Allowing merge during mremap() in-place expansion (page 55), are
already in the process of being merged into the mainline kernel.

Possible users
The original task was to verify how much better the merging can get, which
was motivated by an undisclosed proprietary workload and it will naturally take
longer before its developers will test this solution.

Future extension
This section contains a list of a few possible extensions dealing with memory
mappings that arose during the work on this thesis.

Dealing with child and parent processes

This work solves the vast majority of cases where the merge did not happen
previously, however, there is still some space for improvements. The shared pro-
cesses and respectively their mappings cannot merge in every case. This could
be theoretically solved by forcing COW mechanism to copy the shared pages and
therefore remove this obstacle.

Enabling multi mremap

One of the problems related to unsuccessful merges is that the mremap() system
call can only work with a single mapping at a time. When merging does not work
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as it should, then potentially a single mapping is fragmented into several blocks
and if someone wants to move this whole range to another address, he/she has
to do it separately for each mapping. This could potentially be solved by adding
a new feature to mremap(), which would move several mappings at once. This
thesis resolves many of the unsuccessful merge cases, however, some of them still
remain in the case of shared mappings.

Merge collector

In the mainline kernel, merge is attempted when a mapping is modified and
there is a chance it might be possible to merge it. But there are many obstacles
preventing merges or making it difficult to check all the conditions necessary like
swapping, migration or transparent huge pages. This could possibly be all avoided
if the merges did not need to happen immediately after the mapping is changed,
but rather at some time in the future. Such a mechanism would be very similar
to garbage collectors, however, this change would require significant changes to
the kernel merge code and would take a lot of time and effort to debug, validate
and persuade the kernel developer community.

Overlapping mremap()

This feature would enable mremap() to move a mapping even when the new
location would overlap the old one. If this was possible, more flexible operations
with mappings would allow users to better organize the mappings and could
enable additional merges. This is currently not allowed, because it would require
a more complicated approach and probably also a helper memory location, but
it is very well possible.

Additional sources
Linux kernel code, comments and Git commit messages5

Wikipedia6

5community [2022a]
6community [2022b]
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A. Attachments
A.1 First Attachment
Attachment of this thesis are all the source codes described in this project as well
as electronic version of this thesis.
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