
BACHELOR THESIS

Markéta Sauerová

Web Browser Recorder

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Kateřina Macková
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2022



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



Foremost, I would like to thank my supervisor Mgr. Kateřina Macková for her
time and advice in the course of this thesis. Also, my thanks goes to the whole
Apify team for their tips and support, especially to Mgr. Jan Čurn Ph.D. for the
opportunity to participate on such project and Bc. Milan Leṕık for his oversight
and guidance. And last but not least, I want to offer many thanks to Jindřich
Bär for developing the Web Browser Robot Library and all his time spent helping
me to understand it.

ii



Title: Web Browser Recorder

Author: Markéta Sauerová

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Kateřina Macková, Department of Theoretical Computer Sci-
ence and Mathematical Logic

Abstract: The goal of this thesis is to develop an intuitive RPA tool in the form of
a client-server web application. This tool can be used for recording web automa-
tion workflows and their subsequent execution, modification and management.
Even though there are many similar tools available, it is difficult to find one that
can support a variety of web automation use cases and that is simple enough to
be used by untrained users. This thesis aims to build such a solution, a tool pro-
ducing recordings in the easy to understand Web Automation Workflow format
and leveraging from the Web Browser Robot library Interpreter. The result is a
powerful GUI recorder providing numerous useful features.

Keywords: browser recorder robotic process automation intelligent workflow files

iii



Contents

Introduction 3

1 Used Technology 5
1.1 JavaScript Language . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 TypeScript Language . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 React.js Library . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Web Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Playwright . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Robotic Process Automation Tools . . . . . . . . . . . . . 8

1.3 Web Browser Robot . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Web Automation Workflow (WAW) format . . . . . . . . . 8
1.3.2 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Problem Analysis 9
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Chrome Browser Extensions . . . . . . . . . . . . . . . . . 10
2.2.2 Other solutions . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Active Recording View 18
3.1 Browser Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Browser Window . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Navigation Bar . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Tab Manager . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Selector Generation . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Workflow Generation . . . . . . . . . . . . . . . . . . . . . 23

3.3 Recording Interpretation . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Interpretation Pause . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Interpretation Log . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Recording Modification . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Automated Edit . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Manual Edit . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Recordings Management View 32
4.1 Recordings Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Recording interpretation . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Runs Table . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Conclusion 36

Bibliography 38

1



List of Figures 40

List of Abbreviations 41

A Attachments 42
A.1 Project Repository . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2



Introduction
Web automation plays a vital role in the modern world. It has so far attracted
a sizable audience, raging from developers automating the testing of web appli-
cations, business owners comparing their goods on the market or analysing the
generated online advertisements, e-shops monitoring data extraction, to a com-
mon web browser user interaction like subscribing to or unsubscribing from a
streaming service, automatically checking the status of a payment or waiting for
a discount on a plane ticket. Web automation has numerous use cases. The most
important ones are web testing, data scraping and workflow automation.

Software testing is an essential phase of the software development life cycle
consuming an average of 40% to 70% of the development process [1]. Today many
software applications are written as a web-based applications that run on an In-
ternet Browser. Test automation helps automate repetitive actions like interact-
ing with web elements or filling out long Hypertext Markup Language (HTML)
forms, which significantly decreases time and effort and increases efficiency and
focus on innovation.

The Internet is a vast repository of knowledge, including intellectual, social,
financial, and security-related data. Web scraping can be described as a technique
for extracting unstructured data from the web and converting them into struc-
tured data that can be stored and later analyzed. Because an enormous amount
of data is constantly generated, web scraping is widely acknowledged as an effi-
cient and powerful technique for collecting them [2][3]. There are various tech-
niques for data extraction including regular expression matching, Document Ob-
ject Model (DOM) parsing or gathering data from the site’s Application Program-
ming Interface (API) by Hypertext Transfer Protocol (HTTP) request. However,
the most common technique is the use of web automation tools [4].

Each of these use cases focuses on a slightly different aspect of web automa-
tion. However, sharing the common way of production involves usually pro-
grammed, predetermined, organized series of actions and conditions. This poses
a severe constraint. When it comes to websites changing their structure, blocking
by anti-bot mechanisms or even A/B testing, an automation engineer needs to
re-implement the original solution, which proves to be a tedious task or which
could create a complex and hard-to-maintain solution. The ultimate goal of the
recorder is to make the automation process easy, efficient and reliable, boosting
the productivity of the development. Furthermore, the economic relevance of web
automation increases the importance of improving its quality.

As of today, there are several web browser recording tools available. The ma-
jority of them are Chrome browser extensions, such as DeploySentinel Recorder
and WildFire among others, as a browser extension is the easiest way to ma-
nipulate the browser. It has a better access to the state of the browser and its
DOM. Because of the Graphical User Interface (GUI)’s usual complexity, it is
difficult to navigate through a recording extension and provide a positive user ex-
perience, prolonging the time required to completely understand how to operate
these tools. Additionally, they usually lack one of the following abilities: to edit
or improve workflow that has already been recorded, manage recordings and their
runs. Since management frequently rests in the user’s hands, it is challenging to

3



maintain the recordings without programming experience.
The final objective of this work is therefore to produce a self-contained Robotic

Process Automation (RPA) tool that can create a recording in the WAW format,
granting the power of non-linear interpretation, and that is easy to use due to
the simple GUI that adheres to appropriate User Experience (UX) principles.
This tool should be helpful for various interactions with the recorded workflows,
including editing, running, managing and visualizing them.

The web browser recorder completely removes the need of writing code to
automate scenarios. Non-technical users, the automation community, and engi-
neers can benefit greatly from this, making their job more reliable and efficient.
However, difficulties come while designing such a tool. There are numerous user
options and distinct requirements for many different use cases. This is the key
justification for my decision to build the recorder as a web application with a
simulated browser running on the server-side.

Even though, this approach comes with some browser interaction issues that
require to be solved, a client-server application, in my perspective, offers the
necessary functionality for simple yet powerful recording tool.

Thesis Overview
The first chapter 1 provides an overview of the key technologies used, including
JavaScript programming language, TypeScript programming language, Node.js,
React.js, Playwright and Web Browser Robot (WBR) library. Without their
knowledge, it would be impossible to understand the proposed solution. The sec-
ond chapter 2 provides a general overview of the requirements for the Web browser
recorder. It also analyses existing solutions and describes the proposed one in de-
tail. The third 3 and fourth 4 chapters offer an insight into the implementation
process including various examples from the completed software. Furthermore,
these chapters contain descriptions of some possible alternative approaches. Last
but not least an attachment A with the project’s repository description is present.

4



1. Used Technology
An overview of the used technologies is present in the first chapter. We describe
JavaScript programming language, TypeScript programming language, React.js
and various web automation tools including Playwright. Furthermore, a brief
introduction of the WBR library with references to its documentation is offered.

This chapter should provide the reader with the knowledge necessary to un-
derstand the suggested solution.

1.1 JavaScript Language
JavaScript is a programming language that is one of the core technologies of the
World Wide Web, alongside HTML and Cascading Style Sheets (CSS) [5]. Its
association with the web browser makes it one of the most popular programming
languages in the world [6]. As of 2022, 98% of websites use JavaScript on the
client side[7], often incorporating third-party libraries [8]. A dedicated JavaScript
engine can be found in all significant web browsers.

JavaScript may be defined as an ECMAScript standard compliant high-level,
typically just-in-time compiled language. It has dynamic typing, prototype-based
object-orientation, and first-class functions [5]. It supports event-driven, func-
tional, and imperative programming styles [5] and has APIs for working with
text, dates, regular expressions, standard data structures, and the DOM [6].

JavaScript Engines A JavaScript engine is a software component that exe-
cutes JavaScript code. Brendan Eich developed the first JavaScript engine in 1995
for the Netscape Navigator web browser, which evolved into the SpiderMonkey
engine, still used by the Firefox browser today [9]. Every major browser has a
JavaScript engine, which is typically created by the browser’s vendor. Google
developed the V8 JavaScript engine for the Chrome browser. The V8 is consid-
ered the first modern engine. It was introduced as part of the Chrome browser
in 2008, and its performance at the time was superior to any prior engine [10].
Initially only used in web browsers, they are now essential parts of some servers
and many different applications. The most popular runtime is Node.js.

Node.js Node.js is an open-source, cross-platform, back-end JavaScript run-
time environment that runs on the V8 engine, which was designed to build scalable
web applications [11]. JavaScript can be used by developers to create command-
line tools and for server-side scripting, which generates dynamic web page content
before sending the page to the user’s web browser. As a result, Node.js unifies the
development of online applications around a single programming language as op-
posed to using separate languages for server-side and client-side. Node.js uses an
event-driven architecture capable of asynchronous input/output operations and
non-blocking models, making it altogether lightweight and efficient [11].

5



1.1.1 TypeScript Language
Nowadays, the fashion in most programming languages demands strong typing.
The theory behind this is that strong typing allows the compiler to detect a large
class of errors at compile time [6]. Detecting these errors rather sooner than later
can lower their overall cost.

Due to the fact that JavaScript is a loosely typed language [6], type errors
cannot be caught by the compiler. This is the reasoning behind the introduction
of TypeScript. Built on JavaScript, TypeScript is a tightly typed programming
language.

TypeScript Compiler The code is usually parsed by a compiler and trans-
formed into an Abstract Syntax Tree (AST). An AST is a tree representation of
the abstract syntactic structure of code written in a formal language. The com-
piler then converts the AST to bytecode, which is later evaluated by the runtime.
The way that TypeScript works differs from other languages such as JavaScript or
Java. TypeScript compiles the code not into bytecode, but into JavaScript code.
Moreover, TypeScript verifies the code’s type safety before producing JavaScript
code using a type checker [12]. This is the main reason why TypeScript makes
the code safer.

Type System A type checker utilizes a type system, which is a set of rules used
to assign types to the program. Although the modern languages brought plenty
of different type systems, there are generally two main ones: the types are either
explicitly provided or they are inferred automatically[12]. As TypeScript supports
both, it is possible to annotate the types in a “value: type“ form, otherwise
TypeScript will infer the types from assigned values.

TypeScript vs JavaScript In comparison to JavaScript, TypeScript does not
automatically convert types at runtime. It validates the types’ correctness at
compile time, throwing most of the errors at compile time too. Furthermore,
TypeScript’s type inferring improves the IntelliSense experience in modern code
editors. On one hand, TypeScript makes development longer and harder as the
type conversions must be done explicitly. On the other hand, it avoids unexpected
behaviour at runtime.

1.1.2 React.js Library
React is a declarative and component-based JavaScript library for building user
interfaces. Its declarative and modular nature makes it easy for developers to
create and maintain reusable, interactive, and complex user interfaces [13].

Large applications that display a lot of changing data can be fast and re-
sponsive if built with React, as it takes care of efficiently updating and rendering
specific components when data changes[13]. React achieves this rendering with
its implementation of a virtual DOM, setting React apart from other web User
Interface (UI) libraries that handle page updates with expensive manipulations
directly in the browser DOM [13].

6



React uses JavaScript Extensible Markup Language (JSX)1 syntax. JSX can
be compared to a template language, which produces React components utiliz-
ing the full power of JavaScript. React embraces the fact that rendering logic is
inherently coupled with other UI logic: how events are handled, how the state
changes over time, and how the data are prepared for display. In contrast to sepa-
rating technologies by putting markup and logic in separate files, React separates
concerns with units called components that contain both.

In the past, there have been various React component types, but with the
introduction of React Hooks it is possible to write an entire application using
only functions as React components. React Hooks were introduced at React
Conf in October 2018 [14] as a way to use state and side-effects in React function
components.

MUI Component Library Material User Interface (MUI) library provides
ready to use and customizable React components that implement Google’s ma-
terial design [13]. First announced on June 25, 2014 at the Google I/O developer
conference [15], Google’s Material Design is a design language that seeks to unify
the user experience across Google products and across platforms.

1.2 Web Automation
Automation in general refers to a broad variety of technologies that eliminate
the need for human intervention in various operations. Web automation usually
refers to browser automation or automation of certain actions performed on the
internet. Around the year 2010, the web automation market began to expand
rapidly [16]. Bringing several notable tools developed over the next years.

PhantomJS2 is one of them. It is a headless WebKit browser scriptable with
JavaScript, originally released in 2011. PhantomJS was used to extract informa-
tion from web pages, capture screenshots, monitor the network and run functional
tests.

Another notable project is Selenium3, first released in 2014. It currently
includes a range of tools and libraries enabling web browser automation.

Another tool worth mentioning is Puppeteer 4 developed by Google. Pup-
peteer is a Node.js library that provides a high-level API for controlling Chromium
and Chrome browsers over the DevTools Protocol.

1.2.1 Playwright
Playwright is a web testing and automation framework developed by Microsoft.
Originally released in 2020, it is the successor of the Puppeteer automation library,
see the respective commit5.

Mostly everything that could be done by a user manually, including opening
a browser and manipulating a page, could be done with Playwright. Unlike the

1https://reactjs.org/docs/introducing-jsx.html
2https://phantomjs.org/
3https://www.selenium.dev/
4https://developer.chrome.com/docs/puppeteer/
5github.com/microsoft/playwright/commit/53cdbc5688935810b8c51ec86e3037c24bbcfac1

7

https://reactjs.org/docs/introducing-jsx.html
https://phantomjs.org/
https://www.selenium.dev/
https://developer.chrome.com/docs/puppeteer/


Puppeteer library, it allows to control Firefox, WebKit and Chromium-based
browsers. Playwright supports most popular programming languages, including
Node.js, Python, Java and .NET. Not only it is cross-browser, cross-platform
and cross-language, but also constantly updated, making Playwright probably
the best choice when it comes to web automation projects.

1.2.2 Robotic Process Automation Tools
In conventional workflow automation technologies, a software developer creates
a set of operations to automate a task and to connect to the back-end system
using internal APIs or specialised scripting languages. On the other hand, RPA
systems create the action list by observing the user carry out the task in the GUI
of the program. They then execute the automation by repeating those actions
directly in the GUI. For websites and programs, which lack the APIs for such
purpose, this lowers the barrier of using an automation.

RPA tools and GUI testing tools are very similar in terms of technology.
What makes the RPA tools different is that they allow to handle data within and
between various applications.

1.3 Web Browser Robot
The WBR was developed by Jindřich Bär in collaboration with Apify and MFF
UK, in the years 2021-2022, for the purpose of web automation. It consists of the
Interpreter, which can read and execute workflows, and ”smart” workflow format
definition, called the WAW format.

1.3.1 WAW format
The WAW format6 is a declarative format for specifying web-related workflows.
It enables the user to control the automation flow with conditional expressions,
allowing to make decisions based on the websites content. It is also easily parsable,
based on JSON, which greatly simplifies validation, visualization and third-party
adoption[17].

A workflow consists of a list of actions paired with their respective conditions.
This is a very simple yet powerful mechanism. It also allows the robot to act
on its own, recovering from potential mistakes and being less dependent on the
actual environment [18].

1.3.2 Interpreter
The Interpreter is the core part of the WBR library. Its purpose is to read the
workflow, act upon it, handle the internal concurrency and provide the execution
results[18]. See the Interpreter documentation on GitHub7.

6https://github.com/apify/waw-file-specification
7https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/interpreter.md

8

https://github.com/apify/waw-file-specification
https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/interpreter.md


2. Problem Analysis
The second chapter describes the requirements for the Web browser recorder ap-
plication. Moreover, we discuss and analyze the current competition of automated
recorders. Also the solution to the assignment is proposed. Finally, the planning
phase of the implementation is explained.

2.1 Requirements
For a variety of use case scenarios involving web automation and its subcate-
gories, the user should be able to choose from many capabilities offered by the
web browser recorder. The following can be classified as the main functionality
requirements.

Generating Selectors The application server must have the ability to produce
unique and correct selectors for specified HTML elements. This step is essential
for producing the right conditions for the WAW format.

Web Automation Workflow generator The application server must under-
stand how to create proper JSON data that adheres to the WAW specification
format. A few heuristic methods based on applying the WAW format to some
real use cases for web automation should be included in the generator.

Simulated Browser GUI The user should be able to interact with the re-
motely initialized browser. On the client side of the application, a method must
be available for rendering the server-side browser view.

Interpretation The user should be able to interpret the recorded workflow.
Interpretation makes sense in two different areas. The first one is inside of the
recording session as a means to update the workflow, providing the possibility to
pause the execution. The second one is dependent on the implementation of the
workflow execution management and appears when the execution is initiated as
a run. For recording interpretation the WBR’s Interpreter is used.

Recordings Management All the previously recorded workflows should be
accessible by the user. These recordings can be updated using the recorder’s
editing options. The user must have the ability to do both, add new recordings
and remove existing ones. The recordings can be divided to two categories: those
with parameters and those without. Both should be subject to interpretation and
the user should have access to any data gathered throughout their execution.

Application Design Overall, the tool should be easy to use with a simple
design. The interface should offer a good user experience. UX features linked to
the complexity of the recording, including recording custom actions, choosing the
right selector and configuring the interpreter, should be taken into consideration.
Additionally, methods for displaying notifications and modals are required.

9



2.2 Competition
As stated in the Introduction part of this work, there are several web browser
recorders available. In this part, a brief analysis of their functionality and com-
parison of their ideas are present.

2.2.1 Chrome Browser Extensions
There are many Chrome browser extensions dedicated to recording and automat-
ically generating code. An extension is executed inside of the launched browser,
having its context accessible. Interaction with the active page is therefore easier.
Let us have a look at the two most notable, yet distinctive recorder extensions.

DeploySentinel Recorder Recorder from DeploySentinel1 is a user-friendly
and simply designed extension. Simply stepping through the website while record-
ing makes the extension convert captured user interactions into generated Cy-
press, Puppeteer or Playwright scripts. The great part about these scripts is
that they include human-readable comments explaining what every line do. It
highlights and shows selector for elements on the page when hovering over them.
This makes the selector choosing process straightforward. Moreover, the recorder
prioritize stable selectors.

Two main issues have been encountered while using this extension. Firstly, it
does not let a user edit the generated code while recording, making parametriza-
tion or usage of regular expressions harder. Secondly, pop-up use cases, like log
in using Google account, are impossible as the recording happens only on one
active page.

Wildfire The Wildfire2 extension records actions and replays them using a
simulator. When actions are recorded or simulated, it produces a log which can
be reviewed. Additionally, it offers a Workflow Editor to manipulate the behavior
of the simulation.

On one hand, Wildfire simulation abilities are impressive. On the other hand,
the UI is complex and counter-intuitive. It generates CSS selectors as the full path
from the page’s root. Because of that understanding which recorded action does
what from the workflow editor is almost impossible. It shows that the separation
of the simulation and the editor makes the usage harder.

2.2.2 Other solutions
There are plenty of other recording solutions on the market. Notable mentions
are UiPath’s ”app/web recorder”3 that can attach the user’s browser inside the
recording application, Dexi.io4, a web based GUI recorder.

Automated workflow recording seems to be modern and fast evolving trend,
part of which many software companies want to be. Let us have a closer look at
examples from Google and Microsoft.

1https://www.deploysentinel.com/recorder
2https://wildfire.ai/
3https://docs.uipath.com/activities/docs/app-web-recorder
4https://www.dexi.io/

10

https://www.deploysentinel.com/recorder
https://wildfire.ai/
https://docs.uipath.com/activities/docs/app-web-recorder
https://www.dexi.io/


Chrome DevTools Recorder Chrome DevTools developer team launched
their recorder5 as a preview feature in November 2021. Besides recording a work-
flow, it allows to generate a detailed performance trace or a Puppeteer script.
It has a friendly and simple UI, but the recorder lacks in features. It operates
only on one page, making automation use cases involving pop-ups impossible to
record. For now, special actions like screenshot are not supported. Even though
the recorder associates multiple selectors to the actions, there is a high probability
that the selectors are going to be constructed as the full path selector sequence,
starting from the root of the page. Such selectors capture dynamically generated
classes, making them fail on replay. As a result, Devtools recorder, for example,
does not handle a simple Google search by clicking on the auto completed search
bar preview.

Power Automate Microsoft developed a recorder application, called Power
automate6. This recorder differs from the others, because it can record both,
web or desktop application workflows. Power automate allows execution of the
workflows only inside of the application. It generates a JSON representation of
the actions and triggers. This representation includes all inputs, such as the text
and expressions used. The format of the representation as well as how to interpret
it are private information.

2.3 Proposed solution
The web browser recorder is an easy-to-use RPA tool built in a form of a client-
server web application. A user can record a workflow in the simulated browser
GUI, using Playwright in the background. The workflow is being recorded in the
WAW format. This automation format is unique in that it can be interpreted
in a non-linear manner. As a result, a workflow may now be designed as a
deterministic finite automaton that can match numerous states according to the
conditions rather than just being a set of sequential rules. We achieve that by
processing the WAW workflow through an Interpreter from the WBR library.

2.3.1 Client
The front-end or client-side of the application is built using the JavaScript React
library. This library belongs among the most widely used technologies for creating
websites. With approximately 4% of the market share, React easily surpasses the
two other well-known frameworks, Vue.js and Angular, according to the statistics
[8]. Together with the TypeScript support for JSX it becomes a powerful tool.
TypeScript Extensible Markup Language (TSX) can correctly model the patterns
used in React code-bases like useState [19]. This enables to obtain the advantages
of strong typing even in the client side.

React is a client framework with a lot of benefits. The UI’s interactivity,
proficient data binding and component re-usability are a few of its outstanding

5https://developer.chrome.com/docs/devtools/recorder/
6https://docs.microsoft.com/en-us/power-automate/

11

https://developer.chrome.com/docs/devtools/recorder/
https://docs.microsoft.com/en-us/power-automate/


features. React also enables significant data changes resulting in automatic alter-
ation in the selected parts of the UI, making programmatic component reloading
unnecessary.

As opposed to the class implementation of the components, which will become
obsolete in the future, the recorder adopted the functional approach, using hooks
for manipulation of the component’s life cycle. When it comes to coding, the
modern React approach is undoubtedly more understandable and easier to adopt.

User A user could be anybody. However, users can be separated into two main
groups: developers and people with no development experience. Since the tool
should be simple to use and have an intuitive and friendly UI, both groups should
be able to easily interact with the recorder on the first try. Understanding the
advanced features shouldn’t need more work than reading the information that
is provided in the WBR library documentation. The specification of the WAW
format is the sole unusual concept that is needed to be understood.

Setup React application was created by create-react-app with the TypeScript
template. This tool was developed to help with React web application setup. It
eliminates the barrier between writing code and configuring a compilation envi-
ronment. Create React App (CRA) makes use of Babel and Webpack even though
they cannot be seen as dependencies in the produced package.json file. The con-
figurations are hidden inside the react-scripts package. All the packages required
to make React function in browser are listed in the react-scripts package.json file.
There are 58 packages for that.

Customized scripts, described by Figure 2.1, enable simultaneous server and
client start-up, including React’s iconic hot reloading. Hot reloading allows to
see the changes that have been made in the code without reloading the entire
app. React Native tracks which files have changed since the last save and reloads
only those.

" scripts ": {
"start": " concurrently -k \"npm run server\" \"npm
run client\"",
"server": "./ node_modules /. bin/ nodemon server/src/
server.ts",
"client": "react -app - rewired start",
"build": "react -app - rewired build",

...
}

Figure 2.1: Scripts definition from package.json file

Page Structure And Design The goal is to plan a simple yet effective ap-
plication design appealing to a wider audience. The controls should be easier to
grasp with such a design, making the program more user-friendly.

12



A review of online editors and other remote browser applications was done
before designing the wireframes for the recorder. The online form editor Type-
form7 served as the primary source of inspiration. Very little of the design was
influenced by the competition that already exists. Apify Console8 served as an-
other source of inspiration, mainly because recordings are in line with the Apify
Actor concept9 as they can be run and have variable input.

Please note that the following images do not represent the final application
look, they are only the UI wireframes. Wireframes are set of images displaying
the functional elements of a page, typically used for planning an application’s
structure and functionality.

The mentioned Wireframes are also available at Whimsical10 for further in-
spection.

The application’s initial screen contains a few important features, see Figure
2.2. The user can view previously recorded workflows with a variety of extra
information, including the count of where-what pairs, the date of the most recent
update, and the number of runs. The rows of the recordings table act as an
interface for interaction with different control buttons. Namely, the user can
run, edit, delete or update recording parameters. Furthermore, the user has the
option of starting a new recording session or switching to the runs or tasks. The
original idea of changing views from list to grid was considered, but it lost its
sense throughout implementation.

Figure 2.2: Wireframe - Main page with the table of recordings

The runs table page content is very similar to that of the initial page, see
Figure 2.3. It consists of a table listing all interpretations of the recordings
started in the application, together with extra information. Note that table of

7https://www.typeform.com/
8https://console.apify.com/
9https://apify.com/actors

10https://whimsical.com/browser-recorder-8ZogzyekRKFNZumg4EeS5j

13

https://www.typeform.com/
https://console.apify.com/
https://apify.com/actors
https://whimsical.com/browser-recorder-8ZogzyekRKFNZumg4EeS5j


runs in the finished recorder needed to be more complicated as individual runs
contain logs and output data.

Figure 2.3: Wireframe - Main page with the table of runs

The recording page is divided into three main elements, see Figure 2.4. On the
left side panel there are controls for interpretation and a recording preview. The
simulated browser window is situated in the middle of the screen. It is composed
of the browser tab manager, browser window and navigation bar. Lastly, the
right side panel contains a settings form for every possible custom action and the
logic tab, a feature presenting a visualized workflow interpretation route graph
that has been given up during the development process. The navigation bar on
top is always visible, enabling users to switch between pages and states.

As the implementation phase began, the overall structure and design un-
derwent a lot of quick changes associated with a better understanding of the
developed features.

Styled components library for CSS styling is used with the help of MUI li-
brary to achieve a minimalist design. MUI toolkit offers basic and customizable
components for building React applications. They fundamentally improve the
interface while reducing the amount of time needed for the atomic components
creation and styling. For minor style adjustments, inline CSS is used.

Code Structure The top-level client directory structure is defined as follows.

• The API folder implementing the HTTP request methods communicating
with the server endpoints.

• The components folder containing the reusable components of different
complexity, starting from the least complex ones. The directory is divided
into ”atoms, molecules and organisms”11 sub-directories, allowing for a hi-

11https://medium.com/@janelle.wg/atomic-design-pattern-how-to-structure-your-react-
application-2bb4d9ca5f97

14

https://medium.com/@janelle.wg/atomic-design-pattern-how-to-structure-your-react-application-2bb4d9ca5f97
https://medium.com/@janelle.wg/atomic-design-pattern-how-to-structure-your-react-application-2bb4d9ca5f97


erarchical component structure. The ”atoms” are isolated structures from
which the ”molecules” are built. The ”organisms” are then constructed
from the ”molecules”. Both ”molecules” and ”organisms” can contain other
components of their kind.

• The constants folder declares constant values needed throughout the client
side.

• The context folder defines the context components which provide data to
its children by using their custom hook method.

• The helpers folder contains the helper functions.

• The pages folder consists of pages, also called views, which are higher-level
components that are using all elements necessary for assembling a specific
view.

• The shared folder contains server-shared definitions of types and constants.
The source directory consists of these folders as well as the index.tsx file, which

is the main entry point, and App.tsx file, which sets up the application.

Figure 2.4: Wireframe - Recording page

2.3.2 Server
The back-end or server-side of the application is built using TypeScript and the
Express framework. Express is a minimal and flexible Node.js web application
framework that provides a robust set of features for implementing API. With a
substantial user base, the Express framework has a supportive community [20].

In comparison to these technologies, the Playwright and Web Browser Robot
libraries are both used on the back-end. The browser is started and interacted
with using the Playwright library. The workflow in the WAW specification format
is executed using the WBR’s interpreting algorithm.

15



Architecture Two key categories cross over in the back-end functionality: the
browser and the workflow management. The browser management section of-
fers setup and maintenance of remote browser instances. Whereas the workflow
management part is responsible for workflow generation in the WAW format and
workflow interpretation.

There are four main classes covering these functionalities and their interaction,
see Figure 2.5. The RemoteBrowser and the BrowserPool are classes in the
browser management section. In the workflow management section, there are the
Generator and the Interpreter classes included.

Figure 2.5: Server architecture diagram

A controller, consisting of helper functions used for setup and management
of browser instances, must be included in the browser management section. The
RemoteBrowser is also bound to the BrowserPool by the controller. The Browser-
Pool is a dictionary of all the active RemoteBrowser instances indexed by their
id.

Storage To comply with the recordings management requirements, the server
must store recordings as well as runs. Both are saved with meta information,
including the recording’s name, the most recent update date, and others.

This application will store files on the file system. The database can be used
in the future for a production solution ready to be deployed on the Internet.

2.3.3 Communication
An important part for a client-server application to work is the mutual commu-
nication.

Communication between the server and the client works in two ways. The
first method is having a Representational State Transfer (REST) API, defined
by the server and used by the client. The second method uses a dedicated web
socket connection for data transfer.

REST API The back-end offers an API that conforms to the constraints of
REST architectural style.

16



An API is a set of definitions and protocols. It could be referred to as a
contract between an information provider and an information user, establishing
the content required from the consumer (the call) and the content required by
the producer (the response). In other words, if an interaction with a computer
or system is required to retrieve information or perform a function, an API helps
to communicate what needs to be done for that system, so it can understand and
fulfil the request. An API is a mediator between the clients and the resources
held by the server.

REST is defined as a specific software architectural style characterized by a
group of selected constraints. Beneficial system properties and sound engineering
principles are evident in a system designed to conform to these constraints [21].
HTTP 1.1 defines a set of request methods that indicate the action taken on a
resource. Of those available, the ones of greatest significance using a RESTful
approach are GET, POST, PUT, and DELETE [21].

The recorder’s API consists mainly of methods needed to initiate and maintain
a recording session, interact with the generated workflow and helpers for storage.
The endpoints are described in the chapters 3 and 4. Technology used to define
API is router from Express.js described in the introductory part of the Server
section.

Socket.IO For web socket communication, the application uses the Socket.IO
library. This library enables low-latency, bidirectional and event-based commu-
nication between a client and a server [22]. It is built on top of the WebSocket
protocol and provides additional guarantees like a fallback to HTTP long-polling
or automatic reconnection [22].

WebSocket is a computer communications protocol providing a full-duplex
communication channels over a single Transmission Control Protocol (TCP) con-
nection.

WebSocket communication plays an important role in the project. Due to its
great properties, it is used as the main communication channel for frequent data
transfer between the server and the client. This communication is used in both
ways to achieve the desired effect.

17



3. Active Recording View
In this chapter, the recording page and all its associated features are described
in more detail.

Figure 3.1: Example of the active recording view

The recording page consists of the left side panel, the browser window and
the right side panel, see Figure 3.1.

The Left side panel includes the controlled interpretation buttons group, in-
teractive preview of the recorded pairs and interpretation settings. The browser
window consists of the tab manager, the navigation bar and the browser window,
rendering images from the remote browser instance. Finally, the helper button
for browser window resize, the last action noted by the recorder and recorded
pair detail and custom action settings tabs can be found on the right side panel.

On top of that, the interpretation log appears at the bottom. The log is needed
when recording interpretation is performed. The user can review the output data
or debug information concerning the current execution in the log.

Besides the recorder’s name and logo, the navigation bar contains the main
controls. Namely, the record button, allowing to start a new recording session
from the active recording view, the finish button for storing the recorded workflow
and referencing the user back to the recordings management view, and the exit
button for deliberately going back to the recordings management view.

3.1 Browser Simulation
A simulation must be made to provide a genuine impression of interaction with
a browser. Unlike an emulation, a simulation does not mimic all of the software
features. As a result, the simulation lacks the conviction of a real browser, yet it
nonetheless improves the UX.

18



The simulated browser has an easy-to-understand structure, an interactive
rectangular window, a navigational bar and a tab manager, see Figure 3.2. All
of these features are required for supporting a wide range of automation scenarios.

Figure 3.2: Simulated browser

The browser simulation for the recording session can be controlled by using
one of the following API endpoints.

1. GET /record/start

2. POST /record/start

3. GET /record/stop/:browserId

These endpoints make a call to the controller component, which either initial-
izes a new RemoteBrowser instance, assigns it a generated id, or stops an already
initialized one, freeing up the resources. The id is referred to as the browserId
which is used for retrieving the correct instance from the BrowserPool.

While initializing, a new dedicated namespace1 is added to the existing socket
connection. A namespace is a communication channel that allows to split the
communication logic over a single shared connection, also called multiplexing.
This means that multiple RemoteBrowser instances could be spawned and in-
teracted with. This interaction and many other events are mapped to the right
socket namespace, using the browserId as a dynamic namespace name.

When using the first endpoint a remote browser starts with the default pa-
rameters. The browser running on the server is a headless Chromium browser

1https://socket.io/docs/v4/namespaces/

19

https://socket.io/docs/v4/namespaces/


by default. This can be changed through the second endpoint, defining the Play-
wright launch options2 in the request body.

Because on the front-end the page structure is important, the browser is sit-
uated inside of the dedicated grid space, changing in size accordingly and dy-
namically to the user’s screen size. Due to the properties of the canvas HTML
element, the width and height of the browser window must be computed on page
load. This creates an issue when changing the application’s size by minimizing
or maximizing the user’s browser. As a result, the simulated browser is able to
recompute the height and width. The re-computation takes place after reload or
after a browser resize button have been clicked on.

3.1.1 Browser Window
For setting up an interactive window simulating the browser, which runs on the
server, two key points have to be solved. The first point is what communication
channel should be used. The channel should have low-latency, and a frequent data
transfer is expected. The second point is how and where to render the obtained
data on the front-end.

As stated in the Proposed solution part, there are two main communication
channels available, web sockets and HTTP API calls. The full-duplex websocket
protocol, with unique properties, is an obvious choice for solving the first point.

For solving the second point, there are two main candidates. The canvas
HTML element is used to draw graphics, like images, by JavaScript on the web-
site, and the iframe element, which specifies an inline frame. An inline frame
is used to embed another document within the current HTML document. At
first glance, iframe can seem like a better choice in contrast to displaying images.
However, turns out that sending images through the network is less resource
heavy compared to sending the optimized page’s DOM to the iframe. As there is
no way to transfer the whole browser application, the canvas element was chosen.

The process of browser simulation is simple. The canvas element draws an
images in the Joint Photographic Experts Group (JPEG) format to a dedicated
space. The remote browser’s page is subscribed to a screencasting session on the
Chrome DevTools Protocol (CDP)3 level. A screenshot is then sent through the
socket channel every time the active page updates, encoded in the Base64 form.

In addition to the visual effect, the browser window must know how to detect
events from the user. This is done by listening to various types of events on the
canvas. Information associated with the events, like coordinates or event type,
is communicated to the server, where event simulation and workflow generation
is performed using these data. Currently supported events are: mousedown,
mousemove, wheel, keydown and keyup.

The keydown event is handled in a special way, which supports most of the
keyboard shortcuts. Especially the copy-pasting and upper case letters. The
mouseclick event tracks if navigation or new tab was the result of the click. The
other events are not reflected in the result of the recording but they are simulated
in the remote browser achieving their intended effects.

2https://playwright.dev/docs/api/class-browsertype
3https://chromedevtools.github.io/devtools-protocol/

20

https://playwright.dev/docs/api/class-browsertype
https://chromedevtools.github.io/devtools-protocol/


3.1.2 Navigation Bar
A simulated browser navigation bar includes the reload, back and forward buttons,
as well as the location bar where Uniform Resource Locator (URL)s are entered.
This component is essential for web automation. It allows users to navigate to
other pages.

A new tab always starts on the blank page about:blank. The URL can be
inputted in multiple ways, including or not the protocol and the hostname part.
On the other hand, the URL must always contain the full domain name. Other
parts, such as the query parameters and fragments are not optimized.

The navigation buttons work as expected. The back button navigates to the
previously visited website from the history and the forward button reverses this
change. Navigation buttons are not controlled, meaning they are clickable at any
point. The navigation history management is done on the back-end with the use
of the Playwright’s goBack and goForward4 functions. These functions are also
reflected on the generated recording, whereas the reload button is not.

The important feature of the location bar is that it keeps track of navigation
and makes the bar synchronized. When navigation happens for a different reason
than deliberate URL input, like when a hyperlink is clicked, the bar needs to up-
date the displayed data. The synchronization is applied even when the workflow
is interpreted, leaving the user in the right state for further recording.

3.1.3 Tab Manager
Even though the tab manager is not as important for automation as the naviga-
tion bar, it is a useful feature for the management of pages in other tabs. The
main reason for its implementation is to support automation use cases involving
pop-ups.

A pop-up is a new page opened in the context of another browser tab. They are
mainly used for authentication through a different service provider. For example,
one can log in to a website using a Google, GitHub or a Facebook profile. These
options work by opening a pop-up window requesting the username and password
combination. This window automatically closes after successful authentication,
so the recorder also needs to listen for the close event on the page associated with
the specific tab.

The front-end implementation is very simple, using the tab component from
the MUI library with a close button for each tab. There is also an add button
available, adding a new page to the browser context.

On the back-end, a set of events is responsible for the tab management be-
haviour. These events are utilizing the Playwright methods. Because every page
has a browser context property, only the active page is needed for the tab man-
agement.

3.2 Recording
Recording is done automatically after a user interacts with the simulated browser.
It is implemented as a group of event handlers calling the appropriate Generator

4https://playwright.dev/docs/api/class-page

21

https://playwright.dev/docs/api/class-page


functions. The recording interpretation is the only time when user interactions
are ignored.

Otherwise, the Generator is constantly notifying the client, allowing to update
the recording preview, see Figure 3.3.

Figure 3.3: Recording preview

The preview is a list of where-what pairs located in the recorded workflow.
Each preview item consists of a possible breakpoint button, provided for the
debugging or editing purpose, a clickable index of the pair, reflecting the order
of their addition to the workflow, a badge, showing the current number of what
conditions and a group of three controls. By using these controls, the user can
view the whole pair definition, edit the pair in a raw editor or delete the pair
from the workflow.

Additionally, the preview is updated with the current version from the Gener-
ator every 15 minutes by an API call. This behaviour is implemented to minimize
the possibility of an error in the preview.

3.2.1 Selector Generation
While persisting some of the previously generated data for a better workflow
conditions, the Generator must be able to create unique and correct CSS selectors
for HTML elements defined by the coordinates of the user interaction.

It does that by executing the finder5 code directly inside the page’s context.
The finder is a CSS selector generator developed by a Google employee.

This selector generator outputs an object containing different selector variants,
such as class selector or text selector. The finder is wrapped inside of an algorithm
used to select the best selector from the finder ’s output according to the user’s
action. The algorithm implements basic heuristics, for example if the element has
only text, the text selector is going to be used or when an element has a unique
id, it is automatically chosen as a selector. This approach leaves room for future
improvements.

In addition, the recorder provides a highlighting feature on the front-end.
The highlighter component gets the generated selector, always best suitable for
the click action, together with an element bounding rectangle coordinates on
mousemove event. From this data a highlighting rectangle with the selector is
composed and displayed on the browser’s emulated window, see Figure 3.4.

5https://github.com/antonmedv/finder/blob/master/finder.ts

22

https://github.com/antonmedv/finder/blob/master/finder.ts


Figure 3.4: Highlighter component example

By using the highlighter component a user is able to choose which element
with what selector is the most convenient for the action he wants to execute. If
no generated selector suffice, the user can edit the generated pair manually.

Selector Dilemma When a user interacts with an element, a problem offering
two possible solutions how to generate its selector, appears.

Let us explain it with a simple example. The user navigates to the news
website, he clicks on the first article and extracts data from it. Was his intention
to always refer to the specific article or rather to the article displayed on the first
place by the website? The problem does not have an unambiguously acceptable
or preferable solution.

In the recorder, this situation is solved by having the user see the selector
before he executes his action or by manually updating the affected part of the
recording.

Nevertheless, this poses a constraint on the user’s knowledge. He is required
to understand the meaning behind the CSS selectors for correct recording gener-
ation.

3.2.2 Workflow Generation
The recording is stored inside of the Generator instance, initialized for the ac-
tive RemoteBrowser. The Generator class also stores the recording’s metadata,
including the name, create date, update date, number of pairs and parameters
array. Metadata are useful while storing the recording.

When a new recording session is started an already existing workflow can be
loaded from the storage by using the dedicated endpoint, providing the name of
the recording inside of the storage.

Page state An active page can be described by its state. The state can include
different conditions, starting from url or cookies to the structure description, in-
cluding selectors for existing elements. State conditions are similar to element
selectors. There can be different conditions or groups of conditions describing

23



the current page. These descriptions could be ambiguous, and therefore they
could be applied to different pages. The description specificity grows quantita-
tively, meaning the more conditions are describing the state of the page, the more
likely this description is going to be unique for that page. The specificity of the
individual conditions also matters.

Workflow Pair A workflow pair is a JavaScript object consisting of the where
and the what parts, see Figure 3.5.

The where part is an object describing conditions that a page state needs to
meet to execute the what part. The pair can be matched from where conditions
by the interpreting algorithm. The workflow pairs are generated automatically
using the current URL and selectors necessary for execution of the what conditions
as the where part of the pair. The what part of the pair is an array of objects
representing user’s actions and the necessary arguments for them. The actions
are mapped to the corresponding Playwright page methods. There are several
actions that can be executed on the page by the Playwright. The complete list
of these actions is available in the documentation6.

The actions that are supported by the recorder automatically as what condi-
tions are click, goBack, goForward, goto and press.

{
"where": {

"url": "https :// www.google.com/",
" selectors ": [

"[name =\"q\"]"
]

},
"what": [

{
"action": "click",
"args": [

"[name =\"q\"]"
]

},
{

"action": " waitForLoadState ",
"args": [

" networkidle "
]

}

Figure 3.5: Generated workflow pair

The example from Figure 3.5 shows, how could an automatically generated
workflow pair look. This pair in matched by the interpreting algorithm when the
page reaches the state identified by ”https://www.google.com/” URL navigation

6https://playwright.dev/docs/api/class-page

24

https://playwright.dev/docs/api/class-page


and the HTML element satisfying the selector ”[name=”q”]” is present. After
the successful match the interpretation continues by clicking on the element and
waiting until it reaches a ”networkidle” load state. More about the WAW format
is mentioned in the WAW format part.

Generation Post-processing The Generator adds waitForLoadState action
after every what condition except the press action. Waiting for ”networkidle”
load state ensures that the current action has enough time to change the page
state before the next action is executed. The press action does not require this
pause.

Each pair is validated by the two main criteria before it is added into the
workflow. First check focuses on the where conditions. If a match, usually URL
and the whole group of selectors, is found in the workflow, the what conditions
are concatenated with the what conditions of the matched pair. Otherwise, only
one pair would be matched during the interpretation.

The second validation criteria inspects pairs with the matching URL where
condition. A test for the new where selectors is then made. Even though the
selectors are different, they can point to the same element. If that is the case, the
new what conditions are concatenated with the previously generated pair’s what
conditions and the selectors are added to the where conditions.

Else the selectors can point to a different element, but both elements can
be visible on the page at the same time. Because the order in which pairs are
organized matters during the interpretation, the earlier recorded pair would get
over-shadowed by the later one. Even now, the solution is to concatenate their
what conditions and to add all the selectors from the over-shadowing pair to the
where conditions of the over-shadowed pair. The execution part now includes
multiple elements.

A problem can occur, if the earlier pair was from a significantly further place
in the workflow. The recording would probably not meet the user’s expectations,
therefore it is a good practice to notify the user in this case and let him resolve
the problem.

After the recording is finished optimization takes place. The workflow is
analyzed and sequences of press actions are transformed into only one action,
using the Playwright type method. This algorithm takes only letters, numbers
and space characters into consideration. Special keyboard characters, like Enter
or Arrow down, except the Backspace character, are omitted and left as press
actions inside of the workflow. Each Backspace character situated inside of the
press action sequence is executed on the resulting string, making the input valid.

Custom Actions The recorder offers a possibility to generate custom action
pairs. Custom actions are special methods, that cannot be performed by inter-
action with the simulated browser. Supported custom actions are click on coor-
dinates, enqueue links, scrape, scrape schema, screenshot, scroll and script. The
meaning behind these actions is described in the WAW format documentation7.

The recorder provides a straightforward custom action settings editor on the
right side panel, see Figure 3.6. The conditions of custom actions’ pairs are
constructed mainly from previously generated data and user decisions.

7https://github.com/apify/waw-file-specification

25

https://github.com/apify/waw-file-specification


Figure 3.6: Custom action settings editor

3.3 Recording Interpretation
The recorder allows users to execute, stop and pause the active recording work-
flow. This process is generally denoted as the interpretation. The interpretation
is performed by the WBR Interpreter. The recording interpretation is controlled
on the back-end by the following API endpoints.

• GET /record/interpret

• POST /record/interpret/stop

Every RemoteBrowser instance has its own Interpreter class instance. The Inter-
preter class persists the current interpretation states, such as when the execution
is paused, how to resume it, log messages and execution output data, including
binary images or extracted JavaScript Object Notation (JSON) data. It also
registers multiple events from the client and emits information about the exe-
cution. The main entry point for controlling the execution is located inside the
RemoteBrowser class.

On the client-side, the interpretation is achieved by a group of controlled
buttons, meaning that the label and the fact that a button is clickable are changed
according to their usage, see Figure 3.7.

When interpretation is started a new page with the initial state is initialized.
This state then changes until the interpretation finishes. If the interpretation is

26



Figure 3.7: Interpretation buttons

stopped a new page is also initialized because the Interpreter causes the active
page to close.

Settings Interpreter settings are available in the settings tab on the left side
panel. If they are changed, the Interpreter will start the next interpretation with
those arguments. Therefore maxConcurrency, maxRepeats and debug options8

are available. By default, the interpretation starts with maxConcurrency set to
1, maxRepeats set to 1 and debug set to false.

Parameters As recordings can have parameters, the user can change their
value in the settings tab on the left side panel as well. Parameters are required
for successful interpretation. If the user does not specify the parameters, they
default to an empty string.

3.3.1 Interpretation Pause
The interpretation can be paused by two different actions, clicking the pause
button or assigning a breakpoint to a pair. Throughout the workflow preview,
many breakpoints can be assigned. The interpretation will pause every time it
matches the breakpoint assigned pair. It will not execute the what actions of that
pair before the interpretation is resumed.

After the interpretation starts, the client is highlighting the currently matched
pair in the workflow preview. The user can watch and wait until the pair he
wants to pause is highlighted. He can also decide to pause when a specific action
is performed in the browser window.

The technique of pausing is possible due to the flag Interpreter action. This
action executes a callback which listens to the user interactions on the front-end.
The callback also provides the function for resuming the interpretation.

The pausing is achieved by adding this flag action as a first what condition to
every pair inside of the workflow before the interpretation starts. The generated
flag actions are not reflected anyhow in the recording.

Resuming Options After the interpretation pauses a user can resume it by the
resume button. There is also the step button available. A step means resuming
execution of the whole what pair part and trying to match another pair. If
the match is defined, the interpretation will pause again, else the interpretation
successfully finishes.

8https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/interpreter.md

27

https://github.com/barjin/wbr/blob/main/docs/wbr-interpret/interpreter.md


3.3.2 Interpretation Log
The interpretation log is displaying the execution progress messages, debug and
other outputs, see Figure 3.8. It can be opened or closed by expanding the inter-
pretation log component at the bottom of the application. The log is necessary for
tracking the progress and debugging recordings. All log related communication
is done through the web socket connection.

The front-end implementation scrolls down with new messages to mimic the
terminal.

Figure 3.8: Interpretation log example

3.4 Recording Modification
One of the main features of the recorder is the possibility to edit a recording.
This can be achieved in two ways: either editing the recording manually or au-
tomatically.

3.4.1 Automated Edit
Automated editing is performed by interpreting the recording. The workflow
can be interpreted either fully, to continue recording from the end, or it can be
paused at some specific part. This will take the browser to the desired state and
when the interpretation finishes or pauses, the user can continue to record by
interacting with the simulated browser or by using other methods. These pairs
will be generated and added to the correct part of the recorded workflow.

When the recording is edited automatically by pausing the interpretation, it
is called the block recording method. By using this method, the user can record
different paths that the Interpreter can choose during the interpretation process.

The following example demonstrates why is this useful. Consider having a
recording, which navigates to a specific website and performs a search there. This
recording stops working because the website implemented new cookie consent
banner, which makes the search in the background unreachable. We can go back
to the recording session and pause the interpretation before the search is executed.
The banner is visible in the browser window. We continue by recording a new
path by clicking the banner’s agree button. When the recording is run after this
change, the Interpreter will make the recording succeed in both cases, when the
cookie consent banner is present or when it is not.

28



3.4.2 Manual Edit
For updating, deleting and inserting pairs in the workflow manually from the
client, there are endpoints available in the workflow route. These endpoints take
the index of the pair inside of the recorded workflow as a parameter. When
updating or inserting a new pair, its definition is expected in the request’s body.

• PUT /workflow/pair/:index

• POST /workflow/pair/:index

• DELETE /workflow/pair/:index

Furthermore, the user can manually edit the recording in the UI by using the raw
form editor or the pair detail edit option.

Raw Editor The raw editor provides a simple pair edit modal window, see
Figure 3.9. The user can reorder the pair to a different index, set an id or edit
the JSON string of the where or the what pair part directly. On save, the editor
provides validation of the pair and can output specific error messages. These
messages act as helpful insight for the user.

Figure 3.9: Raw editor example

Pair Detail Edit The right side panel provides a pair detail view, see Figure
3.10. The pair needs to be selected first by clicking on the index button in the
recording preview, see Figure 3.3.

The pair detail component is generated recursively and dynamically. Rules
and components defined for displaying various types of input are used. Objects
are shown in a tree view, items can be added or removed from arrays and text

29



areas are smart, parsing numbers or objects if needed. A whole what condition
can be deleted by the X button. On the other hand, where conditions can be
only changed or added. Both, where and what pair parts are collapsible for well-
arranged look. Therefore, the pair detail can be viewed as an intelligent ”edit
and display” helper for the workflow pairs.

If a value is changed, React updates every component involved in a cascading
wave. The change also propagates to the recording preview, see Figure 3.3. Web
sockets update the workflow inside the Generator on the back-end.

Figure 3.10: Pair detail edit example

The pair detail editor offers to add a new where or what condition. This
addition triggers a helpful modal, tailored for every possible option according to
the WAW format specification, see section 1.3.1. Examples of these modals are
shown by Figure 3.11 and Figure 3.12.

30



Figure 3.11: Add where condition example

Figure 3.12: Add what condition example

31



4. Recordings Management View
This chapter describes the management section of this project in detail. User must
be able to manage his recordings as well as interpretations of the recordings, also
called runs. Recorder’s main page serves this purpose.

The initial page points to the recordings table with a left sidebar menu, see
Figure 4.1. The runs table is accessible from that menu. The top navigation bar
is used to start a new recording session.

Figure 4.1: Recordings table view

4.1 Recordings Table
The recordings table offers an overview of the recorded workflows. Recordings
are saved and read from ./../storage/recordings folder. They are stored together
with metadata, see Figure 4.2. The recordings metadata contains an array of
parameters which is used when the recording is executed to achieve a correct
interpretation.

" recording_meta ": {
"name": "alza -output",
" create_date ": "7/15/2022 , 3:14:20 AM",
"pairs": 2,
" update_date ": "7/15/2022 , 3:14:20 AM",
"params": []

}

Figure 4.2: Recording metadata example

Moreover, the table acts as a means for recording manipulation. A record-
ing can be executed, edited and deleted from the table. The execution opens

32



the Interpreter settings and recording parameters modal. An edit starts a new
recording session with a loaded recording workflow.

Server storage API provides endpoints for obtaining and deleting recordings.

• GET /storage/recordings

• DELETE /storage/recordings/:recordingName

4.2 Recording interpretation
Running a recording requires two API calls.

1. PUT /storage/runs/:recordingName

2. POST /storage/runs/run/:runName/:runId

The first request creates a RemoteBrowser instance with a dedicated socket con-
nection for the interpretation, generates runId and saves created run’s metadata
in the file named recordingName runId to the ./../storage/runs folder. This way
a new run entry is created for every interpretation. This entry is storing the Inter-
preter settings, filled parameters, interpretation log, run’s metadata and output
extracted during the run. Serializable and binary outputs are stored in a JSON
format, see Figure 4.3. The second request controls the execution and stores its
result to the run’s file in the storage.

After initiating a recording run on the client, the view of the page changes
automatically to the runs table, displaying contents of the collapsible row which
is currently running.

4.2.1 Runs Table
The runs table offers an overview of the executed recordings. Every interpretation
creates a new record in the table. The records are displayed as collapsible rows
with hidden content described in Collapsible row contents section, see Figure 4.4.
The runs are saved and read from ./../storage/runs folder. A run’s file content
has a form of metadata in the JSON format, see Figure 4.3.

A run duration is computed after the interpretation finishes and it is trans-
formed into a friendly format. When a task field contains a task label it means
that the recording’s parameter array is not empty and the inputted parameter
values could be found in the record’s hidden content. This method is not intended
to be used with passwords and private data, and therefore a good candidate for
improvement.

Server storage API provides endpoints for obtaining and deleting runs. The
run’s name in the second endpoint refers to recordingName runId format.

1. GET /storage/runs

2. DELETE /storage/runs/:runName

33



{
"status": "PASSED",
"name": "alza -output",
" startedAt ": "7/15/2022 , 4:27:14 AM",
" finishedAt ": "7/15/2022 , 4:27:21 AM",
" duration ": "7 s",
"task": "",
" browserId ": null ,
" interpreterSettings ": {

" maxConcurrency ": 1,
" maxRepeats ": 1,
"debug": false

},
"log": "...",
"runId": "945 e7678 -0c10 -47c0 -aaba -2 b00bafc1b6a ",
" serializableOutput ": {

"item -0": "...",
...

},
" binaryOutput ": {

"item -0": {...} ,
"item -1": {...}

}
}

Figure 4.3: Run meta data example

Figure 4.4: Runs table

Collapsible row contents A collapsible row component consist of the inter-
pretation log, Interpreter settings, inputted parameter values and output data
preview, see Figure 4.5.

While the run is in progress an abort button is available to stop the inter-
pretation, situated under the log’s window. Log drags down, trying to mimic
a terminal, with every new message the same way as Interpretation Log does.

34



After the run finishes with one of the possible statuses PASSED, FAILED or
STOPPED, the abort button disappears and log data are loaded from the stor-
age.

The output preview displays the serializable and binary data extracted while
running the recording. The data are shown in the correct format, see Figure
4.5. For example, binary data with image/png mime type will appear inside an
img tag, whereas JSON data will be parsed for a pretty print inside a textarea
element. A link for downloading the data is provided as well and is located above
the preview of each output item.

Figure 4.5: Run’s output preview example

35



Conclusion
The web browser recorder application was developed according to requests and
cooperation with the Apify company. Apify specilizes in web automation tech-
nologies and data extraction on the Internet. Apart from this project, a WBR
library was created at Apify. For more details see section 1.3. The recorder was
intended as a user-friendly UI, operating on top of the library’s interpretation al-
gorithm and WAW format specification, see chapter 1. Furthermore, it handles
the element selectors and valid WAW data generation.

As mentioned in the Introduction, the recorder strives to completely remove
the necessity for writing code when automating processes on the web. It is able to
create web automation workflows, called recordings. The ability to execute these
recording in an intelligent nonlinear way is the key for making web automation
more efficient and error proof. The unique characteristics of WAW format and
the Interpreter from the WBR library are very useful for that goal.

From the UX perspective having a server-client application is advantageous.
The reasons are described in the chapter 2. Another advantage is the inter-
changeability of different software parts. The GUI could be easily replaced by a
different implementation still profiting from the back-end functionality. The in-
terpretation algorithm can be changed allowing further experimenting and finding
the best algorithm for recording interpretation.

This project is a great starting point. From here, the recorder can be improved
while still maintaining a balanced and user-friendly interface. Let us discuss
some of the ideas for improvement. First of all, the solution is not optimized for
inputting a secret information, like passwords. Because website log in use cases
are common, this feature would make a great addition.

Adding support for a wider range of interactions, such as fill, drag and drop,
move mouse for triggering hover effect on an element, will be helpful. With every
new interaction the solution will get more complex, but also more useful. A
simple support for other actions is already integrated, but making it work fully
would require an examination of how the page reacts to these interactions and
finding out how this should be integrated in the generated workflow.

As to the constant need of sending a big quantity of various data over the
communication channels, there is a possibility for optimization, lowering the nec-
essary bandwidth and making the application more responsive. For example, data
can be emitted in a compressed form and decompressed after they are received.

Web automation tools must reflect the increasing complexity of browser ma-
nipulation. One of the issues is browser fingerprinting. A browser fingerprint
is information collected specifically by interaction with the web browser of the
device. Fingerprints can be used to fully or partially identify individual users or
devices. Out of the box, the recorder does not support complicated browser con-
figuration. As a result, the simulated browser is easily detectable as automation,
leading to blocking its access either completely or partly. Therefore, it would be
wise to add support for browser fingerprint configuration.

One last interesting extension could be an integration of mobile application
emulator. This would enable the UI and back-end functionality to be re-used
with a few alterations for recording mobile application workflows. However, we

36



would need to use a different technology than Playwright as this tool-set does
not support emulating mobile applications as well as design a new interpreting
algorithm over such technology.

Finally, it is important to mention that the recorder application is very useful
for web automation community and will be soon published on the Apify website.
The idea is to integrate the recorder inside of a public actor1, taking the advantage
of the user management and consumption cost computation systems, which are
already available on the platform, making anyone able to use the web browser
recorder.

1https://apify.com/store

37

https://apify.com/store


Bibliography
[1] Angelo Gargantini and Elvinia Riccobene. Asm-based testing: Coverage cri-

teria and automatic test sequence generation. Journal of Universal Computer
Science, 7(11):1050–1067, 2001.

[2] Judit Bar-Ilan. Data collection methods on the web for infometric pur-
poses—a review and analysis. Scientometrics, 50(1):7–32, 2001.

[3] Stephen J Mooney, Daniel J Westreich, and Abdulrahman M El-Sayed.
Epidemiology in the era of big data. Epidemiology (Cambridge, Mass.),
26(3):390, 2015.

[4] De S Sirisuriya et al. A comparative study on web scraping. 2015.

[5] David Flanagan. JavaScript: the definitive guide, volume 1018. O’reilly,
2006.

[6] Douglas Crockford. JavaScript: The Good Parts: The Good Parts. ” O’Reilly
Media, Inc.”, 2008.

[7] W3Techs. Usage statistics of JavaScript as client-side programming
language on websites. https://w3techs.com/technologies/overview/
javascript_library/, 2022. [Online; accessed July-2022].

[8] W3Techs. Usage statistics of JavaScript libraries for websites. https://
w3techs.com/technologies/overview/javascript_library, 2022. [On-
line; accessed July-2022].

[9] Sebastian Peyrott. A Brief History of JavaScript. https://auth0.com/
blog/a-brief-history-of-javascript/, 2017. [Online; accessed July-
2022].

[10] PC Games Hardware. Big browser comparison test: Inter-
net Explorer vs. Firefox, Opera, Safari and Chrome. https:
//www.pcgameshardware.de/Tools-Software-156186/Tests/
Big-browser-comparison-test-Internet-Explorer-vs-Firefox/
Opera-Safari-and-Chrome-Update-Firefox-35-Final-687738/, 2009.
[Online; accessed July-2022].

[11] Lauren Orsini. What You Need To Know About Node.js. https://
readwrite.com/what-you-need-to-know-about-nodejs/, 2013. [Online;
accessed July-2022].

[12] Boris Cherny. Programming TypeScript: making your JavaScript applica-
tions scale. O’Reilly Media, 2019.

[13] Shama Hoque. Full-Stack React Projects: Learn MERN stack development
by building modern web apps using MongoDB, Express, React, and Node. js.
Packt Publishing Ltd, 2020.

38

https://w3techs.com/technologies/overview/javascript_library/
https://w3techs.com/technologies/overview/javascript_library/
https://w3techs.com/technologies/overview/javascript_library
https://w3techs.com/technologies/overview/javascript_library
https://auth0.com/blog/a-brief-history-of-javascript/
https://auth0.com/blog/a-brief-history-of-javascript/
https://www.pcgameshardware.de/Tools-Software-156186/Tests/Big-browser-comparison-test-Internet-Explorer-vs-Firefox/Opera- Safari-and-Chrome-Update-Firefox-35-Final-687738/
https://www.pcgameshardware.de/Tools-Software-156186/Tests/Big-browser-comparison-test-Internet-Explorer-vs-Firefox/Opera- Safari-and-Chrome-Update-Firefox-35-Final-687738/
https://www.pcgameshardware.de/Tools-Software-156186/Tests/Big-browser-comparison-test-Internet-Explorer-vs-Firefox/Opera- Safari-and-Chrome-Update-Firefox-35-Final-687738/
https://www.pcgameshardware.de/Tools-Software-156186/Tests/Big-browser-comparison-test-Internet-Explorer-vs-Firefox/Opera- Safari-and-Chrome-Update-Firefox-35-Final-687738/
https://readwrite.com/what-you-need-to-know-about-nodejs/
https://readwrite.com/what-you-need-to-know-about-nodejs/


[14] React Conf. React today and tomorrow and 90https://www.youtube.com/
watch?v=dpw9EHDh2bM&ab_channel=ReactConf. [Online; accessed July-
2022].

[15] Roman Nurik. Material design in the 2014 Google I/O
app. https://android-developers.googleblog.com/2014/08/
material-design-in-2014-google-io-app.html, 2014. [Online; ac-
cessed July-2022].

[16] Andrew J. Davison. A brief history of web app automation. https://
capiche.com/e/software-automation-history, 2020. [Online; accessed
July-2022].

[17] Jindřich Bär. WAW documentation. https://github.com/apify/
waw-file-specification, 2022. [Online; accessed July-2022].

[18] Jindřich Bär. WBR documentation. https://github.com/barjin/wbr/
tree/main/docs, 2022. [Online; accessed July-2022].

[19] TypeScript Docs. React. https://www.typescriptlang.org/docs/
handbook/react.html, 2022. [Online; accessed July-2022].

[20] Trends Built With. Express Usage Statistics. https://trends.builtwith.
com/framework/Express, 2022. [Online; accessed July-2022].

[21] Casimir Saternos. Client-Server Web Apps with JavaScript and Java: Rich,
Scalable, and RESTful. ” O’Reilly Media, Inc.”, 2014.

[22] Socket.IO developers. Socket.IO - Introduction. https://socket.io/docs/
v4/, 2022. [Online; accessed July-2022].

39

https://www.youtube.com/watch?v=dpw9EHDh2bM&ab_channel=ReactConf
https://www.youtube.com/watch?v=dpw9EHDh2bM&ab_channel=ReactConf
https://android-developers.googleblog.com/2014/08/material-design-in-2014-google-io-app.html
https://android-developers.googleblog.com/2014/08/material-design-in-2014-google-io-app.html
https://capiche.com/e/software-automation-history
https://capiche.com/e/software-automation-history
https://github.com/apify/waw-file-specification
https://github.com/apify/waw-file-specification
https://github.com/barjin/wbr/tree/main/docs
https://github.com/barjin/wbr/tree/main/docs
https://www.typescriptlang.org/docs/handbook/react.html
https://www.typescriptlang.org/docs/handbook/react.html
https://trends.builtwith.com/framework/Express
https://trends.builtwith.com/framework/Express
https://socket.io/docs/v4/
https://socket.io/docs/v4/


List of Figures

2.1 Scripts definition from package.json file . . . . . . . . . . . . . . . 12
2.2 Wireframe - Main page with the table of recordings . . . . . . . . 13
2.3 Wireframe - Main page with the table of runs . . . . . . . . . . . 14
2.4 Wireframe - Recording page . . . . . . . . . . . . . . . . . . . . . 15
2.5 Server architecture diagram . . . . . . . . . . . . . . . . . . . . . 16

3.1 Example of the active recording view . . . . . . . . . . . . . . . . 18
3.2 Simulated browser . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Recording preview . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Highlighter component example . . . . . . . . . . . . . . . . . . . 23
3.5 Generated workflow pair . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Custom action settings editor . . . . . . . . . . . . . . . . . . . . 26
3.7 Interpretation buttons . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Interpretation log example . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Raw editor example . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.10 Pair detail edit example . . . . . . . . . . . . . . . . . . . . . . . 30
3.11 Add where condition example . . . . . . . . . . . . . . . . . . . . 31
3.12 Add what condition example . . . . . . . . . . . . . . . . . . . . . 31

4.1 Recordings table view . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Recording metadata example . . . . . . . . . . . . . . . . . . . . 32
4.3 Run meta data example . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Runs table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Run’s output preview example . . . . . . . . . . . . . . . . . . . . 35

40



List of Abbreviations
HTML Hypertext Markup Language

DOM Document Object Model

API Application Programming Interface

HTTP Hypertext Transfer Protocol

GUI Graphical User Interface

UI User Interface

RPA Robotic Process Automation

WAW Web Automation Workflow

UX User Experience

CSS Cascading Style Sheets

WBR Web Browser Robot

JSON JavaScript Object Notation

JSX JavaScript Extensible Markup Language

TSX TypeScript Extensible Markup Language

MUI Material User Interface

CRA Create React App

REST Representational State Transfer

TCP Transmission Control Protocol

AST Abstract Syntax Tree

JPEG Joint Photographic Experts Group

CDP Chrome DevTools Protocol

URL Uniform Resource Locator

41



A. Attachments

A.1 Project Repository
Content and structure of project repository attached to this thesis:

Project

config-
overrides.json A react-app-rewired configuration

package.json Holds important information and
records dependencies

README.md Repository’s readme file.

tsconfig.json Configures TypeScript compiler op-
tions.

docs The generated server documentation.

index.html Documentation entry point.

examples The examples folder.

recordings The examples of recorded workflows.

runs An example of run file.

public
Contains static files such as index.html,
javascript library files, images, and
other assets

img Images folder.

index.html

server Back-end implementation.

src Contains all back-end source code files.

src Contains all front-end source code files.

42


	Introduction
	Used Technology
	JavaScript Language
	TypeScript Language
	React.js Library

	Web Automation
	Playwright
	Robotic Process Automation Tools

	Web Browser Robot
	WAW format
	Interpreter


	Problem Analysis
	Requirements
	Competition
	Chrome Browser Extensions
	Other solutions

	Proposed solution
	Client
	Server
	Communication


	Active Recording View
	Browser Simulation
	Browser Window
	Navigation Bar
	Tab Manager

	Recording
	Selector Generation
	Workflow Generation

	Recording Interpretation
	Interpretation Pause
	Interpretation Log

	Recording Modification
	Automated Edit
	Manual Edit


	Recordings Management View
	Recordings Table
	Recording interpretation
	Runs Table


	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Attachments
	Project Repository


