
BACHELOR THESIS

Tomáš Pop

Named Entity Recognition and Its
Application to Phishing Detection

Department of Software Engineering

Supervisor of the bachelor thesis: prof. RNDr. Tomáš Skopal, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software
Development

Prague 2022

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I want to thank my supervisor, Tomáš Skopal, and advisors, Jan Brabec, and
Radek Starosta, for their professional guidance and valuable insights while writing
the thesis. Moreover, I thank Cisco for providing the resources to conduct the
experiments mentioned in this thesis. Lastly, I thank my family for their support
and patience.

ii

Title: Named Entity Recognition and Its Application to Phishing Detection

Author: Tomáš Pop

Department: Department of Software Engineering

Supervisor: prof. RNDr. Tomáš Skopal, Ph.D., Department of Software
Engineering

Abstract: This thesis focuses on named entity recognition applied to email
phishing detection. Named entity recognition is a classification task that aims
to extract information from a text into a predefined set of categories (named
entities), such as organizations, person names, or locations. The thesis describes
various named entity recognition approaches, ranging from simple utilizations of
neural networks to current state-of-the-art architectures. The most prevalent
libraries and their models in named entity recognition are compared against
each other from the computational and predictive performance perspective on
the publicly available Enron email dataset. Moreover, differences in terms of
named entities between positive (including phishing) and negative emails are
measured on a proprietary dataset. Ultimately, the proprietary dataset is used
for an experiment where a phishing email classification workflow is enriched
with named entities to conclude whether named entities are helpful for the
classifier to improve predictive performance. According to the experiment
outcomes, a noticeable dissimilarity was measured regarding named entities in
positive and negative emails. However, in the phishing email classification
experiment with the provided dataset, it was concluded that named entities do
not offer a convincing benefit. Though, it is possible that other conclusions
would have been drawn using a different dataset.

Keywords: phishing detection, named entity recognition, neural networks, natural
language processing, transformer

iii

Contents

Introduction 3

1 Phishing 5
1.1 Email Phishing . 5

1.1.1 High-Volume Phishing . 5
1.1.2 Spear Phishing . 5

1.2 Social Media Phishing . 6
1.2.1 Personal Account Impersonation 6
1.2.2 Brand Impersonation . 7

1.3 Phone Phishing . 7
1.3.1 Vishing . 7
1.3.2 SMishing . 7

2 Named Entity Recognition 8
2.1 Neural Networks . 9

2.1.1 Perceptron . 9
2.1.2 Multilayer Perceptron . 10
2.1.3 Neural Networks Training 11

2.2 Text Representation . 13
2.2.1 Bag of Words . 13
2.2.2 Word Embedding . 14
2.2.3 Word2vec . 15
2.2.4 GloVe . 16

2.3 Deep Neural Networks . 17
2.3.1 Recurrent Neural Networks 17
2.3.2 Bidirectional Recurrent Neural Networks 20
2.3.3 Transformers . 21
2.3.4 Bidirectional Encoder Representations from Transformers . 26

3 Software for Named Entity Recognition 28
3.1 Datasets . 28

3.1.1 CoNLL 2003 . 28
3.1.2 OntoNotes v5 . 28

3.2 SpaCy . 28
3.2.1 Transition-Based Model 29
3.2.2 Transformer-Based Model 30

3.3 Hugging Face . 31
3.4 Flair . 31

3.4.1 BiLSTM Model . 31
3.4.2 Transformer-Based Model 31

4 Experiments 32
4.1 Enron Email Dataset . 32

4.1.1 Sentence Parsing . 32
4.1.2 Model Choice . 32

1

4.2 Proprietary Dataset . 35
4.3 Phishing Email Classification . 38

4.3.1 Cognitive Anti-Phishing Engine 38
4.3.2 JSON2Bag . 40
4.3.3 Named Entity Recognition Contribution 40

Conclusion 45

List of Terms and Acronyms 57
Terms . 57
Acronyms . 57

A Attachments 58
A.1 Proprietary Dataset Experiment 58

A.1.1 Probability Distributions 58
A.1.2 Jensen-Shannon Divergence 60

2

Introduction
The digital world is developing and expanding rapidly, and so do cybercriminals
who utilize it for unjust enrichment by inflicting damage ranging from individuals
to large corporations. Although cybercriminals have developed various methods
to steal confidential information from victims, social-engineering-based attacks
remain the most prevalent approach [1]. One of such social-engineering attacks is
phishing, which according to the FBI’s crime report in 2021, is the most common
cybercrime in general [2].

Phishing, one of the initial access techniques [3], exploits the human factor
to either trick the victim to reveal confidential information used for further
exploitation or to infiltrate the internal infrastructure. Adversaries utilize
various media to conduct attacks ranging from spoofed websites, social media
phishing, and phone phishing to email phishing. This thesis focuses more
thoroughly on phishing encountered in email correspondence, which comprises
96% of all phishing cases [4].

In recent years, there have been significant breakthroughs in the machine
learning field regarding natural language processing (NLP), a computational
technique for representing human language. Several attempts toward phishing
detection based on natural language processing have already been conducted [5].

Moreover, NLP successfully contributed to the field of phishing email
detection, for instance, by being able to recognize a sense of urgency,
call-to-action (a suspicious request, such as a request to click a link, download
an attachment, or update login credentials), or grammar errors abundant in
mass phishing emails [6].

One of such NLP techniques whose usability for phishing detection will be
thoroughly examined in this thesis is named entity recognition (NER). It is
a task that aims to extract information from a text classified into a predefined
set of categories (named entities), such as organizations, person names, or
locations. NER may prove helpful since such named entities are typically
abundant in emails (Figure 1), and various observations can be made, for
instance, whether named entity distributions of positive (including phishing)
emails differ from negative, harmless ones. Furthermore, the presence of certain
named entities or combinations of them found in an email may prove to be
a potential signal for phishing.

3

Figure 1: An example of a phishing email with highlighted named entities
regarding a phony research opportunity at Cornell University coming from a non-
Cornell account [7]

In recent years, named entity recognition experienced many advances in
predictive performance. The thesis mainly focuses on neural network NER
approaches aiming toward current state-of-the-art architectures. Moreover,
off-the-shelf libraries used for named entity recognition are thoroughly
described. Various libraries with their NER models are compared from
computational and predictive perspectives to provide an overview of their
tradeoffs.

Afterward, an experiment is conducted on a proprietary email dataset where
named entity distributions of positive and negative emails are compared.
Ultimately, the proprietary email dataset is further utilized to conclude whether
named entities produced by the best performing model in terms of predictions
added as an enrichment to a phishing email classification workflow prove
beneficial in predictive performance.

4

1. Phishing
Phishing is a malicious technique that exploits the human factor to infiltrate the
network. Targets ranging from individuals to large companies are contacted in the
vast majority of cases by email either to obtain and misuse sensitive targets’ data
or, as an initial access technique [3] for further exploitation, to deploy malicious
software, such as ransomware [4]. This chapter examines phishing techniques
encountered in various communication media.

1.1 Email Phishing
Email phishing, making 96% out of all phishing cases, is the most prevalent
phishing technique [4]. Phishing emails can be broken down into two categories:
high-volume phishing emails sent in masses and spear phishing emails subtly
designed for a targeted victim.

1.1.1 High-Volume Phishing
The most common approach in email phishing is to design a fraudulent email to
trick a victim into revealing confidential data. Such data can range from credit
card credentials, personal account credentials, contacts, or confidential data about
the company where the victim is employed, for instance, by sending a spoofed
link to a website to fill in a form with confidential data [8].

Another option adversaries frequently use phishing for is to deliver malicious
software through a spoofed link or a malicious attachment, for instance,
ransomware, to the internal infrastructure, potentially resulting in even more
damage.

Phishing adversaries developed the emails and their following scenarios so
sophisticated that it may be difficult to recognize them from regular legitimate
emails. The adversaries typically register fake domain names which mimic
existing organizations by slightly misspelling the organization name [9].
Furthermore, the design can be visually as convincing as possible. Typically, the
message content may create a sense of urgency or threat to lower the chances
that the victim looks for the email’s authenticity. Since such emails are
primarily targeted to be sent to as many victims as possible, these emails are
usually not personalized, as seen in Figure 2.

1.1.2 Spear Phishing
Spear phishing is targeted primarily at a specific person or a group from an
organization [11]. The adversary typically collects personal information about the
victim beforehand, such as the full name, job position, specific information about
the position, colleagues, family members, and other contacts. With collected
profile information, the adversary aims to further increase email credibility, for
instance, by impersonating a colleague or superior of the victim. Such emails are
difficult to catch by an anti-phishing filter compared to the high-volume phishing
method sent in masses.

5

Figure 2: An example of a high-volume phishing email (impersonal, poorly
written, containing grammar errors and urgency requesting confidential data) [10]

1.2 Social Media Phishing
Information shared over social media provide a powerful tool for anyone to
perform a personal information survey. Furthermore, with the rapid growth of
social media users, the social media phishing attack count is also increasing [12].
Adversaries found many opportunities for exploitation, such as account
hijacking, impersonation, or malware distribution [1].

1.2.1 Personal Account Impersonation
Information surveying by cybercriminals, besides spear phishing, can be used
for impersonation directly on a social media platform, for instance, by instant
messaging. It was shown that users are more than four times more likely to be
deceived when criminals impersonate to be an acquaintance of the target [13].
The adversaries utilize collected information to form their copy of the
impersonated victim’s profile to contact a friend or family member for requests,
including credentials or financial aid.

6

1.2.2 Brand Impersonation
Another common tactic where fake accounts play their role is the impersonation
of a well-known legitimate business. One of the options for how to proceed is to
offer a phony promotion leading to a spoofed link where credentials are requested
to confirm identity to further participate, for example, to claim a prize [12].
The accounts hijacked this way can be sold or even investigated further whether
the victim uses similar credentials for other social media, email, or banking.
Alternatively, the accounts can be used for malicious software spreading or to
lure an acquaintance of the victim into the identic trap.

1.3 Phone Phishing
Phishing techniques mentioned above are applicable independently of the
platform. Nevertheless, phishing over the phone offers inherently connected
vulnerabilities to the mobile platform: phone calls and text messages.

1.3.1 Vishing
During a voice-over IP phishing, also known as vishing, phone call, adversaries
may impersonate a trusted source, such as the victim’s bank, claiming that there
are problems regarding their account to convince a victim into revealing personal
information and financial details.

1.3.2 SMishing
SMS phishing, also known as SMishing, is a form of phishing where the adversary
entices the victim into revealing confidential information via a text message. For
instance, the message may contain a security alert message from a bank that links
to a malicious website or a fraudulent mobile application.

7

2. Named Entity Recognition
Named entity recognition is a natural language processing task that aims to
extract information from text. The extracted information (named entities)
consists of words in the text, such as person names, organizations, locations,
dates, or geopolitical entities (Figure 3).

Figure 3: Visualizing named entities found in a news article [14] via spaCy [15]

Initially, named entity recognition as a classification task was approached by
traditional supervised machine learning algorithms such as Support vector
machines [16] or Conditional random fields [17].

Supervised machine learning uses datasets annotated with expected
outcomes in advance to train a model using an underlying algorithm to classify
data into a predefined set of discrete categories (classification) or predict real
value outcomes accurately (regression) [18]. Each sample from the training
dataset usually contains various features of the sample. Training means the
model gradually finds the relationship between the features and the expected
outcome annotations.

Moreover, additional features can be formed using feature engineering to
discover new data by transforming, selecting, or manipulating input data,
providing extra information for better pattern recognition [19]. Nevertheless,
patterns found in the training data should be transferable to previously unseen
data. In other words, generalize well. After training, the model’s predictive
performance is tested on an unlabeled dataset on which its generalization ability
is examined.

Extensive feature engineering in many traditional supervised machine
learning approaches for named entity recognition was crucial. Feature vector
representation provided the abstraction over text where each word was
represented using various boolean, numeric, and nominal values based on
linguistic domain knowledge, such as the word’s prefix, suffix, whether the word
is capitalized, whether it ends with a period, or the length of the word [20].

8

Traditional supervised machine learning systems have retreated as deep
neural networks emerged and dominated many natural language processing
tasks [21]. Deep neural network approaches proved beneficial due to their ability
to automatically learn feature representations from raw input data effectively,
compared to traditional supervised machine learning approaches.

Initially, deep neural network successes in NER have been made using
recurrent neural networks utilizing various methods for text representation [22].
However, with the rise of attention mechanisms, recurrent neural networks were
displaced by state-of-the-art NER models utilizing a transformer architecture
that proved to be a breakthrough throughout many natural language processing
tasks [23].

2.1 Neural Networks
Neural networks are a machine learning method whose inspiration was seen in the
biological principles of neurons in the human brain [24]. Many machine learning
tasks, such as image recognition, speech recognition, natural language processing,
and others, are nowadays approached using deep learning methods with a neural
network backbone [25].

2.1.1 Perceptron
The first algorithmically described neural network is a perceptron (Figure 4),
presented by Frank Rosenblatt [26]. The single-layer perceptron is the simplest
neural network model that consists of a single neuron and is suited for binary
classification with a linearly separable dataset.

To briefly introduce how the computation is made, consider feature variables
as an input vector x and model weights w with a bias b. Net input o(x)
(Equation 2.1) is computed as a dot product between the input vectors and
weights.

o(x) = xT w + b =
n∑︂

i=1
xiwi + b (2.1)

In order to obtain the output signal y (Equation 2.2), the net input is
introduced to a non-linear activation function f, deciding whether a neuron will
be activated or not [27].

y = f(
n∑︂

i=1
xiwi + b). (2.2)

A non-linear activation function is required since a network with only linear
activation functions would be equivalent to a linear regression model. Thanks
to the non-linearity of the activation functions, neural networks can accurately
capture complex relationships in the data [28]. In the perceptron case (Figure 4),
a step function as an activation function f is applied, returning 0 for negative
and 1 for positive values.

9

x2 w2 Σ f
Activation
function

y

Output

x1 w1

...
xn

...
wn

Weights

Bias
b

Inputs

Figure 4: Perceptron

2.1.2 Multilayer Perceptron
Multilayer perceptron (MLP) tackles the limitation of the single-layer perceptron
in linear separability. It consists of 3 types of layers: the input layer, one or
more hidden layers, and the output layer. Moreover, each layer contains multiple
perceptrons mentioned above (also called units) stacked together. Each unit is
fully connected across the neighboring layers (Figure 5). Such a layer with fully
connected units will be further referred to as a fully connected layer.

The input layer contains the number of units proportional to the input features
count. When considering a classification task, such as named entity recognition,
the unit count in the output layer equals the number of classes desired to classify.
On the other hand, a single unit in the output layer is used with regression.
Consequently, the unit count in the hidden layer can vary according to the needs
of the task.

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y(1)
m1

. . .

. . .

. . .

y
(n)
0

y
(n)
1

...

y(n)
mn

y
(n+1)
1

y
(n+1)
2

...

y
(n+1)
C

Input layer
1st hidden layer nth hidden layer

Output layer

Figure 5: Multilayer perceptron classification with D input features to C classes

10

Universal Approximation

MLPs with a proper choice of activation function f, for instance, Rectified linear
unit (ReLU)

f(x) = ReLU(x) = max(0, x), (2.3)

can approximate any function using a single hidden layer given enough
units [29]. Nevertheless, the main concern is efficiency since, for some tasks, the
number of units can be absurdly large. Therefore, it may be suitable for such
neural network computations to opt for more sophisticated neural network
architectures, as shown in Section 2.3.

2.1.3 Neural Networks Training
In supervised learning, the training goal is to perform well on previously unseen
data with the lowest generalization error. The training process can be described
as an iterative optimization problem where minor updates of the neural network
model’s weights are performed to minimize the loss function using the training
dataset, changing the model’s performance with each iteration [30].

Gradient Descent

An optimization algorithm is required to adjust the weights and change the loss
function accordingly. Gradient descent (Equation 2.4) is one of the simplest
optimization algorithms for iterative function minimization.

w(n+1) = w(n) − α∇w(n)E(w(n)) (2.4)

α learning rate, a tunable parameter, determining the step size at
each iteration while moving towards the loss function minimum

w(n) weights in the nth step of the algorithm
∇wE(w) the gradient of the loss function

Learning Rate

Learning rate defines how quickly or slowly the neural network updates its
learned concepts [31]. On the one hand, a low learning rate may require plenty
of time since the weight changes are too insignificant. On the other hand, the
rapid changes with fewer epochs may result in divergent behavior and possibly
never reaching an optimum (Figure 6) [32]. Therefore, the optimal learning rate
should be low enough to reach convergence but high enough to be trained
within a reasonable time [33].

11

Figure 6: Impact on reaching an optimum with different learning rates [32]

Loss Function

A loss function usually consists of a sum over training examples of some per-
example loss function [30]

∇wE(w) = 1
m

∇w

m∑︂
i=1

L(x(i), y(i), w). (2.5)

L a per-example loss
x(i) an example from the training dataset
y(i) an expected target value for the aforementioned example x(i)

The approach is called standard gradient descent if all training examples
from the dataset are used. Nevertheless, when dealing with large datasets where
the training dataset grows to billions of examples denoted by m, the gradient
computation can be inefficient since O(m) time complexity for each iteration is
required. When considering the loss function computation as an expectation
value (Equation 2.5), an estimation of E(w) can be made using a smaller set of
training examples known as mini-batch stochastic gradient descent
(Equation 2.6) [30]. In other words, for each step of the algorithm, a batch of B
random independent examples {x(1), x(2), ..., x(B)} is sampled, resulting in time
complexity reduction to a constant B.

In practice, the recommended values of B are of the power of two ranging from
32 to a few thousand, while satisfying that B fits the memory requirements of
CPU/GPU [34]. For instance, when aiming for execution efficiency while making
a computation with GPU, Nvidia suggests setting the batch size to 64, 128, or
256 since it helps better divide work between multiple parallel processes [35].

∇wE(w) ≈ 1
B

∇w

B∑︂
i=1

L(x(i), y(i), w) (2.6)

Multiple improvements to gradient descent algorithms have been made
primarily by introducing the adaptive learning rate [36], such as AdaGrad [37],
RMSProp [38], and the most used optimization algorithm in practice called
Adam [39].

12

Softmax

For multiclass classification, as named entity recognition is, an output layer
activation function called softmax is required, which maps a vector of size n of
real numbers to a vector containing n real numbers that sum to one to be
interpreted as probabilities (Equation 2.7).

softmax : Rn → (0, 1)n (2.7)

The softmax is computed for each value in a vector z

softmax(z)i = ezi∑︁n
j=1 ezj

(2.8)

where z = (z1, ..., zn) ∈ Rn, n ≥ 2.

2.2 Text Representation
Before moving onto more sophisticated neural network architectures and
proceeding to the NER state-of-the-art models, it is worth clarifying how to
proceed when representing text. Since words are not a concept that most deep
neural network models understand, converting the words into a numeric
representation is necessary.

2.2.1 Bag of Words
One common way to represent text is using a bag-of-words model. It is a feature
extraction method that preprocesses the text into a vector containing occurrences
of words in the text given [40]. Therefore the size of the vector depends on the
number of unique words encountered in the corpus, as shown in Table 1, which
can be computationally expensive for training with large datasets. Moreover,
other details about the words, such as their position in a document, position in
the sentence, and context, are ignored.

another corpus first sentence word
First corpus sentence. 0 1 1 1 0
Another sentence. 1 0 0 1 0
Word, word, word. 0 0 0 0 3

Table 1: Bag-of-words feature extraction for a simplistic three-sentence corpus

13

2.2.2 Word Embedding
Word embedding is one of the text representation techniques that found
popularity in NLP, in general. It could be described as word mapping to
real-number vectors (further referred to as word vectors) of a fixed size
(Figure 7). Word embedding aims to train word representations via word
vectors to capture the meaning, context, and relationship between words via
their values. Furthermore, these word vectors are given as inputs to a classifier,
for instance, a deep neural network.

To ensure that valuable embeddings are learned, a large amount of text data,
for instance, millions or even billions of words, is required. A typical approach uses
pre-trained word vectors learned via a word embedding algorithm on a massive
corpus in advance, known as pre-training [41]. Afterward, the learned weights
in word vectors are transferred to the original task, in this thesis, named entity
recognition.

Various word embedding algorithms have been introduced, such as
word2vec [42], GloVe [43], and fastText [44], each of them developed as
open-source tools targeted for practical use.

Figure 7: An example of word embeddings [45]

14

2.2.3 Word2vec
A word embedding algorithm that moved the NLP a big step forward is
word2vec [42]. Word2vec was primarily created to learn word vectors from large
datasets (billions of words) coming in two self-supervised variants: the
continuous bag-of-words model (CBOW) and the skip-gram model (Figure 8).
CBOW predicts the center word based on a window of surrounding context
words. On the other hand, the skip-gram model uses the center word to
generate its neighbor context independently.

Whether to choose one over the other was pointed out in the original
word2vec paper. According to the original paper [42], the skip-gram model
works well with smaller datasets and handles less frequent words better than
CBOW. Nevertheless, CBOW takes less time to train and represents frequent
words better. Furthermore, approximation training methods were introduced to
speed up further the computation process, namely negative sampling and
hierarchical softmax [46].

Figure 8: Word2vec models [47]

15

2.2.4 GloVe
Global vectors (GloVe) [43] word embedding algorithm extends the skip-gram
word2vec by introducing the use of global statistical information regarding word
co-occurrences. The GloVe model learns word vectors by examining word
co-occurrences within a training dataset. A global co-occurrence matrix is
constructed by counting how often a word wi is found in the context (adjustable
via the window size) of the word wk. This process is performed across all
training examples. Afterward, co-occurrence probabilities can be derived from
the matrix where P (wk | wi) denotes the probability of the word wk appearing
in the context of the word wi.

GloVe showed that the ratio of word-word co-occurrences probabilities could
capture the potential relationship between words [48]. Suppose target words ice
and steam with their co-occurrence probabilities are given based on a few example
context words from an otherwise large corpus containing 6 billion tokens, as shown
in Table 2.

Probability and ratio solid gas water fashion
P (wk | ice) 1.9 · 10−3 6.6 · 10−5 3 · 10−3 1.7 · 10−5

P (wk | steam) 2.2 · 10−4 7.8 · 10−4 2.2 · 10−3 1.8 · 10−5

P (wk | ice)/P (wk | steam) 8.9 0.085 1.36 0.96

Table 2: Word-word co-occurrence probabilities and their ratios [43], [46]

For the context word wk = solid, which is associated with ice but not steam,
a large ratio is expected. Conversely, a small ratio is awaited for wk = gas
connected to steam but not ice. For the word, wk = water linked with both the
words in italics, the co-occurrence probabilities ratio is expected to be close to 1.
Similarly, for the completely unrelated word wk = fashion, the ratio should be
again close to 1.

Nevertheless, the initial goal is to work with word vectors, so it is demanded to
present the ratio, a scalar information value, in the word vector space [43]. Since
the ratio depends on three words, it is necessary to come up with a function f
which contains three word vectors, which eventually map into the desired ratio

f(vwi
, vwj

, v′
wk

) = P (wk | wi)
P (wk | wj)

. (2.9)

vwi
, vwj

∈ Rd generated word vectors
v′

wk
∈ Rd a word vector typically (given a co-occurrence matrix is

symmetric) generated from the same set with a different
random initialization

One of the options how to reduce the dimensionality via the function f is to
perform a difference between the first two word vectors which does not change
the dimensionality of the word vectors in any way and then to perform a dot
product between the difference and the last word vector

f((vwi
− vwj

)T v′
wk

) = P (wk | wi)
P (wk | wj)

. (2.10)

16

2.3 Deep Neural Networks
Deep neural networks, neural networks that have several stacked layers of
neurons, have achieved many successes in natural language processing [49].
Deep learning proved beneficial because it can automatically and effectively
learn feature representations from unstructured data, such as text, compared to
traditional supervised machine learning approaches where feature engineering
typically based on domain knowledge is required.

Moreover, the predictive performance of deep neural network architectures
can increase when provided with more data. In contrast, traditional machine
learning methods struggle with predictive performance scaling beyond a certain
data amount [50].

As a standard, how to approach named entity recognition was by utilizing
deep neural networks while obtaining semantic content of words using various pre-
trained word embeddings for textual representation from a massive corpus [22]. In
recent years, NER state-of-the-art has utilized a transformer architecture which
has been a breakthrough in various natural language processing tasks.

2.3.1 Recurrent Neural Networks
Considering sequential data, one of the main drawbacks of feed-forward neural
network architectures, such as multilayer perceptron, is the lack of information
persistence. Recurrent neural networks (RNN) address this issue by extending
a feed-forward neural network with loops that allow information from one or
many previous steps to be remembered via the hidden state [46].

In order to determine current outputs denoted by ht, the network uses current
inputs xt with the hidden state ht−1 using the repeating module A (Figure 9).

Figure 9: Chain-like nature of a recurrent neural network [51]

For instance, the repeating module of the simple RNN (Figure 10) is a tangent
hyperbolic activation function

tanh(x) = ex − e−x

ex + e−x
. (2.11)

Although, in theory, simple RNNs can learn long-term dependencies, they
struggle to do so in practice [51]. Therefore different architectures emerged that
still use the RNN chain; nevertheless, the inner repeating module A contains more
gates (Figure 10) used to regulate incoming and outcoming information. Modern
recurrent networks are the Long short-term memory (LSTM) [52] and its more
computationally efficient variant, the Gated recurrent unit (GRU) [53].

17

Figure 10: Recurrent neural networks cells overview [54]

Long Short-Term Memory

To handle long-term dependencies, which RNNs struggled with, Hochreiter and
Schmidhuber [52] introduced a neural network called the Long short-term
memory, where the chain RNN structure is still applied. Nevertheless, the
significant difference was with adjustments in the repeating module which
targets the long-term dependencies issue. The authors use a memory cell
handled by an input gate it, forget gate ft, and output gate ot (Figure 11).

The gates consist of a sigmoid activation function σ (Equation 2.12), followed
by a multiplication operation [51].

σ(x) = 1
1 + e−x

(2.12)

An input gate is required if read data are supposed to be memorized and
added to the memory cell. Furthermore, a forget gate is needed to reset the
cell’s content. In addition, an output gate governs reading entries from the cell.
With this mechanism, the architecture should be able to distinguish between
memorable and ignorable inputs in the hidden state.

Figure 11: Long short-term memory [55]

18

Gated Recurrent Unit

Gated recurrent unit architecture [53] tackles the issue of long-term
dependencies containing an update gate zt and a reset gate rt (Figure 12). The
update gate plays a similar role as forget and input gates do in LSTM. It
decides which information shall be preserved. A reset gate determines how
much past information is supposed to be forgotten. Since GRU contains fewer
gates and also fewer parameters than LSTM, the model is faster to train and
execute. In small-scale datasets with not too long sentences, it is considered
a preferred variant according to the comparison conducted by Chung et al. [56].
Nevertheless, the tradeoff between expressive power and computational
efficiency remains unclear.

Figure 12: Gated recurrent unit [57]

19

2.3.2 Bidirectional Recurrent Neural Networks
Although there is no silver bullet regarding whether LSTM or GRU should be
chosen, the results in many NLP tasks have shown that it is a suitable option to
use a bidirectional variant of the recurrent network, especially for named entity
recognition [58]. A bidirectional RNN (BiRNN) consists of two RNNs (LSTM or
GRU of the same type): the first, which takes the input forward, and the second,
in a backward direction. Afterward, the output vectors from both directions are
added together. The added-up vector is then introduced to a fully connected
layer and a softmax layer for classification, such as named entity recognition.

In the case of named entity recognition, a popular model which utilizes
BiLSTM is shown in Figure 13. This model used word representations
capturing both word-level and character-level features [59]. Generally, until
transformers emerged, BiLSTMs with various word representations
modifications were NER state-of-the-art back then [22].

Figure 13: Named entity recognition using BiLSTM [59]

20

2.3.3 Transformers
Since the introduction of transformers in 2017, transformers have been the model
of choice for many natural language processing tasks. a transformer architecture
can be described as a sequence-to-sequence architecture that uses the attention
mechanism to weigh the significance of parts of the input data [60].

Sequence to Sequence Learning

Sequence-to-sequence (seq2seq) learning was initially applied to neural machine
translation [61]. There are two main components in the seq2seq architecture:
an encoder and a decoder. In terms of RNN-based seq2seq architectures, the
encoder and decoder are essentially RNN layers placed on top of each other. The
encoder part gradually processes each item in the input sequence and encodes it
into a fixed-length context vector (typically 256, 512, or 1024), further sent to
the decoder. Consequently, the decoder proceeds to produce the output sequence
item by item.

Although this approach had been state-of-art in terms of neural machine
translation until transformer architecture was introduced, it does not deal with
long sentences properly due to the fixed-length nature of the context vector.
The RNN’s long sequences processing issue was pointed out by Bahdanau
et al. [62]. The authors introduce the attention, allowing the model to focus on
relevant parts of the input sequence as needed.

The model does not require perfectly encoding a long sentence into a fixed-
length context vector when using attention. However, it encodes only the parts
of the input sentence of a particular word where the most relevant information is
concentrated.

Attention

The inspiration for the attention mechanism in neural networks was found in
natural human behavior when inspecting a visual scene. The optic nerve receives
far more information than a human brain can process and the capability of the
brain allows to allocate resources only to a fraction of information of interest
while diminishing the rest. In the context of natural language processing, the
goal is to be able to focus on relevant parts of the input sequence as needed [46].

Attention was introduced using recurrent neural networks as described
earlier [62]. Moreover, the authors of the transformer architecture then further
contributed by having no recurrence involved, relying solely on the attention
mechanism.

21

Scaled Dot-Product Self-Attention

The initial self-attention mechanism introduced in the proposing transformer
article [60] was scaled dot-product self-attention. Scaled dot-product
self-attention is calculated using three vectors from each of the encoder’s input
vectors. A query, key, and value are created for each input vector by
multiplying the input vector with trainable weight matrices W Q, W K , and W V

(Figure 14, on the left).
Considering a matrix X which contains input vectors packed together, query,

key, and value matrices (Q, K, V) are obtained by performing dot products
between the matrix X and the weight matrices mentioned above (Figure 14, on
the right) [63].

Figure 14: Scaled dot-product self-attention illustration [63]

The output matrix of the self-attention layer is computed as

Attention(Q, K, V) = softmax(QKT

√
dk

)V (2.13)

where the dot product QKT is scaled by 1√
dk

mainly to stabilize gradients [60].

Multi-head Self-Attention

The authors also introduced the multi-head self-attention mechanism that helps
with information extraction from multiple representation subspaces, which the
scaled dot-product self-attention is incapable of. This mechanism has multiple
sets of randomly initialized query, key, and value weight matrices. The number
of sets is also known as heads, denoted by h. Afterward, the scaled dot-product
self-attention is performed for each head separately (Figure 15), opening the
opportunity for parallelization [60].

Since it is necessary to end up with the dimensions that a forthcoming feed-
forward neural network accepts, the resulting matrices must be concatenated.
The result of the concatenation is then multiplied by an additional matrix W O

(Equation 2.14) trained jointly with the model.

22

Multihead(Q, K, V) = Concat(head1, ..., headh)W O (2.14)

headi = Attention(QW Q
i , KW K

i , V W V
i) (2.15)

Q a query matrix
K a key matrix
V a value matrix
headi the ith attention head
W Q

i the query weight matrix for the ith attention head
W O an additional trainable matrix used for dimensionality reduction

Figure 15: Multi-head self-attention illustration [63]

Model

The transformer model as a seq2seq architecture contains N encoders and
decoders. Each encoder and decoder contains sub-layers. The encoder’s inputs
flow through a self-attention layer. The outputs of the self-attention layer are
sent to a feed-forward neural network. The decoder contains both these layers,
while between them is a special attention Encoder-Decoder layer which will be
further described later. Each sub-layer has a residual connection around itself,
followed by a layer normalization step that recenters and rescales across the
features (the Add & Normalize step in Figure 16). This technique is mainly
used since it consistently helps with convergence acceleration [46].

In order to represent words for the model, it is required to start by
transforming each input word into a vector via word embedding. Since the
model does not contain any recurrence, to store information about the relative

23

Figure 16: Transformer architecture with two encoders and decoders [63]

position of each token in the sequence, positional encoding is added to the
embedded vectors (the lower part of Figure 16). The encoder receives a list of
vectors as an input. These vectors are passed into a self-attention layer and
afterward into a feed-forward neural network, where the output is further sent
to the next encoder.

As the model proceeds to the top encoder, its output is transformed into a set
of attention matrices K and V, which is further used in all Encoder-Decoder
attention layers in decoders as their keys and values (the center of Figure 17).

Figure 17: Transformer decoding [63]

24

In the decoder part, the self-attention layer can only attend in the back
direction in the output sequence since future positions are masked before the
softmax step in the self-attention calculation. The Encoder-Decoder attention
layer works similarly to multi-head self-attention. With the exception, it does
not take the keys and values matrix from the previous layer but from the
top-most encoder [63].

Consequently, the vector needs to be represented as a word again. In the end,
the linear and softmax layers turn the vector into probabilities. Naturally, the
cell with the highest probability is chosen, and the word associated with it is
produced as the output, which finalizes the transformer architecture (Figure 18).

Figure 18: Transformer architecture with its self-attention mechanisms [63]

25

2.3.4 Bidirectional Encoder Representations from
Transformers

Bidirectional encoder representations from Transformers (BERT) [64] come with
the innovation of using the transformer above’s attentive training for language
representations [65]. Since the transformer consists of the encoder for reading the
text input and the decoder for the translation, BERT needs only the encoder,
respectively multiple stacked encoders.

Pre-Training

The BERT model is pre-trained on unannotated data from the
BookCorpus [66], consisting of 985 million words and another 2.5 billion words
from English Wikipedia. The input representation is done as in the transformer
model (via word embedding and positional encoding). The pre-training phase
remains the same for each natural language processing task. It consists of two
tasks executed simultaneously: masked language modeling and next sentence
prediction.

Bidirectional context encoding for each input representation is performed
using masked language modeling. BERT randomly masks a fraction of
tokens (in the proposing article, 15% of them). Furthermore, it uses tokens from
the bidirectional context to predict the masked tokens. Moreover, 80% of the
masked tokens are replaced by a special [MASK] token, a random word replaces
10% of the masked tokens, and the rest 10% remain without any changes [65].

Next sentence prediction (NSP in Figure 19), the second pre-training
task, helps better understand the relationship between multiple sentences [64].
Sentence pairs generated exclusively for pre-training purposes are half of the time
valid consecutive pairs. In the rest, the second sentence is randomly sampled from
the corpus, which has no relationship with the first sentence. BERT is afterward
given a task to correctly classify whether the following sentence is related to the
leading one or not [46]. The result of the pre-training is the weights containing
contextual embeddings for words.

26

Fine-Tuning

Using the pre-trained weights, BERT can be fine-tuned by adding a classifier
(fully-connected layer followed by a softmax layer) to accomplish the initially
intended natural language processing task, here named entity recognition
(Figure 19). The fine-tuning for NER consists of training on a much smaller
annotated NER-specific dataset, such as CoNLL 2003 [67] or OntoNotes v5 [68],
which is supposed to accurately recognize named entities from a predefined set
via a softmax layer. BERT tags each token in a sentence either with an entity
type or a blank symbol, for instance, by O, meaning that the token is not
a named entity.

Figure 19: BERT for named entity recognition (E denotes the input
representation, T the output vectors) [64]

27

3. Software for Named Entity
Recognition
Many open-source tools that support named entity recognition already exist. This
section will describe available datasets, libraries, and models used for experiments
on email data, as described in Chapter 4.

3.1 Datasets
There are many datasets designed for fine-tuning NER models. Nevertheless, the
most prevalent NER English datasets [22] are CoNLL 2003 [67] and OntoNotes
v5 [68].

3.1.1 CoNLL 2003
CoNLL 2003 (Conference on Natural Language Learning) [67] is a NER dataset
released in English and German versions. The English data was collected from
Reuters news ranging from August 1996 and August 1997. CoNLL 2003
recognizes four types of entities (Table 3).

3.1.2 OntoNotes v5
An alternative dataset for NER fine-tuning is OntoNotes v5 [68], released in 2013,
comprising various text genres (news, web blogs, broadcast news, talk shows, and
others) in English, Arabic, and Chinese. Compared to CoNLL 2003, it offers
a broader range of 18 entity types (Table 4).

3.2 SpaCy
SpaCy [15] is an open-source natural language processing Python library.
SpaCy contains various linguistic features, ranging from tokenization, sentence
segmentation, and the word vectors similarity to part-of-speech tagging or
extraction of named entities in multiple language pipelines [69]. The library
contains two variants of models targeted for English: a simpler model which
uses a transition-based approach and a more complex model based on the
transformer architecture. Both models are fine-tuned on OntoNotes v5.

Entity Description
O Outside of a named entity
PER Person’s name
ORG Organization
LOC Location
MISC Miscellaneous entity

Table 3: Named entity types in CoNLL 2003

28

Entity Description
CARDINAL Numerals that do not fall under another type
DATE Absolute or relative dates or periods
EVENT Named hurricanes, battles, wars, sports events, etc.
FAC Buildings, airports, highways, bridges, etc.
GPE Countries, cities, states
LANGUAGE Any named language
LAW Named documents made into laws.
LOC Non-GPE locations, mountain ranges, bodies of water
MONEY Monetary values, including unit
NORP Nationalities or religious or political groups
ORDINAL ”first”, ”second”, etc.
ORG Companies, agencies, institutions, etc.
PERCENT Percentage, including ”%”
PERSON People, including fictional
PRODUCT Objects, vehicles, foods, etc. (not services)
QUANTITY Measurements, as of weight or distance
TIME Times smaller than a day
WORK OF ART Titles of books, songs, etc.

Table 4: Named entity types in OntoNotes v5 [68]

3.2.1 Transition-Based Model
The transition-based model [70] included in the spaCy library is a multitask model
that utilizes a pre-training and fine-tuning learning approach.

Pre-Training

During pre-training, the input text is tokenized into words where each word is
embedded. The embedding in this model works on a sub-word level and consists
of four attributes: norm, prefix, suffix, and shape. The norm is essentially
a lowercase variant of the input word. The shape maps lowercase characters of
the input word to w, uppercase characters to W , and numbers to d. These four
lexical attributes of an ith word are separately embedded to vectors [71] of size n
(in spaCy, 128), and the attributes are afterward concatenated. Since it is
required to end up with dimensionality n, the concatenated result is passed
through a fully connected layer (FCi) of n units with a Maxout activation
function (Equation 3.1) which, according to the library author, compared to
ReLU, produced slightly better results.

Maxout(x) = max(wT
1 x + b1, wT

2 x + b2) (3.1)

The output of the fully connected layer FCi can be described as a vector vi of
size n. Nevertheless, vi lacks context. Context encoding in the spaCy transition
model is constructed using four previous and four following words. In the first
iteration, the previous, current, and following word vectors are concatenated,
forming a trigram vi−1vivi+1. Again, the trigram is reduced via another fully

29

connected layer of n units denoted by wi. Afterward, the vectors vi and wi of size
n are summed, denoted by xi.

In the next iteration, xi is used as input, and its immediate neighbors are vi−2
and vi+2, whose concatenation forms the trigram vi−2xivi+2. After the reduction
via a fully connected layer to n classes, a vector yi is created. The sum of xi

and yi is used as an input in the next iteration. Eventually, the output after the
fourth iteration is the desired word vector for the ith word with both sub-word
and contextual features.

Fine-Tuning

With the pre-trained weights, the model is fine-tuned for NER using
a transition-based approach [72]. The model transfers its knowledge to
a NER-specific OntoNotes v5 dataset. The inference is made using a state
machine with an entity stack, input buffer, and output buffer. From the input
buffer, the model takes a word in each iteration. If the input buffer and entity
stack are empty, the state machine enters a final state. The machine takes one
word in each step, representing it using the approach described in the
pre-training step combined with pre-trained weights.

Obtained features are then the input into a multilayer perceptron classifier,
which, based on the features, decides whether to add an entity to the entity
stack, move the entity stack with the entity type to the output buffer, or continue
without changes. Therefore, the final fine-tuning task lies in predicting the correct
sequence of actions supposed to be undertaken in a state machine.

The transition-based model comes in three variants: small model
en_core_web_sm (12 MB), which does not use static word vectors. On the other
hand, the medium en_core_web_md (31 MB) and large en_core_web_lg (382
MB) models use GloVe [43]. The difference between the medium and large
model is that the medium model keeps only 20 000 most frequent word vectors
compared to the large which includes the full set of 343k word vectors [73].

3.2.2 Transformer-Based Model
With the release of spaCy v3, the transformer-based model en_core_web_trf
for NER was introduced [74]. The model is Robustly optimized BERT approach
(RoBERTa) [75], which utilizes BERT architecture with a modified pre-training
procedure. The optimization lies primarily in the masked language modeling task
and the devotion of more quantity of data to pre-training.

In the original BERT article [64], it is proposed that random masking is
performed only once at the beginning, and the model is learning the
contextualized word representations. In practice, it was shown that it is suitable
to duplicate the pre-training data with different masking patterns not to get the
same mask when the same training sequence is encountered over multiple
training epochs [75]. RoBERTa further extends this temporary solution by
introducing dynamic masking, which generates a new masking pattern every
time a sequence is fed to the model. While training on larger datasets
(RoBERTa uses approximately 10x more data than the original BERT), this
method proved to be a viable option.

30

Furthermore, RoBERTa restricts that each input contains complete sentences
contiguously sampled from one or more documents, for instance, an article, of
length at most 512 tokens. When the end of the document is reached, the model
proceeds to the next one, with a separator token placed between them. It was
shown that with this setup, the next sentence prediction task during pre-training
did not help performance and was removed completely [75].

The spaCy model comes in a RoBERTabase variant which uses BERTbase
architecture (12 encoder layers stacked on top of each other, 12 attention heads)
with the modified pre-training approach mentioned earlier.

3.3 Hugging Face
Hugging Face is a platform with state-of-the-art machine learning models, mainly
focused on transformers [76]. Hugging Face offers many BERT model variants and
modifications for various tasks via their transformers library [77]. However, in the
thesis, there have been utilized only the implementations of the original BERT
paper [64] fine-tuned for named entity recognition, namely dslim/bert-base-NER
(BERTbase) [78] and dslim/bert-large-NER (BERTlarge)[79].

The only difference between the models is that BERTbase contains 12
encoder layers stacked on top of each other, whereas BERTlarge contains 24 [80].
Furthermore, BERTbase has 12 attention heads, while BERTlarge contains 16.
Both models are fine-tuned on a CoNLL 2003 dataset.

3.4 Flair
Flair [81] is an open-source natural language processing library developed in
Python. It contains fine-tuned models both on CoNLL 2003 and OntoNotes v5.

3.4.1 BiLSTM Model
Initially, Flair library mainly contained BiLSTM models, such as
ner-english-fast for CoNLL 2003, ner-english-ontonotes-fast for
OntoNotes v5. The models are pre-trained using GloVe embeddings
concatenated with their own contextualized string embeddings [82].

3.4.2 Transformer-Based Model
Flair also contains transformer-based models ner-english-large and
ner-english-ontonotes-large with state-of-the-art efficacy [83]. Both models
use a multilingual RoBERTa (XLM-R) pre-trained on cleaned 2.5TB of
Common Crawl data [84] for 100 languages [85]. Besides using the word
representations from the transformer model, static word embeddings are
concatenated with them (for English, GloVe [43], for other languages,
fastText [44]). The flair large model comes in a RoBERTalarge variant which
uses BERTlarge architecture with the modified pre-training approach.

31

4. Experiments
This chapter describes the experiments conducted aiming toward phishing
detection using named entity recognition. Initially, it is expressed how a named
entity recognition task can be approached and how it can be used on a publicly
available dataset, such as the Enron email dataset [86]. Since various options
can be utilized, as mentioned in Chapter 3, performance and accuracy
measurements of specific models are investigated.

Furthermore, the named entity recognition approach is applied to a
proprietary dataset. Additionally, this part compares named entities found in
positive and negative emails. Its mutual similarity or difference is assessed via
statistical methods.

In the last experiment, features extracted via named entity recognition are
added to a proprietary phishing classifier, where their results are compared with
and without the features. Eventually, a conclusion is made whether or not their
presence is a helpful factor in phishing detection.

4.1 Enron Email Dataset
One of the most prevalent public datasets containing emails is the Enron email
dataset [86]. The dataset contains 517 401 email messages written or received by
150 Enron Corporation employees.

4.1.1 Sentence Parsing
Since the models from the libraries mentioned earlier are fine-tuned on
sentences, the context they are allowed to capture needs to be within the
sentence. Two main options were considered to parse the emails into sentences.
The first option, Sentencizer [87], available with spaCy installed, provides
simple sentence parsing using a rule-based approach. A viable alternative was
to use a SentenceRecognizer [88] by spaCy, a trainable sequence tagger, which
offers a more accurate sentence parsing, especially in sentences where
punctuation is missing or incorrect. However, the difference between the
methods in terms of accuracy was too insignificant. Therefore, Sentencizer was
favored due to approximately 2x faster runtime on average.

4.1.2 Model Choice
Various off-the-shelf solutions suited for named entity recognition already exist.
There have been multiple aspects that were taken into consideration when filtering
candidate models for further experiments.

Fine-Tuning Dataset

One of the initial decisions was to choose the models that were fine-tuned on
OntoNotes v5. Although both datasets support person, organizations, and
location, OntoNotes further offers a greater diversity of entities that may be

32

Predicted
Positive Negative

Actual Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 5: Confusion Matrix

potentially useful in terms of phishing detection, which the CoNLL 2003 dataset
does not support, such as money, cardinal, date, or time (Table 4). For this
reason, only spaCy and flair were taken into consideration.

Evaluation Metrics

Evaluation metrics are required to measure a model’s accuracy on a dataset.
In binary classification tasks, the desired detections consist of a positive and a
negative class. Assuming a dataset annotation with gold data for classification
has been made, the predictions form a confusion matrix (Table 5).

One of the standard metrics which utilizes the confusion matrix is F1-score
which is used as the evaluation metric on the OntoNotes v5 dataset. F1-score can
be described as the harmonic mean of precision and recall (Equation 4.1).

F1-score = 2 · precision · recall
precision + recall (4.1)

Precision is calculated as the ratio between the number of correctly classified
positive examples in the dataset and the number of samples classified as positive
(Equation 4.2) [89].

precision = TP

TP + FP
(4.2)

On the other hand, recall, also known as the true positive rate (TPR), is
calculated as the ratio between the number of correctly classified positive
examples in the dataset and the total number of actually positive examples
(Equation 4.3).

recall = TPR = TP

TP + FN
(4.3)

Conversely, the false positive rate is calculated as the ratio between the
dataset’s incorrectly classified negative examples and the total number of
actually negative examples (Equation 4.4).

FPR = FP

FP + TN
(4.4)

Another standard evaluation metric for binary classification is the receiver
operating characteristic (ROC) curve used in Section 4.3. The ROC curve is a
graph that shows the classification performance of a classifier at all classification
thresholds using the true positive rate (TPR, Equation 4.3) and false positive
rate (FPR, Equation 4.4) [90].

The ROC curve then visualizes the tradeoff between TPR and FPR. The
smaller values on the x-axis express lower false positives and higher true negatives.

33

Model Precision Recall F1 Relaxed F1 OntoNotes F1

Transition-based, small (spaCy) 48.4% 37.3% 42.2% 58.6% 84%
Transition-based, medium (spaCy) 58% 48.3% 52.7% 66.3% 85%
Transition-based, large (spaCy) 55.4% 45.4% 49.9% 65.7% 85%
Transformer (spaCy) 78.5% 55.4% 64.9% 72.2% 90%
BiLSTM (flair) 60.6% 41.1% 49% 57% 89.3%
Transformer (flair) 58% 53.3% 55.5% 63% 90.9%

Table 6: NER models evaluation metrics comparison

In contrast, larger values on the y-axis imply a higher number of true positives
and lower false negatives. Especially the ROC curve is a useful tool to compare
curves of different binary classifiers either at various thresholds or on the entire
graph.

Another option to compare classifiers is by comparing the model’s area under
curve (AUC), where a perfect classifier touching the upper-left corner would have
AUC equal to 1. On the other hand, a completely random guessing classifier
would be represented via a diagonal line from the bottom-left to the top-right on
a linear scale, therefore would have AUC of 0.5.

Annotation

On OntoNotes v5, NER models taken into consideration have their F1-score
publicly available. Nevertheless, it was suitable to examine whether and how
much the models could convert their knowledge to the Enron dataset. Since no
annotation for the Enron dataset exists, a minor subset consisting of 200
sentences of the Enron dataset was manually annotated, and the F1-score on
this minor dataset was computed. The results have shown that all models’
F1-score degraded compared to the public results on the OntoNotes v5 dataset,
as shown in Table 6.

It was observed that some examples in the minor dataset were declined,
although they were close to the correct assessment. Nevertheless, since such
assessment could still be helpful in terms of named entity recognition in emails,
an own relaxed F1-score was introduced. In the relaxed F1-score, a true positive
set was extended by examples where a named entity is only partially found
compared to the annotated string, but the entity type is correct. Furthermore,
the examples where the entity type was not assessed correctly but the string
captured exactly matched the annotation. Compared to the standard F1-score,
each model, when measured with the relaxed F1-score, managed to gain at least
7% of predictive performance.

Performance

A benchmark on a minor amount of randomly sampled sentences from the Enron
email dataset with an identical seed was performed to determine how fast each
model runs.

Considering that the model is loaded and the dataset with 10 000 sentences
has been prepared in advance, the benchmark consists of sentence tokenization
via Sentencizer and named entity recognition on a sentence level (Table 7). The

34

Model Runtime Speedup against Transformer (spaCy)
Transition-based, small (spaCy) 23.34 s 38x
Transition-based, medium (spaCy) 26.06 s 34x
Transition-based, large (spaCy) 26.07 s 34x
Transformer (spaCy) 885.22 s 1x
BiLSTM (flair) 344.53 s 2.5x
Transformer (flair) 268.87 s 3.3x

Table 7: NER models runtime comparison on 10 000 sentences from the Enron
email dataset

measured runtimes are an average from three different datasets containing 10 000
randomly sampled sentences from the Enron email dataset. The experiment was
computed on a device with AMD Ryzen 7 4800H, 16GB RAM, Nvidia RTX 2060
6GB, transition-based and BiLSTM models utilized CPU, whereas transformer-
based models ran on GPU.

4.2 Proprietary Dataset
The proprietary dataset provided by Cisco contains 50 000 positive and 53 059
negative emails encountered from the 1st to the 31st of March 2022. Furthermore,
it contains 50 000 positive and 37 225 negative emails collected from 1st April to
26th April 2022. In this dataset, positive emails are a mixture of spam, phishing,
and malicious messages. On the other hand, negative emails are considered emails
that the customers reported but, according to prior knowledge or manual analysis,
proved to be harmless, such as normal conversation, notifications, or marketing.

In the Enron dataset experiment, the output produced consists of found
entities and models comparison. However, most importantly, it shows for each
model and its entity types found how many times an entity occurred in
a sentence in JSON format (Figure 20).

Hence the number of sentences was known in advance, and the number of
sentences where no such entity was found can be computed; per-entity probability
distributions can be considered. In the data, it was observed that the differences
in distributions between datasets could be seen.

The measurements were made on the March and April dataset to exclude
other factors from the difference and to deny better that this situation occurred
only by chance. Moreover, the probability distributions were compared using the
Kullback-Leibler (KL) and the Jensen-Shannon (JS) divergence [91].

Assuming P and Q are discrete probability distributions well defined on the
probability space X, the Kullback-Leibler divergence is defined as

KL(P || Q) =
∑︂
x∈X

P (x) log(P (x))
log(Q(x)) . (4.5)

The KL divergence score tells how much information is lost when the second
distribution approximates the first one. If the logarithm is of base two, the unit of
information is called bits, with the base of the Euler number nats. Usually, the KL
divergence score is not symmetrical, and the information lost from the distribution

35

{
"en_core_web_trf": {

"CARDINAL": {
"1": 25826,
"2": 5880,
"3": 1078,
"4": 390,
"5": 203,
"6": 25,
"7": 40,
"8": 50,
"9": 7,
"10": 54,
"11": 3,
"12": 9,
"13": 2,
"14": 2,
"15": 2,
"16": 1,
"17": 1,
"19": 2,
"31": 4,
"34": 1,
"35": 2,
"38": 1,
"39": 2,
"55": 4

},
"DATE": {

"1": 46434,
"2": 8065,
"3": 2344,
//... the rest of the occurrences

},
"EVENT": {

//... occurrences
},
//... the rest of the named entities

"sentences" : 416860
}
//... other models

}

Figure 20: Named entity occurrences JSON snippet (”1”: 25826 denotes that the
CARDINAL entity was found once in a sentence in 25 826 cases out of 416 860)

36

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Probability distributions
negative March
negative April
positive March
positive April

Figure 21: Probability distributions of proprietary dataset components

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.000

0.005

0.010

0.015

0.020

0.025

Bi
ts

Jensen-Shannon Divergence for dataset pairs
negative March x negative April
negative March x positive March
negative April x positive April
positive March x positive April

Figure 22: Jensen-Shannon divergence of proprietary dataset components

P to the Q typically differs when considering the information lost from Q to P.
This issue is targeted by the Jensen-Shannon divergence (Equation 4.6).

JS(P || Q) = 1
2KL(P || M) + 1

2KL(Q || M). (4.6)

M = 1
2(P + Q) (4.7)

The JS divergence directly uses the KL divergence and calculates
a normalized symmetrical score which is observed per entity. As mentioned
earlier, the computation is derived from probability distributions (Figure 21).
With per-entity Jensen-Shannon divergence (Figure 22), the positive emails
differ from the negative emails by a large margin regarding organizations,
followed by person and time entity types abundant in both positive and
negative emails. The rest of the entity types did not show that remarkable
results. Despite that, on average, positive versus negative proved to be least
similar, according to their per-entity JS divergences.

When comparing negative emails from March and April, this distribution
pair proved most alike regarding per-entity JS divergences. Positive email
distributions compared against each other were less alike due to the higher
potential to be more diverse. For a more thorough analysis, pairwise bar plots
are included in Section A.1.

37

4.3 Phishing Email Classification
Before moving to the contribution of named entity recognition for phishing
detection, it is suitable to describe the phishing email classification process
(Figure 23). One of the phishing detection techniques utilized by Cisco is
conducted using the Cognitive Anti-Phishing Engine, containing various
detectors for phishing. The engine produces the output as JSON containing
detections found in an email. The experiment regarding named entity
recognition then compares whether named entities found in the email can
benefit the phishing email classifier’s predictive performance. Initially, the
experiment ran without using named entity recognition. Afterward, named
entity recognition is utilized, producing a JSON output containing named
entities found on a sentence level. JSON provided is embedded using
JSON2Bag. Consequently, a classifier based on multiple instance learning
(Instance selection randomized trees [92]) is used to utilize features from
JSON2Bag for phishing email classification.

Email

CAPE Detections

Named Entities

JSON2Bag Classifier

Figure 23: Proposed phishing email classification workflow

4.3.1 Cognitive Anti-Phishing Engine
Cognitive Anti-Phishing Engine (CAPE) is a phishing detection engine
developed by Cisco Cognitive Intelligence Department. CAPE is designed as an
ensemble of detectors. Initially, CAPE analyzes email headers and text content
and watches for potentially malicious signals. CAPE currently supports over 30
distinct heterogeneous detectors, such as call-to-action, impersonation, or
credentials phishing detectors. The detectors are then combined using
a proprietary machine learning model, which, based on the detections, comes
with a verdict on whether the email should be classified as phishing. In
production, CAPE is deployed as a REST API server whose response is a JSON
object. Detections may contain metadata with additional information, such as
the email segment due to which the detection was triggered or information from
email headers (Figure 24).

38

{
"detections": [

{
// Link Masquerade Detector
"code": "DLINKMASQ",
"meta": [

{
"id": "displayed",
"val": "https://google.com"

},
{

"id": "real",
"val": "https://malicious.com"

}
],
"score": 1.0

},
{

// Cryptocurrency Address Detector
"code": "DCRYPTOCCY",
"meta": [

{
"id": "address",
"val": "<anonymized address>"

},
{

"id": "cointype",
"val": "bitcoin"

}
],
"score": 1.0

},
{

// Call-To-Action Detector (Suspicious Request)
"code": "DREQUEST_CCT",
"meta": [

{
"id": "segment",
"val": "Send 5 BTC to this address:
<anonymized address>."

}
],
"score": 1.0

}
]

}

Figure 24: CAPE detections serialized into JSON format from an email

39

4.3.2 JSON2Bag
JSON2Bag is, at the time of writing the thesis unpublished, a feature extraction
algorithm that can transform arbitrary JSON data into a bag of numeric vectors
using a set of general feature extractors. Initially, it flattens the structured JSON
data into a set of path and value pairs. Each path-value pair is then converted
into a single feature vector using two types of feature extraction functions. Firstly,
there are path feature extractors, such as the path length, the number of fields in
the path, or the number of arrays in the path. Secondly, value feature extractors
are considered, such as whether the value is of a given type (null, bool, number,
or string). If it is a string, its one-hot encoded representation and its hashed-
embedded representation are considered (Figure 25).

Figure 25: JSON2Bag feature extraction algorithm

4.3.3 Named Entity Recognition Contribution
The experiment involving named entity recognition examines whether named
entities found on a sentence level serialized to JSON format can help the phishing
email classifier in predictive performance. For this experiment, the proprietary
dataset containing positive and negative emails mentioned earlier was utilized
for phishing detection. Initially, phishing detection was measured for March and
April data separately. The first model undergoes the phishing detection procedure
mentioned earlier.

Whereas the second model is the identic model with the difference, it is
given additional JSON containing named entities on a sentence level (Figure 26)
produced by the spaCy transformer from which other feature vectors are
formed. Consequently, the generalization abilities of the phishing email classifier
with and without named entities are examined using training data from March
and testing data from April.

40

{
"named_entities": [

[
{

"type": "PERSON",
"text": "Hazel"

}
],
[

{
"type": "MONEY",
"text": "27,460"

}
],
[],
[

{
"type": "DATE",
"text": "daily"

}
],
[

{
"type": "TIME",
"text": "the next 12 hours"

},
{

"type": "PERSON",
"text": "James Smith"

},
{

"type": "GPE",
"text": "Switzerland"

}
]

]
}

Figure 26: Named entities serialized into JSON from an email where each pair of
square brackets denotes a sentence in the email containing named entities found
in the sentence

41

Monthly Comparison

When comparing predictive performance in March 2022 (Figure 27) and April
2022 (Figure 28) separately, it can be observed that named entities improve the
model’s predictive performance. The AUC when using NER is visibly more
significant than without them in both months. Furthermore, as shown in
Table 8, in the ROC curve at critical thresholds, TPR gained at least 7%. In
general, the named entities helped predictive performance at all levels of the
ROC curve.

The experiment uses k-fold cross-validation to reduce overfitting impact,
meaning that the model finds patterns that are not generally useful but only for
the dataset given. In the k-fold cross-validation, the dataset is randomly
shuffled and split into k complementary subsets (folds), where k − 1 subsets of
the dataset are used for training, and the last kth of the dataset becomes a
testing (validation) set. The process is repeated until every fold becomes the
testing set. Afterward, the average of recorded scores is used. The experiment
used 3-fold cross-validation. Since the dataset was shuffled randomly prior, the
process was repeated five times (5-round 3-fold cross-validation) to reduce the
overfitting impact further [93].

TPR x FPR at 10−3 at 10−2 at 10−1

Classifier - March 73.74% 84.53% 91.24%
Classifier with NER - March 82.57% 92.32% 98.77%
Classifier - April 67.82% 80.83% 88.09%
Classifier with NER - April 74.46% 90.82% 95.56%

Table 8: Monthly comparison of phishing email classifier with and without
named entities at critical thresholds

42

10 3 10 2 10 1 100

False Positive Rate (Logarithmic Scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves: Spam Detection (March 2022)

Phishing Email Classifier
Phishing Email Classifier with NER

Figure 27: Phishing detection ROC curves from March comparison between the
phishing email classifiers, ROC curves as interpolations of 5-round 3-fold cross-
validation

10 3 10 2 10 1 100

False Positive Rate (Logarithmic Scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves: Spam Detection (April 2022)

Phishing Email Classifier
Phishing Email Classifier with NER

Figure 28: Phishing detection ROC curves from April comparison between the
phishing email classifiers, ROC curves as interpolations of 5-round 3-fold cross-
validation

43

10 3 10 2 10 1 100

False Positive Rate (Logarithmic Scale)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves: Spam Detection (Train set - March 2022, Test set - April 2022)

Phishing Email Classifier
Phishing Email Classifier with NER

Figure 29: Phishing detection ROC curves comparison between the email
phishing classifiers with the training dataset from March applied to the testing
dataset from April

Generalization Comparison

Afterward, the model was examined from another perspective. It was given the
dataset from March 2022 to train with and the testing dataset from April to be
tested to ensure the model generalizes well. As shown in Figure 29, named
entities did not prove beneficial since the model lost the true positive rate by a
small margin in the leftmost part of the ROC curve. Concrete values at critical
thresholds are shown in Table 9. Moreover, the difference in predictive
performance is not convincing at the interval of practical use of the ROC curve
[10−3, 10−2] either. A time-based train-test split showed that the model still
learned some patterns which were not transferable and, therefore, not useful
for generalization.

One of the possible reasons overfitting was still observed is that the differences
in emails in these two months were way too significant, that the model did not
have the opportunity to encounter such emails in its training set. Therefore it
could not utilize such knowledge on the testing set. As an option to potentially
improve predictive performance on unseen data, the model should encounter a
wider variety of emails to train with, ideally from a broader time horizon.

TPR x FPR at 10−3 at 10−2 at 10−1

Classifier 40.38% 63.63% 79.51%
Classifier with NER 37.25% 66% 74.08%

Table 9: Comparison of phishing email classifier with and without named entities
using March dataset for training, April dataset for testing

44

Conclusion
This bachelor thesis described various named entity recognition approaches
regarding phishing detection. Initially, phishing and its deceiving techniques
conducted over multiple media types were introduced. Afterward, named entity
recognition was presented. Since named entity recognition is a natural language
processing task concerned with text extraction, various text representation
techniques were described. As the named entity recognition task is mainly
approached by neural networks, many concepts regarding neural networks were
described from the basics. The thesis then gradually proceeded to the current
state-of-the-art named entity recognition models.

Since many libraries with named entity recognition models already exist, and
their models are publicly available, model architectures description and thorough
examination were conducted before proceeding to their execution. The model
choice was based on various aspects, such as predictive performance (F1-score),
runtime specifics, and the dataset on which the model was supposed to be fine-
tuned. It was shown that the preferred dataset would be OntoNotes v5 over
CoNLL 2003 due to its wider variety of named entity types. Furthermore, from
the predictive performance perspective, the best model was the transformer-based
model included in the spaCy library. Nevertheless, its runtime performance was
not satisfying. For this reason, an alternative transition-based medium model
included in spaCy with 34x faster runtime with the second-best F1-score was also
considered.

As the model choice was left for these two, an examination of the differences
between positive and negative emails provided by a proprietary dataset by
Cisco followed. Initially, named entity occurrences on a sentence level were
computed, and a sole comparison of named entity probability distributions was
made. Nevertheless, such an approach did not seem to be convincing enough.
One of the methods to compare probability distributions is to compare the
distributions via Kullback-Leibler divergence, respectively, using its
symmetrized normalized variant called Jensen-Shannon divergence, which
resulted in more effectiveness.

With per-entity Jensen-Shannon divergence, positive emails differed from
the negative emails by a large margin regarding the organization, person, and
time entity types which, according to the probability distributions, were
abundant in both positive and negative emails. Other entity types did not
provide too noticeable differences. Despite that, on average, JS divergences have
shown that positive versus negative email distribution pairs proved to be least
similar. Conversely, negative email distributions compared against each other
showed most similar results regarding per-entity JS divergences. The positive
email distribution pair was less alike than the negative distribution pair mainly
due to the higher potential to be more diverse.

In the last part of the chapter regarding conducted experiments, named
entities were examined to determine whether they can improve predictive
performance for phishing detection. Afterward, the phishing email classification
workflow utilized in this experiment was described. The provided phishing
email detection engine used various detectors which examined the email content

45

and its header, producing a JSON output that was input into a multiple
instance learning model, obtaining features via the JSON2Bag feature
extraction algorithm.

A comparison was made whether named entities found in the email on
a sentence level serialized to JSON and passed as extra information added to
the phishing email classifier can prove beneficial. The classifiers differed in
passed JSON data where the first model utilized serialized CAPE detections,
and the second one utilized the CAPE detections and additional named entities
on a sentence level.

Initially, predictive performance comparison was measured on March and
April 2022 datasets separately. It was shown that true positive rates gained at
least 7% at critical thresholds of the ROC curve. Moreover, named entities
visibly helped predictive performance at all levels of the ROC curve. Afterward,
the phishing email classifiers’ generalization ability was examined via
a time-based train-test split approach where training data were used from
March 2022, and testing was conducted on data from April 2022.

The difference in predictive performance on the interval of practical use of the
ROC curve was not convincing enough to conclude that additional named entities
provide persuasive benefit. According to the time-based split, it was shown that
during monthly comparison, the classifier with NER provided better results by
learning patterns that were not useful for generalization.

On the other hand, during the time-based split, it was discussed that
differences in emails from these two months may have been way too large that
the classifier did not have the opportunity to utilize the knowledge on a testing
set. An option to potentially improve predictive performance on unseen data
would be for the classifier to encounter a wider variety of emails during training,
ideally from a broader time horizon. Assuming a different email dataset with
more representative training data was used, it could happen that different
conclusions would have been drawn.

46

Bibliography
[1] Zainab Alkhalil, Chaminda Hewage, Liqaa Nawaf, and Imtiaz Khan.

Phishing attacks: A recent comprehensive study and a new anatomy.
Frontiers in Computer Science, 3:563060, 2021.

[2] Federal Bureau of Investigation. Internet Crime Report 2021. https://www.
ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf, 2021. Accessed:
15/07/2022.

[3] MITRE ATT&CK (MITRE Adversarial Tactics, Techniques, and Common
Knowledge). Initial Access. https://attack.mitre.org/tactics/TA000
1/, 2019. Accessed: 25/05/2022.

[4] Verizon. Data Breach Investigations Report 2020. https://itb.dk/wp-c
ontent/uploads/2020/07/verizon-data-breach-investigations-rep
ort-2020.pdf, 2020. Accessed: 25/05/2022.

[5] Said Salloum, Tarek Gaber, Sunil Vadera, and Khaled Shaalan. Phishing
email detection using natural language processing techniques: A literature
survey. Procedia Computer Science, 189:19–28, 2021. AI in Computational
Linguistics.

[6] Maŕıa Fernanda Cazares, Roberto Andrade, Gustavo Navas, Walter Fuertes,
and Jhonathan Herrera. Characterizing phishing attacks using natural
language processing. In 2021 Fifth World Conference on Smart Trends in
Systems Security and Sustainability (WorldS4), pages 224–229, 2021.

[7] Cornell University. Phish Bowl. https://it.cornell.edu/phish/9465,
2022. Accessed: 15/07/2022.

[8] KnowBe4. Phishing Attacks. https://www.knowbe4.com/phishing, 2021.
Accessed: 30/06/2022.

[9] Check Point. What is Phishing? https://www.checkpoint.com/cyber-h
ub/threat-prevention/what-is-phishing/, 2020. Accessed: 30/06/2022.

[10] Cornell University. Phish Bowl. https://it.cornell.edu/phish/6457,
2018. Accessed: 15/07/2022.

[11] The PhishLabs Team. How Spear Phishing Makes BEC Attacks So Effective.
https://www.phishlabs.com/blog/how-spear-phishing-makes-bec-a
ttacks-so-effective/, 2019. Accessed: 30/06/2022.

[12] Jetli Chung, Jing-Zhi Koay, and Yu-Beng Leau. A review on social media
phishing: Factors and countermeasures. In Mohammed Anbar, Nibras
Abdullah, and Selvakumar Manickam, editors, Advances in Cyber Security,
pages 657–673, Singapore, 2021. Springer Singapore.

[13] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo
Menczer. Social phishing. Commun. ACM, 50(10):94–100, oct 2007.

47

https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/tactics/TA0001/
https://itb.dk/wp-content/uploads/2020/07/verizon-data-breach-investigations-report-2020.pdf
https://itb.dk/wp-content/uploads/2020/07/verizon-data-breach-investigations-report-2020.pdf
https://itb.dk/wp-content/uploads/2020/07/verizon-data-breach-investigations-report-2020.pdf
https://it.cornell.edu/phish/9465
https://www.knowbe4.com/phishing
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-phishing/
https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-phishing/
https://it.cornell.edu/phish/6457
https://www.phishlabs.com/blog/how-spear-phishing-makes-bec-attacks-so-effective/
https://www.phishlabs.com/blog/how-spear-phishing-makes-bec-attacks-so-effective/

[14] CNBC. Twenty years after epic bankruptcy, Enron leaves a complex legacy.
https://www.cnbc.com/2021/12/02/twenty-years-after-epic-b
ankruptcy-enron-leaves-a-complex-legacy.html, 2021. Accessed:
29/05/2022.

[15] spaCy. Industrial-Strength Natural Language Processing. https://spacy.
io, 2016. Accessed: 30/05/2022.

[16] Asif Ekbal and Sivaji Bandyopadhyay. Named entity recognition using
support vector machine: A language independent approach. International
Journal of Electrical and Computer Engineering, 4(3):589 – 604, 2010.

[17] Nita Patil, Ajay Patil, and B.V. Pawar. Named entity recognition using
conditional random fields. Procedia Computer Science, 167:1181–1188, 2020.
International Conference on Computational Intelligence and Data Science.

[18] IBM Cloud Education. What is machine learning? https://www.ibm.com/
cloud/learn/machine-learning, 2020. Accessed: 14/07/2022.

[19] Microsoft. Data featurization in automated machine learning. https://do
cs.microsoft.com/en-us/azure/machine-learning/how-to-configure
-auto-features, 2022. Accessed: 14/07/2022.

[20] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30, 08 2007.

[21] Vikas Yadav and Steven Bethard. A survey on recent advances in named
entity recognition from deep learning models. CoRR, abs/1910.11470, 2019.

[22] Meta AI. Named Entity Recognition. https://paperswithcode.com/tas
k/named-entity-recognition-ner, 2022. Accessed: 25/05/2022.

[23] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art
natural language processing. CoRR, abs/1910.03771, 2019.

[24] Munish Puri, Aum Solanki, Timothy Padawer, Srinivas M Tipparaju,
Wilfrido Alejandro Moreno, and Yashwant Pathak. Introduction to Artificial
Neural Network (ANN) as a Predictive Tool for Drug Design, Discovery,
Delivery, and Disposition. Academic Press„ Amsterdam, [Netherlands] :,
2016.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[26] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg,
2006.

[27] Panagiotis Antoniadis. Activation Functions: Sigmoid vs Tanh. https:
//www.baeldung.com/cs/sigmoid-vs-tanh-functions, 2022. Accessed:
14/07/2022.

48

https://www.cnbc.com/2021/12/02/twenty-years-after-epic-bankruptcy-enron-leaves-a-complex-legacy.html
https://www.cnbc.com/2021/12/02/twenty-years-after-epic-bankruptcy-enron-leaves-a-complex-legacy.html
https://spacy.io
https://spacy.io
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-auto-features
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-auto-features
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-configure-auto-features
https://paperswithcode.com/task/named-entity-recognition-ner
https://paperswithcode.com/task/named-entity-recognition-ner
https://www.baeldung.com/cs/sigmoid-vs-tanh-functions
https://www.baeldung.com/cs/sigmoid-vs-tanh-functions

[28] Radek Starosta. Phishing detection using natural language processing.
Master’s thesis, Czech technical university in Prague, 2021.

[29] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural Networks,
2(5):359–366, 1989.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[31] Jason Brownlee. Understand the Impact of Learning Rate on Neural Network
Performance. https://machinelearningmastery.com/understand-the
-dynamics-of-learning-rate-on-deep-learning-neural-networks/,
2019. Accessed: 25/05/2022.

[32] Ritchie Ng, Jie Fu. Learning Rate Scheduling. https://www.deeplearning
wizard.com/deep_learning/boosting_models_pytorch/lr_scheduling
/, 2019. Accessed: 29/05/2022.

[33] Jeremy Jordan. Setting the learning rate of your neural network., 2018.
https://www.jeremyjordan.me/nn-learning-rate/.

[34] Jason Brownlee. A Gentle Introduction to Mini-Batch Gradient Descent and
How to Configure Batch Size. https://machinelearningmastery.com/g
entle-introduction-mini-batch-gradient-descent-configure-batch
-size/, 2017. Accessed: 25/05/2022.

[35] Nvidia. Get Started With Deep Learning Performance. https://docs.nvi
dia.com/deeplearning/performance/dl-performance-getting-start
ed/index.html, 2022. Accessed: 07/06/2022.

[36] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

[37] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(61):2121–2159, 2011.

[38] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31, 2012.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[40] Jason Brownlee. A Gentle Introduction to the Bag-of-Words Model. https:
//machinelearningmastery.com/gentle-introduction-bag-words-mod
el/, 2017. Accessed: 15/07/2022.

[41] Amit Mandelbaum and Adi Shalev. Word embeddings and their use in
sentence classification tasks. CoRR, abs/1610.08229, 2016.

49

http://www.deeplearningbook.org
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://www.deeplearningwizard.com/deep_learning/boosting_models_pytorch/lr_scheduling/
https://www.deeplearningwizard.com/deep_learning/boosting_models_pytorch/lr_scheduling/
https://www.deeplearningwizard.com/deep_learning/boosting_models_pytorch/lr_scheduling/
https://www.jeremyjordan.me/nn-learning-rate/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/

[42] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. Computer Science, 2013.

[43] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, 2014.

[44] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov.
Enriching word vectors with subword information. CoRR, abs/1607.04606,
2016.

[45] David Rozado. Wide range screening of algorithmic bias in word embedding
models using large sentiment lexicons reveals underreported bias types.
PLOS ONE, 15:e0231189, 04 2020.

[46] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
deep learning. arXiv preprint arXiv:2106.11342, 2021.

[47] Lei Mao. Word2Vec Models Revisited. https://leimao.github.io/artic
le/Word2Vec-Classic/, 2019. Accessed: 29/05/2022.

[48] Jeffrey Pennington,Richard Socher, Christopher D. Manning. GloVe: Global
Vectors for Word Representation. https://nlp.stanford.edu/projects/
glove/, 2014. Accessed: 15/07/2022.

[49] Nvidia. Deep Learning. https://developer.nvidia.com/deep-learning,
2022. Accessed: 16/07/2022.

[50] Md. Zahangir Alom, Tarek Taha, Chris Yakopcic, Stefan Westberg, Paheding
Sidike, Mst Nasrin, Mahmudul Hasan, Brian Essen, Abdul Awwal, and
Vijayan Asari. A state-of-the-art survey on deep learning theory and
architectures. Electronics, 8:292, 03 2019.

[51] Christopher Olah. Understanding lstm networks. https://colah.github.i
o/posts/2015-08-Understanding-LSTMs/, 08 2015. Accessed: 2022-04-20.

[52] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, 11 1997.

[53] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014.

[54] Jitendra Tembhurne and Tausif Diwan. Sentiment analysis in textual, visual
and multimodal inputs using recurrent neural networks. Multimedia Tools
and Applications, 80:1–40, 02 2021.

[55] Savvas Varsamopoulos, Koen Bertels, and Carmen Garcia Almudever.
Designing neural network based decoders for surface codes. 2018.

[56] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence
modeling. CoRR, abs/1412.3555, 2014.

50

https://leimao.github.io/article/Word2Vec-Classic/
https://leimao.github.io/article/Word2Vec-Classic/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://developer.nvidia.com/deep-learning
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[57] Christopher Olah. Understanding lstm networks. https://colah.github.i
o/posts/2015-08-Understanding-LSTMs/, 2015. Accessed: 30/05/2022.

[58] Devopedia. Bidirectional RNN. https://devopedia.org/bidirectiona
l-rnn, 2020. Accessed: 27/05/2022.

[59] Jason P. C. Chiu and Eric Nichols. Named entity recognition with
bidirectional lstm-cnns. CoRR, abs/1511.08308, 2015.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[61] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. CoRR, abs/1409.3215, 2014.

[62] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate, 2014.

[63] Jay Alammar. The illustrated transformer. https://jalammar.github.io
/illustrated-transformer/, 06 2018. Accessed: 2022-05-08.

[64] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805, 2018.

[65] Raman Kumar. All you need to know about bert. https://www.analytic
svidhya.com/blog/2021/05/all-you-need-to-know-about-bert/, 05
2021. Accessed: 2022-05-13.

[66] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In
The IEEE International Conference on Computer Vision (ICCV), December
2015.

[67] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-
2003 shared task: Language-independent named entity recognition. CoRR,
cs.CL/0306050, 2003.

[68] Sameer Pradhan Ralph Weischedel, Lance Ramshaw, Jeff Kaufman, Michelle
Franchini, and Mohammed El-Bachouti. Ontonotes release 5.0. https://ca
talog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf,
09 2012. Accessed: 2022-05-13.

[69] spaCy. Linguistic Features. https://spacy.io/usage/linguistic-featu
res, 2022. Accessed: 31/05/2022.

[70] Matthew Honnibal. SPACY’S ENTITY RECOGNITION MODEL:
incremental parsing with Bloom embeddings and residual CNNs. https:
//www.youtube.com/watch?v=sqDHBH9IjRU, 2017. Accessed: 26/06/2022.

51

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://devopedia.org/bidirectional-rnn
https://devopedia.org/bidirectional-rnn
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.analyticsvidhya.com/blog/2021/05/all-you-need-to-know-about-bert/
https://www.analyticsvidhya.com/blog/2021/05/all-you-need-to-know-about-bert/
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf
https://spacy.io/usage/linguistic-features
https://spacy.io/usage/linguistic-features
https://www.youtube.com/watch?v=sqDHBH9IjRU
https://www.youtube.com/watch?v=sqDHBH9IjRU

[71] Matthew Honnibal, Adriane Boyd, Vincent D. Warmerdam. Compact word
vectors with Bloom embeddings. https://explosion.ai/blog/bloom-emb
eddings, 2022. Accessed: 31/05/2022.

[72] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity
recognition. CoRR, abs/1603.01360, 2016.

[73] spaCy. Available trained pipelines for English. https://spacy.io/model
s/en, 2022. Accessed: 31/05/2022.

[74] spaCy. What’s New in v3.0. https://spacy.io/usage/v3, 2021. Accessed:
06/06/2022.

[75] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692,
2019.

[76] Hugging Face. Models. https://huggingface.co/models, 2020. Accessed:
01/06/2022.

[77] Hugging Face. Transformers. https://huggingface.co/docs/transforme
rs/main/en/index, 2019. Accessed: 03/07/2022.

[78] David S. Lim. bert-base-NER. https://huggingface.co/dslim/bert-b
ase-NER, 2020. Accessed: 01/06/2022.

[79] David S. Lim. bert-large-NER. https://huggingface.co/dslim/bert-l
arge-NER, 2020. Accessed: 01/06/2022.

[80] Zuhaib Akhtar. BERT base vs BERT large. https://iq.opengenus.org
/bert-base-vs-bert-large/, 2018. Accessed: 01/06/2022.

[81] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan
Schweter, and Roland Vollgraf. Flair: An easy-to-use framework for state-of-
the-art nlp. In NAACL 2019, 2019 Annual Conference of the North American
Chapter of the Association for Computational Linguistics (Demonstrations),
pages 54–59, 2019.

[82] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string
embeddings for sequence labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 1638–1649, Santa Fe, New
Mexico, USA, August 2018. Association for Computational Linguistics.

[83] Meta AI. Named Entity Recognition on CoNLL 2003 (English). https:
//paperswithcode.com/sota/named-entity-recognition-ner-on-con
ll-2003, 2021. Accessed: 25/05/2022.

[84] Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav
Chaudhary, Francisco Guzmán, Armand Joulin, and Edouard Grave.
CCNet: Extracting high quality monolingual datasets from web crawl

52

https://explosion.ai/blog/bloom-embeddings
https://explosion.ai/blog/bloom-embeddings
https://spacy.io/models/en
https://spacy.io/models/en
https://spacy.io/usage/v3
https://huggingface.co/models
https://huggingface.co/docs/transformers/main/en/index
https://huggingface.co/docs/transformers/main/en/index
https://huggingface.co/dslim/bert-base-NER
https://huggingface.co/dslim/bert-base-NER
https://huggingface.co/dslim/bert-large-NER
https://huggingface.co/dslim/bert-large-NER
https://iq.opengenus.org/bert-base-vs-bert-large/
https://iq.opengenus.org/bert-base-vs-bert-large/
https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003
https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003
https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003

data. In Proceedings of the 12th Language Resources and Evaluation
Conference, pages 4003–4012, Marseille, France, May 2020. European
Language Resources Association.

[85] Stefan Schweter and Alan Akbik. FLERT: document-level features for named
entity recognition. CoRR, abs/2011.06993, 2020.

[86] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for
email classification research. In Proceedings of the 15th European Conference
on Machine Learning, ECML’04, page 217–226, Berlin, Heidelberg, 2004.
Springer-Verlag.

[87] spaCy. Sentencizer. https://spacy.io/api/sentencizer, 2022. Accessed:
16/07/2022.

[88] spaCy. SentenceRecognizer. https://spacy.io/api/sentencerecognize
r, 2022. Accessed: 16/07/2022.

[89] Ahmed Fawzy Gad. Evaluating Deep Learning Models: The Confusion
Matrix, Accuracy, Precision, and Recall. https://blog.paperspace.
com/deep-learning-metrics-precision-recall-accuracy/. Accessed:
04/07/2022.

[90] Jason Brownlee. How to Use ROC Curves and Precision-Recall Curves for
Classification in Python. https://machinelearningmastery.com/roc-cur
ves-and-precision-recall-curves-for-classification-in-python/,
2018. Accessed: 09/07/2022.

[91] Jason Brownlee. How to Calculate the KL Divergence for Machine Learning.
https://machinelearningmastery.com/divergence-between-probabi
lity-distributions//, 2019. Accessed: 26/06/2022.

[92] Tomáš Komárek, Jan Brabec, and Petr Somol. Explainable multiple instance
learning with instance selection randomized trees. In Nuria Oliver, Fernando
Pérez-Cruz, Stefan Kramer, Jesse Read, and Jose A. Lozano, editors,
Machine Learning and Knowledge Discovery in Databases. Research Track,
pages 715–730, Cham, 2021. Springer International Publishing.

[93] Jason Brownlee. A Gentle Introduction to k-fold Cross-Validation. https:
//machinelearningmastery.com/k-fold-cross-validation/, 2018.
Accessed: 08/07/2022.

53

https://spacy.io/api/sentencizer
https://spacy.io/api/sentencerecognizer
https://spacy.io/api/sentencerecognizer
https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/
https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/divergence-between-probability-distributions//
https://machinelearningmastery.com/divergence-between-probability-distributions//
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/

List of Figures
1 An example of a phishing email with highlighted named entities

regarding a phony research opportunity at Cornell University
coming from a non-Cornell account [7] 4

2 An example of a high-volume phishing email (impersonal, poorly
written, containing grammar errors and urgency requesting
confidential data) [10] . 6

3 Visualizing named entities found in a news article [14] via spaCy [15] 8
4 Perceptron . 10
5 Multilayer perceptron classification with D input features to C

classes . 10
6 Impact on reaching an optimum with different learning rates [32] . 12
7 An example of word embeddings [45] 14
8 Word2vec models [47] . 15
9 Chain-like nature of a recurrent neural network [51] 17
10 Recurrent neural networks cells overview [54] 18
11 Long short-term memory [55] . 18
12 Gated recurrent unit [57] . 19
13 Named entity recognition using BiLSTM [59] 20
14 Scaled dot-product self-attention illustration [63] 22
15 Multi-head self-attention illustration [63] 23
16 Transformer architecture with two encoders and decoders [63] . . 24
17 Transformer decoding [63] . 24
18 Transformer architecture with its self-attention mechanisms [63] . 25
19 BERT for named entity recognition (E denotes the input

representation, T the output vectors) [64] 27

20 Named entity occurrences JSON snippet (”1”: 25826 denotes that
the CARDINAL entity was found once in a sentence in 25 826
cases out of 416 860) . 36

21 Probability distributions of proprietary dataset components 37
22 Jensen-Shannon divergence of proprietary dataset components . . 37
23 Proposed phishing email classification workflow 38
24 CAPE detections serialized into JSON format from an email . . . 39
25 JSON2Bag feature extraction algorithm 40
26 Named entities serialized into JSON from an email where each

pair of square brackets denotes a sentence in the email containing
named entities found in the sentence 41

27 Phishing detection ROC curves from March comparison between
the phishing email classifiers, ROC curves as interpolations of 5-
round 3-fold cross-validation . 43

28 Phishing detection ROC curves from April comparison between the
phishing email classifiers, ROC curves as interpolations of 5-round
3-fold cross-validation . 43

54

29 Phishing detection ROC curves comparison between the email
phishing classifiers with the training dataset from March applied
to the testing dataset from April 44

55

List of Tables
1 Bag-of-words feature extraction for a simplistic three-sentence

corpus . 13
2 Word-word co-occurrence probabilities and their ratios [43], [46] . 16

3 Named entity types in CoNLL 2003 28
4 Named entity types in OntoNotes v5 [68] 29

5 Confusion Matrix . 33
6 NER models evaluation metrics comparison 34
7 NER models runtime comparison on 10 000 sentences from the

Enron email dataset . 35
8 Monthly comparison of phishing email classifier with and without

named entities at critical thresholds 42
9 Comparison of phishing email classifier with and without named

entities using March dataset for training, April dataset for testing 44

56

List of Terms and Acronyms

Terms
negative emails Emails that the customers reported but, according to prior

knowledge or manual analysis, proved to be harmless, such as normal
conversation, notifications, or marketing.

positive emails Emails that are a mixture of spam, phishing, and malicious
messages.

Acronyms
API Application Programming Interface

AUC Area Under (ROC) Curve

BERT Bidirectional Encoder Representations from Transformers

CAPE Cognitive Anti-Phishing Engine

CoNLL Conference on Computational Natural Language Learning

FPR False Positive Rate

GloVe Global Vectors

GRU Gated Recurrent Unit

JS Jensen-Shannon (divergence)

JSON JavaScript Object Notation

KL Kullback-Leibler (divergence)

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

NER Named Entity Recognition

NLP Natural Language Processing

ReLU Rectified Linear Unit

REST Representational State Transfer

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

TPR True Positive Rate

57

A. Attachments

A.1 Proprietary Dataset Experiment

A.1.1 Probability Distributions

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Named Entity Probability Distributions (negative March x negative April)
negative March
negative April

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Named Entity Probability Distributions (positive March x positive April)
positive March
positive April

58

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.00

0.05

0.10

0.15

0.20

0.25
Pr

ob
ab

ilit
y

Named Entity Probability Distributions (negative March x positive March)
negative March
positive March

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Named Entity Probability Distributions (negative April x positive April)
negative April
positive April

59

A.1.2 Jensen-Shannon Divergence

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Bi
ts

Jensen-Shannon Divergence (negative March x negative April)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Bi
ts

Jensen-Shannon Divergence (positive March x positive April)

60

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.000

0.005

0.010

0.015

0.020

0.025
Bi

ts
Jensen-Shannon Divergence (negative March x positive March)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

CARDINAL DATE EVENT FAC GPE LANGUAGE LAW LOC MONEY NORP ORDINAL ORG PERCENT PERSON PRODUCT QUANTITY TIME WORK_OF_ART
Named entities

0.000

0.005

0.010

0.015

0.020

Bi
ts

Jensen-Shannon Divergence (negative April x positive April)

61

	Introduction
	Phishing
	Email Phishing
	High-Volume Phishing
	Spear Phishing

	Social Media Phishing
	Personal Account Impersonation
	Brand Impersonation

	Phone Phishing
	Vishing
	SMishing

	Named Entity Recognition
	Neural Networks
	Perceptron
	Multilayer Perceptron
	Neural Networks Training

	Text Representation
	Bag of Words
	Word Embedding
	Word2vec
	GloVe

	Deep Neural Networks
	Recurrent Neural Networks
	Bidirectional Recurrent Neural Networks
	Transformers
	Bidirectional Encoder Representations from Transformers

	Software for Named Entity Recognition
	Datasets
	CoNLL 2003
	OntoNotes v5

	SpaCy
	Transition-Based Model
	Transformer-Based Model

	Hugging Face
	Flair
	BiLSTM Model
	Transformer-Based Model

	Experiments
	Enron Email Dataset
	Sentence Parsing
	Model Choice

	Proprietary Dataset
	Phishing Email Classification
	Cognitive Anti-Phishing Engine
	JSON2Bag
	Named Entity Recognition Contribution

	Conclusion
	List of Terms and Acronyms
	Terms
	Acronyms

	Attachments
	Proprietary Dataset Experiment
	Probability Distributions
	Jensen-Shannon Divergence

