
BACHELOR THESIS

Kateřina Nová

Analysis and visualization of OCR output

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: doc. Mgr. Barbora Vidová Hladká,
Ph.D.

Study programme: Computer Science
Study branch: General Computer Science

Prague 2022

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources. It has not been used to obtain
another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank you my supervisor, doc. Mgr. Barbora Vidová Hladká, Ph.D.,
for patient guidance and good advice.

iii

iv

Title: Analysis and visualization of OCR output

Author: Kateřina Nová

Institute: Institute of Formal and Applied Linguistics

Supervisor: doc. Mgr. Barbora Vidová Hladká, Ph.D., Institute of Formal and Applied
Linguistics

Abstract: Optical Character Recognition (OCR) is a process of converting text from
images to a machine-readable text. We run three OCR systems (Tesseract, Ocrad and
GOCR) on an original multilingual OCR dataset and perform statistical and linguistic
analysis of the results in order to compare the tested systems and investigate typical
OCR errors.

Keywords: Optical Character Recognition, golden data set, statistical analysis, Natural
Language Processing

v

vi

Contents

Introduction 4

1 Related work 5

2 OCRData 7
2.1 ELTeC subset . 7
2.2 B-MOD subset . 9
2.3 Pre-processing of ELTeC data . 10

2.3.1 Golden texts pre-processing . 11
2.3.2 OCR images and OCR output 12

3 Tools 13
3.1 Tesseract . 13

3.1.1 Setting and using . 13
3.2 GOCR . 14
3.3 GNU Ocrad . 15
3.4 UDPipe . 16

3.4.1 Usage . 17

4 Evaluation measures 19
4.1 Word error rate and Token accuracy 19
4.2 Out of vocabulary . 20

5 Experiments and results 23
5.1 General observations . 23
5.2 Systems comparison . 23
5.3 Comparing Tesseract psm modes . 28
5.4 OOV . 29
5.5 POS tags . 32
5.6 Character substitutions . 37

Conclusion 41

Bibliography 43

List of Figures 45

List of Tables 47

A Appendix 49
A.1 List of novels from ELTeC . 49
A.2 Results . 52

B Electronic attachments 55
B.1 Requirements . 55
B.2 Developer documentation . 55
B.3 Usage . 56

1

B.4 Data . 58

2

Introduction
Throughout human history, written text (or any other form of visualized speech) turned
out to be an extremely successful and efficient tool to exchange, preserve and process
information. In our times, sometimes called the Digital Age, its role is being more
and more taken by digital or electronic text. Hand in hand with that, the need and
importance of converting between these two types of text continues to grow. While all
sorts of printers and displays make one way easy, the other one was and still is a major
challenge of recently very dynamically developing field called computer vision.

Optical Character Recognition
For reasonably short texts the task of text digitizing can be done manually and it is in
general still the most reliable method. On the other hand, this is extremely inefficient
for larger data and another tool is needed. The automatic process of recognizing text
in an image (which is mostly the only available electronic format of not yet digitized
text) is called Optical Character Recognition (OCR). Its output is machine-readable
text which allows for further processing. It is used in many real-life problems like
handwritten text recognition, filled forms processing or text detection in photos. Here
we focus on the recognition of printed plain text with not overly complicated formatting.

History and current methods
If we allow for slightly broader definitions of its task, OCR has quite long and rich
history dating back to the 19th century and inventions of the retina scanner and Nip-
kow disk pioneering the path of scanning and automatic processing of images. During
the 20th century the technology shifted from highly specialized tasks (text-to-telegraph
conversion, reading devices for blind people, etc.) to greater generality and versatil-
ity. The general development of computing and communication technologies naturally
influenced the field immensely allowing for unifying some of the tasks and employing
powerful software and hardware.

Nowadays, OCR processing starts with the segmentation of images into lines, words
or characters (cf. [6]). The next step usually consists of the individual characters
recognition. One can classify the methods for doing so in a simplifying manner as

• comparison of the pixel matrix of an appropriate rectangle in the image with
saved patterns,

• looking at the geometry and topology of the character, trying to decompose the
character image in simpler shapes,

• methods based on neural networks.

More detailed version of this classification and the respective methods can be found
in survey paper [17]. However, there is no general agreement on such a methods
classification and even some related terms are used for different meanings by some
authors. More about both the historical background and some modern features of
OCR can be found e. g. in paper [3].

3

Goals and structure of the project
Besides relating our project briefly to other works in Chapter 1, the main goals of this
thesis are building an original dataset for testing OCR systems, producing transcrip-
tions using several selected ones, performing statistical and linguistic analysis of the
output and summarizing and interpreting the results. The original plan (according to
the thesis assignment) contained one more goal, namely to create a tool for visualizing
the errors made the OCR process including their positions in the scanned image. Due
to reasons related to our dataset (see 5.6 for details), we did not accomplish this goal.

The dataset is decribed in detail in Chapter 2. It contains part of an existing OCR
data collection B-MOD and several novels from the ELTeC project. The latter database
is not meant for OCR processing and therefore the challenge here was adjusting the
data for that. We can see a sample image from ELTeC in Figure 1 below.

Chapter 3 describes the used tools, mainly the three open-source OCR systems
Tesseract, GOCR and OCRad. It also mentiones UDPipe – a program used for tok-
enization and further linguistic processing.

Chapter 4 then introduces the evaluation measures, particular statistical and lin-
guistically analytical benchmarks used to quantify and compare the rate of success of
the systems tested on our dataset.

Chapter 5 is devoted to the testing itself. The evaluation of its results uses original
scripts which are presented as well.

Detailed results of the experiments are attached in Appendix A. Appendix B de-
scribes the content and structure of the electronic attachment consisting of all the data
used for the experiments.

Figure 1: Image for OCR

4

1. Related work
The report [12] formulates a list of tasks and recommendations for researchers and
institutions involved in developing and applying OCR for digitizing paper manuscripts
from archives, libraries, etc. The authors argue that following this suggested agenda
would greatly influence the efficiency of this laudable effort. In this project, we partially
address some of the points of that list.

The comparative study [5] contains an overview of a number of both proprietary
and open-source OCR systems and a basic summary of results from other studies
which compare the systems. Although they do not always employ the same evaluation
measures as we do, the obtained success rate agrees in general with our results.

The thesis [16] compares all the systems we use and two other proprietary systems
(FineReader and Cuneiform). The author compares them using basic character and
word accuracy criteria. More interestingly from our point of view, this work studies
the effect of image quality on OCR by adding several different noises and degrading
the original images in ways that occur in practical applications.

A tool [1] computes statistics (both on word and character levels) of the difference
between two texts. Besides statistics it also provides a graphical interface where users
can see both compared texts next to each other with highlighted mutual differences.
Hence, it can be useful for manual error checking.

Detailed study [10] compares OCR errors with human misspellings. It is focused on
local changes of one word and suggests how it can be used in OCR post-processing. Fol-
lowing characteristics of OCR errors are examine: type and number of edit operations
(substitution, insertions and deletions of characters), length of the word, the position
of an error in a word, creation of existing or non-existing word and word boundary.

An example of creating an OCR dataset is contained in the study [7]. They used
digitized historical Finnish newspapers and manually corrected the OCR output of
the propriety system ABBYY FineReader 11. These data are used for testing the
pre-trained Tesseract model.

In the experiments we investigate difference between POS tagged golden texts and
OCR outputs (cf. Section 5.5). Paper [2] introduces a post-correction model which
should improve the POS tagging and annotating with name entities on OCR output
of German historical documents.

5

6

2. OCRData
For experimenting with OCR tools, one needs images containing text and the correct
digital transcriptions of these texts. All the experiments described in this thesis use an
original dataset called OCRData. Producing it was a substantial part of the project
and it is provided as an attachment to the thesis (see Appendices A and B).

A smaller part (see Table 2.2) of the dataset comes from the Brno Mobile OCR
Dataset (B-MOD) [8]. It is an established dataset adapted for OCR experiments.
However, it contains solely English texts divided into lines and restricting our experi-
ments to such a specific type of data would not reveal enough about the functionality
of the tested systems.

The majority of OCRData (see Table 2.1) is made up of scanned books from the
European Literary Text Collection (ELTeC). Unlike B-MOD, ELTeC is not an OCR
dataset and therefore it was necessary to extract all the data we need and adjust them
appropriately for our experiments.

In its final form, OCRData contains scanned images of all the used texts in both
TIFF and PNM formats (we call them OCR images) and their machine-readable tran-
scriptions as plain text (we call these golden texts). Tesseract, the main OCR system
we use (see Chapter 3 for details), supports multi-page TIFF files (which are convenient
to handle) but the other systems do not. Therefore we work also with OCR images in
one-page PNM format.

2.1 ELTeC subset
The European Literary Text Collection1 (ELTeC) is a part of Action Distant Reading
for European Literary History – a broader project managed by EU via its funding
organization European Cooperation in Science and Technology. It is a comprehensive
collection of around 2500 full-text novels in more than 10 different languages published
between 1840 and 1920. For more details see [11].

The digitized versions of the texts in the collection are in TEI encoding (cf. [15]), a
representation of digital texts based on XML format. Besides plain text, it can contain
e. g. linguistic features such as POS tags and lemmas. For marking these files, ELTeC
uses three levels depending on the amount of the metadata available about the given
novel:

• level 0 – basic TEI Encoding2

• level 1 – richer TEI Encoding3

• level 2 – TEI Encoding with tokenization and linguistic annotation.4

All novels which we use are from level 1. Files in that level contain information
about the book such as title, author or the link to the source stated in the header and
the main text in the body. We can see an example of a shortened header in Figure 2.1.

1https://github.com/COST-ELTeC/ELTeC
2https://distantreading.github.io/Schema/eltec-0.html
3https://distantreading.github.io/Schema/eltec-1.html
4https://distantreading.github.io/Schema/eltec-2.html

7

https://github.com/COST-ELTeC/ELTeC
https://distantreading.github.io/Schema/eltec-0.html
https://distantreading.github.io/Schema/eltec-1.html
https://distantreading.github.io/Schema/eltec-2.html

<?xml version=" 1 .0 " encoding="UTF−8" ?>
<TEI xmlns=" h t tp : //www. t e i −c . org /ns /1 .0 " xml : id=" CS0018 " xml:lang=" cs ">
<te iHeader>
<f i l e D e s c>

<t i t l e S t m t>
< t i t l e>Pravý př í t e l</ t i t l e>
< t i t l e xml:lang=" en ">The true f r i e n d</ t i t l e>
<author>Švestka , Jo s e f (1816 −1882)</ author>
<respStmt>

<resp>e d i t o r</ resp>
<name>I n s t i t u t e o f the Czech Nat ional Corpus:

d i a ch ron i c s e c t i o n</name>
</ respStmt>

</ t i t l e S t m t>
<extent>

<measure un i t=" words ">10665</measure>
</ extent>

<sourceDesc>
<b i b l>

<r e f t a r g e t=" h t tp : // kramerius . nkp . cz / kramerius /
MShowMonograph . do? id =24911 "></ r e f>

<pub l i sh e r>Nat iona l Library o f the Czech Republ ic</
pub l i s h e r>

<re la t ed I t em type=" pr in tSource ">
<b i b l>

< t i t l e>Pravý př í t e l . Pov í dka ze ž i vo ta pro uš l e c h t ěn í
s rdce mláde ž e . Pochlebn í k . Krá tk á pov í dka k pouč en í a
k vý s t r a z e mláde ž e . Nezi š tn é př á t e l s t v í . Vyprávěnka
hodna ná s l edov án í .</ t i t l e>

<pub l i sh e r>Jos . Mikulá š</ pub l i s h e r>
<pubPlace>V Praze</pubPlace>
<date>1881</ date>

</ b i b l>
</ re l a t ed I t em>

</ b i b l>
</ sourceDesc>

</ f i l e D e s c>
<encodingDesc n=" e l t e c −1">

<p></p>
</ encodingDesc>
<p r o f i l e D e s c>

<langUsage><language ident="CS">Czech</ language></ langUsage>
</ p r o f i l e D e s c>
</ te iHeader>

Figure 2.1: TEI header example of novel CS0018

The sources vary from already digitized books (for example from Wikisource5 or
Project Gutenberg6) to physical paper books and scanned images of the respective
books, whereas only the last type is suitable for us. In our experiments, we use the
source images (appropriately reformatted, cf. Section 2.3) as OCR images and the
main texts as golden texts.

5https://wikisource.org/wiki/Main_Page
6https://www.gutenberg.org/

8

https://wikisource.org/wiki/Main_Page
https://www.gutenberg.org/

Moreover, even for the scanned images, each language collection uses a different
source (or multiple sources), usually a local library website. For instance, the book
from the example 2.1 was downloaded from such a website7. This causes difficulties for
building a large dataset in this way as the downloading process cannot be easily done
automatically and some sources are not even publicly available (without registration
or at all). However, most of the files can be downloaded directly and therefore we use
only them.

In its final form, OCRData contains 64 twenty-page-long sections of novels in Czech,
Portuguese, Slovenian and French. These languages were chosen because their novels’
sources are mainly freely accessible scanned images. We take only the first 20 pages
of each book because some novels are quite long and evaluating would be problematic
due to technical limitations.

The number of novels and tokens for each language included in OCRData can be
found in Table 2.1. Titles and authors of all the novels are listed in Appendix A.1.

Language Number of novels Number of tokens
Czech 19 71 850

Portuguese 16 70 179
Slovenian 18 218 216

French 10 44 998

Table 2.1: Numbers of novels from ELTeC in OCRData

2.2 B-MOD subset
Brno Mobile OCR Dataset (B-MOD), part of the PERO project8, is a collection of
photographs of scientific papers captured by different mobile devices. It contains about
20 000 photographs and more than 500 000 text lines with precise transcriptions (Figure
2.2). As the mentioned papers often come with nontrivially structured text while our
evaluation scripts are suited primarily for plain text as input, we include only the
cropped lines for the OCRData.

There are three levels of image quality – easy, medium, and hard – named according
to the expected difficulty of their OCR processing. However, the quality of some images
even in the easy part is much worse than of the images from ELTeC as we can see in
an example in Figures 2.2 and 2.3.

Figure 2.2: Image from B-MOD of easy quality

Figure 2.3: Image from ELTeC

7http://kramerius.nkp.cz/kramerius/MShowMonograph.do?id=24911
8https://pero.fit.vutbr.cz/

9

http://kramerius.nkp.cz/kramerius/MShowMonograph.do?id=24911
https://pero.fit.vutbr.cz/

Difficulty set Number of lines Number of tokens
english.easy 1 000 11 108

english.medium 1 000 12 010
english.hard 1 000 10 118

Table 2.2: Size of data from B-MOD in OCRData

B-MOD divides the data into training, validation and testing subsets. For OCR-
Data, we use the first 1 000 lines from the validation subset per each quality level (3 000
lines in total), the number of tokens can be found in Table 2.2. Originally, B-MOD
contains a separate JPG file for every line (Figure 2.3). We merge all these files of each
level into one multi-page TIFF file for consistency with the data from ELTeC.

For more details about B-MOD, see [8].

2.3 Pre-processing of ELTeC data
Different digital processing methods need different data sources. Recall that for OCR
systems evaluation we need to provide text images and their exact golden transcrip-
tions. Before recognising individual characters, OCR systems have to do some layout
analysis (or segmentation) of the given image and this can be (in some systems) in-
cluded in the output as well. Hence, for a detailed evaluation, the golden texts should
in the best case contain not only words but also their positions. However, from the
perspective of the ELTeC mission, only the content of the book matters and therefore
the digitized texts do not have to look exactly the same as the scanned images or even
not contain some information present in the scanned images.

This section describes these differences and how we manage to remove them. Besides
that, we need to transfer the original files to suitable formats for OCR processing and
evaluation. The overview of the whole pipeline is depicted in Figure 2.6.

Paper books are not just the main texts, they also have covers and preface pages
which contain some text as well. Generally, we can find here a title, name of the
author(s) and publishing information. Most of the books are scanned including the
introductory pages but some of golden texts only begin after them. That is one type
of the image-transcription differences we usually encounter.

Another extra information in a scanned book occurs in headers as page numbers
and sometimes the book title, author or chapter label. In Figure 2.4, we can see an
example of a header from the Slovenian part of the OCRData.

The last major source of the image-transcription differences are words divided at the
end of a line which occurs in scanned images (and therefore also in the OCR outputs)
but in golden texts (see Figure 2.5). One solution would be to manually edit the golden
texts according to the images and split the corresponding words. However, this would
be quite tedious. For this reason, we use a different approach and merge all the divided
words in OCR outputs before doing any experiments and evaluations.

After all these adjustments, golden data and OCR image should in theory have
precisely the same text content but there is still the question about the structure of
the data. In other words, it is reasonable to have some basic text unit and compare
then the OCR input and output unit by unit. If we wish to do this on higher level,
i. e. to divide the given book into several smaller units, we have basically two options.

10

Figure 2.4: Header in golden image of novel SLV00048

The first one presents a logical (or semantic) approach and uses division into chapters,
paragraphs or sentences. Alternatively, we can divide the documents more visually into
pages and lines. ELTeC uses only the first approach and hence it does not preserve
what pages look like (with one one exception, namely the golden texts in Czech data
are divided into pages according to the scanned books). On the other hand, a typical
OCR output consists of lines corresponding to those from the source image and do
not work with sentences at all. As neither of these approaches would not work for our
entire dataset, we need to go to lower level and consider the texts just as a stream of
words and forget about all other structure.

−− C’ e s t tout à f a i t dans l e u r plan , mademoise l le .

Figure 2.5: Divided word at the end of line and the corresponding transcription of
golden data

2.3.1 Golden texts pre-processing

Recall that every text from ELTeC is in XML format. Its body contains a novel text
divided into chapters and paragraphs which we do not use, therefore we extract only
plain text out of it. From the header we need only the source link to the scanned book
for downloading the corresponding OCR image.

The next step is to select only the text corresponding to the first 20 pages of the
scanned novel. Except for the Czech collection, no XML files are structured into pages,
hence this has to be done manually – we simply look at the end of the 20th page in the
image file and find the corresponding place in the text file.

11

2.3.2 OCR images and OCR output
As mentioned above, the files with scanned novels contain whole books including the
covers and introductory pages which are not usable for OCR processing because they
contain no text or have no corresponding transcription in the golden texts. Therefore
all these pages are manually removed to achieve the highest possible similarity of the
images and the golden texts. However, if there are transcription of at least some of
these introductory pages in golden texts, we keep them as they give us more varied
data than only simple text blocks of plain text.

All files with scanned images are in PDF format that is not supported by any of the
used systems. Therefore we convert them to multi-page TIFF files. Then, as already
mentioned, we take 20 pages from the first relevant page.

Similarly as for the introductory pages, the headers (containing novel titles, num-
bers of chapters, etc.) have no corresponding transcription and have to be removed.
Therefore the next step consists of cropping the headers. The resulting TIFF file is
then converted to 20 PNM images for processing by Ocrad and GOCR.

The last step is merging the divided words in the OCR output. We detect the last
string of non-white-space characters at the end of the line ending with a hyphen (’-’)
and merge it with the first string of the next line. As opposed to splitting words in
golden texts according to the scanned images, it can be easily done automatically. We
must keep in mind that we work with the OCR output here and hence the merging
can be affected by the errors of the OCR process. Nevertheless, we make bad merging
only in places where the OCR system made an error.

ELTeC
XML file

Extract link
of scanned

images

Extract text
from XML

Golden text
∼ 20 scanned

pages

Download
OCR image

Evaluation

Find first
relevant page 20 pages PDF to TIFF Crop headers

TIFF
to PNMRun OCR

Merge words

Figure 2.6: Pre-processing pipeline

12

3. Tools
This chapter describes all the compared OCR systems (Tesseract, GNU Ocrad and
GOCR). There are many others available, but we decided to choose only open-source
and command-line tools as a non-graphical interface allows for easier automatization
of the evaluation. The last described tool is UDPipe which is used for tokenization and
POS tagging which is done both on golden and OCR texts before the evaluation.

3.1 Tesseract

Tesseract is an open-source command-line program for OCR (see [13]). It was originally
developed at Hewlett-Packard Laboratories between 1985 and 1994. The first open-
source version was released in 2006. In the beginning, it supported only English. Five
more languages (French, Italian, German, Spanish, Dutch) were added to its second
version released in 2007 and now it is trained for more than 100 languages.

3.1.1 Setting and using

We use Tesseract version 4.1.1 equipped with a new engine based on Long Short-
Term Memory ([4]) (LSTM). It can also be switched back to the old Legacy mode,
though. The Legacy mode detects lines, splits them into words and characters and
then recognizes every character according to the features based on the character shape.

One can specify the OCR Engine Mode by the oem option and use the old engine,
LSTM neural network or a combination of both. For all experiments we compare all
these three modes:

−−oem N
Spec i f y OCR Engine mode . The opt ions f o r N are :
0 = Or i g ina l Tes se rac t only .
1 = Neural net s LSTM only .
2 = Tesse rac t + LSTM.

When running Tesseract one has to specify a language (English by default). For
multi-language data one can also use more languages. As every file from OCRData is
in one language, we do not need this functionality.

Tesseract provides training data for 123 languages but it is also possible to train
a model with user’s data. We use only the pre-trained models for Czech, Slovenian,
French, Portuguese and English.

Another option is changing the default page segmentation mode (psm, see Figure
3.1) which can be used when we know how the text is placed on the image. Some books
(in ELTeC) have two text columns on one page and using this information should in
principle give better results. However, Tesseract provides only single-column options
(psm 4, 5, 6). Therefore we use only the default option which works fine even in the
two-column cases.

13

−−psm N
Set Tes se rac t to only run a subset o f layout a n a l y s i s
and assume a c e r t a i n form o f image . The opt ions f o r N are :

0 = Or i entat i on and s c r i p t d e t e c t i on (OSD) only .
1 = Automatic page segmentat ion with OSD.
2 = Automatic page segmentation , but no OSD, or OCR.
(not implemented)
3 = Ful ly automatic page segmentation , but no OSD.
(Defau l t)
4 = Assume a s i n g l e column o f t ext o f v a r i a b l e s i z e s .
5 = Assume a s i n g l e uniform block o f v e r t i c a l l y
a l i gned text .
6 = Assume a s i n g l e uniform block o f t ex t .
7 = Treat the image as a s i n g l e t ex t l i n e .
8 = Treat the image as a s i n g l e word .
9 = Treat the image as a s i n g l e word in a c i r c l e .
10 = Treat the image as a s i n g l e cha rac t e r .
11 = Sparse t ext . Find as much text as p o s s i b l e in
no p a r t i c u l a r order .
12 = Sparse t ext with OSD.
13 = Raw l i n e . Treat the image as a s i n g l e t ex t l i n e ,
bypass ing hacks that are Tesseract −s p e c i f i c .

Figure 3.1: Description of psm modes from manual page

The data from B-MOD consist of one-line images which is an available option in
Tesseract (psm 7, 13). In this case, we compare default segmentation with the modes
psm 7 and psm 13. The results can be found in Section 5.3.

3.2 GOCR
GOCR is open source program for optical character recognition.1 It was developed by
Joerg Schulenbur mostly between the years 2000 and 2010, the last version was released
in 2018.

Its algorithm starts with line segmentation as well. Then it detects clusters of pixels
which should corresponds to individual characters. For the recognition of these clusters,
two engines are used. Original rule-based engine which describes shape of characters
and a database engine which compares pixel clusters with images of characters and
tries to find the one with the smallest distance. The database can be extended by the
user to include e. g. language-specific characters.

The default setting is to take images in PNM format and write text on stdout. It is
also possible to use stdin stream instead of an input file or with help of some external
programs one can use more image formats (pnm.gz, pnm.bz2, png, jpg, jpeg, tiff, gif,
bmp, ps and eps). However, only single page files are accepted and therefore we can
not use our multi-pages TIFF files and we use PNM files instead.

1http://jocr.sourceforge.net/

14

http://jocr.sourceforge.net/

During the recognition, GOCR estimates for every character the probability that
it has been correctly recognized. When this value is below an (adjustable) treshold,
the character is considered unrecognized and GOCR writes special character on the
output. The default option is ’_’ but it can be also changed by the user. We keep
default setting for both these settings.

The user’s next option is setting a filter function which allows only a limited set of
characters on output:
−C s t r i n g

only r e c o g n i s e cha ra c t e r s from s t r i ng , t h i s i s
a f i l t e r f unc t i on in ca s e s where the i n t e r e s t i s
only to a part o f the cha rac t e r alphabet , you can
use 0−9 or a−z to s p e c i f y ranges , use −− to de t e c t
the minus s i gn

This can be useful if a dataset is somehow limited and we know it contains e. g. only
numbers. Unfortunately, this is not our case, our data are quite varied. The only way
for us to make use of this functionality would be creating a list of characters depending
on the language. However, it can be quite tricky and needs some manual control of the
texts to ensure the list includes all the characters. For example, there are some quotes
in German in this Czech book (see Figure 3.2).

Figure 3.2: German quotes in Czech book

3.3 GNU Ocrad
Ocrad is console program and library for OCR.2 It can do some layout analysis to find
text locations and remove pictures and frames. Then it detects characters on each line
and finds the best match to every character. Afterwards, some post-processing can be

2https://www.gnu.org/software/ocrad/

15

https://www.gnu.org/software/ocrad/

done, but only on character level and therefore there are no language-specific modes
as in Tesseract.

It can read only PNM images and produces text in byte or UTF-8 format. The
default setting for output format is byte but we used UTF-8 for easier post-processing.

Similarly as GOCR, Ocrad also has a filter function (see Figure 3.3 below). There
are several built-in filters and one can also use a customized set of characters. The
build-in filters are certainly too restrictive for our dataset and as mentioned in Section
3.2, creating our own filter is tricky as well.

−− f i l t e r=l e t t e r s
Forces every cha rac t e r that resembles a l e t t e r to be

r ecogn i z ed as a l e t t e r . Other cha ra c t e r s w i l l be output
without change .

−− f i l t e r=l e t t e r s_o n l y
Same as ’−− f i l t e r=l e t t e r s ’ , but other cha ra c t e r s w i l l be

d i s ca rded .
−− f i l t e r=numbers
Forces every cha rac t e r that resembles a number to be

r ecogn i z ed as a number . Other cha ra c t e r s w i l l be output
without change .

−− f i l t e r=numbers_only
Same as ’−− f i l t e r=numbers ’ but other cha ra c t e r s w i l l be

d i s ca rded .
−− f i l t e r=same_height
Discards any charac t e r (or no i s e) whose he ight d i f f e r s in more

than 10 percent from the median he ight o f the cha ra c t e r s
in the l i n e .

−− f i l t e r=text_block
Discards any charac t e r (or no i s e) ou t s id e o f a r e c t angu l a r

b lock o f t ex t l i n e s .
−− f i l t e r=upper_num
Forces every cha rac t e r that resembles a uppercase l e t t e r or a

number to be r ecogn i z ed as such . Other cha ra c t e r s w i l l be
output without change .

−− f i l t e r=upper_num_mark
Same as ’−− f i l t e r=upper_num ’ , but other cha ra c t e r s w i l l be

marked as unrecognized .
−− f i l t e r=upper_num_only
Same as ’−− f i l t e r=upper_num ’ , but other cha ra c t e r s w i l l be

d i s ca rded .

Figure 3.3: Description of filter function from Ocrad manual

3.4 UDPipe
UDPipe is a tool for tokenization, tagging, lemmatization and syntactic analysis (see
[14]). We use tokenization and tagging.

16

Tokenization is a process of parsing text into a sequence of tokens. A token can
be either a word or punctuation. Tokenization is an essential step as all the used
evaluation measures work only with token post-processing, not with raw text.

The POS tagging is a process of annotating words in sentences by parts of speech
tags. Words with the same POS tags play similar roles in sentences and they can be
sometimes substitutes to each other without loosing grammatical correctness. We use
only basic set of tags such as noun, verb, adjective, etc.

UDPipe can be used directly from command line (Linux, Windows, OS X), as a
library for multiple languages (C++, Python, Perl, Java, C#) and as a web service
using LINDAT/CLARIN-CZ infrastructure3.

3.4.1 Usage

UDPipe provides pre-trained models for around 50 languages.

We did the tokenization from Linux command line. All our evaluation metrics work
only with a sequence of tokens, no sentences or paragraphs, therefore we used vertical
output format (one token per line). The input format is plain text.

The POS tagger needs either already done tokenized input or it is possible to use
plain text and perform the tokenization together with tagging, we use the second
option. We could also extract tokens from CoNLL-U files (described below) similarly
as we do it for tags and do the tokenization only once. However, our way allows to do
experiments more independently.

The default output format for tagger is CoNLL-U v2. It divides a text into para-
graphs, sentences and tokens. Each token in a sentence have ten morphological and
syntactic features. The list of all features and their description we can see in Table 3.1.

The output of the UDPipe tagger contains only the first six features (ID, FORM,
LEMMA, UPOS, XPOS, FEATS). The Figure 3.4 shows a sample sentence from the
dataset and its tokenization and tagging in CoNLL-U format. However, for our purpose
we need only UPOS for each token and, as mentioned above, only as a sequence of
tokens and tags. The POS tag analysis script takes the CoNLLU format and extracts
the POS tags themselves.

3http://lindat.mff.cuni.cz/services/udpipe/

17

http://lindat.mff.cuni.cz/services/udpipe/

Feature Description
ID Word index, integer starting at 1 for each new sentence; may

be a range for multiword tokens; may be a decimal number
for empty nodes (decimal numbers can be lower than 1 but
must be greater than 0).

FORM Word form or punctuation symbol.
LEMMA Lemma or stem of word form.
UPOS Universal part-of-speech tag.
XPOS Language-specific part-of-speech tag; underscore if not avail-

able.
FEATS List of morphological features from the universal feature in-

ventory
or from a defined language-specific extension; underscore if
not available.

HEAD Head of the current word, which is either a value of ID or zero
(0).

DEPREL Universal dependency relation to the HEAD (root iff HEAD
= 0) or a defined language-specific subtype of one.

DEPS Enhanced dependency graph in the form of a list of head-
deprel pairs.

MISC Any other annotation.

Table 3.1: Features in CoNLLU format

sent_id = 6
text = Que os cora çõ es humanos tanto Obriga ,
1 Que que SCONJ _ _ _ _ _

_
2 os o DET _ D e f i n i t e=Def | Gender=Masc |

Number=Plur | PronType=Art _ _ _ _
3 cora çõ es cora çõ es NOUN _ Gender=Masc

| Number=Plur _ _ _ _
4 humanos humano ADJ _ Gender=Masc | Number=Plur _

_ _ _
5 tanto tanto ADV _ _ _ _ _

_
6 Obriga obr iga PROPN _ Gender=Masc | Number=Sing _

_ _ SpaceAfter=No
7 , , PUNCT _ _ _ _ _

SpacesAfter=\n\n

Figure 3.4: UDPipe example of tokenized and tagged sentence in CoNLL-U format

18

4. Evaluation measures
In this chapter we describe two main measures which we use to compare quality of
OCR processing – Word error rate and Token accuracy. For detailed analysis we might
be interested in how hard is concrete data for OCR processing. We can look at images
and say if they seems to be well scanned or if they contain some graphical items which
can negatively influence the results. However all these things are difficulty to quantify.
Instead that we decide to look at number of Out of vocabulary words in golden text.

All used evaluation measures work with tokens which we get from UDPipe (cf.
Section 3.4). Since line segmentation appears natural in OCR recognition, it could
also be interesting to use an evaluation measure working on the line level. However, it
does not suit our dataset. Indeed, the golden data from ELTeC are not divided into
lines. On the other hand, while the B-MOD data do consist of single lines, every line
is in separate picture hence line accuracy would be only picture accuracy.

4.1 Word error rate and Token accuracy
The basic idea of comparing two strings of tokens is to go through both strings and
count in how many tokens they agree. However, if we compare only tokens in the same
position, a single missing or remaining token in two otherwise identical strings can
make all the following token pairs to be different. As such a situation is in the context
of OCR clearly much better than e. g. completely wrong second half of the string, this
approach turns out to be too naive.

To get more interesting evaluation measures we need to work with insertions and
deletions. In particular, we introduce the word error rate measure (WER), a normalized
variant of the classical Levenshtein distance ([9]). Let us briefly explain how it works.
Consider three editing operations on a given token string S:

• insertion: inserting new token t at one (arbitrary) position in S,

• deletion: deleting one occurrence of token t from S,

• substitution: replacing one occurrence of token t in S by token t′.

Given two strings of tokens G and R (not necessarily of the same length) we compute
LEV(R, G), the Levenshtein distance of G and R, as the smallest non-negative integer
n such that it is possible to obtain R by performing n editing operations on G. Finally,
denoting by NG the number of tokens in G, we define

WER(G, R) = LEV(G, R)
NG

,

the word error rate of G and R. Note that while LEV is a metric in the mathematical
sense, WER is not (it is not symmetrical in its two arguments). If R is longer than
G, it can happen that WER > 1. Nevertheless, it still makes sense to interpret this
quantity as an average number of errors made by an OCR system given the golden
data G. For application in OCR evaluation, we think of G as the golden text, of R
as the recognized text (OCR output) and we interpret the editing operations as errors
appeared along the OCR process (namely deletion ∼ omitting a token; substitution ∼

19

altering a token and insertion ∼ adding a wrong token). In this context, we will use
the terms editing operation and editing error interchangeably.

Let us look at an example with two string of tokens separated by spaces. To obtain

R = ’This is sentence from the same recognized text .’

from
G = ’This is a sentence from the golden text’

we need at least four editing operations, e. g. one substit. ’golden’→ ’recognized’,
one deletion (’a’) and two insertions (’same’,’.’). Therefore

WER(G, R) = 4
8 = 1

2 .

It is possible in general to assign different weights/penalizations to the three oper-
ations/errors, we set all of them to one.

For computing WER we use the Wagner-Fisher algorithm (see [18]) and in addi-
tion to the current number of operations we keep also the type of editing operation.
Although the optimal number of operations is unique (it is the lowest possible), the
optimal sequence of editing operations (or even the numbers of their types) are not.
For example to obtain R = ’B A’ from G = ’A B’, we can make two substitutions
(’A’ → ’B’ and ’B’ → ’A’ at the end) or one deletion (’A’) and one insertion (’A’
at the end). We solve this issue by defining the following priority order for choosing
the appropriate operation type within the Wagner-Fisher algorithm: substitution >
insertion > deletion. The reason for the first “inequality” is that interpreting OCR
processing errors as substitutions seems more natural than as a combination of dele-
tions and insertions. The rest of the order is not essential.

Another useful evaluation measure stems from – using the terminology from above
– disregarding the insertions (i. e. wrong tokens additions) as errors and, essentially,
only count how many tokens in the OCR output survived from the golden text. More
precisely, when computing LEV(R, G), it can be proved that although the optimal
sequences of editing operations are in general not unique, the numbers I, S, and D,
denoting respectively the number of insertions, substitutions and deletions used, are
well-defined. Hence we can define the number of correctly recognized tokens C as
C = NG − S − D and the token accuracy

ACC(G, R) = C

NG

= 1 − WER(G, R) + I

NG

≤ 1.

Note that unlike the word error rate, token accuracy is a “positive” evaluation bench-
mark in the sense that its value close to one means a successful OCR.

4.2 Out of vocabulary
Typical images for OCR processing consist of meaningful text. Hence OCR systems
can benefit from using some kind of vocabulary to improve their performance. Such
training vocabularies for Tesseract are available (see links in Table B.4) and we can
investigate how the number of unknown words encountered in the experiments affects
the results. Note that the source vocabulary for Tesseract training came from modern

20

texts while most of the OCRData are novels from the 19th century. Let OOV (Out of
vocabulary) denote the number of unknown tokens that appear in the golden text but
not in the Tesseract vocabulary. For comparison with other texts, we use OOV per
token defined as OOV

NG
, where NG is again the number of tokens in the golden text.

21

22

5. Experiments and results
In this chapter, we introduce our experiments. First, in Section 5.2, we use the evalua-
tion measures WER and ACC described in Section 4.1 to compare the performance of
the three tested systems (five including the different modes of Tesseract, cf. Section 3)
on OCRData and analyse OCR error tendencies in terms of the most frequent types
of the editing errors (substitutions, deletions and insertions).

Next, in the following several sections, we look at the obtained results from the
linguistic point of view and investigate whether and how OOV (see Section 4.2) can
influence the accuracy of the OCR processing and how the POS tags of our OCR
output look like.

All these experiments work with tokens as basic units. In the last section of this
chapter, we work on the character level instead. Namely, we look closer at character
changes during the OCR processing.

The overview of the whole process can be found in Figure 5.1. The first step is
tokenization and tagging of both golden and OCR texts (already merged, see section
2.3) by UDPipe. Tokens are then passed to the main script which computes WER, and
ACC and give us a complete list of all (editing) errors. The substitutions are used to
compute the number of character substitutions. By comparing the golden texts with
the Tesseract vocabulary, we estimate OOV. The last step consists of computing the
distribution of POS tags. All experiments are done by original scripts (see Section B.2
in Appendix B).

5.1 General observations
In Table A.5, we can see detailed results containing the number of tokens in golden
texts, ACC, WER, OOV, OOV per token and the number of insertions, deletions and
substitutions from WER computation for all data. Since the language segments of
OCRData are not of equal sizes, insertions (I), deletions (D) and substitutions (S) are
normalized by the respective number of tokens. The results are averaged over each
language (for English over each difficulty level).

As we can see, in the most cases we have much fewer deletions than other errors. The
reason is that systems can recognize some noise as letters or punctuation which gives
us insertion errors but it happens rarely that they completely skip a word. However, it
happens that there is missing space in the OCR output which gives us some deletion
errors.

Different behaviour can be observed at B-MOD data proccesed by Tesseract and
GOCR where the number of deletions increases with lower image quality. The en-
glish.hard images are usually very blurred (see Figure 5.2) and systems sometimes
consider them as images with no text.

5.2 Systems comparison
Figure 5.3 shows one page from the Czech data and the corresponding output from
Tesseract with oem0 (Figure 5.4) and oem1 (Figure 5.5), Ocrad (Figure 5.6 and GOCR
(Figure 5.7). The texts produced by Tesseract contain some mistakes but we can in

23

Golden
text file

OCR text file

Tokenization

Tokenization

WER
and ACC

Chars
substitutions

Tesseract
vocabulary

OOV

Tagging

Tagging

Count
POS tags

Figure 5.1: Experiments

Figure 5.2: Example of english.hard image (B-MOD)

general read them and we are mostly able to fix the mistakes without looking at the
scanned images. Ocrad and GOCR transcriptions contain a lot of unknown characters
and the texts are not readable.

In Figure 5.8 we can see the average ACC for each language and system, Figure 5.9
shows analogous results for WER. All Tesseract modes give significantly better results
than Ocrad and GOCR which corresponds to our sample page below. The ELTeC
data has generally better ACC than B-MOD which corresponds to our observation
that ELTeC has better quality than B-MOD. However, the situation is different for
WER and Ocrad and GOCR systems. High values of WER in these cases are caused
by a higher number of insertions, see Table A.5. Unlike cropped lines from B-MOD
where most of the space is covered by text, novels from ELTeC contain more graphical
non-text areas such as frames and sometimes even images. As we investigate closer
in Section 5.5, these areas are often recognized as punctuation marks and Ocrad and
GOCR tend to do this error more often.

When we look at individual languages of the ELTeC part and order them by ACC
or WER, we get different orders for each system. Therefore we can not say that some

24

language parts are easier in general.
Recall that the first Tesseract mode oem0 uses the original module, oem1 use LSTM

neural network and oem2 combines both. As we can expect, oem1 works generally
better than older oem0. The mode oem2 produces very similar results on ELTeC data
as oem1 and slightly worse than oem0. The largest difference can be seen at english.easy
data where oem1 gives significantly better result than the other systems. It indicates
that oem1 works reasonably even on lower quality data. However, english.hard data is
probably too difficult and there is no big difference between the systems performances.

Figure 5.3: OCR image from CS0002

1 .

Wohl bin i ch nur e in To n

lm sch ónen Liede Gottes ;

Doch wie das sch óne Lied

Wird nimmermehr verk l ingen ,

So wird der Ton im Liede

Auch nimmer geh ’ n v e r l o r e n .
Lenan .

−Kouzelná hádanka j e to s rdce l i d s k é ! ––
Zde onde kr áč í č lov ěk kr á tkým snem ž ivota ,
j eho ž nikdo nesezn á , a jeho ž tc duch př ece
zan í cen smě lou f a n t a s i í v š ude co s ž í ravý i plodný
plamen t ěká . a . sah á po l á t ce pro svů j
př ekypuj í c i , bujný a . sv ě ž í tok c i t u ; dosud mu kr á s í
v í nek _ mladost i kvetouc í skr áně i dů mysltr

Figure 5.4: Tesseract oem0 – sample output

25

1 .

Wohl bin i ch nur em Ton

Im sch ě nen Liede Gottes ;

Doch wie das sch ě ne Lied

Wird nimmermehr verk l ingen ,

Bo wird der Ton im Liede

Auch nimmer geh ’ n v e r l o r e n .
Lenan .

−Kouzelná hádanka j e to s rdce l i d s k é ! –
Zde onde kr áč í č lov ěk kr á tkým snem ž ivota ,
jehbo ž nikdo nesezn á , a jeho ž to duch př ece
zan í cen smě lou f a n t a s i í v š ude co s ž í ravý i plodný
plamen t ěká a sah á po l á t ce pro svů j
př ekypuj í c í , bujný a sv ě ž í tok c i t u ; dosud mu kr á s í
v í nek mladost i kvetouc í : skr áně i důmyslw

Figure 5.5: Tesseract oem1 – sample output (CS0002)

l .

Wohl bin i cb nor e in Ton
lm acbÓoen Lieda Gottea ;
lDocb wie daa acb_oe Lied
Wird nim_ermebr _erBingBo ,
r So wird aer Too i_ Liada
Aucb ñ_mer geb ’ n _eTlore_
IRn_o . ’

Bou_elna bad_Ba j e to ardce lidBB é ! −
_Zde ond6 _ra_L _lo_a_ Brat__m an6m _i_ota ,
j6boE niBdo neaazna , a jebo_to ducb p∗ ec6
_enlcen amé lou fant&a i í __ude co B_Lra_p i ploanQ
plamen ta_a , a _aba po l a t c a pro a_aj
p∗6 Bppujlcl_ bujnp a a_é_L tok c i t u ; doBud mu gr&B_
_6k . mladoBti _vetouci g_rané i d_mpBl_r . ! ’_

Figure 5.6: Ocrad – sample output (CS0002)

26

1 .

ohl bi i cb __r ei_ To _
o l_ Bcb6_e_ _ied_ Got_8 ;

Docb _ie d8B Bcb__e Lied
‘ Wiird Di__e_ebr _er_i_gB_ ,
r So _ird dgr To_ i_ Liede ’

Aucb __er geb ’_ _er lorea . ’
Le_8D . ‘

. _ou2el__ b_d8ii__8 j e t0 _rd_e _d ___! −
2_e o_d_ _r_ei e , lo_a_ __t___ ____ _i_o_ ,

, jebo_ _i_do _e_e2__, _ jebo_to du__ phe_e 2_−
’ _t_e_ __elou _8__&i i _8ude _o &_tr_irJF_ i plod__

pl__e_ te__ , 8 ____ po l_tce pro ___j p___p−
pujt_t , buj__ & __a_t tok _itu ; do_ud _u _r_8_
_e__ _l_do_ti _vetouci __r_a i d&_p81_r ’

_e_l0

,_ __,
t
_

Figure 5.7: GOCR – sample output (CS0002)

Figure 5.8: ACC for each language and system

27

Figure 5.9: WER for each language and system

5.3 Comparing Tesseract psm modes
Segmentation is important for OCR processing and as we desribe in Section 3.1, Tesser-
act provides setting for some specific types of text placement. For one-line data from
B-MOD, we compare two one-line modes psm7 and psm13 and the default mode. By
setting psm mode we provide Tesseract with more information about the image, and
hence we expect better results from it. However, as one can see in Table A.6, for our
data it is more complicated.

For oem0 we get worse results we get much worse results with psm7 and psm13
for english.easy data, for english.medium still worse but with smaller difference and
for english.hard even little better. For easier data psm7 looks better. When we look
closer at results, we can see that psm7 and psm13 have less insertions and deletions
but more substitutions which causes higher WER and worse ACC. Deletions errros are
more common in worse quality data and their reduction play bigger role than increasing
number of substitutions here.

For oem1 both non-default psm modes improve the results, more for psm13. Again
we can see big reduction of insertions and deletions errors but unlike oem0 numbers
of substitutions are smaller too. For oem2 there is big improvement with psm7 but
psm13 has worse results.

It seems that psm7 and psm13 somehow worsen the process of recognition of char-
acter itself for oem0 but it is not clear to the author, why exactly. The results of oem2
then corresponds to the fact that it is a combination of both previous modes.

Table A.6 contains also information about the number of tokens and lines in OCR
outputs. The psm13 has the correct number of lines in all cases, psm7 has less and
default segmentation has more than twice. It is expected behaviour as the images are

28

usually single lines from a longer text and some are not perfectly cropped and contain
parts of lines above or below. In the default mode, Tesseract tries to recognize that as
a next lines and it gives us more insertions and lines. Figure 5.10 shows the image and
its transcription (all done in oem1).

OCR image from B-MOD:

Default psm mode:
eapgyry FU Twwey CNR. SEE CEE SR AI

i n t e r a c t i v e q u e r i e s ’ should run . with sub−second response time , but the c o n p i t i l i n

Mode psm7:
i n t e r a c t i v e q u e r i e s should run with sub−second response time , but the compi la t ion

Mode psm13:
i n t e r a c t i v e q u e r i e s should run with sub−second response time , but the compi la t ion

Figure 5.10: Bad cropped line

Difference between number of tokens are smaller than between lines because, as we
mentioned earlier, default segmentation mode has also smaller number of deletions and
therefore the resulting number of tokens for easier data are similar for all psm modes.
For english.hard data numbers of tokens with default segmentation are much smaller
than in the golden text and it increase for psm7 and psm13. Tesseract sometimes
recognizes bad quality image as an empty page with no text but with information
there is one line of text probably tries to find at least something at the image.

5.4 OOV
We examine only correlation with ACC (number of correctly recognized tokens) not
with WER because we assume deletions and insertions are usually cost by image noise
and it can not be improved by a better dictionary.

The vocabularies used to compute OOV are for Tesseract and Ocrad and GOCR
does not even have language-specific models but we include them too for comparison.

In Figure 5.11 we can see all files and their OOV and corr. The OOV is similar
for novels of one language and therefore different accuracy of novels of one language is
more likely caused by the image quality. However the scanned images of one language
often come from the same source, and the image quality differs more across languages
than across files of one language.

For examination of influence OOV to accuracy, we should compare similar data
to reduce other causes, B-MOD data has the worse quality and they look different
therefore we compute correlation only for ELTeC data (Czech, Slovenian, French, Por-
tuguese).

In order to compute the correlation as a statistical quantity, we interpret our ex-
perimental data in a stochastic manner. We consider both ACC and OOV as random
variables on probability space Ω consisting of all the novels from ELTeC. For any novel
x ∈ Ω we denote by N(x) its number of tokens and we set

N =
∑︂
x∈Ω

N(x)

29

to be the total number of tokens in the ELTeC golden data. Next, we introduce the
probability P on Ω simply by defining its value on its each element (i. e. the elementary
events in the stochastic terminology), namely

P (x) = N(x)
N

for any x ∈ Ω.

This formula ensures that every token has the same weight in our statictics. The
random variables ACC, OOV : Ω → R are defined in the obvious way. The sought
correlation is then given by the formula

corr(ACC, OOV) = E (ACC · OOV) − E (ACC)E (OOV)√︂
E (ACC2) − E (ACC)2 ·

√︂
E (OOV 2) − E (OOV)2

.

The values for every system are listed in Table 5.1. Surprisingly, we see no initially
anticipated negative correlation. On contrary, all the correlations are positive, some
of them even quite high, which could suggest that higher OOV actually improves the
accuracy. Since this seems to us far-fetched, we should provide a plausible explanation
of this apparent inconsistency. We conjecture that OOV actually does influence ACC
in a negative manner, but our data are not capable of demonstrating that on the level
of correlation. More precisely, we believe that there are factors that influence ACC
much stronger than OOV (such as the OCR image quality, font type, etc.) and which
are independent of OOV. However, our dataset is too small to unavoidably show this
independence. Consequently, OOV can be in our data on average accidentally higher for
e. g. the files of better quality implying the positive correlation. One could argue that
this is actually the case by observing that there is more tokens in the Slovenian novels
than in the other three languages combined (see Table 2.1), they have simultaneously
higher OOV and comparable ACC to the other languages (see Figure 5.11 below). At
the same time, a glimpse on the data suggests that the Slovenian novels have relatively
good quality, in the other words, their text is well-readable. However, since quantifying
the last property in a rigorous way is beyond the scope of this thesis, we do not claim
that this reasoning is more than an educated guess.

system corr(ACC, OOV)
oem0 0.340
oem1 0.397
oem2 0.409
ocrad 0.015
gocr 0.034

Table 5.1: Correlation between OOV and ACC

30

Figure 5.11: Relation between ACC and OOV per token for each system

31

5.5 POS tags

We do not work with random sequences of characters, therefore, it could make sense
to look at the errors from the linguistic point of view. One way is looking at the
distribution of POS tags of golden and OCR texts. Recall that for POS tagging we
used UDPipe (see Section 3.4).

The Figure 5.12 shows the relations between the number of occurences of each tag
in the golden and OCR texts averaged over all data. The most significant difference
is a larger number of PUNCT (punctuation) in the OCR texts by GOCR, Ocrad and
Tesseract oem0 compared to the golden texts. From the previous metrics, we know
these systems are generally worse and they often recognize noise, graphical items, and
other non-letter elements in texts, e. g. punctuation.

The following example shows how the systems deal with a frame around the page
5.13. First, we have plain text recognition of the highlighted part of the text (yellow).
In the bottom part of the frame (red line) the mode oem0 recognizes it as some punc-
tuation (Listing 5.14 and the oem1 as random letters5.15. Although there is the same
line on the right (blue) as on the bottom, this Tesseract correctly ignores it in all cases.

The number of POS tags comes from UDPipe, let’s look at what the tagging output
of parts between both parts of yellow looks like. The oem0 5.16 is the only sequence of
PUNCT as we expected and the sequences of letters from oem1 5.17 are mostly tagged
as PROPN, probably because of the capital letter at the beginning. It corresponds to
our graph, although the difference is smaller than PUNCT, the number of PROPN in
OCR texts is bigger than in the gold texts.

GOCR and Ocrad are even worse and try to interpret not only the red bottom
line but even the blue left and right ones. The difference between these systems is
that Ocrad interprets vertical lines as next columns and therefore the output contains
the left line, block of text and the right line and GOCR adds extra character to the
beginning and end of the line of words.

The next reason for the large number of PUNCT in GOCR and Ocrad is both
systems use ’_’ instead of unrecognized characters. When the ’_’ substitute only a
few letters in a word, UDPipe try tagged it as a regular word but for shorter words, it
can happen that no letter remains and then it is tagged as PROPN. The Figure 5.18
shows an example of one such that sentence of GOCR output.

The difference between other tags is smaller, except for the NOUN and SYM, all tags
are more common in the golden text. Similar to the PUNCT situation the distributions
of GOCR and Ocrad differ more than Tesseract. Of course, there is a question if the
results of GOCR and Ocrad tagging are relevant because when the output does not
make any sense automatic tagging can produce any kind of results.

32

Figure 5.12: POS tags

33

Figure 5.13: FRA05702 – noise example

I l l u i r epr é s e n t a i t vainement l e r e s p e c t
qu " un enfant d o i t aux c h e f s –d ’œuvre de l ’ a r t

e t à s e s h a b i t s neu f s . I l l u i d i s a i t encore de

um, . C: üy...u .m . . : . fià . t...au ’ . : » , . . . » ’ .

‘ x ’_

... . . . w«va

bien rega rde r ce p a l a i s , bâ t i par une r e i n e qui
é t a i t a s sur ément une t r è s – grande r e i n e .

Figure 5.14: FRA05702 – oem0

I l l u i r epr é s e n t a i t vainement l e r e s p e c t
qu ’ un enfant d o i t aux che l s −d ’œuvre de l ’ a r t

e t à s e s h a b i t s neu f s . I l l u i d i s a i t encore de

ISA D SI LT Lie A LÉO DGA EE 6 à dr000 ca

were
−
ru ine e s s e 00 100 05 VAN

bien rega rde r ce p a l a i s , bâ t i par une r e i n e qui
é t a i t a s sur ément une t r è s−grande r e i n e .

Figure 5.15: FRA05702 – oem1

34

sent_id = 934
text = um, . ‘ : üy...u .m . . : . f i à . t...au ’ . : » , . . . »

. ’ .
1 um um NOUN _ Gender=Masc | Number=Plur _ _ _

SpaceAfter=No
2 , , PUNCT _ _ _ _ _ SpaceAfter=No
3 . ‘ : üy...u .m . . : . fià . t...au ’ . ‘ : üy...u .m . . : . fià . t...aue SCONJ _ _ _

_ _ _
4 . : . : PUNCT _ _ _ _ _ SpaceAfter=No
5 PUNCT _ _ _ _ _ _
6 PUNCT _ _ _ _ _ _
7 PUNCT _ _ _ _ _ _
8 . » . » PUNCT _ _ _ _ _ _
9 , , PUNCT _ _ _ _ _ SpaceAfter=No
10 . . . » . . . » PUNCT _ _ _ _ _ SpaceAfter=No
11 PUNCT _ _ _ _ _ _
12 PUNCT _ _ _ _ _ _
13 PUNCT _ _ _ _ _

_
14 . . PUNCT _ _ _ _ _ _
15 PUNCT _ _ _ _ _ _
16 ’ ’ PUNCT _ _ _ _ _ SpaceAfter=No
17 . . PUNCT _ _ _ _ _ SpacesAfter=\n

\n\ s \n\n

newpar
sent_id = 935
text = ‘ x ’_
1 ‘ x ’_ ‘ x ’_ NOUN _ Gender=Masc | Number=Sing _

_ _
SpacesAfter=\n\n

newpar
sent_id = 936
text = w«va

1 w«va w«ver VERB _
Mood=Ind | Number=Sing | Person =3| Tense=Past | VerbForm=Fin _ _ _

SpacesAfter=\n
2

PROPN _ _ _ _ _ SpacesAfter=\s \n\n

Figure 5.16: FRA05702 – oem0 POS tags

35

sent_id = 821
text = ISA D SI LT Lie A LÉO DGA EE 6 à dr000 ca
1 ISA Ison DET _ Gender=Fem| Number=Sing | Poss=Yes | PronType=Prs

_ _ _ _
2 D D PROPN _ _ _ _ _ _
3 SI s i X _ _ _ _ _ _
4 LT LT PROPN _ _ _ _ _ _
5 Lie Lie PROPN _ _ _ _ _ _
6 A a PROPN _ _ _ _ _ _
7 LÉO Léo PROPN _ _ _ _ _ _
8 DGA DGA PROPN _ _ _ _ _ _
9 EE EE PROPN _ _ _ _ _ _
10 6 6 NUM _ _ _ _ _ _
11 à à ADP _ _ _ _ _ _
12 dr000 dr000 NUM _ _ _ _ _ _
13 ca ca PRON _ PronType=Dem _ _ _

SpacesAfter=\n\n\ s \n\n

newpar
sent_id = 822
text = were − ru ine e s s e 00 100 05 VAN

1 were were NOUN _ Gender=Fem| Number=Sing _ _ _
SpacesAfter=\n

2 − − PUNCT _ _ _ _ _ SpacesAfter=\n
3 ru ine ru ine ADJ _ Gender=Fem| Number=Sing _ _ _

_
4 e s s e e s s e r NOUN _ Gender=Fem| Number=Sing _ _ _

_
5 00 100 05 00 100 05 X _ _ _ _ _

_
6 VAN Van PROPN _ _ _ _ _ SpacesAfter=\n
7

PROPN _ _ _ _ _ SpacesAfter=\s \n\n

Figure 5.17: FRA05702 – oem1 POS tags

36

sent_id = 31
text = Antonin js_ __ _ite_ nej_t8r8 i , byl n&h le h ǐ Dn_otem ,_ pr_ .
1 Antonin Antonin_ :H NOUN NNIS1−−−−−A−−−− Animacy=Inan | Case=Nom| Gender=

Masc | Number=Sing | P o l a r i t y=Pos _ _ _ _
2 js_ js_ NOUN NNFS2−−−−−A−−−− Case=Gen | Gender=Fem| Number=Sing |

P o l a r i t y=Pos _ _ _ _
3 __ __ PUNCT Z:−−−−−−−−−−−−− _ _ _ _ _
4 _ite_ _ite_ NOUN NNFS2−−−−−A−−−− Case=Gen | Gender=Fem| Number=Sing |

P o l a r i t y=Pos _ _ _ _
5 ne j_t8r8 i ne j_t8r8 i NOUN NNFS2−−−−−A−−−− Case=Gen | Gender=Fem|

Number=Sing | P o l a r i t y=Pos _ _ _ SpaceAfter=No
6 , , PUNCT Z:−−−−−−−−−−−−− _ _ _ _

SpacesAfter=\s \ s
7 byl bý t AUX VpYS−−−XR−AA−−− Gender=Masc | Number=Sing | P o l a r i t y=Pos |

Tense=Past | VerbForm=Part | Voice=Act _ _ _ _
8 n n ADJ VsYS−−−XX−AP−−− Gender=Masc | Number=Sing | P o l a r i t y=Pos |

Variant=Short | VerbForm=Part | Voice=Pass _ _ _ SpaceAfter=No
9 & & PUNCT Z:−−−−−−−−−−−−− _ _ _ _

SpaceAfter=No
10 h l e h l e ADV Dg−−−−−−−1A−−−− Degree=Pos | P o l a r i t y=Pos _ _

_ SpacesAfter=\n\ s \ s
11 h ǐ Dn_otem h ǐ Dn_ot NOUN NNIS7−−−−−A−−−− Animacy=Inan | Case=Ins | Gender=

Masc | Number=Sing | P o l a r i t y=Pos _ _ _ _
12 , , PUNCT Z:−−−−−−−−−−−−− _ _ _ _

SpaceAfter=No
13 _ _ PUNCT Z:−−−−−−−−−−−−− _ _ _ _ _
14 pr_ pr_ NOUN NNFS2−−−−−A−−−− Case=Gen | Gender=Fem| Number=Sing |

P o l a r i t y=Pos _ _ _ SpaceAfter=No
15 . . PUNCT Z:−−−−−−−−−−−−− _ _ _ _

SpaceAfter=No

Figure 5.18: GOCR - POS tags

5.6 Character substitutions
The errors discussed in the previous section are mostly insertions and deletions, let
us now have a closer look at substitutions. The algorithm for counting WER gives us
pairs of tokens that are marked as substitutes for each other. We did not distinguish
substitutions according to how “bad” they are, so e. g. completely different words
counted the same as a only one letter changed. In this section, we focus on the minor
character changes. We look at every substitution pair of tokens of equal length (let
us call these substitution pairs), compare them character by character and count the
most common character substitution. We expect that the most common ones will be
similar-looking pairs of characters such as ’0’ and ’O’.

Nevertheless, the assumption that substitution pairs correspond exactly to minor
changes on the character level is a simplification. It can happen that one character
changes to multiple and visa versa within the same token or one or several spaces can
be added or deleted by the OCR process splitting one token into multiple or merging
multiple in one. Such an error can still be interpreted as a minor character change, yet
it most likely produces tokens of different lengths.

Let n be the total number of char substitutions within the substitution pairs and
denote by ns the number of occurrences of substitution s. Analogously to the previously
used evaluation measures, we use the normalized quantity ns

n
for comparison. Since

our languages use different character sets, we count the most common substitution for
each language part separately.

GOCR and Ocrad use the underline symbol ’_’ to mark unrecognized characters
and it is thus no surprise that most of the substitutions with this system are charac-

37

ter → ’_’. Some characters are apparently harder to recognize than others because
their substitutions for an underline appear with different frequency from their occur-
rence frequency in the golden texts.

ELTeC

Languages that use letters with diacritics (Czech, Slovenian, Portuguese and French)
have a lot of character substitutions where the corresponding letters differ only in a
diacritic mark. Generally, omitting diacritics by the OCR process is more frequent
than adding it. (Tables 5.2, 5.3, 5.4, 5.5)

In Tesseract columns in Czech, French and Slovenian character substitutions we
can see many punctuation changes (’ → ’, - → —, „ → », etc.). They look similar and
usually do not change meaning of a text and therefore they can be consider as expected
and not very serious errors. However, in some cases, Tesseract makes a better job and
recognizes the right symbol, unlike the golden transcription. In Figure 5.19 we can
see an example of the image, corresponding golden transcription and OCR output. As
we work with quite old books, they sometimes use (» «) as a quotations marks which
Tesseract correctly recognize but in golden text we find nowadays more common („ “)
instead.

Golden text:
„Bože , to j e nepohoda , co j en v y s t o j í š , Fricku , − mohls rad ě j i zů s t a t i dnes u t e p l ých

kamen . Já bych k vám byla odsko č i l a ve č í r na př á stvu . “

OCR text (oem1, before merging):

»Bože , to j e nepohoda , ; co j en v y s t o j í š ,
Fricku , – mohl ’ s rad ě j i zů s t a t i dnes u te−
pl ých kamen . Já bych k vám byla odsko−
č i l a ve č í r na př á stvu . «

Figure 5.19: Bad quotations marks (CSOO22)

B-MOD (English)

The ratio of the most common substitution is smaller than in the previous languages
(Table 5.6) which can be caused by multiple things. First, there are no letters with
diacritics which are common errors in other languages. Second, there is no problem
with bad punctuation marks in golden texts.

As it was mentioned in the section 2.2, the B-MOD data is of poorer quality than
ELTeC. Therefore OCR text often does not agree with the golden texts at all and it
consists more of a random sequence of characters.

The mode oem0 tends to use punctuation marks as we said in the previous section
and it is probably the reason for a large number of substitution of the type “letters

38

to a punctuation mark” in the first column. In oem1 and oem2 there is an interesting
phenomenon of a frequent usage of letters ’e’ and ’a’ in OCR text. It can be caused
by the fact that there are some of the most common non-white character in golden
texts (with frequencies 0.119 and 0.071 frequency) and therefore probably in training
data too and Tesseract uses them more if the correct letter is unclear.

oem 0 oem 1 oem 2 gocr ocrad
subs. ratio subs. ratio subs. ratio subs. ratio subs. ratio

í → i 0.079 " → “ 0.131 " → “ 0.126 a → _ 0.073 a → _ 0.071
a → n 0.046 – → — 0.126 – → — 0.114 n → _ 0.046 v → _ 0.055
– → — 0.04 ť → t 0.053 ť → t 0.039 k → _ 0.041 h → b 0.038
á → a 0.039 í → i 0.035 í → i 0.035 v → _ 0.039 n → o 0.035
" → “ 0.037 i → í 0.033 i → í 0.03 a → 8 0.038 ě → é 0.032
ť → t 0.036 „ → » 0.025 „ → » 0.024 m → _ 0.038 y → p 0.029
i → í 0.033 . → , 0.021 v → y 0.02 s → _ 0.032 e → _ 0.029
a → & 0.026 “ → « 0.02 “ → « 0.019 á → _ 0.029 s → a 0.028
a → e 0.024 , → ; 0.016 . → , 0.018 í → i 0.021 s → _ 0.028
a → u 0.021 a → á 0.015 a → á 0.016 y → p 0.019 k → _ 0.027

Table 5.2: Most common char substitution – Czech

oem 0 oem 1 oem 2 gocr ocrad
subs. ratio subs. ratio subs. ratio subs. ratio subs. ratio

’ → ’ 0.486 ’ → ’ 0.552 ’ → ’ 0.536 a → _ 0.105 a → _ 0.055
à → a 0.058 – → — 0.056 – → — 0.045 e → _ 0.041 e → c 0.038
– → — 0.035 t → l 0.024 t → l 0.031 n → _ 0.037 d → _ 0.027

→ ‘ 0.033 î → i 0.019 î → i 0.015 s → _ 0.031 e → _ 0.026
- → — 0.024 e → é 0.014 e → é 0.014 d → _ 0.024 t → L 0.021
ê → é 0.011 ê → é 0.01 i → 1 0.014 l → _ 0.023 s → _ 0.02
a → e 0.011 c → e 0.009 c → e 0.012 t → _ 0.022 e → 6 0.016
u → n 0.01 . → , 0.008 ê → è 0.01 é → _ 0.021 l → _ 0.014
R → B 0.009 ê → è 0.008 ê → é 0.008 u → _ 0.018 s → g 0.012
c → e 0.009 i → I 0.008 e → c 0.007 v → _ 0.015 s → a 0.011

Table 5.3: Most common character substitution – French

39

oem 0 oem 1 oem 2 gocr ocrad
subs. ratio subs. ratio subs. ratio subs. ratio subs. ratio

„ → , 0.1 „ → » 0.13 „ → » 0.123 a → _ 0.067 a → _ 0.065
, → . 0.076 “ → " 0.118 “ → " 0.091 e → g 0.037 e → c 0.039
“ → " 0.075 “ → « 0.046 “ → « 0.06 e → _ 0.018 e → _ 0.029
e → o 0.031 „ → , 0.031 „ → , 0.032 e → c 0.017 a → h 0.024
“ → , 0.029 ó → o 0.028 ó → o 0.022 s → g 0.016 s → _ 0.022
o → e 0.023 é → e 0.019 é → č 0.021 s → _ 0.016 k → _ 0.02
ó → o 0.019 é → č 0.019 c → e 0.018 a → 8 0.015 i → l 0.019
. → , 0.016 á → a 0.015 e → č 0.015 n → _ 0.015 č → _ 0.018
e → c 0.015 . → , 0.014 . → , 0.015 k → _ 0.014 v → _ 0.017
á → a 0.011 e → č 0.013 é → e 0.013 č → e 0.013 d → _ 0.016

Table 5.4: Most common character substitution – Slovenian

oem 0 oem 1 oem 2 gocr ocrad
subs. ratio subs. ratio subs. ratio subs. ratio subs. ratio

á → a 0.048 á → a 0.091 á → a 0.076 e → g 0.054 s → _ 0.11
, → . 0.04 é → e 0.052 é → e 0.049 a → _ 0.049 a → _ 0.093
é → e 0.031 í → i 0.046 í → i 0.044 a → 8 0.046 e → c 0.069
c → e 0.029 ó → o 0.032 c → e 0.031 m → _ 0.021 t → l 0.052
e → c 0.025 c → e 0.025 ó → o 0.03 s → _ 0.02 e → _ 0.031
i → í 0.021 ê → e 0.025 ê → e 0.023 e → c 0.02 i → l 0.027
í → i 0.018 . → , 0.023 a → á 0.022 e → _ 0.019 d → _ 0.024
t → l 0.018 a → á 0.022 t → l 0.021 s → g 0.015 ã → á 0.012
. → , 0.017 ú → u 0.021 . → , 0.021 t → l 0.015 m → _ 0.012
a → n 0.016 , → . 0.019 ú → u 0.02 e → Æ 0.015 , → . 0.011

Table 5.5: Most common character substitution – Portuguese

oem 0 oem 1 oem 2 gocr ocrad
subs. ratio subs. ratio subs. ratio subs. ratio subs. ratio

, → . 0.014 o → e 0.012 t → l 0.015 a → _ 0.043 e → _ 0.041
t → l 0.011 o → a 0.01 e → c 0.013 o → _ 0.039 t → _ 0.034
e → m 0.01 s → e 0.01 e → o 0.012 e → _ 0.036 a → _ 0.03
e → c 0.01 n → e 0.009 i → l 0.01 t → _ 0.034 o → _ 0.026
e → . 0.01 e → s 0.009 , → e 0.008 . → _ 0.028 i → _ 0.025
t → . 0.009 , → . 0.009 . → , 0.008 i → _ 0.024 n → _ 0.022
, → - 0.009 . → , 0.008 a → n 0.008 n → _ 0.023 s → _ 0.022
a → . 0.007 t → i 0.007 o → e 0.007 , → _ 0.023 h → _ 0.017
t → m 0.007 s → n 0.007 . → e 0.006 s → _ 0.021 t → l 0.014
o → m 0.007 e → o 0.007 , → . 0.006 h → _ 0.019 r → _ 0.013

Table 5.6: Most common character substitution – English

40

Conclusion
We created our OCRData dataset by adjusting the primary non-OCR dataset ELTeC
for OCR experiments. OCRData does not contain 100 percent perfect transcriptions
but we tried to choose the best compromise between automation and therefore a larger
amount of data and manual checking.

The best-observed system was Tesseract with oem1, other Tesseract modes oem0
and oem2 give a little worse results. Ocrad and GOCR are much worse and not usable
for practical usage.

The assumption that OOV influences the accuracy of OCR processing was not
confirmed. We find out the OCR text often contains much more punctuation marks
than golden data, mostly because of visual noise in images. Lastly, we make statistics of
most common character substitutions. The results are influenced by inaccurate golden
transcriptions but besides that our assumptions were confirmed.

Besides statistical analysis, we wanted to visualizing output and its errors. However
for that we need more visually structured data that we have. Therefore we implement
our WER script to print all editing errors to have at least some option to manually
examine the errors.

41

42

Bibliography
[1] Rafael C. Carrasco. An open-source ocr evaluation tool. In Proceedings of the

First International Conference on Digital Access to Textual Cultural Heritage,
DATeCH ’14, page 179–184, New York, NY, USA, 2014. Association for Com-
puting Machinery. ISBN 9781450325882. doi: 10.1145/2595188.2595221. URL
https://doi.org/10.1145/2595188.2595221.

[2] Michel Généreux and Diego Spano. Nlp challenges in dealing with ocr-ed docu-
ments of derogated quality. In Workshop on Replicability and Reproducibility in
Natural Language Processing: adaptive methods, resources and software at IJCAI,
pages 25–27, 2015.

[3] Karez Hamad and Mehmet Kaya. A detailed analysis of optical character recog-
nition technology. International Journal of Applied Mathematics, Electronics and
Computers, 4:244–244, 12 2016. doi: 10.18100/ijamec.270374.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[5] P. Jain, K. Taneja, and H. Taneja. Which OCR toolset is good and why : A
comparative study. In Kuwait Jurnal of Science, volume 48, 2021. doi: 10.48129/
kjs.v48i2.9589.

[6] Sukhvir Kaur, PS Mann, and Shivani Khurana. Page segmentation in ocr system-a
review. International Journal of Computer Science and Information Technologies,
4(3):420–2, 2013.

[7] Kimmo Tapio Kettunen, Jukka Kervinen, and Jani Mika Olavi Koistinen. Creating
and Using Ground Truth OCR Sample Data for Finnish Historical Newspapers
and Journals. In Proceedings of the Digital Humanities in the Nordic Countries
3rd Conference, volume 2084, pages 162–169, 2018. doi: 10138/312778.

[8] M. Kišš, M. Hradiš, and O. Kodym. Brno Mobile OCR Dataset. International
Conference on Document Analysis and Recognition (ICDAR), September 2019:
1352–1357, 2019. ISSN 1520-5363.

[9] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet
Union, 1966.

[10] Thi-Tuyet-Hai Nguyen, Adam Jatowt, Mickael Coustaty, Nhu-Van Nguyen, and
Antoine Doucet. Deep Statistical Analysis of OCR Errors for Effective Post-OCR
Processing. In 2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL),
pages 29–38, 2019. doi: 10.1109/JCDL.2019.00015.

[11] Carolin Odebrecht, Lou Burnard, Borja Navarro Colorado, and Christof Schöch.
European Literary Text Collection (ELTeC): Release with 10 collections of at least
50 novels., November 2019. URL https://doi.org/10.5281/zenodo.4271467.

43

https://doi.org/10.1145/2595188.2595221
https://doi.org/10.5281/zenodo.4271467

[12] David A Smith and Ryan Cordell. A research agenda for historical and multilin-
gual optical character recognition. NUlab, Northeastern University.@ https://ocr.
northeastern. edu/report, page 36, 2018.

[13] R. Smith. An Overview of the Tesseract OCR Engine. In Ninth International Con-
ference on Document Analysis and Recognition (ICDAR 2007), volume 2, pages
629–633, 2007. doi: 10.1109/ICDAR.2007.4376991.

[14] Milan Straka. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Pro-
ceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 197–207, Brussels, Belgium, October 2018.
Association for Computational Linguistics. doi: 10.18653/v1/K18-2020. URL
https://www.aclweb.org/anthology/K18-2020.

[15] eds. TEI Consortium. TEI P5: Guidelines for Electronic Text Encoding and
Interchange, April 2022. URL https://tei-c.org/release/doc/tei-p5-doc/
en/html/index.html.

[16] Martin Tomaschek. Evaluation of off-the-shelf ocr technologies. Bachelor thesis
Masaryk University, Brno, Czech Republic, 2018.

[17] Rohit Verma and Jahid Ali. A-survey of feature extraction and classification
techniques in ocr systems. International Journal of Computer Applications &
Information Technology, 1(3):1–3, 2012.

[18] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168–173, jan 1974. ISSN 0004-5411. doi: 10.1145/321796.321811.
URL https://doi.org/10.1145/321796.321811.

44

https://www.aclweb.org/anthology/K18-2020
https://tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://doi.org/10.1145/321796.321811

List of Figures
1 Image for OCR . 4

2.1 TEI header example of novel CS0018 8
2.2 Image from B-MOD of easy quality . 9
2.3 Image from ELTeC . 9
2.4 Header in golden image of novel SLV00048 11
2.5 Divided word at the end of line and the corresponding transcription of

golden data . 11
2.6 Pre-processing pipeline . 12

3.1 Description of psm modes from manual page 14
3.2 German quotes in Czech book . 15
3.3 Description of filter function from Ocrad manual 16
3.4 UDPipe example of tokenized and tagged sentence in CoNLL-U format 18

5.1 Experiments . 24
5.2 Example of english.hard image (B-MOD) 24
5.3 OCR image from CS0002 . 25
5.4 Tesseract oem0 – sample output . 25
5.5 Tesseract oem1 – sample output (CS0002) 26
5.6 Ocrad – sample output (CS0002) . 26
5.7 GOCR – sample output (CS0002) . 27
5.8 ACC for each language and system . 27
5.9 WER for each language and system . 28
5.10 Bad cropped line . 29
5.11 Relation between ACC and OOV per token for each system 31
5.12 POS tags . 33
5.13 FRA05702 – noise example . 34
5.14 FRA05702 – oem0 . 34
5.15 FRA05702 – oem1 . 34
5.16 FRA05702 – oem0 POS tags . 35
5.17 FRA05702 – oem1 POS tags . 36
5.18 GOCR - POS tags . 37
5.19 Bad quotations marks (CSOO22) . 38

45

46

List of Tables

2.1 Numbers of novels from ELTeC in OCRData 9
2.2 Size of data from B-MOD in OCRData 10

3.1 Features in CoNLLU format . 18

5.1 Correlation between OOV and ACC . 30
5.2 Most common char substitution – Czech 39
5.3 Most common character substitution – French 39
5.4 Most common character substitution – Slovenian 40
5.5 Most common character substitution – Portuguese 40
5.6 Most common character substitution – English 40

A.1 List of Czech novels . 49
A.2 List of French novels . 49
A.3 List of Portuguese novels . 50
A.4 List of Slovenian novels . 51
A.5 Complete results . 52
A.6 Psm and oem mode (English) . 53

B.1 UDPipe models . 55
B.2 Makefile basic commands . 57
B.3 Possible values of variables for Makefile commands 57
B.4 Links to Tesseract train vocabularies 59

47

48

A. Appendix

A.1 List of novels from ELTeC

Code Author Title
CS0001 Stroupežnická, Marie Bouře aneb oučinky zlého svědomí
CS0002 Janda Cidlinský, Bohumil Jaroslav
CS0003 Žížala-Donovský, Václav Karbaník a rodina jeho
CS0005 Křičenský, Josef Jaroslav Lichvář a pokoutník
CS0006 Pravda, František Krejčí Fortunat
CS0007 Prokop, F. F. Jeden rok z mladého života
CS0008 Formánek-Činoveský, Jan Bitva u Nýrska
CS0009 Formánek-Činoveský, Jan Smířená vina
CS0010 Sabina, Karel Jen tři léta!
CS0011 Švestka, Josef Poslední večer v roce
CS0013 Mollenda, Václav Večer svatojanský
CS0014 Vlček, Václav Paní lichnická
CS0015 Vávra, Jan Ratmír
CS0018 Švestka, Josef Pravý přítel
CS0019 Vítek, Jan Dva nestejní bratři
CS0020 Karas, Matěj Český plavec na severu
CS0021 Unger, Ludvík Mlada, kněžna abatyše
CS0022 Kuchař, Josef Pašerova Anežka
CS0023 Viková-Kunětická, Božena Silhouetty mužů

Table A.1: List of Czech novels

Code Author Title
FRA00801 Competesse Dash Le château de Pinon I
FRA02001 Gilbert Jehan Vers le pôle en aéroplane
FRA03201 Stella Blandy Rouzétou
FRA05702 Auguste Maquet La Maison du baigneur
FRA05801 Pierre Mille Louise et Barnavaux
FRA06001 Hugues Rebell Les Nuits chaudes du Cap français
FRA06101 Jules Sandeau Mademoiselle de la Seiglière
FRA06201 Horace de Viel-Castel Archambaud de Comborn
FRA06401 Claire de Chandeneux Les Ménages militaires
FRA06501 Paul Sescau Gyp Totote

Table A.2: List of French novels

49

Code Author Title
POR0044 Maria Amália Vaz de Car-

valho
Serões no campo

POR0045 Antonio Augusto Teixeira
de Vasconcellos

A ermida de Castromino

POR0046 Francisco Gomes de
Amorim

Os selvagens

POR0047 José da Silva Mendes Leal Infaustas Aventuras de Mestre
Marçal Estouro

POR0049 António Francisco Barata O último cartuxo da Scala Caeli de
Évora: Romance histórico

POR0050 Carlos Pinto de Almeida A conquista de Lisboa
POR0067 J.P. Oliveira Martins Phebus Moniz
POR0071 J. A. d’Oliveira Mascaren-

has
O Trovador da Infanta

POR0073 Raul Azevedo Tríplice Aliança
POR0075 Cosme Velho Miss Kate
POR0078 Eduardo de Noronha O agonizar de uma dinastia
POR0080 D. João da Câmara O Conde de Castel Melhor
POR0081 A.M. da Cunha e Sá Da parte d’el-rei
POR0082 Júlio César Machado A vida em Lisboa
POR0083 Caïel Retalhos de verdade
POR0085 Augusto Sarmento Providência

Table A.3: List of Portuguese novels

50

Code Author Title
SLV00024 Bedenek, Jakob Od pluga do krone
SLV00048 Govekar, Fran V krvi
SLV00058 Kersnik, Janko Ciklamen
SLV00072 Meško, Ksaver Kam plovemo
SLV00090 Štrukelj, Ivan Spletke
SLV00092 Štrukelj, Ivan Zmota in povrat
SLV00094 Bartel, Anton Pomladanski vetrovi
SLV00103 Koder, Anton Zvezdana
SLV00111 Detela, Fran Pegam in Lambergar
SLV00112 Detela, Fran Veliki grof
SLV00126 Jaklič, Fran Ljudska osveta
SLV00132 Maselj Podlimbarski, Fran Gorski potoki
SLV00135 Janežič-Kraljev, Ivan Gospa s pristave
SLV00136 Tavčar, Ivan Času primerna povest iz prihodnjih

dob.
SLV00174 Mencinger, Janez Abadon
SLV00187 Kersnik, Janko Agitator
SLV00194 Kersnik, Janko Na Žerinjah
SLV00216 Jurčič, Josip Rokovnjači

Table A.4: List of Slovenian novels

51

A.2 Results

POR FRA CES SLV eng.e eng.m eng.h
Golden text

tokens 70 179 44 998 66 997 188 802 11 108 12 010 10 118
OOV 5 511 2 096 6 951 44 227 201 306 249

OOV per token 0.079 0.047 0.104 0.234 0.018 0.025 0.025
Tesseract oem0

ACC 0.791 0.852 0.865 0.871 0.296 0.115 0.094
WER 0.331 0.322 0.249 0.215 0.838 0.888 0.906

S 0.188 0.134 0.104 0.113 0.614 0.651 0.323
I 0.122 0.174 0.114 0.085 0.134 0.002 0
D 0.021 0.014 0.031 0.016 0.09 0.234 0.583

Tesseract oem1
ACC 0.918 0.919 0.934 0.937 0.681 0.269 0.094
WER 0.147 0.198 0.157 0.11 0.547 0.793 0.906

S 0.073 0.07 0.042 0.051 0.247 0.616 0.397
I 0.065 0.117 0.091 0.048 0.228 0.062 0
D 0.009 0.011 0.023 0.012 0.073 0.115 0.508

Tesseract oem2
ACC 0.91 0.903 0.929 0.933 0.418 0.174 0.097
WER 0.155 0.222 0.166 0.117 0.733 0.846 0.903

S 0.08 0.085 0.048 0.055 0.495 0.683 0.413
I 0.065 0.125 0.095 0.05 0.151 0.02 0
D 0.01 0.012 0.023 0.012 0.087 0.143 0.49

Ocrad
ACC 0.364 0.26 0.267 0.265 0.126 0.083 0.062
WER 1.224 1.949 1.118 1.755 1.402 1.138 0.943

S 0.623 0.735 0.73 0.733 0.874 0.917 0.935
I 0.589 1.209 0.386 1.02 0.528 0.22 0.004
D 0.013 0.005 0.003 0.001 0 0 0.003

GOCR
ACC 0.302 0.353 0.365 0.297 0.088 0.091 0.102
WER 1.032 1.371 0.909 1.255 0.912 0.909 0.898

S 0.678 0.633 0.54 0.7 0.68 0.378 0.227
I 0.334 0.724 0.273 0.552 0.001 0 0
D 0.02 0.014 0.096 0.003 0.232 0.531 0.671

Table A.5: Complete results

52

Fi
le

an
d

ps
m

ea
sy

de
fa

ul
t

ea
sy

7
ea

sy
13

m
ed

.
de

fa
ul

t
m

ed
.

7
m

ed
.

13
ha

rd
de

fa
ul

t
ha

rd
7

ha
rd

13
G

ol
de

n
te

xt
To

ke
ns

11
09

8
12

01
0

10
11

8
Li

ne
s

10
00

10
00

10
00

Te
ss

er
ac

t
oe

m
0

To
ke

ns
11

08
9

11
38

7
10

53
2

86
82

94
45

10
24

6
35

85
62

26
62

35
Li

ne
s

23
96

96
8

10
00

18
43

88
7

10
00

97
4

81
9

10
00

A
C

C
0.

26
2

0.
07

4
0.

01
3

0.
07

3
0.

04
0.

02
8

0.
03

2
0.

03
6

0.
07

1
W

ER
0.

87
8

1.
00

8
0.

98
9

0.
93

0.
96

2
0.

97
2

0.
96

8
0.

96
4

0.
93

1
S

68
20

97
43

10
37

8
78

17
89

77
99

27
32

73
58

80
59

38
I

14
87

86
4

19
29

13
1

0
0

14
D

10
01

80
87

28
16

20
60

12
42

58
95

33
42

34
64

Te
ss

er
ac

t
oe

m
1

To
ke

ns
12

32
4

10
29

5
10

60
8

10
86

8
94

25
10

37
1

44
36

57
68

67
75

Li
ne

s
23

97
96

8
10

00
18

39
88

6
10

00
96

6
81

9
99

9
A

C
C

0.
66

5
0.

71
8

0.
75

7
0.

23
7

0.
30

7
0.

34
2

0.
04

3
0.

04
9

0.
08

6
W

ER
0.

57
3

0.
29

7
0.

26
4

0.
82

9
0.

70
3

0.
66

9
0.

95
7

0.
95

0.
91

8
S

27
39

25
26

23
60

73
99

57
88

63
11

40
21

52
92

69
20

I
25

31
15

8
22

2
74

9
11

1
12

6
1

0
45

D
81

0
46

6
21

7
13

80
21

77
12

54
51

43
37

77
23

23
Te

ss
er

ac
t

oe
m

2
To

ke
ns

11
31

7
10

92
8

14
12

5
10

00
7

95
11

12
84

2
45

19
60

71
76

78
Li

ne
s

23
97

96
8

10
00

18
43

88
7

10
00

97
4

81
9

10
00

A
C

C
0.

39
0.

62
1

0.
13

1
0.

13
6

0.
25

1
0.

07
4

0.
03

6
0.

01
3

0.
06

9
W

ER
0.

76
8

0.
46

1.
20

3
0.

88
5

0.
76

5
1.

04
6

0.
96

4
0.

99
2

0.
93

3
S

54
99

34
78

91
88

82
00

64
30

10
60

3
41

75
94

62
73

53
I

16
78

86
4

35
43

24
3

18
9

13
84

1
45

20
D

96
4

53
9

21
17

21
21

63
41

49
61

32
20

67

Table A.6: Psm and oem mode (English)

53

54

B. Electronic attachments
The main directory attached to the text contains a directory src with pre-processing
and evaluation scripts described closer in section B.2 and data directory with input
images, golden texts and results of all experiments. A detailed description of the files
in it can be found in section B.4.

B.1 Requirements
• Tesseract version 4.1.1 with Czech, English, Portuguese, Slovenian and French

language mode. We need models which support both old legacy and new LSTM
engine1.

• GOCR version 0.52

• GNU Ocrad version 0.27

• UDPipe version 2.0 saved in the main directory, language models in udpipemodel
directory, which is again saved in the main directory. Placement can be changed
in Makefile. All used models for our experiments we can see in Table B.1

Language UDPipe model
Czech czech-cac-ud-2.3-181115.udpipe

Portuguese portuguese-bosque-ud-2.3-181115.udpipe
Slovenian slovenian-ssj-ud-2.3-181115.udpipe

French french-gsd-ud-2.3-181115.udpipe
English english-ewt-ud-2.3-181115.udpipe

Table B.1: UDPipe models

B.2 Developer documentation
For pre-processing, experiments and visualisation of the results, we use external pro-
grams (mostly OCR systems) and several original scripts (all run on Linux). The
whole process includes many steps and we want to have the option to do them inde-
pendently, therefore we use a larger number of simple scripts and for their execution
we use Makefile.

Most of the scripts are written in Python3, two in Bash. Then we use external tools
described in chapter 3 and command-line program pdftopnm for converting images.

List of the scripts and their descriptions

• wer.py Computes WER (including the number substitutions, insertions and dele-
tions) and ACC. Also prints a list of all errors with the nearest context. WER is
computed by the Wagner-Fisher algorithm. ([18])

1https://github.com/tesseract-ocr/tessdata

55

https://github.com/tesseract-ocr/tessdata

• extract_links.py Extracts link to scanned image from ELTeC XML file header.

• merge_word.py Goes through all file and merge divided word at the end of
the line.

• xmltotext.py Extracts all text content from a body of ELTeC XML file.

• char_sub.py Counts character substitution from complete list of errors.

• count_tag.py Counts distribution of POS of all input file and draw a graph.

• oov.py Prints all out-of-vocabulary words and their number.

• statistics.py Reads results and averaged them over language. Makes graph of
the relation between WER and systems, ACC and systems and OOV per token
and ACC for each system. Computes correlation between OOV per token and
ACC for each system.

• print_result.sh Prints WER, ACC, OOV, OOV per token and number of in-
sertions, deletions and substitutions for the input file.

• tifftopnmpages.sh Converts multi-page TIFF files to individual PNM images.

B.3 Usage

For executing OCR systems and scripts described in the previous section we use Make-
file. Most of the command requires external variables to specify language, system, code
of the file and other parameters. Table B.2 shows a list of all possible commands and
their required variables, Table B.3 shows possible values for each variable.

For easier usage, most of the command has also variant which ends with _lang
which executes commands for all novels of one language without passing individual
novels’ codes. For example, following command merges divided words at end of the
lines in Tesseract oem0 output for all Czech novels.

make merge_lang lang=ces system=oem0

56

command variables description
xmltotext lang, code execute xmltotext.py
pdftotiff20 lang, code, bot_even,

bot_odd, up_even,
up_odd, start

convert PDF to TIFF using pdftoppm
tool, take 20 pages from page start,
crop image by bot_even, bot_odd,
top_even, top_odd pixels on bottom
and top of even and odd pages

tifftopnm lang, code execute tifftopnmpages.sh
gocr lang, code execute GOCR
ocrad lang, code execute Ocrad
tesseract_all lang, code execute all three Tesseract modes
tesseract_psm lang, code, psm execute all three Tesseract modes with

non-default psm mode
merge lang, code, system execute merge.py
nomerge lang, code, system if no merge is needed, copy files to right

directory
tokenize lang, code, system execute UDPipe tokenization for OCR

output and golden text
tags_lang lang, system execute UDPipe tokenization for OCR

outputs and golden texts of one lan-
guage

tags_count - execute count_tag.py for all languages
wer lang, code, system execute wer.py
oov lang, code execute oov.py for golden text
char_sub_lang lang, system execute char_sub.py for all files of one

language
print lang, code, [psm] execute print_result.sh
print_all lang execute print_result.sh for all files of

one language
graphs - execute statistics.py for all languages

Table B.2: Makefile basic commands

variable possible values
lang ces, fra, por, slv, eng.easy, eng.medium, eng.hard
code for each language codes from data/{lang}/{lang}-

code.txt
system oem0, oem1, oem2, ocrad, gocr
psm number of psm mode (0 – 13), we use 7 and 13
bot_even,
bot_odd,
up_even,
up_odd

number of pixels

start page number

Table B.3: Possible values of variables for Makefile commands

57

B.4 Data
The data directory contains a directory for each of the four languages from ELTeC
and three directories for B-MOD for every difficulty setting. Graphs of results are by
default saved here too.

Content of the data directory

• ces/

• eng.easy/

• eng.medium/

• eng.hard/

• fra/

• por/

• slv/

• graphs images

• eng-{system}.chars files

Every language directory contains directories with source files and detailed results
of experiments. Every tested system has its own set of directories, {system} means
oem0, oem1, oem2, gocr or ocrad. There are only a few differences between ELTeC and
B-MOD directories, hence we listed them together. In the B-MOD context novel means
difficulty set (english.easy, english.medium, english.hard) and page means a one-line
image.

Note: For reducing the size of the attachment, gold.pnm directories are empty
because they can be easily generate by
make t i f f topnm_lang lang={lang }

Content of a language directory

• gold.xml/ Original ELTeC file in XML (only ELTeC directories)

• gold.txt/ Golden text extracted from ELTeC XML and manually shorted, for
B-MOD lines transcriptions

• gold.token/ Tokenized golden text, one token on one line.

• gold.conllu/ Tokenized and tagged golden text in CoNLL-U format

• gold.oov/ All out of vocabulary words and their number

• gold.pdf/ Full scanned novel in PDF (only ELTeC)

• gold.tiff/ 20-pages TIFF file of each novel, manually cropped (ELTeC), 1000-
pages TIFF file for every difficulty set (B-MOD)

58

• gold.pnm/ Directories for every novel, each PNM images for every page, con-
verted from TIFF files

• ocr.{system}/ OCR output

• ocr.{system}/.txt merged OCR output for ELTeC, for B-MOD same files as
in ocr.{system}

• ocr.{system}.token/ Tokenized OCR output

• ocr.{system}.conllu/ Tokenized and tagged OCR output in CoNLL-U format

• ocr.{system}.result/ For every novel complete list of editing errors and their
numbers, WER and ACC

• ocr.{system}.chars/ Character substitutions and their number

• {lang}.wordlist Tesseract vocabulary B.4

• {lang}-results.csv Complete results (WER, ACC, number of editing errors,
OOV) for each novel

• {lang}-code.txt List of all novels’ codes

• {system}-all.chars List of character substitutions of language for the system.

https//github.com/tesseract-ocr/langdata/blob/master/ces/ces.wordlist
https//github.com/tesseract-ocr/langdata/blob/master/slv/slv.wordlist
https//github.com/tesseract-ocr/langdata/blob/master/por/por.wordlist
https//github.com/tesseract-ocr/langdata/blob/master/fra/fra.wordlist
https//github.com/tesseract-ocr/langdata/blob/master/eng/eng.wordlist

Table B.4: Links to Tesseract train vocabularies

59

https //github.com/tesseract-ocr/langdata/blob/master/ces/ces.wordlist
https //github.com/tesseract-ocr/langdata/blob/master/slv/slv.wordlist
https //github.com/tesseract-ocr/langdata/blob/master/por/por.wordlist
https //github.com/tesseract-ocr/langdata/blob/master/fra/fra.wordlist
https //github.com/tesseract-ocr/langdata/blob/master/eng/eng.wordlist

60

	Introduction
	Related work
	OCRData
	ELTeC subset
	B-MOD subset
	Pre-processing of ELTeC data
	Golden texts pre-processing
	OCR images and OCR output

	Tools
	Tesseract
	Setting and using

	GOCR
	GNU Ocrad
	UDPipe
	Usage

	Evaluation measures
	Word error rate and Token accuracy
	Out of vocabulary

	Experiments and results
	General observations
	Systems comparison
	Comparing Tesseract psm modes
	OOV
	POS tags
	Character substitutions

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendix
	List of novels from ELTeC
	Results

	Electronic attachments
	Requirements
	Developer documentation
	Usage
	Data

