
BACHELOR THESIS

Jan Gocník

Truffle based .NET IL interpreter and
compiler: run C# on Java Virtual Machine

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Štěpán Šindelář

Study programme: Computer Science (B1801)

Study branch: IPSS (1801R048)

Prague 2022

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Dedication. I want to thank everyone who had the patience with me throughout
my very long bachelor studies and didn’t stop believing I’ll finish it one day.

I wouldn’t know of this topic without Adam Hornáček, who connected me
with his colleagues. Special thanks go to my supervisor, Štěpán Šindelář, who
always provided guidance when I needed it and didn’t give up on me when I
missed a deadline (or two). This work also wouldn’t exist without everyone at
my employer who allowed me to take my time.

Finally, I wouldn’t make it without tremendous support from my family and
from Antonín and Lucie. Thank you.

ii

Title: Truffle based .NET IL interpreter and compiler: run C# on Java Virtual
Machine

Author: Jan Gocník

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Štěpán Šindelář, Department of Distributed and Dependable
Systems

Abstract: Traditionally, to achieve high performance for executing dynamic lan-
guages, a hand-crafted Just-In-Time (JIT) compiler was necessary. Such compilers
come with several disadvantages, including security issues arising from bugs
in manual speculative optimizations. Our work focuses on the issue that these
state-of-the-art projects can be prohibitively complicated for students, academics
and hobbyists interested in programming language design and implementation.
A novel project, the Truffle Language Implementation Framework, uses partial
evaluation to convert interpreter-style code into an optimizing compiler. Authors
propose that the reduced complexity for implementing languages Truffle offers
will allow more languages to benefit from high performance compilation. To
validate this claim, we implement BACIL, a Truffle-based runtime for .NET (CLI).
While built in an academic setting with inherently limited resources, its peak
performance achieves under 10 times slowdown compared to .NET’s official run-
time. We release the implementation as open-source with the hope it can further
promote experimentation with programming languages.

Keywords: partial evaluation Graal Truffle CIL JVM

iii

Contents

Introduction 3

1 Context 5
1.1 .NET/CLI . 5
1.2 Truffle and Graal . 6
1.3 Previous work . 8
1.4 Bytecode interpreter vs rebuilding an AST 8

2 Theory 10
2.1 Partial Evaluation . 10
2.2 Tiered compilation . 11
2.3 Guards and de-optimizations . 12
2.4 Escape analysis and virtualization 12
2.5 The MERGE_EXPLODE strategy 14

3 CLI Component parser 19
3.1 Analysis . 19

3.1.1 Design goals . 19
3.1.2 Definition of important CLI component structures . . . 20
3.1.3 Complexities of the CLI component format 20

3.2 Parser implementation details 24
3.2.1 Metadata tables parser 24
3.2.2 CLITableRow and CLITablePtr 24
3.2.3 Sequence references . 25

3.3 Conclusion . 26

4 Runtime 27
4.1 Analysis . 27

4.1.1 Nodes . 27
4.1.2 Dynamicity of references 30
4.1.3 Standard libraries . 34

1

4.1.4 BACILHelpers . 34
4.1.5 Values and locations . 34
4.1.6 CompilationFinal annotation 38

4.2 Debugging performance issues 38
4.2.1 Case study . 39

5 Results 43
5.1 Completeness . 43

5.1.1 Library methods . 44
5.2 Performance benchmarks . 45

5.2.1 Harness . 45
5.2.2 Hagmüller’s work . 46

5.3 .NET runtime JIT benchmarks 50
5.3.1 Warmup concerns . 52
5.3.2 Interpreting the results 52

Conclusion 54
5.3.3 Future work . 55

Bibliography 56

A Compiling and running BACIL 57
A.1 Building . 57
A.2 Running . 57
A.3 Full example of running pre-compiled BACIL on amd64 Linux . 59

B Opcode implementation status 60

2

Introduction

Problem
Traditionally, when implementing a programming language, achieving high per-
formance required a significant development effort and resulted in complicated
codebases.

While writing an interpreter for even a fairly complicated language is achiev-
able for a single person interested in the topic (as proved by the abundance of
language implementation theses available), creating state-of-the-art optimizing
compilers usually took several years spent by large teams of developers at the
largest IT companies. Not only was kick-starting such a project unthinkable for
an individual, but even introducing changes to an existing project is far from
simple.

For example, as of 2022, Google’s state-of-the-art JavaScript engine V8 has
two different JIT compilers and its own internal bytecode. An experiment of
adding a single new bytecode instruction to the project can mean several days
of just orientating in the codebase. Google provides a step-by-step tutorial for
adding a new WebAssembly opcode to v81, which admits that a lot of platform-
dependant work is necessary to get a proper implementation: “The steps required
for other architectures are similar: add TurboFan machine operators, use the
platform-dependent files for instruction selection, scheduling, code generation,
assembler.”

As cybersecurity becomes a more important topic, another factor to consider
is that creating manual optimizations in JITs is prone to bugs which can have
grave security implications. Speculated assumptions of JIT compilers introduce
whole new bug families. As saelo [1] says (emphasis added, footnotes stripped):

JavaScript JIT compilers are commonly implemented in C++ and
as such are subject to the usual list of memory- and type-safety
violations. These are not specific to JIT compilers and will thus not
be discussed further. Instead, the focus will be put on bugs in the

1https://v8.dev/docs/webassembly-opcode

3

https://v8.dev/docs/webassembly-opcode

compiler which lead to incorrect machine code generation which can
then be exploited to cause memory corruption.

Besides bugs in the lowering phases which often result in rather
classic vulnerabilities like integer overflows in the generated machine
code, many interesting bugs come from the various optimizations.
There have been bugs in bounds-check elimination, escape analysis,
register allocation, and others. Each optimization pass tends to yield
its own kind of vulnerabilities.

Implementing a JIT that is not only performant but also secure is proving to
be difficult even for state-of-the-art projects.

These factors resulted in academic and hobby experimentation with program-
ming languages being mostly stuck with low-performance simple interpreters.
Kwame, Martey, and Chris [2] conclude that

Interpreters are very good development tools since it [sic] can be eas-
ily edited, and are therefore ideal for beginners in programming and
software development. However they are not good for professional
developers due to the slow execution nature of the interpreted code.

In recent years, frameworks appeared that promise to deliver performance
comparable to state-of-the-art JIT compilers while requiring only a simple
interpreter-style implementation. Examples of such frameworks are RPython2

and the Truffle language implementation framework3. Würthinger et al. [3]
concluded that Truffle’s performance “is competitive with production systems
even when they have been heavily optimized for the one language they support”.

As the performance aspects of language implementations made by experts
(sometimes even designers of these frameworks themselves) are well understood,
in this work we want to focus on testing another claim of Würthinger et al. [3]:
the “reduced complexity for implementing languages in our system [that] will
enable more languages to benefit from optimizing compilers”.

Is it feasible to achieve the promised performance benefits with an academic
interpreter-style implementation of a language runtime? In order to answer this
question, we implement BACIL, a runtime for .NET.

2https://rpython.readthedocs.io/
3https://www.graalvm.org/graalvm-as-a-platform/

language-implementation-framework/

4

https://rpython.readthedocs.io/
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/

Chapter 1

Context

1.1 .NET/CLI
We chose .NET as a platform to implement, mostly because:

• Languages targeting .NET consistently rank high on popularity surveys.

• We have experience with .NET internals and the internally used bytecode.

• No comparable truffle-based implementations were already published for
.NET.

While .NET is a well-recognized name, it is a marketing/brand name whose
meaning changed through history. Our implementation follows the ECMA-335
Common Language Infrastructure (CLI) standard[4] which does not mention the
.NET brand at all. We will use the names defined in the standard throughout this
work. We include all references to specific implementations/brand names only
to aid understanding with no ambition to be accurate, mainly for .NET vs .NET
Core vs .NET Framework vs .NET Standard nomenclature.

“The Common Language Infrastructure (CLI) provides a specification for
executable code and the execution environment (the Virtual Execution System)
in which it runs.”[4] .NET languages (like C#) are compiled into “managed code”1

— instead of targeting native processor instruction sets, they target the CLI’s
execution environment.

Using the definitions of the standard, BACIL is actually a Virtual Execution
System (VES):

1They can also be ahead-of-time compiled to native binaries, but that is out of scope for this
work.

5

The VES is responsible for loading and running programs written for
the CLI. It provides the services needed to execute managed code and
data, using the metadata to connect separately generated modules
together at runtime (late binding).[4]

.NET Framework’s VES is called the Common Language Runtime (CLR) and in

.NET Core, it is known as CoreCLR. “To a large extent, the purpose of the VES is
to provide the support required to execute the [Common Intermediate Language
(CIL)] instruction set”[4].

The CIL, historically also called Microsoft Intermediate Language (MSIL)
or simply Intermediate Language (IL), is the instruction set used by the CLI.
Interpreting (a subset of) this instruction set was the primary goal of this work.

Another large part of the framework is the standard libraries — the base class
library, which has to be supported by all implementations of the CLI, comprises
2370 members over 207 classes. As the focus of the work was on the core inter-
preter, we largely ignore this part of the standard and delegate to other standard
library implementations where possible.

1.2 Truffle and Graal
To implement a high-performance CLI runtime, we employ the Truffle language
implementation framework2 (henceforth “Truffle”) and the GraalVM Compiler3.
These two components are tightly coupled together and we will mostly be refer-
ring to them interchangeably, as even official sources provide conflicting infor-
mation on the nomenclature.

The Graal Compiler is a general high-performance just-in-time compiler for
Java bytecode that is itself written in Java. It is state-of-the-art in optimization
algorithms — according to official documentation4, “the compiler in GraalVM
Enterprise includes 62 optimization phases, of which 27 are patented”.

Truffle is a framework for implementing languages that will be compiled
by Graal. From the outside, it behaves like a compiler: its job is to take guest
language code and convert it to the VM’s language, preserving as much intrinsic
metadata as possible. Unlike a hand-crafted compiler, Truffle takes an interpreter
of the guest language as its input and uses “Partial evaluation” (see Section 2.1)
to do the compilation, performing a so-called “first Futamura projection”.

2https://www.graalvm.org/graalvm-as-a-platform/
language-implementation-framework/

3https://www.graalvm.org/22.1/docs/introduction
4https://www.graalvm.org/22.1/reference-manual/java/compiler/

#compiler-advantages

6

https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/22.1/docs/introduction
https://www.graalvm.org/22.1/reference-manual/java/compiler/#compiler-advantages
https://www.graalvm.org/22.1/reference-manual/java/compiler/#compiler-advantages

Guest language

return a+1;

Hand-crafted compiler

compile_add(arg1, arg2)
{
 compile(arg1)
 compile(arg2)
 emit(OPCODE_ADD)
}

compile_varread(varname)
{
 emit(OPCODE_LOADVAR, var_index(varname))
}

compile_return(arg)
{
 compile(arg)
 emit(OPCODE_RET)
}

VM language

OPCODE_LOADVAR var1
OPCODE_LOADCONST 1
OPCODE_ADD
OPCODE_RET

Truffle

Interpreter

eval_add(arg1, arg2)
{
 return eval(arg1)+eval(arg2)
}

eval_varread(varname)
{
 return vars[varname]
}

Figure 1.1 A flowchart comparing a traditional hand-crafted compiler (upper path)
and Truffle compilation based on an interpreter (lower path)

7

Truffle also provides several primitives that the language implementation can
use to guide the partial evaluation process, allowing for better results.

We want to mention that GraalVM is distributed in two editions, Community
and Enterprise. Supposedly, the Enterprise edition provides even higher perfor-
mance than the Community one. As we want to avoid all potential licensing
issues, we only used the Community edition and cannot comment on Enterprise
performance at all.

1.3 Previous work
Truffle was originally described as “a novel approach to implementing AST inter-
preters” by Würthinger et al. [5] and was not directly applicable to our bytecode
interpreter problem.

Rigger et al. [6] implemented Sulong, an LLVM IR (bytecode) runtime, and
showed “how a hybrid bytecode/AST interpreter can be implemented in Truffle”.
This is already very similar to our current work, however, it implemented an
unique approach of converting unstructured control flow into AST nodes.

In Truffle version 0.15 (2016)5, the ExplodeLoop.LoopExplosionKind enu-
meration was implemented, providing the MERGE_EXPLODE strategy discussed in
Section 2.5.

In GraalVM version 21.0 (2021)6, an “experimental Java Virtual Machine
implementation based on a Truffle interpreter” was introduced. This project is
very similar to our work, using the same approaches for implementing a different
language.

While Hagmüller [7] also implemented the CIL runtime, they chose a com-
pletely different approach, building an AST from the text representation of IL
code. Also, as they admit in the conclusion, they “didn’t focus on performance
optimization of the different instructions”. The same implementation approach
was chosen by truffleclr7.

1.4 Bytecode interpreter vs rebuilding an AST
There are two main ways to approach the implementation of a bytecode runtime
on Truffle. While Hagmüller [7] chose to create a full-grown AST from the

5https://github.com/oracle/graal/blob/master/truffle/CHANGELOG.md#
version-015

6https://www.graalvm.org/release-notes/21_0/
7https://github.com/alex4o/truffleclr

8

https://github.com/oracle/graal/blob/master/truffle/CHANGELOG.md#version-015
https://github.com/oracle/graal/blob/master/truffle/CHANGELOG.md#version-015
https://www.graalvm.org/release-notes/21_0/
https://github.com/alex4o/truffleclr

bytecode, Java on Truffle8 was implemented as a more traditional fetch-decode-
execute loop.

To skip the problem of parsing the bytecode, Hagmüller [7] uses a textual dis-
assembly of the bytecode, and performs a more traditional lexical and syntactical
analysis on it. For obvious reasons, parsing text like that is inherently slower
than consuming tightly-packed bytecode. We want to avoid this preformance
penalty, therefore we want to consume the bytecode itself.

While building a similar AST from the bytecode itself can be a valid approach,
we feel that it is obfuscating the source structure for Truffle — the original source
is a flat bytecode and not an AST. While Truffle’s support for bytecode was
historically lacking compared to AST patterns, we feel this is a problem that
should be alleviated within Truffle and not by synthesizing arbitrary structures
atop the original ones. Java on Truffle being released as a traditional bytecode
interpreter shows that this pattern will be supported and therefore we see no
reason to add complexity and obfuscation by synthesizing ASTs from the bytecode.

8https://www.graalvm.org/22.0/reference-manual/java-on-truffle/

9

https://www.graalvm.org/22.0/reference-manual/java-on-truffle/

Chapter 2

Theory

2.1 Partial Evaluation
The most important technique allowing Truffle/Graal to reach high performance
is Partial Evaluation. It is theoretically known for decades, the foundations
being laid by Futamura [8], but only advances in computer performance make it
practically usable.

The high-level view of partial evaluation offered by Futamura is “specializing
a general program based upon its operating environment into a more efficient
program”.

Consider a program (or its chunk) as a mapping of inputs into outputs. We can
divide those inputs into two sets — dynamic inputs and static inputs — denoting
the program as

𝑝𝑟𝑜𝑔 ∶ 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 × 𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 → 𝑂

The process of partial evaluation is then transforming 𝑝𝑟𝑜𝑔, 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 by incorpo-
rating the static input into the code itself, resulting in

𝑝𝑟𝑜𝑔∗ ∶ 𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 → 𝑂

We will call 𝑝𝑟𝑜𝑔∗ a specialization of 𝑝𝑟𝑜𝑔 for 𝐼𝑠𝑡𝑎𝑡𝑖𝑐, sometimes it is also
referred to as a residual program, intermediate program, or a projection of 𝑝𝑟𝑜𝑔
at 𝐼𝑠𝑡𝑎𝑡𝑖𝑐.

For a simple example, let us consider 𝑓 (𝑠, 𝑑) = 𝑠(𝑠(𝑠+1)+𝑑). The specialization
of 𝑓 for 𝑠 = 2 is then 𝑓2(𝑑) = 2(6+𝑑), effectively pre-computing one multiplication.
An even more interesting specialization is 𝑓0(𝑑) = 0, turning the entire program
into a constant expression.

The separation between 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 and 𝐼𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is not rigorous — it is valid both to
create a separate specialization for every single input combination or to consider
all input dynamic and therefore specialize for an empty set. However, these

10

extremes do not provide any performance benefits. Partial evaluation is therefore
usually guided by heuristics that analyze when a specific input value is used often
enough to warrant a specialization.

Futamura [8] formulates so-called Futamura projections. Let us define a
generic specializer as

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟 ∶ 𝑝𝑟𝑜𝑔 × 𝐼𝑠𝑡𝑎𝑡𝑖𝑐 → 𝑝𝑟𝑜𝑔∗

The first Futamura projection is as follows: Let us define an interpreter as a
program taking two inputs, the source code and the “inner” inputs for the code.

𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟 ∶ 𝑠𝑜𝑢𝑟𝑐𝑒 × 𝑖𝑛𝑝𝑢𝑡𝑠 → 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

Then the result of 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟(𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟 , 𝑠𝑜𝑢𝑟𝑐𝑒) = 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 is a fully realized
program for the specific source code as if the source code was “compiled” in the
traditional sense of the word.

The second Futamura projection observes that

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟(𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟 , 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟) = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟

The resulting tool is a tailored specializer that can transform source code into
executables.

The third Futamura projection observes that

𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟(𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟 , 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑟) = 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟-𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟

The resulting program takes an 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑟 and returns a 𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟.
In this work, we implement an interpreter and use Truffle to perform the first

Futamura projection.

2.2 Tiered compilation
Because more aggressive compilation optimizations result in the compilation
taking more time, it is a common practice to use tiered compilation. As a specific
code gets called more often, it becomes worth it to recompile it again and better
optimize it.

In Truffle/Graal, there is always a fallback of interpreting the code with no
partial evaluation and compilation. This fallback is used both before the first
compilation happens and when a de-optimization happens (see below).

One reason behind always starting in interpreter before compiling is that
the interpreted invocations can already provide observations about the code,

11

for example branch probability, if such observations are implemented. These
observations can be used so that the first compilations are already of high quality.

For our project, the difference between compiled tiers is not too interesting,
as they usually have a relatively small performance difference between them.
The biggest gap occurs between the interpreted code and the first compiled tier,
where the execution time can differ by more than an order of magnitude.

2.3 Guards and de-optimizations
For practical partial evaluation, it is valuable to perform speculative optimizations
— compiling the code expecting invariants that can be broken during runtime. One
common example of such speculation is optimizations of virtual calls: assuming
that the method will always be called on objects of a specific type allows replacing
the virtual call with a static one and enables a more aggressive specialization.

Also, it is often useful to exclude some exceptional code paths from the
compilation — for example, if dividing by zero should cause an immediate crash of
the application with a message being printed out, there is no use in spending time
compiling and optimizing the error-message printing code, as it will be called no
more than once.

To achieve that, Graal uses guards — statements that, when reached by the
runtime, result in de-optimization. De-optimization is a process of transferring
evaluation from the compiled variant of the method back to the interpreter at the
precise point where it was interrupted and throwing away the already compiled
variant, as its assumptions no longer hold.

For an example, see a pseudo-code of what a single-cache virtual call imple-
mentation could look like in Listing 1. When partially evaluated with 𝑖𝑛𝑣𝑎𝑟 𝑖𝑎𝑛𝑡 ==
𝑡𝑟𝑢𝑒, the resulting flow will look like in Figure 2.1. As long as the virtual call
is effectively static at runtime, we only spend time compiling the actual target
function (which can be specialized for the environment) and during invocation
only pay the price of a simple equality check. Once the comparison fails, this
version of the compiled method is thrown away, and a generic one is created, as
shown in Figure 2.2.

2.4 Escape analysis and virtualization
All Java objects traditionally have to be allocated on the heap, as the VM has
no concept of stack-allocated structures. However, allocating data on the heap
is slow. The solution to this issue is escape analysis: if an object never leaves
the current compilation unit, it can be virtualized. A virtualized object is never

12

Listing 1 Single-cache virtual call (pseudocode).

bool cached = false;
bool invariant = true;
type expectedType = null;
funcptr cache = null;

exec(obj, method)
{

if(!cached)
{

cached = true;
expectedType = obj.Type;
cache = obj.Type.ResolveVirtualFunc(method)

}

if (invariant)
{

if(obj.type==expectedType)
{

return cache.call()
} else {

Deoptimize()
invariant = false

}
}
obj.Type.ResolveVirtualFunc(method).call()

}

Noobj.type==expectedType?

Start

Guard

Inlined code of
cached function

Yes

Figure 2.1 A flowchart of a single-cache virtual call (Listing 1) when 𝑖𝑛𝑣𝑎𝑟 𝑖𝑎𝑛𝑡 == 𝑡𝑟𝑢𝑒,
with the call target fully inlined.

13

Start

Inlined virtual method
resolution code

Call the method

Figure 2.2 A flowchart of a single-cache virtual call (Listing 1) after it was called with
multiple different objects so the optimized version in Figure 2.1 was invalidated.

actually allocated but is decomposed to its individual fields, which are then subject
to partial evaluation and other optimization methods.

2.5 The MERGE_EXPLODE strategy
One of the key elements that allows for implementing partial evaluation friendly
bytecode interpreters is the MERGE_EXPLODE loop explosion strategy. To quote
the documentation1 (emphasis added):

like ExplodeLoop.LoopExplosionKind.FULL_EXPLODE, but copies
of the loop body that have the exact same state (all local variables
have the same value) are merged. This reduces the number of copies
necessary, but can introduce loops again. This kind is useful for
bytecode interpreter loops.

To fully appreciate the importance of this strategy, we have to point out the
following fact of CLI’s design from I.12.3.2.1 The evaluation stack[4] (emphasis
added):

The type state of the stack (the stack depth and types of each element
on the stack) at any given point in a program shall be identical for
all possible control flow paths. For example, a program that loops an

1https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/
ExplodeLoop.LoopExplosionKind.html#MERGE_EXPLODE

14

https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/ExplodeLoop.LoopExplosionKind.html#MERGE_EXPLODE
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/nodes/ExplodeLoop.LoopExplosionKind.html#MERGE_EXPLODE

unknown number of times and pushes a new element on the stack at
each iteration would be prohibited.

This design choice is not a coincidence, as it is vital also for hand-crafting
performant JIT compilers. Regarding MERGE_EXPLODE, it means that all copies of
the interpreter’s inner loop that have the same bytecode offset will also have the
same evaluation stack depth and type layout.

Thanks to this if we have, for example, a push immediate 4 instruction some-
where in the code, it can be translated to a simple statement like stack[7] =
4, as in every execution of this instruction the stack depth has to be the same.
This enables more optimizations, as this constant can be propagated to the next
instruction reading stack[7].

To explain the inner working on a more involved example, we manually apply
this strategy to

for(int i = 0; i < 100; i++) {a = a*a; }; return a;
We begin with a psuedo bytecode of this function in Listing 2 and a theoretical

interpreter in Listing 3. Thanks to the strategy, only one state per bytecode offset
has to be created. Knowing exactly the stack depth, we can partially evaluate
the stack positions to constants. This is reflected in Listing 4. As the stack does
not leave this method, it will be completely virtualized. Since the stack array is
always accessed using constant indices, we can apply aggressive optimization
and optimize out the array, reaching the final state in Listing 5.

Even though we started with a big interpreter loop, by merging the instances
having the same bytecode offset, the interpreter loop disappears and the original
control flow of the method reappears from the flat bytecode.

15

Listing 2 Pseudo bytecode of a function used to demonstrate the MERGE_EXPLODE
strategy.

; i=0
0: OPCODE_LOADCONST 0
1: OPCODE_STOREVAR i

; i < 100
2: OPCODE_LOADVAR i
3: OPCODE_LOADCONST 100
4: OPCODE_JMPIFBEQ @14

; a = a*a
5: OPCODE_LOADVAR a
6: OPCODE_LOADVAR a
7: OPCODE_MULTIPLY
8: OPCODE_STOREVAR a

; i++
9: OPCODE_LOADVAR i
10: OPCODE_LOADCONST 1
11: OPCODE_ADD
12: OPCODE_STOREVAR i

; loop
13: OPCODE_JMP @2

; return a
14: OPCODE_LOADVAR a
15: OPCODE_RET

16

Listing 3 A theoretical interpreter we will apply MERGE_EXPLODE to (pseudocode).

pc = 0 //bytecode offset
top = 0 //stack top

while(True)
opcode = getOpcode(pc)
switch opcode:

case OPCODE_LOADCONST:
stack[top++] = getImmediate(pc+1)
break

case OPCODE_STOREVAR:
vars[getVar(pc+1)] = stack[top--]
break

case OPCODE_LOADVAR:
stack[top++] = vars[getVar(pc+1)]
break

case OPCODE_JMPIFBEQ:
top -= 2
if(stack[top+1]>=stack[top+2]):

pc = getImmediate(pc+1)
continue

break
case OPCODE_MULTIPLY:

top -= 1
stack[top] = stack[top]*stack[top+1]
break

case OPCODE_ADD:
top -= 1
stack[top] = stack[top]+stack[top+1]
break

case OPCODE_JMP:
pc = getImmediate(pc+1)
continue

case OPCODE_RET:
return stack[top]

pc += lenghtOf(opcode)

17

Listing 4 The interpreter from Listing 3 after being specialized for Listing 2 and the
MERGE_EXPLODE strategy being applied.

; i=0
0: stack[0] = 0
1: vars[i] = stack[0]

; i < 100
2: stack[0] = vars[i]
3: stack[1] = 100
4: if(stack[0]>=stack[1]) goto @14

; a = a*a
5: stack[0] = vars[a]
6: stack[1] = vars[a]
7: stack[0] = stack[0] * stack[1]
8: vars[a] = stack[0]

; i++
9: stack[0] = vars[i]
10: stack[1] = 1
11: stack[0] = stack[0] + stack[1]
12: vars[i] = stack[0]

; loop
13: goto @2

; return a
14: stack[0] = vars[a]
15: return stack[0]

Listing 5 The code from Listing 4 after virtualizing the stack array and aggresive
optimizations.

vars[i] = 0;

condition:
if(vars[i]>=100) goto end
vars[a] = vars[a]*vars[a]
vars[i] = vars[i]+1
goto condition

end:
return vars[a]

18

Chapter 3

CLI Component parser

Before being able to execute any code, it is necessary to read the code from the
assemblies. Prior to starting the work, we expected some open source parsers
for this format to exist for various languages, including Java. However, the only
alternative stand-alone parser (not a component of a full CLI implementation)
we found was dnlib1 targeting .NET framework itself. If even for such a popular
runtime there are no suitable parsers implemented in Java, we feel that the parser
implementation step is an important part to consider in the whole “Building an
experimental runtime” picture.

3.1 Analysis

3.1.1 Design goals
Before we design and implement the parser, we consider what additional con-
straints have to be put on a parser in order for it to be partial-evaluation friendly.
For partial-evaluation friendliness, the key metric is how trivial can every piece of
code get after partial evaluation. This metric is most important for a sequence of
instructions executed frequently, often referred to as a “hot path”. While our goal
was for the parser to never be called on a hot path, for some scenarios, including
reflection, it would be necessary.

There are two possible extremes for parser design: “fully lazy” where every
query for the file causes it to be parsed from the start, and “fully preloaded” where
all the data from the file is immediately fully parsed into hierarchies of objects
and structures. Practical parsers usually choose a compromise between those
two approaches, mainly because the extremes lead to extremely slow runtime or
boot-up, respectively.

1https://github.com/0xd4d/dnlib

19

https://github.com/0xd4d/dnlib

Driven by the goal of partial-evaluation friendliness, we design the initial
parsing such that:

• trivial queries, e.g. queries for a metadata item at a constant index, will
only result in a compilation constant,

• simple queries, e.g. queries for a metadata item at a variable index, will get
compiled to a simple offset calculation (multiply and add) and a read from
a (compilation constant) byte array,

• all further parsing necessary for more complex queries (creating objects
representing metadata concepts etc.) will be lazy and invokers should cache
the results themselves.

3.1.2 Definition of important CLI component structures
Most of the metadata are stored in streams, with headers outside of the streams
describing their locations. There are two basic types of streams: heaps and tables.

Heaps contain a sequence of bytes, the meaning of which changes based on
the specific heap. The specification defines 4 heaps:

• #Strings containing values of identifier strings.

• #US containing “user strings” — values of strings used by the program code
itself during runtime.

• #Blob containing variable-length metadata as binary blobs.

• #GUID containing GUIDs.

The tables are stored in a stream called #~. This is the root of all metadata
information. The specification describes 38 tables. Cell values can be a constant
or an index. Indices can point to heaps (the value is a byte offset), another table
(the value is a row number), or one of multiple tables (the value is a “coded index”
specifying both the table and row number).

For an example of references between these structures, Table 3.1 describes a
sample row in the metadata table TypeDef, which contains definitions of types.

3.1.3 Complexities of the CLI component format
Subjectively, we feel the format used by CLI components is not designed well with
regard to supporting different parsing approaches and platforms. To substantiate
this claim, we want to highlight several factors that complicate parsing the
components and had to be considered in the design.

20

Column Raw value Comment

Flags 0x100000 Constant bitmask specifying TypeAttributes.
TypeName 0x01A9 An offset into the #String heap, where the name of the

type can be found. In this example, Program was written
there.

TypeNamespace 0x01DE An offset into the #String heap, where the namespace of
the type can be found. In this example, SampleProject
was written there.

Extends 0x0031 A coded index into TypeDef, TypeRef, or TypeSpec. In
this example an index to TypeRef table row 12, which is a
reference to System.Object.

FieldList 0x0002 An index into the Field table where the fields for this
type start. As in this case the type has no fields, the index
points past the end of the Field table, which has only 1
row.

MethodList 0x0002 An index into the Method table where the methods for this
type start. As this type has multiple methods, row 2 of
Method contains information about Main, other methods
follow.

Table 3.1 Description of a sample row from the TypeDef metadata table.

PE Wrapping

As stated in II.25 File format extensions to PE[4]:

The file format for CLI components is a strict extension of the current
Portable Executable (PE) File Format. [...] The PE format frequently
uses the term RVA (Relative Virtual Address). An RVA is the address
of an item once loaded into memory [...].

The RVA of an item will almost always differ from its position within
the file on disk. To compute the file position of an item with RVA 𝑟,
search all the sections in the PE file to find the section with RVA 𝑠,
length 𝑙 and file position 𝑝 in which the RVA lies, ie 𝑠 ≤ 𝑟 < 𝑠 + 𝑙. The
file position of the item is then given by 𝑝 + (𝑟 − 𝑠).

On Windows and other theoretical platforms where PE parsing is a service
provided by the operating system, this allows for the component to be loaded into
virtual memory as any other executable file. RVA addresses can then be resolved
transparently by the CPU’s and operating system’s virtual memory mappings.
For all other platforms, this adds one more level of indirection that needs to be
handled.

21

Offset Size Field Description

6 1 HeapSizes Bit vector of heap sizes
8 8 Valid Bit vectors of present tables
24 4*n Rows Array of n 4-byte unsigned integers indicating the number

of rows for each present table

Table 3.2 Selected fields from #~ stream header (shortened, for full structure see
II.24.2.6 #~ stream)[4]

As our parser is platform-agnostic and written in Java, we cannot use any of
those services. Therefore, we need to manually perform the sections search and
RVA calculations as described in the standard.

Metadata tables format

The biggest complexity we encountered during parser design was the format of
metadata tables. These tables contain most of the metadata information of the
CLI component.

The data of the tables is stored in the #~ stream. This stream consists of a
header followed by a simple concatenation of values of all rows of all tables, with
no additional metadata in between.

The header itself contains only a few fields relevant for locating data in the
tables, as listed in table 3.2.

The first issue is that no information about table length in bytes is present.
This results in every single parser implementing the format having to implement
the format for every single metadata table, as skipping a table requires knowing
the byte length of its rows. This completely prohibits an iterative development
cycle that adds support for only the necessary tables. For example, to implement
a utility that only outputs names of all the types available in the component,
while only data from the TypeDef table is necessary, all 38 tables defined by
ECMA-335[4] must be implemented. The BACIL implementation described here
only accesses 11 of these tables.

The second complication comes in II.22 Metadata logical format: tables and
II.24.2.6 #~ stream[4]:

Each entry in each column of each table is either a constant or an
index.

[...]

Each index is either 2 or 4 bytes wide. The index points into the
same or another table, or into one of the four heaps. The size of each
index column in a table is only made 4 bytes if it needs to be for that

22

particular module. So, if a particular column indexes a table, or tables,
whose highest row number fits in a 2-byte value, the indexer column
need only be 2 bytes wide. Conversely, for tables containing 64K or
more rows, an indexer of that table will be 4 bytes wide.

[...]

If 𝑒 is a coded index that points into table 𝑡𝑖 out of 𝑛 possible tables
𝑡0, … 𝑡𝑛−1, then it is stored as 𝑒 << (log 𝑛)|𝑡𝑎𝑔{𝑡0, … 𝑡𝑛−1}[𝑡𝑖] using 2
bytes if the maximum number of rows of tables 𝑡0, … 𝑡𝑛−1, is less than
2(16–(log 𝑛)), and using 4 bytes otherwise.

While the decision that the cell can be either 2 or 4 bytes saves storage size, it
means that table row length is not a constant and depends on the row count of
other tables. For example, a TypeDef table row can be from 14 up to 24 bytes in
size.

This means that the parser cannot workaround the first issue by expecting
the table row length be constant.

If we were to improve the format to remove these issues, we would add
information about the row length of present tables into the header. Even if each
size was stored as a full byte (which all tables defined in the standard fit into), in
the worst case this would increase each binary’s size by 38 bytes and allow for
skipping tables without dealing with their internal row format.

Extensive normalisation

File format design is often a compromise between several engineering goals: as
described by Syreeni [9], “we face a multitude of engineering goals, some of
which are mutually incompatible. [...] Usually tension develops between size
and speed, generality and encoding simplicity, and consistence and software
complexity”. One of the design concepts that apply is normalisation, a concept
that each information should be stored only once, removing all redundancy. While
such a goal can be beneficiary for other uses of the file format (like writing and
modifying), from the point of view of a lightly preloading consumer, it results in
non-ideal structures.

• In parent-child relationships, only one node has a direct reference to the
other one. Traversing the edge backwards involves enumerating all the
nodes and searching for one with the appropriate reference. If such queries
are performance sensitive, the invoker has to cache the answers.

• When referencing a sequence of items in a table, only information about
the beginning of the sequence is directly stored. The end of the sequence is

23

Listing 6 A specification of the TypeDef table (see sample row in Table 3.1) to be
processed by a parser code generator.

TypeDef:02
-Flags:c4
-TypeName:hString
-TypeNamespace:hString
-Extends:iTypeDef|TypeRef|TypeSpec
-FieldList:iField
-MethodList:iMethodDef

either the last row of the table or the start of the next sequence, as specified
by the next row, whichever comes first.

While the complexity this adds usually amounts to a single “if” statement,
it crosses the border between cell value semantics and metadata logical
format internals — either the parser has to understand the semantics of
cells as “sequence indices” to encapsulate resolving the sequence length,
or the invoker has to understand the file format’s internal detail of row
numbers.

3.2 Parser implementation details

3.2.1 Metadata tables parser
As mentioned in Section 3.1.3, parsing any metadata tables requires implementing
the internal row format for all tables specified in ECMA-335[4]. Implementing all
38 tables manually would require a sizeable amount of work and make modifica-
tions to the parser complicated. Therefore, this problem is a nice match for code
generation.

We created a simplified text-file containing information about all the columns
in all tables that is also human readable. Listing 6 shows an example specification
of the TypeDef table.

For simplicity, we write the code generator in plain Java, outputting Java
source files. The result is a CLITableClassesGenerator class.

3.2.2 CLITableRow and CLITablePtr
We want the implementation of accessing metadata table rows to be as safe
and simple-to-use as possible while keeping in mind the design goals for partial

24

Listing 7 Code pattern for enumeration of all MethodDef rows, here printing the
method’s name.

CLIComponent component = ...;
for (CLIMethodDefTableRow methodDefTableRow : component.

↪ getTableHeads().getMethodDefTableHead()) {
System.out.println(methodDefTableRow.getName().read(

↪ component.getStringHeap()));
}

Listing 8 Code pattern for safe resolving of table references, here resolving a type’s
first field.

CLIComponent component = ...;
CLITypeDefTableRow typeDef = ...;

CLIFieldTypeRow firstField = component.getTableHeads().
↪ getFieldTableHead().skip(typeDef.getFieldList());

evaluation. The two operations we expect to be most common are enumerating a
single table and resolving indices that reference other tables.

To support enumeration we make CLITableRow implement Iterable, allow-
ing for a safe for-each access, completely hiding the internal table details. See
Listing 7 for an example of printing all methods defined in a component.

For resolving indices, we made the tables return a CLITablePtr wrapped
index. Such a pointer can then be directly provided to CLITableRow’s skip
method, which validates that the table ID is correct. The importance of this
wrapping is increased by the following fact mentioned in II.22 Metadata logical
format: tables[4]: “Indexes to tables begin at 1, so index 1 means the first row in
any given metadata table. (An index value of zero denotes that it does not index
a row at all; that is, it behaves like a null reference.)”

Exposing the indices as raw integers would allow for off-by-one bugs to
become prevalent. Providing a wrapped variant that behaves as expected by
default helps combat these issues. For an example of safe index resolving, see
Listing 8.

3.2.3 Sequence references
As mentioned in Section 3.1.3, sequences of items in a table are stored in a way
that requires either implementing column semantics in the parser or the invoker
knowing logical table internals. As we generate our table parsers from a definition

25

Listing 9 Implementation of item sequence semantics by the invoker, which has to
resolve the sequence end based on the next row. This example comes from the CLIType
class.

if(type.hasNext())
{

methodsEnd = type.next().getMethodList().getRowNo();
fieldRowsEnd = type.next().getFieldList().getRowNo();

} else {
methodsEnd = component.getTablesHeader().getRowCount(

↪ CLITableConstants.CLI_TABLE_METHOD_DEF)+1;
fieldRowsEnd = component.getTablesHeader().getRowCount(

↪ CLITableConstants.CLI_TABLE_FIELD)+1;
}

file, including sequence semantics would require expanding both the generator
and the definition file. Instead, we leave the responsibility on the invoker, resulting
in code in Listing 9.

3.3 Conclusion
In the end, design and implementation of the parser took a non-trivial portion
of the development time. Even though straightforward code-size indicators are
controversial, they demonstrate the substantiality of the parser, being about 30%
of the whole project. Excluding generated code it comprises 119594 bytes over
3609 lines of code, while the rest of the language package comprises 266010 bytes
over 7534 lines.

26

Chapter 4

Runtime

4.1 Analysis
This chapter focuses on the overall design of our interpreter and the approaches
required to achieve acceptable performance.

4.1.1 Nodes
Bytecode nodes

The smallest compilation unit of Truffle is a RootNode. This nomenclature comes
from Truffle’s original AST-based design, where nodes represented actual nodes
in the syntax tree. The supported pattern was that the nodes were small, typically
representing a single operation — for example, an AddNode that has two child
nodes and adds them together.

However, this design is not applicable to our bytecode interpreter. Inside one
method, the bytecode does not have any tree structure we could replicate with the
nodes. The most straightforward solution is to have one node per one bytecode
chunk, which in the CLI subset we implement corresponds to one method. We
call such a node the BytecodeNode.

Having big nodes with several instructions has its tradeoffs, mainly the fact
that without additional work (described below) once a node starts executing in a
specific performance tier (see Section 2.2), it has to finish running in that specific
tier. Truffle always starts executing code immediately in interpreted mode and
only later considers compiling it. This can lead to poor results.

For example, let us consider the code in Listing 10 running in a one-node-per-
method implementation. The runtime will immediately enter the Main node and
start executing it in interpreter mode. As the entire execution time is spent in this
one node, the runtime will never get a chance to run a single compiled statement.

27

Listing 10 Example of long-running code that will be compiled to a single node,
bringing performance issues.

static int Main()
{

int result = 0;
for (int i = 0; i < 20000; i++)
{

for (int j = 0; j < 20000; j++)
{

result += i * j;
}

}
return result;

}

This significantly affects the performance (see Section 5.3.1 for measurements of
the slowdown in interpreted mode).

To solve this issue, a feature called On-Stack Replacement (OSR) is a part of
Truffle1:

During execution, Truffle will schedule “hot” call targets for com-
pilation. Once a target is compiled, later invocations of the target
can execute the compiled version. However, an ongoing execution
of a call target will not benefit from this compilation, since it cannot
transfer execution to the compiled code. This means that a long-
running target can get “stuck” in the interpreter, harming warmup
performance.

On-stack replacement (OSR) is a technique used in Truffle to “break
out” of the interpreter, transferring execution from interpreted to
compiled code. Truffle supports OSR for both AST interpreters (i.e.,
ASTs with LoopNodes) and bytecode interpreters (i.e., nodes with
dispatch loops). In either case, Truffle uses heuristics to detect when
a long-running loop is being interpreted and can perform OSR to
speed up execution.

While current Truffle versions support OSR for both AST interpreters and
bytecode interpreters, OSR support for bytecode interpreters was only introduced
in Graal 21.3 released in October 2021, which means it was not available during
our design phase.

1https://www.graalvm.org/22.1/graalvm-as-a-platform/
language-implementation-framework/OnStackReplacement/

28

https://www.graalvm.org/22.1/graalvm-as-a-platform/language-implementation-framework/OnStackReplacement/
https://www.graalvm.org/22.1/graalvm-as-a-platform/language-implementation-framework/OnStackReplacement/

Listing 11 A small C program containing a loop. Rigger et al. [6]

void processRequests () {
int i = 0;
do {

processPacket();
i++;

} while (i < 10000);
}

Listing 12 LLVM IR of the C program. Rigger et al. [6]

define void @processRequests () #0 {
; (basic block 0)

br label %1

; <label >:1 (basic block 1)
%i.0 = phi i32 [0, %0], [%2, %1]
call void @processPacket()
%2 = add nsw i32 %i.0, 1
%3 = icmp slt i32 %2 , 10000
br i1 %3, label %1, label %4

; <label >:4 (basic block 2)
ret void

}

Rigger et al. [6] described a method of separating the bytecode chunk into
“basic blocks”, each containing only instructions that do not affect the control
flow. This method allowed them to take advantage of the OSR support for ASTs
in what is actually a bytecode interpreter. A “block dispatcher” controls the flow
between these basic blocks, selecting the adequate basic block to continue the
execution with. This approach is summarized in Listings 11 and 12 and figure 4.1
from their work.

Our design is not compatible with the bytecode interpreter OSR — to support
it, the whole execution state has to be stored in Truffle’s frames, while we only
use frames to pass/receive arguments and store the rest of the state in plain
variables. However, moving this state into the frame should be the only major
step necessary to support OSR. Because of the significance of OSR, if we were
designing the runtime again, we would definitely focus on supporting it.

We also did not implement the “basic blocks” pattern as we decided against
synthesizing any AST structures, as discussed in Section 1.4.

29

Figure 4.1 Basic block dispatch node for the LLVM IR. Rigger et al. [6]

Instruction nodes

Some instructions require values that can be pre-calculated. A typical example
in CIL are instructions that have a token as its argument — a token is a pointer
into metadata tables and requires calling into the parser to resolve. We want to
perform this resolution only once and cache it for future executions.

For that, we will use a process of nodeization2 —we create a node representing
the instruction with the data already pre-computed and patch the bytecode,
replacing the original instruction with a BACIL-specific TRUFFLE_NODE opcode.
When the interpreter hits this instruction, it calls the respective child node.

4.1.2 Dynamicity of references
One of the additional things to consider when implementing a partial-evaluation
friendly interpreter is dynamicity of references, whereby dynamicity we mean
how often the reference changes its state. This metric is important because,
effectively, the dynamicity of a chain of references will be equal to the most
dynamic of the references. As a result, what would traditionally be considered
bad design patterns is sometimes necessary to divide the chain into more direct
references, in order to make each object reachable with the lowest dynamicity
possible. Figures 4.2 and 4.3 show the refactoring in a generic case.

For a case study from the BACIL implementation, let us consider the design
decisions behind LocationDescriptor and LocationHolder. Each location
has a type and a value. While the value itself (and the type of the value) changes
based on the running code, the type of the location never changes. This is a
perfect example of two pieces of information with different dynamicity.

Even from regular development patterns, it makes sense to divide location
values and location types into separate classes — store the location type infor-
mation in the metadata as a “prototype” for later creating the value storage

2called “quickening” by Espresso, the Java bytecode interpreter for GraalVM

30

Class A Class BPartial-evaluated
code

Reference with high dynamicity
Reference with low dynamicity

Figure 4.2 Generic scenario 1: Reference chain results in class B being accessible with
high dynamicity and therefore not being effectively partially evaluated.

Class A

Class B

Partial-evaluated
code

Reference with high dynamicity
Reference with low dynamicity

Figure 4.3 Generic scenario 2: Class B is accessible with a low dynamicity reference,
resulting in more effective partial evaluation.

31

Listing 13 A naive implementation of LocationsHolder resulting in non-optimal
dynamicity chain.

public class LocationHolder {
private final LocationDescriptor descriptor;

private final Object[] refs;
private final long[] primitives;

public LocationsHolder(LocationDescriptor descriptor) {
this.descriptor = descriptor;
refs = new Object[descriptor.getRefCount()];
primitives = new long[descriptor.getPrimitiveCount()];

}

public Object locationToObject(int locationIndex)
{

return descriptor.locationToObject(this, locationIndex);
}

}

//Accessing a field of an object
Object fieldValue = ((StaticObject)object).getLocationsHolder().

↪ locationToObject(0);

based on it. In BACIL, LocationDescriptor contains the type information and
LocationHolder contains the actual values.

It is always necessary to know the location type to work with the values,
mainly to differentiate between ValueTypes and references. The rule of encap-
sulation would dictate that the consumer does not need to know that there is
a LocationDescriptor tied to the LocationHolder, as it is an internal detail.
Such an implementation would look something like Listing 13. However, us-
ing such code results in a non-optimal dynamicity chain and ineffective partial
evaluation, as illustrated in Figure 4.4.

In order to make this more effective, we have to hold a separate reference
to a LocationDescriptor. As every location-accessing instruction (in the im-
plemented subset of CLI) will always use the same LocationDescriptor, this
results in effective partial evaluation. The new implementation is in Listing 14
and the dynamicity is illustrated in Figure 4.5.

32

LocationHolderField accessing
code

Reference with high dynamicity
Reference with low dynamicity

LocationDescriptorStaticObject

Figure 4.4 Case study cenario 1: As a LocationHolder is unique per object
instance/method invocation/ etc., the reference to it is highly dynamic. The
LocationDescriptor is only unique per object type/method definiton, but can only be
reached through a dynamic chain.

Listing 14 A partial-evaluation friendly implementation of LocationsHolder.

public class LocationHolder {

private final Object[] refs;
private final long[] primitives;

public LocationsHolder(int refCount , int primitiveCount) {
refs = new Object[refCount];
primitives = new long[primitiveCount];

}
}

//Accessing a field of an object
//objectType for an instruction never changes!
Object fieldValue = objectType.getLocationsDescriptor().

↪ locationToObject(((StaticObject)object).getLocationsHolder
↪ (), 0);

LocationHolder

Field accessing
code

Reference with high dynamicity
Reference with low dynamicity

NamedType

StaticObject

LocationDescriptor

Figure 4.5 Case study cenario 2: While the LocationHolder remains accessible from
a highly dynamic chain, the LocationDescriptor is accessible through a static chain.
This means the bottom chain will be partially evaluated.

33

4.1.3 Standard libraries
Our goal was to implement as little of the standard library as possible. When
starting with the implementation, we hoped parts implemented in CIL and native
methods would be well decoupled, so that we could reuse all CIL parts. For the
native parts, we would call .NET’s native implementation if possible and only
implement them in BACIL if not. Unfortunately, the coupling is tight, as the
documentation3 admits: “CoreLib has several unique properties, many of which
are due to its tight coupling to the CLR.”

The biggest offender are strings. To achieve high performance, .NET’s runtime
expects the native view (StringObject) and managed view (System.String)
of strings to be identical, so the coupling is extremely tight. To support string
operations in BACIL, we would either have to reimplement the operations or
implement the strict marshalling that is expected by .NET’s native code.

Truffle’s official mechanism of calling into native code is called the Native
Function Interface (NFI). Unfortunately, at the time of designing BACIL, it was
missing key features, for example support of custom ABIs (calling conventions).
While the limitations can be bypassed (for example by using custom trampolines
provided by BACIL), the necessary marshalling could lead to the native calls
imposing a significant performance hit.

In the end, our experiments with calling native .NET runtime code using
NFI showed it would significantly complicate the whole codebase with uncertain
results, and we decided against it. Unfortunately, we will have to re-implement
all necessary native code ourselves in BACIL.

4.1.4 BACILHelpers
To provide additional BACIL APIs, we need to expose our own “native” BACIL
functionality to C# code. For that, we create an assembly called BACILHelpers.
This assembly has two implementations: a proper .NET variant (written in C#) for
running on .NET, and a “virtual” assembly leading to BACIL’s internal methods
that BACIL silently injects.

Listings 15 and 16 show an example of howwe can implement a BACILConsole.
Write method in the C# variant and in BACIL, respectively.

4.1.5 Values and locations
As specified in ECMA-335[4], values can have the following “homes”:

3https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/botr/
corelib.md

34

https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/botr/corelib.md
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/botr/corelib.md

Listing 15 An implementation of the BACILConsole helper class in C#.

public class BACILConsole
{

public static void Write(Object value)
{

Console.Write(value);
}

}

Listing 16 An implementation of the BACILConsole helper class in BACIL itself.

public class BACILHelpersComponent extends BACILComponent {
public Type findLocalType(String namespace , String name) {

if(name.equals("BACILConsole"))
return new BACILConsoleType();

}
}

public class BACILConsoleType extends Type {
public BACILMethod getMemberMethod(String name, MethodDefSig

↪ signature) {
if(name.equals("Write"))

return new BACILConsoleWriteMethod();
}

}

public class BACILConsoleWriteMethod extends JavaMethod {
public Object execute(VirtualFrame frame) {

CompilerDirectives.transferToInterpreter();
System.out.print(frame.getArguments()[0]);
return null;

}
}

35

I.12.1.6.1 Homes for values
The home of a data value is where it is stored for possible reuse. The
CLI directly supports the following home locations:

• An incoming argument
• A local variable of a method

• An instance field of an object or value type

• A static field of a class, interface, or module

• An array element

[...]

In addition to homes, built-in values can exist in two additional ways
(i.e., without homes):

1. as constant values (typically embedded in the CIL instruction
stream using ldc.* instructions)

2. as an intermediate value on the evaluation stack, when returned
by a method or CIL instruction.

As Truffle requires Java objects to be passed on the node boundary, BACIL
also has an additional state where the value is a Java object.

In .NET, all locations are typed (I.8.6.1.2 Location signatures[4]). While evalua-
tion stack slots are also typed, they use a different and more coarse type system.

To avoid boxing and unboxing numbers (integers and floating-point numbers),
we cannot just store all values in an Object[]. Therefore, it is necessary to
always have separate storages for primitives, best implemented by a long[].

Locations usually exist in multiples (local variables, arguments, fields, etc.)
and are always statically typed — one location will always have one type through
its lifetime and only ever contain values type-compatible with its type. We divide
the location into two parts: a descriptor and a holder.

The holder is actually extremely simple: it only has an Object[] refs and
a long[] primitives that are big enough to hold all the values required by the
descriptor. The holder knows nothing of the types or identities of values inside.
This represents one instance of a value storage.

The descriptor represents the “shape” of the locations, knowing the type of
each location and its position in the holder.

One feature of ECMA-335 is so-called user-defined ValueTypes, structures
that have the semantics of a primitive. The idea is that two integers (x,y) and a
Point structure (with x,y fields) will look exactly the same on the stack, instead of
the latter turning into an object reference. Our implementation will follow that

36

Listing 17 Prototypes of state transition operations implemented by Type.

public void stackToLocation(LocationsHolder holder, int
↪ primitiveOffset , int refOffset , Object ref, long primitive)

public void locationToStack(LocationsHolder holder, int
↪ primitiveOffset , int refOffset , Object[] refs, long[]
↪ primitives , int slot)

public Object stackToObject(Object ref, long primitive)
public void objectToStack(Object[] refs, long[] primitives , int

↪ slot, Object value)
public Object locationToObject(LocationsHolder holder, int

↪ primitiveOffset , int refOffset)
public void objectToLocation(LocationsHolder holder, int

↪ primitiveOffset , int refOffset , Object value)

example, as we will “flatten” the structure, reserving space in the ValueType’s
parent for each of its fields.

The evaluation stack is a bit more complicated: while at each point in
time the type of the evaluation stack field is known, it changes through-
out execution. Each stack slot therefore has to exist as both a reference
slot and a primitive slot and we will have to keep track of which one to
use. To achieve that, we by default expect the value to be in the refs slot.
In case it is not, we repurpose the refs slot to hold a “marker” object de-
scribing the stack-type of the value in the primitive slot. An object will be
stored in (ref, primitive) as (obj, undefined), a native int 42 will be
stored as a (EvaluationStackPrimitiveMarker.EVALUATION_STACK_INT,
(long)42).

State transitions

Keeping in mind the dynamicity of references (see Section 4.1.2) and the fact
that all locations are typed (and the type of a location never changes), it follows
to make the Type objects responsible for implementing the state transitions.
There are 6 possible transitions between objects, evaluation stack and locations
implemented as methods of Type, as declared in listing 17. The Type class will
provide the default transitions for reference types, while subclasses of this class
can provide special variants for primitives. A LocationDescriptor can then
resolve the (compilation constant) location type and use it to transition the value,
for example like in Listing 18.

One factor to keep in mind is that to follow the standard, the state transitions
are coupled with widening or narrowing operations. For example, according to
I.12.1 Supported data types[4] “Short numeric values (int8, int16, unsigned int8,

37

Listing 18 Example implementation of transitioning a value from a location to the
evaluation stack, as implemented in LocationDescriptor.

public void locationToStack(LocationsHolder holder, int
↪ locationIndex , Object[] refs, long[] primitives , int slot)

{
locationTypes[locationIndex].locationToStack(holder, offsets

↪ [locationIndex], refs, primitives , slot);
}

and unsigned int16) are widened when loaded and narrowed when stored”. We
also need to perform our own housekeeping because we store all primitives in a
flat long[]. Each class representing a primitive implements its own widening
and narrowing as necessary.

4.1.6 CompilationFinal annotation
As explained in Section 2.1, one of the key decisions is separating inputs into
two sets — dynamic inputs and static inputs. Java’s final keyword is therefore
integral for achieving performance, as it guarantees that the variable will be
considered a static input.

There is an issue that, for arrays, marking them as final only means that
the reference to the array does not change, while the contents of the array can
change freely. The solution is the CompilerDirectives.CompilationFinal
annotation, which can mark arrays such that the compiler considers reads with
a constant index as constants. Unlike the built-in final keyword, the compiler
cannot actually enforce that no writes happen to the array. It is the responsi-
bility of the implementation to always invalidate the current compilation when
modifying a CompilationFinal array.

4.2 Debugging performance issues
To achieve high performance, the ability to debug performance issues is necessary.
Unfortunately, traditional methods (like sampling) do not provide the required
insight for outputs of Graal compilation — during partial evaluation, the code gets
transformed too much for these methods to work properly. A single instruction
can result from a partial evaluation of several methods and, as such, cannot be
attributed properly to one.

Internally, the Graal compiler represents the code during compilation in
graphs. The various optimization phases are then transformations on these

38

graphs. Graal allows to dump the current graph in various stages of the compila-
tion pipeline by using the graal.Dump VM argument. These graphs are key to
understanding results of the partial evaluation, mainly which code was eliminated
(by constant folding) and which remained. For our analysis, the “After TruffleTier”
phase is the most important, as it reflects the graph state after partial evaluation.

The official tool for analyzing these graphs is the Ideal Graph Visualizer4.
However, getting it requires “accepting the Oracle Technology Network Developer
License”, which contains strict limitations for allowed use. We do not consider
the tool suitable for general use, as using it during development may limit the
future uses of the project.

Fortunately, an MIT licensed open source project Seafoam5 provides all the
necessary functionality. Compilation graphs in this work were all generated by
Seafoam.

The most common issue we hit when analyzing those graphs was that
a piece of code we expected to be eliminated by partial evaluation was still
included in the compilation — we designed it to be optimized out, but from
the view of the compiler it could not be. To debug these issues, we used the
CompilerAsserts.partialEvaluationConstant method. It allows us to ex-
press our belief that something should be a partial evaluation constant to the
compiler and get an error message with detailed information about the compiler’s
view of the expression when it is not.

4.2.1 Case study
For a case study, let us look into optimizing a specific parser call. As specified in
section 3.1.1, we designed the parser so that trivial queries, e.g. queries for a meta-
data item at a constant index, would only result in a compilation constant. Is that
the case? See Figure 4.6 for the compilation graph (before optimizations6) after
TruffleTier for a function returning method.getComponent().getTableHeads()↪
.getTypeDefTableHead().skip(1).getFlags() (henceforth referred to as
“the case study parser query”) — it definitely contains more than just a constant.
Using CompilerAsserts.partialEvaluationConstant (see Listing 19) and
checking the errors7 leads us to an error in the second expression. From this we
can discern that our implementation of skip is at fault.

Our skip method contains just one statement, return createNew(tables,
cursor+count*getLength(), rowIndex+count);. We begin by validating

4https://www.graalvm.org/22.1/tools/igv/
5https://github.com/Shopify/seafoam
6commit 42e5cb2e6e34956aca75be0c4c71ac7eb0f4bea8
7enabled with --engine.CompilationFailureAction=Print

39

https://www.graalvm.org/22.1/tools/igv/
https://github.com/Shopify/seafoam

0 Start

765 Alloc

259 End

260 LoopBegin

261 ϕ

264 If

267 LoopExit

287 LoopExit

290 LoopEnd

292 LoopEnd

265 <

x

270 LoadIndexed

index

291 +

x

266 Begin

T F

?

295 End

271 If

273 ==

x

282 LoadIndexed

index

274 Begin

T

275 Begin

F

?

284 If

285 <

x

286 Begin

T F

?

297 End

from 290from 292

293 Merge

296 ϕ

777 Alloc

x [0 - 1]

320 End

321 LoopBegin

322 ϕ

325 If

328 LoopExit

350 LoopEnd

326 <

x

331 LoadIndexed

index

349 +

x

327 Begin

TF

?

361 End

332 If

333 ==

x

341 LoadIndexed

index

334 Begin

T

335 Begin

F

?

342 If

343 <

x

T F

?

from 348 from 350

764 VirtualArray byte[3]

virtualObjects

766 AllocatedObject

virtualObject

commit

array

776 VirtualArray byte[1]

virtualObjects

778 AllocatedObject

virtualObject

commit

array

5 C(0)

from 259

57 C(3)

y

272 C(-1)

y

283 C(Object[Instance<int[]>])

array

257 C(16384)

y

22 C(1)

y

22 C(1)

from 295

5 C(0)

from 297

5 C(0)

y

5 C(0)

from 320

22 C(1)

y

272 C(-1)

y

283 C(Object[Instance<int[]>])

array

318 C(65536)

y

22 C(1)

y

56 C(2)

values

22 C(1)

values

245 C(27)

values

58 C(4)

values

300 ==

756 Conditional

?

345 LoopExit

348 LoopEnd

344 Begin

363 End

362 Merge

365 ϕ782 Alloc

364 +

from 363 [16 - 18]

421 +

x [14 - 18]

422 ϕ

from 418 [14 - 18]

377 End

378 LoopBegin

379 ϕ

382 If

385 LoopExit

402 LoopExit

405 LoopEnd

407 LoopEnd

383 <

x

388 LoadIndexed

index

406 +

x

384 Begin

TF

?

418 End

389 If

390 ==

x

398 LoadIndexed

index

391 Begin

T

392 Begin

F

?

399 If

400 <

x

401 Begin

T F

?

420 End

from 405from 407

419 Merge

457 LoadIndexed

from 420 [16 - 20]

428 +

x [14 - 20]

796 +

x [14 - 20]

798 +

x [14 - 20]

800 +

x [14 - 20]

index [114 - 120]

458 LoadIndexed 465 &

x

460 LoadIndexed 466 &

x

462 LoadIndexed 470 &

x

473 &

x

794 BoxNode$AllocatingBox

469 |

x [0 - 255]

468 <<

x [0 - 255]

y [0 - 65280]

472 |

x [0 - 65535]

471 <<

x [0 - 255]

y [0 - 16711680]

476 |

x [0 - 16777215]

475 <<

x [0 - 255]

y

value

755 Return

x [14 - 16]

from 361 [14 - 16]781 VirtualArray byte[1]

virtualObjects

783 AllocatedObject

virtualObject

commit

array

result

index [115 - 121]

index [116 - 122]

index [117 - 123]

56 C(2)

y

5 C(0)

from 377

22 C(1)

y

272 C(-1)

y

283 C(Object[Instance<int[]>])

array

318 C(65536)

y

22 C(1)

y

56 C(2)

y

231 C(100)

y

801 C(Object[Instance<byte[]>])

array

801 C(Object[Instance<byte[]>])

array

801 C(Object[Instance<byte[]>])

array

801 C(Object[Instance<byte[]>])

array

148 C(255)

y

148 C(255)

y

467 C(8)

y

148 C(255)

y

306 C(16)

y

148 C(255)

y

474 C(24)

y

306 C(16)

trueValue

237 C(14)

falseValue

60 C(6)

values

795 C(101)

y

797 C(102)

y

799 C(103)

y

Figure 4.6 The compilation graph of the case study parser query before being optimized
(wrapped, included for overview — not expected to be readable).

Listing 19 Code using compiler asserts to check compilation issues in the case study
parser query. Running it reveals that the second expression is at fault.

CLITypeDefTableRow row = method.getComponent().getTableHeads().
↪ getTypeDefTableHead();

CompilerAsserts.partialEvaluationConstant(row.getFlags());
CompilerAsserts.partialEvaluationConstant(row.skip(1).getFlags()

↪);

40

Listing 20 Code using compiler asserts to check compilation issues in
CLITableRow.skip. Running it reveals an error in getLength.

public final T skip(int count)
{

CompilerAsserts.partialEvaluationConstant(tables);
CompilerAsserts.partialEvaluationConstant(cursor);
CompilerAsserts.partialEvaluationConstant(getLength());
return createNew(tables, cursor+count*getLength(), rowIndex+

↪ count);
}

that all used arguments are constants, as in Listing 20. We get an error8 when
checking the getLength() statement. We then check getLength(), enhancing
it with asserts to see if isStringHeapBig() or areSmallEnough are at fault, as
seen in Listing 21. We get an error on a call to areSmallEnough.

We continue digging into that method, eventually realising that inside
areSmallEnough(byte... tables), the tables[0] is not a constant! Turns
out that even though the calls to areSmallEnough look to just be providing
constant integers, as the function is using varargs a new array is allocated for those
constants that is then passed to the function. As we explain in Section 4.1.6, array
elements are not considered to be constant unless the array is properly annotated
as CompilationFinal. Our inplace arrays have no way to be annotated. We
modified areSmallEnough to take a byte[] instead of varargs (to make what is
happening more obvious) and instead of using inplace arrays used constant fields
annotated with @CompilerDirectives.CompilationFinal(dimensions =
1).

After two additional small changes (adding a field to cache tableData
with the CompilationFinal annotation and annotating areSmallEnough with
@ExplodeLoop), the graph for the case study parser query after TruffleTier
changed to Figure 4.7.

This case study provides a great example of how choices that are functionally
equivalent in regular Java can provide vastly different compilation results when
partially evaluated. In the end, we mostly only had to add annotations to make a
big difference.

We used this process of checking if graphs look as expected using Seafoam
and then using CompilerAsserts.partialEvaluationConstant to express
our desires about constants multiple times during development.

8Partial evaluation did not reduce value to a constant, is a regular
compiler node: 516|ValuePhi(459 515, i32) (513|Merge; 459|ValuePhi(401
458, i32); 515|+;)

41

Listing 21 Code using compiler asserts to check compilation issues in
CLITypeDefTableRow.getLength. Running it reveals an error in areSmallEnough.

public int getLength() {
int offset = 14;
CompilerAsserts.partialEvaluationConstant(tables.

↪ isStringHeapBig());
CompilerAsserts.partialEvaluationConstant(areSmallEnough(

↪ CLITableConstants.CLI_TABLE_TYPE_DEF , CLITableConstants
↪ .CLI_TABLE_TYPE_REF , CLITableConstants.
↪ CLI_TABLE_TYPE_SPEC));

if (tables.isStringHeapBig()) offset += 4;
if (!areSmallEnough(CLITableConstants.CLI_TABLE_TYPE_DEF ,

↪ CLITableConstants.CLI_TABLE_TYPE_REF , CLITableConstants
↪ .CLI_TABLE_TYPE_SPEC)) offset += 2;

if (!areSmallEnough(CLITableConstants.CLI_TABLE_FIELD))
↪ offset += 2;

if (!areSmallEnough(CLITableConstants.CLI_TABLE_METHOD_DEF))
↪ offset += 2;

return offset;
}

0 Start

712 BoxNode$AllocatingBox

691 Return

result

715 C(1048576)

value

Figure 4.7 The compilation graph of the case study parser query after being optimized.

42

Chapter 5

Results

5.1 Completeness
Due to time constraints, several areas of the standard were ignored. The develop-
ment focused on being able to run simple calculation programs and being able to
run benchmarks from Hagmüller [7].

In total, ECMA-335[4] defines 219 opcodes, consisting of 6 prefixes and 213
instructions. Of those, our runtime contains code handling 151 instructions and
no prefixes.

Notable missing features include:

• exceptions, overflow checking instructions

• interfaces

• generics

• casting and type checks

• visibility enforcement

• general arrays — only SZArrays (single dimensional, zero-based array) are
supported

• operations requiring 64-bit unsigned integers

• unmanaged pointers and localloc

43

To validate the proper implementation of instructions, we used .NET’s Code-
GenBringUpTests1. According to the documentation2, they are the recommended
test suit to target when porting RyuJIT (.NET’s JIT engine) to a new platform:

Initial bring-up

[...]

Implement the bare minimum to get the compiler building and gen-
erating code for very simple operations, like addition. Focus on the
CodeGenBringUpTests (src\tests\JIT\CodeGenBringUpTests), starting
with the simple ones.

They are perfect for testing edge cases of implemented instructions. One
example of a bug uncovered in this test suite that would be very hard to find
manually was a missing int32 truncation3.

After stubbing out Write, WriteLine, ToString and Concat (to get rid of
the unsupported operations used by debug prints in case of failure), the BACIL
implementation presented in this work passed 85%, e.g. 133 out of the 155 tests,
included in the v6.0.6 tag. All the failed tests were because of missing features
and not bugs in implemented features, see Table 5.1 for details.

5.1.1 Library methods
While we pass library calls to the .NET runtime implementations, most of them
either require generics or use native methods. We only implemented the following
native methods:

• System.Runtime.CompilerServices.RuntimeHelpers.↪
InitializeArray(Array, RuntimeFieldHandle) used for constant
array initializatons (like int[] a = new int[] 0, 1).

• Methods System.Math.Abs(Double), System.Math.Cos(Double) and
System.Math.Sqrt(Double) required by some float instruction tests.

• System.ValueType.GetHashCode() required by user-defined value
types, as they override this virtual method.

1https://github.com/dotnet/runtime/tree/main/src/tests/JIT/
CodeGenBringUpTests

2https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/
porting-ryujit.md

3fixed in commit 056640ec276376434f5cb32ac70c3f9eb26c4881

44

https://github.com/dotnet/runtime/tree/main/src/tests/JIT/CodeGenBringUpTests
https://github.com/dotnet/runtime/tree/main/src/tests/JIT/CodeGenBringUpTests
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/porting-ryujit.md
https://github.com/dotnet/runtime/blob/main/docs/design/coreclr/jit/porting-ryujit.md

Test Reason for failure

ArrayExc Missing exception support
ArrayMD1 Missing multi-dimensional array support
ArrayMD2 Missing multi-dimensional array support
div2 Missing exception support
DivConst Missing exception support
FPConvI2F Missing conv.r.un instruction implementation (due to

unsigned 64-bit integers usage)
FPMath Missing generics support (in

System.BitConverter::DoubleToInt64Bits in-
ternally used by System.Math::Round)

LngConv Missing generics support internally used by
System.IntPtr

Localloc* (8 tests) Missing support for localloc and raw pointers
ModConst Missing exception support
RecursiveTailCall Missing generics support
Rotate Missing volatile. prefix
StructReturn The test (incorrectly) compares floats using == instead of

checking their difference against an epsilon
UDivConst Missing exception support
UModConst Missing exception support

Table 5.1 Reasons why specific CodeGenBringUpTests failed.

5.2 Performance benchmarks
We performed all benchmarks mentioned here on a laptop with an AMD Ryzen 7
PRO 4750U with 8 cores and 16 virtual threads, a base clock of 1.7GHz and boost
up to 4.1GHz, featuring 32 GB of RAM and running Windows 10.

We ran the tests on GraalVM version 22.1.04 and .NET runtime version 6.0.65.

5.2.1 Harness
As mentioned in Section 4.1.4, our way of exposing additional functionality com-
prises implementing them in the BACILHelpers assembly, which .NET calls
directly and BACIL replaces with its own implementation. To facilitate bench-
marks, we add two newmethods: StartTimerwhich starts a timer and GetTicks
which return the number of ticks since the start. The API was inspired by the API

4openjdk 11.0.15 2022-04-19
OpenJDK Runtime Environment GraalVM CE 22.1.0 (build 11.0.15+10-jvmci-
22.1-b06) OpenJDK 64-Bit Server VM GraalVM CE 22.1.0 (build 11.0.15+10-
jvmci-22.1-b06, mixed mode, sharing)

5Version: 6.0.6
Commit: 7cca709db2

45

Listing 22 An implementation of the benchmark timer in C#.

static Stopwatch stopWatch = new Stopwatch();
static long nanosecPerTick = (1000L * 1000L * 1000L) / Stopwatch

↪ .Frequency;

public static void StartTimer()
{

stopWatch.Restart();
}

public static long GetTicks()
{

stopWatch.Stop();
return stopWatch.ElapsedTicks * nanosecPerTick;

}

of System.Diagnostics.StopWatch, which is what the .NET implementation
uses, as shown in Listing 22. On the BACIL side, we use System.nanoTime(),
saving a value on start and the subtracting it from the value on end. Combin-
ing with the console writing capabilities, this our final harness is in Listing 23
(DoCalculation and the iteration count being replaced as necessary).

5.2.2 Hagmüller’s work
One goal was to compare with the implementation of Hagmüller [7]. We received
copies of the benchmark programs used in the work and could therefore run them
against our implementation. When researching the .NET runtime JIT benchmarks
in Section 5.3, we discovered that the used benchmarks are based on code from
the repository. However, to keep the comparison fair, we used the provided
modified versions, only changing out the harness. We did not have access to the
interpreter itself, so we could not replicate the original benchmarks, and only
use the numbers provided in their work. To receive comparable numbers, we
followed the methodology outlined by Hagmüller [7]:

The discussed Truffle CIL Interpreter, was evaluated by running a
set of different programs. All benchmarks were executed on an Intel
i7-5557U processor with 2 cores, 4 virtual threads featuring 16GB of
RAM and a core speed of 3.1 GHz running macOS Catalina(64 bit).

We parametrized each benchmark so that its execution results in
high workload for our test system. In order to get a performance
reference to compare with, we executed the benchmark programs in

46

Listing 23 Harness used for the benchmarks.

static void report(int iteration , long ticks, int result)
{

BACILHelpers.BACILConsole.Write("iteration:");
BACILHelpers.BACILConsole.Write(iteration);
BACILHelpers.BACILConsole.Write(" ticks:");
BACILHelpers.BACILConsole.Write(ticks);
BACILHelpers.BACILConsole.Write(" res:");
BACILHelpers.BACILConsole.Write(result);
BACILHelpers.BACILConsole.Write("\n");

}

public static void Main(String[] args)
{

int r;
for(int i=0;i<1500;i++)
{

BACILHelpers.BACILEnvironment.StartTimer();
var result = DoCalculation();
long duration = BACILHelpers.BACILEnvironment.GetTicks()

↪ ;

report(i, duration , result);
}

}

47

Debug BACIL Debug .NET Release BACIL Hagmüller [7]

Binarytrees 2.573 2.003 2.649 24
Sieve of Eratosthenes 2.172 4.696 1.698 226

Fibonacci 1.635 4.449 1.512 38
Mandelbrot 5.612 2.666 4.779 38

N-Body 7.237 5.000 6.763 194

Table 5.2 Slowdown of benchmarks from Hagmüller [7] relative to .NET in release
configuration.

the mono runtime. We ran the benchmark programs in our Truffle
CIL Interpreter on the top of the Graal VM. To find out how much
our Truffle CIL Interpreter benefits from the support of compilation
by Graal, we also ran the tests in an interpreter only mode, by using
the standard Java JDK, instead of Graal. Because Graal optimizes
functions which are called a certain number of times, we executed
each program in a loop a several amount of times. For our evaluation
we wanted to ignore the warm up phase of the compilation, so we just
took the last 10 iterations of the execution loop. For each iteration the
execution time is measured. For these 10 iterations we calculated the
arithmetic mean. In order to reduce statistical outliers we repeated
this 10 times and calculated the geometric mean over the arithmetic
means.

Our benchmarks had the following differences:

• instead of an unspecified version of the mono runtime, we used .NET 6.0.301
to get the reference performance

• our system was different

• we ignored “interpreter only mode” results — we tailored the interpreter for
partial evaluation, so the slowdowns in interpreter mode are usually more
than 200x; we do not see value in precisely benchmarking such a glaring
difference

It was not obvious if CIL-level optimizations were enabled when compiling the
tests in Hagmüller [7]. For that reason, wemeasured both the debug (unoptimized)
and release (optimized) compilation configurations.

Themeasured slowdowns (relative to .NET in release configuration) are shown
in Table 5.2 and figures 5.1 and 5.2.

48

2,573 2,172 1,635
5,612 7,237

2,003 4,696 4,449 2,666 5,000

2,649 1,698 1,512
4,779 6,763

1 1 1 1 1

24

226

38 38

194

0

50

100

150

200

250

Binarytrees Sieve of Eratosthenes Fibonacci Mandelbrot N-Body

Debug BACIL Debug .NET Release BACIL Release .NET Hagmüller

Figure 5.1 Slowdown of benchmarks from Hagmüller [7] relative to .NET in release
configuration, including measurement from Hagmüller [7].

2,573

2,172

1,635

5,612

7,237

2,003

4,696

4,449

2,666

5,000

2,649

1,698
1,512

4,779

6,763

1 1 1 1 1

0

1

2

3

4

5

6

7

8

Binarytrees Sieve of Eratosthenes Fibonacci Mandelbrot N-Body

Debug BACIL Debug .NET Release BACIL Release .NET

Figure 5.2 Slowdown of benchmarks from Hagmüller [7] relative to .NET in release
configuration, without measurement from Hagmüller [7].

49

Benchmark BACIL Slowdown

TreeInsert 1.036
Pi 1.125

HeapSort 1.172
Array1 1.322

QuickSort 1.428
Fib 1.519

BubbleSort 1.538
BubbleSort2 1.722

CSieve 1.741
fannkuch-redux-2 1.818

spectralnorm-1 2.063
MatInv4 2.351
8queens 2.355

Permutate 2.595
Ackermann 3.008

TreeSort 3.158
binarytrees-2 3.412

Lorenz 4.600
n-body-3 4.974

Table 5.3 BACIL slowdown of .NET’s JIT benchamrks relative to .NET.

5.3 .NET runtime JIT benchmarks
To get more performance comparisons, we used (a subset of) .NET’s JIT bencham-
rks6. The subset selection was driven by picking only tests using features the
BACIL implements.

Originally, the tests use Xunit framework for benchmarks. Apart from switch-
ing the Xunit harness for our own, we made no other modifications to the code.

Our methodology was driven by our interest in getting results for as many
binaries as possible, rather than making sure the comparison is extremely precise.
We ran each test once, took the arithmetic average of iterations 250-299 and
calculated the slowdown ratio between BACIL and .NET. We used the benchmarks
as compiled by the .NET runtime compilation process without changing any
settings regarding optimizations. The results are shown in Table 5.3 and figure 5.3.

6https://github.com/dotnet/runtime/tree/main/src/tests/JIT/Performance/
CodeQuality

50

https://github.com/dotnet/runtime/tree/main/src/tests/JIT/Performance/CodeQuality
https://github.com/dotnet/runtime/tree/main/src/tests/JIT/Performance/CodeQuality

1,036

1,125

1,172

1,322

1,428

1,519

1,538

1,722

1,741

1,818

2,063

2,351

2,355

2,595

3,008

3,158

3,412

4,600

4,974

0 1 2 3 4 5 6

TreeInsert

Pi

HeapSort

Array1

QuickSort

Fib

BubbleSort

BubbleSort2

CSieve

fannkuch-redux-2

spectralnorm-1

MatInv4

8queens

Permutate

Ackermann

TreeSort

binarytrees-2

Lorenz

n-body-3

Figure 5.3 BACIL slowdown of .NET’s JIT benchamrks relative to .NET.

51

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

M
il
li
s
e
c
o
n
d
s

Iteration

Figure 5.4 Chart showing the warmup of BACIL when running the MatInv4 .NET
runtime benchmark.

5.3.1 Warmup concerns
One fact that is important for real-world performance but our benchmarks ignore
is that both the internal workings of GraalVM and our design result in the warmup
time (e.g. time before reaching full performance potential is) being significant.

While the cause inherent to GraalVM is the tiered compilation model (dis-
cussed in Section 2.2), which has to compromise between the time spent compil-
ing and the quality of the resulting compilation, BACIL has another important
performance limitation. As mentioned in Section 4.1.1, for BACIL the smallest
compilation unit is a method and we do not support On-Stack Replacement (OSR).
Therefore, performance for the first few iterations is (expectedly) terrible.

The example code from Listing 10 runs about 60 times slower on BACIL than
on .NET. See Figure 5.4 for an example chart of time-per-iteration when running
the MatInv4 .NET runtime benchmark with default Truffle heuristics. The first
iteration was 83 times slower than iterations 30+.

5.3.2 Interpreting the results
We draw two main conclusions from the performance benchmarks:

• our implementation outperforms Hagmüller’s work

52

• in compiled code, BACIL’s peak performance is less than an order of magni-
tude slower than .NET runtime, with the worst case measured being 7.237
times slower

The last observation we want to make is regarding IL-level optimizations.
While for the .NET runtime, the IL optimizations (in Release mode) made it
significantly more performant, for BACIL such optimizations were very much
insignificant. One interesting fact is that running Hagmüller’s binarytrees on
BACIL, they performed slightly worse in the optimized Release version than
the Debug version. This probably has to do with the fact that the “optimiza-
tions” (which are surely tailored for .NET runtimes) resulted in using different
instructions that were incidentally less performant on BACIL.

53

Conclusion

In this work, we set out to answer the following question: Is it feasible to achieve the
promised performance benefits [of Truffle-based implementations] with an academic
interpreter-style implementation of a language runtime? We feel the answer is yes.

To achieve the performance benefits, the implementation definitely needs
to be designed with partial evaluation in mind, as different designs that would
make no tangible difference for “classic” execution can be diametrically different
when partially evaluated. This statement is supported both by our case study in
Section 4.2.1 and by the difference in performance between our implementation
and Hagmüller [7]. In this sense, Truffle’s partial evaluation is not a “magic bullet”
that will take any functioning interpreter and make it run close to state-of-the-art
performance.

Once we understood the theory behind partial evaluation and about half a
dozen key APIs provided by Truffle and designed the important concepts around
them, the implementation stage consisted mostly of writing straightforward
interpreter code. Subjectively, the interpreter style of code is easier to understand,
modify and extend than traditional compilers, however, this claim can only be
truly tested by other contributors.

Even though we admittedly only scratched the surface of all the services Truf-
fle provides, our interpreter’s peak performance is within an order of magnitude
from .NET’s state-of-the-art performance. Most benchmarks ran less than 2 times
slower than .NET, showing great promise of the possible performance.

We hope that Truffle and our work can make the area of language imple-
mentation and bytecode interpreters more accessible to students, academics and
hobbyists. We release all the code publicly on GitHub7. While we cannot promise
any future code contributions into the repository from us, we want to keep
maintaining the project in case there is interest from other contributors.

7https://github.com/jagotu/BACIL — this thesis reflects the repository state in commit
34a113d7c1a4bfe3e1567b28e52501c5055fb891

54

https://github.com/jagotu/BACIL

5.3.3 Future work
The most obvious future work lays in the various missing features, including
exceptions, generics, type checks, interfaces and others. Without fully adhering
to ECMA-335[4], BACIL will always be useful only for experimentational use.
Such conformance also includes all the standard libraries.

Apart from that, Truffle provides several features and intrinsics that we largely
ignored and could benefit the project8. Examples of these features are:

• On-stack replacement (OSR)9, which would increase the performance dur-
ing warmup.

• Various instrumentation and branch prediction callbacks, which could allow
increased performance and provide better profiling, debugging and stack
traces.

• The Static Object model10 which could be used to replace our custom
location-based type system.

• The “polyglot” (interop) API which would allow for calling CLI-based code
from other languages supported by Truffle (for example JavaScript).

8Some of them were unfortunately only introduced after we finalized our design.
9https://www.graalvm.org/22.1/graalvm-as-a-platform/

language-implementation-framework/OnStackReplacement/
10https://www.graalvm.org/22.0/graalvm-as-a-platform/

language-implementation-framework/StaticObjectModel/

55

https://www.graalvm.org/22.1/graalvm-as-a-platform/language-implementation-framework/OnStackReplacement/
https://www.graalvm.org/22.1/graalvm-as-a-platform/language-implementation-framework/OnStackReplacement/
https://www.graalvm.org/22.0/graalvm-as-a-platform/language-implementation-framework/StaticObjectModel/
https://www.graalvm.org/22.0/graalvm-as-a-platform/language-implementation-framework/StaticObjectModel/

Bibliography

[1] saelo. “Compile Your Own Type Confusions: Exploiting Logic Bugs in
JavaScript JIT Engines”. In: Phrack 16.70 (2021). url: http://phrack.
org/issues/70/9.html.

[2] Ampomah Ernest Kwame, Ezekiel Mensah Martey, and Abilimi Gilbert Chris.
“Qualitative assessment of compiled, interpreted and hybrid programming
languages”. In: Communications 7.7 (2017), pp. 8–13.

[3] ThomasWürthinger et al. “Practical partial evaluation for high-performance
dynamic language runtimes”. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 2017,
pp. 662–676.

[4] ECMA International. Standard ECMA-335 - Common Language Infrastruc-
ture (CLI). 5th ed. Geneva, Switzerland, 2010. url: http://www.ecma-
international.org/publications/standards/Ecma-335.htm.

[5] ThomasWürthinger et al. “Self-optimizing AST interpreters”. In: Proceedings
of the 8th Symposium on Dynamic Languages. 2012, pp. 73–82.

[6] Manuel Rigger et al. “Bringing low-level languages to the JVM: Efficient
execution of LLVM IR on Truffle”. In: Proceedings of the 8th International
Workshop on Virtual Machines and Intermediate Languages. 2016, pp. 6–15.

[7] Patrick Hagmüller. “Truffle CIL Interpreter/submitted by Patrick Hagmüller,
BSc.” PhD thesis. Universität Linz, 2020.

[8] Yoshihiko Futamura. “Partial computation of programs”. In: RIMS Symposia
on Software Science and Engineering. Springer. 1983, pp. 1–35.

[9] Sampo Syreeni. “A brief look at file format design”. In: Hugi 14 (1999). url:
http://decoy.iki.fi/texts/filefd/filefd.

56

http://phrack.org/issues/70/9.html
http://phrack.org/issues/70/9.html
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://decoy.iki.fi/texts/filefd/filefd

Appendix A

Compiling and running BACIL

The full source code and a compiled version of BACIL are digital attachments to
this work. You can also clone the latest version of the project from GitHub1.

A.1 Building
For ease of building we use Maven2, therefore building consists of running mvn
package in the root of the project.

The resulting artifacts will be the language jar in language/↪
target/language-1.0-SNAPSHOT.jar and a launcher jar in launcher/↪
target/bacil-launcher.jar.

A.2 Running
For running you’ll need to obtain GraalVM3 and a copy of a .NET standard library4.
While the target for development was Java 8 and .NET Runtime 5.0.6 on both
Linux and Windows, we succesfully ran the project on Java 11 with .NET 6.

You’ll also need an assembly to run. If you don’t have any handy, you can
clone BACIL_examples5.

Once you have all the prerequisites, you can run BACIL on Windows with
.NET Runtime 5.0.6 like so:

BACIL>java -version
openjdk version "1.8.0_282"

1https://github.com/jagotu/BACIL/
2https://maven.apache.org/
3https://www.graalvm.org/downloads/
4https://dotnet.microsoft.com/download/dotnet
5https://github.com/jagotu/BACIL_examples

57

https://github.com/jagotu/BACIL/
https://maven.apache.org/
https://www.graalvm.org/downloads/
https://dotnet.microsoft.com/download/dotnet
https://github.com/jagotu/BACIL_examples

OpenJDK Runtime Environment (build 1.8.0_282-b07)
OpenJDK 64-Bit Server VM GraalVM CE 21.0.0 (build 25.282-b07-

↪ jvmci -21.0-b06, mixed mode)

BACIL>java -Dtruffle.class.path.append=language/target/language
↪ -1.0-SNAPSHOT.jar -jar launcher/target/bacil-launcher.jar "
↪ --cil.libraryPath=c:\Program Files\dotnet\shared\Microsoft.
↪ NETCore.App\5.0.6" BACIL_examples\Inheritance\bin\Debug\
↪ net5.0\TestHarness.dll

Micka: Meow
Rex: Woof
Returned 4
Returned: 0
Runtime: 110ms

Apart from the last 2 lines (added by BACIL to aid debugging), the output
should be identical when running the assemblies directly.
BACIL>dotnet BACIL_examples\Inheritance\bin\Debug\net5.0\

↪ TestHarness.dll
Micka: Meow
Rex: Woof
Returned 4

On Linux it’s very similar:
$ java -version
openjdk version "1.8.0_292"
OpenJDK Runtime Environment (build 1.8.0_292-b09)
OpenJDK 64-Bit Server VM GraalVM CE 21.1.0 (build 25.292-b09-

↪ jvmci -21.1-b05, mixed mode)

$ java -Dtruffle.class.path.append=language/target/language -1.0-
↪ SNAPSHOT.jar -jar launcher/target/bacil-launcher.jar --cil.
↪ libraryPath=../dotnet-runtime -5.0.6-linux-x64/shared/
↪ Microsoft.NETCore.App/5.0.6 BACIL_examples/Inheritance/bin/
↪ Debug/net5.0/TestHarness.dll

Micka: Meow
Rex: Woof
Returned 4
Returned: 0
Runtime: 348ms

$ dotnet BACIL_examples/Inheritance/bin/Debug/net5.0/TestHarness
↪ .dll

Micka: Meow
Rex: Woof
Returned 4

Always make sure you are running GraalVM and replace the libraryPath
with path to the .NET standard library DLLs.

58

A.3 Full example of running pre-compiled BACIL
on amd64 Linux

Run these commands from a directory with language-1.0-SNAPSHOT.jar and
bacil-launcher.jar
Download and extract dotnet and graal
wget https://download.visualstudio.microsoft.com/download/pr/0

↪ e83f50a -0619-45e6-8f16-dc4f41d1bb16/
↪ e0de908b2f070ef9e7e3b6ddea9d268c/dotnet-sdk-6.0.302-linux-
↪ x64.tar.gz

wget https://github.com/graalvm/graalvm-ce-builds/releases/
↪ download/vm-22.1.0/graalvm-ce-java11-linux-amd64 -22.1.0.tar
↪ .gz

mkdir dotnet-sdk
tar xzf dotnet-sdk-6.0.302-linux-x64.tar.gz -C dotnet-sdk
tar xzf graalvm-ce-java11-linux-amd64 -22.1.0.tar.gz

Get the example assembly
git clone https://github.com/jagotu/BACIL_examples

Run the example assembly
graalvm-ce-java11 -22.1.0/bin/java -Dtruffle.class.path.append=

↪ language -1.0-SNAPSHOT.jar -jar bacil-launcher.jar --cil.
↪ libraryPath=dotnet-sdk/shared/Microsoft.NETCore.App/6.0.7/
↪ BACIL_examples/Inheritance/bin/Debug/net5.0/TestHarness.dll

59

Appendix B

Opcode implementation status

Implemented instructions:

add
and
beq
beq.s
bge
bge.s
bge.un
bge.un.s
bgt
bgt.s
bgt.un
bgt.un.s
ble
ble.s
ble.un
ble.un.s
blt
blt.s
blt.un
blt.un.s
bne.un
bne.un.s
box
br
brfalse
brfalse.s

br.s
brtrue
brtrue.s
call
callvirt
ceq
cgt
cgt.un
clt
clt.un
conv.i
conv.i1
conv.i2
conv.i4
conv.i8
conv.r4
conv.r8
conv.u
conv.u1
conv.u2
conv.u4
conv.u8
div
dup
initobj
ldarg.0

ldarg.1
ldarg.2
ldarg.3
ldarga.s
ldarg.s
ldc.i4
ldc.i4.0
ldc.i4.1
ldc.i4.2
ldc.i4.3
ldc.i4.4
ldc.i4.5
ldc.i4.6
ldc.i4.7
ldc.i4.8
ldc.i4.m1
ldc.i4.s
ldc.i8
ldc.r4
ldc.r8
ldelem
ldelema
ldelem.i
ldelem.i1
ldelem.i2
ldelem.i4

60

ldelem.i8
ldelem.r4
ldelem.r8
ldelem.ref
ldelem.u1
ldelem.u2
ldelem.u4
ldfld
ldflda
ldind.i
ldind.i1
ldind.i2
ldind.i4
ldind.i8
ldind.r4
ldind.r8
ldind.ref
ldind.u1
ldind.u2
ldind.u4
ldlen
ldloc.0
ldloc.1
ldloc.2
ldloc.3

ldloca.s
ldloc.s
ldnull
ldsfld
ldsflda
ldstr
ldtoken
mul
neg
newarr
newobj
nop
not
or
pop
rem
ret
shl
shr
shr.un
starg.s
stelem
stelem.i
stelem.i1
stelem.i2

stelem.i4
stelem.i8
stelem.r4
stelem.r8
stelem.ref
stfld
stind.i
stind.i1
stind.i2
stind.i4
stind.i8
stind.r4
stind.r8
stind.ref
stloc.0
stloc.1
stloc.2
stloc.3
stloc.s
stsfld
sub
unbox.any
xor

Unimplemented instructions and prefixes:

add.ovf
add.ovf.un
arglist
break
calli
castclass
ckfinite
constrained.
conv.ovf.i
conv.ovf.i1
conv.ovf.i1.un
conv.ovf.i2
conv.ovf.i2.un

conv.ovf.i4
conv.ovf.i4.un
conv.ovf.i8
conv.ovf.i8.un
conv.ovf.i.un
conv.ovf.u
conv.ovf.u1
conv.ovf.u1.un
conv.ovf.u2
conv.ovf.u2.un
conv.ovf.u4
conv.ovf.u4.un
conv.ovf.u8

conv.ovf.u8.un
conv.ovf.u.un
conv.r.un
cpblk
cpobj
div.un
endfilter
endfinally
initblk
isinst
jmp
ldarg
ldarga

61

ldftn
ldloc
ldloca
ldobj
ldvirtftn
leave
leave.s
localloc
mkrefany
mul.ovf

mul.ovf.un
no.
readonly.
Refanytype
refanyval
rem.un
rethrow
sizeof
starg
stloc

stobj
sub.ovf
sub.ovf.un
switch
tail.
throw
unaligned.
unbox
volatile.

62

	Introduction
	Context
	.NET/CLI
	Truffle and Graal
	Previous work
	Bytecode interpreter vs rebuilding an AST

	Theory
	Partial Evaluation
	Tiered compilation
	Guards and de-optimizations
	Escape analysis and virtualization
	The MERGE_EXPLODE strategy

	CLI Component parser
	Analysis
	Design goals
	Definition of important CLI component structures
	Complexities of the CLI component format

	Parser implementation details
	Metadata tables parser
	CLITableRow and CLITablePtr
	Sequence references

	Conclusion

	Runtime
	Analysis
	Nodes
	Dynamicity of references
	Standard libraries
	BACILHelpers
	Values and locations
	CompilationFinal annotation

	Debugging performance issues
	Case study

	Results
	Completeness
	Library methods

	Performance benchmarks
	Harness
	Hagmüller's work

	.NET runtime JIT benchmarks
	Warmup concerns
	Interpreting the results

	Conclusion
	Future work

	Bibliography
	Compiling and running BACIL
	Building
	Running
	Full example of running pre-compiled BACIL on amd64 Linux

	Opcode implementation status

