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Introduction

Fiction books are an important part of many people’s lives and a great source
of entertainment. But there are more books than one person can read in his
lifetime. Many recent works in the field of natural language processing focus on
the automatic processing of texts and extracting relevant information from them.
This information might help us to quickly find out which books we might want to
read or just give us some information without reading the whole text. The goal
of this work is to try to automatically detect interactions between characters. We
firstly needed to find characters and their mentions in the text to work with this
information when trying to find interactions. The tool for creating interactive
graphs with occurrences and interactions of the characters from the text is part
of our work. We can use it to analyze the text, see which characters occurred in
which parts of the text, or see which characters interacted together the most.

The first chapter describes the task of finding the character names in the
text and merging different names of the same character. The main problem with
creating a list of all characters from the book automatically is that one character
can be called different names in different parts of the book.

In the second chapter, we describe the problem of finding all the occurrences
in the text for each of the characters. We want to find all character mentions in
the text, even the mentions by a pronoun or a nominal. We use a trained model
for coreference resolution for this task and further process its output.

The third chapter deals with the most interesting part of this work. We try
to detect places in the text where two or more characters interact together. We
firstly needed to define what interaction is, as it is not an easy question. Then
we analyzed texts from various books and tried to find out if some rules could
help us detect interactions. We focus on dialogues, as they are the clear sign of
interaction. We also developed a set of rules that can help us detect sentences in
the text that describe the interaction between characters.

In the fourth chapter, we describe the final output of our work — the interactive
graphs which display occurrences and interactions of the characters throughout
the book. We can quickly find out which characters were probably important for
the plot or which characters interacted together the most just by looking at the
graph.

The fifth chapter focuses on the evaluation of the methods implemented on
the unseen data.

In the sixth chapter, we describe the implementation of our work in Python.

The seventh chapter describes all the technical details and steps we must do
before using our tool and also different options for using it.



1. Finding Characters in the Text

Characters are the essence of all literary texts. When we want to automatically
process a book and find information about what is happening in it, we usually
need to start by finding the characters in the book.

The first thing we need to do is to define what a character is. The definition of
the character differs in different existing works. Labatut and Bost [2019] mentions
that a character can appear in the text in three forms: as a proper noun, a nominal
or a pronoun. All existing works detect proper nouns but not necessarily two
other forms. In some works, the authors also detect characters that do not have
any proper name in the text, but are only referred to by pronouns or nominals
(for example, “the gardener®). Other authors only detect characters that were
referred to by a proper noun at least once in the text.

1.1 Ouwur Definition of a Character

We define a character as an animate being that has at least one proper name and
was referred to by this proper name at least once in the text.

This definition can overlook some characters that do not have a proper name
and are referred to only by nominals and pronouns. We think that these cha-
racters usually are only minor characters and so this won’t be a big problem for
most of the books.

1.2 Problems with Detecting Characters

Most characters in the books are referred to by a personal title (also called hono-
rific), first name, last name, nickname, or diminutive of the first name, or some
combination of this (for example, a personal title with the last name or a full
name). The main problem is that one character can be called differently through-
out the book. For example, a character named “Margareth March® can be called
“Margaret“, “Meg*“ or “Mrs. March“. It depends, for example, on who is talking
to her. Sometimes, it is difficult to tell whether “Margareth® and “Meg* are the
same person or not without reading the full text.

Another problem is that two or more characters can have the same first name
or the same last name, and we must decide which character it refers to from the
context.

1.3 Background

We now describe what tokenization and name entity recognition is, because we
will use these terms in the rest of this chapter.

1.3.1 Tokenization

Tokenization is the task of dividing a raw text into smaller meaningful chunks,
called tokens. There exist different types of tokenization, for example word to-



kenization or subword tokenization. We use word tokenization in our work.

Word tokenization divides text into tokens that are usually individual words
and punctuation marks. But the output tokens can differ depending on a to-
kenizer. We use the Tokenizer for English from the SpaCy library E] in our work.
This tokenizer firstly splits text on whitespace characters and then applies a set of
rules that are specific for each language. These rules split off punctuation marks
to separate tokens or further divide some words into more tokens. For example,
“don’t” is divided into two tokens — “do* and “n’t“. We can show an example of
tokenization for a simple sentence:

The sentence: “Mrs. March doesn’t live in the U.K. but in the USA.“
Tokens: “Mrs.“, “March®, “does®, “n’t“, “live”, “in“ “the®, “U.K.“ “but*,
ltin {(7 {(the ({7 114 USA ((7 ((. 114

1.3.2 Named Entity Recognition

Named entity recognition (NER) is the task of identifying expressions that refer
to the named entities in a text and tagging them with their corresponding type.
A named entity is an object with a proper name, like a location, a person or an
organization. According to |Mansouri et al.| [2008], there are different approaches
to NER used nowadays. For example, Rule-base Ner, Machine Learning-base
NER or Hybrid NER.

Named entity recognition models usually also assign inside-outside-beginning
tags to the input tokens. The beginning tag means that the token is the first
token of the name of the entity. The inside tag means the token is a part of the
name of the entity, but not the first one. The outside tag means that the token
is not a named entity. We use pretrained models for NER in our work.

We can show an example of using the NER tool:

The input sentence: “Mark Zuckerberg is one of the founders of Facebook, a
company from the United States.”
The output:

e “Mark Zuckerberg” is tagged as Person, “Mark® has the beginning tag,
“Zuckerberg® has the inside tag.

o “Facebook® is tagged as Company with the beginning tag.

o “United States” is tagged as Location, “United” has the beginning tag,
“States” has the inside tag.

1.4 Existing Approaches

Many approaches to character identification were explored in the survey by La-
batut and Bost| [2019]. Some authors use a predefined list of characters either
from Wikipedia or manually created and only try to match names found in the
text to the characters from the list. Other authors don’t use any additional in-
formation, like the list of characters, but try to find the characters automatically,

"https://spacy.io/api/tokenizer
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usually using some tool for Named Entity Recognition and retaining only entities
tagged as Person.
We describe a few approaches that inspired our approach in some way.

1.4.1 Multi-stage Clustering Approach

Elsner| [2012] create a list of all possible character references detected by the NER
parser and then discard the references that occur less than 5 times. Their system
uses the multi-stage clustering approach for determining which references in the
list refer to the same character. First, they merge all identical mentions that
are at least two words long. Then, they assign each of these mentions a gender
using a list of female and male names and gendered titles. Next, they merge
mentions in which genders do not clash, first and last names are consistent, and
the mentions are at least two words long. The last step is merging one-word
mentions to matching multiword mentions if the mentions appear in the same
paragraph. When a one-word mention matches some multiword mentions but
none of them is in the same paragraph, then this mention is merged with the
matching multiword mention that occurs in the most paragraphs.

1.4.2 Structure-based Clustering Approach

Coll Ardanuy and Sporleder| [2014] introduce an interesting idea, that some
names, for example “Leicester”, might be tagged as a person in one paragraph
and as a location in the other paragraph. They assume that in a novel one proper
name is likely to refer to the same entity throughout the whole novel. Because
of this, they take into account only the most frequent tag for each name. So,
the name is considered to be a character name if it was tagged as a person more
times than as a location (or some other tag).

They do the task of resolving which names refer to the same character in three
steps:

1. Parse the name into components like title, first name and last name.

2. Assign gender to each name using lists of female and male personal titles
and female and male first names and looking at pronouns in an immediate
context.

3. A matching algorithm is performed. It groups different names of the same
character together. They process the names in the given order depending
on the parts it consists of. They start with the three word names that
consist of title, first name and last name, continue with names that consist
of first and last name, then names with title and first name, then names
with title and last name and they match the one word names in the last
step.

In the matching algorithm, it is considered that a first name can appear
as a nickname or an initial and that the genders must agree when merging
two names together. If it is ambiguous, because we have, for example, two
characters with the same last name, then it is assumed that name refers to
the most relevant character from the candidates (the most frequent one).



1.4.3 Eight-stage Pipeline Approach

Vala et al.| [2015] proposed a novel idea that uses an eight-stage pipeline to detect
characters. In this pipeline, a graph is being built. Nodes of the graph are names
of the characters and edges connect the names that refer to the same character.

1.

Firstly, the nodes are initialized with names from the output of the NER
model.

. In the second stage, the coreference resolution is run on the text, and the

edges are added between the names that are in the same coreference cluster.

. Thirdly, some name variation rules are applied to add edges between nodes

that may refer to the same character (for example, the name is the same as
the other name after removing a personal title).

. The list of hypocorisms is used to connect names like Tim and Timmy.

. In the fifth stage, there are three rules that prohibit the merging of two

names. Two nodes are not merged if the genders of the names are different,
or the names have the same last name, but different first names or if the
honorifics of the names are different. This results in removing some of the
edges created before.

The sixth stage prohibits the merging of two names if they appear in the
text connected by a conjunction, or one name is the speaker mentioning
the other name in the direct speech, or both names appear together in one
quote.

Characters that do not have a proper name and thus are not recognized by
NER are trying to be identified. The noun is identified as a character if it
appears in a dependency relationship with a verb that is typical for people

(for example, say or eat). Generic nouns from the list, like a man, are not
added.

. The eight stage removes nodes that are disconnected from the rest of the

graph and contain a name that is a part of some other name in another node.
These nodes are removed because they typically represent ambiguous names
of some characters that are represented by the other nodes, so they are not
needed.

The remaining nodes are merged according to edges to create sets of names
that are associated with different characters.

1.4.4 Matching Names to Predefined List of Characters

Lajewska and Wr’'oblewska| [2021] work with a list of full names of characters
obtained from Wikipedia. They try to match each entity tagged as a person by
the NER model to one of the character’s in the list. Their matching algorithm
firstly tries to find the most similar name in the list using partial string matching
measured by Levenshtein distance.



If the closest match is not similar enough to the found name, then the list of
diminutives is used. The list of diminutives contains different name variations for
common English names. For example, we can find in it that Margareth can be
also called Meg.

The last special case that is discussed is when a named entity is referred to
only by a last name. In this case, they distinguish whether it refers to the single
character or the whole family by analyzing the word before a last name. If the
word before is a personal title, then it is matched to the one character with the
correct gender. In all the other cases, the name is treated as the whole family
name and not a single character.

1.5 Our Approach

We assume that our input is a tokenized text and we want our output to be
a list of all named characters from the text. We want to know a name for each
character (it can have more parts like a title and last name) and also a set of
other names that occurred in the text and we think that they may refer to this
character, for example because this other name is a diminutive of the first name
of this character. We also determine the gender of each character if possible.
The goal of this part of work is to find all named characters that occurred in the
text. We are not trying to find occurrences of these characters in the text (that
is discussed in the chapter . So if the name in the text is ambiguous (can refer
to more characters), we don’t care about what character it refers to, it is enough
that we know that the given name does probably refer to some of the already
found characters.

Firstly, we need to find candidates for the names of the characters. We can
find all names that refer to a named entity by using a trained tool for Named
Entity Recognition, and then work only with names tagged as Person. We use
the NameTag 2 and the NER tool from the SpaCy library for this task. We wanted
to find out if there would be a difference between the outputs of these two tools,
so we tried to use both.

When we get a name from the NER tool, we look at the token before the name
and if it is a personal title, we add it to the name. We do this because the NER
tool does not always find a name with the title together. We also applied a rule
described in [Coll Ardanuy and Sporleder| [2014]: we keep the name only if it was
tagged “Person® more times than some other tag. That means, for example, that
if a name “Florence” was tagged many times as a “Location and only once as
a “Person® in the text, then we don’t keep Florence in our list of character names.
We assume that it probably was a tagger mistake.

1.5.1 NameTag 2

NameTag 2 E] is an open-source tool for Named Entity Recognition that achieved
state-of-the-art for English in 2019. According to Strakova et al. [2019], this tool
also recognizes nested entities of arbitrary depth, entities that overlap and also
supports labelling entities with more than one label. It uses a neural model.

?https://ufal.mff.cuni.cz/nametag/2
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The tool with the English CoNLL Model uses 4 different labels for different
types of named entities — PER, ORG, LOC and MISC. In our work, we work only
with entities labelled as PER, which means person.

1.5.2 SpaCy NER

The SpaCy library includes the statistical entity recognition system Iﬂ, which we
use in our work. The system only identifies non-overlapping labelled spans of
tokens. This tool uses 18 different labels for different types of named entities, but
we work only with entities tagged as PERSON.

1.5.3 Processing the Output of the NER Tool

When we get the set of names as the output of the NER tool, we must further
process it to get a list of all characters in the text. We want to merge different
names that refer to the same character. Then, we want to create a list of all
characters, and we also try to determine the gender for every character.

From our analysis of the approaches described in section we came to
the conclusion that we want to divide the names to some meaningful parts like
personal title, first name and last name. Then we want to gradually merge names
starting with the multiword names using some rules, a list of diminutives and
gender information. This was mainly described in [Elsner| [2012] and (Coll Ardanuy
and Sporleder| [2014]. But the role of genders in merging was also described in
Vala et al.|[2015]. In contrast with the described works, we don’t have to resolve
what to do with ambiguous names, as we only want to get the list of characters
without their occurrences. So we can simplify some of the rules. Our approach
is the most similar to the Multi-stage Clustering Approach and Structure-based
Clustering Approach, but we added using a list of diminutives and detecting
family names from Lajewska and Wr’oblewska/ [2021].

We decided this part will work also without using the coreference resolution.
Therefore, our basic algorithm for detecting characters doesn’t use the coreference
resolution in any way. It uses simple deterministic rules, a list of diminutivesﬁ]7
lists of female, male, and androgynous honorific{’] and lists of female and male
first named’]

We manually created the list of female, male, and androgynous honorifics with
the help of a list from Wikipedia. We also added names of some family members
like mother, father, uncle, aunt to these lists because we observed that our NER
models also output these words as parts of names sometimes (for example, “Uncle
Vernon*) and we want to treat these words in the same way as personal titles.

We divide the names of the characters into three main parts as in|Coll Ardanuy
and Sporleder| [2014]: personal title, first name, and last name. Each character
can also have some nicknames or diminutives assigned.

3https://spacy.io/usage/linguistic-features#named-entities

“https://github.com/carltonnorthern/nickname-and-diminutive-names-1lookup
used in [Lajewska and Wr’oblewska [2021].

5Manually created by us.

8Source: http://www.cs.cmu.edu/Groups/Al/areas/nlp/corpora/names/, used
in (Coll Ardanuy and Sporleder| [2014]
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The token is considered to be a title if it is the first token in a name and it is
in our list of honorifics.

The token is considered to be a first name if it is in our list of female names,
male names, or diminutives, or it is the first token of multiword name (and it is
not a title), or when the first token is a title and this token is the second token
of at least three tokens long name.

The token is considered to be a nickname if it is in the list of diminutives,
and we have a character that can be called by this diminutive (because his first
name can refer to the same name as this diminutive).

The token is considered to be the last name if it is not a title, first name, or
diminutive.

If the name consists of more tokens considered to be the last name, then these
tokens are jointly considered a last name (so the last name can contain more
tokens).

This division has some problems when dealing with characters that also have
a middle name, but we decided to ignore this case, as we think it doesn’t occur
often in the books.

Every character has exactly one of these values assigned as a gender: female,
male, plural or unknown. We use gender plural for the family names that
refer to more people, like “Weasleys®. The idea to treat family names separately
and have a different gender label for them came from the work of [Lajewska and
Wr’oblewska, [2021].

We guess the gender of a character by the following rules (in the given order):

1. If the character has a personal title that is in the list of female or male
titles, then we assign the corresponding gender to the character.

2. If the character’s first name is in the list of female or male names, then we
assign the corresponding gender to the character.

3. If the character has a first name, then we use a gender guesselﬂ to guess
the gender. This gender guesser takes a name as an input and outputs
one of these labels: unknown (name not found), andy (androgynous), male,
female, mostly_male, or mostly_female. If the output is male or mostly
male, we assign a male gender. If the output is female or mostly female, we
assign a female gender.

4. If the last letter of the name is “s“ we assign it a plural gender.
5. If none of the above assigned gender, the gender remains unknown.

This assignment is not a hundred percent correct. Assignment based on the
title should be correct, but when we just guess based on the first name, we can
be wrong as some names can be used for both females and males. And when the
last letter of name is “s* it doesn’t always mean that it is a family name.

In our algorithm, we first divide all found names by NER into three groups:
full names that consist of a title, first name and last name, two word names that

"https://pypi.org/project/gender-guesser/, mentioned in Lajewska and Wr’oblewska
[2021]
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consist of title and name, or first name and last name, and one word names that
consist only of one token.

Now, we describe the steps for merging different names that refer to one
character.

1. All the different full names (consisting of all three parts) are considered
to be different characters. We create characters with corresponding names
and assign genders to them.

2. We look at names that consist of two parts. In contrast with (Coll Ardanuy
and Sporleder| [2014], we don’t divide these names into three groups based
on which two parts the name consists of. We do this in one step, as we
think the order of merging doesn’t make a difference in these cases.

3. If it is a first name and a last name and we already have a character with
the corresponding names, then these names refer to the same character.
This merges for example “John Walker” to “Mr. John Walker®.

If we have a character with the same last name and the first names are
different but one can be the diminutive of the other, then we assume these
names refer to the same character. This merges for example “Meg March*
to “Margareth March®, as in our list of diminutives we have that “Meg® is
diminutive of “Margareth*.

If the first name is an abbreviation (for example, “H.Potter*) and we have
a character with the same last name and this abbreviation can be an ab-
breviation of his first name, these names refer to the same character. This
merges, for example, “H. Potter to “Harry Potter®

4. If it is a title and a name and we already have a character with the corre-
sponding title and name, then it refers to the same character. This merges
“Mr. Brown“ to “Mr. John Brown®

If we have a character with the same name (first or last) and this character
doesn’t have any title yet and the detected gender of the title and a character
do not clash, then we assume that it is the same character and assign him
this title.

The fact that genders do not clash means that both names have the same
detected gender or that one or both names have assigned an unknown gen-
der.

This merges “Mr. Brown“ to “John Brown“ as we detect that both are of
male gender. It can also merge “Dr. Brown® to “John Brown“, as the gender
of “Dr.Brown® is unknown (because “Dr.* is in an androgynous title).

5. If none of the above holds, we create a new character with the corresponding
names and assign him a gender.

6. Lastly, we look at one word names. If this name is a first or last name of
some character, then we assume that it refers to the same character. This
matches “John“ to “John Brown*“ or “Brown*“ to “John Brown*.

11



If this name can be used as a diminutive of some existing character’s first
name (or vice versa), then we assume that it refers to the same character.
This matches “Meg* to “Margareth March*®.

If none of the above holds, we create a new character with this name and
assign a gender.

If we have some diminutive that can refer to more characters, then we add
this diminutive to all of these characters as an other name, because we are not
trying to decide right now which character it refers to.

After this procedure, we have what we think is a set of characters with all
parts of their names that we found and also a set of other names that could
possibly refer to this character. We will use this output in the next chapter.

12



2. Detecting occurrences

The goal of this part is to detect all occurrences of all characters in the text. We
have a tokenized text and a list of all characters with all their possible names
in the text as an input and we want to have a list of all occurrences for each
character as the output.

We have two options for finding occurrences — with or without using the model
for coreference resolution. We also tried to process the output of the coreference
resolution model in two distinct ways.

2.1 Coreference Resolution

Coreference resolution is the task of finding all linguistic expressions that refer to
the same entity in the text. The output of the coreference resolution model are
usually the coreference clusters.

A coreference cluster is simply a collection of all tokens that refer to one real-
world entity in the text (this cluster usually consists of numbers that are indices
of corresponding tokens in the tokenized text).

A mention is a token or some number of subsequent tokens that refer to one
character. It can be a name, a pronoun, a nominal or some description, like “a
tall boy“. We can represent the mention by two numbers: a pair of indices of first
and last token for this mention in the tokenized text. The coreference cluster is
then a list of all mentions of one character in the whole text.

The coreference resolution is a crucial part of all systems that deal with natural
language understanding.

We can show an example of coreference resolution clusters:

The input sentences: “Jane Young went to the concert. She met David there.”
Output clusters:

o In the first cluster, there will be a “Jane Young®“ and “She*.
e In the second cluster, there will be a “concert* and “there®.

o There can be a third cluster, in which only the token “David“ is. Some
coreference resolution models output also clusters of length 1 as this one.
Other models do not output clusters with only one mention.

The coreference resolution helps us find pronouns and nominals that refer to
one of the characters. This is really important when we want to find out more
about the characters and their occurrences in the text as normally the character
is referred to by his name only a few times in the section of the text and then is
referred to by pronouns like he or she many times.

The coreference clusters can also help us decide which ambiguous names refer
to which character.
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2.2 Our Approach

Besides the input in the form of character’s different names, we also create
dictionaries with all the first names and last names (we include all nicknames
or diminutives in the first names). The dictionary of the first names contains
all the first names as keys and for each first name we have a list of characters
with the given first name as its value. Similarly, the dictionary of the last names
contains all the last names as keys and for each last name we have a list of all
characters with the given last name as its value.

Imagine there were three characters in the text: “John Brown*, “Amy Brown*
and “John Small®“. Then in the first names’ dictionary, we would have keys “John*
and “Amy*. John would have a list of characters John Brown and John Small as
its value. Amy would have a list containing only a character Amy Brown as its
value. It would be similar for the last names’ dictionary with two keys: “Brown“
and “Small*.

This will be useful for quickly finding characters with a given name and de-
ciding whether the name is ambiguous or not. When the name has only one
character in the list, we know it is unambiguous as no other character has this
name. In the above example, Amy is an unambiguous first name and Small is an
unambiguous last name.

If the list contains more characters, that name is ambiguous without further
context, as the names John and Brown in the above example.

For example, if we have this sentence in the text:

“John was sitting and reading a book.“,

then we don’t know for sure if John is John Brown or John Small without
further context.

2.2.1 Finding Unambiguous Character Occurrences

Now we describe our algorithm.

The first step of our algorithm is to find occurrences of the characters that
are unambiguous. Those are the places where a character is referred to by his
proper name and this name belongs only to that one character.

First we go through all tokens in the text and look if this token is a first name
or nickname for some of the characters in our list. If it is, then we decide if this
name is unique for that character with the help of preceding word (if it is a title)
or following word (if it is a last name) and our first names’ dictionary. If this
name uniquely identifies one character (no other character has the same name,
or the same combination of title and first name, or first name and last name),
then this mention is assigned to that character. Similarly if the token is a last
name for some of the characters, we decide if this last name is unique for one of
the characters with the help of the preceding word (if it is a title) and our last
names’ dictionary. If it is unique, we assign this mention to that character. We
store the ambiguous names that were not assigned for the later.

The second step differs depending on whether we want to use a model for
coreference resolution or not. We first describe our solution using a coreference
resolution model.
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2.2.2 Detecting All Occurrences

In the second stage we want to detect all occurences of the characters. That
means also mentions that refer to the character by pronoun or nominal. And
ideally we also want to resolve ambiguous mentions that were not resolved in the
first stage. The coreference resolution helps us with this task.

Coreference Resolution Model

We use a pretrained model for coreference resolution. This model outputs all
types of coreference clusters, not just clusters for our characters. Some clusters
contain for example mentions that refer to the same thing like table or to the
same location like house. Therefore, we need to filter the output of the model
and also assign clusters to individual characters.

We use a £ ast—corefE] model for coreference resolution in our work [Toshniwal
et al., 2020] [Toshniwal et al., 2021]. We’ve decided to use this model, because it
is optimized for long document coreference resolution.

Toshniwal et al.| [2020] point out that long document coreference resolution
is challenging because of the large memory and runtime requirements as other
recent works require to keep all entities in memory at the same time. Toshniwal
et al. [2020] propose a memory-augmented neural network that keeps in memory
only a small number of entities at the same time. It guarantees a linear runtime
in length of document and it outperforms rule-based systems.

We used the model trained on the OntoNotes dataset Bl This model is de-
scribed in [Toshniwal et al.| [2021], which is an extension of the work [Toshniwal
et al. [2020].

This model uses the SpaCy small English language model for tokenization,
the same one as we use in the other parts of the work. Therefore we know that
the tokens on the output of the coreference resolution model corresponds to our
tokens as the same tokenizer was used.

Processing the Coreference Clusters

We tried two different approaches for assigning coreference clusters to individual
characters. We describe both of them.

1. Assigning to the most prominent character

For each mention in the coreference cluster we determine if this mention
refers to some character by proper name, which we know from the first
stage. We count how many mentions each character has in the cluster. If
at least one character has at least one mention in this cluster, we assume
this cluster corresponds to a person. Then we assign all not-yet-assigned
mentions in this cluster to the character who has the most mentions by
proper name in this cluster. If it happens that two characters have the
same number of mentions, then it is decided arbitrarily (assigned to one of
them non-deterministically).

"https://github.com/shtoshni/fast-coref
’https://catalog.ldc.upenn.edu/LDC2013T19
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The mentions that were already assigned to some character are not changed.
We are looking for assigning only not yet assigned mentions. This is because
in the first stage we assigned only mentions that could be assigned uniquely
only to one character. Therefore, we assume that if in the cluster there
are mentions of different characters, then it is probably an error of the
coreference resolution model.

We can show an example:
A coreference cluster contains these mentions: John, he, John, his, he, Jody

We know that he, his, he are not-yet-assigned mentions, both John men-
tions are assigned to the character named John and Jody is assigned to the
character named Jody

Using this approach we assign he, his, he to the character John, because he
had two mentions in this cluster and Jody had only one.

In the ideal case, all of the coreference clusters would contain mentions
assigned only to one or zero characters.

This is the most simple approach - just assign to the character that was
mentioned the most times in this cluster.

. Assigning according to gender

We decided to try another approach that considers the gender of the cha-
racter. Looking at the output of the coreference resolution model we ob-
served that sometimes it happens that tokens that clearly refer to the cha-
racters with different genders, like “he* and “she“ end up inside the same
cluster. Therefore, we decided to propose a method that would try to
correct this type of error in the output of the model and see if it made any
difference.

We know genders for some of the characters from the first part of our system.
We also know the genders of some basic pronouns like he or she.

The approach is similar to the one above, but it takes into account the
gender, if known. First, we determine if the mention is referring to some
character by proper name for each mention in the cluster. We count how
many mentions each character has in a cluster, but we divide characters
according to gender to 4 categories - female, male, plural and unknown.
We also count how many pronouns for the female, male and plural gender
are in the cluster.

If there were no mentions of known characters, then we don’t assign men-
tions in this cluster to any character.

If there was a mention of some characters, we determine the most probable
gender for this cluster by counts of gendered pronouns and mentions of
known characters with known gender. The most probable gender is the one
that was detected in the most mentions from this cluster.

Then, we try to determine for each not yet assigned mention to which
character it refers to. We determine a gender of given mention either by
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gendered pronoun or gendered first name that occurred in a mention (other-
wise it is unknown). We detect the gender for the first name in the same
way as in the previous chapter. We use a list of pronouns that refer to one
of the genders.

We assign best female character found in the cluster to a female mention,
best male character found in the cluster to a male mention, best plural
character found in the cluster to a plural mention.

When the gender of mention is unknown, but there was a name of a cha-
racter in the mention we assign it the best unknown character found in the
cluster.

Otherwise we assign it best gender character found in the cluster.

We defined best overall, female, male, plural, unknown and gender character
like this:

o Best overall character: It is the character that has the most men-
tions from the cluster assigned. It is the same as the most prominent
character in the previous approach.

o Best unknown character: It is the character that has the most men-
tions from the cluster assigned from the characters with the unknown
gender. If none of the characters that is mentioned in this cluster has
an unknown gender, then it is the best overall character.

« Best female character: It is the character that has the most men-
tions from the cluster assigned from the characters with the female
gender. If none of the characters that is mentioned in this cluster has
female gender, then it is the best unknown character.

¢ Best male character: It is the character that has the most mentions
from the cluster assigned from the characters with the male gender.
If none of the characters that is mentioned in this cluster has male
gender, then it is the best unknown character.

o Best plural character: It is the character that has the most mentions
from the cluster assigned from the characters with the plural gender.
If none of the characters that is mentioned in this cluster has plural
gender, then it is the best unknown character.

« Best gender character: When the most probable gender is female,
male or plural then the best female, male or plural character is accor-
dingly assigned to this character. If the most probable gender is none
of these (because there were no mentions that would tell us anything
about the gender), then it is the best unknown character.

Why did we define it like this?

We decided to define it like this in the hope that if there are some gendered
pronouns, then they would end up assigned to the most prominent character
with the same gender. Best female/male/plural character should be the
character with the given gender that occurred in the most mentions in
the cluster. But when no character with the given gender was mentioned,
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then we assign it the best unknown character. The best unknown character
should be the character with unknown gender that occurred the most times,
but when no character with unknown gender was mentioned, then it is
the best overall character (character mentioned most times from all the
characters). So when we find some gendered pronoun like she, we assign it to
the best female character. That will be (in given order) either the character
that has a female gender and occurred the most times from the characters
with the female gender, or the character with the unknown gender that
occurred the most times from the characters with the unknown gender or
when no character with female or unknown gender was mentioned, than it
is just the most probable character from all the characters. We think that
this makes sense in a sense that we try to assign it according to gender, so
the gender would not clash and prefer known gender before unknown, but
in the worst case we assign it to the most prominent gender as a fallback, so
all mentions would be assigned to some character. We think that it should
not perform worse than the previous approach if we would have the correct
genders assigned to the characters.

For the mentions with unknown gender, we look if the character name is in
the mention and in that case assign it to the best character with unknown
gender. But if the character name is not in the mention we assign it the
best gender character as we assume that it is the most probable.

The third stage is the same for the coreference and without the coreference
approach (in non-coreference approach, the second stage is omitted).

In the third stage, we assign a character to all yet not assigned mentions by
proper name, that we stored for later in the first stage.

We do this by following rules in following order:

e If the character with that name is mentioned in the X tokens before this
mention, we assign a mention to the closest character with this name men-
tioned before.

o If the character with that name is mentioned in the X tokens after this men-
tion, we assign a mention to the closest character with this name mentioned
after.

o We assign it to the character with the most occurrences from characters
with a given name.

The number X is a parameter, we use 200 as default value, but it can be
changed.

The first two rules follow the idea that if the character with the given name
was mentioned close to this unresolved mention, it is likely that this ambiguous
mention belongs to the same character. For example, the character is mentioned
by his full name in the one sentence and in the following sentence, he is mentioned
only by his first name because it is clear from the context that it talks about the
same character. Even if his first name can be ambiguous in the terms of the
whole text (another character with the same first name occurs in another part of
the text).
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In the work of [Elsner| [2012] the same idea was used, but they did not look
at the X tokens before and after the mention, but at tokens inside the same
paragraph. We decided to change it, because in our work we do not work with
dividing text into paragraphs.

The third rule was also used in the work of |Coll Ardanuy and Sporleder| [2014].
The ambiguous name is matched to the most relevant character (with the most
occurrences) from the characters with the given name. This results from the idea
that it is the most probable that it refers to the character mentioned the most
times. We think that usually in the book there are not two main characters with
the same name, as it would be confusing. Usually when two characters have the
same name, only one of them is the main character and the other is some minor
character. So the assumption that ambiguous mention most likely refers to the
more relevant character is probably valid.

In this stage all mentions by a proper name should have a character assigned.

The fourth stage is done only when coreference is used. It consists of assigning
mentions in clusters that weren’t assigned in the second stage because no charac-
ter for that cluster was known at that time. But can be assigned after the third
stage because they contained some mention that was assigned in the third stage.
This stage is the same as the second, but it runs only on the not yet resolved
clusters that were stored in the second stage for later.

After all these stages we have a list of occurrences for each of the characters.
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3. Interactions of Characters

The goal of this part is to detect places in the text where two or more characters
clearly interact together. But what is an interaction? That is a hard question and
depends on our point of view. We will probably all agree that when characters
are speaking together, then there is an interaction between them. But dialogues
are not the only places that describe some sort of interaction. When characters
are doing something together at the same place at the same time, we can also
consider it interaction. For example, when they are dancing together, playing
a game, or just walking together somewhere.

Sometimes it is really hard to decide what is a boundary between an in-
teraction and not an interaction. For example, when one character is thinking
about what he was doing yesterday with some other character, does that sentence
describe an interaction or not? And what about a sentence that describes that
two characters are at the same place, but each of them is doing something else?

We can show an example of this type of sentence:

“Mary was reading a book and John was writing a letter in the living room,
when Adam walked in.“

3.1 Definition of Interaction in Other Works

First, we describe how an interaction is defined in the other works.

The exhaustive survey about the extraction of the characters and the interac-
tions between them, and creating character networks was made by |[Labatut and
Bost| [2019]. It describes different approaches that were used in previous works
for all of these problems.

According to Labatut and Bost| [2019], there are five distinct approaches for
detecting interaction depending on how we define the interaction. We briefly
mention each of them.

1. Co-occurrence

The interaction between characters is detected when they occur in the same
narrative unit. The narrative unit can be a certain number of sentences,
paragraphs, pages, chapters, or something more sophisticated, like a portion
of the text that is happening at the same location.

The first step of this approach is to define what a narrative unit is and
divide the text to these narrative units. Then the interaction between two
characters is detected when they are both mentioned in the same narrative
unit.

This approach has clear downsides. As we mentioned earlier, when two
characters are mentioned in the same sentence, it does not always mean
that they are interacting. It can be that one thinks about the other.

2. Conversations

In this approach, the interaction between characters is detected when one
character explicitly talks to the other. It focuses only on dialogues, and for
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each utterance of the dialogue, it determines which character is talking to
which character. The downside of this approach is that it does not look
in any way at parts of the book without dialogue. So it would perform
really badly on books where there is little to no dialogue and interactions
are mainly described by the narrator.

3. Mentions

This approach is similar to the one above in the sense that it only looks
at dialogues. But in this case, the interaction is detected only when one
character talks about the other character or explicitly mentions the other
character in his utterance.

4. Direct Actions

This approach looks at all types of action that occur between characters, not
just verbal interactions. The interaction is detected when two characters
perform some action together or when one character performs some action
on the other. The main problem is that we need to define what an action is,
and we must be able to detect these kinds of actions in text. Some authors
focus only on certain semantic classes of actions.

This approach works a lot better than the Conversations approach for the
texts with a small number of dialogues.

5. Affiliations

Actions and verbal interactions are not important for this approach. The
interaction between characters is detected when there is some sort of a rela-
tionship between them described in the text. For example, they are family,
friends, or belong to the same social group.

3.2 Our Definition

We will use a combination of Conversations and Direct Actions approaches. We
will try to detect which characters were speaking together for each dialogue.
Then, we will try to detect direct actions between characters in the sentences
outside of the dialogues. However, we define direct action in our own way.

Direct action between two or more characters is a situation in which these
characters are doing something together or are in the same place at the same
time, and at least one character knows about the other (e.g. sees him or hears
him) and this “knowing® is described. This action is supposed to be happening
in real time from the perspective of the story. That means that it is not just
a description of something that happened before the main storyline or it’s not
just a memory of the past of some character.

We define the interaction between two or more characters as a situation in
which these characters have a conversation or there is some other direct action
happening between them.

We know that this definition can sound a little ambiguous. There probably
are sentences about which one person would think there is an interaction based
on our definition and the other would think there is not. But we think it is really
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hard to define it unambiguously without listing all specific situations we consider
an interaction in the definition.

Why did we decide to define it like this? We think dialogues are a clear sign
of an interaction but not the only one. Sometimes there is a long section without
dialogues in the book, but there is clearly an interaction happening between
characters. For example, the author describes characters having some sort of
physical contact together. We decided to restrict only to situations happening in
the main storyline. We think that descriptions of what happened in the past or
what some character is thinking are not what we want to consider when we look
at how characters interact throughout the story.

We think that it is a challenging task to try to find interactions in the text
based on our definition that wasn’t really examined in the previous works.

3.3 Background

We describe what the Part-of-speech tags and dependency parsing is as it is used
in the following part of this chapter.

3.3.1 Part-of-speech Tags

A part-of-speech tag (or POS tag) is a label assigned to each token in the text
that indicates its’ part of speech. A part of speech is a category of words that
have similar grammatical properties. The examples of the POS tags are: noun,
pronoun, adjective, verb or adverb.

We use the POS tags that are given to the tokens by the SpaCy model] The
POS tags in the SpaCy are the Universal POS tagf]

In our work, we only look at whether the POS tag is a verb.

3.3.2 Dependency Parsing

Dependency parsing is the process of analyzing the grammatical structure of
a sentence and examining the dependencies between words in it. It is based
on the dependency grammar.

As described in Nivre [2010], the dependency structure of a sentence repre-
sents head-dependent relations between tokens. That means that each token in
a sentence has exactly one of the other tokens from the sentence assigned as his
head (besides the one token that is the root). Therefore the syntactic relations
of a sentence form a tree structure. This tree is called a dependency tree. Each
token has also a label assigned that describes his dependency on the head word.
These labels can be, for example, an object or a subject.

In our work, we use a dependency parser from the SpaCy libraryf’] The SpaCy
library offers us a simple way to navigate the dependency tree. We can access
the head token of the token, the children of the token (the tokens which are the
immediate syntactic dependents of the token) or all tokens in the subtree below
the token (the children of the token and children of the children and so on).

'https://spacy.io/usage/linguistic-features#pos-tagging
’https://universaldependencies.org/u/pos/
Shttps://spacy.io/usage/linguistic-features#dependency-parse
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The labels for the dependency relations that are mentioned in this chapter are
nsubj, which is a nominal subject and obj, which is an object. The list of all basic
dependency relations for English with the description can be found in Universal
Dependencied'}

3.4 Previous Works

3.4.1 Quote Attribution

Quote attribution (assigning speakers to quotes in the text) was examined in
many previous works. The approaches differ a lot, from rule-based systems to
the ones using machine learning and neural networks. We describe some of the
simpler approaches that inspired our work.

A Two-stage Sieve Approach

Muzny et al| [2017] proposed a deterministic sieve-based system. They divide
this task into two stages: the first one assigns quotes to mentions in the text and
the second one assigns mentions to characters. We only describe the first stage,
as we dealt with linking mentions to characters in the previous chapter.

The linking of quotes to mentions is done by a series of these deterministic
sieves:

o Trigram matching on these patterns: Quote-Mention-Verb, Quote-Verb-
Mention, Mention-Verb-Quote, and Verb-Mention-Quote, where the men-
tion is either a character name or a pronoun.

o Extraction of all verbs and their dependent nsubj nodes from the sentences
surrounding the target quote. If the verb is a common speech verb from
the list and nsubj node contains a character name, pronoun or an animate
noun from the list, then the target quote is assigned to the mention in nsubj
node.

o If there is only one mention in the paragraph of the quote in the text outside
the quote, then link the quote to that mention.

o If there is a vocative in a preceding quote, then link the target quote to
that vocative. They created a list of vocative patterns they use.

o If the target quote is at the end of the paragraph, then it is linked to the
final mention that occurred in the preceding sentence.

o The last two sieves assign non-assigned quotes according to a conversational
pattern — if the speaker of a quote in paragraph number n is known, then
this speaker is assigned to the quote in a paragraph number n + 2. This is
done because it is assumed that in a conversation two characters alternate
in speaking in paragraphs if none character was mentioned in this paragraph
explicitly.

‘https://universaldependencies.org/en/dep/
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These sieves are executed in the following order and when one sieve assigns a
mention to some quote, then this is not changed by the other sieves. The sieves
are applied only on not yet assigned quotes.

A Salience-based Technique

Glass and Bangay [2007] proposed a salience-based technique for quote attri-
bution. This method does not use any machine learning or knowledge-based
techniques. It consists of three phases: locating the speech verb for the quote,
locating the mention that is associated with that speech verb and selecting the
speaker from the list of characters that are participating in that scene. The fact
that this method is salience-based means that we create a list of candidates in
each phase (for example, a list of potential speech verbs) and a salience value
is assigned to each of the candidates. Then we choose the candidate with the
greatest salience.

We look at the first and second phase and not at the third phase as we already
have mentions linked to characters.

In the first phase, the list of all candidates for speech verbs is created from
the verbs in sentences surrounding the quote. A number of features, each with
its own salience value, are used to decide which verb is the speech verb. The
features are:

o Verb is marked as the main verb (root) in a sentence by a dependency
parser.

e Verb has one of the verbs: “communicate”, “verbalise* or “breathe“ as
an ancestor in a hierarchical lexical tree. This information is provided by
Wordnet [Fellbaum, [1998].

o Verb is within the adjacent sentence.

o Verbs are given a salience based on the proximity to the quote(verbs nearer
quote have larger salience).

All features except the last have a salience score of 1 point, the last one is a
value between 0 and 1 based on the distance.

The verb with the highest score is chosen as the speech verb for the given
quote.

In the second phase, the Actor (mention that is believed to be an actor for
that speech verb found in the first phase) is identified. The method is based on
the idea that there is a dependency identified by the dependency parser between
the speech verb and the Actor. But the authors point out that sometimes there
are more verbs in a sentence that create a verb chain (number of verbs linked to
the one main verb).

We can look at an example of the verb chain that Glass and Bangay| [2007]
mention. The following sentence from the Phantom of the Opera by Gaston
LeRoux is used as an example:

“She shuddered when she heard little James speak of the ghost, called her a
silly little fool” and then, as she was the first to believe in ghosts in general, and
the Opera ghost in particular, at once asked for details: “Have you seen him?” “
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she shuddered heard called asked
(main verb)

Figure 3.1: Visualisation of verb chain produced by the dependency parser from
the work of (Glass and Bangay| [2007]

We can see the dependencies between verbs and a subject in the given sentence
in fig. 3.1} The verb “asked was considered to be the speech verb and the goal
was to detect the word “she” as an actor. But we can see that the word “she*
is dependent only on the main verb (the head of the verb chain) and not on the
speech verb.

The actor is mostly the subject or object of the main verb that is not always
the speech verb. Sometimes, the speech verb is somewhere in the verb chain and
the actor is not dependent on that speech verb but only on the main verb.

Therefore, the algorithm traverses up the verb chain until the main verb is
found. Then the children of the main verb are candidates for the Actor. It looks
at whether the children contain subject or object relation and are not inside the
quote.

But the errors in dependency parsing of complex sentences are frequent, so
a salience-based technique is used to identify the Actor. All tokens that can be
reached by traversing in both directions from the speech verb are candidates for
the Actor. The features used are:

o The token is the subject or the object of the main verb.

e The token is a noun that is a descendant of the word person in WordNet
[Fellbaum), [1998| or is not a recognized English noun, which means that it
can be a name, or the token is a pronoun.

e The token is capitalized and it is not the first token in a sentence. If it
is the first token in a sentence, then it must not be a recognized English
noun. Tokens marked as prepositional-complements are excluded and not
given a salience.

o Abbreviations and personal titles, as “Mr.“, are not awarded a salience.

« Salience is awarded based on the distance to the speech verb (the closer is
better).

All features except the last one are given 1 point. The last one increments the
score of the candidate by multiplying the existing score by 0.1% for each word
between the speech verb and the candidate token.

The token with the highest score is chosen for the Actor.

3.5 Data

We used the LitBank datasetP] for creating rules in this part of the work. It con-
sists of a small portion of text (approximately 2000 words) of 100 different books

Shttps://github.com/dbamman/1litbank
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drawn from the public domain texts on the Project Gutenberd?| It contains books
of different genres and styles. The total dataset contains 210,532 tokens. This
dataset is annotated — it has entity annotations, event annotations, coreference
annotations and quotation annotations.

This dataset and the entity annotations were described in Bamman et al.
[2019Db] and the coreference annotations were described in Bamman et al.| [2019a].

3.6 QOur Approach

We suppose that we have a tokenized text and the coreference clusters of all
mentions (even anaphoric mentions like pronouns) for all characters in the text.
This is the output of the previous part of our program, where we tried to find all
characters with all their mentions. We take it as an input for this part. In this
part we only work with this input and we are not trying to correct it in any way.
This part of the system can be also used alone, when we have a gold data list of
the characters and the coreference clusters for these characters.

The output of this part should be the list of the places (indices of sentences)
where two or more characters interacted together with the characters that inte-
racted together in the corresponding sentences.

3.6.1 Dialogues

To begin with, we describe how we define dialogue in our work.

We assume that all direct speech in the text is within the quotation marks.
We call an utterance a sentence that contains a direct speech (contains some text
in quotation marks). For simplicity we ignore the fact that sometimes there is
a text inside the quotation marks, even if it is not a direct speech, as it does not
happen very often.

We decided that a sentence is part of a dialogue if it is an utterance or it is
a sentence right before or right after an utterance (her distance from the closest
utterance is 1). The sentences that are part of the same dialogue are considered to
be a dialogue. So the dialogue begins with one sentence before the first utterance,
then it contains some number of utterances, and between two utterances is zero
or one sentence that is not an utterance. The dialogue ends with one sentence
after the last utterance.

We can find dialogues easily with this definition; we firstly find all utterances
and then combine them into dialogues.

When we find all the dialogues, we must detect which characters are talking
together in each dialogue. We don’t really need to know exactly which utterance
belongs to which character. It is enough to know which characters were part of
that dialogue.

He et al|[2013] states that the speaker alternation pattern is often used in
dialogues between two characters. The speakers are usually identified explicitly
(by their name or pronoun referring to them) in the beginning of the dialogue
and then they take turns in following utterances. That means that odd-numbered
utterances belong to the first character and the even-numbered utterances belong

Shttps://www.gutenberg.org/

26


https://www.gutenberg.org/

to the second character. The reader knows who speaks with whom from the
context. If this pattern is violated (e.g. one of the speakers misses their turn or
a new speaker is introduced), a clue is provided in the text (e.g. explicit mention
of the new character).

In our work, we don’t need to care about who said which utterance in a
dialogue. We just try to find explicit mentions of the characters in the utterances,
sentences close to the utterances or as vocatives inside the direct speech. Then we
assume that these characters were present in the whole dialogue and that no other
unmentioned speakers were there. This assumption is not a hundred percent true,
but it works in most of the cases. It is unusual that the character is part of the
dialogue, but is not mentioned as a speaker in at least one of the utterances or
as a vocative in a direct speech. The previous works described before also work
with this assumption, but the whole algorithm was more complicated because
they tried to assign all the utterances to one of the characters.

We assign a whole dialogue to the found set of characters mentioned in that
dialogue and we ignore the fact that sometimes one speaker leaves in the middle
of the dialogue or joins in the middle of the dialogue. We assume that usually in
these cases there are at least two sentences without direct speech between them,
and so the dialogue is divided into two dialogues in our definition of the dialogue.

Now, we describe our algorithm for detecting characters that were part of
a dialogue.

We created a list of speech verbs manually starting with the lists defined in
existing works [Muzny et al., |2017] and adding new words that were synonyms
or that we found in our data.

The speech verbs are the following: say, cry, reply, add, think, observe, call,
answer, encourage, announce, tell, warn, ask, talk, continue, gasp, sigh, mumble,
shout, thank, explain, report, mutter, interrupt, yell, scream, wail, hiss, whisper,
whimper, rant, stutter, ramble, groan, grumble, moan, murmur, stammer, beg.

We detect that character is a part of a dialogue by following rules:

1. If a sentence contains a direct speech and there is a verb outside the direct
speech in this sentence and a mention of a character is in the subtree under
the main verb of the verb chain for this verb, and the character mention
does not have the word “about® in the syntactic descendants, then this
character is considered to be a part of the dialogue.

2. If a sentence does not contain a direct speech, but it contains a speech verb
from our list and a mention of a character is in the subtree under the main
verb of the verb chain for this verb, and the character mention does not
have the word “about® in the syntactic descendants, then this character is
considered to be a part of the dialogue.

3. If a mention of a character is in a place of vocative in the direct speech,
we consider this character to be a part of the dialogue. We use 9 vocative

patterns for finding the vocatives that are used in the work of Muzny et al.
[2017]. [T

"We added one new vocative pattern to 9 patterns from Muzny et al.[[2017] that we observed
in our data: a mention between “ and !
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The first two rules were inspired by the work of |Glass and Bangay| [2007]
described above. We used the idea that when we want to find a speaker we look
at all the descendants of the speech verb or when the speech verb is in the verb
chain, then of the main verb of this chain.

However, we simplified it a little bit, as we do not only want to find a speaker
but also the listeners and all the people that were part of the dialogue. For
example, in the sentence: “John said to Mary: "Hi!”“ we ideally want to detect
both John and Mary. And in this case both John and Mary will be the syntactic
descendants of the verb say.

Because of this, we look at all descendants of the verb and don’t look at their
dependency tag.

All characters that were detected by these three rules are considered to have
interaction in the places of the detected dialogue.

We also decided to treat all verbs that are in an utterance but not inside
quotes as a speech verb as it should work like trigram matching in the work of
Muzny et al.| [2017].

In the sentences without direct speech, we only work with verbs that are in
our list of speech verbs, as the sentences surrounding the utterances don’t have to
always describe something that is connected only with the characters that were
part of the dialogue.

We added the rule, that the mention of a character can’t have the word
“about® in the syntactic descendant to be considered part of the dialogue. This
was added because we think that when there is in a sentence the word about
before the mention, then the character does not need to be in the same place.

For example: “John was speaking about Mary.“

It oftens describes that someone was talking about someone else, but the
person that they were talking about is often not part of the dialogue.

3.6.2 Direct Actions

The second part consists of finding direct actions between characters outside of
the dialogues. It is a hard task to do automatically because sentences without
the context are often ambiguous. We decided to only look at sentences, in which
two or more characters are mentioned. We do not try to detect an action that
is described in more sentences and none of the sentences mentions more than
one character because that would be an even more complex task. When we
find a sentence that mentions more characters, we try to decide whether that
sentence indicates direct action between these characters or not. We can show
some examples of simple sentences, where two people are interacting:

“John walked with Mary to the cinema.“
“John and Mary played the game together.“

And when they are not interacting:

“John was thinking about Mary.“
“John and Mary are doctors.”

We can see that the fact that two characters are mentioned in the same sen-
tence doesn’t mean they are interacting. And sometimes we need to know further
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context to decide. In our work, we tried to find places where it is clear that people
are interacting.

We put together a list of “action“ verbs. Action verbs are verbs that describe
some direct action and when two character’s mentions are syntactically depen-
dent on that verb, then there can be an interaction happening between these
characters.

Examples of these verbs are: go, meet, touch, climb, walk, look, warn, gaze,
sit, run, hit, play, dance, hold, follow, approach, laugh, kick, listen, dine, hug,
kiss, eat, drink.

Whole list of these verbs is in the appendix [A.1]

We created this list by analyzing sentences in which two or more characters
were mentioned. Firstly, we generated all sentences with mentions of more cha-
racters from our dataset (described in section , which has annotated mentions
of characters. Then we looked at these sentences and we tried to decide whether
there was an interaction between them for each of the sentences. We tried to
compare the sentences that described the interaction and that not from the point
of a syntactic structure and words they contained. We tried to observe some
rules that could help us decide. We also tried to find out if there are verbs that
repeat in the sentences with interaction and don’t appear in a sentences without
interaction or when they appear in a sentence without interaction, there is a
simple rule that could rule out this sentence from the others with interaction (of
course, just in our sample of sentences).

We found out that there are verbs that repeat a lot in the sentences with
interaction, so we put them in the list of action verbs also with some of their
synonyms.

However, we also noticed that all of these action verbs can be used in a sen-
tence that does not describe direct action, as we defined it. Sometimes the sen-
tence describes something from the past, something from the future or represents
just something the character dreams of. Sometimes, the sentence describes some-
thing that is happening often, but not right now. We show some examples of
these types of sentences:

e John and Mary often watched TV together.
o It was not possible for Jane to meet Mr. Brown.

o How much more he told her as to his occupation it was impossible for Win-
nie’s mother to discover.

o We will go there and meet David.

o She couldn’t even imagine what she would do if she saw him.

Therefore, we come to the conclusion that we must also look at how the
sentence looks, what grammar tense is used, or what other words are in the
sentence.

From our analysis of many sentences from our data, in which these verbs
appeared, we created the following rules for deciding whether the sentence de-
scribes interaction or not.
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Rules

1. If a sentence contains an action verb from our list and two or more mentions
of characters are in the subtree under the main verb of the verb chain for this
verb (we don’t count character mentions that have the word “about® in the
syntactic descendants to these mentions), then this sentence is a candidate
for interaction. But this sentence can be ruled out by some rule below.

2. If the word before the action verb or the head token of the action verb is
one of the following:

{(had((7 M7d((7 élwz'll“; {(7ll4{’ ((would((; ((n0t4(7 ((n7t{(’ ((could(t; ((m,l‘ght((; ((ShOuld{(7

then we rule out this sentence. It is because these words in most cases
indicate that something happened in the past, will or can happen in the
future or does not happen.

3. If the two words before the action verb are “going to“, then we rule out
the sentence, because it probably describes something that is just going to
happen in the future.

4. If the subtree under the main verb of the verb chain for this action verb
contains the word or subsequent words from this list:

“once”, “always®, “never”, “usually®, “often”, “seldom®, “now and then*,
“any time“, “every time“, “sometimes”, “ever”, “could”, “might®, “if“,
“should*, “since”, “until®,

then we rule out the sentence. It is because these words probably indicate
that the action is not happening right now, but happened in the past or
is happening repeatedly (but not right now), or does not happen, or can
happen in the future.

The sentences that were not ruled out, are detected as describing the inte-
raction between the mentioned characters (besides the character with the word
about in his syntactic descendants).

The examples of sentences from our data, that were detected by these rules
as an interaction:

o Words passed between Clayton and the captain, the former making it plain
that he was disqusted with the brutality displayed toward the crew, nor would
he countenance anything further of the kind while he and Lady Greystoke
remained passengers.

o She glanced toward Jock in the hallway, then lowered her voice.

o While Tom was eating his supper, and stealing sugar as opportunity offered,
Aunt Polly asked him questions that were full of guile, and very deep — for
she wanted to trap him into damaging revealments.

o But just that instant the officer turned to leave Lord and Lady Greystoke,
and, as he did so, tripped against the sailor and sprawled headlong upon
the deck, overturning the water-pail so that he was drenched in its dirty
contents.
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o We know only that on a bright May morning in 1888, John, Lord Greystoke,
and Lady Alice sailed from Dover on their way to Africa.

It is clear that this rule-based system will not work in every situation. There
are many exceptions that we don’t cover and probably all of the rules are not
right in every situation. These rules are also hard to evaluate, because there is
no annotated data for this task. Also, some sentences are ambiguous without
further context (and sometimes even within context) so that we cannot really
tell if the sentence should be detected as an interaction. Therefore, we evaluated
our system during training (creating and testing rules) and during testing (trying
these rules on unseen texts without further improving these rules) only by hand.
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4. Graphs

We created interactive graphs for visualizing the results of our work. We use two
types of graphs. One for the occurrences of characters (an output of the chapter [2))
and one for the interactions between characters (an output of the chapter [3)).

4.1 Occurrences Graph

The first type of graph shows the occurrences of individual characters throughout
the book. On the x axis, there are the numbers that correspond to the individual
tokens. For example, if the input text has 2 000 tokens, then the x axis represents
the numbers from 0 to 1 999, which are the indices of the corresponding tokens.
On the y axis, there are individual characters. Every character has a different
position on the y axis. We can choose what is the minimum number of occurrences
for the character to be shown in the graph, because we probably don’t want too
many characters shown (mainly the ones that occurred only a few times).

There is a point on the graph in the (z,y) coordinates, when the character in
the y position has an occurrence detected for the token number x. We represent
the occurrences of the character as a list of indices of tokens that correspond to
the mention of the given character. Therefore, it is easy to create this graph when
we have this information.

When you click on the point on the graph, the sentence with the corresponding
token is displayed and the token that corresponds to the z coordinate is high-
lighted in the sentence. More about this is in the section [7.3.2]

4.2 Interactions Graph

The second type of graph shows interactions between characters throughout the
book. On the x axis, there are numbers that correspond to the sentences in
the text. In this graph, we work with sentences instead of tokens because we
detect interactions for the whole sentences. For example, if the input text has
500 sentences, then the x axis represents the numbers from 0 to 499, which are
the indices of the corresponding sentences. On the y axis, there are individual
characters the same way as in the occurrences graph. We can also choose the
minimum number of occurrences in interactions (number of sentences in which
it is detected that the given character interacted with another character) for the
character to be shown in the graph.

There is a point in the coordinates (z,y) if the character in the position y has
an interaction detected in the sentence number x. We represent the interactions
for each character as the list of indices of sentences which were assigned to the
given character as an interaction. The interaction for the given sentence is always
assigned to at least two characters. So when we want to find which characters
interacted together at a certain time in the book, we look at the vertical slice of
the graph. If some of the characters have the point on the same coordinate =z,
then they interact in the sentence number .
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When you click on the point on the graph, the sentence with the corresponding
number is displayed. More about this is given in the section [7.3.2]

4.3 Examples of the Graphs

We show an example output of our program for the short samples of three novels.
Both types of graphs are created on the same sample for each novel. These
samples are in the electronic attachment to this thesis. Position in the text
is measured by number of tokens in the occurrences graph and by number of
sentences in the interactions graph. That is why the numbers of positions are
different for the occurrences and interactions graph for the same sample.

In fig. and fig. [1.2] we can see the occurrences and the interactions graph
for the sample from Wuthering Heights.

In fig. and fig. [£.4] we can see the occurrences and the interactions graph
for the sample from The Little Women. On the occurrences graph, there are only
characters that occurred at least 10 times in the sample, because there were too
many characters.

In fig. and fig. [4.6] we can see the occurrences and the interactions graph
for the sample from The Scarlett Letter. On the occurrences graph, there are
only characters that occurred at least 10 times in the sample.
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Name of the character

Timeline of interactions of characters
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Figure 4.2: The interactions graph for the sample from Wuthering Heights.
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Figure 4.1: The occurrences graph for the sample from Wuthering Heights.
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Timeline of occurrences of characters
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Figure 4.3: The occurrences graph for the sample from The Little Women.
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Figure 4.4: The interactions graph for the sample from The Little Women.
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Name of the character

Timeline of occurrences of characters
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Figure 4.5: The occurrences graph for the sample from The Scarlett letter.
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Figure 4.6: The interactions graph for the sample from The Scarlett letter.
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5. Evaluation

5.1 List of Characters

5.1.1 Dataset

We evaluate detecting the characters on the dataset that consists of 30 novels
listed on SparknotesE] with the corresponding lists of characters. These character
lists contain mostly main or important characters. This dataset was used as
a second dataset for evaluation in the work by |Vala et al.|[2015]. It was mentioned
that it omits many minor characters, but it serves as a baseline of those characters
that any method should be able to detect. We think that our work does not
concentrate on finding the minor characters that aren’t important for the plot
and don’t interact much with the other characters. We also do not try to detect
unnamed characters in contrast with Vala et al| [2015]. Therefore, we think
that it is sufficient to evaluate on this dataset for our purposes. We also didn’t
look at the novels in this dataset and didn’t use them in any way during the
implementation.

The 30 novels in this dataset are the public domain texts published on the
Project Gutenberg?l The list of the names of these novels is in the appendix [A.2]

We use the character lists that are in the attachment to the work of [Vala
et al. [2015] as our gold list of characters. We excluded “the Narrator“, which
was included in some of these lists, from the gold lists as we don’t try to detect
the narrator as a character in our work.

5.1.2 Getting Data for Evaluation

We run the first module of our work for finding names of the characters, merging
different namings for one character and getting a list of character names as a re-
sult, as was described in chapter [I| on these novels. We run it two times; once
using the NameTag 2 and once using the SpaCy library as a NER tool. We save
the full names of the characters found by our system for evaluation.

Then we assign all character names found by our system to zero or one cha-
racter from the gold list of characters. First, we try to do it automatically.

We describe the assignment of one character generated by our system. We
assign a name of the character to the character in the gold list with exactly the
same name. If none of the characters in the gold list has the same full name, we
split the name on whitespaces to more words, and we count how many words in
the given character’s name are the same as a word in a name of the character
in the gold list for every character in the gold list. We assign the character to
the gold character with the highest number of the same words in their names. If
none of the characters from the gold list contain any of the words in the given
character’s name, we don’t assign the character to any of the gold characters as it
probably means that it is the name of a character that is missing in the gold data
or the name is not even a character name, but some error. If two or more gold

1sparknotes .com
’https://www.gutenberg.org/
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character names contain the same number of words from the given character’s
name, then we assign the character to one of them arbitrarily. It does not matter
much, because we will look at the data after this automatic assignment.

After assigning all the characters, we looked at this automatic assignment
and corrected the errors by hand. We decided for each of the names that were
assigned to the gold character if it really is a name of the character or if this name
cannot refer to some other character. For example, if an automatic assignment
assigned “John Smith“ to the gold data character named “John Moore*, because
they are both called John, we erased it, because we know this can’t be the same
character. But if the name was ambiguous, we assigned it to all the characters
in the gold data that it may refer to. For example, if the character name was
only “Smith“ and in the gold data there were two characters with the last name
“Smith“, we assign this character to both of them, because we cannot decide
which one it refers to.

Therefore, after this step, some of the character names can be assigned to more
than one character, if they are ambiguous in the context of the gold data list.
We also find character names that occurred in the novel with different spellings
as in the gold data list. This happened for the books that were originally written
in Russian, as there are probably different versions of the English translation of
these names. We did this phase only by hand, so it is possible that we overlooked
some errors.

After this phase, we have a list of character names generated by our system
for every character in the gold list that may refer to this gold character. If the
length of this list is zero, it means that our system did not find this character at
all. If the length of this list is one, it means that our system found this character
and only one of the found characters has a name that can refer to this character,
so our system probably succeeded in merging different namings for this character
into one (or the character was referred to only by one name throughout the whole
novel). If the list has length bigger than one, it means that our system found
the character, but more characters have the name that could potentially refer
to this character, so probably some of the different namings for this character
weren’t merged together. It could also happen that some of these names are
ambiguous and looking only on the gold list it seems that the name can refer to
more characters, but in reality, there is another character with the given name
that is not present in the gold list and the name refers to him.

These different namings can be merged or it is decided to which of the cha-
racters the ambiguous names refer to in the second part of our work — the module
for finding occurrences chapter 2 It could happen that all of the occurrences of
the names we assigned to more characters would be resolved to refer to only one
of the characters, and some of the characters would have zero occurrences as
a result. We can tell that the character with zero occurrences isn’t a character at
all, because he was merged with some other character during the second part of
our program. But now we only focus on evaluating the first part of our program
and don’t consider this.

5.1.3 Evaluation

We decided to evaluate the accuracy of two different metrics.
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The first one is how many of the characters from the gold data were found by
our system percentage wise. That means how many of the gold characters have
at least one character assigned divided by the number of gold data characters.
We call this a Found characters metric.

The second one is how many of the characters from the gold data were found
only once by our system percentage-wise. In this case, we only count how many
of the gold characters have exactly one of the characters assigned divided by the
number of the gold data characters. The accuracy of this metric will be lower or
equal to the accuracy of the first metric. We call this a One-to-one characters
metric.

We think that the first metric is more important because when some character
was not found at all by our system, then it means he will not be found later, as
we only work with the characters found by the first module. The low value for
the second metric does not necessarily mean the system would work bad in the
end, as some of the characters may be merged into one in the second phase by
using the coreference resolution model as we mentioned above.

We evaluated it for all the novels in the dataset individually and then made
an arithmetic average of the results. The results are shown in

Metric NameTag 2 SpaCy
Found characters 0.799 0.710
One-to-one characters 0.569 0.489

Table 5.1: Accuracy of character detection on SparkNotes dataset.

We see that NameTag 2 results are slightly better than the SpaCy one in both
metrics. We also observed when looking at the data that NameTag 2 could some-
times find character names that SpaCy didn’t find, but it can be just on this
data.

The characters that weren’t found at all were sometimes the unnamed char-
acters or characters that were only described by a nominal, like “Aunt®, that we
do not detect. Some of the names were not detected by the NER and they were
often unusual names like “Kiche“ or “Mit-Sah“ and that was probably why the
NER did not find it. The accuracy measured by the first metric was pretty high
for most of the books (higher than 0.75) and was equal to 1 for 7 books using
the NameTag 2. But there were a few books with low scores that decreased the
average. These books often had only a few characters so even not detecting 1 or
2 of them has made a big difference percentage wise.

The main problems in merging different names together, which we observed
in the data, were the following:

e Our lists of honorifics do not contain some of the honorifics used in this
dataset like King or Queen. It resulted in treating these words as first
names and not the honorifics. Adding these words to the lists of honorifics
would probably improve the result of the second metric a bit.

e Some of the characters are called in the text by 2 different honorifics in
different parts of the book. For example, Mr. Smith and Master Smith refer
to the same character. In our work, we only consider that a character can
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have 0 or 1 honorific, and this results in creating two different characters,
one called Mr. Smith and the other Master Smith.

o The NER tool sometimes tags as part of a character’s name even the one
word before the name, and if it is capitalized (because it is the beginning
of the sentence), we treat it as a name in our work. The examples from
the data are Dear Katherine, Ah Sarah or Barefooted Friar. This results
in treating Dear as a first name and Katherine as the last name of one
character. And if Katherine is called by her first and last name together,
it is not merged with the mention Dear Katherine. It is treated as another
character, even if it is the same person.

o Sometimes the NER tool tags more words that contain mentions of two
characters as one character, for example: Mr. Michelangelesque!”—little
Bilham or Charles and Hal. We do not correct this in any way and treat it
as a new character.

o There are characters with a middle name in the dataset, mostly in the books
that are originally written in Russian. For example, Pyotr Petrovich Luzhin.
This decreased the accuracy of the second metric for these books, because
the character was sometimes called Petrovitch Luzhin and other times as
Pyotr Petrovitch. Our system didn’t merge these two names because we
treat Petrovitch as a first name in the first case and as a last name in the
second case as we don’t use a concept of middle names in our work.

o Guessing the genders of characters based on the first name does not work
on the books in which the names of the characters aren’t of English origin
as our lists of gendered names contain only English names.

We decided not to evaluate how many of the characters found by our system
were in the gold list, as many of the found characters were correctly found, but
are not in the gold list, because they are only minor characters. But we observed
in our lists of characters that the NER tool also tags some of the single capitalized
words as a name, even if it is not a name. Examples from the data are: “Ah“,
“Aha”, “Shall”, “Thou”, “Hush®, “Hah®, “Ay“, “Go*“

In the electronic attachment, there are the files we created during the eva-
luation. In the characters subdirectory of the results directory, there are the
gold lists of characters (in gold subdirectory) and the csv files we generated and
than corrected by hand (in key_nametag and key_spacy subdirectories). The
csv file contains the name from the gold list in the first column and then the
names assigned to the given gold character in the same row in other columns.
In the last column, there is a number of assigned characters for the given gold
character. In the last row, there is accuracy of the first and second metric for
this novel.
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5.2 Character’s Occurrences

5.2.1 Dataset

We evaluate the second part of our system on the first fifteen books from the
dataset of novels from Project Gutenberg as the first part (section . But we
used only the sample consisting of the first few pages of each book (usually the
first chapter or the first few chapters, if chapters were short) and not the whole
novels. These texts are attached to the thesis in the data directory.

5.2.2 Evaluation

We want to compare the coreference clusters we obtain by using the first and the
second methods to assign the clusters to the characters described in the chapter[2]
The first method assigns a cluster to the character with the most mentions in the
cluster. The second one also considers genders of characters and pronouns.

We run our tool on the samples from the first fifteen novels from the Spark-
Notes dataset two times; once using the first method and once using the second
method for assigning mentions from coreference clusters to the characters. We
save the output clusters and also mentions that were assigned to characters so
we could look at them.

We found that for 10 of the 15 texts, the clusters were exactly the same. They
differed slightly for 5 out of 15 texts, but the differences were not significant; it
was just a few mentions assigned to different characters. In the sample from the
book “The Scarlett letter”, we observed that the character named Hester Prynne
was assigned both the female and male pronoun mentions using the first method,
even when the character is female. Some of the male pronoun mentions were
assigned to another character using the second method.

There were also slight changes in the assignment of plural pronoun mentions,
like “they“, in these 5 texts.

We couldn’t evaluate it more precisely as the texts aren’t annotated for this
task. But judging from only the small number of changes in only 5 of 15 samples,
we think that the differences between using these two methods will be small.
Therefore, using the second method is probably not worth it as it is more compli-
cated and runs a little longer. But it would be useful to evaluate it on the longer
annotated texts that are sampled from more books.

In the electronic attachment, there are the files we created during the evalu-
ation. In the occurrences subdirectory of the results directory, there are the
json files we generated and than compared (in gendered and most_prominent
subdirectories for the two approaches). The json file contains tokenized text and
the coreference clusters.

5.3 Interactions

5.3.1 Dataset

We evaluate the third part of our system on the same dataset of novels from
Project Gutenberg as the first part (section |5.1.1)). But we used only the sample
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consisting of the first few pages of each book (usually the first chapter or the first
few chapters, if chapters were short) and not the whole novels. The samples for
the first 15 novels are the same as in the section 0.2l These texts are attached to
the thesis in the data directory.

5.3.2 Interaction Sentences

We run our whole program on these novels. We save the sentences found with
our system from the text that were marked as interaction sentences (besides
dialogues) with the list of characters that were detected to have an interaction in
the given sentence. We looked at these sentences, and for each of the sentences we
decided if the sentence really describes the interaction as defined by us between
some of the characters. We look only at sentences detected by our system. We
don’t look at the original texts and don’t search for all of the interaction sentences
in them. We decided not to evaluate whether the interaction is happening between
the detected characters or between other characters in the sentence because it
would penalize bad mention assignments to the character. For example, if there
is the word “she“ in the sentence, we don’t care about what character it refers
to. We just evaluate if the sentence describes an interaction between the mention
“she* and mention of some other character.

Then we computed the precision: how many of the retrieved sentences really
describe the interaction between at least two character mentions. This isn’t the
best way to evaluate the system, but without preannotated data for this task, we
couldn’t evaluate it much better. Our decision whether the sentence describes
interaction or not might not be a hundred percent correct as we only did it by
hand. When we could not decide just based on the given sentence, we also looked
at the surrounding sentences in the original text.

We excluded the book “Ulysses® from the dataset as the dialogues in this
book are inside the quotation marks, and so the system outputted the text inside
dialogues as interaction sentences. At least one interaction sentence was detected
in 19 from 29 remaining samples.

Our system detected 77 sentences as interaction sentences in these samples.
We evaluated that 47 out of these sentences really describe the interaction. This
gives us the precision of 61%.

Our observations during doing this evaluation are the following:

o The number of sentences detected as interaction is really low for most of
the texts. It might be different if we looked at the whole book or if we used
a book that is better suited for this task in the way that it contains less
dialogues and more sentences that describe interaction. In the samples used,
there were many dialogues. Another problem can be that an interaction is
not described by only one sentence, but by more sentences together. We
look only at sentences that contain the mentions of more characters.

o The sentences that were detected and don’t describe an interaction some-
times described something the character is only thinking about, or some-
thing that could happen in the future, or happened in the past. Our rules
did not rule it out because the sentence did not follow the basic pattern we
implemented.
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« Some sentences were detected as an interaction because of the token in the
sentence that was treated as a character mention by our system, but it was
not. The examples are names of cities or places. These errors would not
happen, if we had the gold data for the mentions of characters and used
our system with them.

e The results could probably be better by creating new rules or changing
some of the rules. Action and speech verb lists could also be extended or

some semantic relations between words could be explored, for example, by
using WordNet [Fellbaum), [1998].

Examples of the interaction sentences detected in the data that really describe
an interaction:

o Stepan Arkadyevitch saw Matvey wanted to make a joke and attract atten-
tion to himself. (from the book “Anna Karenina®)

o He looked at her, and the fury expressed in her face alarmed and amazed
him. (from the book “Anna Karenina“)

o As soon as it was moonlight, and that poor thing began to crawl and shake
the pattern, I got up and ran to help her. (from the book “The Yellow
Wallpaper®)

o She laughed and said she wouldn’t mind doing it herself, but I must not get
tired. (from the book “The Yellow Wallpaper®)

o Mr. Heathcliff and his man climbed the cellar steps with vexatious phlegm.:
I don’t think they moved one second faster than usual, though the hearth was
an absolute tempest of worrying and yelping. (from the book “Wuthering
Heights*)

o [ uttered an expression of disqust, and pushed past him into the yard, run-
ning against Earnshaw in my haste. (from the book “Wuthering Heights*)

o At last he came up to Morio. (from the book “War and Peace®)

e On his way to the aunt he bowed to the little princess with a pleased smile,
as to an intimate acquaintance. (from the book “War and Peace®)

o He now took the stick from my hands and examined it for a few minutes
with his naked eyes. (from the book “The Hound of the Baskervilles“)

Examples of the detected sentences in the data that do not describe an inte-
raction:

o This spectacle drove me back immediately; I took my hat, and, after a four
- miles” walk, arrived at Heathcliff’s garden-gate just in time to escape the
first feathery flakes of a snow shower. (from the book “Wuthering Heights*)

The “Heathcliff* was detected as a character mention, but it refers to the
garden-gate, not to the character.
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o She conceived him as rich, but as fearfully extravagant — saw him all in
a glow of high fashion, of good looks, of expensive habits, of charming ways
with women. (from the book “The Turn of the Screw")

This sentence just talks about what “she“ thinks about “him*.

e Had he gone to his aunt’s, he would have been sure to meet Lord Goodbody
there, and the whole conversation would have been about the housing of
the poor, and the necessity for model lodging-houses. (from the book “The
Picture of Dorian Gray“)

This sentence describes what would happen if he had gone to his aunt. It
is not happening now.

o FEvery day at eight in the morning he was brought his breakfast by Mrs.
Grubach’s cook — Mrs. Grubach was his landlady — but today she didn’t
come. (from the book “The Trial“)

This sentence describes what is happening every day, but not now.

o Now, her bedside table had been pulled into the middle of the room to be
used as a desk for these proceedings, and the supervisor sat behind it. (from
the book “The Trial“)

The token “her” does not mean that the character it refers to is at that
place. It talks about her bedside table.

In the electronic attachment, there are the files we created during the evalu-
ation. In the interactions subdirectory of the results directory, there are the
txt files we generated and evaluated by hand whether they describe interaction
or not(in interaction_sentences subdirectory). The txt file contains sentences
detected by our system with the characters mentioned in them and our comment
whether it is an interaction or not.

5.3.3 Dialogues

We evaluate the assignment of characters to the dialogues. We used 10 samples
from the dataset for this purpose. The names of the used samples are in the
table 0.2l

For each dialogue, we save the characters that were assigned to be part of the
dialogue. We then read the dialogues and decided which characters were really
part of the dialogue. We created our gold data this way, so that we could compare
with the output of the system. We look only at the dialogues that were detected
by our system as an interaction between two or more characters.

We compute precision and recall for each of the individual dialogues. The
precision is computed as the proportion of how many of the detected characters
were in the gold data. So we count how many detected characters are in the gold
data and divide it by the number of detected characters. The recall is computed
as the proportion of how many of the gold data characters were detected by our
system. So we count how many detected characters are in the gold data and
divide it by the number of the gold data characters.
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We then compute the arithmetic average for all of the dialogues in one sample
and finally the arithmetic average over these 10 samples.

In the table we can see the precision and recall for the individual samples
from novels and in the last row, there is an average precision and recall for these
10 samples (all numbers in the table are rounded to three decimal places).

Name Precision  Recall
The Ambassadors 0.929 0.929
Wuthering Heights 0.976 0.880
The Call of the Wild 1 0.583
A Tale of Two Cities 1 1
Ilvanhoe 1 0.75
The Turn of the Screw 0.5 0.333
Northanger Abbey 1 0.75
The Time Machine 0.833 0.329
The Scarlett Letter 1 0.833
Kidnapped 1 1
Average 0.924 0.739

Table 5.2: Precision and recall for the assignment of characters to the dialogues.

Our observations during doing this evaluation are the following:

o In most of the texts, there were a lot of sentences that were part of the
dialogue. Usually, more than half of the sentences from the text contained
direct speech or were close to the sentence with the direct speech and talked
about the characters that were a part of the dialogue. It means that at least
for these texts, it is useful to focus on the dialogues when we talk about
finding interaction between characters.

o We think that our approach for finding characters in dialogues as vocatives
and speakers is successful for most of the dialogues. In most cases, all of the
detected characters were really part of the dialogue. This results in pretty
high precision. The errors of the type that character was detected as a part
of dialogue even if he was not there were mainly caused by the mention that
was assigned to him even if it belonged to some other character. This is the
error of the coreference resolution step. These mistakes wouldn’t happen if
we had the gold mentions for each of the characters.

e The low recall value is caused mainly by not detecting characters that are
not even in our list of characters. Those are mainly unnamed characters
or characters with unusual names or the narrator, like we discussed in sec-
tion These characters couldn’t be assigned to the dialogue by our
system. If we used a gold list of characters and mentions corresponding to
them as an input, we think that our system would have higher recall.

o We observed that some of the direct speeches weren’t detected as an inte-
raction because there were at least two sentences without the direct speech
between the sentences with the direct speech. That means that these utte-
rances were considered to be separate dialogues consisting only of one utte-
rance (and surrounding sentences without direct speech) by our system.
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Because of that, to each of these dialogues with only one utterance was
assigned only one character. We should consider whether our limit of maxi-
mum of one sentence between the utterances is not too strict.

In the electronic attachment, there are the files we created during the eva-
luation. In the in dialogues subdirectory of the interactions subdirectory of
the results directory, there are the txt files we generated and evaluated by hand
whether. The txt file contains sentences detected by our system as a dialogue.
After the last sentence in a dialogue (dialogue consists of more sentences), there
are the characters our system detected as being a part of the dialogue. On the
next line, there are the gold data, we created by reading the dialogue. Below
that is computed precision and recall for the dialogue. One file contains all of the
dialogues for one sample from the book.
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6. Implementation

Our work is divided into four main modules - Character detection, Occurrences
detection, Interaction detection and Graph plotting. All of these modules can
be used independently, if we use them with correct parameters. So we can, for
example, use the Interaction detection module for finding interactions on the gold
data list of characters and their mentions.

We have a main.py file that binds and uses the first three modules together.
The module for the graphs is used separately. Now, we describe these modules.
The installation, directory structure and usage are described in the next chapter
chapter [7]

6.1 Character Detection

We describe the main classes in this module, which is in a find_characters.py
file.

We have the class Character representing one character — all of the parts of
his name, his id, guessed gender, a list of his occurrences in the text, number
of his occurrences in the text and list of his occurrences in interactions with
other characters. The list of occurrences contains the numbers corresponding to
the tokens that are mentions of the character in the tokenized text. The list of
interaction occurrences contains the numbers corresponding to the sentences in
which the interaction for the character was detected.

The goal of this class is to store all relevant information for the character in the
same place. The instance of a Character is first created without any information
besides the id. Then the information is step by step added to the character as all
of the modules are executed. In the end, we can store the Character instance
(by using a pickle) for further use. When we want to further evaluate the results
or just look at the graphs, we can just load these characters and don’t have to
process the text all over again. It is useful because processing of the text can
take some time.

We have the class SpacyTokenizer, which has a method for processing and
tokenizing the input text and returns a SpaCy Span object of Tokens and also
a list of tokens in the string form. It uses just the basic small English model for
tokenization} It also contains a function for dividing the tokens to lists according
to sentence boundaries detected by SpaCy. It takes a SpaCy Span object and
returns the list of lists of tokens, where one sentence is in one list. It also returns
a list of the cumulative lengths of sentences. That is the sum of the lengths of
the sentences before the given sentence.

The main class of this module is CharactersFinder. It has methods that
do all the work described in chapter [Il When we create the instance of this
class, we specify a spacy parameter that decides whether SpaCy or NameTag 2
is used as a NER tool. We also specify two other parameters: doc, that is
a SpaCy Span object and a list of tokens. We can obtain these parameters
using the class SpacyTokenizer first.

"https://spacy.io/models/en#en_core_web_sm
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Then we can find all characters in the tokenized text by calling the method
find_all characters. This method takes one parameter, which specifies the
minimum number of occurrences for the name in the text to be considered
a character. The default value for this parameter is zero. It returns the list of
Character objects, that have all known parts of name and gender assigned, the
list id_to_character that is a dictionary that maps the ids to the characters,
first_names and last_names, which are dictionaries that contain a list of all
characters with the given first/last name

6.2 Occurrences Detection

We describe the module, which is in a find_occurences.py file.

The class in this module is called OccurrencesFinder. It has different meth-
ods that do all the work described in chapter 2 When we create the instance of
this class, we specify these parameters:

« use_coref that tells whether to use the coreference resolution model or not

o gendered_coref that tells whether to use the gendered version of assigning
the clusters to characters or not

e text that is a raw text
o tokenized text that is a list of tokens,

» characters that is a list of Character objects (the output of the previous
module)

e id_to_character that is a dictionary that maps the ids to the characters
(the output of the previous module)

We can find all occurrences of all characters in the list by calling the method
find_all occurences with parameters first _names and last_names. These
parameters are dictionaries that contain a list of all characters with the given
first/last name. We have these dictionaries from the output of the previous
module or can create them with the method create first last names dicts.
The method find _all occurences assigns found occurrences to the Character
objects in the characters list. It returns the list character_occurences which
has the length equal to the number of tokens and stores the id of a character
that has a mention in the given token. If the token is not a character mention,
then it stores 0 (ids of characters start from 1).

6.3 Interaction Detection

We describe the module, which is in a interactions.py file.

The class in this module is called InteractionsDetector. It has different
methods that do all the work described in chapter[3] When we create the instance
of this class, we specify these parameters:
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» characters that is a list of Character objects (with the occurrences filled
in),

e doc, that is SpaCy Span object,

o tokenized _sentences which is a list of lists of tokens, where lists corre-
spond to sentences (we can obtain this using SpacyTokenizer),

o cummulative_length which is a list of the cumulative lengths of sentences
(we can obtain this using SpacyTokenizer),

e id_to_character that is a dictionary that maps the ids to the characters,
can be empty and created later

e character_occurences which is the list of ids of characters mentioned for
every token (output of the previous module), can be empty and created
later.

This class has a method for creating the dictionary id_to_character and the
list character_occurences from characters.

We can find all the interactions by calling the method find_interactions.
It firstly detects utterances and dialogues, then assigns characters to dialogues
and finds interaction sentences besides dialogues at last. The method assigns all
the found interaction sentences to the Character objects in the characters list
as an indices of corresponding sentences.

6.4 Graphs

We describe the module, which is in a graphs.py file.

This module has methods for creating the interactive graphs that are described
in the chapter [4] It uses the Tkinter library for creating the graphs.

It can be used as an entry point, its usage is described in section In the
main function, the input text and characters from the binary file are loaded.
The characters must have occurrences and interactions filled in, to be shown
on a graph. Then the text is tokenized using SpacyTokenizer. The graphs
are created by calling the method occurrences_graph or interactions_graph.
These methods create a Tkinter window, in the upper part is the graph that is
created using the Matplotlib library and inserted in the window. In the lower part,
there are two text fields, one with the whole text and the text box is scrollable,
the second one serves for displaying the sentence that the user clicked on.

6.5 Main File

We describe the main.py file.

It serves as an entry point, its usage is described in chapter [7l In the main
function, the input text is read, then tokenized using SpacyTokenizer. Then
the characters are found using CharactersFinder, occurrences are found using
OccurrencesFinder and interactions are detected using InteractionsDetector.
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The output (list of Character objects with all the information) is stored to a bi-
nary file (using pickle) for later usage or for displaying the graphs by using this
binary file as an input for the graphs.py.

This file also contains some methods for printing/saving the characters or
information about them.
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7. User Guide

7.1 Installation

The code attached to this thesis was written and tested on a Linux operating
system. It is written in the Python programming languageE] and was developed
and tested using the version 3.8.8. Firstly, you need to install Python, ideally of
version 3.8.8 (the higher versions should probably work fine). You also need to
install Python packages that are specified in the requirements.txt file and can
be installed all at once by running;:

pip install -r requirements.txt

The interactive graphs are written using the Tkinter library Pl The Tkinter
module should normally be part of the basic Python installation, but if you face
some problems running it, then you must install it separately, if you want to see
the graphs.

For Fedora-based Linux, it can be installed by running }

sudo dnf install python3-tkinter

If the program still doesn’t work after this installation, try to install the debug
extension of the package, called python3-tk-dbg.

Before running the software, you will also need to have the SpaCy small lan-
guage model downloaded:

python -m spacy download en_core_web_sm

When you want to run the software with the coreference resolution model,
you will need to clone the code for using the model from Githut’| and download
the trained model]in the root of the project directory. It can be done by running;

git clone https://github.com/vikibrezinova/fast-coref.git
gdown 1CQxUq2zvCHc1mJUEZ_Zy6WSJQqFz76Pw

All of these installation steps (besides installing Python and Tkinter library,
which must be done before) also with creating a virtual environment called venv
and installing the libraries inside this environment are packed in the install.sh
file. This file works on the Linux system. For running it on the other operating
system, you will probably need to change some of the commands, at least for the
creation of a virtual environment. On the Linux system, you can just run:

./install.sh

"https://www.python.org/

Zhttps://docs.python.org/3/library/tkinter.html

3For installation on other Linux distributions see: https://www.geeksforgeeks.org/
how-to-install-tkinter-on-linux/

‘https://github.com/vikibrezinova/fast-coref

Shttps://drive.google.com/drive/folders/1y6rE81049g5X9ZaweLMCt3HqRNNsWgMz
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when you are in the root of the project directory.

If you don’t want to use the coreference resolution model and so you don’t
want to clone the code and download the model and install libraries that are
needed only for using the model, you can run:

./install without coref.sh

It is the same as install.sh, but without the last two steps and it uses
the file requirements_without_coref.txt for installation of only the subset of
packages. The packages that are needed only for the coreference resolution model
to run are not installed.

If you just want to see graphs for already processed input or on the demo
input, you don’t need to install all of the libraries in the requirements.txt file.
It is sufficient to install libraries in the requirements_graphs.txt file.

On Linux, you can run:

./install_graphs.sh

It creates the virtual environment called venv and installs the requirements
for the graphs and downloads the SpaCy small language model.

7.2 Project Structure

In the root directory, we have the installation scripts we can use for the installation
of all packages: install.sh, install without_coref.sh, install graphs.sh
and the files with requirements: requirements.txt, requirements_graphs.txt,
requirements_without_coref.txt.

There is also a script for running the program without coreference resolution
model: run_without_coref.sh, a script for running with coreference resolution
model: run_coref.sh and a script for only displaying graphs: run_graphs.sh.

These demo scripts activate the virtual environment called venv, which should
be created when you run the corresponding installation script. The program
then runs on the sample input provided with the project. Running it with the
coreference resolution model has higher memory and CPU requirements, so it
may crash on the ordinary computer (we used the UFAL AIC cluster for running
it). Using the program without the coreference resolution should work fine, but
it can take a few minutes on long texts. Displaying the graphs for the already
processed inputs shouldn’t take more than a few seconds.

There are three main subdirectories in the project: src, data, and results.

In the src directory, there is all of the code written in Python. There is also
another subdirectory called constants inside src. There are the lists of words
we use, like the lists of gendered honorifics or names and the lists of speech and
action verbs.

The main files inside src are: find_characters.py, find_occurrences.py,
interactions.py and graphs.py, they can be used as a separate Python module.
We also have a file main.py that connects the first three parts together and can
be used as an entry point with different types of parameters. It also saves the
processed output. The graphs.py file can be used as an entry point if we want
to look at graphs for already processed texts.
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In the data directory, there is a sparknotes_samples subdirectory which con-
tains the samples from the 30 novels from the dataset described in section [5.1.1]
We used these samples for evaluation, as described in chapter [5 There is a file
Little_Women.txt that we use as a sample input. In the binary_outputs sub-
directory, there are binary files with the output of our program in a form of
pickled characters’ list for two samples from the sparknotes_samples and for
Little Women.txt. These files were created without using the coreference reso-
lution model, so there are not all of the occurrences that can be find when using
the model. We use them as a sample input for creating graphs. The sample
from The Little Women serves great as a sample input, because the characters
are called by their names a lot in that book.

There are three subdirectories: characters, interactions, occurrences in
the results directory. They contain data we generated and used for evaluation.
More about the evaluation is in chapter [5]

In addition, we have an output directory, where we can store binary outputs
and graphs directory, where there are six graphs that are also included in the
text of this thesis.

7.3 Modes of Execution

7.3.1 Main File

When we want to run the program on the new text, we can do it by running
the main.py file with the right command-line arguments. The input text should
be in a format of plain text with UTF-8 encoding and with a txt file extension.
The input text should use "\n" or "\r\n" as a newline character. The input
text should not be longer than 1 000 000 characters. If it is longer, only the
first 1 000 000 characters of the text are processed. This limitation is due to
the maximum length of the input for SpaCy library and for the used coreference
resolution model. This limit is sufficient for novels that have around 500 pages or
less, so we don’t provide a script for running on longer texts. But if you want to
run it on longer texts, you may process the text in batches and merge the outputs
together.

The command-line arguments for the main file are in table [7.1]

When we have all of the dependencies installed and downloaded in the virtual
environment, we need to activate the virtual environment and then we can run
the program from the root directory. It can be done like this without using
coreference, when we want to run it on a sample input in the data directory and
save the output to the output directory:

source venv/bin/activate
python src/main.py -i data/Little_Women.txt
-0 output/Little_Women.bin

The first line just activates the virtual environment called venv, we can omit
it, if we have the environment already activated.
We can do the same thing by running:

./run_without_coref.sh
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Option  Argument Description

-h None prints help

-i filename path to the input file with the input text, this argument is
required

-0 filename or None path to the binary output file, where the output will be

saved, if it is not specified, then it is saved in the output
directory with the same path and filename as the input, but
with the .bin file extension

-s None if this option is used, the SpaCy is used as a NER tool,
otherwise NameTag 2 is used as default

-c None if this argument is present, the coreference resolution model
is used, otherwise it is not used as a default

-g None if this argument is present, the second method for the coref-

erence resolution looking at genders is used. The -c argu-
ment must be also present; otherwise the coreference reso-
lution model is not used at all, so the -g argument has no
effect when used without the -c argument.

Table 7.1: Command-line arguments for the main file.

It will use a NameTag 2 as a NER tool. This can take a few minutes depending
on the length of the text and the hardware.

We can run it like this using also the coreference resolution model and the
SpaCy as a NER tool:

source venv/bin/activate
python src/main.py -i data/Little_Women.txt
-0 output/Little Women.bin -s -c

We can do the same thing by running:

./run_coref.sh

I couldn’t run the program with the coreference resolution model on my com-
puter because of the high memory requirements, so I used the UFAL AIC cluster.
You may face problems running it on the ordinary computer. On the cluster it
runs a few minutes (circa 2 minutes for 2000 tokens) for short texts and a few
hours for long texts.

The output is saved in a binary file. The list of characters with all the in-
formation about them, such as their occurrences and interactions, is saved. This
output file can be used as an input for the graphs. py file whose usage is described
below.

7.3.2 Graphs File

When we have a processed text and save the characters with all the informa-
tion to a binary file (it is done automatically in main.py), then we can display
the interactive graphs for the text using the graphs.py file. The command-line
arguments we can use are in table [7.2]
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Option  Argument Description

-h None prints help

-i filename path to the input file with the input text, this argument is
required

-c filename path to the binary file with the saved characters for the given
input text, this argument is required

-0 None if this argument is present, the graph with occurrences is
displayed, otherwise the graph with interactions is displayed
by default

-m number natural number (that can be used as int) that determines

the minimum number of occurrences a character must have
to be displayed on graph, if not present the default value is
10

Table 7.2: Command-line arguments for the graphs file.

The input file with text is expected to be in the same format as for the main
file and it must be the same as the file that was processed to create the binary
output.

We can activate the virtual environment and run the graphs.py from the root
of the project directory like this for displaying occurrences on a sample input:

source venv/bin/activate
python src/graphs.py -i data/Little_Women.txt
-c data/binary_outputs/Little_Women.bin -o

And for displaying the interactions graph, we run:

source venv/bin/activate
python src/graphs.py -i data/Little_Women.txt
-c data/binary_outputs/Little_Women.bin

We can omit activating the virtual environment if it is already activated.
We can display both graphs, one after the other, by running:

./run_graphs.sh

The graphs are described also in the chapter [

The graph is in the upper part of the window. In the bottom part of the
window, there are two text fields. In the left one, there is the entire text and it
can be scrolled. In the right one, there will be the sentences that correspond to
occurrences in the graph after clicking on them.

Occurrences Graph

Each point on the occurrences graph corresponds to the occurrence of the given
character on the given position measured by tokens. So when the point has the
x coordinate equal to 100, then this point represents that character was mentioned
in the token number 100. The text is tokenized and divided into sentences by
using SpacyTokenizer. When we click on the point, the sentence with the given
occurrence is displayed in the right text box, and the token that corresponds
to the occurrence is highlighted. The text in the left box is scrolled so that
the sentence displayed on the right should be visible. So we can find the given
sentence in the left box and look at the surrounding sentences if we want.
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Interactions Graph

Each point on the interactions graph corresponds to the interaction of the given
character in the given position measured by sentences with other characters
that have points in the same position. Position on the x axis of the given
point represents the number of a sentence from the beginning in which the inte-
raction is happening. The text is tokenized and divided into sentences by using
SpacyTokenizer. When we click on the point, the corresponding sentence is
displayed in the right text box. The text in the left box is scrolled so that the
sentence displayed on the right should be visible. So we can find the given sen-
tence in the left box and look at the surrounding sentences if we want. This
is useful because most of the interactions for ordinary books are dialogues that
consist of more sentences, so we probably want to look at the dialogue as a whole.

Clicking on the graphs is inaccurate especially if the graph represents many
tokens or sentences, where some of the points overlap. Sometimes, it is necessary
to click more times on one point to work or to try to click on the different
position on the point. Sometimes it can happen that a point corresponds to the
empty sentence (consisting only of newline) that is detected to be a part of the
dialogue. The clicking and getting the position of the clicked point is handled by
the Tkinter library.

It is necessary to tokenize the text to the tokens and sentences in the same
way as was tokenized when character occurrences and interactions were detected.
We use the SpacyTokenizer for tokenization in our work. Therefore, when we
create the .bin file with characters using main.py and then run graphs.py, it
should tokenize the text in the same way.
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Conclusion

In this thesis, we explored how characters, their occurrences, and interactions
between them, can be found automatically. We divided the work into four parts
that can be used separately, even when our work connects them together.

In the first part, we generate the list of named characters that occurred in
the text. We use a NER tool as a starting point and then try to merge different
namings of one character using rules that were inspired by the previous works
that we described. We compared using the Nametag 2 and SpaCy library as the
tool for the Named Entity Recognition task. We evaluated this part on 30 novels
and analyzed the main problems that occurred.

In the second part, we use the model for the coreference resolution as a tool
to find out all mentions of the detected characters in the text. We proposed two
different methods for processing the output of the coreference resolution model.
We found out that there is only a small difference between these methods when
we tried them on the unseen data.

In the third part, our goal was to detect places in the text where two or more
characters interact together. When we analyzed this problem and researched
some of the existing works, we found out that this is a complex topic that was
not explored much. We defined the interaction our own way and decided to only
focus on dialogues and sentences with mentions of two or more characters. We
used rules for deciding which characters are part of a dialogue and for detecting
sentences that describe interaction besides the dialogues. We created these rules
by analyzing previous works and analyzing novels from the LitBank dataset. We
evaluated the rules on the unseen texts. We found out that assigning characters
to dialogues works pretty well, but the detection of interaction sentences has a lot
of space for improvement. We analyzed the most common errors and proposed
what can be improved or explored more.

In the fourth part, we created interactive graphs that show us the occurrences
and interactions of characters throughout the book. We can use them to quickly
see which characters occurred in which parts of the book, which characters inte-
racted together, and when. We can use them for displaying the sentences in which
the occurrence or interaction happened.

We believe that this work can make you think about how the interaction in
books is described and that it proposes new ideas that can be explored in the
future. We think that all of the parts of our work could be further improved and
should be evaluated on a bigger dataset.
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A. Attachments

A.1 List of Action Verbs

nod, encourage, go, meet, witness, sail, touch, hunt, climb, shout, walk, search,
grasp, give, look, announce, tell, say, warn, beg, see, watch, assure, glance, gaze,
sit, greet, help, offer, understand, bring, recieve, seize, hear, take, ask, talk, put,
hunt, mumble, shout, run, hit, play, notice, attack, hold, follow, call, shoot,
wander, approach, move, reply, show, cry, drive, shake, point, stand, thank, bow,
face, reach, beat, laugh, amuse, explain, add, encounter, report, slap, smile, stab,
tease, pull, return, support, mutter, interrupt, dance, chat, cling, carry, observe,
kick, yell, kiss, hug, frown, listen, fight, ride, clap, scream, dine, eat, drink, come,
hunt, escort, lie

A.2 List of Novels from Evaluation Dataset

o The Scarlett Letter

e The Time Machine

e Ivanhoe

o A Connecticut Yankee

o A Tale of Two Cities

o Treasure Island

o Northanger Abbey

e The Turn of the Screw

o The Call of the Wild

o Heart of Darkness

e Dracula

e An Occurrence at Owl Creek Bridge
o Kidnapped

o The Ambassadors

o The Age of Innocence

o Wuthering Heights

o White Fang

o The Last of the Mohicans

e The Count of Monte Cristo

62



The Three Musketeers

Anna Karenina

The Yellow Wallpaper

Crime and Punishment

War and Peace

The Hunchback of Notre-Dame
The Idiot

The Hound of the Baskervilles
The Picture of Dorian Gray
Ulysses

The Trial
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