

MASTER THESIS

Aydin Ahmadli

Probabilistic Models for
Recommender Systems

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Marta Vomlelová, Ph.D.

Study programme: Computer Science

Specialization: Artificial Intelligence

Prague 2022

 2

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

 3

I would like to say a special thank you to my supervisor Mgr. Marta Vomlelová,
Ph.D. for her guidance and support during the preparation of this thesis. I would also
like to thank RNDr. Michal Kopecký, Ph.D. for providing us with the datasets to
work with. It is also impossible to extend enough thanks to my family, especially my
parents, who showed immense support throughout this process.

 4

Title: Probabilistic Models for Recommender Systems

Author: Aydin Ahmadli

Department / Institute: Department of Theoretical Computer Science and
Mathematical Logic

Supervisor of the master thesis: Mgr. Marta Vomlelová Ph.D., Department of
Theoretical Computer Science and Mathematical Logic

Abstract: Recommender systems are software tools and techniques providing
recommendations to users based on their needs. Today, popular e-commerce sites
widely use recommender systems to recommend product items, articles, books,
music, etc. In this thesis, we discuss various probabilistic models for recommender
systems, and put the most focus on implementation of hybrid and interpretable
probabilistic content-based collaborative filtering model, called Collaborative Topic
model for Poisson distributed ratings (CTMP) augmented with Bernoulli randomness
for Online Maximum a Posteriori Estimation (BOPE). Resulting model outperforms
the previously existing models significantly with its main competency being in
commercial product recommendations. It is a fast, scalable, and efficient in ill-posed
cases, including short text and sparse data. The model is trained and tested on well-
known MovieLens 20M and NETFLIX datasets, and empirical evaluations such as
recall, precision, sparsity and topic interpretations are promising.

Keywords: probabilistic-models, recommender-systems, topic-modeling, variational-
inference

 5

Contents

1 Introduction 7
2 Recommender Systems . 8

2.1 Collaborative Filtering recommender systems... 8
2.2 Content Based recommender systems .. 9
2.3 Hybrid recommender systems .. 10

3 Probabilistic Models for Recommender Systems 11
3.1 fLDA .. 11
3.2 CTR .. 11
3.3 CTPF .. 13
3.4 CTMP ... 14

4 LDA .15
4.1 Learning ... 15
4.2 Inference and Parameter Estimation .. 17

5 Variational Inference 18
5.1 KL–divergence derivation .. 19
5.2 Jensen’s inequality derivation .. 19
5.3 Mean-field Variational Inference ... 20

5.3.1 Mean-field Variational Inference in conjugate models 20
5.3.2 Mean-field Variational Inference in non-conjugate models 23

6 OPE and BOPE .24
6.1 OPE for solving MAP problem .. 25
6.2 BOPE for solving MAP problem ... 25

7 Collaborative Topic Model for Poisson distributed ratings .27
7.1 Formalization ... 27
7.2 Inference ... 28
7.3 Learning Parameters... 30
7.4 Prediction ... 33
7.5 Key properties .. 33

8 Empirical Studies .34
8.1 Data preprocessing ... 34

8.1.1 Vocabulary Extraction ... 35
8.1.2 Movie Representation .. 37
8.1.3 Memory usage reduction .. 37

8.2 Model Fit .. 38
8.2.1 Hyperparameters .. 38
8.2.2 Running on Google Cloud ... 39

8.3 Model Evaluation ... 40
8.3.1 Interpretability of topics ... 40
8.3.2 Evaluation metrics and predictive performance 41
8.3.3 Sparsity ... 44
8.3.4 Sensitivity to hyperparameters ... 45

8.4 Transfer Learning ... 46
9 Conclusion .49
Bibliography .50
List of Figures 52
List of Tables . 53

 6

List of Algorithms . 54

List of Abbreviations .55
Appendix . 56

 7

1 Introduction
Since the mid-1990s, when the first articles on collaborative filtering were published,
Recommender Systems (RS) have been an active study topic. In recent years, many
websites utilize the RS extensively. "You may like this", "Customers who purchased
this item also purchased", and "Other products you may like". Everyone has at least
once encountered these recommendations when exploring the web pages on internet.
These are the capabilities of RS.

In this thesis, we will explore a variety of probabilistic models developed for RS.
Our study focuses mostly on implementation of Collaborative Topic model for
Poisson distributed ratings (CTMP) [1] augmented with Bernoulli randomness for
Online Maximum a Posteriori Estimation (BOPE) [28]. CTMP is a probabilistic
hybrid model with scalability and interpretability. Its key properties make it
advantageous compared to its predecessors. BOPE is the recently proposed
Maximum a Posteriori Estimation (MAP) algorithm that provides a fast convergence
rate along with implicit regularization. These features help probabilistic models to
excel in ill-posed cases such as training on short text, and sparse or noisy data. In this
thesis, we will be implementing and evaluating CTMP model that uses BOPE for its
MAP algorithm.

In the following sections 2 and 3, we will introduce RS and probabilistic models
for RS. Then we will continue with Latent Dirichlet Allocation (LDA) and
Variational Inference (VI) in sections 4 and 5. Note that LDA and VI concepts are
crucial parts of the CTMP model theory. Next, in section 0, we will discuss Online
Maximum a Posteriori Estimation (OPE) and BOPE for solving MAP problem.
Finally, sections 7 and 8 are dedicated to CTMP model and its empirical studies.

 8

2 Recommender Systems
Recommender Systems (RS) are widely recognized as one of the most beneficial
applications of Machine Learning. The fundamental objective of these Machine
Learning-driven Recommenders is to filter, prioritize and efficiently deliver the
necessary information to the consumers amid overwhelmingly numerous choices on
the internet. It is also described as:

“Any system that produces individualized recommendations as output or has the effect of
guiding the user in a personalized way to interesting or useful objects in a large space of

possible options.” [2]

Therefore, many companies utilize RS to help consumers discover new and
relevant items such as movies, songs, jobs, etc. They use the consumer data in the
explicit or implicit form (e.g., likes, clicks), to comprehensively assess consumers’
preferences and then recommend the relevant items to them. According to various
criteria, there are multiple techniques of RS, each of which differs in how a single
recommendation is generated. The most common types of RS are described in the
following sections.

Although there exist several different RS in the literature, we will focus on the
three most common techniques as shown in Figure 2.1:

.
Figure 2.1: Types of recommendation technique.

2.1 Collaborative Filtering recommender systems
Collaborative Filtering (CF) recommender systems are one of the most widely used
systems next to the Content Based (CB) recommender systems. Essentially, these
systems create a user profile based on the ratings of various items and then aim to
compare these against a wider user group [3]. As the word “collaborative” from the
name implies, multiple users come together as a group – a taste of one user will be
similar to the other users of the group. Therefore, by utilizing the user’s data which
contains their historical preferences on a set of items, the system deploys an
assumption that the users who have previously agreed are more likely to agree again
in the future. So, the system creates new recommendations by taking the similarities
between users based on the ratings into consideration (see Figure 2.2).

 9

.
Figure 2.2: Illustration of Collaborative Filtering recommender systems.

Although CF recommender systems have been used in the industry for many
years [4], they still have a limitation such that they cannot address the cold start
problem – they are not able to recommend items which are not rated by any users
(e.g., new items). As a result, only famous items may get recommended.
Furthermore, traditional CF systems are also memory-wise and computationally
expensive and suffer from scalability problems.

2.2 Content Based recommender systems
While CF recommender systems, as discussed above, recommend the products or
items according to the similarities of user preferences which means that
recommendation relies on the user-item interactions, CB recommender systems, on
the other hand, aim to recommend products or items similar to those a given user has
rated positive or liked in the past. So, CB systems generate recommendations based
on the comparison between the content of the items and the user profile which was
created according to the historical user data (see Figure 2.3). Note that the content of
items is described by terms, tags, features, or even plots in case the items are movies.

An algorithm used to recommend the movies on the Netflix platform is a
prominent example that resembles these RS. If a certain user watches and comedy
movie and rates it positive via votes or comments, then the new movie
recommendations with the same label as that liked movie will be suggested to the
user. In other words, based on the content of the consumed item, this RS finds other
similar items and recommends them. Note that such website platforms often keep the
techniques of how the content is labeled and matched against each other as private
[3]. Contrary to CF systems, CB system doesn’t suffer from a cold-start problem, and
they can suggest not only famous or older items but also unpopular or new items. In
addition to this, they are memory-wise and computationally cheap because there is
no need for the data of other users to be able to compute the recommendation for a
specific user.

 10

.
Figure 2.3: Illustration of Content Based recommender systems.

2.3 Hybrid recommender systems
Hybrid recommender systems combine two or more types of traditional RS to have
better performance by benefiting from complementary advantages of subsystems.
Hybrid systems which combine CF and CB approaches achieve state-of-the-art
results in many cases and are used in many large-scale RS nowadays. Detailed
comparison of advantages and disadvantages of Hybrid Recommenders along with
CF and CB Recommenders are shown in Table 2.1 below:

 Collaborative Filtering Content Based

Hybrid

Number of

users

Recommendation based on
many users having similar

interest

Recommendation
based on single user

Combination of
collaborative and

content based
filtering

Disadvantages

- Cold start
problem

- Data sparsity
- Scalability
- Memory-wise

and
computationally
expensive

- Limited content
analysis

- Over-
specialization

- Increased
complexity

- Increased
expense of
implementati
on

Advantages

- Serendipitous
recommendation

- User and item
features are not
required

- Quality may
improve over
time as more
users interact
with items

- - Minimal domain
knowledge
required

- User
independent

- No cold start
problem

- Interpretable
results

- Memory-wise
and
computationally
cheap

Avoids most of
the shortcomings
of other
approaches.

Table 2.1: Detailed comparison of recommender systems.

 11

3 Probabilistic Models for Recommender Systems
The application of probabilistic modeling to the recommendation problem has a rich
history that dates back decades. Many authors incorporated the probabilistic
approaches into models which explained the dataset. Initial approaches were
probabilistic graphical models such as Bayesian networks and Dependency networks
which eventually left their place with subsequent novel topic models such as Latent
Dirichlet Allocation (LDA) [5]. The term “latent” is used in their name because LDA
is considered a probabilistic topic model, and the topics it aims to find from the
corpus are considered latent or hidden variables. A detailed explanation of LDA has
been discussed in section 4 as it is an essential part of the model that we will be
discussing in this thesis. Also, note that, as LDA can suggest items that have similar
content to other items that a user likes, it has been extensively used for CB
recommender systems. When it comes to the field of CF recommender systems, the
matrix factorization technique had gained decent popularity, especially after being
combined with a probabilistic approach [6], [7], [8].

3.1 fLDA
Lately, there has been a lot of interest in combining probabilistic topic modeling with
matrix factorization in the field of hybrid recommender systems. One of the major
reasons for this is that when the content of an item is represented by topic models,
the models benefit from interpretable semantics of the latent space characterized by
the topic mixtures, and this leads to more interpretable semantics of the item latent
factor. Initially, Deepak Agarwal and Bee-Chung Chen proposed Matrix
Factorization through Latent Dirichlet Allocation (fLDA) where the item latent
factor took the role of topic proportion in the LDA representation [9]. Despite being
an accurate and interpretable model, which handles both cold-start and warm-start
scenarios, fLDA still had a limitation in dealing with distinguished items where there
is an identical topic mixture, but content details that topic mixture cannot cover are
of concern to different groups of people. To elaborate on this limitation, consider that
we have two articles: A and B. Both articles are about the application of machine
learning to social networks. Because both articles are identical in terms of their
contents, they will also possess the same topic proportions. Now let’s consider that
these two articles are of interest to different kinds of users: Article A provides a
prominent machine learning algorithm that is applied to social network applications,
whereas article B implements a standard machine learning algorithm, but provides
crucial data analysis on social network data. As a result, users who work in machine
learning will prefer article A and will hardly be interested in article B, whereas users
who work in social networks will be more interested in article B instead of A.
However, as the topic proportions of both articles are the same, both will be
recommended to both groups of users [10].

3.2 CTR
To tackle the limitation mentioned above, a novel approach called Collaborative
Topic Regression (CTR) has been proposed by David M. Blei and Chong Wang
[10]. The way CTR addresses that limitation is by allowing the item latent factor to

 12

be an offset from topic proportion. So, using this way, an offset may help explain, for
instance, an article A is more important to researchers interested in machine learning
than it is to those interested in social network analysis. Therefore, CTR allows the
item latent factor to also account for user ratings.

Fundamentally, CTR incorporates techniques of both collaborative filterings
based on latent factor models and content analysis based on probabilistic topic
modeling. According to the CTR model, items are generated by a topic model while
users are represented with topic interests [10]. Therefore, CTR is considered one of
the excellent hybrid models which shows that the combination of the content
modeling with the matrix factorization methods produces more promising results
compared to traditional RS. The graphical model of CTR along with its algorithm is
shown below. Note that, in machine learning, graphical models are used to represent
a repetitive process of the probabilistic model. Essentially, they represent a
factorization of the joint distribution of hidden and observed random variables.
Nodes are random variables, plate boxes denote the “loop” with a variable shown in
the bottom right corner of the plate representing its number of iterations, and edges
mean that there is dependence between random variables in the generative process.
Note that grey nodes represent observed variables while blank nodes are hidden
variables. Figure 3.1 shows the graphical model of CTR. We assume U users and J
items for the RS. The rating variable 𝑟𝑢𝑗 ∈ {0, 1} denotes whether the user u likes
item j or not. Also, note that 𝑟𝑢𝑗 = 0 can be interpreted in two ways: either user u is
not interested in item j or user u does not know about article j. For each user, we try
to recommend potentially interesting items that are rated yet by this user. Assuming
that there is K topics 𝜷 = 𝛽1:𝐾 in the whole corpus of items, the graphical model, and
the generative process of the CTR model are illustrated in Figure 3.1 and Algorithm
3.1, respectively, below:

.
Figure 3.1: Graphical model for CTR.

Algorithm 3.1: CTR model algorithm.

Despite its many advantages, the CTR model has significant computational
limitations as well. The reason is that the model considers user ratings to have a
Gaussian distribution which leads to iterating over all the entries in the rating matrix

 13

during training. Because of this, CTR is highly inefficient considering that real-world
datasets are very big and sparse. Additionally, CTR is a non-conjugate model [11],
which makes it difficult to fit, challenging to work with on sparse data, and
challenging to scale without stochastic optimization.

3.3 CTPF
To address CTR’s inefficiency mentioned above, a newer hybrid model called
Collaborative Topic Poisson Factorization (CTPF) has been proposed by Prem
Gopalan, Laurent Charlin, and David M. Blei [12]. Fundamentally, CTPF
incorporates concepts from two existing models: Poisson factorization [13] and CTR
[10].

Poisson factorization substitutes a Poisson likelihood and non-negative
representations for the conventional Gaussian likelihood and real-valued
representations. In comparison with Gaussian factorization, Poisson factorization
possesses more efficient inference, better handling of sparse data, and better
predictive performance. So, the CTPF model assumes both reader behavior and item
texts with Poisson distributions. As a result, CTPF is only concerned with non-zero
ratings during training, and therefore it is much more efficient and scalable.

Compared to the CTR model, which is a non-conjugate model, CTPF is a
conditionally conjugate model which allows us to use standard variational inference
with closed-form updates. Moreover, CTPF, because it is based on Poisson and
gamma variables, it has a more efficient and simpler-to-implement inference
algorithm, and a much better fit to sparse real-world data. It is more scalable and
provides significantly better recommendations than CTR [10].

We assume we have data containing U users and J items for the RS. CTPF
assumes a collection of K unnormalized topics 𝛽 = 𝛽1:𝐾. Each topic 𝛽𝑘 is a collection
of word intensities on a vocabulary of size V. Each unnormalized topic component
𝛽𝑣𝑘 is drawn from a Gamma distribution. CTPF assumes that, given the topics, a
document j is generated with a vector of K latent topic intensities 𝜃𝑗 and that users
are represented by a vector of K latent topic preferences 𝜂𝑢. In addition, the model
assigns each document K latent topic offsets d that represent its deviation from the
topic intensities. These deviations happen when a document's content does not
sufficiently describe its ratings. Finally, CTPF claims that the conditional probability
that a user u rated document j with rating 𝑟𝑢𝑗 is derived from a Poisson distribution
with rate parameter 𝜂𝑇

𝑢
(𝜃𝑗 + 𝜖𝑗) where 𝜖𝑗 is the document topic offset. The graphical

model of CTPF along with its algorithm is demonstrated in Figure 3.1 and Algorithm
3.2, respectively, below:

.
Figure 3.2: Graphical model for CTPF.

 14

.
Algorithm 3.2: Generative process for CTPF.

CTPF has two main advantages over previous work; having a conditionally
conjugate model which helps to employ standard variational inference with closed-
form updates and having built on Poisson factorization which makes the most use of
sparsity of user consumption of items, therefore can analyze massive real-world data
[12].

3.4 CTMP
Although all hybrid models mentioned above benefit from the interpretable
semantics of the item latent factor, they still have some limits in terms of
computational cost or predictive performance. Therefore, in this thesis, we will
explore and implement a hybrid, scalable and interpretable probabilistic content-
based collaborative filtering model called Collaborative Topic Model for Poisson
distributed ratings (CTMP) [1]. CTMP covers the limitation of CTR by
considering ratings in Poisson distribution as CTPF does, while modeling contents
with LDA. Thus, it outperforms all previous hybrid models in terms of performance.
Details of CTMP formalization, graphical model, and algorithm are discussed in
section 7.

 15

4 LDA
In machine learning, topic modeling is a statistical model for discovering a set of
topics that occur in a collection of documents [14]. It is also considered a
probabilistic model which offers an interpretable low-dimensional representation of
the documents. For many years, the implementation of topic models for document
classification, corpus exploration, and information retrieval has been of interest.

There are many topic modeling algorithms, among which LDA is the most
popular one. LDA is a three-level hierarchical Bayesian model, and its basic idea is
that documents are represented as random mixtures over an underlying set of topics,
where each topic is characterized by a distribution over words that are biased around
those associated under a single theme [5]. Therefore, topic probabilities express an
explicit representation of each document. This can also be explained as below:

- Each document is a mixture of topics:

Each document contains terms/words from some topics in specific
proportions. For instance, if we consider that there are 2 topics in the whole
corpus, then we might state that some documents could be 75% topic A, and
25% topic B, while another document could consist of 30% topic A, and 70%
topic B.

- Each topic is a mixture of words:
Each topic is expressed by the words that explain it most. For example, if we
consider that there are 2 topics, namely, “sports” and “education”, in the
whole corpus, then the most used words for the sports topic could be
“teammate”, “win”, and “play”, while the education topic could contain the
words such as “lecture“, “book” and “class”. It is necessary to note that the
same words can appear on multiple topics. For example, the word “time”
could participate in both sports and education topics.

In this way, documents can overlap with each other in their contents, rather than
being separated into different individual groups. The generative process and
graphical model of LDA for each document in the whole corpus are described below.

4.1 Learning
The terminology for the LDA model is as follows:

• Word is a term of the vocabulary, and it is indexed by 1,… , 𝑉.
• Document is a series of words given by w = (𝑤1, 𝑤2, … ,𝑤𝑁), where 𝑤𝑛 is the

nth word inside the document.
• Corpus is a collection of a total J documents, and it is given by 𝐷 =
(w1, w2, … , w𝐽).

• K is the number of topics to be extracted from the corpus.
• 𝛼 is Dirichlet prior parameter on per-document topic proportions.
• 𝛽 is Dirichlet’s prior parameter on per-topic word proportion.
• 𝜃𝑗 is topic proportions for document j.
• 𝜑𝑘 is word distribution for topic k.
• 𝑧𝑗𝑛 is the topic for an n-th word in document j.

 16

• 𝑤𝑗𝑛 is a specific word.

.
Figure 4.1: Graphical model for LDA.

Contrary to the original paper on LDA [5], a sparse Dirichlet prior can be
employed to model the topic-word distribution, based on the idea that the probability
distribution over words in a topic is skewed, with only a small subset of words
having a high probability. This slightly updated model is the most extensively
employed variation of LDA today. A graphical model of this slightly modified LDA
is shown in Figure 4.1.

It is also important to emphasize that the overall LDA process is a hidden
generative process and according to this process, the model is assumed to generate
the observed data (e.g., items, movies, documents). This was just a generative
assumption to facilitate the algorithm and it does not illustrate the true process of the
real data [15]. The following is how we view the generative process: documents are
represented as random mixtures over latent topics, where each topic is characterized
by a distribution over all the words. LDA assumes the following generative process
for a corpus D consisting of J documents:

.
Algorithm 4.1: Generative process for LDA.

As seen in Algorithm 4.1 above, the topics that the LDA algorithm tries to find
from the whole corpus are treated as hidden variables. Each document of the corpus
is represented in terms of topic proportions. Topic proportion 𝜃𝑗 is a K-dimensional
Dirichlet random variable, and its domain is in the (K − 1)-simplex. In other words,
K-vector 𝜃𝑗 is in the (K − 1)-simplex, therefore, 𝜃𝑗𝑖 ≥ 0, ∑ 𝜃𝑗𝑖

𝐾
𝑖=1 = 1. Also, 𝜑𝑘 is a

V-dimensional Dirichlet random variable, and its domain is in (V-1)-simplex.
Therefore, 𝜑𝑘𝑖 ≥ 0, ∑ 𝜑𝑘𝑖

𝑉
𝑖=1 = 1. Note that the Dirichlet is an exponential family

distribution and one of its important properties is that it is conjugate prior to the
multinomial distribution [16]. This conjugacy between these two distributions is
important (refer to section 5.3.1.1.1), because it helps for inference and parameter
estimation of LDA model.

 17

Figure 4.2: Figure illustrates an example topic simplex of 3 topics embedded in the

word simplex of 3 words.

An example geometry of latent space for LDA is showed in Figure 4.2 above.

4.2 Inference and Parameter Estimation
Because posterior inference is intractable for computing, the key inferential problem
here is computing the posterior distribution over the latent variables given certain
documents:

𝑝(𝜃, 𝜑, 𝑧 | 𝑤, 𝛼, 𝛽) =
𝑝(𝜃, 𝜑, 𝑧, 𝑤 | 𝛼, 𝛽)

𝑝(𝑤 | 𝛼, 𝛽)
=

𝑝(𝜃, 𝜑, 𝑧, 𝑤 | 𝛼, 𝛽)

∫ ∫ ∑ 𝑝(𝜑, 𝜃, 𝑧, 𝑤 | 𝛼, 𝛽)𝑧

𝜃

𝜑

 (4.1)

Because normalization constant which depends on marginal probability 𝑝(𝑤 | 𝛼, 𝛽)
has intractable integrals as shown in Eq. (4.1), the resulting posterior inference also
becomes intractable to compute. Therefore, many approximate inference algorithms
can be utilized for LDA because an exact posterior distribution is not possible. For
example, Variational Inference (VI) and relevant variational Expectation-
Maximization (EM) algorithm can be used to learn the topics and decompose each
document of the corpus according to these learned topics [5]. Details of VI are
discussed in the following section.

 18

5 Variational Inference
Variational Bayesian Methods (VBM) are a group of widely used techniques in the
field of statistical Machine Learning. Suppose the following probabilistic model
with the joint distribution of the observed variables X and the hidden variables Z:

𝑝(𝑍, 𝑋)

Following the Bayes’ Theorem, to infer the hidden variables Z, the posterior
inference is utilized as follows:

𝑝(𝑍|𝑋)⏞
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

=
𝑝(𝑍, 𝑋)

𝑝(𝑋)
=
𝑝(𝑋|𝑍)𝑝(𝑍)

𝑝(𝑋)
=

𝑝(𝑋|𝑍)⏞
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

 𝑝(𝑍)⏞
𝑝𝑟𝑖𝑜𝑟

∫ 𝑝(𝑋, 𝑍)

𝑍⏟
 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

(5.1)

• Prior 𝑝(𝑍) – is the probability of latent variables before observing any data.
• Likelihood 𝑝(𝑋|𝑍) – is the probability of observed variables given latent

variables.
• Posterior 𝑝(𝑍|𝑋) – is the probability of hidden variables given the observed

variables.
• Normalization constant ∫ 𝑝(𝑋, 𝑍)

𝑍
 – is a marginal probability of observed

variables i.e., evidence, which does not depend on the hidden variables
because it contains integral over all possible sets of hidden variables. It is
also called the normalization constant.

Note that, in several interesting models, the denominator is computationally
intractable, mainly because of integrals. This leads to impossible exact inference of
the posterior distribution. However, one possible approach is to utilize an
approximate posterior inference, which is what VI offers. The most often used VI
method is the Mean-field Variational Inference (MFVI) which will be discussed in
section 5.3. But before this, let’s explore the main idea behind VI and the forms of
statistical models it is applied to.

.
Figure 5.1: Approximate solution to the inference problem using Variational

Inference (for picture, refer to [21]).
Figure 5.1 above simply illustrates a technique of VI [17]. Let’s remember that

VI aims to approximate the true posterior distribution 𝑝(𝑍|𝑋). To start with, one
needs to posit a variational family of distribution over the hidden variables. This
variational family is represented as an ellipse area in Figure 5.1. As seen, it is also
parametrized by variational parameters 𝜈. Next, the goal is to find 𝜈∗ within this
family of distributions, such that the corresponding approximate posterior

 19

distribution 𝑞(𝑍; 𝜈) is closest to the true posterior distribution 𝑝(𝑍|𝑋). Note that this
closeness is regarding Kullback-Leibler divergence (KL-divergence) and we start
with some initial variational parameters 𝜈𝑖𝑛𝑖𝑡 and then optimize them - i.e., minimize
KL divergence [18] to find the point where 𝑞(𝑍; 𝜈) is closest to 𝑝(𝑍|𝑋).

5.1 KL–divergence derivation
𝐾𝐿 [𝑞(𝑍; 𝜈) || 𝑝(𝑍|𝑋)]

= ∫ 𝑞(𝑍; 𝜈) log
𝑞(𝑍; 𝜈)

𝑝(𝑍|𝑋)
= −∫𝑞(𝑍; 𝜈)

𝑍

log
𝑝(𝑍|𝑋)

𝑞(𝑍; 𝜈)

𝑍

=−(∫ 𝑞(𝑍; 𝜈)

𝑍
log

𝑝(𝑋,𝑍)

𝑞(𝑍;𝜈)
− ∫ 𝑞(𝑍; 𝜈)

𝑍
log 𝑝(𝑋))

= −∫ 𝑞(𝑍; 𝜈)log
𝑝(𝑋, 𝑍)

𝑞(𝑍; 𝜈)

𝑍⏟
𝐿

 + log 𝑝(𝑋)∫𝑞(𝑍; 𝜈)

𝑍

𝑛𝑜𝑡𝑒: ∫ 𝑞(𝑍; 𝜈)

𝑍

= 1 = −𝐿 + log 𝑝(𝑋)

(5.2)

where L above is evidence lower bound (ELBO). We reformulate the equation above
as follows:

𝐿 = log 𝑝(𝑋) − 𝐾𝐿 [𝑞(𝑍; 𝜈) || 𝑝(𝑍|𝑋)] (5.3)

Because the KL divergence must always be non-negative
(i.e., 𝐾𝐿[𝑞(𝑍; 𝜈) || 𝑝(𝑍|𝑋)] ≥ 0), we get 𝐿 ≤ log 𝑝(𝑋). This proves that L is the lower
bound on the log marginal probability of the observations. So, our final goal is by
using a coordinate ascent optimization algorithm (e.g., variational EM [19]),
maximize this lower bound L. In other words, the goal is to to minimize KL
divergence with respect to variational parameters 𝜈. Note that log 𝑝(𝑥) in the
formula above is fixed against all variational parameters 𝜈.

5.2 Jensen’s inequality derivation
Apart from the KL-divergence derivation mentioned above, there is also an
alternative way to arrive at similar conclusions using Jensen’s inequality. This is the
most widely known ELBO derivation, which shows why the ELBO is a lower bound
of the evidence. It states 𝑓(𝔼[𝑋]) ≤ 𝔼[𝑓(𝑋)] for the concave log function as follows:
log 𝑝(𝑋) = log ∫𝑝(𝑋, 𝑍)

𝑍

= log∫ 𝑝(𝑋, 𝑍)
𝑞(𝑍; 𝜈)

𝑞(𝑍; 𝜈)
= log (𝔼𝑞 [

𝑝(𝑋, 𝑍)

𝑞(𝑍; 𝜈)
]) ≥ 𝔼𝑞 [𝑙𝑜𝑔

𝑝(𝑋, 𝑍)

𝑞(𝑍; 𝜈)
]

⏟
𝐿

𝑍

 (5.4)

As shown in Eq. (5.4) above, the last term in the equation is the variational lower
bound. It is also called ELBO. So, it is again proved that L is the lower bound on the
log marginal probability of observed variables. Therefore, our main goal is to
maximize the lower bound L where:

 20

log 𝑝(𝑋) ≥ 𝐿 (5.5)

5.3 Mean-field Variational Inference
Furthermore, if we utilize MFVI, then the variational distribution over the latent
variables becomes as follows:

𝑞(𝑍; 𝜈) =∏𝑞(𝑧𝑖;

𝑛

𝑖=1

𝜈𝑖) (5.6)

The mean-field approximation makes a simplifying assumption by partitioning the
hidden parameters into independent parts [20]. In other words, this assumption
enforces full independence among all hidden parameters. The reason why this
independence is very useful is that, when we use a coordinate ascent optimization
algorithm such as variational EM [19].

5.3.1 Mean-field Variational Inference in conjugate models
Most importantly, it must be emphasized that there is a specific form for statistical
models in which the coordinate ascent in MFVI yields closed-form updates. It is
called exponential family conditionals or conditionally conjugate models.
Fundamentally, for a model to be conditionally conjugate, a complete conditional of

each parameter must be in the exponential family and be in the same family as its
prior [12]. A complete conditional is the conditional probability of the hidden

variable given all the observed variables and other hidden variables. A generic
example to understand conditionally conjugate models is defined in Figure 5.2
below:

Figure 5.2: Graphical model for conditionally conjugate model (for picture, refer to

[21]).

where x = x1:𝑁 are observed variables, z = z1:𝑁 are local hidden variables and 𝛽 =
𝛽1:𝑁 are global hidden variables. Note that, the main difference between local and

global hidden variables is that the i-th data only depends on global on 𝛽 and 𝑧𝑖. In

other words, it is not dependent on any other j-th local data point. Now, the

factorized joint distribution of the model is as follows:

𝑝(𝛽, z, x) = 𝑝(𝛽)∏𝑝(

𝑁

𝑖=1

𝑧𝑖 , 𝑥𝑖|𝛽) (5.7)

and as usual, our goal is to compute a posterior 𝑝(𝛽, 𝑧|𝑥).

Firstly, for the selected generic model above, the following complete

conditionals must be in the exponential family:

 21

𝑝(𝑧𝑖|𝛽, 𝑥𝑖) = ℎ(𝑧𝑖) 𝑒𝑥𝑝{𝜂𝑙(𝛽, 𝑥𝑖)

𝑇𝑧𝑖 − 𝑎(𝜂𝑙(𝛽, 𝑥𝑖))}
𝑝(𝛽|𝐳, 𝐱) = ℎ(𝛽) 𝑒𝑥𝑝{𝜂g(𝐳, 𝐱)

𝑇𝛽 − 𝑎(𝜂𝑔(𝐳, 𝐱))} (5.8)

In mathematical terms, an exponential family is expressed as follows:

𝑝(𝑥) = ℎ(𝑥) 𝑒𝑥𝑝{𝜂𝑇 𝑡(𝑥) − 𝑎(𝜂)} (5.9)

where 𝜂 is a natural parameter, 𝑡(𝑥) is the sufficient statistics, 𝑎(𝜂) is the log
normalizer, and ℎ(𝑥) is the base density. In short, if some parameter 𝑥 is in the
exponential family, then it can be written in the form above. Secondly, the complete
conditional must be in the same family as it is conjugate prior. Therefore, the
exponential family was a crucial requirement in the first place. Afterward, when a
likelihood and a prior with the same exponential form are multiplied, the posterior
maintains the same form, which was required as a second condition above.
Fundamentally, an exponential family of distributions provides a beautiful theory
around conjugate priors and corresponding posteriors and connects closely to
variational inference [22]. Note that, examples for conjugate priors and their
corresponding posteriors are shown in the next section below.

5.3.1.1 Conjugate Priors and Corresponding Posteriors

The main idea is that given a likelihood distribution, one needs to select a family of
prior distributions such that computed posterior distribution is also included in this
family. In this way, chosen conjugate prior enables us to estimate the posterior
distribution just by updating the parameters of the prior distribution.
The exponential family of distributions is the best example of this. The Gaussian,
beta, binomial, Dirichlet, Poisson, exponential, geometric multinomial, gamma,
categorical, chi-squared, and log-normal are all in the exponential family. Some pairs
of conjugate distributions from the exponential family are shown below in detail.

5.3.1.1.1 Multinomial distribution and Dirichlet priors

Remember that the multinomial distribution is the probability distribution where
outcomes are discrete. They also contain two or more variables. Mathematically, it is
defined as follows:

𝑝(𝒙|𝜃) =
(∑ 𝑥𝑖𝑖)!

𝑥1! 𝑥2!. . . 𝑥𝑛!
∏𝜃𝑖

𝑥𝑖

𝑛

𝑖=1

 (5.10)

where, 𝑥𝑖 shows the number of times outcome i occurs out of n trials. 𝜃𝑖 shows the
probability of outcome i.

Now, let’s remember the Dirichlet distribution which is a continuous
multivariate probability distribution. It is defined as follows:

 22

𝑝(𝜃|𝛼) =
Γ(∑ 𝛼𝑖)

𝑛
𝑖=1

∏ Γ(𝛼𝑖)
𝑛
𝑖=1

∏𝜃𝑖
𝛼𝑖−1

𝑛

𝑖=1

 (5.11)

where 𝛼 is a k-vector with components α𝑖 > 0, 𝜃 is a k-dimensional random variable
which is in (𝑘 − 1)-simplex, therefore θ𝑖 ≥ 0, ∑ θ𝑖

𝑛
𝑖=1 = 1. Additionally, Γ(𝛼)

denotes the gamma function, where:

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥
∞

0

𝑑𝑥 (5.12)

According to conjugate Bayesian analysis, the Dirichlet distribution is considered a
conjugate prior to the multinomial distribution. Therefore, when we multiply the
likelihood expressed in multinomial form with the prior expressed in Dirichlet form,
we get the posterior distribution as follows:

𝑝(𝜃| 𝒙, 𝛼) ∝ 𝑃(𝒙|𝜃) 𝑃(𝜃|𝛼) =
(∑ 𝑥𝑖𝑖)!

𝑥1! 𝑥2!. . . 𝑥𝑛!
∏𝜃𝑖

𝑥𝑖

𝑛

𝑖=1

Γ(∑ 𝛼𝑖)
𝑛
𝑖=1

∏ Γ(𝛼𝑖)
𝑛
𝑖=1

∏𝜃𝑖
𝛼𝑖−1

𝑛

𝑖=1

∝
Γ(∑ (𝛼𝑖 + 𝑥𝑖))

𝑛
𝑖=1

∏ Γ(𝛼𝑖 + 𝑥𝑖)
𝑛
𝑖=1

∏𝜃𝑖
𝛼𝑖+𝑥𝑖−1

𝑛

𝑖=1

(5.13)

which we can confirm that it has the form of Dirichlet distribution. As shown in Eq.
(5.13) above, we can estimate the posterior distribution just by updating the
parameters of the prior distribution. Because Dirichlet is a conjugate prior for its
multinomial distributed likelihood, it leads to the LDA model being a conditionally
conjugate model, and therefore, having coordinate updates of MFVI in closed-form
[5].

5.3.1.1.2 Poisson distribution and gamma priors

Let’s now consider the Poisson distribution from discrete exponential family
distributions:

𝑝(𝒙|𝜃) =
𝜃𝑥𝑒−𝜃

𝑥!
 (5.14)

where conjugate prior to this Poisson likelihood must also have the form of Poisson
distribution:

𝑝(𝜃|𝛼) ∝ 𝜃𝛼1−1𝑒−𝛼2𝜃 (5.15)

This conjugate prior can be easily expressed as gamma distribution:

𝑝(𝜃|𝛼) = 𝐾(𝛼)𝜃𝛼1−1𝑒−𝛼2𝜃 (5.16)

where,

𝐾(𝛼) =
𝛼2
𝛼1

Γ(𝛼1)
=

𝛼2
𝛼1

(𝛼 − 1)!
 (5.17)

Γ(∙) denotes the gamma function above. Now, the prior-to-posterior update is as
follows:

𝑝(𝜃|𝒙, 𝛼) ∝ 𝑃(𝒙|𝜃)𝑃(𝜃|𝛼) =∏
𝜃𝑥𝑒−𝜃

𝑥!

𝑛

𝑥=1

𝜃𝛼1−1𝑒−𝛼2𝜃 (5.18)

 23

= 𝑒−𝑛𝜃𝜃∑ 𝑥𝑖
𝑛
𝑖=1 𝜃𝛼1−1𝑒−𝛼2𝜃

= 𝜃∑ 𝑥𝑖
𝑛
𝑖=1 +𝛼1−1𝑒−𝜃(𝑛+𝛼2)

where we can confirm that it has the form of gamma distribution which was our
intention from the beginning. Essentially, as seen above, choosing Gamma conjugate
prior and multiplying it to Poisson likelihood yielded the posterior inference which
also has Gamma distribution, and therefore we can estimate the posterior distribution
just by updating the parameters of the prior distribution, while successfully ignoring
the intractable marginal probability in the denominator. In other words, if
𝑥1, . . . , 𝑥𝑛~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) are all identically independently distributed, then conjugate
prior for 𝜃 is Gamma(𝛼1, 𝛼2) and the respective posterior, which is proportional to
likelihood multiplied by prior becomes Gamma(∑ 𝑥𝑖

𝑛
𝑖=1 +𝛼1, 𝑛 + 𝛼2). Because gamma

is a conjugate prior to its Poisson distributed likelihood, it leads to the CTPF model
being a conditionally conjugate model, and therefore, having coordinate updates of
MFVI in closed-form [12].

5.3.2 Mean-field Variational Inference in non-conjugate models

So far, from the previous sections, we have seen that if the model is conditionally
conjugate, we can easily use MFVI to have a closed-form solution. Nevertheless, not
all models are conditionally conjugate models; some are non-conjugate. In these
models, the MFVI approach cannot be applied directly, and practitioners must create
their case-specific variational algorithms. In section 7, we will see that the CTMP
model is among these non-conjugate models where its authors developed a co-
ordinate ascent algorithm to fit it [1].

 24

6 OPE and BOPE
Maximum a posteriori probability (MAP) estimation has a significant impact on
doing posterior inference (i.e., estimating hidden parameters) in many probabilistic
models. Especially, many interesting MAP problems are continuous, non-convex,
and intractable. In the field of non-convex optimization, there have been a variety of
different techniques such as Frank–Wolfe [23], Natasha2 [24], Stochastic
Majorization-Minimization [25], Concave-Convex procedure [26] which aim to
solve the MAP problem. However, non-convex optimization is NP-hard, and the
techniques mentioned above may not provide a viable solution for the MAP problem,
because they disregard its special underlying structure. Therefore, for solving non-
convex MAP problems with a state-of-the-art convergence rate, we will explore two
efficient algorithms Online Maximum a Posteriori Estimation (OPE) [27] and its
regularized, general, and more flexible version Bernoulli randomness for Online
maximum a Posteriori Estimation (BOPE) [28]. First, we introduce MAP
estimation as the following task:

𝑥∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥∈Ω 𝑃(𝑥|𝐷) (6.1)
where we denote 𝑥 as the hidden variable, D as the observed data, and Ω denotes 𝑥′𝑠
domain. Note that there also have been proposed many algorithms which directly try
to estimate a full posterior distribution 𝑃(𝑥|𝐷) mentioned above, i.e., Collapsed
Gibbs Sampling (CGS) [29], Hessian Approximated Markov Chain Monte Carlo
(HAMCMC) [30]. However, these methods provided suboptimal solutions along
with a slow convergence rate. We continue by using Bayes’ Theorem:

𝑃(𝑥|𝐷) =
𝑃(𝐷|𝑥)𝑃(𝑥)

𝑃(𝐷)
∝ 𝑃(𝐷|𝑥)𝑃(𝑥) (6.2)

where we denote 𝑃(𝐷|𝑥) as the likelihood of D, 𝑃(𝑥) as x’s prior, and 𝑃(𝐷) as 𝐷′s
marginal probability. Using Eq. (6.2) we rewrite Eq. (6.1) as follows:

𝑥∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥∈Ω [𝑓(𝑥) = 𝑙𝑜𝑔 𝑃(𝐷|𝑥) + 𝑙𝑜𝑔 𝑃(𝑥)] (6.3)

We will focus on the conditions where the MAP problem is continuous and non-
convex, hence intractable, i.e., −𝑓(𝑥) = −𝑙𝑜𝑔 𝑃(𝐷|𝑥) − 𝑙𝑜𝑔 𝑃(𝑥) is non-convex over
the continuous compact domain Ω [28]. As previously mentioned, MAP problem in
Eq. (6.3) will be treated as an optimization problem. Therefore, objective function
𝑓(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥) defines the complexity of this optimization problem where
𝑔1(𝑥) = 𝑙𝑜𝑔 𝑃(𝐷|𝑥) and 𝑔2(𝑥) = 𝑙𝑜𝑔 𝑃(𝑥). So, our problem in Eq. (6.3) becomes a
non-convex constrained optimization problem as follows:

𝑥∗ = 𝑎𝑟𝑔max𝑥∈Ω [𝑓(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥)] (6.4)

So, in the following sections, we will discuss OPE and BOPE algorithms for solving
the optimization problem shown above.

 25

6.1 OPE for solving MAP problem
OPE is considered a type of iterative optimization algorithm, which is the stochastic
version of the Frank–Wolfe algorithm. The biggest advantage of OPE is that it has a
faster convergence rate of 𝒪(1/𝑇) to local maximal point compared to the existing
stochastic algorithms for nonconvex problems, where 𝑇 signifies the number of
iterations during training of its following algorithm [27]:

.
Algorithm 6.1: Online Maximum a Posteriori Estimation (OPE) algorithm.

As illustrated in Algorithm 6.1, the OPE algorithm solves a linear program at
each iteration, i.e., directing the optimization solution to the good vertex in the
convex hull of the compact input domain. In more detail, what OPE does is to
develop a sequence of stochastic functions 𝐹𝑡(𝑥) that approximates to 𝑓(𝑥) by
alternatively selecting an 𝑓𝑡 from {𝑔1(𝑥), 𝑔2(𝑥)} uniformly randomly at each iteration
t. As proved in its original paper [27], 𝐹𝑡(𝑥) converges to 𝑓𝑡 as. 𝑡 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦.

Despite the fast convergence rate, OPE still has a limitation. As stated in the
algorithm, either likelihood 𝑔1(𝑥) or prior 𝑔2(𝑥) is being used during the construction
of the approximation function 𝐹𝑡(𝑥). However, when dealing with new samples, we
can rely on likelihood if we have seen enough data or rely on prior if there is a lack
of data.

6.2 BOPE for solving MAP problem
To overcome the OPE’s limitation mentioned above, a new approximation technique
to OPE has been proposed as BOPE which retains all theoretical guarantees of OPE’s
convergence while being more general and flexible by using Bernoulli distribution
and two stochastic bounds [28]. In general, both OPE, and BOPE try to lead the
solution of the optimization to the closed neighbors of the vertices in the convex hull
of the compact input domain and they have a fast convergence rate of Θ(1/𝑇) along
with proven quality bound [28]. BOPE solves the Eq. (6.4) above by employing
Bernoulli distribution with parameter 𝑝 ∈ (0, 1) which is supposed to replace the
uniform distribution of OPE on likelihood and prior. Furthermore, as seen in
Algorithm 6.2 below, during the procedure, two stochastic sequences are constructed
and they converge to the objective function 𝑓(𝑥): the lower sequence 𝐿𝑡, and the
upper sequence 𝑈𝑡. It is worth mentioning that the Bernoulli parameter 𝑝 determines
an impact of likelihood and prior on 𝐿𝑡 and 𝑈𝑡. So, during each iteration, using both
𝐿𝑡 and 𝑈𝑡 stochastic sequences provide further information about 𝑓(𝑥), therefore
increasing the chances of converging to 𝑓(𝑥) more quickly [28]. Both lower and
upper sequences are guaranteed to converge to 𝑓(𝑥) as 𝑡 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦.

 26

.
Algorithm 6.2: Bernoulli randomness for Online maximum a Posteriori Estimation

(BOPE) algorithm.

It’s important to note that one of the reasons why BOPE outperforms OPE is that
we can create variants of BOPE by altering the Bernoulli parameter 𝑝. In addition to
this, another property of BOPE is that to prevent overfitting of the learning process
which is a widespread issue that affects all machine learning techniques, BOPE
employs implicit regularization. Specifically, according to the original paper [28],
Bernoulli randomness operates as a regularizer and BOPE uses an implicit prior that
is stochastically vanishing with respect to iterations T. Note that this implicit prior is
not the same as the prior used in MAP estimation. This implicit regularization is very
critical, especially in RS where most of the datasets are sparse which makes the
models prone to overfitting. Therefore, using BOPE instead of OPE in CTMP will
facilitate the learning procedure and prevent overfitting.

 27

7 Collaborative Topic Model for Poisson distributed
ratings

In the following sections, we describe formalization, inference, learning parameters,
prediction phases, and key properties of CTMP.

7.1 Formalization
Before diving into technical parts, let’s provide some notations:

• U: represents the number of users inside the dataset.
• J: represents the number of items inside the dataset.
• 𝑤𝑗 = 𝑐𝑗

𝑣

𝑣=1

𝑉
: describes the bag-of-word representation for each item j where 𝑐𝑗𝑣

expresses the frequency of term/word 𝑣 in item j.
• 𝑉: represents the vocabulary size of the corpus.
• 𝐷 = 𝑟𝑢𝑗 , 𝑤𝑗𝑢=1,𝑗=1

𝑈,𝐽 : describes the dataset where 𝑟𝑢𝑗 is a rating provided by user
u to item j, while 𝑤𝑗 is the bag-of-word representation of item j as already
explained above. 𝑅 = 𝑟𝑢𝑗𝑈×𝐽 represents the ratings given to movies by users.
Every rating 𝑟𝑢𝑗 is expressed as binary 0 or 1. If user u liked an item j, then
𝑟𝑢𝑗 = 1. On the contrary, if the user u does not know about the item j or does
not like it, then 𝑟𝑢𝑗 = 0.

• K: represents the number of topics inside the corpus.
• 𝛽 = 𝛽𝑘𝑣𝐾×𝑉: describes the topic representation. More precisely, every topic k

is a distribution over the vocabulary. It is described as 𝛽𝑘 =

𝛽𝑘𝑣𝑉×1 where ∑ 𝛽𝑘𝑣 = 1
𝑉
𝑣=1 and 𝛽𝑘𝑣 ≥ 0. Note that, 𝛽𝑘 lies in the (k – 1)-

simplex.
• 𝜃1:𝐽: describes the topic proportion of the items. 𝜃𝑗 = {𝜃𝑗𝑘}𝐾×1 is the vector of

the distribution on topics for item j, and ∑ 𝜃𝑗𝑘 = 1
𝐾
𝑘=1 , 𝜃𝑗𝑘 ≥ 0. Note that,

𝜃𝑗 lies in the (k – 1)-simplex.

To learn the topics 𝛽 = 𝛽𝑘𝑣𝐾×𝑉, we use the LDA and its EM approach which was
described in the respective section of LDA. Furthermore, by learning the topic
proportion of each item 𝜃𝑗 = {𝜃𝑗𝑘}𝐾×1, we later describe each item and user in the K-
dimensional space. Note that these learning procedures will be explained in section
7.3 below.

Now, we present latent factors for each user and item in terms of K-dimensional
vectors 𝜂𝑢 = 𝜂𝑢𝑘𝐾×1 and 𝜇𝑗 = 𝜇𝑗𝑘𝐾×1, respectively. The reason why we consider 𝜇𝑗
rather than 𝜃𝑗 as the latent factor for an item is that to have a better recommendation
system, we allowed an offset between 𝜇𝑗 and 𝜃𝑗 which accounts for the user-specific
preference on the item content that 𝜃𝑗 alone can not capture. Therefore, we denote
that 𝜇𝑗 = 𝜃𝑗 + 𝜖𝑗 where 𝜖𝑗~𝒩(0, 𝜆−1𝐼𝐾) is an offset term which has Gaussian
distribution. Note that 𝐼𝐾 in the formula above represents a K-dimensional identity
matrix, and 𝜆 is a regularization parameter. So, we have 𝜇𝑗~𝒩(𝜃𝑗 , 𝜆−1𝐼𝐾).

Furthermore, the ratings and users’ latent factors are modeled by Poisson and
Gamma distributions, respectively. To put everything together, the generative

 28

process and graphical model of CTMP are shown in Algorithm 7.1 and Figure 7.1
below.

.
Algorithm 7.1: Generative process for CTMP.

Note that steps 2(a-b) in Algorithm 7.1 correspond to LDA.

.
Figure 7.1: Graphical model for CTMP.

7.2 Inference
Full posterior of latent variables is given as follow:

𝑃(𝜃, 𝜇, 𝜂|𝐷, 𝛼, 𝛽, 𝜆, 𝑒, 𝑓) =
𝑃(𝜃, 𝜇, 𝜂, 𝐷|𝛼, 𝛽, 𝜆, 𝑒, 𝑓)

𝑃(𝐷|𝛼,𝛽, 𝜆, 𝑒, 𝑓)
 (7.1)

The problem with this posterior is that it is intractable, and therefore exact inference
is impossible. To tackle this problem, we have two methods:

1) MAP for point estimation
2) Bayesian Learning such as MCMC Sampling or Variational Methods for

approximate inference

As the prior and posterior distributions of hidden variables, 𝜃 and 𝜇 are not conjugate
in the CTMP model, using Variational Inference Methods to infer these hidden
variables does not get us a closed-form solution. Therefore, we will carry out the
point estimates of 𝜃𝑗 and 𝜇𝑗 using the MAP – coordinate ascent algorithm developed
by the authors of the original paper of CTMP [1].

Furthermore, to facilitate the learning, the authors added a new auxiliary variable
y, where 𝑦𝑢𝑗𝑘~Poisson(𝜂𝑢𝑘𝜇𝑗𝑘) and 𝑟𝑢𝑗 = ∑ 𝑦𝑢𝑗𝑘

𝐾
𝑘=1 . Note that we approximate the

posterior of 𝜂𝑢 and 𝑦𝑢𝑗 via MFVI [12]. MFVI is a type of VBM which allows to re-
write a statistical inference problem as an optimization problem [8]. Therefore, we
can convert the inference problem of CTMP into a full optimization problem where
the single objective function which needs to be maximized is as follow:

 29

𝐿 = log𝑃(𝜃, 𝜇, 𝐷|𝛼, 𝛽, 𝜆, 𝑒, 𝑓)

=∑𝑙𝑜𝑔 𝑃(𝜃𝑗 , 𝜇𝑗 , 𝑤𝑗|𝛼, 𝛽)

𝐽

𝑗=1

+∑∑log 𝑃(𝑟𝑢𝑗|𝜇𝑗 , 𝑒, 𝑓)

𝐽

𝑗=1

𝑈

𝑢=1

=∑𝑙𝑜𝑔 𝑃

𝐽

𝑗=1

(𝜃𝑗 , 𝑤𝑗|𝛼, 𝛽) +∑𝑙𝑜𝑔 𝑃

𝐽

𝑗=1

(𝜇𝑗|𝜃𝑗 , 𝜆)

+∑∑𝑙𝑜𝑔 ∫∑𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 ,

𝑦𝑢𝑗

𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)𝑑𝜂𝑢

𝐽

𝑗=1

𝑈

𝑢=1

(7.1)

As shown in Eq. (7.1), the term integration and summation over the whole space
causes optimization to be intractable. However, the Variational method [31] also
tackles this problem which will be discussed in detail below.

Note that 𝑦𝑢𝑗𝑘 has Poisson distribution, and the K-dimensional vector 𝑦𝑢𝑗
follows multinomial distribution: 𝑀𝑢𝑙𝑡 (𝑟𝑢𝑗 | 𝜋𝑢𝑖 = {

𝜂𝑢𝑘𝜇𝑗𝑘

𝜂𝑢
𝑇𝜇𝑗

}) [32]. So, we get the

variational distribution as follows:

q(η𝑢 , 𝑦𝑢𝑗) = q(𝑦𝑢𝑗|𝑟𝑢𝑗 , ϕ𝑢𝑗) ∏𝑞(𝜂𝑢𝑘|𝑠ℎ𝑝𝑢𝑘 , rte𝑢𝑘

𝐾

𝑘=1

)

(7.2)

where,
𝑞(𝑦𝑢𝑗|𝑟, 𝜙𝑢𝑗) ≝ 𝑀𝑢𝑙𝑡(𝑦𝑢𝑗|𝑟, 𝜙𝑢𝑗)

𝑞(𝜂𝑢𝑘|𝑠ℎ𝑝𝑢𝑘, rte𝑢𝑘) = 𝐺𝑎𝑚𝑚𝑎(𝜂𝑢𝑘|𝑠ℎ𝑝𝑢𝑘 , rte𝑢𝑘)

𝜙𝑢𝑗 = 𝜙𝑢𝑗𝑘𝐾×1
(7.3)

such that 𝜙𝑢𝑗 is a variational parameter of 𝑦𝑢𝑗, and (𝑠ℎ𝑝𝑢𝑘, rte𝑢𝑘) are variational
parameters of 𝜂𝑢. Note that ∑ 𝜙𝑢𝑗𝑘

𝐾
𝑘=1 = 1. Now we get the ELBO (l) by applying

Jensen’s inequality:

𝐿 =∑log 𝑃(

𝐽

𝑗

𝜃𝑗 , 𝑤𝑗|𝛼, 𝛽) +∑log 𝑃(

𝐽

𝑗

𝜇𝑗|𝜃𝑗 , 𝜆)

+∑∑𝑙𝑜𝑔∫∑
𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)

𝑞(𝑦𝑢𝑗 , 𝜂𝑢)
𝑞(𝑦𝑢𝑗 , 𝜂𝑢)𝑑

𝑦𝑢𝑗

𝐽

𝑗

𝑈

𝑢

𝜂𝑢

≥∑log 𝑃(

𝐽

𝑗

𝜃𝑗|𝛼, 𝛽,𝑤𝑗) +∑log 𝑃(

𝐽

𝑗

𝑤𝑗 |𝜃𝑗 , 𝜆)

+∑∑(∫∑𝑞(𝑦𝑢𝑗 , 𝜂𝑢)𝑙𝑜𝑔

𝑦𝑢𝑗

𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)

𝑞(𝑦𝑢𝑗 , 𝜂𝑢)
𝑑

𝐽

𝑗

𝑈

𝑢

𝜂𝑢)

=∑𝑙𝑜𝑔𝑃(𝜃𝑗 , 𝑤𝑗|𝛼, 𝛽) +∑log 𝑃(

𝐽

𝑗

𝜇𝑗|𝜃𝑗 , 𝜆)

𝐽

𝑗

𝜓

+∑∑(𝐸𝑞(𝑦𝑢𝑗 ,𝜂𝑢)𝑙𝑜𝑔 𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)

𝐽

𝑗

𝑈

𝑢

− 𝐸𝑞(𝑦𝑢𝑗 ,𝜂𝑢)𝑙𝑜𝑔 𝑞(𝑦𝑢𝑗 , 𝜂𝑢)) = 𝑙

(7.4)

 30

Note that before learning the hidden parameters, 𝛼, 𝜆, 𝑒, 𝑓 𝑎𝑛𝑑 𝐾 are considered fixed
parameters in the model.

Next, the lower bound l(𝜃, 𝜇, 𝜙, shp, rte, 𝛽) is maximized with respect to 𝜃, 𝜇, 𝜙,
shp, rte, 𝛽. According to Appendix A of the original CTMP paper [1], the terms are
expressed in detail as follows:

𝑙(𝜃, 𝜇, 𝜙, 𝑠ℎ𝑝, 𝑟𝑡𝑒, 𝛽)

=∑((𝛼 −

𝐽

𝑗

1)∑ 𝑙𝑜𝑔

𝐾

𝑘=1

𝜃𝑗𝑘 +∑𝑐𝑗
𝑣

𝑉

𝑣

𝑙𝑜𝑔∑𝜃𝑗𝑘

𝐾

𝑘

𝛽𝑘𝑣)

−∑
𝜆

2
‖𝜃𝑗 − 𝜇𝑗‖2

2
+∑∑∑𝑟𝑢𝑗

𝐾

𝑘

𝐽

𝑗

𝑈

𝑢

𝐽

𝑗

𝜙𝑢𝑗𝑘𝑙𝑜𝑔(𝜇𝑗𝑘) −∑∑∑𝑟𝑢𝑗

𝐾

𝑘

𝐽

𝑗

𝑈

𝑢

𝜙𝑢𝑗𝑘𝑙𝑜𝑔(𝜙𝑢𝑗𝑘)

+∑∑(𝑟𝑡𝑒𝑢𝑘 − 𝑓 −∑𝜇𝑗𝑘

𝐽

𝑗

)
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

𝐾

𝑘

𝑈

𝑢

+∑∑(∑𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − 𝑠ℎ𝑝𝑢𝑘

𝐽

𝑗

)

𝐾

𝑘

𝑈

𝑢

(Ψ(𝑠ℎ𝑝𝑢𝑘) − 𝑙𝑜𝑔(𝑟𝑡𝑒𝑢𝑘))

−∑∑𝑠ℎ𝑝𝑢𝑘𝑙𝑜𝑔(𝑟𝑡𝑒𝑢𝑘) +∑∑𝑙𝑜𝑔(Γ(𝑠ℎ𝑝𝑢𝑘))

𝐾

𝑘

+ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑈

𝑢

𝐾

𝑘

𝑈

𝑢

(7.5)

7.3 Learning Parameters
Eq. (7.5) above is the optimization problem and as mentioned before we solve it by
coordinate ascent algorithm. CTMP algorithm for learning 𝜃, 𝜇, 𝜙, 𝑠ℎ𝑝, 𝑟𝑡𝑒 and 𝛽 is
demonstrated in Algorithm 7.2 below:

.
Algorithm 7.2: CTMP model algorithm.

Learning 𝜃𝑗. To find the point estimate of local topic proportion 𝜃𝑗, where

𝑔(𝜃𝑗) = (𝛼 − 1)∑𝑙𝑜𝑔 𝜃𝑗𝑘
𝑘

+∑𝑐𝑗
𝑣𝑙𝑜𝑔 (∑𝜃𝑗𝑘𝛽𝑘𝑣

𝑘

) −
𝜆

2
‖𝜃𝑗 − 𝜇𝑗‖2

2

𝑣

 (7.6)

 31

we use BOPE algorithm [28]. Note that in the original paper of CTMP, the authors
have used a simple OPE algorithm. So, using BOPE instead of OPE to learn the topic
proportions is the most important difference between our implementation of CTMP
and the one in the original CTMP paper [1]. Let’s remember that, by using Bernoulli
randomness, BOPE achieves a faster convergence, and is more general and flexible
compared to OPE. Furthermore, BOPE implicitly utilizes a prior which plays a
regularization role [28]. Moreover, as mentioned earlier too, every topic proportion
𝜃𝑗 holds ∑ 𝜃𝑗𝑘 = 1

𝐾
𝑘=1 , 𝜃𝑗𝑘 ≥ 0 and it lies in the (k – 1)-simplex. BOPE algorithm for

learning 𝜃𝑗 is described in Algorithm 7.3 below:

.
Algorithm 7.3: Learning 𝜃𝑗 using BOPE.

Learning 𝜇𝑗 . If we know the estimates of other hidden variables, then solving
𝜇𝑗 analytically is possible because the objective function regarding the 𝜇𝑗 is concave.

𝑓(𝜇𝑗) = −
𝜆

2
‖𝜃𝑗 − 𝜇𝑗‖2

2
+∑𝑟𝑢𝑗
𝑢,𝑘

𝜙𝑢𝑗𝑘 𝑙𝑜𝑔 𝜇𝑗𝑘 −∑𝜇𝑗𝑘∑
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

𝑢𝑘

 (7.7)

The partial derivative of function 𝑓(𝜇𝑗) with respect to 𝜇𝑗, i.e., 𝜕𝑓
𝜕𝜇𝑗𝑘

 for all k, is the

estimate of 𝜇𝑗. This is also so-called the stationary point of 𝑓(𝜇𝑗). Because 𝜕𝑓
𝜕𝜇𝑗𝑘

 is the

quadratic function in terms of 𝜇𝑗𝑘 , we can utilize Vieta’s formula for the analytical
derivation of the function’s root as follows:

 32

𝜇𝑗𝑘 =
−∑

𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

+ 𝜆𝜃𝑗𝑘 + √∆𝑢

2𝜆
 (7.8)

where,

∆= (−∑
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

+ 𝜆𝜃𝑗𝑘
𝑢

)

2

+ 4𝜆∑ 𝑟𝑢𝑗
𝑢

𝜙𝑢𝑗𝑘 (7.9)

Learning 𝜙𝑢𝑗 , 𝑠ℎ𝑝𝑢𝑘, 𝑟𝑡𝑒𝑢𝑘. We use MFVI for approximating the conditional
posterior of 𝜂𝑢 and 𝑦𝑢𝑗 as in [12]. So, to solve for the variational parameters of 𝜂𝑢 and
𝑦𝑢𝑗 which are 𝜙𝑢𝑗 , 𝑠ℎ𝑝𝑢𝑘 and 𝑟𝑡𝑒𝑢𝑘, we solve for the stationary point of 𝑙𝑜𝑔 𝑞(𝜂𝑢 , 𝑦𝑢𝑗)
with respect to each variational parameter while holding the others same. The
expression of the update of variational parameters is given in Eq. (7.10) below. The
detailed derivation of these expressions is described in Appendix B and Appendix C.
One of the biggest advantages of the CTMP algorithm is that whenever 𝑟𝑢𝑗 = 0, we
get 𝑦𝑢𝑗𝑘 = 0 and 𝜙𝑢𝑗𝑘 = 0 (𝑘 ∈ {1, . . . , 𝐾}), and therefore, we only have to update 𝜙𝑢𝑗𝑘
over non-zero ratings (𝑟𝑢𝑗 > 0). This property of our model diminishes the training
time significantly, so the total training time is much lower than of other models such
as CTR, especially whenever the rating dataset is highly sparse. Because, during each
epoch of training, we only consider the positive ratings for updating the expression
of 𝜙𝑢𝑗𝑘 and skip all zero ratings.

𝒚𝒖𝒋𝒌: 𝜙𝑢𝑗 ∝ exp {log 𝜇𝑗𝑘 + 𝜓(shp𝑢𝑘) − log (rte𝑢𝑘)}

𝜼𝒖𝒌: 𝑠ℎ𝑝𝑢𝑘 ← 𝑒 +∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗

 𝑟𝑡𝑒𝑢𝑘 ← 𝑓 +∑  

𝑗

𝜇𝑗𝑘

 (7.10)

Note that the 𝜓(∙) function in the update expression of 𝜙𝑢𝑗𝑘 denotes the digamma
function:

𝜓(𝑥) ∶=
𝑑

𝑑𝑥
𝑙𝑜𝑔Γ(𝑥) =

Γ′(𝑥)

Γ(𝑥)
 (7.11)

where Γ(𝑥) denotes the gamma function.

Learning 𝛽. So far, we have provided the update expression of the variables
regarding both documents and users such as 𝜃, 𝜇, 𝜙𝑢𝑗 , 𝑠ℎ𝑝𝑢𝑘 𝑎𝑛𝑑 𝑟𝑡𝑒𝑢𝑘. Now, we must
do the remaining task which is to solve for 𝛽. First, we express the log-likelihood of
the items’ corpus C as in [33]:

𝐿𝑜𝑔 𝑃(𝐶) =∑ 𝑙𝑜𝑔 𝑃(𝑗) =∑ ∑ 𝑐𝑗
𝑣 𝑙𝑜𝑔 ∑ 𝜃𝑑𝑘

𝐾

𝑘=1𝑣∈𝐼𝑗𝑗∈𝐶𝑗∈𝐶
𝛽𝑘𝑣

≥∑ ∑ 𝑐𝑗
𝑣∑ 𝜃𝑑𝑘

𝐾

𝑘=1𝑣∈𝐼𝑗𝑗∈𝐶
𝑙𝑜𝑔 𝛽𝑘𝑣

(7.12)

By using Jensen’s inequality, the last term is derived, because ∑ 𝜃𝑗𝑘𝑘 = 1, 𝜃𝑗𝑘 ≥

0, ∀𝑘, 𝑗. Next, the lower bound of 𝐿𝑜𝑔 𝑃(𝐶) is maximized with respect to 𝛽 as in [33]:

 33

𝑓(𝛽) = ∑ ∑ 𝑐𝑗
𝑣∑𝜃𝑗𝑘

𝐾

𝑘=1𝑣 ∈𝐼𝑑𝑗 ∈𝐶

𝑙𝑜𝑔𝛽𝑘𝑣 (7.13)

where ∑ 𝛽𝑘𝑣 = 1, 𝛽𝑘𝑣 ≥ 0, ∀𝑘, 𝑣.
𝑉
𝑣=1 Note that the each 𝛽𝑘 is separable from each other

inside the objective function of 𝑓(𝛽). So, we can solve solve each 𝛽𝑘 individually.
This is carried out by considering the Lagrange function and setting its derivatives to
0 which results in the formula of 𝛽𝑘𝑣 as follows:

𝛽𝑘𝑣 ∝ ∑𝑐𝑗
𝑣𝜃𝑗𝑘

𝑗 ∈𝐶

 (7.14)

7.4 Prediction
We rank the items to generate recommendations for each user u based on their
predictive score 𝑠𝑢𝑗 after we have learned all the parameters. Because the ratings in
the dataset are discrete Poisson variables, 𝑠𝑢𝑗 can be the expectation of the rate
parameter given the observed data i.e., 𝔼[𝜂𝑢𝑇 𝜇𝑗|𝐷] as in CTPF [12]. However, the
derivation in CTMP is a bit different because CTMP neither aims to approximate 𝑠𝑢𝑗
solely by point estimate nor require conjugacy between the complete conditional
distributions for the inference as CTPF does [1]:

𝑠𝑢𝑗 = 𝔼[𝜂𝑢
𝑇 𝜇𝑗|𝐷] ≈ 𝔼[𝜂𝑢

𝑇|𝐷, 𝜇𝑗] ∙ 𝜇𝑗 (7.15)
Note that only 𝜇𝑗 is the MAP estimation of the complete conditional distribution.
Furthermore, 𝔼[𝜂𝑢𝑇|𝐷, 𝜇𝑗] is nearly the expectation over the respective variational
distributions of 𝜂𝑢𝑇’s:

𝔼[𝜂𝑢
𝑇|𝐷, 𝜇𝑗] ≈ 𝔼𝑞(𝜂𝑢𝑇|𝑠ℎ𝑝𝑢𝑘 ,𝑟𝑡𝑒𝑢𝑘)[𝜂𝑢

𝑇] =
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

 (7.16)

Note that both 𝑠ℎ𝑝𝑢𝑘 and 𝑟𝑡𝑒𝑢𝑘 are the estimation of variational parameters that we
learned in section 7.3.

7.5 Key properties
Many key properties make CTMP perform much better than previous approaches in
the RS field. To begin with, introducing LDA into the content production process in
CTMP makes it more versatile than using Gamma mixtures in CTPF. This allows
each item to discuss many topics. Secondly, by assuming the ratings to be Poisson
distributed, all zero entries can be discarded in the estimation of the user latent factor
𝜂 during the training phase.

Moreover, our empirical study also shows strong evidence that sparsity in the
estimates of topic mixture can be recovered via learning. Note that sparsity is a
highly important property since it facilitates the effective storage of data by
providing a concise content representation. This allows an efficient computation of
the tasks in industrial settings - for example, near-real-time product
recommendations based on the same topics in which the consumer is interest.

 34

8 Empirical Studies
We carry out empirical studies on the performance of the CTMP algorithm using a
tech stack of Python, SQL, and Git. The personal repository which contains all the
source code can be accessed via https://github.com/buzzer4mornin/CTMP-
ThesisProject.

For an empirical study of the CTMP algorithm under a real-world
recommendation context, we use two different datasets, namely MovieLens 20M
[34] and NETFLIX [35]. They are well-known datasets that have been used a lot and
considered stable benchmark datasets for research purposes. Note that, for our
empirical study, we use slightly modified versions of these datasets compared to the
original versions. Their modified versions are arranged and put on Oracle Database
by Michal Kopecký.

The original MovieLens 20M dataset describes 5-star rating activity from
https://www.movielens.org which is a movie recommendation service. It was created
on October 17, 2016, and its raw data consists of movies, users, ratings, and tag
applications [34]. Each user is only represented by an id, therefore no other
information (e.g., demographic) is considered. This dataset’s modified version is
arranged by M. Kopecký and it is also equipped with additional “TT” identifiers
which help us to fetch the plots movies from the IMDB [36] table.

The original NETFLIX dataset was made available by the Netflix company for
the competition that was held on September 21, 2009, for the best collaborative
filtering algorithm to predict user ratings for movies, based on previous ratings
without any other information about the users [35]. In other words, the users were
not identified, they were only represented by id numbers for the contest. After the
competition, the dataset became open-sourced and has since been used by many
researchers as a stable benchmark dataset. Along with MovieLens 20M dataset, this
NETFLIX dataset’s modified version is also arranged by M. Kopecký and it is also
equipped with additional ”TT” identifiers which help us to fetch the plots movies
from the IMDB [36] table.

8.1 Data preprocessing
After fetching both datasets from the Oracle database, we continue with data pre-
processing steps for transforming the raw data into a useful and efficient format. By
utilizing the data wrangling techniques, we make the individual data frames out of
users, movies, and ratings as shown in Figure 8.1 and Figure 8.2 below:

.
Figure 8.1: Data frames for MovieLens 20M dataset.

.

https://github.com/buzzer4mornin/CTMP-ThesisProject
https://github.com/buzzer4mornin/CTMP-ThesisProject
https://www.movielens.org/

 35

.
Figure 8.2: Data frames for NETFLIX dataset.

Note that constructed data frames are still raw, meaning that ids in df_user data
frame are not sequentially consistent, some movies in df_movie data frame do not
have plots (i.e., filled with N/A values) and ratings in df_rating data frame are on the
0.5-5.0 scale. So, the next section uses these raw datasets for turning them into useful
formats.

First, we start the cleaning process by representing ratings in binary form in
ratings table. This is done by converting ratings bigger or equal to 4 into 1 and the
remaining into 0. This way, it is presumed that users like or dislike the given movie.
As previously stated, we do this because the CTMP model implies that ratings are
Poisson distributed.

Next, we drop movies that have N/A plot. We also drop duplicates and
inconsistent movies. Note that dropping movies results in the removal of some rows
related to these movies in the ratings data frame. The size of each data frame before
and after preprocessing is shown Table 8.1 below:

Data frame Dataset Raw rows size Final rows size

df_user
MovieLens 20M 138,493 138,493

NETFLIX 479,870 479,870

df_movie
MovieLens 20M 27,278 25,900

NETFLIX 9,324 7,882

df_rating
MovieLens 20M 20,000,263 19,994,181

NETFLIX 90,217,939 82,725,788
 Table 8.1: Details of data frames.

8.1.1 Vocabulary Extraction
We now aim to extract a vocabulary separately for MovieLens 20M and NETFLIX
using movie plots in the respective df_movie data frame. The reason why we want to
have vocabulary is that each movie should be numerically represented for our Python
model, therefore the vocabulary will be used for building this representation. Before
we begin, we merge each movie plot sequentially to get a single long text. Then we
extract the vocabulary from this single text. Note that, extracting the vocabulary
requires careful investigation, because, for each distinct word, we should decide
whether this word should be included in the vocabulary or not. Below are the steps
that we follow for vocabulary extraction:

• Removing stop words – they are commonly used words (such as “a”, “an”,
“are”, “the”, and “about”) of a language that do not add much meaning to a
sentence. They can be safely ignored by keeping them out of vocabulary.

 36

Many Python libraries provide a list of stop words for many languages. We
used NLTK Library’s stop words in the English language.

• Removing words of length less than 3 – these words can also be ignored. In
the English language, there rarely is a word of length less than 3 which adds
meaning to a sentence.

• Removing words with numbers or underscores – we will not include these
words in the vocabulary.

It is also worth mentioning that in the domain of Natural Language Processing
(NLP), well-known techniques such as Stemming, and Lemmatization are utilized
for a purpose of text normalization. These techniques help a lot when it comes to
filtering unwanted words during vocabulary construction. The stemming technique
removes the suffix from a word and therefore reduces it to its root/stem. For
example, a stem of the word “count” is just “count”. Stemming the words such as
“counts”, “counting” and “counted” will result in “count”. In contrast to stemming,
lemmatization goes beyond word reduction by evaluating a language’s whole lexicon
for applying a morphological analysis to words. In other words, the lemmatization
technique does not simply chop off inflections as stemming does, but instead it relies
on a lexical knowledge base for obtaining the correct base forms of words. For
example, given the word “mice”, “ran” lemmatization converts them into “mouse”
and “run”, respectively. Essentially, by using stemming and lemmatization
techniques, one can construct a more concise and accurate vocabulary. However, we
don’t use these techniques during our vocabulary construction. The reason behind
this is that, according to recent works, stemming is claimed to reduce the model fit
and negligibly affect topic coherence. The utility of lemmatization on topic models is
also vague and rather needs further investigation. Therefore, we avoid stemming and
lemmatization of the corpus as a data pre-processing step.

Figure 8.3: Snippet from vocabulary extracted out of MovieLens 20M dataset.

Figure 8.3 shown above is a snippet from the resulting vocabulary of the MovieLens
20M dataset. We observe that the word “accumulate” has many forms with different
suffixes. This is because we did not use stemming and lemmatization. We believe
that letting vocabulary be rich like this will later facilitate model fit into the corpus.

 37

Overall, after extraction, MovieLens 20M vocabulary contains 59,110 words, while
the NETFLIX dataset vocabulary has 34,177 words.

8.1.2 Movie Representation
After extracting vocabulary from the corpus, we use it for numerical representation
of each movie/plot. The reason for this is that movies should be in such form that
models (e.g., LDA, CTMP) can work with. Therefore, one way is to succinctly
represent each movie as a sparse vector of word counts as below:

[M] [word_1]:[count] [word_2]:[count] ... [word_N]:[count]

where [M] denotes the number of unique words in the movie plot. Furthermore,
[word_i] is an integer and it denotes an index of the word inside vocabulary, and
[count] associated with this word denotes how many times the word appears in the
movie plot. The snippet from numerical representation of movies is shown in Figure
8.4. Note that if any word of the plot does not appear in corpus vocabulary, then we
disregard it in movie representation.

Figure 8.4: Snippet from numerical representation of movies for MovieLens 20M

dataset.

It is critical to remember that, the authors of both the original CTMP paper [1] and
BOPE paper [28] implemented their models using tags for movie representation
rather than plots. This is the most significant distinction between our work and theirs.
During the evaluation of the results, we will compare our model’s output against
theirs and determine whether using the movie plots resulted in different predictive
performances.

8.1.3 Memory usage reduction
This technique helps us to reduce the memory usage of data frames. It iterates
through all integer or float columns of the given data frame and if needed, changes
the data type in order to reduce memory usage. For instance, let’s assume an example
integer column is given as an int64 data type; the way the function decided whether
to reduce the memory or not is by first getting minimum and maximum values in this
column. Next, it checks whether these minimum and maximum values are in the
range of int32, int16, or int8 datatypes, and if they are, then it will convert the
column’s int64 datatype into the respective lower datatype. The same procedure
applies to float columns as well. As proof, when we used this technique to reduce the
memory storage of the df_rating data frame of the MovieLens 20M dataset, it
achieved a 58.3% reduction in terms of the memory consumption.

 38

8.2 Model Fit
After preparing the corpus vocabulary, converting numerical ratings into binary
form, numerically representing movies/plots, and using the memory reduction
technique on all data frames, we now continue with running and fitting phase of the
CTMP model using these data frames. Note that we will have separate models for
MovieLens 20M and NETFLIX. For the fitting phase, we will utilize the vocabulary,
the numerical movie representations, and the settings files.

We use stratified 5-fold cross-validation of ratings for training and testing the
model. Generally, k-fold cross-validation is a widely used technique that assesses the
efficacy of machine learning models since it produces a less biased estimate of their
effectiveness. The parameter k indicates the number of folds that a given dataset is to
split into. Pseudo-algorithm for fitting of the model with k-fold cross-validation is
shown in Algorithm 3.1 below:

.
Algorithm 4: Running the model with k-fold cross-validation.

At the end of the entire train-test circle, we average the evaluation scores kept for
each fold to obtain a final evaluation score. For our case, we utilize stratified k-fold
cross-validation, which has the same purpose as standard k-fold cross-validation but
produces stratified folds which are made by preserving the percentage of samples for
each class. This way, both train and test folds will contain information about each
user, ensuring that the model will be trained and tested with all users. A visual
example of it is shown in Figure 8.5 below:

Figure 8.5 Visual illustration of stratified 5-fold cross-validation on example dataset.

8.2.1 Hyperparameters
Along with vocabulary, and numerical movie representations files, we also have a
settings file containing the model parameters. It helps us to set the model’s
parameters on a per-run basis. Example snippet of settings files and their content are
shown in Figure 8.6 and. Table 8.2, respectively, below:

 39

Figure 8.6: Snippet from settings for CTMP input parameters for MovieLens 20M

dataset.

Parameter Description
num_movies Number of documents in the corpus

num_words Number of words of vocabulary

user_size Number of users in dataset
K Number of topics we want to discover from corpus

tops Number of top words to extract from each topic for analyzing
the quality of topics learned by the model

lamb (λ) Offset precision for documents
e, f Gamma priors

alpha (α) Dirichlet prior
p Bernoulli parameter for BOPE

iter_infer Number of inference steps during an estimation of document
proportions within BOPE

iter_train Number of epochs to train the model
Table 8.2: CTMP input parameters and their description.

Note that the only parameters which are entirely dependent on the dataset are
num_movies, num_words, and user_size. Thus, they reflect according to the size of
MovieLens 20M and NETFLIX datasets. Other parameters are modifiable
hyperparameters.

8.2.2 Running on Google Cloud
After we have prepared all necessary input data and set input model parameters, we
will run the CTMP models on Google Cloud’s Compute Engine which is a computed
service that lets us create and run virtual machines on Google’s infrastructure.
Google Cloud offers a wide range of compute engine variants with a variety of
configuration options. For our model, we require a large amount of RAM (Random
access memory) because the dataset is large and we perform 5-fold cross-validation
in parallel. Therefore, the most relevant machine type for our work is shown in Table
8.3 below:

Machine family GENERAL-PURPOSE
Series N1

Machine type n1-highmem-16
CPU 16x Intel® optimized with Intel® MKL and CUDA 11.0

RAM memory 104 GB
Boot Disk Standard Persistent Disk 100GB

Table 8.3: Specifications of Google Cloud Virtual Machine for training CTMP.

 40

Generally, the time per iteration of the model depends on which dataset and
parameters have been selected and the effectiveness of the code written in Python.
We have optimized our code by utilizing many techniques to reduce the time
complexity and increase the execution speed of the CTMP model. The expected
training time when the hyperparameters such as iter_infer and iter_train is set to 50
is shown in Table 8.4 below. Other hyperparameters did not have a much impact on
training time.

8.3 Model Evaluation
After running and fitting the model on both datasets with various parameters each
time, we now continue with evaluating the performance of these CTMP models.
Performance evaluation will be divided into the following parts:

1. Interpretability of learned topics
2. Evaluation metrics and predictive performance
3. Sparsity in topic proportion estimates
4. Sensitivity to hyperparameters

8.3.1 Interpretability of topics
As mentioned before, by incorporating LDA into the CTMP model, interpretable
topics can be obtained. This can be seen in Table 8.5 and Table 8.6 below:

MovieLens 20M

Topic 1 man, father, young, wife, mother, daughter, son, brother, new, old
Topic 2 new, life, one, love, finds, girl, school, two, job, friend
Topic 3 get, new, johnny, one, house, wife, town, police, killer, back
Topic 4 one, two, begins, friend, girl, mother, man, young, life, friends
Topic 5 new, life, world, story, young, love, find, two, help, husband
Topic 6 life, one, new, father, get, woman, friend, two, mother, family

Topic 7 film, documentary, world, story, life, one, new, interviews, footage,
history

Topic 8 life, family, town, one, love, home, old, new, war, man

Topic 9 young, family, one, husband, police, mother, father, wife, finds,
woman

Topic 10 town, love, new, family, young, father, man, old, two, find
 Table 8.5: Top-10 words of first 10 topics learnt by CTMP on MovieLens

20M with parameters of {K=100, lamb=1, alpha=1, p=0.9}.

Dataset Expected total training time
(iter_infer = 50)

Expected training time per
single epoch

(iter_infer = 50)
MovieLens 20M ~ 4.2 hours ~ 5.1 min

NETFLIX ~ 6.9 hours ~ 8.3 min

Table 8.4: CTMP training time for datasets.

 41

NETFLIX

Topic 1 wife life one team man goes story esmeralda get old
Topic 2 year town takes life friends family michael one must son
Topic 3 life father mother new young family scott son finds friend
Topic 4 find killer new town victims years become one back help
Topic 5 new one time children island get years girl find long
Topic 6 man new one bill father york wife son two love
Topic 7 life love two time get one new find jonathan george
Topic 8 new agent drug back fbi cia help american two friends
Topic 9 find new back one love also two family life get
Topic 10 life man take wants new young back money help school

Table 8.6: Top-10 words of first 10 topics learnt by CTMP on
NETFLIX with parameters of {K=100, lamb=1, alpha=1, p=0.9}.

8.3.2 Evaluation metrics and predictive performance
The model’s predictive performance is measured by its ability to recommend in-
items and cold-items. Note that in-items are those containing information from user
ratings while cold-items do not possess such information. Thus, recommending items
that are all in-items is called in-matrix prediction, whereas recommending both in-
items and cold-items is called out-of-matrix prediction. Both prediction types are
evaluated by recall and precision for all users in the test set, and they are measured
from top-M recommendations. The top-M recommendation includes items with
predicted ratings that are among the M highest. We will denote precision- and recall-
at-M with prec@M and recall@M, respectively:

• 𝑟𝑒𝑐𝑎𝑙𝑙@𝑀 =
1

𝑈
∑

𝑀𝑢
𝑐

𝑀𝑢
𝑢 where 𝑀𝑢𝑐 is the number of correct items that appear in

Top-M recommendation for user u, 𝑀𝑢 is the number items that user u had
rated positive.

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑀 =
1

𝑈
∑

𝑀𝑢
𝑐

𝑀𝑢
 where 𝑀𝑢𝑐 is the number of correct items that appear

in Top-M recommendation for user u, 𝑀 is the Top-M number.
•

We continue with computing the recall and precision with different combinations of
hyperparameters. A domain for each hyperparameter is shown in Table 8.7 below:

K ∈{50, 100}
tops ∈{10}

lamb (λ) ∈ {1, 100}
e, f ∈{0.3}

alpha (α) ∈{1, 0.01}
p ∈{0.7, 0.9}

iter_infer ∈ {50, 100}
iter_train ∈ {25, 50, 100}

Table 8.7: CTMP hyperparameters and their domain.

Note that we set Bernoulli parameter 𝑝 ∈ (0.7,0.9) and did not include 0.5 since this
parameter replaces the uniform distribution of OPE on likelihood and prior and

 42

adjusting it to 0.5 would result in a BOPE algorithm approximating OPE which is not
our goal.
Figure 8.7 andTable 8.6 Figure 8.8 show the recall and precision graphs for in-matrix
and out-of-matrix predictions on MovieLens 20M dataset when the model is run with
different hyperparameters.

.
Figure 8.7: Recall & precision graphs of CTMP model on MovieLens 20M dataset.
Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}.

.
Figure 8.8: Recall & precision graphs of CTMP model on MovieLens 20M dataset.
Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}.

We observe that, the model performance for MovieLens 20M dataset is quite stable
with different hyperparameters. The graphs differ from each other with 1 − 3%.

The recall graphs reach up to ~50% and ~45% of for in-matrix and out-of-matrix
predictions on MovieLens 20M dataset, respectively. These recall performances are
approximately same as the recall performance of the CTMP model presented in
original paper (refer to [1]). However, our CTMP model performs better in terms
of the precision for top-M recommendations on MovieLens 20M dataset. In
comparison with the original paper’s precision graph, our graph shows on average
~7-8% higher precision for each top-M recommendation.

Furthermore, Figure 8.9 below shows the results with parameter K set to 50 and
varying Bernoulli parameter p. With this hyperparameter configuration, we still get
approximately the same results as before, except this time there is a slight increase in

 43

precision for out-of-matrix predictions. Furthermore, in-matrix and out-of-matrix
predictions are closer to each other. The reason behind this may be the parameter K
being 50 instead of 100.

.
Figure 8.9: Recall & precision graphs of CTMP model on MovieLens20M dataset.

Parameters K, lamb, and alpha are fixed. Bernoulli p is varying as {0.7, 0.9}.
.

Next, we continue fitting the CTMP model on NETFLIX dataset. Figure 8.10, Figure
8.11 and Figure 8.12 below illustrate the recall and precision graphs with different
hyperparameter configurations. Again, from the graphs, we see that the CTMP model
performs stable under different hyperparameters. Also, the reason why in-matrix and
out-of-matrix lines overlap on the graphs is that the number of cold items for
NETFLIX dataset is very small. This makes in-matrix and out-of-matrix predictions
similar to each other.

.
Figure 8.10: Recall & precision graphs of CTMP model on NETFLIX dataset.

Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}.

 44

.
Figure 8.11: Recall & precision graphs of CTMP model on NETFLIX dataset.

Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}.

.
Figure 8.12: Recall & precision graphs of CTMP model on NETFLIX dataset.
Parameters K, lamb, and alpha are fixed. Bernoulli p is varying as {0.7, 0.9}.

.

8.3.3 Sparsity
After learning the topic proportions, we discovered that a substantial number of
𝜃𝑗 dimensions have near-zero values. Near-zero is defined as any value which is less
than 10−20. Furthermore, any estimates with near-zero dimensions are considered
“sparse” estimates. Figure 8.13 and Figure 8.14 illustrate the sparsity of the learned
topic proportions for MovieLens 20M and NETFLIX datasets, respectively. Here, we
define sparsity as the ratio of near-zero topic proportions averaged over all movies.

 45

.
Figure 8.13: Sparsity of learned topic proportions for MovieLens 20M dataset.

.
Figure 8.14: Sparsity of learned topic proportions for NETFLIX dataset.

We see that the CTMP model produces sparse estimates of topic mixtures for both
datasets. Note that the Dirichlet prior alpha (𝛼) helps to control the sparsity of the
topic proportions for each item. The smaller it is, the sparser the topic
proportions are.

8.3.4 Sensitivity to hyperparameters
Throughout the experimental studies for recall and precision, we see that the CTMP
model is stable and robust with different hyperparameters. In detail, the impact of the
parameter K is slightly more obvious than of other parameters.

Furthermore, it is important to note that our CTMP model started to fit the
datasets after around 25th iteration instead of 50th-100th iteration which was the
expected interval of convergence in the original CTMP paper. The reason behind is

 46

that using BOPE instead of OPE for the MAP estimation makes the model
convergence much faster and at the same time, prevents the overfitting.

8.4 Transfer Learning
We select the movie - The Naked City (1948). Its plot is as follows:

 “Amid a semi-documentary portrait of New York and its people, Jean Dexter, an
attractive blonde model, is murdered in her apartment. Homicide detectives Dan
Muldoon and Jimmy Halloran investigate. Suspicion falls on various shifty
characters whom all prove to have some connection with a string of apartment
burglaries. Then a burglar is found dead who once had an elusive partner named
Willie. The climax is a very rapid manhunt sequence. Filmed entirely on location in
New York City.”

Note that, on both MovieLens 20M and NETFLIX datasets, this movie is
included. We begin by separately training a CTMP model on both datasets.
Modifiable model parameters of settings files are shown in Table 8.8 below:

CTMP for MovieLens 20M CTMP for NETFLIX
num_topics: 100 num_topics: 50

tops: 10 tops: 10
lamb: 1 lamb: 1
e: 0.3 e: 0.3
f: 0.3 f: 0.3

alpha: 1 alpha: 1
bernoulli_p: 0.9 bernoulli_p: 0.9
iter_infer: 100 iter_infer: 100
iter_train: 50 iter_train: 50

Table 8.8: CTMP hyperparameter selection for transfer learning.

After 50 iterations of training, both models are fit to the respective dataset. Let’s look
at the top10 words of the topics learned from MovieLens 20M and NETFLIX
datasets.

 Following that, we compare the topic proportions estimated by both models for
“The Naked City (1948)” movie. Estimated topic proportions are shown in Figure
8.15 below:

 47

.
Figure 8.15: Transfer learning between MovieLens 20M and NETFLIX datasets for

“The Naked City (1948)” movie.

As illustrated in the figure above, the CTMP model trained on MovieLens 20M
estimates that “The Naked City (1948)” movie has 92.9% content related to topic 77
and 7% of content related to topic 7 (the remaining 0.1% comes from other topics,
which we disregard because it is insignificant). Now, let's look at what those
significant topics are about by looking at the top-10 words of each topic learned by
the model:

- Topic 77 (92.9%) – killer, police, detective, serial, one, murder, murders,
case, young, two.

- Topic 7 (7%) – film, documentary, world, one, life, new, interviews, story,
history, footage.

We can see that model estimates that the movie will be mostly centered on the
keywords murder, detective, police, killer, and so on. Moreover, it also provides little
topic proportion about the documentary, cinema, footage, etc. When these results are
compared to the movie's original plot, we see that the model accurately estimates the
topic proportions of the movie. Topic 7 being assigned a 7% share is also a good
sign, because related sentences to this topic were only mentioned in the first and last
sentences of the original plot, and they were not particularly relevant to the broader
narrative

On the other hand, a CTMP model trained on the NETFLIX dataset suggests that
"The Naked City (1948)” movie contains 96.9% content associated to topic 11 and
3% content belonging to topic 48 (remaining 0.1 percent comes from other topics,
which we disregard because it is insignificant). Let's look at what those important
topics are about by checking the top-10 words of each topic learned by the model:

- Topic 11 (96.9%) – police, murder, killer, detective, new, man, life, one,
crime, father.

- Topic 48 (3%) – jimmy, new, one, film, life, father, alison, time, george,
make.

It is apparent that this model, too, accurately approximates the movie's content by
giving the most weight to Topic 11, which is concentrated on the phrases police,
murder, killer, and so on. 3% being assigned to Topic 48 is again a good sign that
this model, too, could associate another negligible topic regarding the first and last
sentences of the original plot.

 48

Note that we could not do comprehensive transfer learning between the datasets,
as the number of common movies shared by both datasets is few. This makes the
extracted vocabulary and learned topics for both datasets different. Therefore, we
analyzed just one shared movie, namely, “The Naked City (1948)”, and the results
seem to be promising.

 49

9 Conclusion
In this thesis, we discussed various probabilistic models for recommender systems
where we implemented CTMP model augmented with BOPE algorithm. Based on
our empirical studies in section 8.3, we see that augmentation of BOPE algorithm to
the CTMP model is successful. Despite the plots of movies which are used for
content representation were mostly short text, our CTMP model did not overfit the
data. Also, note that, we used the plots of movies instead of tag applications for the
document representation - this is one of the most important difference in empirical
studies between our work and the original CTMP paper. The model is stable, fast,
and capable of transfer learning. Note that, transfer learning seems promising, but we
do not have enough common data to test it comprehensively. Moreover, the model
produced interpretable topics and high recall and precision scores. It also provided
sparse content representation which is essential in industrial settings for near-real
time recommendation.

 50

Bibliography

[1] H.M. Le, S.T. ong, Q.P. The, N.V. Linh and K. Than. Collaborative Topic
Model for Poisson distributed ratings. International Journal of Approximate
Reasoning, vol. 95, pp. 62-76, 2018.

[2] R. Burke and A. Felfernig. Constraint-based recommender systems:
Technologies and research issues. Proceedings of the 10th international
conference on Electronic commerce, pp. 1-10, 2008.

[3] A. Felfernig, M. Jeran, G. Ninaus and F. Reinfrank. Toward the Next
Generation of Recommender Systems: Applications and Research Challenges.
2013.

[4] Y. Koren, R. Bell and C. Volinsky. Matrix Factorization Techniques for
Recommender Systems. Computer, vol. 42, pp. 30-37, 2009.

[5] D. Blei, A. Ng and M. Jordan. Latent Dirichlet Allocation. The Journal of
Machine Learning Research, vol. 3, pp. 601-608, 2001.

[6] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization
using Markov chain Monte Carlo. Proceedings of the 25th International
Conference on Machine Learning, vol. 25, pp. 880-887, 2008.

[7] B. Bayar, N. Bouaynaya and R. Shterenberg. Probabilistic non-negative matrix
factorization: Theory and application to microarray data analysis. Journal of
bioinformatics and computational biology, vol. 12, 2014.

[8] R. Salakhutdinov and A. Mnih. Probabilistic Matrix Factorization.
Proceedings of the 20th International Conference on Neural Information
Processing Systems, pp. 1257–1264, 2007.

[9] D. Agarwa and B. Chen. fLDA: Matrix factorization through latent dirichlet
allocation. Proceedings of the 3rd ACM International Conference on Web
Search and Data Mining, pp 91-100, 2010.

 [10] C. Wang and D. Blei. Collaborative topic modeling for recommending
scientific articles. Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 448-456, 2011.

[11] C. Wang and D. Blei. Variational Inference in Nonconjugate Models. Journal
of Machine Learning Research, vol. 14, 2012.

[12] P. Gopalan, L. Charlin and D. Blei. Content-based recommendations with
Poisson factorization. Advances in Neural Information Processing Systems, vol
4, pp. 3176-3184, 2014.

[13] P. Gopalan, J. Hofman and D. Blei. Scalable Recommendation with Poisson
Factorization. 2013.

[14] Topic model. https://en.wikipedia.org/wiki/Topic_model. Accessed: 2022-05-
27.

[15] T. Tran, D. Phung and S. Venkatesh. Preference Networks: Probabilistic
Models for Recommendation Systems. 2014.

[16] S. Tu. The Dirichlet-Multinomial and Dirichlet-Categorical models for
Bayesian inference. https://stephentu.github.io/writeups/dirichlet-conjugate-
prior.pdf. Accessed: 2022-05-27.

[17] David Blei. Variational Inference. https://rllabmcgill.github.io/COMP-
652/lectures/lecture-17.pdf. Accessed: 2022-05-27.

https://en.wikipedia.org/wiki/Topic_model
https://stephentu.github.io/writeups/dirichlet-conjugate-prior.pdf
https://stephentu.github.io/writeups/dirichlet-conjugate-prior.pdf
https://rllabmcgill.github.io/COMP-652/lectures/lecture-17.pdf
https://rllabmcgill.github.io/COMP-652/lectures/lecture-17.pdf

 51

[18] J.M. Joyce. Kullback-Leibler Divergence. International Encyclopedia of
Statistical Science, 2011.

[19] C. Choy. Expectation Maximization and Variational Inference (Part 1).
https://chrischoy.github.io/research/Expectation-Maximization-and-
Variational-Inference/. Accessed: 2022-05-27.

[20] L. Lee and C. Wang, "Probabilistic Graphical Models", Spring, pp. 10-708,
2017.

[21] D. Blei. Variational Inference: Foundations and Innovations.
https://www.eurandom.tue.nl/wp-content/uploads/2019/05/Blei_lectures.pdf.
Accessed: 2022-05-27.

[22] M. Wainwright and M. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Foundations and Trends in Machine Learning. 2008.

[23] K. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe
algorithm. 2008.

[24] Z. Allen-Zhu. Natasha 2: Faster Non-Convex Optimization Than SGD. 2017.
[25] J. Mairal. Stochastic Majorization-Minimization Algorithms for Large-Scale

Optimization. 2013.
[26] A. Yuille and A. Rangarajan. The Concave-Convex Procedure. Neural

Computation. 2003.
[27] K. Than, T. Doan. Guaranteed inference in topic models.

https://arxiv.org/pdf/1512.03308. Accessed: 2022-05-27.
[28] X. Bui, H. Vu, O. Nguyen and K. Than. MAP Estimation With Bernoulli

Randomness, and Its Application to Text Analysis and Recommender Systems.
IEEE Access, vol. 8, pp. 127818-127833, 2020.

[29] D. Mimno, M. Hoffman, D. Blei. Sparse Stochastic Inference for Latent
Dirichlet allocation. Proceedings of the 29th International Conference on
Machine Learning, 2012.

[30] U. Simsekli, R. Badeau, G. Richard and A. Cemgil. Stochastic Quasi-Newton
Langevin Monte Carlo. 2016.

[31] M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul. An Introduction to
Variational Methods for Graphical Models. 1999.

[32] N. Johnson, A. Kemp and S. Kotz. Univariate Discrete Distributions. John
Wiley & Sons, vol. 444, 2005.

[33] K. Than and T. Ho. Fully Sparse Topic Models. 2012.
[34] MovieLens 20M Dataset. https://grouplens.org/datasets/movielens/20m/.

Accessed: 2022-05-27.
[35] Netflix Prize. https://en.wikipedia.org/wiki/Netflix_Prize. Accessed: 2022-05-

27.
[36] IMDB. https://www.imdb.com/. Accessed: 2022-05-27

https://chrischoy.github.io/research/Expectation-Maximization-and-Variational-Inference/
https://chrischoy.github.io/research/Expectation-Maximization-and-Variational-Inference/
https://www.eurandom.tue.nl/wp-content/uploads/2019/05/Blei_lectures.pdf
https://arxiv.org/pdf/1512.03308
https://grouplens.org/datasets/movielens/20m/
https://en.wikipedia.org/wiki/Netflix_Prize
https://www.imdb.com/

 52

List of Figures
Figure 2.1: Types of recommendation technique. .. 8
Figure 2.2: Illustration of Collaborative Filtering recommender systems. 9
Figure 2.3: Illustration of Content Based recommender systems. .. 10
Figure 3.1: Graphical model for CTR... 12
Figure 3.2: Graphical model for CTPF. .. 13
Figure 4.1: Graphical model for LDA. ... 16
Figure 4.2: Topic simplex for 3 topics embedded in the word simplex for 3 words. 17
Figure 5.1: Approximate solution to the inference problem using Variational Inference 18
Figure 5.2: Graphical model for conditionally conjugate model. ... 20
Figure 7.1: Graphical model for CTMP. .. 28
Figure 8.1: Data frames for MovieLens 20M dataset. .. 34
Figure 8.2: Data frames for NETFLIX dataset. .. 35
Figure 8.3: Snippet from vocabulary extracted out of MovieLens 20M dataset. 36
Figure 8.4: Snippet from numerical representation of movies for MovieLens 20M dataset. . 37
Figure 8.5 Visual illustration of stratified 5-fold cross-validation on example dataset.......... 38
Figure 8.6: Snippet from settings for CTMP input parameters for MovieLens 20M dataset. 39
Figure 8.7: Recall & precision graphs of CTMP model on MovieLens 20M dataset. 42
Figure 8.8: Recall & precision graphs of CTMP model on MovieLens 20M dataset.. 42
Figure 8.9: Recall & precision graphs of CTMP model on MovieLens20M dataset. 43
Figure 8.10: Recall & precision graphs of CTMP model on NETFLIX dataset. 43
Figure 8.11: Recall & precision graphs of CTMP model on NETFLIX dataset. 44
Figure 8.12: Recall & precision graphs of CTMP model on NETFLIX dataset. 44
Figure 8.13: Sparsity of learned topic proportions for MovieLens 20M dataset. 45
Figure 8.14: Sparsity of learned topic proportions for NETFLIX dataset. 45
Figure 8.15: Transfer learning between MovieLens 20M and NETFLIX datasets for “The
Naked City (1948)” movie.. 47

 53

List of Tables
Table 2.1: Detailed comparison of recommender systems. 10
Table 8.3: Details of data frames. .. 35
Table 8.4: CTMP input parameters and their description. ... 39
Table 8.5: Specifications of Google Cloud Virtual Machine for training CTMP. 39
Table 8.6: CTMP training time for datasets. .. 40
Table 8.7: Top-10 words of first 10 topics learnt by CTMP on MovieLens 20M. 40
Table 8.8: Top-10 words of first 10 topics learnt by CTMP on NETFLIX 41
Table 8.9: CTMP hyperparameters and their domain. ... 41
Table 8.10: CTMP hyperparameter selection for transfer learning. 46

 54

List of Algorithms
Algorithm 3.1: CTR model algorithm. ... 12
Algorithm 3.2: Generative process for CTPF. ... 14
Algorithm 4.1: Generative process for LDA.. 16
Algorithm 6.1: Online Maximum a Posteriori Estimation (OPE) algorithm. 25
Algorithm 6.2: Bernoulli randomness in Online maximum a Posteriori Estimation
(BOPE) algorithm. ... 26
Algorithm 7.1: Generative process for CTMP. .. 28
Algorithm 7.2: CTMP model algorithm. ... 30
Algorithm 7.3: Learning 𝜃𝑗 using BOPE. .. 31

 55

List of Abbreviations
RS Recommender Systems
CF Collaborative Filtering
CB Content Based
LDA Latent Dirichlet Allocation
fLDA Matrix Factorization through Latent Dirichlet Allocation
CTR Collaborative Topic Regression
CTPF Collaborative Topic Poisson Factorization
CTMP Collaborative Topic Model for Poisson distributed ratings
EM Expectation–Maximization
VI Variational Inference
VBM Variational Bayesian Methods
MFVI Mean-field Variational Inference
KL Kullback-Leibler
ELBO Evidence lower bound
MAP Maximum a Posteriori
OPE Online Maximum a Posteriori Estimation
BOPE Bernoulli randomness is Online Maximum a Posteriori Estimation
CGS Collapsed Gibbs Sampling
HAMCMC Hessian Approximated Markov Chain Monte Carlo
MCMC Markov chain Monte Carlo
NLP Natural Language Processing
RAM Random Access Memory

 56

Appendix

Appendix A. Objective function

𝑙 =∑  

𝐽

𝑗

log 𝑃(𝜃𝑗 , 𝑤𝑗 ∣ 𝛼, 𝛽) +∑ 

𝐽

𝑗

log 𝑃(𝜇𝑗 ∣ 𝜃𝑗, 𝜆)

+∑ 

𝑈

𝑢

∑ 

𝐽

𝑖

(𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)log 𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢 ∣ 𝜇𝑗 , 𝑒, 𝑓) − 𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)log 𝑞(𝑦𝑢𝑗 , 𝜂𝑢))

 (A.1)

We will detail each term in 𝑙. According to [27], we have:

log 𝑃(𝜃𝑗 ,𝑤𝑗 ∣ 𝛼, 𝛽) = (𝛼 − 1)∑  

𝑘

log 𝜃𝑗𝑘 +∑  

𝑣

𝑐𝑗
𝑣 log ∑  

𝑘

𝜃𝑗𝑘𝛽𝑘𝑣 + Constant (A.2)

Because 𝜇𝑗 ~ 𝒩(𝜃𝑗 , 𝜆−1𝐼𝐾), then:

log 𝑃(𝜇𝑗 ∣ 𝜃𝑗 , 𝜆) = −

𝜆

2
∥∥𝜃𝑗 − 𝜇𝑗∥∥2

2
+ Constant (A.3)

The last term in 𝑙 is detailed below:

𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log 𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢 ∣ 𝜇𝑗 , 𝑒, 𝑓) − 𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log 𝑞(𝑦𝑢𝑗 , 𝜂𝑢)
= 𝐸𝑞(𝜂𝑢) log 𝑃(𝜂𝑢 ∣ 𝑒, 𝑓) + 𝐸𝑞(𝜂𝑢) log 𝑃(𝑟𝑢𝑗 ∣ 𝜇𝑗 , 𝜂𝑢) + 𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log𝑃(𝑦𝑢𝑗 ∣ 𝜇𝑗 , 𝜂𝑢, 𝑟𝑢𝑗)

−∑ 

𝑘

𝐸𝑞(𝜂𝑢𝑘) log 𝑞(𝜂𝑢𝑘 ∣ shp𝑢𝑘 , rte 𝑢𝑘) − 𝐸𝑞(𝑦𝑢𝑗 log 𝑞(𝑦𝑢𝑗 ∣ 𝜙𝑢𝑗𝑟𝑢𝑗)

=∑  

𝑘

𝐸𝑞(𝜂𝑢,𝑘) log
𝑓𝑒

Γ(𝑒)
𝜂𝑢𝑘

𝑒−1 exp(−𝑓𝜂𝑢𝑘) + 𝐸𝑞(𝜂𝑢𝑘) log
(𝜂𝑢
𝑇𝜇𝑗)

𝑟𝑢𝑗 exp(−𝜂𝑢
𝑇𝜇𝑗)

𝑟𝑢𝑗!

+𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log
𝑟𝑢𝑗!

Π𝑘𝑦𝑢𝑗𝑘!

Π𝑘(𝜂𝑢𝑘𝜇𝑗𝑘)
𝑦𝑢𝑗𝑘

(𝜂𝑢𝑇𝜇𝑗)
𝑟𝑢𝑗

−∑ 

𝑘

𝐸𝑞(𝜂𝑢,𝑘) log
(rte𝑢𝑘)

shp𝑢𝑘

Γ(shp𝑢𝑘)
(𝜂𝑢𝑘)

shp𝑢𝑘−1 exp(− rte 𝑢𝑘𝜂𝑢𝑘) − 𝐸𝑞(𝑦𝑢𝑗 log
𝑟𝑢𝑗!

Π𝑘𝑦𝑢𝑗𝑘!
Π𝑘𝜙𝑢𝑗𝑘

𝑦𝑢𝑗𝑘

=∑  

𝑘

((𝑒 − 1)𝐸𝑞(𝜂𝑢,𝑘) log 𝜂𝑢𝑘 − 𝑓𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘]) + (𝑟𝑢𝑗𝐸𝑞(𝜂𝑢𝑘) log(𝜂𝑢
𝑇𝜇𝑗) − 𝐸𝑞(𝜂𝑢𝑘)[𝜂𝑢

𝑇𝜇𝑗])

+(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)𝑦𝑢𝑗𝑘 log(𝜂𝑢𝑘𝜇𝑗𝑘) −∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗) log 𝑦𝑢𝑗𝑘! − 𝑟𝑢𝑗𝐸𝑞(𝜂𝑢𝑘) log(𝜂𝑢
𝑇𝜇𝑗))

−∑ 

𝑘

(log
(rte𝑢𝑘)

shp𝑢𝑘

Γ(shp𝑢𝑘)
+ (shp𝑢𝑘 − 1)𝐸𝑞(𝜂𝑢,𝑘) log(𝜂𝑢𝑘) − rte𝑢𝑘𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘])

−(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗)[𝑦𝑢𝑗𝑘] log(𝜙𝑢𝑗𝑘) −∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗) log 𝑦𝑢𝑗𝑘!) + Constant

=∑  

𝑘

((𝑒 − 1)𝐸𝑞(𝜂𝑢,𝑘) log 𝜂𝑢𝑘 − 𝑓𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘]) + (−𝐸𝑞(𝜂𝑢𝑘)[𝜂𝑢
𝑇𝜇𝑗])

+(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)𝑦𝑢𝑗𝑘 log(𝜂𝑢𝑘𝜇𝑗𝑘))

−∑ 

𝑘

(log
(rte𝑢𝑘)

shp𝑢𝑘

Γ(shp𝑢𝑘)
+ (shp𝑢𝑘 − 1)𝐸𝑞(𝜂𝑢,𝑘) log(𝜂𝑢𝑘) − rte𝑢𝑘 𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘])

−(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗)[𝑦𝑢𝑗𝑘] log(𝜙𝑢𝑗𝑘)) + Constant

(A.4)

 57

=∑  

𝑘

((𝑒 − 1)(Ψ(shp𝑢𝑘) − log(rte𝑢𝑘)) − 𝑓
shp𝑢𝑘
 rte 𝑢𝑘

)−∑ 

𝑘

𝜇𝑗𝑘
shp𝑢𝑘
 rte 𝑢𝑘

+∑ 

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘(Ψ(shp𝑢𝑘) − log(rte𝑢𝑘) + log(𝜇𝑗𝑘))

−∑(shp𝑢𝑘 log(rte𝑢𝑘) − log(Γ(shp𝑢𝑘) + (shp𝑢𝑘 − 1)(Ψ(shp𝑢𝑘) − log(rte𝑢𝑘))

𝑘

−rteuk
shpuk
 rte uk

) −∑ 

k

rujϕujk log(ϕujk) + Constant

=∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘) −∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘) +∑  

𝑘

(rte𝑢𝑘 − 𝑓 − 𝜇𝑗𝑘)
shp𝑢𝑘
 rte 𝑢𝑘

+∑ 

𝑘

(𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘)(Ψ(shp𝑢𝑘)− log(rte 𝑢𝑘)) −∑ 

𝑘

shp𝑢𝑘 log(rte 𝑢𝑘)

+∑ 

𝑘

log(Γ(shp𝑢𝑘)) + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

After summing up three terms (A.2), (A.3) and (A.4), we obtain:

𝑙(𝜃, 𝜇, 𝜙, shp, rte, 𝛽) =∑  

𝐽

𝑗

((𝛼 − 1)∑  

𝐾

𝑘

log 𝜃𝑗𝑘 +∑ 

𝑣

𝑐𝑗
𝑣 log∑  

𝐾

𝑘

𝜃𝑗𝑘𝛽𝑘𝑣)

−∑ 

𝐽

𝑗

𝜆

2
∥∥𝜃𝑗 − 𝜇𝑗∥∥2

2
+∑  

𝑈

𝑢

∑ 

𝐽

𝑗

∑ 

𝐾

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘)

−∑ 

𝑈

𝑢

∑ 

𝐽

𝑗

∑ 

𝐾

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘) +∑  

𝑈

𝑢

∑ 

𝐾

𝑘

(rte𝑢𝑘 − 𝑓 −∑  

𝐽

𝑗

𝜇𝑗𝑘)
shp𝑢𝑘
rte𝑢𝑘

+∑ 

𝑈

𝑢

∑ 

𝐾

𝑘

(∑  

𝐽

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp p𝑢𝑘) (Ψ(sh 𝑝𝑢𝑘) − log(rte𝑢𝑘))

−∑ 

𝑈

𝑢

∑ 

𝐾

𝑘

shp𝑢𝑘 log (rte𝑢𝑘) +∑  

𝑈

𝑢

∑ 

𝐾

𝑘

log (Γ(shp𝑢𝑘)) + Constant.

 (A.5)

Appendix B. Update 𝝓𝒖𝒋

We then maximize the lower bound with respect to 𝜙𝑢𝑗:

𝑙(𝜙𝑢𝑗) =∑ 

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘) −∑ 

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘) + 𝑟𝑢𝑗𝜙𝑢𝑗𝑘(Ψ(shp𝑢𝑘) − log (rte𝑒𝑢𝑘)) (B.1)

with the constraint ∑ 𝜙𝑢𝑗𝑘 = 1
𝐾
𝑘 .

By adding the Lagrange multipliers 𝜆, we obtain:

𝑙(𝜙𝑢𝑗) =∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘) −∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘)

+ 𝑟𝑢𝑗𝜙𝑢𝑗𝑘(Ψ(shp𝑢𝑘) − log (rte𝑢𝑘)) + 𝜆 (1 −∑  

𝐾

𝑘=1

𝜙𝑢𝑗𝑘)

 (B.2)

We take the derivative 𝑙(𝜙𝑢𝑗) with respect to 𝜙𝑢𝑗𝑘(𝑘 ∈ {1,… , 𝐾}), and set to zero, then
we get:

 58

𝜙𝑢𝑗𝑘 ∝ exp {log 𝜇𝑗𝑘 + 𝜓(shp𝑢𝑘) − log (rte𝑢𝑘)} (B.3)

Appendix C. Update 𝐬𝐡𝐩𝒖,𝒌 and 𝐫𝐭𝐞𝒖𝒌
We then maximize the lower bound with respect to shp𝑢,𝑘 and rte𝑢,𝑘:

𝑙(shp𝑢,𝑘 , rte 𝑢,𝑘) = (rte𝑢𝑘 − 𝑓 −∑  

𝑗

𝜇𝑗𝑘)
shp𝑢𝑘
rte𝑢𝑘

+(∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘) (Ψ(shp𝑢𝑘) − log(rte𝑢𝑘)) − shp𝑢𝑘 log (rte𝑢𝑘) + log (Γ(shp𝑢𝑘))

(C.1)

Now, we take the derivative 𝑙(shp𝑢,𝑘 , rte 𝑢,𝑘) with respect to shp𝑢,𝑘, rte𝑢,𝑘(𝑘 ∈ {1, … , 𝐾}),
and set to zero. Note that ∂𝑙(shp𝑢,𝑘,rte𝑢,𝑘)

∂shp𝑢,𝑘
= Ψ(shp𝑢𝑘), we have:

{

 ∂𝑙(shp𝑢,𝑘 , rte𝑢,𝑘)

∂shp𝑢,𝑘
= (rte𝑢𝑘 − 𝑓 −∑ 

𝑗

𝜇𝑗𝑘)
1

rte𝑢𝑘
+ (∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘)Ψ
′(shp𝑢𝑘)

= 0

∂𝑙(shp𝑢,𝑘 , rte𝑢,𝑘)

∂rte𝑢,𝑘
= −(rte𝑢𝑘 − 𝑓 −∑  

𝑗

𝜇𝑗𝑘)
shp𝑢𝑘

rte𝑢𝑘
2 + (∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘)
−1

rte𝑢𝑘

= 0

 (C.2)

Now the solution is:

{

 shp𝑢𝑘 = 𝑒 +∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘

rte𝑢𝑘 = 𝑓 +∑ 

𝑗

𝜇𝑗𝑘

 (C.3)

	1 Introduction
	2 Recommender Systems
	2.1 Collaborative Filtering recommender systems
	2.2 Content Based recommender systems
	2.3 Hybrid recommender systems

	3 Probabilistic Models for Recommender Systems
	3.1 fLDA
	3.2 CTR
	3.3 CTPF
	3.4 CTMP

	4 LDA
	4.1 Learning
	4.2 Inference and Parameter Estimation

	5 Variational Inference
	5.1 KL–divergence derivation
	5.2 Jensen’s inequality derivation
	5.3 Mean-field Variational Inference
	5.3.1 Mean-field Variational Inference in conjugate models
	5.3.1.1 Conjugate Priors and Corresponding Posteriors
	5.3.1.1.1 Multinomial distribution and Dirichlet priors
	5.3.1.1.2 Poisson distribution and gamma priors

	5.3.2 Mean-field Variational Inference in non-conjugate models

	6 OPE and BOPE
	6.1 OPE for solving MAP problem
	6.2 BOPE for solving MAP problem

	7 Collaborative Topic Model for Poisson distributed ratings
	7.1 Formalization
	7.2 Inference
	7.3 Learning Parameters
	7.4 Prediction
	7.5 Key properties

	8 Empirical Studies
	8.1 Data preprocessing
	8.1.1 Vocabulary Extraction
	8.1.2 Movie Representation
	8.1.3 Memory usage reduction

	8.2 Model Fit
	8.2.1 Hyperparameters
	8.2.2 Running on Google Cloud

	8.3 Model Evaluation
	8.3.1 Interpretability of topics
	8.3.2 Evaluation metrics and predictive performance
	8.3.3 Sparsity
	8.3.4 Sensitivity to hyperparameters

	8.4 Transfer Learning

	9 Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Appendix
	Appendix A. Objective function
	Appendix B. Update ,𝝓-𝒖𝒋.
	Appendix C. Update ,𝐬𝐡𝐩-𝒖,𝒌. and ,𝐫𝐭𝐞-𝒖𝒌.

