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1 Introduction 
Since the mid-1990s, when the first articles on collaborative filtering were published, 
Recommender Systems (RS) have been an active study topic. In recent years, many 
websites utilize the RS extensively. "You may like this", "Customers who purchased 
this item also purchased", and "Other products you may like". Everyone has at least 
once encountered these recommendations when exploring the web pages on internet. 
These are the capabilities of RS. 

In this thesis, we will explore a variety of probabilistic models developed for RS. 
Our study focuses mostly on implementation of Collaborative Topic model for 
Poisson distributed ratings (CTMP) [1] augmented with Bernoulli randomness for 
Online Maximum a Posteriori Estimation (BOPE) [28]. CTMP is a probabilistic 
hybrid model with scalability and interpretability. Its key properties make it 
advantageous compared to its predecessors. BOPE is the recently proposed 
Maximum a Posteriori Estimation (MAP) algorithm that provides a fast convergence 
rate along with implicit regularization. These features help probabilistic models to 
excel in ill-posed cases such as training on short text, and sparse or noisy data. In this 
thesis, we will be implementing and evaluating CTMP model that uses BOPE for its 
MAP algorithm.  

In the following sections 2 and 3, we will introduce RS and probabilistic models 
for RS. Then we will continue with Latent Dirichlet Allocation (LDA) and 
Variational Inference (VI) in sections 4 and 5. Note that LDA and VI concepts are 
crucial parts of the CTMP model theory. Next, in section 0, we will discuss Online 
Maximum a Posteriori Estimation (OPE) and BOPE for solving MAP problem. 
Finally, sections 7 and 8 are dedicated to CTMP model and its empirical studies. 
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2 Recommender Systems 
Recommender Systems (RS) are widely recognized as one of the most beneficial 
applications of Machine Learning. The fundamental objective of these Machine 
Learning-driven Recommenders is to filter, prioritize and efficiently deliver the 
necessary information to the consumers amid overwhelmingly numerous choices on 
the internet. It is also described as: 

“Any system that produces individualized recommendations as output or has the effect of 
guiding the user in a personalized way to interesting or useful objects in a large space of 

possible options.” [2] 

Therefore, many companies utilize RS to help consumers discover new and 
relevant items such as movies, songs, jobs, etc. They use the consumer data in the 
explicit or implicit form (e.g., likes, clicks), to comprehensively assess consumers’ 
preferences and then recommend the relevant items to them. According to various 
criteria, there are multiple techniques of RS, each of which differs in how a single 
recommendation is generated. The most common types of RS are described in the 
following sections. 

Although there exist several different RS in the literature, we will focus on the 
three most common techniques as shown in Figure 2.1: 
 

. 
Figure 2.1: Types of recommendation technique. 

 
 
2.1 Collaborative Filtering recommender systems 
Collaborative Filtering (CF) recommender systems are one of the most widely used 
systems next to the Content Based (CB) recommender systems. Essentially, these 
systems create a user profile based on the ratings of various items and then aim to 
compare these against a wider user group [3]. As the word “collaborative” from the 
name implies, multiple users come together as a group – a taste of one user will be 
similar to the other users of the group. Therefore, by utilizing the user’s data which 
contains their historical preferences on a set of items, the system deploys an 
assumption that the users who have previously agreed are more likely to agree again 
in the future. So, the system creates new recommendations by taking the similarities 
between users based on the ratings into consideration (see Figure 2.2).  
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. 
Figure 2.2: Illustration of Collaborative Filtering recommender systems. 

Although CF recommender systems have been used in the industry for many 
years [4], they still have a limitation such that they cannot address the cold start 
problem – they are not able to recommend items which are not rated by any users 
(e.g., new items). As a result, only famous items may get recommended. 
Furthermore, traditional CF systems are also memory-wise and computationally 
expensive and suffer from scalability problems.  
 
 
2.2 Content Based recommender systems 
While CF recommender systems, as discussed above, recommend the products or 
items according to the similarities of user preferences which means that 
recommendation relies on the user-item interactions, CB recommender systems, on 
the other hand, aim to recommend products or items similar to those a given user has 
rated positive or liked in the past. So, CB systems generate recommendations based 
on the comparison between the content of the items and the user profile which was 
created according to the historical user data (see Figure 2.3). Note that the content of 
items is described by terms, tags, features, or even plots in case the items are movies. 

An algorithm used to recommend the movies on the Netflix platform is a 
prominent example that resembles these RS. If a certain user watches and comedy 
movie and rates it positive via votes or comments, then the new movie 
recommendations with the same label as that liked movie will be suggested to the 
user. In other words, based on the content of the consumed item, this RS finds other 
similar items and recommends them. Note that such website platforms often keep the 
techniques of how the content is labeled and matched against each other as private 
[3]. Contrary to CF systems, CB system doesn’t suffer from a cold-start problem, and 
they can suggest not only famous or older items but also unpopular or new items. In 
addition to this, they are memory-wise and computationally cheap because there is 
no need for the data of other users to be able to compute the recommendation for a 
specific user. 
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. 
Figure 2.3: Illustration of Content Based recommender systems. 

 
 

2.3 Hybrid recommender systems 
Hybrid recommender systems combine two or more types of traditional RS to have 
better performance by benefiting from complementary advantages of subsystems. 
Hybrid systems which combine CF and CB approaches achieve state-of-the-art 
results in many cases and are used in many large-scale RS nowadays. Detailed 
comparison of advantages and disadvantages of Hybrid Recommenders along with 
CF and CB Recommenders are shown in Table 2.1 below: 
 

 Collaborative Filtering Content Based 
 

Hybrid 
 

 
Number of 

users 
 

Recommendation based on 
many users having similar 

interest 

Recommendation 
based on single user 

Combination of 
collaborative and 

content based 
filtering 

Disadvantages 

- Cold start 
problem 

- Data sparsity 
- Scalability 
- Memory-wise 

and 
computationally 
expensive 

- Limited content 
analysis 

- Over-
specialization 

- Increased 
complexity 

- Increased 
expense of 
implementati
on 

Advantages 

- Serendipitous 
recommendation 

- User and item 
features are not 
required 

- Quality may 
improve over 
time as more 
users interact 
with items 

- - Minimal domain 
knowledge 
required 

- User 
independent 

- No cold start 
problem 

- Interpretable 
results 

- Memory-wise 
and 
computationally 
cheap 

Avoids most of 
the shortcomings 
of other 
approaches. 

Table 2.1: Detailed comparison of recommender systems. 
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3 Probabilistic Models for Recommender Systems 
The application of probabilistic modeling to the recommendation problem has a rich 
history that dates back decades. Many authors incorporated the probabilistic 
approaches into models which explained the dataset. Initial approaches were 
probabilistic graphical models such as Bayesian networks and Dependency networks 
which eventually left their place with subsequent novel topic models such as Latent 
Dirichlet Allocation (LDA) [5]. The term “latent” is used in their name because LDA 
is considered a probabilistic topic model, and the topics it aims to find from the 
corpus are considered latent or hidden variables. A detailed explanation of LDA has 
been discussed in section 4 as it is an essential part of the model that we will be 
discussing in this thesis. Also, note that, as LDA can suggest items that have similar 
content to other items that a user likes, it has been extensively used for CB 
recommender systems. When it comes to the field of CF recommender systems, the 
matrix factorization technique had gained decent popularity, especially after being 
combined with a probabilistic approach [6], [7], [8].  

 
 

3.1 fLDA 
Lately, there has been a lot of interest in combining probabilistic topic modeling with 
matrix factorization in the field of hybrid recommender systems. One of the major 
reasons for this is that when the content of an item is represented by topic models, 
the models benefit from interpretable semantics of the latent space characterized by 
the topic mixtures, and this leads to more interpretable semantics of the item latent 
factor. Initially, Deepak Agarwal and Bee-Chung Chen proposed Matrix 
Factorization through Latent Dirichlet Allocation (fLDA) where the item latent 
factor took the role of topic proportion in the LDA representation [9]. Despite being 
an accurate and interpretable model, which handles both cold-start and warm-start 
scenarios, fLDA still had a limitation in dealing with distinguished items where there 
is an identical topic mixture, but content details that topic mixture cannot cover are 
of concern to different groups of people. To elaborate on this limitation, consider that 
we have two articles: A and B. Both articles are about the application of machine 
learning to social networks. Because both articles are identical in terms of their 
contents, they will also possess the same topic proportions. Now let’s consider that 
these two articles are of interest to different kinds of users: Article A provides a 
prominent machine learning algorithm that is applied to social network applications, 
whereas article B implements a standard machine learning algorithm, but provides 
crucial data analysis on social network data. As a result, users who work in machine 
learning will prefer article A and will hardly be interested in article B, whereas users 
who work in social networks will be more interested in article B instead of A. 
However, as the topic proportions of both articles are the same, both will be 
recommended to both groups of users  [10].  
 
 
3.2 CTR 
To tackle the limitation mentioned above, a novel approach called Collaborative 
Topic Regression (CTR) has been proposed by David M. Blei and Chong Wang  
[10]. The way CTR addresses that limitation is by allowing the item latent factor to 
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be an offset from topic proportion. So, using this way, an offset may help explain, for 
instance, an article A is more important to researchers interested in machine learning 
than it is to those interested in social network analysis. Therefore, CTR allows the 
item latent factor to also account for user ratings.   

Fundamentally, CTR incorporates techniques of both collaborative filterings 
based on latent factor models and content analysis based on probabilistic topic 
modeling. According to the CTR model, items are generated by a topic model while 
users are represented with topic interests  [10]. Therefore, CTR is considered one of 
the excellent hybrid models which shows that the combination of the content 
modeling with the matrix factorization methods produces more promising results 
compared to traditional RS. The graphical model of CTR along with its algorithm is 
shown below. Note that, in machine learning, graphical models are used to represent 
a repetitive process of the probabilistic model. Essentially, they represent a 
factorization of the joint distribution of hidden and observed random variables. 
Nodes are random variables, plate boxes denote the “loop” with a variable shown in 
the bottom right corner of the plate representing its number of iterations, and edges 
mean that there is dependence between random variables in the generative process. 
Note that grey nodes represent observed variables while blank nodes are hidden 
variables. Figure 3.1 shows the graphical model of CTR. We assume U users and J 
items for the RS. The rating variable 𝑟𝑢𝑗 ∈ {0, 1} denotes whether the user u likes 
item j or not. Also, note that 𝑟𝑢𝑗 = 0 can be interpreted in two ways: either user u is 
not interested in item j or user u does not know about article j. For each user, we try 
to recommend potentially interesting items that are rated yet by this user. Assuming 
that there is K topics 𝜷 = 𝛽1:𝐾 in the whole corpus of items, the graphical model, and 
the generative process of the CTR model are illustrated in Figure 3.1 and Algorithm 
3.1, respectively,  below: 
 

. 
Figure 3.1: Graphical model for CTR. 

 

 
Algorithm 3.1: CTR model algorithm. 

Despite its many advantages, the CTR model has significant computational 
limitations as well. The reason is that the model considers user ratings to have a 
Gaussian distribution which leads to iterating over all the entries in the rating matrix 
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during training. Because of this, CTR is highly inefficient considering that real-world 
datasets are very big and sparse. Additionally, CTR is a non-conjugate model [11], 
which makes it difficult to fit, challenging to work with on sparse data, and 
challenging to scale without stochastic optimization. 
 
 
3.3 CTPF 
To address CTR’s inefficiency mentioned above, a newer hybrid model called 
Collaborative Topic Poisson Factorization (CTPF) has been proposed by Prem 
Gopalan, Laurent Charlin, and David M. Blei [12]. Fundamentally, CTPF 
incorporates concepts from two existing models: Poisson factorization [13] and CTR  
[10]. 

Poisson factorization substitutes a Poisson likelihood and non-negative 
representations for the conventional Gaussian likelihood and real-valued 
representations. In comparison with Gaussian factorization, Poisson factorization 
possesses more efficient inference, better handling of sparse data, and better 
predictive performance. So, the CTPF model assumes both reader behavior and item 
texts with Poisson distributions. As a result, CTPF is only concerned with non-zero 
ratings during training, and therefore it is much more efficient and scalable.  

Compared to the CTR model, which is a non-conjugate model, CTPF is a 
conditionally conjugate model which allows us to use standard variational inference 
with closed-form updates. Moreover, CTPF, because it is based on Poisson and 
gamma variables, it has a more efficient and simpler-to-implement inference 
algorithm, and a much better fit to sparse real-world data. It is more scalable and 
provides significantly better recommendations than CTR  [10]. 

We assume we have data containing U users and J items for the RS. CTPF 
assumes a collection of K unnormalized topics 𝛽 = 𝛽1:𝐾. Each topic 𝛽𝑘 is a collection 
of word intensities on a vocabulary of size V. Each unnormalized topic component 
𝛽𝑣𝑘 is drawn from a Gamma distribution. CTPF assumes that, given the topics, a 
document j is generated with a vector of K latent topic intensities 𝜃𝑗 and that users 
are represented by a vector of K latent topic preferences 𝜂𝑢. In addition, the model 
assigns each document K latent topic offsets d that represent its deviation from the 
topic intensities. These deviations happen when a document's content does not 
sufficiently describe its ratings. Finally, CTPF claims that the conditional probability 
that a user u rated document j with rating 𝑟𝑢𝑗 is derived from a Poisson distribution 
with rate parameter 𝜂𝑇

𝑢
(𝜃𝑗 + 𝜖𝑗) where 𝜖𝑗  is the document topic offset. The graphical 

model of CTPF along with its algorithm is demonstrated in Figure 3.1 and Algorithm 
3.2, respectively, below: 
 

. 
Figure 3.2: Graphical model for CTPF. 
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. 
Algorithm 3.2: Generative process for CTPF. 

CTPF has two main advantages over previous work; having a conditionally 
conjugate model which helps to employ standard variational inference with closed-
form updates and having built on Poisson factorization which makes the most use of 
sparsity of user consumption of items, therefore can analyze massive real-world data 
[12]. 

 
 
3.4 CTMP 
Although all hybrid models mentioned above benefit from the interpretable 
semantics of the item latent factor, they still have some limits in terms of 
computational cost or predictive performance. Therefore, in this thesis, we will 
explore and implement a hybrid, scalable and interpretable probabilistic content-
based collaborative filtering model called Collaborative Topic Model for Poisson 
distributed ratings (CTMP) [1]. CTMP covers the limitation of CTR by 
considering ratings in Poisson distribution as CTPF does, while modeling contents 
with LDA. Thus, it outperforms all previous hybrid models in terms of performance. 
Details of CTMP formalization, graphical model, and algorithm are discussed in 
section 7.  
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4 LDA 
In machine learning, topic modeling is a statistical model for discovering a set of 
topics that occur in a collection of documents [14]. It is also considered a 
probabilistic model which offers an interpretable low-dimensional representation of 
the documents. For many years, the implementation of topic models for document 
classification, corpus exploration, and information retrieval has been of interest. 

There are many topic modeling algorithms, among which LDA is the most 
popular one. LDA is a three-level hierarchical Bayesian model, and its basic idea is 
that documents are represented as random mixtures over an underlying set of topics, 
where each topic is characterized by a distribution over words that are biased around 
those associated under a single theme [5]. Therefore, topic probabilities express an 
explicit representation of each document. This can also be explained as below: 

 
- Each document is a mixture of topics:  

Each document contains terms/words from some topics in specific 
proportions. For instance, if we consider that there are 2 topics in the whole 
corpus, then we might state that some documents could be 75% topic A, and 
25% topic B, while another document could consist of 30% topic A, and 70% 
topic B. 

- Each topic is a mixture of words: 
Each topic is expressed by the words that explain it most. For example, if we 
consider that there are 2 topics, namely, “sports” and “education”, in the 
whole corpus, then the most used words for the sports topic could be 
“teammate”, “win”, and “play”, while the education topic could contain the 
words such as “lecture“, “book” and “class”. It is necessary to note that the 
same words can appear on multiple topics. For example, the word “time” 
could participate in both sports and education topics. 
 

In this way, documents can overlap with each other in their contents, rather than 
being separated into different individual groups. The generative process and 
graphical model of LDA for each document in the whole corpus are described below. 
 
 
4.1 Learning 
The terminology for the LDA model is as follows: 
 

• Word is a term of the vocabulary, and it is indexed by 1,… , 𝑉. 
• Document is a series of words given by w = (𝑤1,  𝑤2, … ,𝑤𝑁), where 𝑤𝑛 is the 

nth word inside the document. 
• Corpus is a collection of a total J documents, and it is given by 𝐷 =
(w1, w2, … , w𝐽). 

• K is the number of topics to be extracted from the corpus. 
• 𝛼 is Dirichlet prior parameter on per-document topic proportions. 
• 𝛽 is Dirichlet’s prior parameter on per-topic word proportion. 
• 𝜃𝑗 is topic proportions for document j. 
• 𝜑𝑘 is word distribution for topic k. 
• 𝑧𝑗𝑛 is the topic for an n-th word in document j. 
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• 𝑤𝑗𝑛 is a specific word. 
 

. 
Figure 4.1: Graphical model for LDA. 

Contrary to the original paper on LDA [5], a sparse Dirichlet prior can be 
employed to model the topic-word distribution, based on the idea that the probability 
distribution over words in a topic is skewed, with only a small subset of words 
having a high probability. This slightly updated model is the most extensively 
employed variation of LDA today. A graphical model of this slightly modified LDA 
is shown in Figure 4.1. 

It is also important to emphasize that the overall LDA process is a hidden 
generative process and according to this process, the model is assumed to generate 
the observed data (e.g., items, movies, documents). This was just a generative 
assumption to facilitate the algorithm and it does not illustrate the true process of the 
real data [15]. The following is how we view the generative process: documents are 
represented as random mixtures over latent topics, where each topic is characterized 
by a distribution over all the words. LDA assumes the following generative process 
for a corpus D consisting of J documents: 
 

. 
Algorithm 4.1: Generative process for LDA. 

As seen in Algorithm 4.1 above, the topics that the LDA algorithm tries to find 
from the whole corpus are treated as hidden variables. Each document of the corpus 
is represented in terms of topic proportions. Topic proportion 𝜃𝑗 is a K-dimensional 
Dirichlet random variable, and its domain is in the (K − 1)-simplex. In other words, 
K-vector 𝜃𝑗 is in the (K − 1)-simplex, therefore, 𝜃𝑗𝑖 ≥  0, ∑ 𝜃𝑗𝑖

𝐾
𝑖=1 = 1. Also, 𝜑𝑘  is a 

V-dimensional Dirichlet random variable, and its domain is in (V-1)-simplex. 
Therefore, 𝜑𝑘𝑖 ≥  0, ∑ 𝜑𝑘𝑖

𝑉
𝑖=1 = 1. Note that the Dirichlet is an exponential family 

distribution and one of its important properties is that it is conjugate prior to the 
multinomial distribution [16]. This conjugacy between these two distributions is 
important (refer to section 5.3.1.1.1), because it helps for inference and parameter 
estimation of  LDA model.  
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Figure 4.2: Figure illustrates an example topic simplex of 3 topics embedded in the 

word simplex of 3 words. 

An example geometry of latent space for LDA is showed in Figure 4.2 above. 
 
 
4.2 Inference and Parameter Estimation 
Because posterior inference is intractable for computing, the key inferential problem 
here is computing the posterior distribution over the latent variables given certain 
documents: 
 

𝑝(𝜃, 𝜑, 𝑧 | 𝑤, 𝛼, 𝛽) =
𝑝(𝜃, 𝜑, 𝑧, 𝑤 | 𝛼, 𝛽)

𝑝(𝑤 | 𝛼, 𝛽)
=  

𝑝(𝜃, 𝜑, 𝑧, 𝑤 | 𝛼, 𝛽)

∫ ∫ ∑ 𝑝(𝜑, 𝜃, 𝑧, 𝑤 | 𝛼, 𝛽)𝑧
 

𝜃

 

𝜑

 (4.1) 

Because normalization constant which depends on marginal probability 𝑝(𝑤 | 𝛼, 𝛽) 
has intractable integrals as shown in Eq. (4.1), the resulting posterior inference also 
becomes intractable to compute. Therefore, many approximate inference algorithms 
can be utilized for LDA because an exact posterior distribution is not possible. For 
example, Variational Inference (VI) and relevant variational Expectation-
Maximization (EM) algorithm can be used to learn the topics and decompose each 
document of the corpus according to these learned topics [5]. Details of VI are 
discussed in the following section.  
  
  



 18 

5 Variational Inference 
Variational Bayesian Methods (VBM) are a group of widely used techniques in the 
field of statistical Machine Learning.  Suppose the following probabilistic model 
with the joint distribution of the observed variables X and the hidden variables Z: 
 

𝑝(𝑍, 𝑋) 

Following the Bayes’ Theorem, to infer the hidden variables Z, the posterior 
inference is utilized as follows: 

𝑝(𝑍|𝑋)⏞    
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

=
𝑝(𝑍, 𝑋)

𝑝(𝑋)
=
𝑝(𝑋|𝑍)𝑝(𝑍)

𝑝(𝑋)
=

𝑝(𝑋|𝑍)⏞    
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

 𝑝(𝑍)⏞
𝑝𝑟𝑖𝑜𝑟

∫ 𝑝(𝑋, 𝑍)
 

𝑍⏟      
 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 

 

(5.1) 

• Prior 𝑝(𝑍) – is the probability of latent variables before observing any data. 
• Likelihood 𝑝(𝑋|𝑍) – is the probability of observed variables given latent 

variables. 
• Posterior 𝑝(𝑍|𝑋) – is the probability of hidden variables given the observed 

variables.  
• Normalization constant ∫ 𝑝(𝑋, 𝑍) 

𝑍
 – is a marginal probability of observed 

variables i.e., evidence, which does not depend on the hidden variables 
because  it contains integral over all possible sets of hidden variables. It is 
also called the normalization constant. 

Note that, in several interesting models, the denominator is computationally 
intractable, mainly because of integrals. This leads to impossible exact inference of 
the posterior distribution. However, one possible approach is to utilize an 
approximate posterior inference, which is what VI offers. The most often used VI 
method is the Mean-field Variational Inference (MFVI) which will be discussed in 
section 5.3. But before this, let’s explore the main idea behind VI and the forms of 
statistical models it is applied to. 
 

. 
Figure 5.1: Approximate solution to the inference problem using Variational 

Inference (for picture, refer to [21]). 
Figure 5.1 above simply illustrates a technique of VI [17]. Let’s remember that 

VI aims to approximate the true posterior distribution 𝑝(𝑍|𝑋). To start with, one 
needs to posit a variational family of distribution over the hidden variables. This 
variational family is represented as an ellipse area in Figure 5.1. As seen, it is also 
parametrized by variational parameters 𝜈. Next, the goal is to find 𝜈∗ within this 
family of distributions, such that the corresponding approximate posterior 
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distribution 𝑞(𝑍; 𝜈) is closest to the true posterior distribution 𝑝(𝑍|𝑋). Note that this 
closeness is regarding Kullback-Leibler divergence (KL-divergence) and we start 
with some initial variational parameters 𝜈𝑖𝑛𝑖𝑡  and then optimize them - i.e., minimize 
KL divergence [18] to find the point where 𝑞(𝑍; 𝜈) is closest to 𝑝(𝑍|𝑋). 
 
 
5.1 KL–divergence derivation 
𝐾𝐿 [𝑞(𝑍; 𝜈) || 𝑝(𝑍|𝑋)] 

= ∫ 𝑞(𝑍; 𝜈) log 
𝑞(𝑍; 𝜈)

𝑝(𝑍|𝑋)
= −∫𝑞(𝑍; 𝜈)

 

𝑍

log 
𝑝(𝑍|𝑋)

𝑞(𝑍; 𝜈)

 

𝑍

 

=−(∫ 𝑞(𝑍; 𝜈)
 

𝑍
log 

𝑝(𝑋,𝑍)

𝑞(𝑍;𝜈)
− ∫ 𝑞(𝑍; 𝜈)

 

𝑍
log 𝑝(𝑋)) 

= −∫ 𝑞(𝑍; 𝜈)log 
𝑝(𝑋, 𝑍)

𝑞(𝑍; 𝜈)

 

𝑍⏟              
𝐿

 + log 𝑝(𝑋)∫𝑞(𝑍; 𝜈)  
 

𝑍

 

 

𝑛𝑜𝑡𝑒: ∫ 𝑞(𝑍; 𝜈) 
 

𝑍

= 1 =  −𝐿 + log 𝑝(𝑋) 

(5.2) 

where L above is evidence lower bound (ELBO). We reformulate the equation above 
as follows: 

 
𝐿 =  log 𝑝(𝑋) − 𝐾𝐿 [𝑞(𝑍; 𝜈) || 𝑝(𝑍|𝑋)] (5.3) 

Because the KL divergence must always be non-negative 
(i.e., 𝐾𝐿[𝑞(𝑍; 𝜈) || 𝑝(𝑍|𝑋)] ≥ 0), we get 𝐿 ≤ log 𝑝(𝑋). This proves that L is the lower 
bound on the log marginal probability of the observations. So, our final goal is by 
using a coordinate ascent optimization algorithm (e.g., variational EM [19]), 
maximize this lower bound L. In other words, the goal is to to minimize KL 
divergence with respect to variational parameters 𝜈.  Note that log 𝑝(𝑥) in the 
formula above is fixed against all variational parameters 𝜈.  
 
 
5.2 Jensen’s inequality derivation 
Apart from the KL-divergence derivation mentioned above, there is also an 
alternative way to arrive at similar conclusions using Jensen’s inequality. This is the 
most widely known ELBO derivation, which shows why the ELBO is a lower bound 
of the evidence. It states 𝑓(𝔼[𝑋]) ≤ 𝔼[𝑓(𝑋)] for the concave log function as follows: 
log 𝑝(𝑋) = log ∫𝑝(𝑋, 𝑍)

 

𝑍

 

= log∫ 𝑝(𝑋, 𝑍)
𝑞(𝑍; 𝜈)

𝑞(𝑍; 𝜈)
= log (𝔼𝑞 [

𝑝(𝑋, 𝑍)

𝑞(𝑍; 𝜈)
]) ≥ 𝔼𝑞 [𝑙𝑜𝑔 

𝑝(𝑋, 𝑍)

𝑞(𝑍; 𝜈)
]

⏟          
𝐿

 

𝑍

 (5.4) 

As shown in Eq. (5.4) above, the last term in the equation is the variational lower 
bound. It is also called ELBO. So, it is again proved that L is the lower bound on the 
log marginal probability of observed variables. Therefore, our main goal is to 
maximize the lower bound L where: 
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log 𝑝(𝑋) ≥ 𝐿 (5.5) 
 
 
5.3 Mean-field Variational Inference 
Furthermore, if we utilize MFVI, then the variational distribution over the latent 
variables becomes as follows:  
 

𝑞(𝑍; 𝜈) =∏𝑞(𝑧𝑖;

𝑛

𝑖=1

𝜈𝑖) (5.6) 

The mean-field approximation makes a simplifying assumption by partitioning the 
hidden parameters into independent parts [20]. In other words, this assumption 
enforces full independence among all hidden parameters. The reason why this 
independence is very useful is that, when we use a coordinate ascent optimization 
algorithm such as variational EM [19]. 
 
 
5.3.1 Mean-field Variational Inference in conjugate models 
Most importantly, it must be emphasized that there is a specific form for statistical 
models in which the coordinate ascent in MFVI yields closed-form updates. It is 
called exponential family conditionals or conditionally conjugate models. 
Fundamentally, for a model to be conditionally conjugate, a complete conditional of 

each parameter must be in the exponential family and be in the same family as its 
prior [12]. A complete conditional is the conditional probability of the hidden 

variable given all the observed variables and other hidden variables. A generic 
example to understand conditionally conjugate models is defined in Figure 5.2 
below: 

 
Figure 5.2: Graphical model for conditionally conjugate model (for picture, refer to 

[21]). 

where x = x1:𝑁 are observed variables, z = z1:𝑁 are local hidden variables and 𝛽 =
𝛽1:𝑁 are global hidden variables. Note that, the main difference between local and 

global hidden variables is that the i-th data only depends on global on 𝛽 and 𝑧𝑖. In 

other words, it is not dependent on any other j-th local data point. Now, the 

factorized joint distribution of the model is as follows: 

𝑝(𝛽, z, x) = 𝑝(𝛽)∏𝑝(

𝑁

𝑖=1

𝑧𝑖 , 𝑥𝑖|𝛽) (5.7) 

and as usual, our goal is to compute a posterior 𝑝(𝛽, 𝑧|𝑥).  

Firstly, for the selected generic model above, the following complete 

conditionals must be in the exponential family: 
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𝑝(𝑧𝑖|𝛽, 𝑥𝑖) = ℎ(𝑧𝑖) 𝑒𝑥𝑝{𝜂𝑙(𝛽, 𝑥𝑖)

𝑇𝑧𝑖 − 𝑎(𝜂𝑙(𝛽, 𝑥𝑖))} 
𝑝(𝛽|𝐳, 𝐱) = ℎ(𝛽) 𝑒𝑥𝑝{𝜂g(𝐳, 𝐱)

𝑇𝛽 − 𝑎(𝜂𝑔(𝐳, 𝐱))} (5.8) 

In mathematical terms, an exponential family is expressed as follows: 
 

𝑝(𝑥) = ℎ(𝑥) 𝑒𝑥𝑝{𝜂𝑇  𝑡(𝑥) − 𝑎(𝜂)} (5.9) 

where 𝜂 is a natural parameter, 𝑡(𝑥) is the sufficient statistics, 𝑎(𝜂) is the log 
normalizer, and ℎ(𝑥) is the base density. In short, if some parameter 𝑥 is in the 
exponential family, then it can be written in the form above. Secondly, the complete 
conditional must be in the same family as it is conjugate prior. Therefore, the 
exponential family was a crucial requirement in the first place. Afterward, when a 
likelihood and a prior with the same exponential form are multiplied, the posterior 
maintains the same form, which was required as a second condition above. 
Fundamentally, an exponential family of distributions provides a beautiful theory 
around conjugate priors and corresponding posteriors and connects closely to 
variational inference [22]. Note that, examples for conjugate priors and their 
corresponding posteriors are shown in the next section below. 

 

5.3.1.1 Conjugate Priors and Corresponding Posteriors  

The main idea is that given a likelihood distribution, one needs to select a family of 
prior distributions such that computed posterior distribution is also included in this 
family. In this way, chosen conjugate prior enables us to estimate the posterior 
distribution just by updating the parameters of the prior distribution. 
The exponential family of distributions is the best example of this. The Gaussian, 
beta, binomial, Dirichlet, Poisson, exponential, geometric multinomial, gamma, 
categorical, chi-squared, and log-normal are all in the exponential family. Some pairs 
of conjugate distributions from the exponential family are shown below in detail. 
 

 

5.3.1.1.1 Multinomial distribution and Dirichlet priors 

Remember that the multinomial distribution is the probability distribution where 
outcomes are discrete. They also contain two or more variables. Mathematically, it is 
defined as follows: 
 

𝑝(𝒙|𝜃) =
(∑ 𝑥𝑖𝑖 )!

𝑥1! 𝑥2!. . . 𝑥𝑛!
∏𝜃𝑖

𝑥𝑖

𝑛

𝑖=1

 (5.10) 

where, 𝑥𝑖 shows the number of times outcome i occurs out of n trials. 𝜃𝑖 shows the 
probability of outcome i.  

Now, let’s remember the Dirichlet distribution which is a continuous 
multivariate probability distribution. It is defined as follows: 
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𝑝(𝜃|𝛼) =
Γ(∑ 𝛼𝑖)

𝑛
𝑖=1

∏ Γ(𝛼𝑖)
𝑛
𝑖=1

∏𝜃𝑖
𝛼𝑖−1

𝑛

𝑖=1

 (5.11) 

where 𝛼 is a k-vector with components α𝑖 > 0, 𝜃 is a k-dimensional random variable 
which is in (𝑘 − 1)-simplex, therefore θ𝑖 ≥ 0, ∑ θ𝑖

𝑛
𝑖=1 = 1. Additionally, Γ(𝛼) 

denotes the gamma function, where: 
 

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥
∞

0

𝑑𝑥 (5.12) 

According to conjugate Bayesian analysis, the Dirichlet distribution is considered a 
conjugate prior to the multinomial distribution. Therefore, when we multiply the 
likelihood expressed in multinomial form with the prior expressed in Dirichlet form, 
we get the posterior distribution as follows: 
 

𝑝(𝜃| 𝒙, 𝛼) ∝ 𝑃(𝒙|𝜃) 𝑃(𝜃|𝛼) =
(∑ 𝑥𝑖𝑖 )!

𝑥1! 𝑥2!. . . 𝑥𝑛!
∏𝜃𝑖

𝑥𝑖

𝑛

𝑖=1

Γ(∑ 𝛼𝑖)
𝑛
𝑖=1

∏ Γ(𝛼𝑖)
𝑛
𝑖=1

∏𝜃𝑖
𝛼𝑖−1

𝑛

𝑖=1

∝
Γ(∑ (𝛼𝑖 + 𝑥𝑖))

𝑛
𝑖=1

∏ Γ(𝛼𝑖 + 𝑥𝑖)
𝑛
𝑖=1

∏𝜃𝑖
𝛼𝑖+𝑥𝑖−1

𝑛

𝑖=1

 
(5.13) 

which we can confirm that it has the form of Dirichlet distribution. As shown in Eq. 
(5.13) above, we can estimate the posterior distribution just by updating the 
parameters of the prior distribution. Because Dirichlet is a conjugate prior for its 
multinomial distributed likelihood, it leads to the LDA model being a conditionally 
conjugate model, and therefore, having coordinate updates of MFVI in closed-form 
[5]. 
 
 
5.3.1.1.2 Poisson distribution and gamma priors 

Let’s now consider the Poisson distribution from discrete exponential family 
distributions: 

𝑝(𝒙|𝜃) =
𝜃𝑥𝑒−𝜃

𝑥!
 (5.14) 

where conjugate prior to this Poisson likelihood must also have the form of Poisson 
distribution: 

𝑝(𝜃|𝛼) ∝ 𝜃𝛼1−1𝑒−𝛼2𝜃  (5.15) 

This conjugate prior can be easily expressed as gamma distribution: 
 

𝑝(𝜃|𝛼) = 𝐾(𝛼)𝜃𝛼1−1𝑒−𝛼2𝜃 (5.16) 
 

where, 

𝐾(𝛼) =
𝛼2
𝛼1

Γ(𝛼1)
=

𝛼2
𝛼1

(𝛼 − 1)!
 (5.17) 

Γ(∙) denotes the gamma function above. Now, the prior-to-posterior update is as 
follows: 

𝑝(𝜃|𝒙, 𝛼) ∝ 𝑃(𝒙|𝜃)𝑃(𝜃|𝛼) =∏
𝜃𝑥𝑒−𝜃

𝑥!

𝑛

𝑥=1

𝜃𝛼1−1𝑒−𝛼2𝜃 (5.18) 
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= 𝑒−𝑛𝜃𝜃∑ 𝑥𝑖
𝑛
𝑖=1 𝜃𝛼1−1𝑒−𝛼2𝜃 

= 𝜃∑ 𝑥𝑖
𝑛
𝑖=1 +𝛼1−1𝑒−𝜃(𝑛+𝛼2) 

where we can confirm that it has the form of gamma distribution which was our 
intention from the beginning. Essentially, as seen above, choosing Gamma conjugate 
prior and multiplying it to Poisson likelihood yielded the posterior inference which 
also has Gamma distribution, and therefore we can estimate the posterior distribution 
just by updating the parameters of the prior distribution, while successfully ignoring 
the intractable marginal probability in the denominator. In other words, if 
𝑥1, . . . , 𝑥𝑛~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) are all identically independently distributed, then conjugate 
prior for 𝜃 is Gamma(𝛼1, 𝛼2) and the respective posterior, which is proportional to 
likelihood multiplied by prior becomes Gamma(∑ 𝑥𝑖

𝑛
𝑖=1 +𝛼1, 𝑛 + 𝛼2). Because gamma 

is a conjugate prior to its Poisson distributed likelihood, it leads to the CTPF model 
being a conditionally conjugate model, and therefore, having coordinate updates of 
MFVI in closed-form [12]. 

 
 

5.3.2 Mean-field Variational Inference in non-conjugate models 

So far, from the previous sections, we have seen that if the model is conditionally 
conjugate, we can easily use MFVI to have a closed-form solution. Nevertheless, not 
all models are conditionally conjugate models; some are non-conjugate. In these 
models, the MFVI approach cannot be applied directly, and practitioners must create 
their case-specific variational algorithms. In section 7, we will see that the CTMP 
model is among these non-conjugate models where its authors developed a co-
ordinate ascent algorithm to fit it [1]. 
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6 OPE and BOPE 
Maximum a posteriori probability (MAP) estimation has a significant impact on 
doing posterior inference (i.e., estimating hidden parameters) in many probabilistic 
models. Especially, many interesting MAP problems are continuous, non-convex, 
and intractable. In the field of non-convex optimization, there have been a variety of 
different techniques such as Frank–Wolfe [23], Natasha2 [24], Stochastic 
Majorization-Minimization [25], Concave-Convex procedure [26] which aim to 
solve the MAP problem. However, non-convex optimization is NP-hard, and the 
techniques mentioned above may not provide a viable solution for the MAP problem, 
because they disregard its special underlying structure. Therefore, for solving non-
convex MAP problems with a state-of-the-art convergence rate, we will explore two 
efficient algorithms Online Maximum a Posteriori Estimation (OPE) [27] and its 
regularized, general, and more flexible version Bernoulli randomness for Online 
maximum a Posteriori Estimation (BOPE) [28]. First, we introduce MAP 
estimation as the following task: 
 

𝑥∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥∈Ω  𝑃(𝑥|𝐷) (6.1) 
where we denote 𝑥 as the hidden variable, D as the observed data, and Ω denotes 𝑥′𝑠 
domain. Note that there also have been proposed many algorithms which directly try 
to estimate a full posterior distribution 𝑃(𝑥|𝐷) mentioned above, i.e., Collapsed 
Gibbs Sampling (CGS) [29], Hessian Approximated Markov Chain Monte Carlo 
(HAMCMC) [30]. However, these methods provided suboptimal solutions along 
with a slow convergence rate. We continue by using Bayes’ Theorem: 
 

𝑃(𝑥|𝐷) =
𝑃(𝐷|𝑥)𝑃(𝑥)

𝑃(𝐷)
∝ 𝑃(𝐷|𝑥)𝑃(𝑥) (6.2) 

where we denote 𝑃(𝐷|𝑥) as the likelihood of D, 𝑃(𝑥) as x’s prior, and 𝑃(𝐷) as 𝐷′s 
marginal probability. Using Eq. (6.2) we rewrite Eq. (6.1) as follows: 
 

𝑥∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥∈Ω [𝑓(𝑥) = 𝑙𝑜𝑔 𝑃(𝐷|𝑥) + 𝑙𝑜𝑔 𝑃(𝑥)] (6.3) 

We will focus on the conditions where the MAP problem is continuous and non-
convex, hence intractable, i.e., −𝑓(𝑥) = −𝑙𝑜𝑔 𝑃(𝐷|𝑥) − 𝑙𝑜𝑔 𝑃(𝑥) is non-convex over 
the continuous compact domain Ω  [28]. As previously mentioned, MAP problem in 
Eq. (6.3) will be treated as an optimization problem. Therefore, objective function 
𝑓(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥) defines the complexity of this optimization problem where 
𝑔1(𝑥) = 𝑙𝑜𝑔 𝑃(𝐷|𝑥) and 𝑔2(𝑥) = 𝑙𝑜𝑔 𝑃(𝑥). So, our problem in Eq. (6.3) becomes a 
non-convex constrained optimization problem as follows: 
 

𝑥∗ = 𝑎𝑟𝑔max𝑥∈Ω [𝑓(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥)] (6.4) 

So, in the following sections, we will discuss OPE and BOPE algorithms for solving 
the optimization problem shown above. 
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6.1 OPE for solving MAP problem  
OPE is considered a type of iterative optimization algorithm, which is the stochastic 
version of the Frank–Wolfe algorithm. The biggest advantage of OPE is that it has a 
faster convergence rate of 𝒪(1/𝑇) to local maximal point compared to the existing 
stochastic algorithms for nonconvex problems, where 𝑇 signifies the number of 
iterations during training of its following algorithm [27]: 
 

. 
Algorithm 6.1: Online Maximum a Posteriori Estimation (OPE) algorithm. 

As illustrated in Algorithm 6.1, the OPE algorithm solves a linear program at 
each iteration, i.e., directing the optimization solution to the good vertex in the 
convex hull of the compact input domain. In more detail, what OPE does is to 
develop a sequence of stochastic functions 𝐹𝑡(𝑥) that approximates to 𝑓(𝑥) by 
alternatively selecting an 𝑓𝑡 from {𝑔1(𝑥), 𝑔2(𝑥)} uniformly randomly at each iteration 
t. As proved in its original paper [27], 𝐹𝑡(𝑥) converges to 𝑓𝑡 as. 𝑡 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦.  

Despite the fast convergence rate, OPE still has a limitation. As stated in the 
algorithm, either likelihood 𝑔1(𝑥) or prior 𝑔2(𝑥) is being used during the construction 
of the approximation function 𝐹𝑡(𝑥). However, when dealing with new samples, we 
can rely on likelihood if we have seen enough data or rely on prior if there is a lack 
of data.  
  

6.2 BOPE for solving MAP problem 
To overcome the OPE’s limitation mentioned above, a new approximation technique 
to OPE has been proposed as BOPE which retains all theoretical guarantees of OPE’s 
convergence while being more general and flexible by using Bernoulli distribution 
and two stochastic bounds [28]. In general, both OPE, and BOPE try to lead the 
solution of the optimization to the closed neighbors of the vertices in the convex hull 
of the compact input domain and they have a fast convergence rate of Θ(1/𝑇) along 
with proven quality bound [28]. BOPE solves the Eq. (6.4) above by employing 
Bernoulli distribution with parameter 𝑝 ∈ (0, 1) which is supposed to replace the 
uniform distribution of OPE on likelihood and prior. Furthermore, as seen in 
Algorithm 6.2 below, during the procedure, two stochastic sequences are constructed 
and they converge to the objective function 𝑓(𝑥): the lower sequence 𝐿𝑡, and the 
upper sequence 𝑈𝑡. It is worth mentioning that the Bernoulli parameter 𝑝 determines 
an impact of likelihood and prior on 𝐿𝑡 and 𝑈𝑡. So, during each iteration, using both 
𝐿𝑡 and 𝑈𝑡 stochastic sequences provide further information about 𝑓(𝑥), therefore 
increasing the chances of converging to 𝑓(𝑥) more quickly [28]. Both lower and 
upper sequences are guaranteed to converge to 𝑓(𝑥) as 𝑡 → 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦. 
 



 26 

. 
Algorithm 6.2: Bernoulli randomness for Online maximum a Posteriori Estimation 

(BOPE) algorithm. 
 

It’s important to note that one of the reasons why BOPE outperforms OPE is that 
we can create variants of BOPE by altering the Bernoulli parameter 𝑝. In addition to 
this, another property of BOPE is that to prevent overfitting of the learning process 
which is a widespread issue that affects all machine learning techniques, BOPE 
employs implicit regularization. Specifically, according to the original paper [28], 
Bernoulli randomness operates as a regularizer and BOPE uses an implicit prior that 
is stochastically vanishing with respect to iterations T. Note that this implicit prior is 
not the same as the prior used in MAP estimation. This implicit regularization is very 
critical, especially in RS where most of the datasets are sparse which makes the 
models prone to overfitting. Therefore, using BOPE instead of OPE in CTMP will 
facilitate the learning procedure and prevent overfitting.  
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7 Collaborative Topic Model for Poisson distributed 
ratings 

 
In the following sections, we describe formalization, inference, learning parameters, 
prediction phases, and key properties of CTMP. 
 

7.1 Formalization 
Before diving into technical parts, let’s provide some notations: 
 

• U: represents the number of users inside the dataset. 
• J: represents the number of items inside the dataset. 
• 𝑤𝑗 = 𝑐𝑗

𝑣

𝑣=1

𝑉
: describes the bag-of-word representation for each item j where 𝑐𝑗𝑣 

expresses the frequency of term/word 𝑣 in item j.  
• 𝑉: represents the vocabulary size of the corpus. 
• 𝐷 = 𝑟𝑢𝑗 , 𝑤𝑗𝑢=1,𝑗=1

𝑈,𝐽 : describes the dataset where 𝑟𝑢𝑗  is a rating provided by user 
u to item j, while 𝑤𝑗  is the bag-of-word representation of item j as already 
explained above. 𝑅 = 𝑟𝑢𝑗𝑈×𝐽 represents the ratings given to movies by users. 
Every rating 𝑟𝑢𝑗 is expressed as binary 0 or 1. If user u liked an item j, then 
𝑟𝑢𝑗 = 1. On the contrary, if the user u does not know about the item j or does 
not like it, then 𝑟𝑢𝑗 = 0. 

• K: represents the number of topics inside the corpus. 
• 𝛽 = 𝛽𝑘𝑣𝐾×𝑉: describes the topic representation. More precisely, every topic k 

is a distribution over the vocabulary. It is described as 𝛽𝑘 =

𝛽𝑘𝑣𝑉×1 where ∑ 𝛽𝑘𝑣 = 1 
𝑉
𝑣=1 and 𝛽𝑘𝑣 ≥ 0. Note that, 𝛽𝑘 lies in the (k – 1)-

simplex.  
• 𝜃1:𝐽: describes the topic proportion of the items. 𝜃𝑗 = {𝜃𝑗𝑘}𝐾×1 is the vector of 

the distribution on topics for item j, and ∑ 𝜃𝑗𝑘 = 1 
𝐾
𝑘=1 , 𝜃𝑗𝑘 ≥ 0. Note that, 

𝜃𝑗  lies in the (k – 1)-simplex.  
 

To learn the topics 𝛽 = 𝛽𝑘𝑣𝐾×𝑉, we use the LDA and its EM approach which was 
described in the respective section of LDA. Furthermore, by learning the topic 
proportion of each item 𝜃𝑗 = {𝜃𝑗𝑘}𝐾×1, we later describe each item and user in the K-
dimensional space. Note that these learning procedures will be explained in section 
7.3 below. 

Now, we present latent factors for each user and item in terms of K-dimensional 
vectors 𝜂𝑢 = 𝜂𝑢𝑘𝐾×1 and 𝜇𝑗 = 𝜇𝑗𝑘𝐾×1, respectively. The reason why we consider 𝜇𝑗 
rather than  𝜃𝑗 as the latent factor for an item is that to have a better recommendation 
system, we allowed an offset between 𝜇𝑗 and 𝜃𝑗 which accounts for the user-specific 
preference on the item content that 𝜃𝑗 alone can not capture. Therefore, we denote 
that 𝜇𝑗 = 𝜃𝑗 + 𝜖𝑗  where 𝜖𝑗~𝒩(0,  𝜆−1𝐼𝐾) is an offset term which has Gaussian 
distribution. Note that 𝐼𝐾 in the formula above represents a K-dimensional identity 
matrix, and 𝜆 is a regularization parameter. So, we have  𝜇𝑗~𝒩(𝜃𝑗 ,  𝜆−1𝐼𝐾).  

Furthermore, the ratings and users’ latent factors are modeled by Poisson and 
Gamma distributions, respectively. To put everything together, the generative 
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process and graphical model of CTMP are shown in Algorithm 7.1 and Figure 7.1 
below. 

 

. 
Algorithm 7.1: Generative process for CTMP. 

Note that steps 2(a-b) in Algorithm 7.1 correspond to LDA. 

. 
Figure 7.1: Graphical model for CTMP. 

 
 
7.2 Inference 
Full posterior of latent variables is given as follow: 

𝑃(𝜃, 𝜇, 𝜂|𝐷, 𝛼, 𝛽, 𝜆, 𝑒, 𝑓) =
𝑃(𝜃, 𝜇, 𝜂, 𝐷|𝛼, 𝛽, 𝜆, 𝑒, 𝑓)

𝑃(𝐷|𝛼,𝛽, 𝜆, 𝑒, 𝑓)
 (7.1) 

The problem with this posterior is that it is intractable, and therefore exact inference 
is impossible. To tackle this problem, we have two methods:  
 

1) MAP for point estimation 
2) Bayesian Learning such as MCMC Sampling or Variational Methods for 

approximate inference 
 

As the prior and posterior distributions of hidden variables, 𝜃 and 𝜇 are not conjugate 
in the CTMP model, using Variational Inference Methods to infer these hidden 
variables does not get us a closed-form solution. Therefore, we will carry out the 
point estimates of 𝜃𝑗 and 𝜇𝑗 using the MAP – coordinate ascent algorithm developed 
by the authors of the original paper of CTMP [1].  

Furthermore, to facilitate the learning, the authors added a new auxiliary variable 
y, where 𝑦𝑢𝑗𝑘~Poisson(𝜂𝑢𝑘𝜇𝑗𝑘) and 𝑟𝑢𝑗 = ∑ 𝑦𝑢𝑗𝑘

𝐾
𝑘=1 . Note that we approximate the 

posterior of 𝜂𝑢 and 𝑦𝑢𝑗 via MFVI [12]. MFVI is a type of VBM which allows to re-
write a statistical inference problem as an optimization problem [8]. Therefore, we 
can convert the inference problem of CTMP into a full optimization problem where 
the single objective function which needs to be maximized is as follow: 
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𝐿 = log𝑃(𝜃, 𝜇, 𝐷|𝛼, 𝛽, 𝜆, 𝑒, 𝑓) 

=∑𝑙𝑜𝑔 𝑃(𝜃𝑗 , 𝜇𝑗 , 𝑤𝑗|𝛼, 𝛽)

𝐽

𝑗=1

+∑∑log 𝑃(𝑟𝑢𝑗|𝜇𝑗 , 𝑒, 𝑓)

𝐽

𝑗=1

𝑈

𝑢=1

 

=∑𝑙𝑜𝑔 𝑃

𝐽

𝑗=1

(𝜃𝑗 , 𝑤𝑗|𝛼, 𝛽) +∑𝑙𝑜𝑔 𝑃

𝐽

𝑗=1

(𝜇𝑗|𝜃𝑗 , 𝜆) 

+∑∑𝑙𝑜𝑔 ∫∑𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 ,

𝑦𝑢𝑗

𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)𝑑𝜂𝑢

𝐽

𝑗=1

𝑈

𝑢=1

 

(7.1) 

As shown in Eq. (7.1), the term integration and summation over the whole space 
causes optimization to be intractable. However, the Variational method [31] also 
tackles this problem which will be discussed in detail below. 

Note that 𝑦𝑢𝑗𝑘 has Poisson distribution, and the K-dimensional vector 𝑦𝑢𝑗 
follows multinomial distribution: 𝑀𝑢𝑙𝑡 (𝑟𝑢𝑗  | 𝜋𝑢𝑖  = {

𝜂𝑢𝑘𝜇𝑗𝑘 

𝜂𝑢
𝑇𝜇𝑗  

}) [32]. So, we get the 

variational distribution as follows: 

q(η𝑢 , 𝑦𝑢𝑗) = q(𝑦𝑢𝑗|𝑟𝑢𝑗 , ϕ𝑢𝑗) ∏𝑞(𝜂𝑢𝑘|𝑠ℎ𝑝𝑢𝑘 , rte𝑢𝑘

𝐾

𝑘=1

) 

 

(7.2) 

where, 
𝑞(𝑦𝑢𝑗|𝑟, 𝜙𝑢𝑗) ≝ 𝑀𝑢𝑙𝑡(𝑦𝑢𝑗|𝑟, 𝜙𝑢𝑗)  

𝑞(𝜂𝑢𝑘|𝑠ℎ𝑝𝑢𝑘, rte𝑢𝑘) = 𝐺𝑎𝑚𝑚𝑎(𝜂𝑢𝑘|𝑠ℎ𝑝𝑢𝑘 , rte𝑢𝑘) 

𝜙𝑢𝑗 = 𝜙𝑢𝑗𝑘𝐾×1 
(7.3) 

such that 𝜙𝑢𝑗 is a variational parameter of 𝑦𝑢𝑗, and (𝑠ℎ𝑝𝑢𝑘, rte𝑢𝑘) are variational 
parameters of 𝜂𝑢. Note that ∑ 𝜙𝑢𝑗𝑘

𝐾
𝑘=1 = 1. Now we get the ELBO (l) by applying 

Jensen’s inequality: 
 

𝐿 =∑log 𝑃(

𝐽

𝑗

𝜃𝑗 , 𝑤𝑗|𝛼, 𝛽) +∑log 𝑃(

𝐽

𝑗

𝜇𝑗|𝜃𝑗 , 𝜆) 

+∑∑𝑙𝑜𝑔∫∑
𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)

𝑞(𝑦𝑢𝑗 , 𝜂𝑢)
𝑞(𝑦𝑢𝑗 , 𝜂𝑢)𝑑

𝑦𝑢𝑗

𝐽

𝑗

𝑈

𝑢

𝜂𝑢  

≥∑log 𝑃(

𝐽

𝑗

𝜃𝑗|𝛼, 𝛽,𝑤𝑗) +∑log 𝑃(

𝐽

𝑗

𝑤𝑗  |𝜃𝑗 , 𝜆) 

+∑∑(∫∑𝑞(𝑦𝑢𝑗 , 𝜂𝑢)𝑙𝑜𝑔

𝑦𝑢𝑗

𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)

𝑞(𝑦𝑢𝑗 , 𝜂𝑢)
𝑑

𝐽

𝑗

𝑈

𝑢

𝜂𝑢) 

=∑𝑙𝑜𝑔𝑃(𝜃𝑗 , 𝑤𝑗|𝛼, 𝛽) +∑log 𝑃(

𝐽

𝑗

𝜇𝑗|𝜃𝑗 , 𝜆)

𝐽

𝑗

𝜓 

+∑∑(𝐸𝑞(𝑦𝑢𝑗 ,𝜂𝑢)𝑙𝑜𝑔 𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢|𝜇𝑗 , 𝑒, 𝑓)

𝐽

𝑗

𝑈

𝑢

− 𝐸𝑞(𝑦𝑢𝑗 ,𝜂𝑢)𝑙𝑜𝑔 𝑞(𝑦𝑢𝑗 , 𝜂𝑢)) = 𝑙 

(7.4) 
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Note that before learning the hidden parameters, 𝛼, 𝜆, 𝑒, 𝑓 𝑎𝑛𝑑 𝐾 are considered fixed 
parameters in the model.  

Next, the lower bound l(𝜃, 𝜇, 𝜙, shp, rte, 𝛽) is maximized with respect to 𝜃, 𝜇, 𝜙, 
shp, rte, 𝛽. According to Appendix A of the original CTMP paper [1], the terms are 
expressed in detail as follows: 

 
𝑙(𝜃, 𝜇, 𝜙, 𝑠ℎ𝑝, 𝑟𝑡𝑒, 𝛽) 

=∑((𝛼 −

𝐽

𝑗

1)∑ 𝑙𝑜𝑔

𝐾

𝑘=1

𝜃𝑗𝑘 +∑𝑐𝑗
𝑣

𝑉

𝑣

𝑙𝑜𝑔∑𝜃𝑗𝑘

𝐾

𝑘

𝛽𝑘𝑣) 

−∑
𝜆

2
‖𝜃𝑗 − 𝜇𝑗‖2

2
+∑∑∑𝑟𝑢𝑗

𝐾

𝑘

𝐽

𝑗

𝑈

𝑢

𝐽

𝑗

𝜙𝑢𝑗𝑘𝑙𝑜𝑔(𝜇𝑗𝑘) −∑∑∑𝑟𝑢𝑗

𝐾

𝑘

𝐽

𝑗

𝑈

𝑢

𝜙𝑢𝑗𝑘𝑙𝑜𝑔(𝜙𝑢𝑗𝑘) 

+∑∑(𝑟𝑡𝑒𝑢𝑘 − 𝑓 −∑𝜇𝑗𝑘

𝐽

𝑗

)
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

𝐾

𝑘

𝑈

𝑢

 

+∑∑(∑𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − 𝑠ℎ𝑝𝑢𝑘

𝐽

𝑗

)

𝐾

𝑘

𝑈

𝑢

(Ψ(𝑠ℎ𝑝𝑢𝑘) − 𝑙𝑜𝑔(𝑟𝑡𝑒𝑢𝑘)) 

−∑∑𝑠ℎ𝑝𝑢𝑘𝑙𝑜𝑔(𝑟𝑡𝑒𝑢𝑘) +∑∑𝑙𝑜𝑔(Γ(𝑠ℎ𝑝𝑢𝑘))

𝐾

𝑘

+ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑈

𝑢

𝐾

𝑘

𝑈

𝑢

 

 

(7.5) 

 
7.3 Learning Parameters  
Eq. (7.5) above is the optimization problem and as mentioned before we solve it by 
coordinate ascent algorithm. CTMP algorithm for learning 𝜃, 𝜇, 𝜙, 𝑠ℎ𝑝, 𝑟𝑡𝑒 and 𝛽 is 
demonstrated in Algorithm 7.2 below: 
 

. 
Algorithm 7.2: CTMP model algorithm. 

 
Learning 𝜃𝑗. To find the point estimate of local topic proportion 𝜃𝑗, where 

𝑔(𝜃𝑗) = (𝛼 − 1)∑𝑙𝑜𝑔 𝜃𝑗𝑘
𝑘

+∑𝑐𝑗
𝑣𝑙𝑜𝑔 (∑𝜃𝑗𝑘𝛽𝑘𝑣

𝑘

) −
𝜆

2
‖𝜃𝑗 − 𝜇𝑗‖2

2

𝑣

 (7.6) 
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we use BOPE algorithm [28]. Note that in the original paper of CTMP, the authors 
have used a simple OPE algorithm. So, using BOPE instead of OPE to learn the topic 
proportions is the most important difference between our implementation of CTMP 
and the one in the original CTMP paper [1]. Let’s remember that, by using Bernoulli 
randomness, BOPE achieves a faster convergence, and is more general and flexible 
compared to OPE. Furthermore, BOPE implicitly utilizes a prior which plays a 
regularization role [28]. Moreover, as mentioned earlier too, every topic proportion 
𝜃𝑗  holds ∑ 𝜃𝑗𝑘 = 1 

𝐾
𝑘=1 , 𝜃𝑗𝑘 ≥ 0 and it lies in the (k – 1)-simplex. BOPE algorithm for 

learning 𝜃𝑗 is described in Algorithm 7.3 below: 
 

. 
Algorithm 7.3: Learning 𝜃𝑗 using BOPE. 

 
Learning 𝜇𝑗 . If we know the estimates of other hidden variables, then solving 
𝜇𝑗  analytically is possible because the objective function regarding the 𝜇𝑗 is concave. 
 

𝑓(𝜇𝑗) = −
𝜆

2
‖𝜃𝑗 − 𝜇𝑗‖2

2
+∑𝑟𝑢𝑗
𝑢,𝑘

𝜙𝑢𝑗𝑘 𝑙𝑜𝑔 𝜇𝑗𝑘 −∑𝜇𝑗𝑘∑
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

𝑢𝑘

  (7.7) 

The partial derivative of function 𝑓(𝜇𝑗) with respect to 𝜇𝑗, i.e.,  𝜕𝑓
𝜕𝜇𝑗𝑘

 for all k, is the 

estimate of 𝜇𝑗. This is also so-called the stationary point of 𝑓(𝜇𝑗). Because 𝜕𝑓
𝜕𝜇𝑗𝑘

 is the 

quadratic function in terms of 𝜇𝑗𝑘 , we can utilize Vieta’s formula for the analytical 
derivation of the function’s root as follows: 
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𝜇𝑗𝑘 =
−∑

𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

+ 𝜆𝜃𝑗𝑘 + √∆𝑢

2𝜆
   (7.8) 

where,  

∆= (−∑
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

+ 𝜆𝜃𝑗𝑘
𝑢

)

2

+ 4𝜆∑ 𝑟𝑢𝑗
𝑢

𝜙𝑢𝑗𝑘  (7.9) 

 
Learning 𝜙𝑢𝑗 , 𝑠ℎ𝑝𝑢𝑘, 𝑟𝑡𝑒𝑢𝑘. We use MFVI for approximating the conditional 
posterior of 𝜂𝑢 and 𝑦𝑢𝑗 as in [12]. So, to solve for the variational parameters of 𝜂𝑢 and 
𝑦𝑢𝑗 which are 𝜙𝑢𝑗 , 𝑠ℎ𝑝𝑢𝑘 and 𝑟𝑡𝑒𝑢𝑘, we solve for the stationary point of 𝑙𝑜𝑔 𝑞(𝜂𝑢 , 𝑦𝑢𝑗) 
with respect to each variational parameter while holding the others same. The 
expression of the update of variational parameters is given in Eq. (7.10) below. The 
detailed derivation of these expressions is described in Appendix B and Appendix C. 
One of the biggest advantages of the CTMP algorithm is that whenever 𝑟𝑢𝑗 = 0, we 
get 𝑦𝑢𝑗𝑘 = 0 and 𝜙𝑢𝑗𝑘 = 0 (𝑘 ∈ {1, . . . , 𝐾}), and therefore, we only have to update 𝜙𝑢𝑗𝑘  
over non-zero ratings (𝑟𝑢𝑗 > 0). This property of our model diminishes the training 
time significantly, so the total training time is much lower than of other models such 
as CTR, especially whenever the rating dataset is highly sparse. Because, during each 
epoch of training, we only consider the positive ratings for updating the expression 
of 𝜙𝑢𝑗𝑘 and skip all zero ratings. 
 

𝒚𝒖𝒋𝒌:     𝜙𝑢𝑗 ∝ exp {log 𝜇𝑗𝑘 + 𝜓(shp𝑢𝑘) − log (rte𝑢𝑘)}

𝜼𝒖𝒌:     𝑠ℎ𝑝𝑢𝑘 ← 𝑒 +∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗

    𝑟𝑡𝑒𝑢𝑘 ← 𝑓 +∑  

𝑗

𝜇𝑗𝑘

 (7.10) 

Note that the 𝜓(∙) function in the update expression of 𝜙𝑢𝑗𝑘 denotes the digamma 
function: 
 

𝜓(𝑥) ∶=
𝑑

𝑑𝑥
𝑙𝑜𝑔Γ(𝑥) =

Γ′(𝑥)

Γ(𝑥)
 (7.11) 

where Γ(𝑥) denotes the gamma function. 

 
 
Learning 𝛽. So far, we have provided the update expression of the variables 
regarding both documents and users such as 𝜃, 𝜇, 𝜙𝑢𝑗 , 𝑠ℎ𝑝𝑢𝑘 𝑎𝑛𝑑 𝑟𝑡𝑒𝑢𝑘. Now, we must 
do the remaining task which is to solve for 𝛽. First, we express the log-likelihood of 
the items’ corpus C as in [33]: 
 

𝐿𝑜𝑔 𝑃(𝐶) =∑ 𝑙𝑜𝑔 𝑃(𝑗) =∑ ∑ 𝑐𝑗
𝑣  𝑙𝑜𝑔 ∑ 𝜃𝑑𝑘

𝐾

𝑘=1𝑣∈𝐼𝑗𝑗∈𝐶𝑗∈𝐶
𝛽𝑘𝑣

≥∑ ∑ 𝑐𝑗
𝑣∑ 𝜃𝑑𝑘

𝐾

𝑘=1𝑣∈𝐼𝑗𝑗∈𝐶
𝑙𝑜𝑔 𝛽𝑘𝑣 

(7.12) 

By using Jensen’s inequality, the last term is derived, because  ∑ 𝜃𝑗𝑘𝑘 = 1,  𝜃𝑗𝑘 ≥

0, ∀𝑘, 𝑗. Next, the lower bound of 𝐿𝑜𝑔 𝑃(𝐶) is maximized with respect to 𝛽 as in [33]: 
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𝑓(𝛽) = ∑ ∑ 𝑐𝑗
𝑣∑𝜃𝑗𝑘

𝐾

𝑘=1𝑣 ∈𝐼𝑑𝑗 ∈𝐶

𝑙𝑜𝑔𝛽𝑘𝑣 (7.13) 

where ∑ 𝛽𝑘𝑣 = 1, 𝛽𝑘𝑣 ≥ 0, ∀𝑘, 𝑣.
𝑉
𝑣=1  Note that the each 𝛽𝑘 is separable from each other 

inside the objective function of 𝑓(𝛽). So, we can solve solve each 𝛽𝑘 individually. 
This is carried out by considering the Lagrange function and setting its derivatives to 
0 which results in the formula of 𝛽𝑘𝑣 as follows: 
 

𝛽𝑘𝑣 ∝ ∑𝑐𝑗
𝑣𝜃𝑗𝑘

𝑗 ∈𝐶

 (7.14) 

 
 
7.4 Prediction 
We rank the items to generate recommendations for each user u based on their 
predictive score 𝑠𝑢𝑗  after we have learned all the parameters. Because the ratings in 
the dataset are discrete Poisson variables, 𝑠𝑢𝑗 can be the expectation of the rate 
parameter given the observed data i.e., 𝔼[𝜂𝑢𝑇  𝜇𝑗|𝐷] as in CTPF [12]. However, the 
derivation in CTMP is a bit different because CTMP neither aims to approximate 𝑠𝑢𝑗 
solely by point estimate nor require conjugacy between the complete conditional 
distributions for the inference as CTPF does [1]: 
 

𝑠𝑢𝑗 = 𝔼[𝜂𝑢
𝑇  𝜇𝑗|𝐷] ≈ 𝔼[𝜂𝑢

𝑇|𝐷, 𝜇𝑗] ∙  𝜇𝑗 (7.15) 
Note that only  𝜇𝑗 is the MAP estimation of the complete conditional distribution. 
Furthermore, 𝔼[𝜂𝑢𝑇|𝐷, 𝜇𝑗] is nearly the expectation over the respective variational 
distributions of 𝜂𝑢𝑇’s: 
 

𝔼[𝜂𝑢
𝑇|𝐷, 𝜇𝑗] ≈ 𝔼𝑞(𝜂𝑢𝑇|𝑠ℎ𝑝𝑢𝑘 ,𝑟𝑡𝑒𝑢𝑘)[𝜂𝑢

𝑇] =
𝑠ℎ𝑝𝑢𝑘
𝑟𝑡𝑒𝑢𝑘

 (7.16) 

Note that both 𝑠ℎ𝑝𝑢𝑘 and 𝑟𝑡𝑒𝑢𝑘 are the estimation of variational parameters that we 
learned in section 7.3. 
 

7.5 Key properties 
Many key properties make CTMP perform much better than previous approaches in 
the RS field. To begin with, introducing LDA into the content production process in 
CTMP makes it more versatile than using Gamma mixtures in CTPF. This allows 
each item to discuss many topics. Secondly, by assuming the ratings to be Poisson 
distributed, all zero entries can be discarded in the estimation of the user latent factor 
𝜂 during the training phase.  

Moreover, our empirical study also shows strong evidence that sparsity in the 
estimates of topic mixture can be recovered via learning. Note that sparsity is a 
highly important property since it facilitates the effective storage of data by 
providing a concise content representation. This allows an efficient computation of 
the tasks in industrial settings - for example, near-real-time product 
recommendations based on the same topics in which the consumer is interest. 
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8 Empirical Studies 
We carry out empirical studies on the performance of the CTMP algorithm using a 
tech stack of Python, SQL, and Git. The personal repository which contains all the 
source code can be accessed via https://github.com/buzzer4mornin/CTMP-
ThesisProject. 

For an empirical study of the CTMP algorithm under a real-world 
recommendation context, we use two different datasets, namely MovieLens 20M 
[34] and NETFLIX [35]. They are well-known datasets that have been used a lot and 
considered stable benchmark datasets for research purposes. Note that, for our 
empirical study, we use slightly modified versions of these datasets compared to the 
original versions. Their modified versions are arranged and put on Oracle Database 
by Michal Kopecký. 

The original MovieLens 20M dataset describes 5-star rating activity from 
https://www.movielens.org which is a movie recommendation service. It was created 
on October 17, 2016, and its raw data consists of movies, users, ratings, and tag 
applications [34]. Each user is only represented by an id, therefore no other 
information (e.g., demographic) is considered. This dataset’s modified version is 
arranged by M. Kopecký and it is also equipped with additional “TT” identifiers 
which help us to fetch the plots movies from the IMDB [36] table.   

The original NETFLIX dataset was made available by the Netflix company for 
the competition that was held on September 21, 2009, for the best collaborative 
filtering algorithm to predict user ratings for movies, based on previous ratings 
without any other information about the users [35]. In other words, the users were 
not identified, they were only represented by id numbers for the contest. After the 
competition, the dataset became open-sourced and has since been used by many 
researchers as a stable benchmark dataset. Along with MovieLens 20M dataset, this 
NETFLIX dataset’s modified version is also arranged by M. Kopecký and it is also 
equipped with additional ”TT” identifiers which help us to fetch the plots movies 
from the IMDB [36] table. 
 

 
8.1 Data preprocessing 
After fetching both datasets from the Oracle database, we continue with data pre-
processing steps for transforming the raw data into a useful and efficient format. By 
utilizing the data wrangling techniques, we make the individual data frames out of 
users, movies, and ratings as shown in Figure 8.1 and Figure 8.2 below: 

. 
Figure 8.1: Data frames for MovieLens 20M dataset. 

 
. 

https://github.com/buzzer4mornin/CTMP-ThesisProject
https://github.com/buzzer4mornin/CTMP-ThesisProject
https://www.movielens.org/
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. 
Figure 8.2: Data frames for NETFLIX dataset. 

Note that constructed data frames are still raw, meaning that ids in df_user data 
frame are not sequentially consistent, some movies in df_movie data frame do not 
have plots (i.e., filled with N/A values) and ratings in df_rating data frame are on the 
0.5-5.0 scale. So, the next section uses these raw datasets for turning them into useful 
formats. 

First, we start the cleaning process by representing ratings in binary form in 
ratings table. This is done by converting ratings bigger or equal to 4 into 1 and the 
remaining into 0. This way, it is presumed that users like or dislike the given movie. 
As previously stated, we do this because the CTMP model implies that ratings are 
Poisson distributed.  

Next, we drop movies that have N/A plot. We also drop duplicates and 
inconsistent movies. Note that dropping movies results in the removal of some rows 
related to these movies in the ratings data frame. The size of each data frame before 
and after preprocessing is shown Table 8.1 below: 
 

Data frame Dataset Raw rows size Final rows size 

df_user 
MovieLens 20M 138,493  138,493 

NETFLIX 479,870 479,870 

df_movie 
MovieLens 20M 27,278 25,900 

NETFLIX 9,324 7,882 

df_rating 
MovieLens 20M 20,000,263 19,994,181 

NETFLIX 90,217,939 82,725,788 
     Table 8.1: Details of data frames. 

 
8.1.1 Vocabulary Extraction 
We now aim to extract a vocabulary separately for MovieLens 20M and NETFLIX 
using movie plots in the respective df_movie data frame. The reason why we want to 
have vocabulary is that each movie should be numerically represented for our Python 
model, therefore the vocabulary will be used for building this representation. Before 
we begin, we merge each movie plot sequentially to get a single long text. Then we 
extract the vocabulary from this single text. Note that, extracting the vocabulary 
requires careful investigation, because, for each distinct word, we should decide 
whether this word should be included in the vocabulary or not. Below are the steps 
that we follow for vocabulary extraction: 
 

• Removing stop words – they are commonly used words (such as “a”, “an”, 
“are”, “the”, and “about”) of a language that do not add much meaning to a 
sentence. They can be safely ignored by keeping them out of vocabulary. 
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Many Python libraries provide a list of stop words for many languages. We 
used NLTK Library’s stop words in the English language. 

• Removing words of length less than 3 – these words can also be ignored. In 
the English language, there rarely is a word of length less than 3 which adds 
meaning to a sentence.  

• Removing words with numbers or underscores – we will not include these 
words in the vocabulary.  

 
It is also worth mentioning that in the domain of Natural Language Processing 
(NLP), well-known techniques such as Stemming, and Lemmatization are utilized 
for a purpose of text normalization. These techniques help a lot when it comes to 
filtering unwanted words during vocabulary construction. The stemming technique 
removes the suffix from a word and therefore reduces it to its root/stem. For 
example, a stem of the word “count” is just “count”. Stemming the words such as 
“counts”, “counting” and “counted” will result in “count”. In contrast to stemming, 
lemmatization goes beyond word reduction by evaluating a language’s whole lexicon 
for applying a morphological analysis to words. In other words, the lemmatization 
technique does not simply chop off inflections as stemming does, but instead it relies 
on a lexical knowledge base for obtaining the correct base forms of words. For 
example, given the word “mice”, “ran” lemmatization converts them into “mouse” 
and “run”, respectively. Essentially, by using stemming and lemmatization 
techniques, one can construct a more concise and accurate vocabulary. However, we 
don’t use these techniques during our vocabulary construction. The reason behind 
this is that, according to recent works, stemming is claimed to reduce the model fit 
and negligibly affect topic coherence. The utility of lemmatization on topic models is 
also vague and rather needs further investigation. Therefore, we avoid stemming and 
lemmatization of the corpus as a data pre-processing step. 
 

 
Figure 8.3: Snippet from vocabulary extracted out of MovieLens 20M dataset. 

Figure 8.3 shown above is a snippet from the resulting vocabulary of the MovieLens 
20M dataset. We observe that the word “accumulate” has many forms with different 
suffixes. This is because we did not use stemming and lemmatization. We believe 
that letting vocabulary be rich like this will later facilitate model fit into the corpus. 
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Overall, after extraction, MovieLens 20M vocabulary contains 59,110 words, while 
the NETFLIX dataset vocabulary has 34,177 words. 
 

 
8.1.2 Movie Representation 
After extracting vocabulary from the corpus, we use it for numerical representation 
of each movie/plot. The reason for this is that movies should be in such form that 
models (e.g., LDA, CTMP) can work with. Therefore, one way is to succinctly 
represent each movie as a sparse vector of word counts as below: 
 

[M] [word_1]:[count] [word_2]:[count] ...  [word_N]:[count] 

where [M] denotes the number of unique words in the movie plot. Furthermore, 
[word_i] is an integer and it denotes an index of the word inside vocabulary, and 
[count] associated with this word denotes how many times the word appears in the 
movie plot. The snippet from numerical representation of movies is shown in Figure 
8.4. Note that if any word of the plot does not appear in corpus vocabulary, then we 
disregard it in movie representation. 

 

 
Figure 8.4: Snippet from numerical representation of movies for MovieLens 20M 

dataset. 
 
It is critical to remember that, the authors of both the original CTMP paper [1] and 
BOPE paper [28] implemented their models using tags for movie representation 
rather than plots. This is the most significant distinction between our work and theirs. 
During the evaluation of the results, we will compare our model’s output against 
theirs and determine whether using the movie plots resulted in different predictive 
performances. 
 
 

8.1.3 Memory usage reduction 
This technique helps us to reduce the memory usage of data frames. It iterates 
through all integer or float columns of the given data frame and if needed, changes 
the data type in order to reduce memory usage. For instance, let’s assume an example 
integer column is given as an int64 data type; the way the function decided whether 
to reduce the memory or not is by first getting minimum and maximum values in this 
column. Next, it checks whether these minimum and maximum values are in the 
range of int32, int16, or int8 datatypes, and if they are, then it will convert the 
column’s int64 datatype into the respective lower datatype. The same procedure 
applies to float columns as well. As proof, when we used this technique to reduce the 
memory storage of the df_rating data frame of the MovieLens 20M dataset, it 
achieved a 58.3% reduction in terms of the memory consumption.  
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8.2 Model Fit 
After preparing the corpus vocabulary, converting numerical ratings into binary 
form, numerically representing movies/plots, and using the memory reduction 
technique on all data frames, we now continue with running and fitting phase of the 
CTMP model using these data frames. Note that we will have separate models for 
MovieLens 20M and NETFLIX. For the fitting phase, we will utilize the vocabulary, 
the numerical movie representations, and the settings files.  

We use stratified 5-fold cross-validation of ratings for training and testing the 
model. Generally, k-fold cross-validation is a widely used technique that assesses the 
efficacy of machine learning models since it produces a less biased estimate of their 
effectiveness. The parameter k indicates the number of folds that a given dataset is to 
split into. Pseudo-algorithm for fitting of the model with k-fold cross-validation is 
shown in Algorithm 3.1 below: 
 

. 
Algorithm 4: Running the model with k-fold cross-validation. 

At the end of the entire train-test circle, we average the evaluation scores kept for 
each fold to obtain a final evaluation score. For our case, we utilize stratified k-fold 
cross-validation, which has the same purpose as standard k-fold cross-validation but 
produces stratified folds which are made by preserving the percentage of samples for 
each class. This way, both train and test folds will contain information about each 
user, ensuring that the model will be trained and tested with all users. A visual 
example of it is shown in Figure 8.5 below: 
 

 
Figure 8.5 Visual illustration of stratified 5-fold cross-validation on example dataset. 
 

 
8.2.1 Hyperparameters  
Along with vocabulary, and numerical movie representations files, we also have a 
settings file containing the model parameters. It helps us to set the model’s 
parameters on a per-run basis. Example snippet of settings files and their content are 
shown in Figure 8.6 and. Table 8.2, respectively, below:  
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Figure 8.6: Snippet from settings for CTMP input parameters for MovieLens 20M 

dataset. 
 

Parameter Description 
num_movies Number of documents in the corpus 

num_words Number of words of vocabulary 
 

user_size Number of users in dataset 
K Number of topics we want to discover from corpus 

tops Number of top words to extract from each topic for analyzing 
the quality of topics learned by the model 

lamb (λ) Offset precision for documents 
e, f Gamma priors  

alpha (α) Dirichlet prior  
p  Bernoulli parameter for BOPE 

iter_infer Number of inference steps during an estimation of document 
proportions within BOPE 

iter_train  Number of epochs to train the model 
Table 8.2: CTMP input parameters and their description. 

Note that the only parameters which are entirely dependent on the dataset are 
num_movies, num_words, and user_size. Thus, they reflect according to the size of 
MovieLens 20M and NETFLIX datasets. Other parameters are modifiable 
hyperparameters. 
 
8.2.2 Running on Google Cloud 
After we have prepared all necessary input data and set input model parameters, we 
will run the CTMP models on Google Cloud’s Compute Engine which is a computed 
service that lets us create and run virtual machines on Google’s infrastructure. 
Google Cloud offers a wide range of compute engine variants with a variety of 
configuration options. For our model, we require a large amount of RAM (Random 
access memory) because the dataset is large and we perform 5-fold cross-validation 
in parallel. Therefore, the most relevant machine type for our work is shown in Table 
8.3 below: 
 

Machine family GENERAL-PURPOSE 
Series N1 

Machine type n1-highmem-16 
CPU 16x Intel® optimized with Intel® MKL and CUDA 11.0 

RAM memory 104 GB 
Boot Disk Standard Persistent Disk 100GB 

Table 8.3: Specifications of Google Cloud Virtual Machine for training CTMP. 
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Generally, the time per iteration of the model depends on which dataset and 
parameters have been selected and the effectiveness of the code written in Python. 
We have optimized our code by utilizing many techniques to reduce the time 
complexity and increase the execution speed of the CTMP model. The expected 
training time when the hyperparameters such as  iter_infer and iter_train is set to 50 
is shown in Table 8.4 below. Other hyperparameters did not have a much impact on 
training time.   
 

 
 
 
8.3 Model Evaluation 
After running and fitting the model on both datasets with various parameters each 
time, we now continue with evaluating the performance of these CTMP models. 
Performance evaluation will be divided into the following parts:  
 

1. Interpretability of learned topics 
2. Evaluation metrics and predictive performance 
3. Sparsity in topic proportion estimates   
4. Sensitivity to hyperparameters 

 
 

8.3.1 Interpretability of topics 
As mentioned before, by incorporating LDA into the CTMP model, interpretable 
topics can be obtained. This can be seen in Table 8.5 and Table 8.6 below: 
 

MovieLens 20M 

Topic 1 man, father, young, wife, mother, daughter, son, brother, new, old 
Topic 2 new, life, one, love, finds, girl, school, two, job, friend 
Topic 3 get, new, johnny, one, house, wife, town, police, killer, back 
Topic 4 one, two, begins, friend, girl, mother, man, young, life, friends 
Topic 5 new, life, world, story, young, love, find, two, help, husband 
Topic 6 life, one, new, father, get, woman, friend, two, mother, family 

Topic 7 film, documentary, world, story, life, one, new, interviews, footage, 
history 

Topic 8 life, family, town, one, love, home, old, new, war, man 

Topic 9 young, family, one, husband, police, mother, father, wife, finds, 
woman 

Topic 10 town, love, new, family, young, father, man, old, two, find 
  Table 8.5: Top-10 words of first 10 topics learnt by CTMP on MovieLens 

20M with parameters of {K=100, lamb=1, alpha=1, p=0.9}. 
 
 

Dataset Expected total training time 
(iter_infer = 50) 

Expected training time per 
single epoch 

(iter_infer = 50) 
MovieLens 20M ~ 4.2 hours ~ 5.1 min 

NETFLIX ~ 6.9 hours ~ 8.3 min 

Table 8.4: CTMP training time for datasets. 
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NETFLIX 

Topic 1 wife life one team man goes story esmeralda get old 
Topic 2 year town takes life friends family michael one must son 
Topic 3 life father mother new young family scott son finds friend 
Topic 4 find killer new town victims years become one back help 
Topic 5 new one time children island get years girl find long 
Topic 6 man new one bill father york wife son two love 
Topic 7 life love two time get one new find jonathan george 
Topic 8 new agent drug back fbi cia help american two friends 
Topic 9 find new back one love also two family life get 
Topic 10 life man take wants new young back money help school 

Table 8.6: Top-10 words of first 10 topics learnt by CTMP on 
NETFLIX with parameters of {K=100, lamb=1, alpha=1, p=0.9}. 

 

 
8.3.2 Evaluation metrics and predictive performance 
The model’s predictive performance is measured by its ability to recommend in-
items and cold-items. Note that in-items are those containing information from user 
ratings while cold-items do not possess such information. Thus, recommending items 
that are all in-items is called in-matrix prediction, whereas recommending both in-
items and cold-items is called out-of-matrix prediction. Both prediction types are 
evaluated by recall and precision for all users in the test set, and they are measured 
from top-M recommendations. The top-M recommendation includes items with 
predicted ratings that are among the M highest. We will denote precision- and recall-
at-M with prec@M and recall@M, respectively: 
 

• 𝑟𝑒𝑐𝑎𝑙𝑙@𝑀 = 
1

𝑈
∑

𝑀𝑢
𝑐

𝑀𝑢
𝑢   where 𝑀𝑢𝑐  is the number of correct items that appear in 

Top-M recommendation for user u, 𝑀𝑢 is the number items that user u had 
rated positive. 

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑀 = 
1

𝑈
∑

𝑀𝑢
𝑐

𝑀𝑢
  where 𝑀𝑢𝑐  is the number of correct items that appear 

in Top-M recommendation for user u,  𝑀 is the Top-M number. 
•  

We continue with computing the recall and precision with different combinations of 
hyperparameters. A domain for each hyperparameter is shown in Table 8.7 below: 
 
 

K ∈{50, 100} 
tops ∈{10} 

lamb (λ) ∈ {1, 100} 
e, f ∈{0.3} 

alpha (α) ∈{1, 0.01} 
p ∈{0.7, 0.9} 

iter_infer ∈ {50, 100} 
iter_train ∈ {25, 50, 100} 

Table 8.7: CTMP hyperparameters and their domain. 

Note that we set Bernoulli parameter 𝑝 ∈ (0.7,0.9) and did not include 0.5 since this 
parameter replaces the uniform distribution of OPE on likelihood and prior and 
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adjusting it to 0.5 would result in a BOPE algorithm approximating OPE which is not 
our goal. 
Figure 8.7 andTable 8.6 Figure 8.8 show the recall and precision graphs for in-matrix 
and out-of-matrix predictions on MovieLens 20M dataset when the model is run with 
different hyperparameters. 
 

. 
Figure 8.7: Recall & precision graphs of CTMP model on MovieLens 20M dataset. 
Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}. 

 

. 
Figure 8.8: Recall & precision graphs of CTMP model on MovieLens 20M dataset. 
Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}.  
 
We observe that, the model performance for MovieLens 20M dataset is quite stable 
with different hyperparameters. The graphs differ from each other with 1 − 3%. 

The recall graphs reach up to ~50% and ~45% of for in-matrix and out-of-matrix 
predictions on MovieLens 20M dataset, respectively. These recall performances are 
approximately same as the recall performance of the CTMP model presented in 
original paper (refer to [1]). However, our CTMP model performs better in terms 
of the precision for top-M recommendations on MovieLens 20M dataset. In 
comparison with the original paper’s precision graph, our graph shows on average 
~7-8% higher precision for each top-M recommendation. 

Furthermore, Figure 8.9 below shows the results with parameter K set to 50 and 
varying Bernoulli parameter p. With this hyperparameter configuration, we still get 
approximately the same results as before, except this time there is a slight increase in 
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precision for out-of-matrix predictions. Furthermore, in-matrix and out-of-matrix 
predictions are closer to each other. The reason behind this may be the parameter K 
being 50 instead of 100. 
 
 

. 
Figure 8.9: Recall & precision graphs of CTMP model on MovieLens20M dataset. 

Parameters K, lamb, and alpha are fixed. Bernoulli p is varying as {0.7, 0.9}. 
. 

 
Next, we continue fitting the CTMP model on NETFLIX dataset. Figure 8.10, Figure 
8.11 and Figure 8.12 below illustrate the recall and precision graphs with different 
hyperparameter configurations. Again, from the graphs, we see that the CTMP model 
performs stable under different hyperparameters. Also, the reason why in-matrix and 
out-of-matrix lines overlap on the graphs is that the number of cold items for 
NETFLIX dataset is very small. This makes in-matrix and out-of-matrix predictions 
similar to each other.  
 

. 
Figure 8.10: Recall & precision graphs of CTMP model on NETFLIX dataset. 

Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}. 
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. 
Figure 8.11: Recall & precision graphs of CTMP model on NETFLIX dataset. 

Parameters K, lamb, and p are fixed. Dirichlet prior alpha is varying as {0.01, 1}. 
 

 
 

. 
Figure 8.12: Recall & precision graphs of CTMP model on NETFLIX dataset. 
Parameters K, lamb, and alpha are fixed. Bernoulli p is varying as {0.7, 0.9}. 

. 

 
8.3.3 Sparsity 
After learning the topic proportions, we discovered that a substantial number of 
𝜃𝑗 dimensions have near-zero values. Near-zero is defined as any value which is less 
than 10−20. Furthermore, any estimates with near-zero dimensions are considered 
“sparse” estimates. Figure 8.13 and Figure 8.14 illustrate the sparsity of the learned 
topic proportions for MovieLens 20M and NETFLIX datasets, respectively. Here, we 
define sparsity as the ratio of near-zero topic proportions averaged over all movies. 
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. 
Figure 8.13: Sparsity of learned topic proportions for MovieLens 20M dataset. 

 
 

. 
Figure 8.14: Sparsity of learned topic proportions for NETFLIX dataset. 

We see that the CTMP model produces sparse estimates of topic mixtures for both 
datasets. Note that the Dirichlet prior alpha (𝛼) helps to control the sparsity of the 
topic proportions for each item. The smaller it is, the sparser the topic 
proportions are. 
 

 

8.3.4 Sensitivity to hyperparameters 
Throughout the experimental studies for recall and precision, we see that the CTMP 
model is stable and robust with different hyperparameters. In detail, the impact of the 
parameter K is slightly more obvious than of other parameters.  

Furthermore, it is important to note that our CTMP model started to fit the 
datasets after around 25th iteration instead of 50th-100th iteration which was the 
expected interval of convergence in the original CTMP paper. The reason behind is 
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that using BOPE instead of OPE for the MAP estimation makes the model 
convergence much faster and at the same time, prevents the overfitting. 
 
 

8.4 Transfer Learning 
We select the movie - The Naked City (1948). Its plot is as follows: 
 
 “Amid a semi-documentary portrait of New York and its people, Jean Dexter, an 
attractive blonde model, is murdered in her apartment. Homicide detectives Dan 
Muldoon and Jimmy Halloran investigate. Suspicion falls on various shifty 
characters whom all prove to have some connection with a string of apartment 
burglaries. Then a burglar is found dead who once had an elusive partner named 
Willie. The climax is a very rapid manhunt sequence. Filmed entirely on location in 
New York City.” 
 

Note that, on both MovieLens 20M and NETFLIX datasets, this movie is 
included. We begin by separately training a CTMP model on both datasets. 
Modifiable model parameters of settings files are shown in Table 8.8 below: 
 

CTMP for MovieLens 20M CTMP for NETFLIX 
num_topics: 100 num_topics: 50 

tops: 10 tops: 10 
lamb: 1 lamb: 1 
e: 0.3 e: 0.3 
f: 0.3 f: 0.3 

alpha: 1 alpha: 1 
bernoulli_p: 0.9 bernoulli_p: 0.9 
iter_infer: 100 iter_infer: 100 
iter_train: 50 iter_train: 50 

Table 8.8: CTMP hyperparameter selection for transfer learning. 

After 50 iterations of training, both models are fit to the respective dataset. Let’s look 
at the top10 words of the topics learned from MovieLens 20M and NETFLIX 
datasets. 

 Following that, we compare the topic proportions estimated by both models for 
“The Naked City (1948)” movie. Estimated topic proportions are shown in Figure 
8.15 below: 
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. 
Figure 8.15: Transfer learning between MovieLens 20M and NETFLIX datasets for 

“The Naked City (1948)” movie. 
 
As illustrated in the figure above, the CTMP model trained on MovieLens 20M 
estimates that “The Naked City (1948)” movie has 92.9% content related to topic 77 
and 7% of content related to topic 7 (the remaining 0.1% comes from other topics, 
which we disregard because it is insignificant). Now, let's look at what those 
significant topics are about by looking at the top-10 words of each topic learned by 
the model: 
 

- Topic 77 (92.9%)  – killer, police, detective, serial, one, murder, murders, 
case, young, two. 

- Topic 7 (7%)  –  film, documentary, world, one, life, new, interviews, story, 
history, footage. 

 
We can see that model estimates that the movie will be mostly centered on the 
keywords murder, detective, police, killer, and so on. Moreover, it also provides little 
topic proportion about the documentary, cinema, footage, etc. When these results are 
compared to the movie's original plot, we see that the model accurately estimates the 
topic proportions of the movie. Topic 7 being assigned a 7% share is also a good 
sign, because related sentences to this topic were only mentioned in the first and last 
sentences of the original plot, and they were not particularly relevant to the broader 
narrative 

On the other hand, a CTMP model trained on the NETFLIX dataset suggests that 
"The Naked City (1948)” movie contains 96.9% content associated to topic 11 and 
3% content belonging to topic 48 (remaining 0.1 percent comes from other topics, 
which we disregard because it is insignificant). Let's look at what those important 
topics are about by checking the top-10 words of each topic learned by the model: 
 

- Topic 11 (96.9%)  – police, murder, killer, detective, new, man, life, one, 
crime, father. 

- Topic 48 (3%)  –  jimmy, new, one, film, life, father, alison, time, george, 
make. 

 
It is apparent that this model, too, accurately approximates the movie's content by 
giving the most weight to Topic 11, which is concentrated on the phrases police, 
murder, killer, and so on. 3% being assigned to Topic 48 is again a good sign that 
this model, too, could associate another negligible topic regarding the first and last 
sentences of the original plot. 
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Note that we could not do comprehensive transfer learning between the datasets, 
as the number of common movies shared by both datasets is few. This makes the 
extracted vocabulary and learned topics for both datasets different. Therefore, we 
analyzed just one shared movie, namely, “The Naked City (1948)”, and the results 
seem to be promising. 
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9 Conclusion 
In this thesis, we discussed various probabilistic models for recommender systems 
where we implemented CTMP model augmented with BOPE algorithm. Based on 
our empirical studies in section 8.3, we see that augmentation of BOPE algorithm to 
the CTMP model is successful. Despite the plots of movies which are used for 
content representation were mostly short text, our CTMP model did not overfit the 
data. Also, note that, we used the plots of movies instead of tag applications for the 
document representation - this is one of the most important difference in empirical 
studies between our work and the original CTMP paper. The model is stable, fast, 
and capable of transfer learning. Note that, transfer learning seems promising, but we 
do not have enough common data to test it comprehensively. Moreover, the model 
produced interpretable topics and high recall and precision scores. It also provided 
sparse content representation which is essential in industrial settings for near-real 
time recommendation.  
 
 

  



 50 

Bibliography 
 

[1]  H.M. Le, S.T. ong, Q.P. The, N.V. Linh and K. Than. Collaborative Topic 
Model for Poisson distributed ratings. International Journal of Approximate 
Reasoning, vol. 95, pp. 62-76, 2018.   

[2]  R. Burke and A. Felfernig. Constraint-based recommender systems: 
Technologies and research issues. Proceedings of the 10th international 
conference on Electronic commerce, pp. 1-10, 2008. 

[3]  A. Felfernig, M. Jeran, G. Ninaus and F. Reinfrank. Toward the Next 
Generation of Recommender Systems: Applications and Research Challenges. 
2013. 

[4]  Y. Koren, R. Bell and C. Volinsky. Matrix Factorization Techniques for 
Recommender Systems. Computer, vol. 42, pp. 30-37, 2009. 

[5]  D. Blei, A. Ng and M. Jordan. Latent Dirichlet Allocation. The Journal of 
Machine Learning Research, vol. 3, pp. 601-608, 2001. 

[6]  R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization 
using Markov chain Monte Carlo. Proceedings of the 25th International 
Conference on Machine Learning, vol. 25, pp. 880-887, 2008. 

[7]  B. Bayar, N. Bouaynaya and R. Shterenberg. Probabilistic non-negative matrix 
factorization: Theory and application to microarray data analysis.  Journal of 
bioinformatics and computational biology, vol. 12, 2014. 

[8]  R. Salakhutdinov and A. Mnih. Probabilistic Matrix Factorization. 
Proceedings of the 20th International Conference on Neural Information 
Processing Systems, pp. 1257–1264, 2007. 

[9]  D. Agarwa and B. Chen. fLDA: Matrix factorization through latent dirichlet 
allocation. Proceedings of the 3rd ACM International Conference on Web 
Search and Data Mining, pp 91-100, 2010. 

 [10]  C. Wang and D. Blei. Collaborative topic modeling for recommending 
scientific articles. Proceedings of the ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, pp. 448-456, 2011. 

[11]  C. Wang and D. Blei. Variational Inference in Nonconjugate Models. Journal 
of Machine Learning Research, vol. 14, 2012. 

[12]  P. Gopalan, L. Charlin and D. Blei. Content-based recommendations with 
Poisson factorization. Advances in Neural Information Processing Systems, vol 
4, pp. 3176-3184, 2014. 

[13]  P. Gopalan, J. Hofman and D. Blei. Scalable Recommendation with Poisson 
Factorization. 2013. 

[14]  Topic model. https://en.wikipedia.org/wiki/Topic_model. Accessed: 2022-05-
27. 

[15]  T. Tran, D. Phung and S. Venkatesh. Preference Networks: Probabilistic 
Models for Recommendation Systems. 2014. 

[16]  S. Tu. The Dirichlet-Multinomial and Dirichlet-Categorical models for 
Bayesian inference. https://stephentu.github.io/writeups/dirichlet-conjugate-
prior.pdf. Accessed: 2022-05-27. 

[17]  David Blei. Variational Inference. https://rllabmcgill.github.io/COMP-
652/lectures/lecture-17.pdf. Accessed: 2022-05-27. 

https://en.wikipedia.org/wiki/Topic_model
https://stephentu.github.io/writeups/dirichlet-conjugate-prior.pdf
https://stephentu.github.io/writeups/dirichlet-conjugate-prior.pdf
https://rllabmcgill.github.io/COMP-652/lectures/lecture-17.pdf
https://rllabmcgill.github.io/COMP-652/lectures/lecture-17.pdf


 51 

[18]  J.M. Joyce. Kullback-Leibler Divergence. International Encyclopedia of 
Statistical Science, 2011. 

[19]  C. Choy. Expectation Maximization and Variational Inference (Part 1). 
https://chrischoy.github.io/research/Expectation-Maximization-and-
Variational-Inference/. Accessed: 2022-05-27. 

[20]  L. Lee and C. Wang, "Probabilistic Graphical Models", Spring, pp. 10-708, 
2017. 

[21]  D. Blei. Variational Inference: Foundations and Innovations. 
https://www.eurandom.tue.nl/wp-content/uploads/2019/05/Blei_lectures.pdf. 
Accessed: 2022-05-27. 

[22]  M. Wainwright and M. Jordan. Graphical Models, Exponential Families, and 
Variational Inference. Foundations and Trends in Machine Learning. 2008.  

[23]  K. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe 
algorithm. 2008. 

[24]  Z. Allen-Zhu. Natasha 2: Faster Non-Convex Optimization Than SGD. 2017. 
[25]  J. Mairal. Stochastic Majorization-Minimization Algorithms for Large-Scale 

Optimization. 2013. 
[26]  A. Yuille and A. Rangarajan. The Concave-Convex Procedure. Neural 

Computation. 2003.  
[27]  K. Than, T. Doan. Guaranteed inference in topic models. 

https://arxiv.org/pdf/1512.03308. Accessed: 2022-05-27. 
[28]  X. Bui, H. Vu, O. Nguyen and K. Than. MAP Estimation With Bernoulli 

Randomness, and Its Application to Text Analysis and Recommender Systems.  
IEEE Access, vol. 8, pp. 127818-127833, 2020. 

[29]  D. Mimno, M. Hoffman, D. Blei. Sparse Stochastic Inference for Latent 
Dirichlet allocation. Proceedings of the 29th International Conference on 
Machine Learning, 2012. 

[30]  U. Simsekli, R. Badeau, G. Richard and A. Cemgil. Stochastic Quasi-Newton 
Langevin Monte Carlo. 2016. 

[31]  M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul. An Introduction to 
Variational Methods for Graphical Models. 1999.  

[32]  N. Johnson, A. Kemp and S. Kotz. Univariate Discrete Distributions. John 
Wiley & Sons, vol. 444, 2005.  

[33]  K. Than and T. Ho. Fully Sparse Topic Models. 2012. 
[34]  MovieLens 20M Dataset. https://grouplens.org/datasets/movielens/20m/. 

Accessed: 2022-05-27. 
[35]  Netflix Prize. https://en.wikipedia.org/wiki/Netflix_Prize. Accessed: 2022-05-

27. 
[36]  IMDB. https://www.imdb.com/. Accessed: 2022-05-27 
 
 
 
  

https://chrischoy.github.io/research/Expectation-Maximization-and-Variational-Inference/
https://chrischoy.github.io/research/Expectation-Maximization-and-Variational-Inference/
https://www.eurandom.tue.nl/wp-content/uploads/2019/05/Blei_lectures.pdf
https://arxiv.org/pdf/1512.03308
https://grouplens.org/datasets/movielens/20m/
https://en.wikipedia.org/wiki/Netflix_Prize
https://www.imdb.com/


 52 

List of Figures 
Figure 2.1: Types of recommendation technique. .................................................................... 8 
Figure 2.2: Illustration of Collaborative Filtering recommender systems. ............................... 9 
Figure 2.3: Illustration of Content Based recommender systems. .......................................... 10 
Figure 3.1: Graphical model for CTR..................................................................................... 12 
Figure 3.2: Graphical model for CTPF. .................................................................................. 13 
Figure 4.1: Graphical model for LDA. ................................................................................... 16 
Figure 4.2: Topic simplex for 3 topics embedded in the word simplex for 3 words. ............. 17 
Figure 5.1: Approximate solution to the inference problem using Variational Inference ...... 18 
Figure 5.2: Graphical model for conditionally conjugate model. ........................................... 20 
Figure 7.1: Graphical model for CTMP. ................................................................................ 28 
Figure 8.1: Data frames for MovieLens 20M dataset. ............................................................ 34 
Figure 8.2: Data frames for NETFLIX dataset. ...................................................................... 35 
Figure 8.3: Snippet from vocabulary extracted out of MovieLens 20M dataset. ................... 36 
Figure 8.4: Snippet from numerical representation of movies for MovieLens 20M dataset. . 37 
Figure 8.5 Visual illustration of stratified 5-fold cross-validation on example dataset.......... 38 
Figure 8.6: Snippet from settings for CTMP input parameters for MovieLens 20M dataset. 39 
Figure 8.7: Recall & precision graphs of CTMP model on MovieLens 20M dataset. ........... 42 
Figure 8.8: Recall & precision graphs of CTMP model on MovieLens 20M dataset.. .......... 42 
Figure 8.9: Recall & precision graphs of CTMP model on MovieLens20M dataset. ............ 43 
Figure 8.10: Recall & precision graphs of CTMP model on NETFLIX dataset. ................... 43 
Figure 8.11: Recall & precision graphs of CTMP model on NETFLIX dataset. ................... 44 
Figure 8.12: Recall & precision graphs of CTMP model on NETFLIX dataset. ................... 44 
Figure 8.13: Sparsity of learned topic proportions for MovieLens 20M dataset. .................. 45 
Figure 8.14: Sparsity of learned topic proportions for NETFLIX dataset. ............................. 45 
Figure 8.15: Transfer learning between MovieLens 20M and NETFLIX datasets for “The 
Naked City (1948)” movie...................................................................................................... 47 
 
  



 53 

List of Tables 
Table 2.1: Detailed comparison of recommender systems. ....................................... 10 
Table 8.3: Details of data frames. .............................................................................. 35 
Table 8.4: CTMP input parameters and their description. ......................................... 39 
Table 8.5: Specifications of Google Cloud Virtual Machine for training CTMP. ..... 39 
Table 8.6: CTMP training time for datasets. .............................................................. 40 
Table 8.7: Top-10 words of first 10 topics learnt by CTMP on MovieLens 20M. .... 40 
Table 8.8: Top-10 words of first 10 topics learnt by CTMP on NETFLIX ............... 41 
Table 8.9: CTMP hyperparameters and their domain. ............................................... 41 
Table 8.10: CTMP hyperparameter selection for transfer learning. .......................... 46 

 
  



 54 

List of Algorithms 
Algorithm 3.1: CTR model algorithm. ....................................................................... 12 
Algorithm 3.2: Generative process for CTPF. ........................................................... 14 
Algorithm 4.1: Generative process for LDA.............................................................. 16 
Algorithm 6.1: Online Maximum a Posteriori Estimation (OPE) algorithm. ............ 25 
Algorithm 6.2: Bernoulli randomness in Online maximum a Posteriori Estimation 
(BOPE) algorithm. ..................................................................................................... 26 
Algorithm 7.1: Generative process for CTMP. .......................................................... 28 
Algorithm 7.2: CTMP model algorithm. ................................................................... 30 
Algorithm 7.3: Learning 𝜃𝑗 using BOPE. .................................................................. 31 
 
  



 55 

List of Abbreviations 
RS   Recommender Systems 
CF   Collaborative Filtering 
CB   Content Based  
LDA   Latent Dirichlet Allocation 
fLDA   Matrix Factorization through Latent Dirichlet Allocation 
CTR   Collaborative Topic Regression 
CTPF   Collaborative Topic Poisson Factorization 
CTMP   Collaborative Topic Model for Poisson distributed ratings 
EM   Expectation–Maximization 
VI   Variational Inference 
VBM   Variational Bayesian Methods 
MFVI   Mean-field Variational Inference 
KL   Kullback-Leibler 
ELBO   Evidence lower bound 
MAP   Maximum a Posteriori 
OPE   Online Maximum a Posteriori Estimation  
BOPE   Bernoulli randomness is Online Maximum a Posteriori Estimation 
CGS   Collapsed Gibbs Sampling 
HAMCMC   Hessian Approximated Markov Chain Monte Carlo 
MCMC   Markov chain Monte Carlo 
NLP   Natural Language Processing 
RAM   Random Access Memory 
  



 56 

Appendix 

Appendix A. Objective function 

𝑙 =∑  

𝐽

𝑗

log 𝑃(𝜃𝑗 , 𝑤𝑗 ∣ 𝛼, 𝛽) +∑ 

𝐽

𝑗

log 𝑃(𝜇𝑗 ∣ 𝜃𝑗, 𝜆)

+∑ 

𝑈

𝑢

∑ 

𝐽

𝑖

(𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)log 𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢 ∣ 𝜇𝑗 , 𝑒, 𝑓) − 𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)log 𝑞(𝑦𝑢𝑗 , 𝜂𝑢))

    (A.1) 

 
We will detail each term in 𝑙. According to [27], we have: 
 
log 𝑃(𝜃𝑗 ,𝑤𝑗 ∣ 𝛼, 𝛽) = (𝛼 − 1)∑  

𝑘

log 𝜃𝑗𝑘 +∑  

𝑣

𝑐𝑗
𝑣 log ∑  

𝑘

𝜃𝑗𝑘𝛽𝑘𝑣 +  Constant      (A.2) 
 
Because 𝜇𝑗  ~ 𝒩(𝜃𝑗 , 𝜆−1𝐼𝐾), then: 
 
log 𝑃(𝜇𝑗 ∣ 𝜃𝑗 , 𝜆) = −

𝜆

2
∥∥𝜃𝑗 − 𝜇𝑗∥∥2

2
+  Constant (A.3) 

 

The last term in 𝑙 is detailed below: 

𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log 𝑃(𝑟𝑢𝑗 , 𝑦𝑢𝑗 , 𝜂𝑢 ∣ 𝜇𝑗 , 𝑒, 𝑓) − 𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log 𝑞(𝑦𝑢𝑗 , 𝜂𝑢) 
= 𝐸𝑞(𝜂𝑢) log 𝑃(𝜂𝑢 ∣ 𝑒, 𝑓) + 𝐸𝑞(𝜂𝑢) log 𝑃(𝑟𝑢𝑗 ∣ 𝜇𝑗 , 𝜂𝑢) + 𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log𝑃(𝑦𝑢𝑗 ∣ 𝜇𝑗 , 𝜂𝑢, 𝑟𝑢𝑗) 

−∑ 

𝑘

𝐸𝑞(𝜂𝑢𝑘) log 𝑞(𝜂𝑢𝑘 ∣ shp𝑢𝑘 ,  rte 𝑢𝑘) − 𝐸𝑞(𝑦𝑢𝑗 log 𝑞(𝑦𝑢𝑗 ∣ 𝜙𝑢𝑗𝑟𝑢𝑗) 

=∑  

𝑘

𝐸𝑞(𝜂𝑢,𝑘) log
𝑓𝑒

Γ(𝑒)
𝜂𝑢𝑘

𝑒−1 exp(−𝑓𝜂𝑢𝑘) + 𝐸𝑞(𝜂𝑢𝑘) log
(𝜂𝑢
𝑇𝜇𝑗)

𝑟𝑢𝑗 exp(−𝜂𝑢
𝑇𝜇𝑗)

𝑟𝑢𝑗!
 

+𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢) log
𝑟𝑢𝑗!

Π𝑘𝑦𝑢𝑗𝑘!

Π𝑘(𝜂𝑢𝑘𝜇𝑗𝑘)
𝑦𝑢𝑗𝑘

(𝜂𝑢𝑇𝜇𝑗)
𝑟𝑢𝑗

 

−∑ 

𝑘

𝐸𝑞(𝜂𝑢,𝑘) log
(rte𝑢𝑘)

shp𝑢𝑘

Γ(shp𝑢𝑘)
(𝜂𝑢𝑘)

shp𝑢𝑘−1 exp(− rte 𝑢𝑘𝜂𝑢𝑘) − 𝐸𝑞(𝑦𝑢𝑗 log
𝑟𝑢𝑗!

Π𝑘𝑦𝑢𝑗𝑘!
Π𝑘𝜙𝑢𝑗𝑘

𝑦𝑢𝑗𝑘 

=∑  

𝑘

((𝑒 − 1)𝐸𝑞(𝜂𝑢,𝑘) log 𝜂𝑢𝑘 − 𝑓𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘]) + (𝑟𝑢𝑗𝐸𝑞(𝜂𝑢𝑘) log(𝜂𝑢
𝑇𝜇𝑗) − 𝐸𝑞(𝜂𝑢𝑘)[𝜂𝑢

𝑇𝜇𝑗]) 

+(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)𝑦𝑢𝑗𝑘 log(𝜂𝑢𝑘𝜇𝑗𝑘) −∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗) log 𝑦𝑢𝑗𝑘! − 𝑟𝑢𝑗𝐸𝑞(𝜂𝑢𝑘) log(𝜂𝑢
𝑇𝜇𝑗)) 

−∑ 

𝑘

(log
(rte𝑢𝑘)

shp𝑢𝑘

Γ(shp𝑢𝑘)
+ (shp𝑢𝑘 − 1)𝐸𝑞(𝜂𝑢,𝑘) log(𝜂𝑢𝑘) − rte𝑢𝑘𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘]) 

−(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗)[𝑦𝑢𝑗𝑘] log(𝜙𝑢𝑗𝑘) −∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗) log 𝑦𝑢𝑗𝑘!) +  Constant 

=∑  

𝑘

((𝑒 − 1)𝐸𝑞(𝜂𝑢,𝑘) log 𝜂𝑢𝑘 − 𝑓𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘]) + (−𝐸𝑞(𝜂𝑢𝑘)[𝜂𝑢
𝑇𝜇𝑗]) 

+(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗,𝜂𝑢)𝑦𝑢𝑗𝑘 log(𝜂𝑢𝑘𝜇𝑗𝑘)) 

−∑ 

𝑘

(log
(rte𝑢𝑘)

shp𝑢𝑘

Γ(shp𝑢𝑘)
+ (shp𝑢𝑘 − 1)𝐸𝑞(𝜂𝑢,𝑘) log(𝜂𝑢𝑘) − rte𝑢𝑘 𝐸𝑞(𝜂𝑢,𝑘)[𝜂𝑢𝑘]) 

−(∑  

𝑘

𝐸𝑞(𝑦𝑢𝑗)[𝑦𝑢𝑗𝑘] log(𝜙𝑢𝑗𝑘)) + Constant 

(A.4) 



 57 

=∑  

𝑘

((𝑒 − 1)(Ψ(shp𝑢𝑘) − log(rte𝑢𝑘)) − 𝑓
shp𝑢𝑘
 rte 𝑢𝑘

)−∑ 

𝑘

𝜇𝑗𝑘
shp𝑢𝑘
 rte 𝑢𝑘

 

+∑ 

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘(Ψ(shp𝑢𝑘) − log(rte𝑢𝑘) + log(𝜇𝑗𝑘)) 

−∑(shp𝑢𝑘 log(rte𝑢𝑘) − log(Γ(shp𝑢𝑘) + (shp𝑢𝑘 − 1)(Ψ(shp𝑢𝑘) − log(rte𝑢𝑘))

𝑘

 

−rteuk
shpuk
 rte uk

) −∑ 

k

rujϕujk log(ϕujk) + Constant 

=∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘) −∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘) +∑  

𝑘

(rte𝑢𝑘 − 𝑓 − 𝜇𝑗𝑘)
shp𝑢𝑘
 rte 𝑢𝑘

 

+∑ 

𝑘

(𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘)(Ψ(shp𝑢𝑘)− log( rte 𝑢𝑘)) −∑ 

𝑘

shp𝑢𝑘 log( rte 𝑢𝑘) 

+∑ 

𝑘

log(Γ(shp𝑢𝑘)) + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 
After summing up three terms (A.2), (A.3) and (A.4), we obtain: 

𝑙(𝜃, 𝜇, 𝜙, shp, rte, 𝛽) =∑  

𝐽

𝑗

((𝛼 − 1)∑  

𝐾

𝑘

log 𝜃𝑗𝑘 +∑ 

𝑣

𝑐𝑗
𝑣 log∑  

𝐾

𝑘

𝜃𝑗𝑘𝛽𝑘𝑣) 

−∑ 

𝐽

𝑗

𝜆

2
∥∥𝜃𝑗 − 𝜇𝑗∥∥2

2
+∑  

𝑈

𝑢

∑ 

𝐽

𝑗

∑ 

𝐾

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘) 

−∑ 

𝑈

𝑢

∑ 

𝐽

𝑗

∑ 

𝐾

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘) +∑  

𝑈

𝑢

∑ 

𝐾

𝑘

(rte𝑢𝑘 − 𝑓 −∑  

𝐽

𝑗

𝜇𝑗𝑘)
shp𝑢𝑘
rte𝑢𝑘

 

+∑ 

𝑈

𝑢

∑ 

𝐾

𝑘

(∑  

𝐽

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp p𝑢𝑘) (Ψ(sh 𝑝𝑢𝑘) − log(rte𝑢𝑘)) 

−∑ 

𝑈

𝑢

∑ 

𝐾

𝑘

shp𝑢𝑘  log (rte𝑢𝑘) +∑  

𝑈

𝑢

∑ 

𝐾

𝑘

log (Γ(shp𝑢𝑘)) + Constant. 

    (A.5) 

 

 

Appendix B. Update 𝝓𝒖𝒋 

We then maximize the lower bound with respect to 𝜙𝑢𝑗: 

𝑙(𝜙𝑢𝑗) =∑ 

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘) −∑ 

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘) +  𝑟𝑢𝑗𝜙𝑢𝑗𝑘(Ψ(shp𝑢𝑘) − log (rte𝑒𝑢𝑘))    (B.1) 

with the constraint ∑ 𝜙𝑢𝑗𝑘 = 1
𝐾
𝑘 . 

 
By adding the Lagrange multipliers 𝜆, we obtain: 

𝑙(𝜙𝑢𝑗) =∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜇𝑗𝑘) −∑  

𝑘

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 log(𝜙𝑢𝑗𝑘) 

+ 𝑟𝑢𝑗𝜙𝑢𝑗𝑘(Ψ(shp𝑢𝑘) − log (rte𝑢𝑘)) + 𝜆 (1 −∑  

𝐾

𝑘=1

𝜙𝑢𝑗𝑘) 

      (B.2) 

We take the derivative 𝑙(𝜙𝑢𝑗) with respect to 𝜙𝑢𝑗𝑘(𝑘 ∈ {1,… , 𝐾}), and set to zero, then 
we get: 
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𝜙𝑢𝑗𝑘 ∝ exp {log 𝜇𝑗𝑘 + 𝜓(shp𝑢𝑘) − log (rte𝑢𝑘)}        (B.3) 
 

Appendix C. Update 𝐬𝐡𝐩𝒖,𝒌 and 𝐫𝐭𝐞𝒖𝒌 
We then maximize the lower bound with respect to shp𝑢,𝑘 and rte𝑢,𝑘: 

𝑙(shp𝑢,𝑘 ,  rte 𝑢,𝑘) = (rte𝑢𝑘 − 𝑓 −∑  

𝑗

𝜇𝑗𝑘)
shp𝑢𝑘
rte𝑢𝑘

 

+(∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘) (Ψ(shp𝑢𝑘) − log(rte𝑢𝑘)) − shp𝑢𝑘  log (rte𝑢𝑘) + log (Γ(shp𝑢𝑘)) 

 

 
(C.1) 

Now, we take the derivative 𝑙(shp𝑢,𝑘 ,  rte 𝑢,𝑘) with respect to shp𝑢,𝑘, rte𝑢,𝑘(𝑘 ∈ {1, … , 𝐾}), 
and set to zero. Note that ∂𝑙(shp𝑢,𝑘,rte𝑢,𝑘)

∂shp𝑢,𝑘
= Ψ(shp𝑢𝑘), we have: 

 

{
 
 
 
 

 
 
 
 ∂𝑙(shp𝑢,𝑘 , rte𝑢,𝑘)

∂shp𝑢,𝑘
= (rte𝑢𝑘 − 𝑓 −∑ 

𝑗

𝜇𝑗𝑘)
1

rte𝑢𝑘
+ (∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘)Ψ
′(shp𝑢𝑘)

= 0

∂𝑙(shp𝑢,𝑘 , rte𝑢,𝑘)

∂rte𝑢,𝑘
= −(rte𝑢𝑘 − 𝑓 −∑  

𝑗

𝜇𝑗𝑘)
shp𝑢𝑘

rte𝑢𝑘
2 + (∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘 + 𝑒 − shp𝑢𝑘)
−1

rte𝑢𝑘

= 0

 

    (C.2) 

 
Now the solution is: 

{
 
 

 
 shp𝑢𝑘 = 𝑒 +∑  

𝑗

𝑟𝑢𝑗𝜙𝑢𝑗𝑘

rte𝑢𝑘 = 𝑓 +∑ 

𝑗

𝜇𝑗𝑘

 

 (C.3) 
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