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are cited. Then, we demonstrate two own computer programs and the corre-
sponding numerical results. First, we compute the desired set of weights that
generates the Laguerre tessellation with prescribed cell volumes and apply it to
a unit cube in R3. The application of this method relies on the Barzilai-Borwein
gradient descent and Voro++ library, which computes the volumes of cells in each
iteration. Furthermore, an iterative approach approximates a centroidal Laguerre
tessellation, where the nuclei coincide with the centroids of Laguerre cells.

Keywords: Laguerre tessellation, assignment, capacity, Barzilai-Borwein algo-
rithm

iii



Contents

Introduction 2

1 Theoretical Groundwork 4
1.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Realizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Weight Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Centroidal Tessellations . . . . . . . . . . . . . . . . . . . . . . . 13

2 Application 14
2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Effect of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Lloyd-Type Centering . . . . . . . . . . . . . . . . . . . . . . . . 17

Conclusion 19

Bibliography 20

A Attachments 21
A.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.2 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.3 Electronic Attachment . . . . . . . . . . . . . . . . . . . . . . . . 24

1



Introduction
This thesis aims to provide an introduction to the problem of Laguerre tessel-
lations and a structured approach to generating Laguerre tessellations with pre-
scribed cell volumes. We follow Aurenhammer et al. [1998] while providing proof
of some parts that the authors assumed to be trivial.

Next, to provide a practical example of our theoretical results, we implement
an algorithm to compute Laguerre tessellations with given cell volumes using
an iterative approach from Aurenhammer et al. [1998], step optimization from
Kuhn et al. [2020], and a specialized library for three-dimensional computations
of Laguerre tessellations Voro++, see Rycroft [2009].

There are different approaches to Laguerre tessellations; hence, our definitions
and notation might not be general. Throughout the text, we work in the Euclidean
space Rd with norm ∥ · ∥ and standard scalar product ⟨·, ·⟩. First, we need to
prove the existence of those tessellations. Hence, we must lay the theoretical
groundwork to explore more complex ideas.

Definition 1. Let m ∈ N and let us consider a set N = {n1, . . . , nm} of elements
in Rd, which we will call nuclei, and a set W = {w1, . . . , wm} of elements in R,
which we will call weights (associated with the nuclei).

Remark. Later we will need an interpretation wi = r2
i , ri being a radius of a sphere

centered in ni. Since wi can be negative, the notion of an imaginary sphere can
be considered. A sphere with an imaginary radius r′ = ir, r ≥ 0, where i is
the imaginary unit, is called an imaginary sphere, see Aurenhammer [1987], p. 51.
A sphere with either a real or imaginary radius is called a generalized sphere.

Definition 2. Let us consider the sets N and W from Definition 1. We define
a mapping pW : Rd × N → R, which we shall call the power function, as

pW (x, ni) = ∥x − ni∥2 − wi for all x ∈ Rd and i = 1, . . . , m. (1)

Remark. Formula (1) is also called the power distance of x from (ni, wi), see
Lautensack and Zuyev [2008], p. 631. The definition of power function requires
the set of nuclei and the set of weights; however, we only use W to describe pW .
We do it because the set of nuclei N will be fixed, and only W will vary.

We selected a finite set of nuclei in Rd, and we created a way to measure
the relationship between points in Rd and nuclei in N other than ∥·∥. A particular
subdivision of Rd arises.

Definition 3. Let us consider the sets N and W from Definition 1. Let us
also consider a subset of Rd that consists of all points in Rd closer to ni ∈ N
(with respect to the power distance pW ) than any other nucleus in N and denote it
by regW (ni). Those regions define an assignment AW : Rd → N given by

AW (x) = ni ⇐⇒ x ∈ regW (ni),
i.e., A−1

W (ni) = regW (ni). The Laguerre tessellation of Rd with nuclei N and
weights W is the collection of nonempty sets regW (ni) for i = 1, . . . , m.
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Remark. Laguerre tessellations are alternatively called power diagrams, see Au-
renhammer [1987], p. 50. If we set all wi = 0, the geometry of regions regW (ni)
depends solely on the position of nuclei, and we obtain the so-called Voronoi
tessellation.
Remark. Definition 3 is ambiguous regarding the points at the same power dis-
tance from two different nuclei. Later we would like AW to be Borel measurable.
Hence, we select all points at the same power distance from two different nuclei
and assign them to one fixed nucleus, say n1.

Another (almost equivalent) definition of Laguerre tessellations exists that
remedies this ambiguity. However, this definition does not induce the assignment
AW from Definition 3.

Definition 4. Let us consider the sets N and W from Definition 1. For each
nucleus ni ∈ N we define its cell as

Bi = {x ∈ Rd : pW (x, ni) ≤ pW (x, nj), j = 1, . . . , m}.

The collection of cells B1, . . . , Bm is then called the Laguerre tessellation of Rd

with nuclei N and weights W .

Remark. The cells from Definition 4 are convex closed sets with mutually disjoint
interiors such that ⋃︁m

i=1 Bi = Rd; some cells might be empty, and a nucleus need
not lie in its cell, see Lautensack and Zuyev [2008], p. 631–635.

Next, we focus on a d-dimensional unit hypercube in Rd and define a method
of measuring the regions from Definition 3.

Definition 5. Let (Rd, Bd, µ) be a probability space where µ is absolutely continu-
ous with respect to the Lebesgue measure λd and its probability density function ρ
is continuous and nonzero in [0, 1]d, and ρ = 0 outside [0, 1]d. Let us consider
the assignment AW from Definition 3. For each nucleus ni ∈ N , we define the ca-
pacity of ni resulting from AW as µ(A−1

W (ni)).

Having formulated sufficient definitions, we can state the problem preoccupy-
ing us in the first chapter.

Claim 1. Let us consider N from Definition 1 and µ satisfying Definition 5.
For any set C = {C1, . . . , Cm} of elements in [0, 1] such that ∑︁m

i=1 Ci = 1, there is
a set of weights W for which we have

µ(regW (ni)) = Ci, i = 1, . . . , m,

i.e., there is a set W such that the Laguerre tessellation of Rd with nuclei N
and weights W satisfies the prescribed capacity constraint C with respect to µ.
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1. Theoretical Groundwork
In the following chapter, we provide a theoretical groundwork that enables us
to justify our claim in the introduction and compute Laguerre tessellations with
given cell volumes.

1.1 Existence
First, we prove that AW from Definition 3 minimizes the mean squared Euclidean
distance between points in Rd and nuclei in N over all Borel measurable assign-
ments that satisfy a specific capacity constraint with respect to µ.

Lemma 2. Let us consider the sets N and W from Definition 1 and µ from Def-
inition 5. The assignment AW : Rd → N as defined in Definition 3 minimizes∫︂

[0,1]d
ρ(x) ∥x − A(x)∥2 dx

over all Borel measurable A : Rd → N with capacities µ(A−1
W (ni)), i = 1, . . . , m.

Proof. For i, j ∈ {1, . . . , m} such that i ̸= j, we have

A−1
W (ni) ∩ A−1

W (nj) = ∅,

and we see that
m⋃︂

i=1
A−1

W (ni) = Rd.

By definition, AW minimizes∫︂
Rd

ρ(x) pW (x, A(x)) dx

over all Borel measurable A : Rd → N , since it chooses the closest points in Rd

to a nucleus ni ∈ N with respect to the power distance pW . Because ρ = 0
outside [0, 1]d, we see that∫︂

Rd
ρ(x) pW (x, AW (x)) dx =

∫︂
[0,1]d

ρ(x) pW (x, AW (x)) dx. (1.1)

We know that

∫︂
Rd

ρ(x) pW (x, AW (x)) dx =
∫︂
Rd

ρ(x)
(︂
∥x − AW (x)∥2 − ω(AW (x))

)︂
dx,

where ω : N → W assigns a nucleus its weight. By linearity of the Lebesgue
integral, we see that

∫︂
Rd

ρ(x) ω(AW (x)) dx =
m∑︂

i=1

∫︂
A−1

W (ni)
ρ(x) ω(AW (x)) dx. (1.2)
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For each x ∈ A−1
W (ni), we have AW (x) = ni. Hence, (1.2) becomes

m∑︂
i=1

wi

∫︂
A−1

W (ni)
ρ(x) dx =

m∑︂
i=1

wi µ(A−1
W (ni)).

Since we only consider the assignments that satisfy the capacity constraint,
the last expression is equal to some constant K ∈ R. Therefore,∫︂

Rd
ρ(x) pW (x, AW (x)) dx =

∫︂
Rd

ρ(x) ∥x − AW (x)∥2 dx − K.

From (1.1), it follows that

∫︂
Rd

ρ(x) pW (x, AW (x)) dx + K =
∫︂

[0,1]d
ρ(x) ∥x − AW (x))∥2 dx. (1.3)

Thus, AW also minimizes the right-hand side of (1.3), which yields the lemma.

Without proof, the last lemma is stated as Lemma 2 in Aurenhammer et al.
[1998], p. 65. It is helpful to define particular classes of assignments that simplify
discussing Laguerre tessellations at this point.

Definition 6. Let us consider N from Definition 1 and µ from Definition 5.
We call a Borel measurable A : Rd → N a least-square assignment if it minimizes∫︂

Rd
ρ(x) ∥x − A(x)∥2 dx (1.4)

over all Borel measurable assignments Rd → N .

Definition 7. Let us consider N from Definition 1, µ satisfying Definition 5
and a set C = {C1, . . . , Cm} of elements in [0, 1] such that ∑︁m

i=1 Ci = 1. We call
a Borel measurable L : Rd → N a least-square assignment subject to the capacity
constraint C, if it is a least-square assignment and

Ci = µ(L−1(ni)), i = 1, . . . , m,

i.e., it minimizes (1.4) over all Borel measurable assignments Rd → N that satisfy
the capacity constraint C.

Remark. Assignments defined by Laguerre tessellations are least-square assign-
ments subject to the capacity resulting from the assignment by Lemma 2.

Next, we show a specific geometric property of least-square assignments sub-
ject to some capacity constraint.

Lemma 3. Let us consider N , µ and C from Definition 7. Let us assume that
there exists a least-square assignment L subject to C. Then for all ni, nj ∈ N
such that i ̸= j there exists a hyperplane θ in Rd orthogonal to (nj − ni) such that

µ(θij ∩ L−1(nj)) = 0 and µ(θji ∩ L−1(ni)) = 0,

where θij is the closed halfspace bounded by θ and containing θ+(ni−nj), and θji is
the complementary halfspace.
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Proof. In the following proof, the variable of integration in each integral is x.
Since the range of L is finite, we see that (1.4) is equal to

L(x) =
m∑︂

i=1

∫︂
L−1(ni)

∥x − ni∥2 dµ.

Hence, we need to consider the pairs of different nuclei from N first. Let ni, nj ∈ N
such ni ̸= nj and denote Ri = L−1(ni) and Rj = L−1(nj) for simplicity. Since θ
must be orthogonal to the line through ni and nj, it is defined as

{x ∈ Rd : ⟨x, nj − ni⟩ = β} for β ∈ R.

Let us consider Ri ∪ Rj and separate it using θ into P and T . Since µ(Rj) = Cj

and µ(Ri) = Ci, we can find β ∈ R for which µ(P) = Ci and µ(T ) = Cj. Since
µ(P) = Ci and µ(Ri) = Ci, we see that

µ(P \ Rj) = µ(P) − µ(P ∩ Rj) = µ(Rj) − µ(P ∩ Rj) = µ(Rj \ P).

For x ∈ Rj\P we have ⟨nj−ni, x⟩ ≤ β, and for x ∈ P\Rj we have ⟨nj−ni, x⟩ ≥ β.
Therefore, ∫︂

Rj\P
⟨nj − ni, x⟩ dµ ≤

∫︂
P\Rj

⟨nj − ni, x⟩ dµ. (1.5)

We also see that

Rj ∪ Ri = P ∪ T ⇒ Rj ∪ Ri \ P = T ⇒ Rj \ P = T \ Ri. (1.6)

Moreover, we have

Rj \ P = Rj \ (Rj ∩ P) and Ri \ T = Ri \ (Ri ∩ T ). (1.7)

By combining (1.6) and (1.7), the inequality (1.5) becomes∫︂
Rj

⟨nj, x⟩ dµ +
∫︂

Ri

⟨ni, x⟩ dµ ≤
∫︂

P
⟨nj, x⟩ dµ +

∫︂
T

⟨ni, x⟩ dµ. (1.8)

Since µ(Ri) = µ(P) = Ci, µ(Rj) = µ(T ) = Cj and Ri ∪ Rj = P ∪ T , (1.8) is
equivalent to

∫︂
P

∥x − nj∥2 dµ +
∫︂

T
∥x − ni∥2 dµ ≤

∫︂
Rj

∥x − nj∥2 dµ +
∫︂

Ri

∥x − ni∥2 dµ.

Therefore, using P and T we can reconstruct Rj ∪ Ri. Furthermore, P and T
fulfill the hyperplane condition and do not increase the value of (1.4). Since N is
finite, we can reconstruct the assignment L fully, which yields the lemma.

With a less comprehensive proof, the last lemma is stated as Observation 1
in Aurenhammer et al. [1998], p. 65.
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Remark. By Lemma 3, we see that if the least-square assignment subject to some
capacity constraint exists, it is realized by a set of convex polyhedra {Pi}m

i=1.
Those polyhedra are defined in the following manner

Pj =
m⋂︂

i=1,i ̸=j

θji.

We see that each Pj is defined as a finite intersection of closed half-spaces in Rd.
Thus, Pj forms a convex polyhedron in Rd.

Next, we show that the least-square assignment subject to capacity con-
straint C exists. We need to clarify some geometrical concepts and define a tiling
in Rd first. The following two definitions come from Aurenhammer [1987], p. 49.

Definition 8. Let us consider j ∈ N such that 0 ≤ j ≤ d. A j-polyhedron is
a convex subset of dimension j of Rd that can be expressed as the intersection
of a finite number of closed half-spaces in Rd. The boundary of a j-polyhedron P ,
denoted by ∂P , consists of finitely many i-polyhedra, called i-faces of P , for i < j.

Definition 9. A tiling T of a nonempty set X ⊆ Rd is a finite collection of
j-polyhedra for which:

i, the union of the j-polyhedra of T is equal to X,

ii, the relative interiors of the j-polyhedra of T pairwise do not intersect.

Remark. For our purposes, when dealing with capacity constraints on the unit
cube, we are interested in d-polyhedra (cells) and (d−1)-polyhedra (cell faces).
Such a tiling of Rd is a particular case of a tessellation.

Lemma 4. Let us consider C from Definition 7, µ from Definition 5 and the class
of assignments Rd → N realized by the set of convex polyhedra {Pi}m

i=1 with
the following properties:

i, {Pi ∩ [0, 1]d}m
i=1 defines a tiling of [0, 1]d,

ii, µ(Pi) = Ci, i = 1, . . . , m,

iii, each Pi has fewer than m k-faces,

where k = d − 1. Then this class of assignments contains a least-square
assignment L : Rd → N subject to C.

Proof. The proof of this lemma can be found in Aurenhammer et al. [1998], p. 66,
as the proof of what the authors called Lemma 3.
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1.2 Realizability
Lemma 4 shows that the least-square assignment L subject to capacity con-
straint C exists. We need to show that it can be realized as a Laguerre tessella-
tion for some set of nuclei N and weights W . Therefore, we introduce a concept
of an orthogonal dual of a tiling of Rd, which helps us distinguish when a tiling
of Rd can be realized as a Laguerre tessellation.

Definition 10. Let T be a tiling of Rd and let D(T ) be a finite set of points in Rd.
We call D(T ) the orthogonal dual of T if it satisfies the following conditions:

i, D(T ) contains exactly one point pi ∈ Rd for each member Mi of T such that
distinct points correspond to distinct members,

ii, for distinct members Mi and Mj of T a line connecting the corresponding
points pi and pj is orthogonal to Mi ∩ Mj,

iii, any ray parallel to the line connecting pi and pj, directed from pi to pj,
and intersecting both Mi and Mj, first meets Mi.

Having defined an orthogonal dual of a tiling of Rd, we can determine whether
the tiling is realized as a Laguerre tessellation.

Theorem 5. A tiling T of Rd can be realized as a Laguerre tessellation for some
set of nuclei N in Rd and weights W in R if and only if an orthogonal dual of T
exists.

Proof. The proof of this theorem can be found in Aurenhammer [1987], p. 52–54,
as the proof of what the author called Lemma 4 (formulated in terms of power
diagrams and generalized spheres).

Theorem 5 allows us to prove Claim 1 by combining the results from Auren-
hammer et al. [1998], p. 67–68, and Aurenhammer [1987], p. 52.

Theorem 6. Let us consider N , µ and C from Definition 7. Then there exists
a set W of real numbers (weights) such that

µ(regW (ni)) = Ci, i = 1, . . . , m.

Proof. From Lemma 4, we know that there exists a least square assignment
L : Rd → N realized by a set of convex polyhedra {Pi}m

i=1 such that {Pi∩[0, 1]d}m
i=1

defines a tiling of [0, 1]d and µ(Pi) = Ci, i = 1, . . . , m.
It is enough to show that the convex tiling that defines the least-square assign-

ment L subject to the capacity constraint C has an orthogonal dual. The proof
of this part can be found in Aurenhammer et al. [1998], p. 67, as the proof of
what the authors called Lemma 4.

Remark. By taking ρ to be the probability density function of the uniform dis-
tribution on [0, 1]d, µ becomes the Lebesgue measure on [0, 1]d. Hence, for d = 3,
we can decompose the unit cube into convex polyhedra of prescribed volumes.
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1.3 Weight Vector
In the following part, we prove that the assignment induced by the Laguerre
tessellation of Rd with nuclei N and weights W gives rise to a concave function
that admits minimizers. We require a few definitions for the simplicity of notation.

Definition 11. Let us consider N and W from Definition 1 and µ from Defini-
tion 5. For an arbitrary Borel measurable assignment A : [0, 1]d → N we define
a function fA : Rm → R as

fA(W ) =
∫︂

[0,1]d
ρ(x) pW (x, A(x)) dx, W ∈ Rm,

the vector of capacities from the assignment A as B(A) = (µ(A−1(ni)))m
i=1 and

a function Q, called the value of A, as

Q(A) =
∫︂

[0,1]d
ρ(x) ∥x − A(x)∥2 dx.

All concepts from the last definition were introduced in Section 5 of Auren-
hammer et al. [1998], p. 70–71. Next, we prove that fA is linear in W .

Lemma 7. Let fA be the function from Definition 11. Then fA is a linear
function in W .

Proof. Let IX be the characteristic function of X ⊆ Rd. Let us consider ω
as defined in the proof of Lemma 2 and denote the elements of W by wi. Then

fA(W ) =
∫︂

[0,1]d
ρ(x) ∥x − A(x)∥2 dx −

∫︂
[0,1]d

ρ(x) ω(A(x)) dx,

which is equal to

Q(A) −
∫︂

[0,1]d
ρ(x) ω(A(x)) dx.

Hence, it suffices to prove that∫︂
[0,1]d

ρ(x) ω(A(x)) dx = ⟨B(A), W ⟩.

By linearity of the Lebesgue integral, we see that
∫︂

[0,1]d
ρ(x) ω(A(x)) dx =

∫︂
[0,1]d

ρ(x)
m∑︂

i=1
IA−1(ni)(x) ω(ni) dx,

which becomes
m∑︂

i=1

∫︂
A−1(ni)

ρ(x) wi dx =
m∑︂

i=1
wi µ(A−1(ni)),

which is equal to ⟨W, B(A)⟩. Thus,

fA(W ) = Q(A) − ⟨W, B(A)⟩.

Remark. Without proof, Lemma 7 is stated in Aurenhammer et al. [1998], p. 71.
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For each weight vector W ∈ Rm we find AW and use it as a parameter for fA.
We prove that the resulting function has specific beneficial properties.

Theorem 8. Let us consider fA from Lemma 7. Let f : Rm → R be a function
on the weight space defined as

f(W ) = fAW
(W ) = Q(AW ) − ⟨B(AW ), W ⟩, W ∈ Rm.

Then f is a concave and continuous function in W with gradient −B(AW ) at W .

Proof. Throughout the proof, we work on a probability space (Ω, Σ, µ), where we
put Ω = [0, 1]d and Σ = σ(Ω).

(i) Continuity
First, we prove that f is continuous on Rm. Let us consider a sequence

{Wk}∞
k=1 in Rm such that Wk → W, k → ∞. We aim to show that

f(Wk) → f(W ), k → ∞. (1.9)

From (1.9), it then follows that f is continuous at W . To prove (1.9) it suffices
to show that

Q(AWk
) → Q(AW ), k → ∞

and

B(AWk
) → B(AW ), k → ∞.

Let us consider all points in Rd at the same power distance pW from two
different nuclei in N and denote it by E. We see that

E = {x ∈ Rd : ∃(ni, nj) ∈ N : ni ̸= nj, pW (x, ni) = pW (x, nj)},

or equivalently

E =
⋃︂
j ̸=i

{x ∈ Rd : pW (x, ni) = pW (x, nj)}.

For a fixed j ̸= i we consider

{x ∈ Rd : pW (x, ni) = pW (x, nj)}

and we see that it is equivalent to

{x ∈ Rd : ∥ni∥2 − ∥nj∥2 + wj − wi = 2⟨x, ni − nj⟩}.

Since the set N and weights wi, wj are fixed and ni ̸= nj, the last expression
defines a hyperplane in Rd. Hence, E is a finite union of hyperplanes in Rd. We
know that µ is absolutely continuous with respect to λd. Since λd-measure of
a hyperplane in Rd is zero, we have µ(E) = 0 from the subadditivity of measures.

Let us consider E ′ = Ω ∩ E and x ∈ Ω \ E ′. Then there exists some ni ∈ N
such that AW (x) = ni. Since x ̸∈ E, we get

∀j ̸= i : ∥x − ni∥2 − wi < ∥x − nj∥2 − wj. (1.10)
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Let j ∈ {1, . . . , m} for which we have j ̸= i. Then ∥x − ni∥2 − ∥x − nj∥2 is
a constant Dj ∈ R. We see that (1.10) becomes

∀j ̸= i : wj < wi − Dj.

Then there exists δj > 0 such that for all h ∈ (−δj, δj) we have

wj + h < wi − Dj.

Let us consider δ = minj ̸=i δj. Then δ > 0 and for all j ̸= i, h ∈ (−δ, δ) we have

∥x − ni∥2 − wi < ∥x − nj∥2 − (wj + h).

Hence, there is a nonempty neighborhood of W in Rm, on which Z → AZ(x)
is a constant function. Since Wk → W, k → ∞, there exits k0 ∈ N such that
for k ≥ k0, vectors Wk stay in the above-mentioned neighborhood, i.e.,

∀k ≥ k0 : AWk
(x) = ni ⇒ AWk

(x) → AW (x), k → ∞.

We know that

Q(AW ) =
∫︂

Ω
∥x − AW (x)∥2 dµ(x).

Let us consider Q as a function of W for AW . Then we have Q : Rm → R and

Q(W ) =
∫︂

Ω
∥x − AW (x)∥2 dµ(x). (1.11)

Since the integrand in (1.11) is bounded by one and AWk
→ AW , k → ∞ µ-almost

everywhere, we use the Lebesgue theorem to obtain

lim
k→∞

Q(Wk) =
∫︂

Ω
lim

k→∞
∥x − AWk

(x)∥2 dµ(x) = Q(W ). (1.12)

Furthermore, let us consider B as a vector function of W for AW . Then we have
B : Rm → Rm and

B(W )j =
∫︂

Ω
I[AW (x)=nj ] dµ(x), j = 1, . . . , m. (1.13)

We see that the integrand in (1.13) is bounded by one. Since AWk
→ AW , k → ∞

µ-almost everywhere, we use the Lebesgue theorem to obtain

lim
k→∞

B(Wk)j =
∫︂

Ω
lim

k→∞
I[AWk

(x)=nj ] dµ(x) = B(AW )j, j = 1, . . . , m. (1.14)

Therefore, by combining (1.12) and (1.14), we get

lim
k→∞

f(Wk) = lim
k→∞

Q(Wk) − ⟨B(Wk), Wk⟩ = Q(W ) − ⟨B(W ), W ⟩.

Hence, f is continuous at W . Since W was arbitrary, f is continuous on Rm.
In the following part, we adapt the proof of a similar statement, Theorem 1.1,

in Kitagawa et al. [2019], p. 2613, to show the differentiability and concavity of f .
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(ii) Concavity
We prove that the superdifferential of f at W contains −B(W ). Let us con-

sider W, V ∈ Rm. Then we have

f(V ) + ⟨−B(V ), W − V ⟩ = f(V ) + ⟨B(V ), V ⟩ − ⟨B(V ), W ⟩, (1.15)

which is equal to

Q(V ) − ⟨B(V ), W ⟩ = fAV
(W ).

Since f minimizes fA over all Borel measurable A : Rd → N at W , we see that

fAV
(W ) = Q(V ) − ⟨B(V ), W ⟩ ≥ Q(W ) − ⟨B(W ), W ⟩ = f(W ). (1.16)

By combining (1.15) and (1.16), we have

∀W, V ∈ Rm : f(V ) + ⟨−B(V ), W − V ⟩ ≥ f(W ).

Since f is continuous on Rm and ∂+(V ) ̸= ∅, V ∈ Rm, then f is concave on Rm.
(iii) Gradient
Let us consider the set of all sequence {Wk}∞

k=1 in Rm converging to W such
that f is differentiable at Wk and denote it by T . By Theorem 25.6 from Rock-
afellar [1970], we know that ∂+f(W ) is equal to

conv
{︂

lim
k→∞

∇f(Wk) : {Wk}∞
k=1 ∈ T

}︂
. (1.17)

Since B is continuous on Rm, then (1.17) is identical with

conv
{︂

lim
k→∞

−B(Wk) : {Wk}∞
k=1 ∈ T

}︂
= {−B(W )}.

Hence, f is differentiable on Rm and

∀W ∈ Rm : ∇f(W ) = −B(W ).

Remark. Let us consider a function h : Rm → R on the weight space defined as

h(W ) = −⟨C, W ⟩ − f(W ), W ∈ Rm, (1.18)

where C ∈ Rn is the given capacity constraint vector. By Theorem 8, we see that
h is a continuous convex function on Rm with the gradient at W equal to

∇h(W ) = B(AW ) − C.

If we satisfy the capacity constraint for some weight vector W ∗ ∈ Rm, then

B(AW ∗) = C ⇒ ∇h(W ∗) = 0,

which means that any extremum of h on Rm corresponds to such W ∗.
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1.4 Centroidal Tessellations
In the following section, we work on (Rd, Bd, µ) for µ = λd restricted to [0, 1]d.
Hence, the definition of the capacity of a cell in Laguerre tessellations coincides
with the definition of a d-dimensional volume. First, we define the centroid of
a subset of Rd.

Definition 12. Let X ∈ Bd such that µ(X) ̸= 0. Then we define the centroid
of X as a vector t ∈ Rd such that

t = 1
µ(X)

∫︂
Rd

x IX(x) dµ(x),

where IX is the characteristic function of X.

Remark. Since we only consider Laguerre tessellations with positive capacities
in our application, we can always compute the centroids of their cells.

Next, we define a particular case of a Laguerre tessellation, the centroidal
Laguerre tessellation.

Definition 13. Let us consider a Laguerre tessellation of Rd with nuclei N
and weights W from Definition 4 such that its cells, denoted by B1, . . . , Bm,
have nonzero capacities. We call this tessellation centroidal if each nucleus ni

is the centroid of Bi for i = 1, . . . , m.

Remark. In the proof of Theorem 8, we have seen that the set of all points at
the same power distance from two different nuclei has µ-measure 0. Therefore,

µ(A−1
W (ni)) = µ(Bi), i = 1, . . . , m.

Hence, it does not matter whether we base the definition of the centroidal La-
guerre tessellation on Definition 3 or Definition 4.

Based on the theoretical results from the previous sections, we can find a set
of weights W for a set of nuclei N in Rd such that the Laguerre tessellation of Rd

with nuclei N and weights W realizes the prescribes capacity constraint C.
We want to find a centroidal Laguerre tessellation with the prescribed ca-

pacity constraint C. To find this tessellation, we use a simple iterative approach
called the Lloyd-type centering from Kuhn et al. [2020], p. 118. The idea be-
hind this method is to compute the Laguerre tessellation for a given set of nuclei
and capacities and then use its cells’ centroids as the nuclei in the next iteration.
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2. Application
In the following chapter, we describe the algorithm for iterative computation of
the weights for a finite set of nuclei N such that the resulting Laguerre tessellation
has the prescribed capacities. Furthermore, we comment on the characteristics of
the algorithm and its convergence. All figures used in this chapter were created
using R software, see R Core Team [2021].

2.1 Algorithm
Let us define C ∈ Rm as the prescribed capacity vector for the set of m nuclei
N in Rd. Let us also denote by Ck the vector of capacities resulting from the as-
signment AWk

for Wk ∈ Rm and k ∈ N0. We know that the function h, as defined
in (1.18), on the weight space Rm is convex continuous and

∇h(Wk) = Ck − C, Wk ∈ Rm, k ∈ N0.

We want to find a vector W ∗ ∈ Rm such that ∇h(W ∗) = 0. Since h is convex
on its domain, we look for a global minimum of h on Rm. We use the following
gradient descent

Wk+1 = Wk − αk∇h(Wk) = Wk − αk(Ck − C), k ∈ N0,

where we set α0 = 0.1 and W0 as a zero vector in Rm. We define the step size as

ak = ⟨Wk − Wk−1, Wk − Wk−1⟩
⟨Ck − Ck−1, Wk − Wk−1⟩

, k ∈ N,

which is called the Barzilai-Borwein method and is mentioned in Kuhn et al.
[2020], p. 121. To compute the next iteration Wk+1, we require Wk, Wk−1 and Ck,
Ck−1. We see that

W1 = W0 − α0(C0 − C) = α0(C − C0),

where C0 is the vector of capacities for W0, i.e., for the Voronoi tessellation of Rd

with nuclei N . We can compute the capacity vector C1 using W1. Hence, we are
prepared to compute all subsequent iterations.

We have defined our iterative method, the step size choice, and the initial
values. Next, we need to establish the formula for examining the accuracy of
a solution. We use the same criterion as in Kuhn et al. [2020]. We say that
the iterative method has reached prescribed accuracy at the iteration number k if

R1(k) = ∥Ck − C∥
min1≤i≤m Ci

≤ 0.01, k ∈ N0. (2.1)

We see that we sum the differences between the capacities in the iteration number
k and the prescribed capacities. Then we normalize it by the smallest prescribed
capacity not to diminish the effect of the smaller cells.
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We want to use the specialized library Voro++ to compute the vector of
capacities in each iteration. However, the program operates with the so-called
radii r2

i = wi, i = 1, . . . , m instead of the weights wi. Let us define

κ = min
1≤i≤m

wi, and ri =
√

wi − κ, i = 1, . . . , m.

We see that for x ∈ Rm and ni, nj ∈ N we have

∥x − ni∥2 − wi ≤ ∥x − nj∥2 − wj ⇐⇒ ∥x − ni∥2 − r2
i ≤ ∥x − nj∥2 − r2

j .

Hence, the sets which define the cells of a Laguerre tessellation with weights
wi and the sets which define the cells of a Laguerre tessellation with radii ri

are equivalent. Therefore, we can use both weights wi and radii ri to generate
precisely the same Laguerre tessellation with the same vector of capacities.

2.2 Convergence
In our application, we work on (R3, B3, µ) with µ = λ3 restricted to [0, 1]3. We
generate the positions of the nuclei in [0, 1]3 from U(0, 1), uniform distribution
on (0, 1), for each coordinate. To generate the prescribed capacities we employ
three different distributions. First, as in Kuhn et al. [2020], p. 124, we set

Ci = 1
m

for i = 1, . . . , m, (2.2)

where the capacities are homogeneously distributed. Next, we set

Ci = Ui∑︁m
j=1 Uj

for Ui ∼ U(0, 1), i = 1, . . . , m. (2.3)

We see that ECi = 1/m in both cases; however, the second one is not determin-
istic. Hence, it should bring more irregularities into our samples. Finally, to see
how the algorithm performs under significant variability of capacities, we use

Ci = Ei∑︁m
j=1 Ej

for Ei ∼ Exp(2), i = 1, . . . , m, (2.4)

where Exp(2) denotes the exponential distribution with a mean value of 1/2.
We test our implementation by increasing the number of nuclei from 100 nuclei
to 1000 nuclei with a step increase of 100. We then summarize the results in
Table A.1.

In Table A.1, we see that the number of iterations generally increases with
the number of nuclei, except for a few cases. We believe those irregularities are
caused by the non-monotonic convergence of the algorithm, see Figure A.1. We
also observe that the number of iterations for the most basic example (100 nuclei)
increases from the first row to the third. We believe this follows from the fact that
the algorithm needs more iterations to reach a more diverse sample of prescribed
capacities.
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Next, we examine one particular case and plot the residual (2.1) to see whether
the algorithm approaches the solution monotonically. We generate a sample of 500
nuclei in [0, 1]3 with coordinates from U(0, 1) and equal capacities. We increase
the prescribed accuracy to 10−10 in (2.1). Then the algorithm finds a solution in
739 iterations with the accuracy of 9.02 · 10−11.

In Figure A.1, we plot the number of iterations n against the common log-
arithm of residual value in each iteration log10 R1(n) for the first 739 iterations.
We see that at first (up to n = 100), the algorithm approaches the solution mono-
tonically. However, after iteration 100, the convergence becomes wildly different
while following the downward trajectory.
Remark. We want to comment that, generally, the convergence of the Barzalia-
Borwein gradient descent method is not guaranteed by any theoretical results.
In each case, we assume that it converges, as the authors did in Kuhn et al.
[2020], p. 121.

2.3 Effect of Variance
In the previous part, we explored the convergence behavior of our implementation
of the Barzilai-Borwein gradient descent. Next, we examine the algorithm’s be-
havior while gradually varying the underlying variance of the prescribed capacity
sample.

As in the previous part, the coordinates of nuclei in [0, 1]3 come from U(0, 1).
To explore the variance, we generate the capacities from a normalized Gamma
distribution. Let us consider Xi ∼ Γ(τ, η) for τ, η > 0, where Γ(τ, η) denotes the
Gamma distribution with parameters τ, η. We know that

EXi = τη and varXi = τη2.

We set the mean value to unity, thus η = τ−1, because we are interested only
in the variance. Then we generate random samples with 100, 200, 300, and 400
nuclei and capacities from

Ci = Xi∑︁m
j=1 Xj

, i = 1, . . . , m, Xi ∼ Γ(τ, 1/τ) (2.5)

for τ ∈ {4, 2, 4/3, 1, 4/5, 2/3, 1/2}. Then the variance of Xi is equal to 0.25,
0.50, 0.75, 1.00, 1.25, 1.50, 2.00, i.e., it gradually increases.

We then observe the number of iterations the algorithm needed to reach pre-
scribed accuracy (2.1) and present them according to the number of nuclei and
the variance of the underlying distribution of capacities in Table A.2.

In Table A.2, we see that the number of interactions needed to reach prescribed
accuracy generally increases with the number of nuclei. However, there are a few
cases where the number decreases. We believe the non-monotonic convergence
causes this, see Figure A.1. We also see that as the variance of the underlying
distribution of capacities increases, the number of iterations also increases. There
also are a few cases that do not fit the general trend. The results indicate that
the convergence, as measured by the number of iterations, appears to depend
strongly on the underlying variance of the capacity sample.
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2.4 Lloyd-Type Centering
We approach a centroidal Laguerre tessellation in the following section using
the Lloyd-type centering algorithm. The concept of centroidal Laguerre tessel-
lations is presented in Definition 13, and the convergence of the Lloyd-type cen-
tering algorithm is reported by Bourne and Roper [2015], p. 2550. The Voro++
library carries out the computation of the centroids in a Laguerre tessellation.

Let us consider µ = λd restricted to [0, 1]d, a set of m nuclei N in [0, 1]d and
a prescribed capacity vector C ∈ Rm. The solution of our method is the set
of nuclei with the associated set of weights that realize a centroidal Laguerre
tessellation subject to C.

We compute the Laguerre tessellation of Rd with nuclei N and constraint C
using the algorithm from the previous sections. Then we compute the centroids
of its cells and denote them by {t1, . . . , tm}. We use those centroids as the nuclei
for the next iteration.

In the iteration number k, for k ∈ N, we compute the centroids of the cells of
a newly computed Laguerre tessellation subject to the same capacity constraint
C and denote them {tk

1, . . . , tk
m}. We use the following residual criterion for

examining the accuracy of a solution

R2(k) =
⌜⃓⃓⎷ m∑︂

i=1
Ci∥ni − tk

i ∥2 ≤ 0.001, k ∈ N. (2.6)

We compute the squared Euclidean distance of the nuclei in the iteration number
k and the centroids of a newly calculated Laguerre tessellation. Then we weight
them by the prescribed capacity fractions Ci. Hence, we give preference to bigger
cells. A similar approach is used in Kuhn et al. [2020], p. 124.

As in the previous section, we work with nuclei in [0, 1]3 whose coordinates
come from U(0, 1). However, in the case of a centroidal Laguerre tessellation,
the nuclei of our solution will generally differ from the starting nuclei because
the algorithm changes them in each iteration. First, we generate the prescribed
capacities from the identical three distributions as in Section 2.2 and present
the results in Table A.3.

In Table A.3, we see that the number of iterations generally decreases with
the number of nuclei, except for a few cases. We think that this trend is caused by
the fact that we increase the number of uniformly distributed nuclei in a finite unit
cube and that centroidal Laguerre tessellations are quite regular. Hence, the al-
gorithm needs fewer iterations to reach the solution. We believe that the non-
monotonic convergence causes the irregularities, see Figure A.2.

We also observe that the number of iterations for the most simple case (100
nuclei) differs only slightly across three different underlying distributions. Thus,
the number of iterations needed to reach prescribed accuracy for the Lloyd-type
centering algorithm does not appear to depend on the variance of the underlying
distribution of capacities as much as the Barzilai-Borwein gradient descent does.
Remark. Since we need to apply the Barzilai-Borwein gradient descent in each
iteration of the Lloyd-type centering algorithm, the execution time is generally
longer for the second algorithm.
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Next, we explore a specific sample and plot the residual (2.6) to see whether
the algorithm approaches the solution monotonically. We use the same example
as in Section 2.2, i.e., a sample of 500 nuclei in [0, 1]3 with coordinates from U(0, 1)
and homogeneous capacities. We increase the accuracy to 10−6 in (2.6). Then
the algorithm finds a solution in 1523 iterations with the precision of 9.98 · 10−7.

In Figure A.2, we plot the number of iterations n against the common loga-
rithm of residual value in each iteration log10 R2(n) for the first 1523 iterations.
At first, the algorithm approaches the solution monotonically. However, around
the iteration number 100, the residual value varies wildly while still following
the downward trend.

Finally, we examine the effect of the underlying variance of the capacity sample
on the number of iterations as in Section 2.3. We work with the normalized
Gamma distribution and generate the samples with the increasing underlying
variance. We test the Lloyd type centering implementation for different values
of τ and different number of nuclei as in Section 2.3. We then present the results
in Table A.4.

In Table A.4, we see that the number of iterations decreases with the increasing
number of nuclei. We also observe that the number of iterations does not appear
to increase with the rising underlying variance of the capacity sample. Hence,
the results suggest that the Lloyd-type centering might not be as dependent on
the underlying variance of the capacity sample as the Barzilai-Borwein gradient
descent.
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Conclusion
This thesis aimed to study the concept of Laguerre tessellations and develop
an algorithm for generating Laguerre tessellations with prescribed cell volumes.
The problem of Laguerre tessellations has been studied for at least two centuries,
and in the thesis, we followed the theoretical findings of Aurenhammer et al.
[1998] and Kuhn et al. [2020].

In the introduction, we described two approaches to Laguerre tessellations
and commented on their similarities and differences. Then we presented the main
result of the thesis.

The first chapter explores the existence of Laguerre tessellations with pre-
scribed volumes and demonstrates that those can always be realized. Then it de-
scribes the iterative method for numerically approaching Laguerre tessellations.
In addition, we introduced the concept of a centroidal Laguerre tessellation and
the algorithm for generating centroidal Laguerre tessellations with prescribed cell
volumes.

The second chapter describes the application of the algorithms as mentioned
earlier. Then it explores the convergence using the number of iterations needed
to reach prescribed accuracy as the main characteristic. Furthermore, we ex-
plored the relationship among the number of iterations, the number of nuclei,
and the variance of the underlying distribution of the prescribed cell volume sam-
ple. Moreover, we discussed the Lloyd-type centering algorithm for computing
centroidal Laguerre tessellations with prescribed cell volumes.

We want to highlight our direct contributions to distinguish between the the-
ory in the literature and our work. We proved Lemma 2, expanded the proof
of Lemma 3, and proved Lemma 7 and Theorem 8. Moreover, we implemented
the Barzilai-Borwein gradient descent algorithm and the Lloyd-type centering
algorithm in C++.

We believe that the main contribution of the thesis is the systematic study
of Laguerre tessellations from the definition to their numerical generation. There
are two crucial observations arising from our application. First, the Barzilai-
Borwein gradient descent converged in all examples, as in Kuhn et al. [2020].
Since there is no theoretical guarantee for convergence, this is surprising. Second,
increasing the number of nuclei or the variance of the underlying distribution of
the prescribed cell volume sample raises the number of iterations for the Barzilai-
Borwein gradient descent. However, increasing the number of nuclei does not seem
to increase the number of iterations for the Lloyd-type centering.
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A. Attachments

A.1 Figures

Figure A.1: Convergence behaviour of the Barzilai-Borwein gradient descent for
m = 500 and homogeneous prescribed capacities, R1 in (2.1). For illustration
g(n) = an3 + bn2 + cn + d, where a = −1.58 · 10−8, b = −1.21 ·10−6, −5 ·10−3

and d = 0.95.
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Figure A.2: Convergence behaviour of the Lloyd-type centering algorithm for
m = 500 and homogeneous prescribed capacities, R2 in (2.6). For illustration
a(n) = −2 log10(n).
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A.2 Tables

m 100 200 300 400 500 600 700 800 900 1000
H 54 134 174 339 395 349 387 445 424 436
U 91 153 205 250 301 307 330 629 594 1491
E 309 271 1495 1485 1208 1227 2880 5027 3441 4698

Table A.1: Barzilai-Borwein gradient descent. The iteration counts for different
numbers of nuclei from 100 to 1000 and different underlying distributions of ca-
pacities: H for homogeneous, U for U(0, 1), and E for Exp(2), see (2.2)–(2.4).

τ−1 m 100 200 300 400
0.25 84 119 208 205
0.50 106 126 217 242
0.75 68 136 234 305
1.00 282 235 268 365
1.25 272 817 1411 818
1.50 436 1125 1457 1287
2.00 962 2157 3229 2329

Table A.2: Barzilai-Borwein gradient descent. The iteration counts for different
numbers of nuclei from 100 to 400 and distinct values of variance τ−1, see (2.5).

m 100 200 300 400 500 600 700 800 900 1000
H 45 36 30 27 28 24 22 21 20 20
U 60 49 33 27 32 27 26 22 22 20
E 43 46 43 32 28 27 25 24 25 22

Table A.3: Lloyd-type centering. The iteration counts for different numbers of nu-
clei from 100 to 1000 and different underlying distributions of capacities: H for ho-
mogeneous, U for U(0, 1), and E for Exp(2), see (2.2)–(2.4).

τ−1 m 100 200 300 400
0.25 43 37 35 27
0.50 35 35 36 26
0.75 43 33 33 27
1.00 48 46 30 30
1.25 54 35 35 31
1.50 62 43 42 32
2.00 43 40 36 34

Table A.4: Lloyd-type centering. The iteration counts for different numbers of nu-
clei from 100 to 400 and distinct values of variance τ−1, see (2.5).
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A.3 Electronic Attachment
We provide the data sets and the algorithms used in the application in the elec-
tronic attachment to the thesis. All implementations are written in C++ and use
the specialized C++ library Voro++.

All data sets are stored in PTS directory. The implementations of the al-
gorithms discussed in the thesis are stored in PRG directory. We implemented
the Barzilai-Borwein gradient descent algorithm for Laguerre tessellations in
[0, 1]3, stored in BB.txt. We also implemented the Lloyd-type centering algo-
rithm for Laguerre tessellations in [0, 1]3, stored in LC.txt. Additionally, we
provide a piece of software for generating data sets compatible with both imple-
mentations, stored in RSG.txt.
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