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patience and guidance.

ii



Title: Rank Two Commutative Semifields

Author: Ondřej Tittl
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Introduction
Throughout this thesis we will explore the basics of finite semifields and go into
more details with rank two finite semifields. First we will go through the prelimi-
naries, where we will define semifields, their nuclei and how we can view semifields
as vector spaces over their nuclei. For those purposes we will use Wedderburn’s
theorem and some basics from linear algebra.

In the second chapter we will study cases of both commutative and non-
commutative rank two semifields. In this chapter we will examine the properties
of both types of semifields and how our choices in specific cases determine the
properties of the semifields. We will conduct proofs of some lemmata, which were
omitted from the articles in sources. At the end of this section we will also provide
some examples of different types of semifields, where we will expand arguments,
which were not mentioned in the articles.

Throughout this thesis we use the articles by Cohen and Ganley [1982], Ganley
[1981], Knuth [1965], Ball and Lavrauw [2002] and Blokhuis et al. [2003]. From
these articles we put together theorems, lemmata, definitions and examples where
we expand proofs that are usually very brief or omitted.
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1. Preliminaries
In this thesis we assume q = pn where p is a prime unless we explicitly state oth-
erwise. Throughout this thesis when we say semifields we mean finite semifields.
The main focus of this thesis are finite semifields which are defined as follows.

Definition 1. Let S be a finite set with two binary operations “+”, “∗” such that

S1) (S, +) is a group,

S2) both distributive laws hold in S, that is

a ∗ (b + c) = a ∗ b + a ∗ c,

(b + c) ∗ a = b ∗ a + c ∗ a, ∀a, b, c ∈ S,

S3) x ∗ y = 0 if and only if x = 0 or y = 0, ∀x, y ∈ S

S4) there exists a multiplicative identity 1, such that ∀x ∈ S holds

x ∗ 1 = x = 1 ∗ x.

Then we say that (S, +, ∗) is a finite semifield.

Now we are going to formulate Wedderburn’s theorem which yields a strong
property for associative finite semifields.

Theorem 1 (Wedderburn). Every finite associative semifield is a finite field.

All finite fields are semifields. If (S, +, ∗) is associative, then by Wedderburn’s
theorem S is a finite field. We call proper semifields those semifields S which are
not fields. That is, the multiplication in proper semifields is not associative.

By a pre-semifield we understand a set with the operations “+” and “∗”
satisfying all the axioms of a semifield, except perhaps the S4).

1.1 About pre-semifields
First let us formulate and prove a theorem regarding additive group of a pre-
semifield. The argument was provided by [Knuth, 1965, p. 185] and we expand
some steps.

Theorem 2. The additive group of a pre-semifield is elementary abelian.

Proof. First, let us show that the additive group of a pre-semifield (P, +, ∗) is
abelian. By group axioms “+” is associative. Let a, b, c, d ∈ P then by the
distributive laws we obtain,

a ∗ c + a ∗ d + b ∗ c + b ∗ d = a ∗ (c + d) + b ∗ (c + d) (using S2))
= (a + b) ∗ (c + d)
= a ∗ c + b ∗ c + a ∗ d + b ∗ d.

(1.1)
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Axiom S3) states that x ∗ y = 0 if and only if either x = 0 or y = 0. Let us
now suppose that x ∗ y1 = z and x ∗ y2 = z. Then if we subtract these two
equations and use the distributivity axiom we obtain that x ∗ (y1 − y2) = 0. But
if y1 ̸= y2 then y1 − y2 ̸= 0 which would be a contradiction to the axiom S3)
therefore y1 = y2. From these arguments and finiteness we obtain that all the
elements of P can be written as a product. Therefore for all x, y ∈ P there exists
a, b, c, d ∈ P such that x = a ∗ d and y = b ∗ c. From this fact, (1.1) and the fact
that the axiom S2) yields x + y = a ∗ d + b ∗ c = b ∗ c + a ∗ d = y + x follows that
(P, +) is abelian.

Now we need to show that the group (P, +) is elementary abelian. Let us have
integers n, m and let us suppose that 0 ̸= a ∈ P and ((nm)a)a = 0, then

0 = ((nma)a) = (a + · · · + a⏞ ⏟⏟ ⏞
nm

)a = (a + · · · + a⏞ ⏟⏟ ⏞
n

)(a + · · · + a⏞ ⏟⏟ ⏞
m

) = (na)(ma).

Because a ̸= 0 and the multiplication of non-zero elements of P is non-zero, then
either na = 0 or ma = 0 and from this follows that either m or n is a prime p
which is the additive order of a.

This prime p must be the same for all non-zero elements of P and is called the
characteristic of the pre-semifield which can be seen from the following argument.
If p would not be the same for all elements, then there would exist non-zero
elements a, b ∈ P , such that ord(a) = p1, ord(b) = p2 and p1 ̸= p2. Now by the
distributivity axiom S2) we obtain

(p2a) ∗ b = 0,

which is a contradiction to the axiom S3). Therefore the additive order must be
the same for all non-zero elements of P , hence (P, +) is elementary abelian. This
concludes our proof.

Now since the additive group of a pre-semifield (P, +) is elementary abelian
we can write pre-semifields as (Fn

p , +, ∗).
Now we can formulate the following lemma whose idea comes from [Knuth,

1965, p. 186].

Lemma 3. Let P = (Fn
p , +, ∗) be a pre-semifield then we can write left and

right multiplication as Fp-linear transformations Lx, Ry of the vector space P
into itself. That is we can write left and right multiplication of a pre-semifield as
Fp-linear mappings

Lx, Ry : Fn
p → Fn

p

such that
Lx(y) = x ∗ y = Ry(x).

Proof. We will show this only for Lx. For Ry the proof is analogous. We assume
that P = (Fn

p , +, ∗) is a pre-semifield. Let us suppose 0 ̸= x ∈ P . From the
definition of Lx we have that Lx(y) = x ∗ y for all y ∈ P . Since P is a pre-
semifield we obtain for all y, z ∈ P that

Lx(y + z) = x ∗ (y + z) = x ∗ y + x ∗ z = Lx(y) + Lx(z).

In this series of equations we have only used the axiom S2) and the definition of
Lx.
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Now for a scalar c ∈ Fp we have that

Lx(cy) = x ∗ (cy) = x ∗ (y + · · · + y⏞ ⏟⏟ ⏞
c

) = x ∗ y + · · · + x ∗ y⏞ ⏟⏟ ⏞
c

= c(x ∗ y) = cLx(y).

Here we again used only the axiom S2) and the definiton of Lx. From these two
properties we can see that Lx is Fp-linear.

By this lemma we can now write left and right multiplication in a pre-semifield
as Fp-linear mappings Lx, Ry. We can also define the multiplication in a pre-
semifield as an Fp-bilinear mapping

B : Fn
p × Fn

p → Fn
p

such that
x ∗ y = B(x, y)

then
Lx(y) = B(x, y) = Ry(x).

Another important thing we can notice is that the left and right multiplication
Lx, Ry for non-zero elements x, y are actually permutations of the elements of the
pre-semifield P = (Fn

p , +, ∗), which is clear from the following argument. We will
show this only for right multiplication. For the left multiplication the argument
is analogous.

Let us fix a non-zero element y ∈ P . First we show that every a ∈ P can be
uniquely written as Ry(x) for some x ∈ P . Suppose that Ry(x2) = a = Ry(x1) and
that x1 ̸= x2. Now we subtract these two equations and we obtain Ry(x1−x2) = 0.
But if x1 ̸= x2 then x1 − x2 ̸= 0 which is a contradiction to the axiom S3).
Analogously we show that every b ∈ P can be written as Lx(y). Therefore all
elements of P can be written in such way. And therefore Lx, Ry are bijective
because they are injective between two finite sets of the same cardinality. Hence
we can see that left and right multiplication are actually permutations of the
elements of pre-semifield.

1.2 Isotopy and Kaplansky’s trick
We would like to distinguish between pre-semifields that are in a certain way
the same and those that are different. For this reason we need to define what is
isotopy.

Definition 2. Let q = pn. Two pre-semifields P = (Fq, +, ∗) and P ′ = (Fq, +, ◦)
are said to be isotopic if there exist Fp-linear bijections L, M, N of Fq such that

N(x ∗ y) = L(x) ◦ M(y).

Such a triple (N, L, M) is called an isotopism between P and P ′. Additionaly if
L = M then we call such a triple a strong isotopism and P, P ′ strongly isotopic.

Now we will formulate a theorem about semifields being similar using defini-
tion above.
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Theorem 4 (Kaplansky’s trick). A pre-semifield P = (Fn
p , +, ◦) is isotopic to a

semifield S = (Fn
p , +, ∗) defining the new multiplication as

(x ◦ e) ∗ (e ◦ y) = (x ◦ y),

where 0 ̸= e ∈ Fn
p , making (e ◦ e) the new multiplicative identity in S.

Proof. Let P = (Fn
p , +, ◦) be a pre-semifield and S = (Fn

p , +, ∗) be a semifield and
let us fix an element e ∈ P\{0}. Therefore as we have shown in Section 1.1 we
can write left and right multiplication as an Fp-linear mappings Le, Re : Fn

p → Fn
p

such that Le(x) = e ◦ x and Re(x) = x ◦ e. The functions Le, Re are Fp-linear by
Lemma 3. Hence we can define “∗” as

Re(x) ∗ Le(y) = x ◦ y. (1.2)

As we have shown in Section 1.1, Le, Re are for a non-zero e actually permutations.
For all a, b ∈ P there exist some x, y ∈ P such that a = Re(x) and b = Le(y).
Therefore x = R−1

e (a) and y = L−1
e (b) hence we have

R−1
e (a) ◦ L−1

e (b) = Re(x) ∗ Le(y) = a ∗ b.

Thus we can see that the operation “∗” is well defined. Therefore P and S
are isotopic. Isotopy preserves being a pre-semifield therefore all axioms of pre-
semifield hold in S. Because the operation “∗” is well defined then (e ◦ e) is the
multiplicative identity in S and thus S is a semifield. This concludes our proof.

1.3 Nuclei
From Section 1.2 and the fact that the additive group of a pre-semifield is ele-
mentary abelian we obtain that the additive group of a semifield is elementary
abelian.

Now let us define the nuclei of finite semifields.

Definition 3. Let S = (Fn
p , +, ∗) be a semifield. We define the subsets

Nm =
{︂
x ∈ S

⃓⃓⃓
(y ∗ x) ∗ z = y ∗ (x ∗ z), ∀ y, z ∈ S

}︂
,

Nl =
{︂
x ∈ S

⃓⃓⃓
(x ∗ y) ∗ z = x ∗ (y ∗ z), ∀ y, z ∈ S

}︂
,

Nr =
{︂
x ∈ S

⃓⃓⃓
(y ∗ z) ∗ x = y ∗ (z ∗ x), ∀ y, z ∈ S

}︂
,

as the middle, left and right nuclei of the semifield S.

The intersection of Nm, Nl, Nr is known as the nucleus N of S. The set

CS =
{︂
x ∈ N

⃓⃓⃓
a ∗ x = x ∗ a, ∀ a ∈ S

}︂
is called the centre of S. It is easy to see that Fp is a subset in all of the nuclei.
Let us also define a weak nucleus of a semifield. Let us now have q = pr.

Definition 4. Let S = (Fn
q , +, ∗) be a finite semifield and let W = Fq be a subset

of S such that for all x, y, z ∈ S holds x ∗ (y ∗ z) = (x ∗ y) ∗ z whenever any two
of x, y, z ∈ W. Then we say that W is a weak nucleus of S.

6



We define weak nucleus as a finite field because we will view semifields as
a finite-dimensional vector spaces over said field. The fact that a set is a weak
nucleus of a semifield does not imply it is a nucleus and vice versa.

We can notice that the nuclei are in fact finite fields.

Theorem 5. Let S = (Fn
p , +, ∗) be a semifield. The nuclei Nm, Nl, Nr, N and

the centre CS are finite fields.

Proof. We will show that fact for the middle nucleus. The proof for other nuclei
and centre is analogous.

Let S = (Fn
p , +, ∗) be a semifield and let Nm be the middle nucleus of the

semifield S. Let us now recall that the middle nucleus is defined as follows

Nm =
{︂
x ∈ S

⃓⃓⃓
(y ∗ x) ∗ z = y ∗ (x ∗ z), ∀ y, z ∈ S

}︂
.

From the definition we know that Nm ⊆ S. First we want to show, that 1, 0 ∈ Nm.
This immediately follows from these facts

(x ∗ 1) ∗ y = x ∗ y = x ∗ (1 ∗ y), ∀x, y ∈ S

and
(x ∗ 0) ∗ y = 0 = x ∗ (0 ∗ y), ∀x, y ∈ S.

Now we want to show ∀ a, b ∈ Nm that a + b, a ∗ b and −a are in Nm. First
let us verify the closure under addition. We have ∀x, y ∈ S that

(x ∗ a) ∗ y = x ∗ (a ∗ y),
(x ∗ b) ∗ y = x ∗ (b ∗ y).

By adding these two equations we obtain that

(x ∗ a) ∗ y + (x ∗ b) ∗ y = x ∗ (a ∗ y) + x ∗ (b ∗ y) (1.3)

then from distributivity axiom we obtain that

(x ∗ a) ∗ y + (x ∗ b) ∗ y = (x ∗ a + x ∗ b) ∗ y

= (x ∗ (a + b)) ∗ y
(1.4)

and

x ∗ (a ∗ y) + x ∗ (b ∗ y) = x ∗ (a ∗ y + b ∗ y)
= x ∗ ((a + b) ∗ y).

(1.5)

Combining (1.3), (1.4) and (1.5) we obtain that a + b ∈ Nm.
Now let us show that −a ∈ Nm. The additive order of a in S is a prime p

because (S, +) is elementary abelian as we have shown in Section 1.1. From this
and the fact that Nm is closed under addition we have for all a ∈ Nm that also

2a, . . . , (p − 1)a ∈ Nm.

But since the order of a is p then it follows that (p − 1)a + a = 0. Therefore
(p − 1)a = −a and thus −a ∈ Nm. Hence we can see that (Nm, +) is a group.
Thus S1) holds.
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Let us now verify the closure under multiplication. Let us have arbitrary
a, b ∈ Nm and arbitrary x, y ∈ S and we want to show that a ∗ b ∈ Nm. By using
the defining condition of Nm we obtain[︂

x ∗ (a ∗ b)
]︂

∗ y =
[︂
(x ∗ a) ∗ b

]︂
∗ y

=(x ∗ a) ∗ (b ∗ y)
=x ∗

[︂
a ∗ (b ∗ y)

]︂
=x ∗

[︂
(a ∗ b) ∗ y

]︂
.

In this series of equalities we have used the defining condition of Nm and as-
sumption that (x ∗ a), (b ∗ y) are in S. Thus we have shown that Nm is closed
under multiplication. From the properties of Nm follows that the multiplication
is associative in Nm. Since Nm is a subset of S and the axiom S3) holds in S,
there cannot exist x, y ∈ Nm, x ̸= 0, y ̸= 0 such that x ∗ y = 0. Hence S3)
holds in Nm. Similarly the axioms S2), S4) holds in Nm. Hence we can see
that (Nm, +, ∗) satisfies all axioms of a semifield and is associative. Then by
Wedderburn’s theorem 1 (Nm, +, ∗) is a finite field. Which concludes our proof.

We have already shown in Section 1.1 that a semifield is a vector space over
Fp. Now we are going to show that a semifield can be represented as a left and
right vector space over its middle nucleus. It can also be represented as a left
vector space over its left nucleus and right vector space over its right nucleus.
However we are just going to show this fact for the middle, left and weak nuclei.
The proof for right nucleus is analogous. The idea of the following theorem comes
again from [Knuth, 1965, p. 185].

Theorem 6. A semifield can be represented as a left and right vector space over
its middle and weak nuclei, left vector space over its left nucleus and right vector
space over its right nucleus.

Proof. Let S = (Fn
p , +, ∗) be a semifield and Nm = Fpr be its middle nucleus.

Now we will verify that vector space axioms hold in S. All the axioms of a
vector space except compatibility of scalar multiplication with field multiplica-
tion immediately follow from the facts that S is a vector space over Fp as was
shown in Section 1.1 and the fact that Nm is a finite field which was shown in
Theorem 5. The only thing we need to verify by ourselves is the compatibility of
scalar multiplication with field multiplication.

Let us have arbitrary a, b ∈ Nm and an arbitrary x ∈ S. From the defining
condition of the middle nucleus we obtain that

a ∗ (b ∗ x) = (a ∗ b) ∗ x

holds but only for middle, left (if we take a, b ∈ Nl) and weak nuclei. For right
nucleus we have the following condition for all a, b ∈ Nr

x ∗ (a ∗ b) = (x ∗ a) ∗ b

from the defining condition of right nucleus. Again this condition holds for right,
middle and weak nuclei but does not hold for the left nucleus. We have verified
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all the axioms of a vector space thus we can see that the semifield S can be
represented as a left vector space over its left nucleus, right vector space over
its right nucleus and left and right vector space over its middle and weak nuclei.
This concludes our proof.

In the second chapter we will mainly focus on the semifields that are rank
two over their middle nuclei, which means such semifields S, that are at most
two-dimensional vector spaces over Nm.

We can now formulate a well known theorem about commutative semifields.
This theorem states that if a semifield is commutative then left and right nuclei
coincide.

Theorem 7. If S is a commutative semifield then Nl = Nr.

Proof. First let us recall that

Nl =
{︂
x ∈ S

⃓⃓⃓
(x ∗ y) ∗ z = x ∗ (y ∗ z), ∀ y, z ∈ S

}︂
and

Nr =
{︂
x ∈ S

⃓⃓⃓
(y ∗ z) ∗ x = y ∗ (z ∗ x), ∀ y, z ∈ S

}︂
.

Let S = (S, +, ∗) be a semifield. First let us show that Nl ⊆ Nr. For all
x ∈ Nl and for all y, z ∈ S from the defining condition of Nl we have that

x ∗ (y ∗ z) = (x ∗ y) ∗ z (1.6)

and we want to show that commutativity of the multiplication “∗” implies that
x ∈ Nr. From the left side of (1.6) we have that

x ∗ (y ∗ z) = (y ∗ z) ∗ x

= (z ∗ y) ∗ x
(1.7)

and from the right side of (1.6) we have that

(x ∗ y) ∗ z = z ∗ (x ∗ y)
= z ∗ (y ∗ x).

(1.8)

Hence from (1.6), (1.7) and (1.8) we obtain that for all x ∈ Nl is in Nr.
Therefore Nl ⊆ Nr and from symmetry of defining conditions we obtain that
Nl = Nr if “∗” is commutative.

1.4 Linearised polynomials
For our purposes we need to formulate the theorem about Lagrange interpolation.

Theorem 8 (Lagrange interpolation). Let Fq, q = pn be a finite field and let us
have a mapping ˜︁f : Fq → Fq. Then there exists exactly one polynomial f ∈ Fq[x]
of degree ≤ q − 1 such that f(x) = ˜︁f(x) ∀x ∈ Fq. The polynomial f can be
expressed as follows

f(x) =
∑︂

α∈Fq

˜︁f(α)
(︂
1 − (x − α)q−1

)︂
.
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Proof. Firstly let us show the uniqueness of this representation. Let us have
polynomials g, h ∈ Fq[x] of degree ≤ q − 1 and let us suppose that (g − h)(x) = 0
for all x ∈ Fq. But from the fundamental theorem of algebra we know that if the
polynomial g − h is non-zero then it can have at most q − 1 zeroes. Therefore in
Fq there exist at least one element which is not its root. Hence g = h.

From the above arguments and cardinality of Fq we can see that there are
exactly qq polynomials of degree ≤ q − 1. It is also well known that there exists
exactly qq functions from the finite field Fq into itself. Since the number of these
polynomials and functions are the same then there exists 1-to-1 correspondence
between functions from Fq into itself and polynomials of degree at most q − 1
over Fq[x].

From the Small Fermat Theorem and from properties of finite fields we can
see that for all α ∈ Fq holds

(x − α)q−1 =

⎧⎨⎩0, if x = α,

1, if x ̸= α.

If in this equality x ̸= α then x − α = a where 0 ̸= a ∈ Fq and from the Small
Fermat Theorem we have for all non-zero a that aq−1 = 1. Therefore we can see
that the polynomial

f =
∑︂

α∈Fq

˜︁f(α)
(︂
1 − (x − α)q−1

)︂
is in Fq[x] of degree ≤ q − 1. We can also see that for all α ∈ Fq holds that

˜︁f(α) = f(α) = 0 + · · · + 0 + f̃(α)
(︂
1 − (α − α)q−1

)︂
+ 0 + · · · + 0.

Let q = pn. The automorphisms of a finite field Fq are mappings

φ : Fq → Fq

such that for all a, b ∈ Fq holds

φ(a + b) = φ(a) + φ(b)

and
φ(ab) = φ(a)φ(b).

That is these mappings preserve both addition and multiplication. It is well
known that in a finite field all automorphisms are of the following form

φ : Fq → Fq

a ↦→ api

where i ∈ {0, . . . , n − 1}. It is also well known that automorphisms of Fq form a
group, which is denoted by

Aut(Fq) :=
{︂
φ : Fq → Fq

⃓⃓⃓
φ is automorphism of Fq

}︂
.

In this thesis we would like to work with polynomials possessing similar ad-
ditive properties but not necessarily multiplicative properties of automorphisms.
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Therefore for our purposes we would like to introduce another lemma about lin-
earised polynomials. Linearised polynomials in Fpn [x] are of the form

n−1∑︂
i=0

aix
pi

, where ∀i, ai ∈ Fpn .

These polynomials possess linear properties, which follow from the Frobenius
endomorphism, they represent Fp-linear transformations of Fpn .

Lemma 9. All Fp-linear transformations of Fpn into itself are of the form

f(x) =
n−1∑︂
i=0

fix
pi

, ∀i, fi ∈ Fpn .

That is, there exists a bijection between linearised polynomials and Fp-linear trans-
formations of Fn

p into itself.

Proof. First let us show that linearised polynomials are Fp-linear. Let f ∈ Fpn [x]
be a linearised polynomial. Now from Frobenius endomorphism we obtain that

f(x + y) =
n−1∑︂
i=0

fi(x + y)pi =
n−1∑︂
i=0

fix
pi +

n−1∑︂
i=0

fiy
pi = f(x) + f(y).

Now let us have c ∈ Fp then again from Frobenius endomorphism and from
the fact that in Fp holds cpi = c for all 1 ≤ i ≤ n − 1 and from commutativity of
field multiplication, we obtain that

f(cx) =
n−1∑︂
i=0

fi(cx)pi =
n−1∑︂
i=0

fic
pi

xpi =
n−1∑︂
i=0

ficxpi = c
n−1∑︂
i=0

fix
pi = cf(x).

Thus we can see that all linearised polynomials are Fp-linear.
The uniqueness of linearised polynomials can be seen from more general La-

grange interpolation Theorem 8, which shows that every function over a finite
field can be uniquely expressed as a polynomial over said field.

From the above arguments and size of the finite field Fpn we can see that there
are exactly pn2 of Fp-linear polynomials.

In the vector space Fn
p are all linear mappings matrices of size n×n. Therefore

there is exactly pn2 of n × n matrices in Fn
p .

Thus we can see that the number of n×n matrices and linearised polynomials
is the same hence there exists 1-to-1 correspondence between these matrices and
linearised polynomials. This concludes our proof.

Let q = pn. Now we would like to define the set of squares in a finite field Fq,
this will be important later when we go over some examples of semifields.

Definition 5. We define the squares of a finite field Fq as SQFq =
{︂
x2

⃓⃓⃓
x ∈ F×

q

}︂
,

where F×
q = Fq\{0} is the multiplicative group of the finite field Fq.

At last we would like to define some types of semifields by their multiplication.
We will show examples of these semifields later in Chapter 2.
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The following table shows some examples of at most two-dimensional semi-
fields, which we will explore in Chapter 2. These examples are from Knuth
[1965], Cohen and Ganley [1982] and Ball and Lavrauw [2002].

Name (a, b) ∗ (c, d)

Finite field
(︂
αac + bc + ad, βac + bd

)︂
Dickson, Kantor, Knuth

(︂
ad + bc, m(ac)σ + bd

)︂
Cohen-Ganley, Thas-Payne

(︂
m(ac)3 + bc + ad, m3ac + m(ac)9 + bd

)︂
Penttila-Williams

(︂
(ac)9 + bc + ad, (ac)27 + bd

)︂
m is a non-square in the field Fq, σ is an automorphism in the field Fq

and x2 − αx − β is irreducible over Fq.

Table 1.1: The multiplication in the known examples of semifields.
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2. Rank two semifields
commutative and
non-commutative

2.1 Commutative case
Throughout this section we consider rank two semifields, that is such semifields
(S, +, ∗) that are at most two-dimensional vector spaces, over their middle nuclei
Nm = Fq as we have shown in Theorem 6, where q = pn for some odd prime
p. We choose a t ∈ S\Nm and the set {1, t} is the basis of S over Nm. By
rank two commutative semifield we understand a semifield that has commutative
multiplication “∗” and is at most two-dimensional vector space over its middle
nucleus. The multiplication “∗” in rank two commutative semifield is defined as
follows

(t ∗ a + b) ∗ (t ∗ c + d) = t ∗ (t ∗ ac) + t ∗ bc + t ∗ ad + bd, (2.1)

where a, b, c, d ∈ Nm. Generally in rank two commutative semifields we can
rewrite

(t ∗ a) ∗ (t ∗ c) = t ∗ (t ∗ (ac))
because of the following argument. For all x, y ∈ Nm holds that

(t ∗ x) ∗ (t ∗ y) = (t ∗ x) ∗ (y ∗ t) (commutativity of ∗)
= t ∗ (x ∗ (y ∗ t)) (property of Nm)
= t ∗

(︂
(x ∗ y) ∗ t

)︂
(property of Nm)

= t ∗ (t ∗ (xy)) (commutativity of ∗).

We decided not to write “∗” between the elements x, y because x∗y is equal to xy
in Nm. Because multiplication by t is a linear transformation of the vector space S,
as we have shown in Lemma 3, we can rewrite t∗ (t∗x) = t∗L1(x)+L2(x) ∀x ∈
Fq, where L1, L2 : Fq → Fq are Fp-linear mappings. These mappings can be
found using Lagrange interpolation Theorem 8. Thus we get the formula for
multiplication, which can be written as follows

(t ∗ a + b) ∗ (t ∗ c + d) = t ∗
[︂
L1(ac) + bc + ad

]︂
+ L2(ac) + bd. (2.2)

In the article by Cohen and Ganley [1982] there are a couple of lemmata whose
proofs were not provided. Now we will formulate and prove them. The first
lemma shows that we can choose an arbitrary t ∈ S\Nm. For a fixed t we can go
through all the possible functions L1, L2 which yield a semifield multiplication to
obtain all the possible semifields. In [Cohen and Ganley, 1982, p. 376] the lemma
was formulated as follows and an idea of the proof was given but the details were
omitted.

Lemma 10. Let t ∈ S\Nm, Nm = Fq. Suppose that

t ∗ (t ∗ x) = t ∗ L1(x) + L2(x),

13



where L1, L2 : Fq → Fq are Fp-linear mappings, and that t′ = t ∗ a + b for some
a, b ∈ Fq, with a ̸= 0. Then

t′ ∗ (t′ ∗ x) = t′ ∗ L′
1(x) + L′

2(x),

where

L′
1(x) = a−1L1(a2x) + 2bx,

L′
2(x) = L2(a2x) − a−1bL1(a2x) − b2x.

Proof. We have t′ = t ∗ a + b for some a, b ∈ Nm, where a ̸= 0. Then from the
multiplication formula (2.1) we obtain

t′ ∗ (t′ ∗ x) = (t ∗ a + b) ∗ ((t ∗ a + b)x)
= (t ∗ a + b) ∗ (t ∗ ax + bx) = t ∗ (t ∗ a2x) + 2t ∗ abx + b2x. (2.3)

Now the multiplication formula (2.2) yields

t′ ∗ (t′ ∗ x) = t ∗ (t ∗ a2x) + 2t ∗ abx + b2x

= t ∗ L1(a2x) + L2(a2x) + 2t ∗ abx + b2x.

Now we want to show that

t ∗ L1(a2x) + L2(a2x) + 2t ∗ abx + b2x = t′ ∗ L′
1(x) + L′

2(x). (2.4)

From this we get

t′ ∗ L′
1(x) + L′

2(x) =(t ∗ a + b) ∗
[︂
a−1L1(a2x) + 2bx

]︂
+ L2(a2x)

− a−1bL1(a2x) − b2x

=t ∗ aa−1L1(a2x) + 2t ∗ abx + ba−1L1(a2x) + 2b2x + L2(a2x)
− a−1bL1(a2x) − b2x

=t ∗ L1(a2x) + 2t ∗ abx + b2x + L2(a2x). (2.5)

Now from (2.3), (2.5) we see that (2.4) holds.

The second lemma characterizes L1, L2 leading to a semifield multiplication.
The idea of the proof of this lemma comes from [Cohen and Ganley, 1982, p. 375].

Lemma 11. The multiplication (2.2) yields a semifield if and only if

i) L1, L2 : Fq → Fq, are Fp- linear, and

ii) xy2 + L1(x)y − L2(x) ̸= 0 ∀x, y ∈ Fq, where x ̸= 0.

Proof. If S is a semifield then by Lemma 3 L1, L2 are Fp-linear. Hence condi-
tion i) holds. Conversely, if condition i) holds then from linearity of L1, L2 we
immediately obtain that both distributive laws hold.

Now let us show that if S is a semifield then the condition ii) holds. From
multiplication formula (2.2) we derive following conditions

L1(ac) + ad + bc = 0, (2.6)

14



L2(ac) + bd = 0. (2.7)
And by axiom S3) we now obtain that S is a pre-semifield if and only if (2.6)
and (2.7) holds for every (a, b) ∈ Fq × Fq\{(0, 0)} exactly when c = d = 0. If
c = 0 then by (2.6), (2.7) is ad = 0 and bd = 0 because L1(ω) = L2(ω) = 0 if
ω = 0 hence d = 0. Therefore we can assume c ̸= 0. Then the equations (2.6)
and (2.7) can be written as

b = −(L1(ac) + ad)c−1

and
bd = −L2(ac).

Now we can see that a = 0 implies b = 0 whenever c ̸= 0. If d = 0 then
from (2.6), (2.7) we obtain a = b = 0. Hence (2.6), (2.7) hold together if and
only if

ad2 + dL1(ac) − cL2(ac) ̸= 0 (2.8)
for all a, c ∈ Fq\{0} and d ∈ Fq. Where we used (2.7) and plugged in b =
−(L1(ac) + ad)c−1 and used some elementary operations. We can now use sub-
stitution x = ac and y = dc−1 and we obtain

xy2 + L1(x)y − L2(x) = 0. (2.9)

Hence (2.9) holds if and only if S is a pre-semifield. We have already shown that
these conditions are equal to a pre-semifield. Now we only need to show that if
these two conditions hold then S4) holds. The fact that 1 ∈ S is clear. Let a = 0
and b = 1 thus 1 ∈ S, then the element (t0 + 1) is the multiplicative identity in
S. Hence the axiom S4) holds.

Let us recall the very well known fact that the discriminant of quadratic
polynomial ax2 + bx + c is defined as

b2 − 4ac.

We will make use of this in the following remark.
Remark. The second condition of the Lemma 11 is equivalent to the condition
that

L2
1(x) + 4xL2(x) (2.10)

is a non-square in Fq that is L2
1(x) + 4xL2(x) ̸∈ SQFq . This follows from the fact

that the discriminant of the polynomial

xy2 + L1(x)y − L2(x)

is (︂
L1(x)y

)︂2
+ 4xy2L2(x) = y2

(︂
L2

1(x) + 4xL2(x)
)︂
.

Thus we can see that we only need to put x ̸= 0 in the condition ii) of the
lemma because if y = 0 and x ̸= 0 then the polynomial from condition ii) still
would not be equal to zero. Therefore if the discriminant is a non-square then
the multiplication does not allow zero divisors.
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The main result of [Cohen and Ganley, 1982, p. 377] is the following theorem
that shows that there are no such proper rank two finite commutative semifields
of even order.

Theorem 12. There is no proper commutative semifield of even order which is
of dimension 2 over its middle nucleus.

The aim of this thesis are finite semifields, the proof is using advanced knowl-
edge of finite fields and exponential sums. Therefore we are not going to prove
this theorem but proof can be found in Cohen and Ganley [1982].

2.2 Examples of commutative semifields
Now we will show a couple of examples from Table 1.1. We will go over some
other examples more thoroughly later in Section 2.4.

Before we get to the example let us recall the multiplication Formula (2.2)

(t ∗ a + b) ∗ (t ∗ c + d) = t ∗
[︂
L1(ac) + bc + ad

]︂
+ L2(ac) + bd.

2.2.1 Finite field
We are now going to show that the multiplication in rank two commutative
semifield can represent a finite field. This example was left as an exercise in Cohen
and Ganley [1982].
Example. Let us have α, β ∈ Fq and let

L1(x) = αx

and
L2(x) = βx.

Then S is a finite field of order q2 if and only if the polynomial x2 − αx − β is
irreducible over Fq. Let us derive multiplication formula using t which is a root
of x2 − αx − β.

(ta + b)(tc + d) = t2ac + tad + tbc + bd

= (β + αt)ac + tad + tbc + bd

= tαac + tad + tbc + βac + bd

= t
(︂
αac + ad + bc

)︂
+ βac + bd

From this we can see the multiplication in a finite field and the multiplication
Formula (2.2) match. Hence we can see that this is the same multiplication as in
Table 1.1. From this we can infer that if the polynomial is irreducible then the
roots of this polynomial generate a quadratic extension of the finite field Fq.

If the polynomial were reducible then there exists γ, δ ∈ Fq such that

0 = x2 − αx − β = (x − γ)(x − δ).

This would allow zero divisors which can be seen from the derivation of the
multiplication above. However zero divisors are a contradiction to the axiom
S3). The roots of a reducible polynomial does not form a quadratic extension of
Fq and therefore it would be only the finite field Fq.
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If we assume only odd characteristic then in the example above we can put
α = 0 and β ̸= 0 in finite field of order q2. Then we obtain functions L1(x) = 0
and L2(x) = βx.

2.2.2 Dickson commutative semifield
An example of a semifield that is two-dimensional vector space over Fq for some
odd prime is Dickson commutative semifield. This semifield was firstly described
by Dickson [1906]. And it is defined in Table 1.1 as follows.
Example. In Table 1.1 we have described that (S, +, ∗) is a Dickson commutative
semifield if for all a, b, c, d ∈ S holds

(t ∗ a + b) ∗ (tc + d) = t ∗ (ad + bc) + m(ac)σ + bd,

where m is a non-square in Fq and σ is an automorphism of Fq.
Now we can see that this multiplication corresponds to the multiplication in

Table 2.1. That is we have the functions

L1(x) = 0
and

L2(x) = mxσ,

where σ ∈ Aut(Fq) and m is a non-square in Fq that is m ̸∈ SQFq . Let us have
a, b, c, d ∈ S then we can see that this multiplication corresponds to Table 2.1
by computation using (2.2)

(t ∗ a + b) ∗ (t ∗ c + d) = t ∗
[︂
ad + bc + L1(ac)

]︂
+ L2(ac) + bd

= t ∗
[︂
ad + bc

]︂
+ maσcσ + bd.

2.2.3 Cohen-Ganley semifield
At last we would like to show the example from [Cohen and Ganley, 1982, p. 381]
which they discovered as a new type of commutative semifields.
Example (Cohen-Ganley). Let q = 3k, where k ≥ 2 and let m be a non-square in
Fq. Then if

L1(x) = mx3,

L2(x) = mx9 + m3x

we obtain a proper commutative semifield. The functions L1, L2 are Fp-linear.
Now we just need to check the condition we obtained from the remark after
Lemma 11 which states that

L2
1(x) + 4xL2(x)

must not be a square in Fq. Here it is important that the characteristic is 3
because then we have that 4 ≡ 1 mod 3. Let us show that this condition holds.
We have that

L2
1(x)+4xL2(x) = m2x6+(mx9+m3x)x = mx2(x8−2mx4+m2) = mx2(x4−m)2.
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Because m is a non-square and the remaining terms are squares then we obtain
that this is a non-square for all x. Therefore the condition holds and thus we
do not have zero divisors hence the Lemma 11 implies that the multiplication
formula (2.2) yields a semifield.

2.2.4 Classification of certain types of semifields
Under certain circumstances the examples above are the only possibilities for a
rank two semifield. To be more precise, if L1, L2 are Fq0-linear and if q0 is “large”
compared to n, the above examples are the only commutative semifields that are
rank two over Fqn

0
.

The following theorem comes from [Blokhuis et al., 2003, p. 106].

Theorem 13. A commmutative semifield of rank 2 over its middle nucleus Nm =
Fq whose defining functions L1 and L2 are linear over the subfield Fq0, where
q = qn

0 and q0 ≥ 4n2 − 8n + 2 is either the finite field Fq2 or is isotopic to a
Dickson, Kantor or Knuth semifield.

2.3 Non-commutative case
In this section we will again make use of Theorem 6 which enables us to view semi-
fields as at most two-dimensional vector space over some field. In this section we
generally assume that the multiplication “∗” in semifield S is non-commutative.
First let us recall the definition of a weak nucleus. Let us now have q = pr and let
S = (Fn

q , +, ∗) be a semifield. We say that the subset W ⊆ S is a weak nucleus of
S if for all x, y, z ∈ S holds x ∗ (y ∗ z) = (x ∗ y) ∗ z whenever any two of x, y, z
are in W.

Analogously as in the commutative case and as we have shown in Theorem 6
we view these semifields as at most two-dimensional over their weak nucleus.
Note that the fact that a set is a weak nucleus of a semifield does not imply it is
a nucleus and vice versa.

[Knuth, 1965, p. 212] formulated a theorem which shows that for a semifield
which is two-dimensional over its weak nucleus, it is possible to choose t ∈ S\Fq

such that a ∗ t = t ∗ aσ ∀ a ∈ Fq, where σ ∈ Aut(Fq). Let us formulate this
theorem.

Theorem 14. Let W be a weak nucleus for (S, +, ∗), and let S have dimension
two over W. Then the elements of S have the form

t ∗ a + b, a, b ∈ W.

The element t ∈ S can be chosen such that

a ∗ t = t ∗ aσ

for all a ∈ W and for σ ∈ Aut(W).

We are not going to prove this theorem we are only going to use it but [Knuth,
1965, p. 212] provided a proof.

In Ganley [1981] they have defined central weak nucleus as follows.
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Definition 6. Let S = (Fn
q , +, ∗) be a semifield and W = Fq be a subset of S

such that t ∗ a = a ∗ t for all a ∈ W and for all t ∈ S then W is called central
weak nucleus.

It is called central weak nucleus because its defining condition reminds of the
definition of centre.

Multiplication in rank two non-commutative weak nucleus semifield is rather
similar to the multiplication in a rank two commutative semifields. Using Theo-
rem 14 we can now define the rank two non-commutative weak nucleus semifield
multiplication “∗” in the following way

(t ∗ a + b) ∗ (t ∗ c + d) = (t ∗ a) ∗ (t ∗ c) + t ∗ (ad) + t ∗ (bσc) + bd, (2.11)

for σ ∈ Aut(Fq) and ∀ a, b, c, d ∈ Fq. Here we obtain t ∗ (bσc) from

b ∗ (t ∗ c) = (b ∗ t) ∗ c (because b, c are in W)
= (t ∗ bσ) ∗ c (using Theorem 14)
= t ∗ (bσ ∗ c) (b, c ∈ W).

Here similarly as in the commutative case we can rewrite the multiplication
formula of rank two non-commutative semifield as

(t ∗ a + b) ∗ (t ∗ c + d) = t ∗
[︂
N1(a, c) + ad + bσc

]︂
+ N2(a, c) + bd, (2.12)

where a, b, c, d ∈ Fq. Analogously as in the commutative case N1, N2 : Fq ×
Fq → Fq must be bilinear in order to satisfy both distributive laws. As in the
commutative case [Ganley, 1981, p. 340] formulated the following two lemmata
but did not provide the proofs. We will reformulate them and prove one of them,
because the proof of the second one is similar to the proof of Lemma 11.

The first lemma again shows that the choice of t ∈ S\Fq yields different
functions N1, N2, however we can compute N ′

1, N ′
2 such that it will lead to a rank

two central weak nucleus semifield. If we fix a t we can obtain all the possible
functions that define the rank two central weak nucleus semifield multiplication
and this will give us all such possible semifields. In the following lemma [Ganley,
1981, p.340] again provided a hint for the proof but omitted the details.

Lemma 15. Let S = (Fn
p , +, ∗) be a central weak nucleus semifield and let Fq be

its central weak nucleus where q = pr. Let x, y ∈ Fq and let (t ∗ a) ∗ (t ∗ c) =
t ∗ N1(a, c) + N2(a, c) and t′ = t ∗ x + y. With x ̸= 0, then

(t′ ∗ a) ∗ (t′ ∗ c) = t′ ∗ N ′
1(a, c) + N ′

2(a, c),

where

N ′
1(a, c) = x−1N1(xa, xc) + 2yac

N ′
2(a, c) = N2(xa, xc) − yx−1N1(xa, xc) − y2ac.

Proof. Firstly by the multiplication formulae (2.11) and (2.12) we obtain

(t′ ∗ a) ∗ (t′ ∗ c) =
[︂
(t ∗ x + y)a

]︂
∗

[︂
(t ∗ x + y)c

]︂
= (t ∗ (xa)) ∗ (t ∗ (xc)) + t ∗ (xayc) + (ya) ∗ t ∗ (xc) + yayc

= t ∗
[︂
x−1N1(xa, xc) + 2yac

]︂
+ N2(xa, xc) + y2ac.

19



Now let us compute the other side of the equation.

t′ ∗ N ′
1(a, c) + N ′

2(a, c) = (t ∗ x + y) ∗
[︂
x−1N1(xa, xc) + 2yac

]︂
+ N2(xa, xc)

−y
[︂
x−1N1(xa, xc) − yac

]︂
= t ∗

[︂
N1(xa, xc) + 2xyac

]︂
+ N2(xa, xc) + y2ac.

Thus we see that both sides are equal, which concludes our proof.

The second lemma again characterizes N1, N2 leading to a semifield multipli-
cation. [Ganley, 1981, p. 340] formulated it as follows.

Lemma 16. The multiplication formula (2.12) is a semifield multiplication if and
only if

i) N1, N2 are bilinear, and

ii) b2c + bN1(a, c) − aN2(a, c) ̸= 0 ∀ a, b, c ∈ Fq, where a, c ̸= 0.

The proof of this lemma is analogous to the proof of Lemma 11.
As in the commutative case [Ganley, 1981, p. 342] has shown that there are

no such proper rank two semifields of even characteristic.

2.4 Examples
In their article [Cohen and Ganley, 1982, p. 384] gave a sporadic example of
a semifield. By sporadic example we understand such example, which was not
classified. The following table is from [Ball and Lavrauw, 2002, p. 5]. It shows
the known examples of types of finite semifields.

Name L1(x) L2(x) q = pn

Finite field 0 mx odd
Dickson, Kantor, Knuth 0 mxσ odd

Cohen-Ganley, Thas-Payne x3 m−1x + mx9 3n

Penttila-Williams x9 x27 35

m is a non-square in the field Fq, σ is an automorphism in the field Fq.

Table 2.1: The known examples of rank two semifields in odd characteristic up
to equivalence.

2.4.1 Sporadic example of Cohen-Ganley
Now we will go through the so called sporadic example [Cohen and Ganley, 1982,
p. 384] provided in their article. We will expand some arguments in this example
Example (Cohen-Ganley). Let q = 52, so if we will consider the semifield S to be
a two-dimensional vector space over Fq, then #S = 54. If we regard Fq as F5(

√
2),

then the elements of Fq are of type a +
√

2b, where a, b ∈ F5. We will view F5 as
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a set {0, ±1, ±2} . Then, the semifield is obtained by taking the multiplication
functions as follows

L1(x) = x5 and L2(x) = 2
√

2x5 + x.

From the second condition of Lemma 11 in odd characteristic we obtain equivalent
condition for non-zero divisors, which then verifies if S is a semifield or not. The
equivalent formulation is that we need L2

1(x) + 4xL2(x) to be a non-square in S
from the remark after the Lemma 11. So we can write

L2
1(x) + 4xL2(x) = x2(x8 − 2

√
2x4 − 1) = f.

Which is always a non-square in S. We verify that, by plugging in all the possible
values of x into that expression. Then it suffices to check that these values are not
equal to any square in Fq. The squares in F5(

√
2) are of the form (a +

√
2b)2 =

c +
√

2d where a, b, c, d ∈ F5(
√

2). By computation we obtain that all squares
in F5(

√
2) are

SQF5(
√

2) =
{︂
0, ±1, ±2, ±(1 ±

√
2), ±(2 ±

√
2)

}︂
.

All the non-squares in Fq are from this set

{±
√

2, ±2
√

2, ±(1 ± 2
√

2), ±(2 ±
√

2)}.

Now we are going to plug in all the possible values into said expression.

f(1) = −2
√

2, f(2) = 2
√

2, f(−2) = 2
√

2, f(−1) = −2
√

2, f(
√

2) = −
√

2,

f(2
√

2) =
√

2, f(−2
√

2) =
√

2, f(−
√

2) = −
√

2, f(1 +
√

2) = −2
√

2,

f(1 + 2
√

2) =
√

2, f(1 − 2
√

2) = 2
√

2, f(1 −
√

2) =
√

2,

f(2 +
√

2) = −2
√

2, f(2 + 2
√

2) = 2
√

2, f(2 − 2
√

2) = −
√

2,

f(2 −
√

2) = −
√

2, f(−2 +
√

2) = −
√

2, f(−2 + 2
√

2) = −
√

2,

f(−2 − 2
√

2) = 2
√

2, f(−2 −
√

2) = −2
√

2, f(−1 +
√

2) =
√

2,

f(−1 + 2
√

2) = 2
√

2, f(−1 − 2
√

2) =
√

2, f(−1 −
√

2) = −2
√

2

Hence we can see that these values are always a non-square in Fq.
They have found this example by trial and error. [Ball and Lavrauw, 2002,

p. 8] showed that this example is isotopic to a Dickson, Kantor, Knuth semifield.

2.4.2 Knuth’s example
Another example is from [Knuth, 1965, p. 184]. We will again expand some
arguments.
Example. Let (S, +, ∗) be a two-dimensional vector space over F4. The elements
of S are of the form a + t ∗ b, where a, b ∈ F4 and t ∈ S\F4. Addition is defined
component-wise as in a vector space. Multiplication in S may be defined using
the multiplication and addition in F4, using the following rule

(a + t ∗ b) ∗ (c + t ∗ d) = (ac + b2d) + t ∗ (bc + a2d + b2d2).
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We can see that F4 ⊆ S. Now we will verify the axioms. (S, +) clearly is a group,
since addition in F4 is commutative. Also 1 ∈ S is rather straight-forward, if we
take a = 1, b = 0 then we obtain 1 + t0 = 1 ∈ S.

Let us denote left and right multiplication as Lx(y) = x ∗ y = Ry(x). From
properties of multiplication in F4 follows that Lx(y + z) = Lx(y) + Lx(z) holds,
analogously for Ry holds Ry(x + z) = Ry(x) + Ry(z) for all x, y, z ∈ S. From
the proof of Lemma 3 follows that if left and right multiplication are additive as
shown above, then the multiplication is distributive. Hence both distributive laws
hold. Since F4 is a field then the product of any non-zero elements is non-zero.

Now we need to check that this multiplication does not allow zero divisors.
Let us suppose that

(a + t ∗ b) ∗ (c + t ∗ d) = 0
for non-zero (a, b) ∈ F4 × F4\{(0, 0)} and (c, d) ∈ F4 × F4\{(0, 0)}. From the
definition of multiplication we have that

ac + b2d = 0, (2.13)

bc + a2d + b2d2 = 0 (2.14)
If a = 0 then by (2.13) we obtain b2d = 0. Thus either b = 0 or d = 0. If d = 0
then by (2.14) we get bc = 0. Thus either b = 0 or c = 0. In either case we obtain
that either a = b = 0 or c = d = 0. If b = 0 then ac = 0 and a2d = 0. Thus
either a = 0 or c = d = 0.

Now we can suppose that a ̸= 0 and b ̸= 0. Then by (2.13) we obtain

c = b2da−1.

Then by writing b = b′a for some b′ ∈ F×
4 and by plugging c into (2.14) we obtain

bc + a2d + b2d2 = b3da−1 + a2d + b2d2

= b′3a2d + a2d + b′2d2a2

= a2(b′3d + d + b′2d2)
= a2(d(b′3 + 1) + b′2d2) = 0.

For every x ∈ F×
4 we have x3 = 1. Therefore b′3 = 1 and since ab′ ̸= 0 we obtain

that d = 0 must hold. From c = b2da−1 we get that c = 0. Hence c = d = 0.
Therefore the axiom S3) holds.

2.4.3 Penttila-Williams’ example
Another more recent example is the Penttila-Williams semifield. This example
comes from [Ball and Lavrauw, 2002, p. 6].
Example. The semifield S is of the size (35)2 so we view S as a two-dimensional
vector space over F35 , with the multiplication defined as follows

(a ∗ t + b) ∗ (c ∗ t + d) = t ∗
[︂
L1(ac) + bc + ad

]︂
+ L2(ac) + bd.

From the remark after Lemma 11 we have that

L2
1(x) + 4xL2(x) = x6 + x28 = x6(1 + x22).
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That is we need to show that (1 + x22) is always a non-square because x6 is a
square.

Now
R11 =

{︂
x22|x ∈ F×

35

}︂
=

{︂
y ∈ F×

35 |y11 = 1
}︂
.

Since 11 × 22 = 242 = 35 − 1. Now we need to show for all e ∈ R11 that (1 + e)
is non-square. (1 + e)121 = −1 for all e ∈ R11.

Since
35 − 1

2 = 121 = 1 + 3 + 32 + 33 + 34.

The expression

(1 + e)121 = (1 + e)(1 + e3)(1 + e9)(1 + e27)(1 + e81)

holds because the characteristic is 3 and therefore we have that

(1 + e)3k = 1 + e3k

in our case 0 ≤ k ≤ 4. Therefore

(1 + e)121 = 1 + e + e3 + e4 + e9 + e10 + e12

+ e13 + e27 + e28 + e30 + e31 + e36

+ e37 + e39 + e40 + e81 + e82 + e84

+ e85 + e90 + e91 + e93 + e94 + e108

+ e109 + e111 + e112 + e117 + e118 + e120 + e121

= (1 + e)(1 + e3)(1 + e9)(1 + e27)(1 + e81)
=

∑︂
(a1, a2, a3, a4, a5)∈{0,1}5

ea11+a23+a332+a433+a534 (mod 11).

Using a computer we observed that running over all

(a1, a2, a3, a4, a5) ∈ {0, 1}5

we see
a11 + a23 + a332 + a433 + a534 (mod 11)

takes every non-zero value exactly three times and zero exactly twice. Since the
characteristic is three then

(1 + e)121 = 2 = −1.

Therefore S is a semifield.
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Conclusion
In this thesis we have studied the algebraic objects known as finite semifields.
First we went through the preliminaries, the basics of what is necessary to know to
study the semifields. In the second chapter we have studied the commutative and
non-commutative cases of the semifields and noticed some similarities between
these two cases. In both cases we studied those semifields that are rank two over
their nuclei.
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