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Introduction
PCP theorem (standing for probabilistically checkable proofs) is a famous theo-
rem from complexity theory first proved in [1]. In its most famous form, it states
that any proof can be rewritten as a proof of polynomial length, such that there
exists a randomized algorithm that checks the proof validity with more than
1
2 accuracy by looking only at a fixed number of letters. The theorem can be
reformulated in terms of NP-hardness of distinguishing solvable instances from
instances in which only a certain fraction of constraints can be satisfied in specific
constraint satisfaction problems.

The PCP theorem has a lot of interesting corollaries, such as proofs of NP-
hardness of different approximation algorithms. Other related problems in the
field remain unsolved, such as Unique Games conjecture or d-to-1 conjecture [10].

The theorem is useful, but since its original proof is complicated, the theorem
is often used just as a black box. Later, a more accessible proof using expander
graphs was given in [6]. Although much easier than the original one, even this
one is still quite long. In [3] slightly different (more combinatorial) problem called
Baby PCP was proposed and proved with combinatorial tools as a corollary of
a technical combinatorial lemma, which was the main result of the paper. Baby
PCP is a weaker theorem, but it’s strong enough to prove some of the corollaries
of real PCP. There is a chance that some of the open problems (such as d-to-1
conjecture) could be easier to prove in the Baby PCP setting and would provide
a good stepping stone and understanding so that the proof of their full versions
would be later more manageable.

In this thesis, I explore the Baby PCP setting mainly concerning the combina-
torial version of the famous Parallel Repetition theorem ([11]). Unfortunately, I
end up with only negative results, though they are not trivial and still noteworthy.

In the first chapter, I explore the classic theory. After concluding that the two
formulations of the PCP theorem are the same, I talk about PCP mainly in its
CSP formulation. Next, I discuss stronger versions of the PCP theorem — NP-
hardness results with the possible instances made more specific. Those can also
be described in the language of specific cooperative two-player games introduced
in [5]. Especially the version called the Label Cover for so-called projection games
is considered. The d-to-1 conjecture and a version of the famous Unique Games
conjecture are also stated here as an intuitive way to make the theorem even
stronger.

The Parallel Repetition theorem is used to provide an arbitrary large gap
while increasing the size of the domain/alphabet in some of the PCP theorems.
I don’t give a proof of it, but I discuss counterexamples for the most intuitive
approach.

In the second chapter, I summarize part of the article [3], repeating proofs
of the concepts regarding Baby PCP while leaving the harder technical lemma,
which was the main result of the paper, without proof. The lemma is nevertheless
discussed thoroughly, and a not-yet-published counterexample for its version,
which would prove a combinatorial version of the d-to-1 conjecture, is given.

In the third chapter, I explore a slight variation of the combinatorial definition
calling it probabilistically combinatorial or pc. This definition was considered
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informally by authors of [3], though not developed, and all results in this chapter
are original. I show that the pc version is more different from the combinatorial
one than one would probably think and that the pc version of PCP lies between
the real and Baby PCP theorem in strength. The proof of the pc version of PCP
is unfortunately given only using the real PCP theorem. The reasons why the
technical lemma from [3] can not be used here easily are also discussed.

In the final chapter, I consider a combinatorial version of the Parallel Repe-
tition theorem and give a counterexample. Creating and proving the correctness
of the counterexample takes the entire chapter and is the thesis’s main original
result.
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1. PCP and Gap Laber Cover
This chapter summarizes the general context for results in later chapters. There
are no original results here. Most of the chapter builds on lecture notes [9].

In the first section, I formulate the PCP theorem, define constraint satisfaction
problems (CSPs, [2]) and prove equivalence of the most famous formulation of
PCP with the CSP formulation of it. In the second section, the concept of Two-
prover One-round games from [5] is developed, and a somewhat stronger PCP
result called the Gap Label Cover theorem is shown. In the last section, I discuss
the Parallel Repetition theorem, which is used to introduce an arbitrary large
gap in the Gap Label Cover theorem.

1.1 PCP
The abbreviation PCP stands for probabilistically checkable proofs. For context,
we first talk about standard proof systems, which work as a formalization of
proving mathematical statements.

Having a finite alphabet Σ, any statement (a string of finite length with letters
from Σ) can be true or false. The proof system has a verifier, which for any proof
(a string in the same alphabet) decides if it is valid for the given statement or
not; it accepts the proof or rejects it. The conditions that must be satisfied for
the proof system to work are completeness (for any true statement, there exists
a proof that the verifier accepts) and soundness (the verifier rejects all proofs of
false statements).

The definition is interesting only if we add more conditions, such as proofs of
short statements being short or verifier being a Turing machine. As an example,
in this setting, we say that the language L ⊂ ⋃︁∞

i=1 Σi is in NP iff there is a proof
system for it whose proofs have to be polynomial in the statement length, and
its verifier has to be a deterministic Turing Machine running in polynomial time.
The language is in P if in addition we can find a proof that the verifier accepts
deterministically in polynomial time in the length of the statement.

In the case of probabilistically checkable proofs, we allow the verifier to be
randomized, and we relax the soundness condition. We are ok if the verifier rejects
the proof correctly only with some probability. If we want to be more sure if the
proof is valid, we can run the verifier independently more times and decrease the
probability of an error to arbitrarily small values.

With this introduction, we can state the PCP theorem.

Theorem 1 (PCP Theorem). For any language from NP , a PCP system exists,
such that it accepts the proofs of false statements with probability at most 1

2 and
has the following properties. Given a statement of length n, the proofs of it are
of polynomial length in n, and the verifier is a randomized one, which uses at
most O(log n) bits to decide on which C locations in the proof to look at and a
deterministic test to do with these C letters, where C is a universal constant. The
verifier doesn’t see any other bits of the proof.

This is an interesting result since C is a universal constant, and it’s rather
surprising that one needs to see just a few bits of the proof to decide with a large
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probability of success if the proof is correct even if it is long. Also, the probability
can be decreased to arbitrarily small values by independently running the verifier
many times. Running it K times, we see at most CK bits of the proof, and we
decrease the probability of accepting incorrectly to at most 2−K .

There is an equivalent formulation of the PCP theorem using CSPs. First we
define what we mean by CSPs using definitions from [2].

Definition 1 (CSP). A Constraint Satisfaction Problem (or CSP) is a triple
(V, D, S), where V is a finite set of variables; D is a finite domain; and S is
a finite set of constraints, each of them being (x, R), where x is an m-tuple of
variables from V for some natural m and R any m-ary relation on D.

An assignment of variables (mapping f : V → D) satisfies a constraint (x, R),
if f(x) ∈ R. A CSP instance is solvable if there exists an assignment satisfying
all constraints.

The most basic question we can ask about a CSP instance is if it is solvable.
If it is not solvable we can explore how many constraints can be satisfied at most.

Via the CSP we can define other problem classes by restricting how the con-
straints can look like. One such class of problems we will use a lot are CSPs
where each constraint uses at most some fixed number of variables.

Another example of a problem that can be formulated in this way is the well-
known NP-complete 3-SAT. The instances are logical formulas on finite number
of variables, which are conjunctions of disjunctions of at most 3 literals (variables
or their negations). In the CSP setting we can take V as the set of variables in
the formula, D = {0, 1} (boolean domain) and S having only constraint of type
yi ∨ yj ∨ yk, yi ∨ yj, and yi, where yl is one of the variables from V or its negation.

On the other hand in some settings it’s worth it to relax some of the conditions
in the definition. The one we relax later in the text is that all variables have the
same domain. We will also consider different domain sizes for different variables
later in this text.

With this introduction we are ready to state the PCP theorem in the CSP
language.

Theorem 2 (PCP Theorem in CSP setting). There exists C ∈ N and a domain
D, such that it is NP-hard to distinguish between solvable CSPs over D that use
only C variables in every constraint and the ones where only half of the constraints
can be satisfied at once. This decision problem is denoted by CSP 1

2 ,1.

Claim 3. The two formulations of the PCP theorem (Theorems 1 and 2) are
equivalent.
Proof. The CSP formulation of PCP follows from Theorem 1 when we consider
the verifier as a CSP, with domain D being the alphabet Σ. The length of the
statement we are about to prove is denoted by n here. The verifier chooses where
to look using O(log n) bits, which means that it has a polynomial (in n) number
of options where to look. For every choice, we get one CSP constraint that uses
at most C variables. Combinations of values which the PCP theorem accepts
are in the relation. The CSP is solvable when there exists a correct proof for
the statement (when the verifier answers ”yes” with probability 1); otherwise, at
most half of its constraints can be satisfied. Thus if we use the PCP theorem
for any NP-complete language (such as 3-SAT), the verifier provides us with a
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polynomial reduction from the NP language to CSP 1
2 ,1. Therefore, distinguishing

between solvable CSPs and those for which at most half of constraints can be
satisfied is also an NP-hard problem.

On the other hand, when we know the NP-hardness of CSP 1
2 ,1, we can con-

struct a polynomial reduction of any NP language to this one, which gives us
precisely the proof system we want. We let the proofs write out the values of the
CSP variables, to which we reduced the problem (again taking Σ = D). Since
the reduction was polynomial in statement length, the number of constraints and
variables is also polynomial in statement length. The verifier then randomly uni-
formly chooses one constraint and checks if it holds. The proof is correct iff all
constraints are satisfied. If the proof is not valid, at most half of the constraints
are satisfied and the verifier accepts with probability at most 1

2 . So both com-
pleteness and weak soundness of the PCP system are established.

At first look, this formulation doesn’t look as impressive as the previous one.
However, it is a great starting point for proving the NP-hardness of approximation
algorithms (algorithms where the goal is not to find the best solution, but just a
solution which is at least c-times as good for some constant c ∈ (0, 1)). From the
PCP theorem, it follows that there is a C and D, such that the approximation
problem (with c = 1

2 + ϵ for arbitrarily small ϵ > 0) of satisfying the most
constraints in the CSPs with constraints using only C variables over domain D
is NP-hard.

We use the identity as the reduction from the problem in the PCP theorem
to the corresponding approximation problem. Whenever the approximation algo-
rithm gives an answer satisfying more than half of the constraints, we know that
the instance is solvable. On the other hand, whenever we get an answer less or
equal to 1

2 , we know that the problem is not solvable since we assumed that our
algorithm is an approximation one with c = 1

2 + ϵ.

1.2 Gap Label Cover
In this section, we explore another result from the theory (the Gap Label Cover
theorem), which is stronger in a sense. We will try to achieve similar results as in
the previous chapter with the added constraint that we allow the verifier to see
only 2 letters of the proof. The PCP statement that there is a gap (that there is
an ϵ, such that the verifier accepts incorrectly with probability less than ϵ) and
that only 2 letters are used was used and improved in [11]. In this case, we can’t
decrease the probability by repeating verifier runs (because we are constrained
to look only at two letters). Still, it can be shown that the ϵ can be decreased
arbitrarily close to zero, but we need to increase the size of the alphabet to do
that. The fact that it is possible is in no way trivial, and we use the Parallel
Repetition theorem from [11] without proof to see it.

First, we define the so-called Two-prover One-round Games and show how
they correspond to the Gap Label Cover theorem in both the proof system and
the CSP setting.

Definition 2 (Two-prover One-round Game). The Two-prover One-round Game
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G has the following rules. There are two players (provers) playing cooperatively
and a verifier.

There is a finite alphabet of answers Σ and finite sets of questions X and
Y for each player. There is a probability distribution on X × Y from which the
verifier chooses a question for both players. Players need to answer it with one of
the elements of Σ without knowing the question for the other player, or in other
words, they have to agree on strategies f1 : X → Σ, f2 : Y → Σ beforehand. The
only remaining piece is the set of the correct answers to all possible questions
(formally a subset of X × Y × Σ × Σ).

The provers know every parameter except the question from the verifier to
the other prover. Their goal is to answer the questions correctly with the highest
possible probability. The highest probability is called the value of G or val(G).

We can construct a PCP system where one of the Two-prover One-round
Games is played for every statement. To have similar properties as in the PCP
Theorem 1 we additionally assume that if the statement has length n, then the
size of the corresponding Two-prover One-round Game sets X, Y is at most
polynomial in n and the probability distribution uses only O(log n) bits of infor-
mation.

The proof is the concatenation of prepared answers of the two provers. The
verifier asks only for two letters, one from each prover. The proof is valid if all
the constraints are satisfied (provers answer correctly every time). The goal of
the PCP theorems is to find a verifier which is not foolable much by the provers
when the proof is invalid.

On the CSP side, we can imagine the game as a complete bipartite graph on
sets X, Y , with one constraint on every edge and a probability distribution over
the edges.

We state without proof the following result.

Claim 4. There exists ϵ ∈ (0, 1) and a finite alphabet Σ, such that for any
language in NP , there is a PCP system arising from the Two-player One-round
Game over Σ with polynomial size. The provers satisfy all constraints when the
proof is valid and can score with at most ϵ probability for non-valid proofs.

To decrease the probability of error to arbitrarily small ϵ, we let the game
happen more times (let’s say k-times), but so that the players see every question
simultaneously. Therefore their answer will be in Σk (they provide one answer
for every question they get). If the game is called G, the k-times repeated game
is denoted by G⊗k.

It is pretty easy to see that if the best probability players could achieve with
G is ϵ, they can achieve the probability ϵk in G⊗k by answering independently
every of the k questions. But the surprising result is that they can do better
– seeing all questions simultaneously lets the players find a better strategy. We
will consider examples of this in the next section. Now we will just state without
proof the Parallel Repetition theorem from [11].

Theorem 5 (Parallel Repetition Theorem). For every finite alphabet Σ, there
exists a function α : [0, 1) → [0, 1), such that for any two-player one-round game
G with value g < 1, the value of G⊗k is at most α(g)k.

The theorem says that the value decreases exponentially, as one would suspect,
but not necessarily as gk. Now we can state the next theorem from the PCP
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theory (a slight reformulation of Claim 4), which follows trivially from Claim 4
and Theorem 5.

Theorem 6. For every ϵ ∈ (0, 1), there exists a finite alphabet Σ, such that for
any language in NP , there is a PCP system arising from the Two-player One-
round Game over Σ with polynomial size. The provers satisfy all constraints when
the proof is valid and can score with at most ϵ probability for non-valid proofs.

We could again use the same arguments as in the previous chapter to rewrite
this formulation to an equivalent one with CSPs, but I won’t repeat the arguments
here. For the rest of the chapter, I will use the CSP formulation and consider
stronger results by constraining the problem definition more.

One thing one can consider is letting the verifier constraints (a subset of Σ×Σ)
be just functions on some subset of Σ – to allow at most one correct answer for the
second player for any answer of the first player. Or we could constrain it further
so that the constraints for all edges with a nonzero probability of choosing are
just functions on Σ (then it makes more sense to picture the edges as arrows
going from vertices of one player to the vertices of the second player). Or we
could consider not a complete bipartite graph but any bipartite graph on the two
partites and a uniform distribution on the edges for the verifier.

If we constrain all of this, the NP-hardness result still holds and goes by the
name Gap Label Cover theorem.

Definition 3 (Label Cover instance). Label cover instance I over finite domain
D with variable sets X, Y , set A of arrows starting in X and ending in Y with
constraints given by F : A → DD is the instance of a CSP problem, where we
search for f : X∪Y → D, such that the most constraints are satisfied (a constraint
for an arrow a going from x to y is satisfied if F (a)(f(x)) = f(y)). I also say
that the arrow a is decorated by mapping F (a).

If f satisfies k constraints, we say that the value of f is k
|A| . The value of the

instance I is the maximum possible value of any such function. If the value of I
is 1, we say that I is solvable.

Theorem 7 (Gap Label Cover). For any ϵ ∈ (0, 1), there is a finite domain D,
such that it is NP-hard to distinguish between solvable Label Cover instances over
D and those with value at most ϵ.

This is the last and the strongest PCP theorem mentioned here. In the later
chapters, we will consider this definition as the starting point.

We finish the section with consideration of two open conjectures that try to
say even stronger things. The first one is the d-to-1 conjecture:

Conjecture 8 (d-to-1). For any ϵ ∈ (0, 1) and d > 1, there exists a finite domain
D, such that it is NP-hard to distinguish between solvable Label Cover instances
over D where all constraints are d-to-1 functions (for any answer of the second
player there are at most d correct answers for the first one) and those with value
at most ϵ.

Constraining even more to d = 1, we get to so-called Unique Games where
all constraints are bijections. In this case, we can solve the corresponding label
cover instance easily by the following polynomial algorithm. We try all possible
values from D for one vertex in each component and then run a depth-first search
from this vertex. Since all constraints are bijection, we have exactly one option
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for how to fill values in all vertices we encounter. The instance is solvable if
a value exists for each component’s starting vertex, so we don’t arrive at any
contradiction. Tweaking the problem statement just a little bit (taking almost
solvable instances instead of the solvable ones), we get a variant of the famous
Unique Games conjecture.

Conjecture 9 (Unique Games). For any ϵ ∈
(︂
0, 1

2

)︂
, there is a finite domain

D, such that it is NP-hard to distinguish between Label Cover instances over D,
where all constraints are bijections, of value at least 1 − ϵ and the ones with value
at most ϵ.

1.3 Parallel Repetition Theorem
I spend a lot of time on the combinatorial version of the Parallel Repetition
theorem in the last chapter. To have more context about the theorem, in this
section, I quickly discuss why the naive strategy of playing k games independently
isn’t the best.

The most famous counterexample comes from [8]. The game has value 1
2 and

the second power has the exactly same value, surprisingly.
Let us consider an alphabet Σ = {X0, X1, Y 0, Y 1}. Both sets X and Y have

two elements: X = {x0, x1}, Y = {y0, y1}. The edges form a complete bipartite
graph with a uniform probability distribution on them. The constraints are such
that between xi and yj only (Xi, Xi) or (Y j, Y j) are correct answers. The players
answer correctly only if they agree on the same player and correctly guess the
question the player got.

The value of this game is at most 1
2 since for them to succeed, one of the players

has to guess the question of the other player, and that can be done correctly with
a probability of just 1

2 .
On the other hand, consider this game repeated twice. If the first player

answers (Xi, Y i) upon getting question (xi, xj) and the second player answers
(Xl, Y l) upon getting question (yk, yl), then they win exactly when i = l and
that clearly happens with probability 1

2 . Therefore the value of the second power
of the game is at least 1

2 .
The twice repeated game has a value smaller or equal to the value of the

original game, because we can reduce the twice-played game to the single one
by choosing the second set of questions randomly and looking only if the first
answers agree. By doing this, we achieve at least the same value in expectancy.
Therefore, the original and the twice-played game have both values 1

2 .
This game has some nice properties, like there is just one correct answer for

the second player given an answer of the first player. But the constraints still
don’t satisfy everything from our definition of a Label Cover instance (they are
not functions). Another example, for which the constraints are bijections (but
on the other hand, the edges aren’t chosen uniformly), comes from [12]. I won’t
prove the results here, just describe the Odd Cycle game and state the results.

There is a cycle with n vertices, where n is odd, and an alphabet {0, 1}. Two
players are trying to prove to the verifier that the cycle is 2-colorable. Both
vertex sets X, Y has n vertices corresponding to the cycle. The verifier now
asks both players with probability 1

2 for the color of the same vertex (vertices
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are chosen uniformly) and checks that the answers are the same. Otherwise, it
asks for the color of two adjacent vertices (this is again chosen uniformly from all
2n possibilities) and checks that the answers differ. This games’ value is 1 − 1

2n
,

which can be achieved by letting both players have the same coloration of vertices
with just one connected pair having the same color (we answer incorrectly only
if the verifier checks this pair). Clearly, the value can’t be greater in the case
when both players answer the same color for every question. On the other hand
if they differ with answers for one of the vertices, they also answer incorrectly
with probability at least 1

2n
.

The result from [12] states that if the value of the game is 1−ϵ, then the value
of k-th power of the game is at least (1 − ϵ2)O(k), which gives a counterexample
for small enough ϵ (large enough cycle length).

The counterexample I give for the combinatorial version of the Parallel Repe-
tition theorem in Chapter 4 is conceptually similar to this one. It is also a cycle,
though it is defined differently.
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2. Combinatorial Version
In this chapter, I explore the Combinatorial Gap Label Cover following [3]. In
the first section, I define the combinatorial value of the Label Cover instance
and investigate its relationship to the classical value. In the second section, I
define the combinatorial version of the Gap Label Cover and show how it follows
quickly from the classical version and a conceptually much easier proof from [3]
without proving the main lemma. Finally, in the last section, I discuss possible
applications to understanding the d-to-1 conjecture. I provide a counterexample
for a stronger version of the lemma from which the conjecture would follow easily
(that is the only not-yet-published result in this chapter).

2.1 Combinatorial value
Definition 4. Given a Label Cover instance I (with vertex sets X, Y and domain
D) and any s : X ∪ Y → P(D), we say that s is a combinatorial solution of I if
f(s(x)) ∩ s(y) ̸= ∅ for every arrow from x ∈ X to y ∈ Y decorated by mapping f .

The combinatorial value (c-value) of combinatorial solution s is equal to max-
imal |s(z)| for z ∈ X ∪ Y .

The combinatorial value (c-value) cval(I) is the minimal c-value of s over all
combinatorial solutions s of I.
Remark. The difference between the classical and combinatorial value is that in
the classical one, we choose just one element from D for every vertex and try
to fulfill as many constraints as possible. In the combinatorial one, we need to
satisfy all the constraints, but the fulfillment condition is relaxed. We are allowed
to choose more elements for every vertex. For every constraint, it suffices to find
just one element from each vertex set so that the constraint is satisfied.

The main benefit of introducing this value is a much easier proof of the Gap
Label Cover theorem (though just of a weaker version). On the other hand,
many techniques, which help us study the classical value, don’t work as well in
the combinatorial setting. As we shall see in the following chapters probabilistic
version with good properties can be constructed from the classical version, but it
is not so nice in the combinatorial setting. Also, the Parallel Repetition theorem
doesn’t hold for the combinatorial version. Although at least we don’t need it
in the easy proof of the Combinatorial Gap Label Cover, which is not so in the
classical case.

Lemma 10. For every Label Cover instance I, the following inequality holds

val(I) ≥ 1
cval(I)2 .

Proof. Let us take any combinatorial solution s : X ∪Y → P(Y ) with vertex sets
of size at most d. Let us now sample one element of D using uniform distribution
on s(z) for every vertex z independently. For any arrow from x to y the probability
of the constraint being satisfied is at least 1

|s(x)|
1

|s(y)| ≥ 1
d2 . By linearity of expected

value, the expected value of the number of satisfied constraints is at least m
d2 where
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m is the number of constraints. Clearly, there has to exist a classical solution
c : X ∪ Y → D, such that its value is at least the expected value of the sampled
one. It follows that

val(I) ≥
m
d2

m
= 1

d2 .

Since this holds for any combinatorial solution s, we get val(I) ≥ 1
cval(I)2 as we

desired.

Remark. The proof could be slightly shorter if we use the probabilistic value
defined in the next chapter and Lemma 13. This is one of the reasons why it’s
nice to have a well-behaving probabilistic value defined in the theory.

There is no reasonable way to formulate any inequality going in the opposite
direction where we use just classical and combinatorial values. That is because
c-value grows quickly just from very local problems. One can consider a union
of two instances, where the smaller one has a large c-value (and small classical
value), and the much larger one is solvable. The united instance will then have
a classical value close to 1 since that one is computed as a weighted average
between the values of the two instances. On the other hand, the c-value will
be equal to the c-value of the smaller instance. By taking the solvable instance
huge, we can construct instances with arbitrary large c-value and classical value
arbitrarily close to 1.

2.2 Combinatorial Gap Label Cover
Theorem 11 (Combinatorial Gap Label Cover). For every positive integer d > 1
there exists a domain D, such that it is NP-hard to distinguish between solvable
Label Cover instances over domain D (those with c-value 1) and instances with
c-value at least d.
Proof. [Using Gap Label Cover] To prove this for given d, we take the classical
Gap Label Cover theorem with ϵ = 1

d2 (while choosing D corresponding to this
ϵ) and show that the Combinatorial Gap Label Cover with constant d uses the
same domain D.

Solvable instances in the classical setting are the same as in the combinatorial
one. On the other hand, we need to prove that any instance with value at most
ϵ = 1

d2 corresponds to an instance with c-value at least d. But that follows from
Lemma 10 since

1
d2 = ϵ ≥ val(I) ≥ 1

cval(I)2 .

So cval(I) ≥ d for every instance I with val(I) ≤ ϵ as we wanted.

Next, I provide a proof using the following technical lemma (which I will not
prove) from [3] (or more precisely, its special version with just one layer).

Definition 5. Given a domain D and set of variables X, the partial assignment
system of arity k is a collection (sK)K∈(X

k ), where sK ⊂ DX for all K.
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An assignment f : X → D is called an m-solution of partial assignment system
if for all M ∈

(︂
X
m

)︂
there exists KM ⊃ M , such that f ∈ (sKM

)|K.
Two partial assignment systems (tL)L∈(X

l ) and (sK)K∈(X
k ) of arities l > k are

consistent if for all K ⊂ L ⊂ X, |K| = k, |L| = l it holds that sK ∩ (tL)|K ̸= ∅.

Lemma 12. For any finite set D and numbers m, d ∈ N there exist k < l ∈ N,
such that for any finite set of variables X of size at least l and two consistent
partial assignments systems (sK)K∈(X

k ) and (tL)L∈(X
l ) with set sizes at most d,

there exists a m-solution to the second one. Furthermore the m-solution can be
computed in polynomial time with respect to |X|.
Remark. The lemma can be used in a situation when we are searching for
f : X → D solving some problem, and we have only rough guesses (d options) of
what could f look like on sets of sizes k and l. When the guesses are consistent
in some sense, we can find global f locally consistent with the guesses.

The downside of this lemma is that we have no control over the numbers k, l.
The numbers found in [3] are enormous (not polynomial with respect to |D|, m
or d). In the next section, I provide a counterexample to the possibility that
k, l could be chosen close to each other (l − k being constant). That is sad
because otherwise the proof of combinatorial d-to-1 conjecture would follow from
this lemma, as we will also see in the next section.

We will now use this lemma to provide a reduction of 3-SAT to the Combi-
natorial Gap Label Cover with any gap d.
Proof. [Using combinatorial lemma] Let us provide a polynomial reduction of
3-SAT to the Combinatorial Gap Label Cover with gap d + 1. First we get k < l
from the lemma for D = {0, 1}, d, m = 3. We reduce to Label Cover instances
first allowing different domain for every vertex, though all domains will have size
at most 2l. We correct this shortcoming at the end of the proof.

Now for any instance S of 3-SAT over finite variable set V , we construct the
following Label Cover instance. Vertex sets are X =

(︂
V
l

)︂
, Y =

(︂
V
k

)︂
. The domain

for any z ∈ X ∪ Y is a subset of {0, 1}z of functions satisfying all constraints
of S for which all three variables are in z. Finally, we put one arrow for any
x ∈ X, y ∈ Y , such that x ⊃ y decorated by the restriction map (which is well
defined since if the assignment of variables satisfies all 3-SAT conditions with
variables in x, its restriction clearly satisfies all remaining 3-SAT conditions). The
size of every domain is at most max(2k, 2l) = 2l. The reduction is polynomial with
respect to the length of the 3-SAT instance since we have O(|V |l) vertices with
constant size domains, for which it takes linear time in the number of the 3-SAT
constraints to find its domain, and O(|V |lk) arrows with constant size functions.
If |V | < l or any domain is empty, we already solved our 3-SAT instance, so we
don’t need to worry about these cases.

If the 3-SAT instance S was solvable, then using its solution as the assignment
of variables satisfies all the constraints of the Label Cover instance.

It remains to prove that if S is not solvable, then the c-value of the Label Cover
instance is at least d + 1. Or in other words, if the c-value of the Label Cover
instance is at most d, then S is solvable. Now the lemma is finally useful. We
are in a situation where we have two partial assignment systems with set sizes at
most d assignments. Since all arrows are restrictions, the Label Cover constraints
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say that the partial assignment systems are consistent (since all domains are
nonempty). Therefore there exists a 3-solution f : V → {0, 1}.

Now we show that any 3-solution is a full solution of the 3-SAT instance.
That follows since every constraint in 3-SAT has at most three variables. Take
any such constraint c and set M, |M | ≤ 3 of its variables. By definition of 3-
solution, there exists L ⊃ M, |L| = l, such that one of at most d assignments
of L in the Label Cover instance restricted to M is the same as f |M . But all
d assignments must satisfy all 3-SAT constraints on variables from L, specially
c. Therefore f satisfies c too. Since c was chosen arbitrarily, f satisfies all the
constraints, so it’s a solution to 3-SAT.

Finally, we choose the domain D as any set of 2l elements and identify each
vertex domain with subset of D in any way. The problem remains that some of
the constraints are not functions right now (they don’t have any function value
for the elements from D which were not identified with any element of the do-
main of the vertex from X). To sort this out, for any vertex from X with original
domain size less than 2l we choose any of its elements and identify this one with
all not-used elements of D. By this we don’t change the solvability or c-value in
any way, since these elements are for all purposes identical and it doesn’t make
sense to take any of the copies instead of the original one.

2.3 Possible improvements
It would be great to decide the combinatorial version of d-to-1 conjecture as a
possible source of ideas to approaching the real one. On the other hand, we
can’t expect to make much progress on the Unique Games conjecture, since it
has no obvious combinatorial version. Every unsolvable Label Cover instance has
combinatorial value at least 2. So there is no clear way how to translate the
condition that the value of the instance is at least 1 − ϵ. If the c-value is smaller
than 2, then it’s 1 and the decision problem becomes solvable in polynomial time.

The proof of the Theorem 11 using technical Lemma 12 constructs Label
Cover instances which are 2l−k-to-1 functions, since the arrows are restrictions of
functions from a subset of {0, 1}(X

l ) to sets of size k. If we could choose l − k to
be constant, we would construct a reduction from 3-SAT to the Label Cover with
added condition that the mappings are d-to-1 for d = 2l−k, which would prove
the Combinatorial d-to-1 conjecture.

Unfortunately that’s not the case. To provide a counterexample for given
c = l−k we consider m = 2 (which means the same won’t work also for larger m),
D = {0, 1} (again the counter-example would work with any larger set) and
d = c + 1.

Consider the following construction. For any l > c take variable set
V = {0, 1, . . . , l} (|V | = l + 1). The tL sets from the lemma have only one
function h, such that for L = V \{i} it holds that h(j) = 0 for j < i and h(j) = 1
for j > i.

Sets sK have at most d = c+1 elements. Since |K| = k = l−c = |V |−(c+1),
we can write K = V \ {i0, . . . , ic}, where i0 < i1 < · · · < ic. And we define at
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most c+1 functions gι(j) = 0 if j < iι and gι(j) = 1 otherwise for ι ∈ {0, 1, . . . , c}
(g functions are not all different if K misses some consecutive numbers).

This is consistent since whenever K ⊂ L, it means that V \L ⊂ V \K or with
the notation from previous two paragraphs i ∈ {i0, . . . , ic}, say i = iα. Clearly
gα = h|K , which means our construction satisfies the assumptions of the lemma.

But there are no 2-solutions. Any 2-solution f has to have f(0) = 0 and
f(l) = 1 since there is no L for which the value at 0 would be equal to 1 or the
value at l be equal to 0. Therefore there has to be j, such that f(j) = 0 and
f(j + 1) = 1, but these two elements are not consistent with any L, since the
functions in L have the same value at any two consecutive numbers. Therefore
no such 2-solution f can exist.

This counterexample is clearly not solvable. We have just one option to choose
for the larger sets and this option forces the value of its subsets of size k. Different
supersets of size l of one set of size k force conflicting values for it.

It would be nice to produce CSP instances via the process from the combina-
torial proof of Theorem 11, which are not solvable by easy polynomial algorithms
and the lemma with l − k constant does not help with creating the gap. The first
step to this could be to produce counterexample Label Cover instances which
would be arc consistent (the provided definition is equivalent to the one found in
[4]).

Definition 6 (Arc Consistency). A CSP instance (V, (Dv)v∈V , S) with differ-
ent domains Dv for every variable v is arc consistent if for every constraint
((x1, . . . , xk), R) ∈ S the following holds. For any i ∈ {1, . . . , k} and v ∈ Dxi

,
there exists (v1, . . . , vk) ∈ R with vi = v.

The arc consistency says only that we can not figure out anything about the
solvability of CSP instance by looking just on individual constraints and not
considering any interaction between them.

Whenever a CSP instance is not arc consistent, we can (without changing the
solvability of an instance) decrease the size of at least one variable set and we can
find this one in polynomial time with respect to number and sizes of constraints
and domain sizes. By repeating this process we either arrive to arc consistent
instance or we find out that the instance is not solvable by deleting the whole
domain for one of the variables which is used in the constraints. The latter case
happens with the counterexample described here. Unfortunately, I was not able
to figure out a better counterexample.
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3. Probabilistic Combinatorial
Version
In this chapter, I propose a new definition of what I call probabilistic combinatorial
value (or pc-value for short). The inspiration comes from a similar relaxation of
the definition, which was used to prove PCP in the classical setting in [7].

In the classical setting, the two values are the same for reasons I will give in
the first section. Unfortunately, that is not the case for the combinatorial version
(the counterexample is given in the second section). However, I was at least able
to prove a correspondence for Unique Games. The proof is shown in the third
section. In the last section, I consider a probabilistic combinatorial version of
the Gap Label Cover theorem and show that it lies between the classical and
combinatorial one in terms of strength.

I tried to prove the pc-version of the Gap Label Cover also with the tools used
in [3], but I wasn’t successful.

3.1 Classical probabilistic value
Definition 7 (Classical probabilistic value of a Label Cover instance). For a
Label Cover instance I (with vertex sets X, Y , domain D and set of arrows A,
each arrow a ∈ A starting at ax ∈ X and ending at ay ∈ Y decorated by mapping
f), its classical probabilistic value (p-value) pval(I) is equal to maximum of

Ea∈A

[︄∑︂
v∈D

pax(v)pay (f(v))
]︄

over all functions p : X∪Y → [0, 1]D, such that ∑︁d∈D pv(d) = 1 for all v ∈ X∪Y ,
where the expected value is took using the uniform distribution over all arrows.

For any function p : X ∪ Y → [0, 1]D, we say that the p-value of p is equal to
the value of the expression above.
Remark. This definition is the same as the classical one, except for allowing
choosing a probabilistic distribution of values for every vertex instead of just a
single value. Then we ask the same question: What’s the maximum probability of
constraint being satisfied if we sample the constraint randomly from the uniform
distribution on the arrows?

Theorem 13. For any Label Cover instance I it holds that

val(I) = pval(I).

Proof. Clearly pval(I) ≥ val(I) since if we take any classical solution, we
can reformulate this solution as taking the chosen element for a given vertex
with probability 1 and the remaining ones with probability 0. That gives us a
probabilistic solution with the same p-value.

On the other hand, if we take any probabilistic solution p and for every vertex
v ∈ X ∪ Y independently, we sample a random element from the distribution pv,
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the expected value of the classical solution we get is equal to the p-value of p.
Since the expected value is equal to the p-value of p, there has to be at least one
classical solution, which value is at least the p-value of p. Since p was chosen
arbitrarily, this gives us the opposite inequality.

3.2 Probabilistic combinatorial value
Definition 8 (Probabilistic combinatorial value of a Label Cover instance). For
a Label Cover instance I (with vertex sets X, Y , domain D and set of arrows
A, each arrow a ∈ A starting at ax ∈ X and ending at ay ∈ Y decorated by
mapping f), its probabilistic combinatorial value (pc-value) pcval(I) is equal to
the maximum of

min
a∈A

⎛⎝∑︂
d∈D

pax(d)pay(f(d))
⎞⎠

over all functions p : X ∪Y → [0, 1]D, such that ∑︁d∈D pv(d) = 1 for all v ∈ X ∪Y ,
where the expected value is took using the uniform distribution over all arrows.

Any p : X ∪ Y → [0, 1]D will be called a pc-solution of I and we say that the
pc-value of p is equal to the value of the expression above. Also we say that the
pc-value of arrow a is equal to the expression inside of the minimum function.

This definition looks almost identical to the classical probabilistic version,
except using minimum over all arrows rather than the expected value. Before
commenting more on the motivation for this definition and the relationship be-
tween pc and combinatorial version, we prove a simple lemma connecting classical
value with the pc one, which will be useful later.

Lemma 14. For a label cover instance I, the following holds:

pcval(I) ≤ val(I).

Proof. Let’s take any pc-solution p, then the p-value is computed as the ex-
pected value instead of the minimum, so by using the same solution we get
pcval(I) ≤ pval(I). Since pval(I) = val(I) by Theorem 13, we conclude that
pcval(I) ≤ val(I).

In the combinatorial setting, it is a little bit less clear how the pc version
relates to the combinatorial one. We can provide the intuition with the following
lemma and its proof.

Lemma 15. For any Label Cover instance I the following holds:

pcval(I) ≥ 1
cval(I)2 .

Proof. Take any combinatorial solution s : X ∪ Y → P(D) of I with c-value c.
Then define the probabilistic combinatorial solution by pv(d) = 1

|s(v)| if d ∈ s(v)
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and pv(d) = 0 otherwise. Since s is a combinatorial solution, for any arrow v → w
decorated by f , there is at least one d, such that d ∈ s(v) ∧ f(d) ∈ s(w). Since
pv(d) = 1

|s(v)| ≥ 1
c

and the same holds for pw(f(d)), the probabilistic combinatorial
value of this instance is at least 1

c2 .

It would be nice to have inequality in the opposite direction, which doesn’t
depend on anything other than pc and c-values. The following counterexample
shows that no such estimate is possible – we construct an instance with pc-value 1

2
and c-value arbitrary large (of course, we need to take a sufficiently large domain
to do this).

Claim 16. For any even natural n, there exists a Label Cover instance I with
domain set D of size n, such that pcval(I) ≥ 1

2 , but cval(I) ≥ n
2 + 1.

Proof. Take Y =
(︂

D
n
2

)︂
and X = DY and choose two special elements 0 ̸= 1 ∈ D.

Now for any pair (x, y) ∈ X × Y take one arrow from x to y decorated by the
following function f .

If x(y) ̸= 0: f(d) = 0 if d ∈ y and f(d) = x(y) otherwise. And if x(y) = 0,
f(d) = 1 if d ∈ Y and f(d) = 0 otherwise.

With mappings defined like this, we can easily construct a pc-solution p with
pc-value 1

2 by defining px(d) = 1
n

for every x ∈ X and d ∈ D, and py(0) = 1 and 0
otherwise for every y ∈ Y . Since all the arrows map exactly one half of elements
from D into 0, we get a pc-value of n

2 · 1
n

= 1
2 for every arrow and therefore also

the pc-value of p is such.
On the other hand, if we want to construct a combinatorial solution s with a

c-value less than n, we need to leave out at least one element in every vertex of
Y . Choosing one such element from every Y gives us a function from Y to D or,
in other words, an element of DY = X, which I will call x0. For every y ∈ Y , the
arrow from x0 to y forces x to have an element from y in its element set. Therefore
it needs to have at least n

2 + 1 elements in its element set s(x0), otherwise we
would look at any n

2 -element subset y0 of D \ s(x0) and the constraint from x0 to
y0 wouldn’t be satisfied.

Therefore cval(I) ≥ min(n, n
2 + 1) = n

2 + 1, as we wanted to prove.

This counterexample uses mappings that compress the domain D into just
two-element images every time. In the next section, we prove that if we control the
compression (allow only d-to-1 mappings for fixed d), we can also get inequality
in the other direction. Particular interest can be given to the case of d = 1, which
corresponds to the Unique Games.

3.3 Pc-value for Unique Games
Theorem 17. For any d-to-1 Label Cover instance I, the following holds:

cval(I) ≤ d + 1
pcval(I) .

18



Proof. Let’s take any pc-solution p of I and construct function s : X∪Y → P(D)
by letting s(z) =

{︂
e; pz(e) ≥ pcval(I)

d+1

}︂
for any z ∈ X ∪ Y .

It’s clear that |s(z)| ≤ d+1
pcval(I) for every z since the values of pz has to add

to one over all elements of D. The only thing reamining is to prove that s is a
combinatorial solution to the d-to-1 label cover instance I.

Assume for contradiction that s is not a combinatorial solution. That means
that we can choose an arrow from x to y decorated by d-to-1 mapping f , such
that there is no e ∈ D for which it would hold e ∈ s(x) ∧ f(e) ∈ s(y) or in other
words px(e) ≥ pcval(I)

d+1 ∧ py(f(e)) ≥ pcval(I)
d+1 . Let us estimate the pc-value of this

arrow.
For any numbers a ∈ [0, 1], b ∈ [0, c] it holds that ab ≤ ac ≤ (a+b)c with strict

inequality in the last estimate if both a, b are nonzero. Since the last expression
is symmetric in a, b, we get that ab ≤ (a + b)c holds also if we don’t know which
one of a, b lies in which of the intervals. In our case we know that every summand
in the sum used to compute the value of an arrow is of this type with c = pcval(I)

d+1
and that py(e) appears in maximally d instances. Therefore we get

∑︂
e∈D

px(e)py(f(e)) <
∑︂
e∈D

pcval(I)
d + 1 (px(e) + py(f(e)) ≤

≤ pcval(I)
d + 1

(︄∑︂
e∈D

px(e) + d
∑︂
e∈D

py(e)
)︄

= pcval(I),

which is a contradiction. (The first inequality is strict since at least one of
the summands has to be non-zero. Otherwise, the pc-value of the arrow must be
0. That is also a contradiction with pcval(I) being non-zero.)

Corollary. For any Unique Games Label Cover instance I, the following holds:

cval(I) ≤ 2
pcval(I) .

3.4 Gap Label Cover Theorem in the pc setting
In this section, we prove that the pc version of the Gap Label Cover theorem
lies between the classical and the combinatorial version. First, we prove the pc
version by showing that it follows from the classical version. Next, we show how
the combinatorial version follows from the pc version.

So far, the only proof of the pc version of the gap label cover theorem known
to me uses the classical version. It would be nice to have a more straightforward
proof, as is the case with the combinatorial version, but I couldn’t find one. At
the end of this section, I discuss why the pc version doesn’t follow easily from the
combinatorial Lemma 12.

Theorem 18. For any 1 > ϵ > 0 there exists domain D, such that it is NP-hard
to decide if a given Label Cover instance I with domain D is solvable or has
pc-value at most ϵ.
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Proof. The proof is similar to the one of Theorem 11. The reduction between
problem instances is just an identity.

Instance I is solvable in the classical sense if it’s solvable in the pc one. So
we identify solvable instances correctly.

On the other hand, any instance I with a value less than ϵ also has pc-value
less than ϵ by Lemma 14. So we respond correctly also to these instances when
we use an algorithm for the pc case.

In a similar way the Combinatorial Gap Label Cover theorem follows from the
pc one. We can show that ϵ version of pc Gap Label Cover implies

√︂
1
ϵ

version
of Combinatorial Gap Label Cover. By Lemma 15 we know that if we have any
instance I with pcval(I) ≤ ϵ, then

cval(I) ≥
√︄

1
pcval(I) ≥

√︄
1
ϵ
.

So also in this case we can distinguish between pc-values by the algorithm which
distinguishes c-values.

Unfortunately, I could not prove the pc version using only combinatorial
Lemma 12 or something similar. It is not straightforward since we don’t gen-
erally have any inequality between c-value and pc-value going in the direction we
need (because of Claim 16). We have one we could use well in the case of d-to-1
Label Cover instances (Theorem 17). However, from our discussion in Section
2.3 we know that we can’t have a version of the lemma so that the Label Cover
instance created from the 3-SAT has d-to-1 property. The validity of the Com-
binatorial d-to-1 conjecture would imply the pc version of the Gap Label Cover
theorem easily.
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4. Parallel Repetition Theorem
In this chapter, I first repeat the Parallel Repetition theorem without proof, but
this time just for the Label Cover problem in its language. I won’t use the
language of Two-prover One-round Games in this chapter.

In the rest of the chapter, I provide a counterexample to the combinatorial
(and probabilistic combinatorial) version of the theorem. That is the main origi-
nal result of this thesis.

Definition 9. Let n be a positive integer and I a Label Cover instance with finite
domain D, variable sets X, Y , set of arrows A and a function F : A → DD. Then
In (n-th power of I) is a Label Cover instance with finite domain Dn, variable
sets Xn, Y n, set of arrows An and a function F n : An → (Dn)Dn

) defined by
F n((a1, . . . , an))((d1, . . . , dn)) = (F (a1)(d1), . . . , F (an)(dn)).

Theorem 19 (Parallel Repetition Theorem). For every finite set D, there exists
a function α : [0, 1) → [0, 1), such that if an unsolvable Label Cover instance I
over domain D has value ϵ, then for every positive integer n the instance In has
value at most α(ϵ)n.

4.1 Combinatorial version
The Parallel Repetition theorem can be stated in the combinatorial setting as
follows:

For every finite set D, there exists a function β : N \ {1} → (1, ∞), such that
if an unsolvable Label Cover instance I over domain D has c-value N ≥ 2, then
for every positive integer n the instance In has value at least β(N)n.

The probabilistic combinatorial version looks exactly like the standard theo-
rem, except for using the pc-value instead of the normal value.

Since val(I) ≥ 1
cval(I)2 for every Label Cover instance I by Lemma 10, it holds

that
cval(In) ≥

√︄
1

val(In) ≥
√︄

1
α(val(I))

n

.

Therefore to find a counterexample to the combinatorial version, looking
only at one specific instance surely is not enough. That’s because for unsolv-
able I we have α(val(I)) < 1. Looking just at this instance, we can choose
β =

√︂
1

α(val(L)) > 1 and satisfy all conditions.
However, the counterexample can be constructed. In this section, I’ll de-

scribe a family of instances with c-value 2 over domain {0, 1}, which will force
β(2) < 1 + ϵ for arbitrary ϵ > 0. From that, we would have β(2) ≤ 1, which is
not allowed.

Definition 10. Cyclic instance Ck (of length 2k) is the following Label Cover
instance over domain {0, 1}. Both sets of variables X, Y have k elements. There
are 2k − 1 arrows which are decorated by the identity mapping: between xi and yi

for all 1 ≤ i ≤ k and between xi+1 and yi for all 1 ≤ i ≤ k − 1. Finally, there is
one arrow decorated by mapping switching zero and one between x1 and yk.
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Figure 4.1: Instance C4 with one possible combinatorial solution with c-value 2.

Remark. Ck is an unsolvable instance since the first 2k − 1 arrows force all vari-
ables to have the same value, which makes the last constraint invalid. On the
other hand, by choosing the same value for all variables, we satisfy all but one
constraint, so val(Ck) = 2k−1

2k
.

Now it is almost clear that cval(Ck) = 2. This follows from unsolvability and
the domain having only 2 elements (both can be chosen for every vertex).

One can also notice that it suffices to choose both values from {0, 1} only for
one variable. Constraints using this variable are clearly satisfied every time. The
rest of them forms a path of bijections we can fulfill easily. That means that
instances of this family are almost solvable in the sense of having the standard
value close to 1 and needing two values for only one variable in the combinatorial
setting. Therefore they form a natural candidate for a counterexample to the
combinatorial version of the Parallel Repetition theorem. One can hardly find a
simpler family with the stated properties.

Also note that pcval(Ck) = 1
2 . One inequality follows from putting probabil-

ities 1
2 to both values on all vertices. Then every arrow has value 2 ·

(︂
1
2

)︂2
= 1

2 ,
which means that the pc-value of this instance is at least 1

2 .
To prove the opposite inequality we choose any pc-solution p and color red

vertices v, for which pv(0) ≥ pv(1) and blue the other ones. Either the vertices
connected by the only non-identity arrow have the same color or there exist two
vertices connected by identity with opposite colors (because the color has to
change even number of times in the cycle). In both of these cases the value of
the arrow is given by a computation of type pq + (1 − p)(1 − q), where p ≤ 1

2 and
q ≥ 1

2 . Denoting a = 1
2 − p, b = q − 1

2 (both of them being non-negative), we get

pq + (1 − p)(1 − q) =
(︃1

2 − a
)︃(︃1

2 + b
)︃

+
(︃1

2 + a
)︃(︃1

2 − b
)︃

= 1
2 − 2ab ≤ 1

2 .

This shows that the pc-value can’t be greater than 1
2 as we wanted.

Theorem 20. For every positive integer n there exists positive integer k, such
that cval(Cn

k ) ≤ n + 1.
Remark. This inequality will be enough to disregard the combinatorial version
of the Parallel Repetition theorem, but I don’t claim to know the value of the
instance exactly. We know that for n = 1, the c-value is 2, and ”minimal”
solutions use 2 options only on one vertex, which can be chosen arbitrarily. By
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taking a product of two ”minimal” solutions having the vertices with two values
in sets on different sides, we get a combinatorial solution to C2

2k with c-value
2. That’s smaller than the estimate from the theorem. (Similarly, we get a
combinatorial solution with c-value 4 for n = 4 by taking the second power of
this combinatorial solution.)

Using this theorem, the main result of this chapter follows quickly.

Theorem 21. The Parallel Repetition theorem doesn’t hold in combinatorial or
probabilistic combinatorial versions.
Proof. Assume for contradiction that there exists a function β : N\{1} → (1, ∞)
from the formulation of the combinatorial version. Therefore cval(In) ≥ β(2)n

for every instance I of combinatorial value 2. By Theorem 20 there exists an
instance I for which cval(In) ≤ n + 1 for every n. It follows β(2)n ≤ n + 1.
Since every exponential function with base larger than one grows faster than any
linear function for large enough n, it has to be β(2) ≤ 1, which is the desired
contradiction.

Probablistic combinatorial version is not much more difficult. From Lemma 15
we get

pcval(Cn
k ) ≥ 1

cval(Cn
k )2 ≥ 1

(n + 1)2 .

From remark below Definition 10 we know that pcval(Ck) = 1
2 for every natural

k.
Similarly as in the combinatorial case we get to the inequality

1
(n + 1)2 ≤ pcval(Cn

k ) ≤ α
(︃1

2

)︃n

,

which can’t hold for every n unless α
(︂

1
2

)︂
≥ 1 since the exponential function with

smaller base decreases faster than any rational one for large enough n.

In the next section, I spend considerable time proving Theorem 20.

4.2 Cubes in a torus
The first thing needed for the proof is translating the problem into a geometrical
setting. After I have the translation, I first forget the discrete nature of the
problem and solve a more accessible continuous version. Finally, I argue that
by choosing a sufficiently large length of the cycle 2k, a discretization of the
continuous problem gives the construction I need.

How can one think well about the powers of the Cyclic instances? Let’s build
the following picture. Let us number the vertices from both sides of the Cyclic
instance by elements of Z2k so that an arrow connects vertices that differ by one,
and the only non-identity arrow goes between 2k−1 and 0. Note that the vertices
in X are precisely those with even numbers and the vertices in Y are the odd
ones.

Let us denote the vertex sets of the Cn
k by Xn

k and Y n
k . With the mapping

from the previous paragraph, we can identify these sets with the following subsets
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of Zn
2k. Set Xn

k consists of n-tuples with all coordinates even, and Y n
k consists of

the ones with all coordinates odd. The arrows go between vertices that differ by
exactly one in each coordinate. They have identity maps in all coordinates but
the ones where the numbers are 0 and 2k − 1.

Let us picture Zn
2k as an n-dimensional torus by drawing a unit hypercube with

opposite hypersides glued together, divided to (2k)n hypercubes of side length 1
2k

.
Now consider only subset Xn

k ∪Y n
k . We are left with only 2kn hypercubes. No two

of them share more than one point. The pairs of cubes which share a corner are
exactly the ones between which an arrow exists. And the arrow is the non-identity
one in a specific coordinate iff the shared corner of the pair lies on the boundary
of the large unit hyper-cube in the direction corresponding to the coordinate.

For example, when n = 1 we picture just a segment of unit length divided to
2k smaller segments of the same length while remembering that the opposite ends
are the same. When n = 2 we picture squares of just one color on a chessboard
(and again, we remember that the chessboard is not just a square but a torus in
reality).

(id, id)

(id, id) (id, id)

(id, id)

(id, id)(id, id) (id, id)

(1 − id, 1 − id)

(id, id)

(id, id)

(id, 1 − id)

(id, 1 − id)

(id, 1 − id)

(1 − id, id)

(1 − id, id)(1 − id, id)

{00, 10} {00, 10}

{00, 01}

{00, 01}

{00}

{00} {00}

{00}

Figure 4.2: Instance C2
2 pictured as squares in a torus with a combinatorial solution

with c-value 2.

Now we need to put a set of maximally n + 1 n-bit binary numbers into each
hypercube, such that every constraint is satisfied. That means that every pair
of neighboring hypercubes has a non-empty intersection of the solution sets after
switching bits in one of them in coordinates corresponding to the directions they
neighbor through the boundary of the unit hypercube.

Now with this picture in mind, let me formulate a continuous problem from
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which we later construct the counterexample.

4.2.1 Continuous version
Note that hypercube has a standard numbering of vertices by binary numbers,
which we get by using [0, 1]n hypercube and taking the coordinates of vertices.
We use this numbering in the following claim.

Claim 22. The n-dimensional unit hypercube can be cut into 2n hyperprisms
numbered by n-bit binary numbers, such that no point in the interior of the hy-
percube lies on the boundary of more than n+1 prisms, every vertex lies in the hy-
perprism with the same binary number and the point (x1, . . . , xj−1, 0, xj+1, . . . , xn)
lies on the boundary of prism b iff the point (x1, . . . , xj−1, 1, xj+1, . . . , xn) lies on
the boundary of prism b ⊕ 2j for every j ∈ {1, . . . , n}.
Remark. Conceptually and a little bit informally, we are trying to achieve the
following: Take an n-dimensional torus and canonical generators ei of its funda-
mental group Zn. Next, make for every canonical generator a piece-wise hyper-
planar cut (which has no boundary) into n-dimensional torus (cuts can overlap)
such that we still have a connected manifold (with a boundary from the cuts).
Moreover, every closed path pi representing ei has to go through i-th cut an odd
number of times and through the others even number of times. Finally, we want
to do this such that if we took any small enough ball in the torus, the cuts divide
it into maximally n + 1 different components.

The cuts represent places where we need to use more values (corresponding
to neighboring hyperprisms) as part of our solution (in the discrete version, we
do this for all hypercubes with a center close enough to the cut).

When completing the discrete case construction, only the proof of no point
lying in more than n + 1 hyperprisms will be used. The fact that the opposite
sides of the unit hypercube match is not used there. The proof can be completed
without noting this fact. However, I consider it an interesting and important
property of the construction, which deserves a proof here.
Proof. Our construction works in the following way. In n dimensions the
hyperprisms are given by the system of n inequalities. Hyperprism corresponding
to a binary number b1 . . . bn is defined by

fi(x1, . . . , xi) − fi−1(b1, . . . , bi−1)
2 ⋚

1
2 ,

where the symbol is ”≤” if bi = 0 and ”≥” otherwise and

fi(a1, . . . , ai) =
i∑︂

l=1

al

2i−l
.

I use induction to prove that the construction satisfies the conditions from
the statement. We also show that if the i-th coordinate of the point is 0, then
the point is only in prisms with i-th bit being 0. And the same for 1. From this
added condition the part of the claim that the corners of hypercube lie in the
hyperprisms with the same bit number follows immediately.

Note that for a binary number b in n+1 dimensions the first n inequalities are
the same as for b without the last bit in n dimensions. Essentially, when adding a
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x1 = 1
2

x1
2 + x2 = 1

2

x1
2 + x2 = 1

00

10 11

01

Figure 4.3: Continuous construction for n = 2.

dimension, we first multiply all hyperprisms by a unit interval in that dimension
and then divide each into two using a hyper-plane. All the hyperplanes used for
the division have the same normal. After proving the claim that the opposite
sides match we can picture this as using a part of just one hyperplane cutting the
hypercube glued into a torus.

For n = 1 the construction looks like this:

0 : x1 ≤ 1
2

1: x1 ≥ 1
2

These two segments clearly satisfy the needed conditions. Point (0) lies only in
segment 0, point (1) only in segment 1. Because off that, opposite ends of the unit
segment lie in different smaller segments. Finally, no point inside the segment
lies on more than two smaller segments.

Consider now points (x1, . . . , xj−1, 0, xj+1, . . . , xn+1) and
(x1, . . . , xj−1, 1, xj+1, . . . , xn+1). We need to show that the former one lies only in
hyperprisms with j-th bit equal to 0, the latter only in hyperprisms with j-th bit
equal to 1, and that all the other inequalities work on the same side with these
two points.

For j ≤ n we know that the first first n inequalities behave well from the
induction assumption. That means that the points lie in the hyperprisms with
correct bits on j-th position. We need to check that the new inequality works the
same for both of them, which is just checking that

fn+1(x1, . . . , xj−1, 0, xj+1, . . . , xn+1) − fn(b1, . . . , bj−1, 0, bj+1, . . . bn+1)
2 ≤ 1

2 ⇐⇒

fn+1(x1, . . . , xj−1, 1, xj+1, . . . , xn+1) − fn(b1, . . . , bj−1, 1, bj+1, . . . bn+1)
2 ≤ 1

2 .
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Since the second inequality is the same as the first one except for adding 1
2n+1−j

in the first expression and subtracting the same number in the second one, the
equivalence holds.

We are left with the case j = n+1. In this case we don’t expect any change in
the direction of the first n inequalities when switching zero and one in (n + 1)-th
coordinate. That is trivially true, since the (n+1)-th coordinate is not represented
in those.

The only thing that remains is to show that if xn+1 is 0, then bn+1 = 0, and
the same with 1. For the ”zero” case we compute

fn+1(x1, . . . , xn, 0) − fn(b1, . . . , bn)
2 =

n∑︂
l=1

xl − bl

2n+1−l
≤

n∑︂
l=1

1
2n+1−l

<
1
2 .

And similarly for the ”one” case

fn+1(x1, . . . , xn, 1)− fn(b1, . . . , bn)
2 = 1+

n∑︂
l=1

xl − bl

2n+1−l
≥ 1+

n∑︂
l=1

−1
2n+1−l

> 1− 1
2 = 1

2 .

Now we know that the cuts match properly on the hypersides of the cube and
the last thing to check is that no point inside the hypercube lies in more than
n + 1 hyperprisms.

Let us choose any such point (y1, . . . , yn+1). From the induction assumption
we know that maximally n + 1 combinations of the first n inequalities hold. Let
us denote the set of n-dimensional hyper-prisms from our construction in which
point (y1, . . . , yn) lies by C. Since fn restricted to {0, 1}n is an injective func-
tion (its value is equal to the binary number we get from reading the arguments
backwards divided by 2n−1), the equality of fn+1(y1, . . . , yn+1) and fn(c1,...,cn)

2 + 1
2

can hold for maximally one prism c1 . . . cn from C. If the equality holds, the
point (y1, . . . , yn+1) lies in both c1 . . . cn0 and c1 . . . cn1 prisms. Otherwise it lies
in only one of them. Therefore the selected point in [0, 1]n+1 lies in maximally
|C| + 1 ≤ n + 2 hyperprisms and the proof of the claim is completed.

4.2.2 Discrete version
In this subsection I show that for any n we can choose suitable ϵ, such that if
we change the inequalities in the construction from the last proof to be of type
X ≤ Y + ϵ and X ≥ Y − ϵ instead of just X ≤ Y and X ≥ Y , the claim still
holds. After this I conclude that one can choose sufficiently large k, so that if
we include n-bit binary value b in the values for hypercube v iff center of v lies
in hyperprism b, the construction will provide a combinatorial solution to Cn

k

instance. And this solution is of c-value smaller or equal to n + 1, since center of
any hypercube can’t lie in more than n + 1 hyperprisms.

Claim 23. The construction from the proof of Claim 22 with all inequalities
relaxed by sufficiently small ϵ > 0 depending on the dimension n still satisfies
that each point lies in at most n + 1 hyperprisms.
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Proof. For the induction step from n to n + 1 to hold, we can choose ϵ = 1
3·2n .

That’s because the adjacent values on the right hand side differ by 1
2n , so if we

choose ϵ < 1
2n+1 , we still keep the property that there exists maximally one hy-

perprism c1 . . . cn from C, such that the chosen point lies in both c1 . . . cn0 and
c1 . . . cn1. Our chosen value of ϵ decreases in each induction step, which means
that for n dimensions we can choose ϵn = 1

3·2n−1 and we get the desired property.

Claim 24. For every n we can choose sufficiently large k, such that the construc-
tion from Claim 23 gives rise to a combinatorial solution of Cn

k instance of c-value
at most n + 1 in the following way. n-bit binary number b lies in a solution set
of vertex v when the center of hypercube associated with v lies in the hyperprism
associated with b.
Proof. The only thing we need to show is that such defined valuation of Cn

k

is indeed a solution. We show that for any pair of not-through-the-boundary
adjacent hypercubes G, H, there is a hyperprism b, such that centers g, h of G,H
lie in b. More generally g lies in b and h lies in b ⊕ c, where c has ones for the
directions in which G and H neighbor through the boundary of unit hypercube
(⊕ denotes xor).

We will construct the hyperprism b inductively coordinate after coordinate.
When including i-th coordinate (for i ∈ {1, . . . , n}), we need to decide on the bi,
so that the i-th inequality is satisfied in conditions for both g ∈ b and h ∈ b ⊕ c.
In order to have the existence of this bi we need to show that both of the following
inequalities hold either with taking the same (up or down) options everywhere.

For ci = 0:

fi(g1, . . . , gi) − fi−1(b1, . . . , bi−1)
2 ⋚

1
2 ± ϵn

fi(h1, . . . , hi) − fi−1(b1 ⊕ c1, . . . , bi−1 ⊕ ci−1)
2 ⋚

1
2 ± ϵn

If this wouldn’t be the case, the upper inequality would have to be false in
one case and the lower one in the second. (The centers of the hyper-cubes would
have to lie outside of the strip on different sides). Assume for contradiction that
it’s so and wlog assume that both of the following hold:

fi(g1, . . . , gi) − fi−1(b1, . . . , bi−1)
2 <

1
2 − ϵn

fi(h1, . . . , hi) − fi−1(b1 ⊕ c1, . . . , bi−1 ⊕ ci−1)
2 >

1
2 + ϵn

So necessarily (after plugging in for f functions and subtracting):

i∑︂
l=1

(hl − gl) − (bl ⊕ cl − bl)
2i−l

> 2ϵn.

Since G, H are adjacent, it holds that

• |hj − gj| = 1
2k

if cj = 0,
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• 1 − (hj − gj) = 1
2k

if cj = 1 and bj = 0,

• 1 − (gj − hj) = 1
2k

if cj = 1 and bj = 1.

In either case we get that |(hj − gj) − (bj ⊕ cj − bj)| = 1
2k

. So in order to get a
contradiction it suffices to choose k, such that

1
2k

i∑︂
l=1

2l−i <
1
k

≤ 2ϵn = 1
3 · 2n−2 .

So it suffices to choose k = 3 · 2n−2 for n ≥ 2.
For ci = 1 we can do the computation faster (though it is still conceptually

the same). Wlog gi < hi from which it follows gi = 1
4k

and hi = 4k−1
4k

. We will
show that bi = 0 works for sufficiently large k. For the hypercube G we compute

fi(g1, . . . , gi) − fi−1(b1, . . . , bi−1)
2 = 1

4k
+

l−1∑︂
l=1

gj − bj

2i−l
≤

≤ 1
4k

+
i−1∑︂
l=1

1
2i−l

<
1
4k

+ 1
2 ≤ 1

2 + ϵn.

This inequality clearly holds k ≥ 1
4ϵn

= 3 · 2n−3.
And similarly for hypercube H

fi(h1, . . . , hi) − fi−1(b1 ⊕ c1, . . . , bi−1 ⊕ ci−1)
2 = 1 − 1

4k
+

i−1∑︂
l=1

hl − (bl ⊕ cl)
2i−l

≥

≥ 1 − 1
4k

−
i−1∑︂
l=1

1
2i−l

> 1 − 1
4k

− 1
2 >

1
2 − ϵn.

for exactly the same k as in the previous inequality.
The choice k = 3 · 2n−2 for n ≥ 2 (and k = 2 for n = 1) is therefore a valid

one, satisfying all conditions of the claim. The claim is therefore proven and the
whole counterexample finished.
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{00} {00, 01}

{00, 01}

{00, 10} {00, 01, 10}

{00, 01, 10}

{01}

{01}

{01}

{01, 10, 11}

{01, 10, 11}

{10, 11}

{01, 11}

{10, 11} {11}{10}

{10} {10}

Figure 4.4: The construction for n = 2 (with ϵ = 1
6 and k = 3).
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Conclusion
I explored the theory surrounding the combinatorial version of the Gap Label
Cover theorem. The two original results are understanding the differences be-
tween a probabilistic combinatorial version and the combinatorial one (Chapter 3)
and providing a counterexample to the combinatorial version of the Parallel Rep-
etition Theorem (Chapter 4). Unfortunately, both results were in the direction
of the combinatorial version not behaving as nicely as the classical one. On the
other hand, more interesting results may arise from the theory of the combina-
torial version. Negative results in this thesis do not make other advancements
necessary harder. Chapter 3 only says we can’t make a good probabilistic picture
as in the classical case. After Chapter 4, we are left without the Parallel Repeti-
tion theorem, which is needed for the proof of the Gap Label Cover theorem in
the classical case, but not in the combinatorial one.

Further research can be done on the technical Lemma 12. It would be inter-
esting to see if the assumptions can be made weaker and if any stronger versions
of combinatorial PCP theorems would follow. A counterexample for the constant
difference between sizes of partial solutions was given in the second chapter. Still,
this counterexample can be solved using a polynomial algorithm (it’s not even arc
consistent). It would be interesting to know if there is a better, harder-to-solve
counterexample. If that wasn’t the case, the d-to-1 conjecture could still follow
from an improved version of the lemma.

There are also more specific things in the thesis which could be improved. In
Chapter 4, I used the Cyclic instance Ck (20) to provide a counterexample to
the Parallel Repetition theorem. However, I couldn’t compute the combinatorial
value of n-th power exactly for a large enough k (only an estimate in one direction
was provided). It would be interesting to compute this value more precisely. At
this moment, I don’t have a better lower bound than 2 for any n.
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