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Abstract
This thesis explores the volatility connectedness between Bitcoin and economic
uncertainty. We aim to model reactions of Bitcoin’s volatility to shocks in
economic uncertainty to uncover whether Bitcoin can provide protection from
an economic unrest. The uncertainty is assessed from the media-based Eco-
nomic Policy Uncertainty (EPU) Index, the market-based VIX Index and the
public-based Economic Queries Related Uncertainty (EURQ) Index. Using the
dynamic network connectedness measure, it is possible to track the time evolu-
tion of directional volatility spillovers in each time point of our dataset spanning
from April 2015 to February 2022. Our results show several significant periods
when Bitcoin receives volatility spillovers from economic uncertainty. However,
in most cases, the effect is weak. One exception is the COVID-19 crisis, during
which Bitcoin forms a substantial volatility connectedness with the VIX Index.
We also show that before 2020, Bitcoin reacts to several shocks driven by the
EPU Index. Further, amid inflation fears at the end of 2021, the volatility
spillovers mainly originate from the EURQ Index.

Keywords Bitcoin, economic uncertainty, network struc-
ture, volatility spillover

Title How Does Bitcoin React to Economic Uncer-
tainty Volatility Shocks?

Abstrakt
Tato práce zkoumá propojenost volatility Bitcoinu a ekonomické nejistoty.
Naším cílem je ukázat jak volatilita Bitcoinu reaguje na šoky do volatility
ekonomické nejistoty a zjistit, zda Bitcoin může poskytnout ochranu před
ekonomickou nejistotou. Nejistota je popsána indexem nejistoty hospodářské
politiky vnímané médii (EPU), tržním indexem VIX a veřejností vnímané
nejistoty měřené vyhledáváním ekonomických termínů souvisejících s nejis-
totou na webové stránce Google (EURQ). Pomocí dynamické síťové propo-
jenosti je možné sledovat časový vývoj směrových přelévání volatility v každém
časovém bodě našeho zkoumaného období od dubna 2015 do února 2022. Naše
výsledky ukazují několik významných období, kdy Bitcoin přijímá volatilitu
z ekonomické nejistoty. Ve většině případů je však tento účinek slabý. Jedna
výjimka je krize COVID-19, během níž Bitcoin vytváří významnou vazbu volatil-
ity s indexem VIX. Ukazujeme také, že před rokem 2020 Bitcoin reaguje na



několik šoků vyvolaných indexem EPU. Dále, uprostřed obav z inflace na konci
roku 2021, přelévání volatility pochází především z indexu EURQ.

Klíčová slova Bitcoin, ekonomická nejistota, síťová struk-
tura, přelévání volatility

Název práce Jak Bitcoin reaguje na období zvýšené
volatility ekonomické nejistoty?
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Chapter 1

Introduction

Bitcoin whitepaper was released by Nakamoto (2008) during times of great un-
certainty. The fall of Lehman Brothers created a large uncertainty shock that
propagated throughout the financial sector and led to the Great Recession (Ke-
nourgios & Dimitriou 2015). Bitcoin indirectly reacts to the large contagion
effects in the financial world by being able to function independently of gov-
ernments and banks. Such independence may establish Bitcoin as a financial
asset that is not linked to the uncertainty surrounding the standard financial
system.

Several studies discuss spillover effects from financial markets, crude oil,
gold and currencies to Bitcoin (Guo et al. 2021; Ozturk & Cavdar 2021). A large
body of literature also exists on the topic, closely related to contagion effects, of
Bitcoin possessing hedging or diversifying characteristics against stock market
indices (Shahzad et al. 2019; Kristoufek 2020). However, very little has been
written about the direct effects of economic uncertainty on Bitcoin. This thesis
aims to fill this gap by constructing a dynamic volatility network consisting of
Bitcoin and three uncertainty indexes.

Diebold & Yilmaz (2012) introduced measurement of volatility spillover by
estimating forecast-error variance decompositions, which shows how much of
future uncertainty in asset j is caused by shocks in asset k, from the gener-
alized vector autoregressive model (VAR). Barunik & Krehlik (2018) further
argue that shocks differ based on different time frequencies, hence extend the
Diebold & Yilmaz (2012) framework by adding horizon-specific connectedness,
i.e. allowing to differentiate between short-, medium- and long-term connec-
tions. Recently, Barunik & Ellington (2020) elaborated on previous methods
and defined a frequency-depended dynamic network framework based on a
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time-varying vector autoregression (TVP-VAR) that allows to estimate con-
nectedness measures at each time point, unlike the traditional approaches that
gauge time dynamics by using moving windows. This feature offers to precisely
track and identify shocks within an observed period. Further, the (quasi)
Bayesian approach to parameters estimation enables to construct confidence
intervals of network measures.

Therefore, we employ Barunik & Ellington (2020) framework to explore the
volatility connectedness between Bitcoin and economic uncertainty. We select
three indexes to describe economic uncertainty. Each addresses the uncertainty
from a different point of view – the Economic Policy Uncertainty Index, cre-
ated by Baker et al. (2016), is based on media coverage of economic policy
uncertainty-related words. The VIX Index is known to indicate financial mar-
ket fear that stems from the market participants’ expected uncertainty. Lastly,
we construct a daily index of the EURQ Index developed by Bontempi et al.
(2021) to assess the public perception of uncertainty.

Although Bitcoin is still a developing asset1 its market capitalization reached
1.27 trillion USD in 2021 – putting Bitcoin among the top 20 stocks with the
highest market capitalization. Companies mining new Bitcoins are entering the
stock market, Tesla and Microstrategy are the most known companies to put
Bitcoin on their balance sheets. El Salvador has made Bitcoin its legal tender -
the first country in the world to make Bitcoin an official currency (Alvarez et al.
2022). Also, the first Bitcoin Exchange Traded Funds (ETF), which can attract
broader public interest in investing in Bitcoin, are being issued (Todorov 2021).
Hence, Bitcoin’s integration into the traditional financial system as well as the
real economy is becoming notable and a better understanding of the contagion
effects from several uncertainty indexes can help investors in selecting the right
investment strategy as well as regulators in issuing new regulations.

This thesis is structured as follows. Chapter 2 provides a description of
relevant literature. Chapter 3 describes the data collection process as well as
any data transformation that was done. The first part of Chapter 4 explains
the motivation behind the selection of the Dynamic Network framework, which
is then described and selected parameters for model estimation are presented.
Chapter 5 provides results and puts them into context. Chapter 6 then sum-
marizes and concludes the thesis.

1The exact definition of Bitcoin is not fully clear, although it was developed with the goal
of being a payment system. Its true nature seems to resemble a financial asset (Corbet et al.
2018)



Chapter 2

Literature Review

2.1 Bitcoin
Bitcoin is a decentralized payment system created by Nakamoto (2008) that
works on a peer-to-peer network. The design of the network allows users to send
or accept payments without a need for any overlook by a central authority. The
security is maintained through solving computationally demanding puzzles by
so-called miners. As a reward for the computational power consumed, miners
obtain newly issued Bitcoins (approx. every 10 minutes). The amount is based
on the predefined number that halves every four years. The first reward was 50
Bitcoins, currently, it is 6.25 BTC. Next halving is expected to happen at the
beginning of 2024. The supply is limited to 21 million coins. To modify certain
Bitcoin features require a majority agreement among the network’s users.

The literature on Bitcoin is quickly expanding and gaining attention of more
scholars, however it still remains relatively unexplored. Härdle et al. (2020) pro-
vides a comprehensive overview of the main research areas of cryptocurrencies.
A lot of attention is drawn to the placement of Bitcoin into the typical finan-
cial world (Baur et al. 2018). The name of cryptocurrencies might be a bit
misleading, as Bitcoin seems to have closer to a financial speculative asset than
currency (Corbet et al. 2018). A large focus is on the ability of Bitcoin to act as
a diversifier during turbulent market times, similarly as Gold (Shahzad et al.
2019; Urquhart & Zhang 2019; Gkillas & Longin 2019; Guesmi et al. 2019).
The parallel between Bitcoin and Gold mainly stem from the fact that Bitcoin,
just like gold, has a limited supply and new coins can not be created out of
thin air, but has to be mined. Bitcoin is thus sometimes referred to as Digital
gold. This idea prevailed until the COVID-19 bear market, when Bitcoin failed
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to act as a safe-haven (Conlon & McGee 2020; Kristoufek 2020). The conta-
gion effect from financial markets to Bitcoin vary across different time periods
and increased significantly during the COVID-19 crisis as documented by Guo
et al. (2021) and Wang et al. (2022) find. Other body of literature also stresses
the high volatility of cryptocurrencies (Zhang & Li 2020; Dutta & Bouri 2022),
thus to properly account for any movements, we collect high-frequency data
for Bitcoin prices in form of 5 minutes intervals. In this thesis, using the dy-
namic network framework, we explore the risk contagion among Bitcoin and
uncertainty in each time point from 2015 to 2022. Hence, each shock bearing
a contagion effect can be specifically identified and described.

2.2 EPU Index
Baker, Bloom, & Davis (2016) developed a news-paper-based economic policy
index, which observes articles in pre-selected newspapers. An article relevant
to EPU Index is recognized as follows: It must contain at least one word related
to economy, policy, and uncertainty categories. The number of relevant articles
is counted and rescaled to produce a quantifiable index. For most countries, the
index is created on a monthly basis. The reason for it, stated by Baker et al.
(2016), is that usually not enough articles exist to produce a meaningful daily
or weekly count. However, the US EPU index is also computed daily, thanks to
the Newsbank aggregator covering around 1,500 US newspapers. This amount
of daily news offers sufficient quantity to create a daily index. The daily US
EPU Index correlates at 0.85 with the monthly US EPU Index. Thus, it is
producing relatively similar results to the monthly index. This thesis will use
the daily US EPU Index since it allows to conduct a more precise analysis,
especially when considering the high volatility of the Bitcoin market.

Since its introduction, EPU Index has drawn considerable academic atten-
tion. The quantifiable changes in economic policy uncertainty recorded by the
index open the door to numerous analyses. Many studies focus on a linkage
between EPU and the stock market. Pástor & Veronesi (2012) analyzed how
changes in government policy affected stock prices and concluded that policy
changes should increase volatilities and correlation among stocks and stock
prices should fall on average with announcements of policy change. Subse-
quent studies used the EPU index, and the main results are that the EPU
index has a negative effect on stock returns, an increase in EPU index leads to
increased volatility and that the EPU index poses certain predictability pow-
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ers. Liu & Zhang (2015) observed that higher economic policy uncertainty
leads to an increase in stock price volatility. Further, adding the EPU index
into the volatility models can improve its forecasting accuracy. Phan et al.
(2018) made an extensive evidence study on the predictability of stock market
excess returns by the EPU index and found plausible evidence that the EPU
index can predict stock excess returns. Another body of literature is focusing
on a predicting volatility of stock market by the EPU Index (He et al. 2020),
global stock market risk (Tsai 2017), stock-bond correlation (Li et al. 2015) and
probability of US recession based on the EPU Index (Karnizova & Li 2014).

Though most of the studies concern the stock market, the EPU index is also
applied to other fields of economy. Shoag & Veuger (2016) state that local pol-
icy uncertainty resembles unemployment during the Great Recession. Balcilar
et al. (2015) controls for economic policy uncertainty to improve forecasts of
US inflation. Baker et al. (2016) found that sizable effects of economic policy
uncertainty exist on stock price volatilities, investment rates, and employment
growth.

The EPU index seems to be relevant for many economic and financial vari-
ables. It can be helpful for investors, policymakers as well as for regulators.
However, to our knowledge, only a scarce literature exists on Bitcoin rela-
tionship with the EPU Index. Most studies focus on predicting the price or
volatility of Bitcoin by the EPU Index (Demir 2018; Cheng & Yen 2020). Demir
(2018) find that the EPU Index can predict Bitcoin returns and a quantile on
quantile regression further shows that the relationship is positive during in-
creased time of uncertainty, suggesting that Bitcoin can serve as a diversifier
under uncertainty shocks. These results are consistent with (Bouri et al. 2017;
Wang et al. 2020).

Further studies investigate the connection on a local level. For instance,
Cheng & Yen (2020) found out that China’s EPU index can predict BTC
volatility, while the United States’, Japan’s, and Korea’s EPU indexes can not.
Shaikh (2020) also worked with countries’ EPU indexes and concluded that
overall, the USA and Japan EPU indexes have a negative effect on returns,
while China’s positive. However, as in other studies, the effects are opposite
in extreme times of uncertainty. Also, the author includes MPU (Monetary
Policy Uncertainty Index), which is estimated to be significant and negative.
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2.3 VIX Index
Chicago Board Options Exchange Volatility Index (VIX) represents another
index that tries to capture market risk and investor sentiment. This index
measures the expectation of volatility of the S&P index in the short term (30
days) based on index options since 1993. As it is believed that more volatility
in the market price signalizes higher fear among market participants, the VIX
index is also called the "fear index." The higher the index’s value, the higher
the market volatility and thus more uncertainty in the market.

The calculation of the VIX index includes call and put SPX options within
an expiration period between 23 and 37 days and risk-free treasury bill interest
rates. A calculation specified in the CBOE (2021) computes the expected
average 30-day implied volatility of the S&P index.

Several studies are already focusing on the relationships between Bitcoin
and the VIX index. Bouri et al. (2017) studied the relationship between VIX
and Bitcoin volatility during the 2013 bitcoin crash and found an inverse re-
lationship between Bitcoin and the VIX index. López-Cabarcos et al. (2021)
found out that Bitcoin volatility behaves differently across time. In periods
with higher VIX volatility, Bitcoin can be used as a safe haven, but when VIX
is more stable, bitcoin becomes more attractive to speculation. Al-Yahyaee
et al. (2019) also studied the relationship between bitcoin and the VIX index
in time frequency space with wavelet coherence and found that the VIX index
can have the power to predict the price of Bitcoin. The same result was also
obtained in another study done by Fang et al. (2019). Guo et al. (2021) ex-
plore the contagion effects from VIX Index to Bitcoin and finds that the pre-
and post-COVID periods substantially differ – Bitcoin is relatively independent
from VIX Index before the COVID-19 shock.

2.4 EURQ Index
Google Trends ability to measure public interest by a search volumes has draw
significant attention of a wide range of study fields. Google Trends data ap-
pears to possess a decent predictive powers, which motivates scholars to many
applications – forcasting stock movements and returns (Bulut 2018; Hamid &
Heiden 2015; Hu et al. 2018; Salisu et al. 2021; Preis et al. 2013), predicting a
private consumption (Woo & Owen 2019), modeling investor demand around
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earnings announcements (Drake et al. 2012), predicting public desease (Verma
et al. 2018; Cervellin et al. 2017).

Bontempi, Frigeri, Golinelli, & Squadrani (2021) developed the EURQ in-
dex that measures a volume of uncertainty-related searches. The authors of
the EURQ Index address important problems in gauging uncertainty based
on search queries. One of the problems is that the relation of a search of an
uncertainty-related term might not always be caused by an increase in uncer-
tainty but only by sole interest in a given term. Bontempi et al. (2021) provides
the term "European Central Bank" as an example - it can be searched to obtain
a view of the ECB on a debt crisis, thus an uncertainty related or because of
individual, extemporaneous research interest in ECB that is not uncertainty-
related. To mitigate this problem, authors carefully choose 184 word terms
in order to reflect changes in perceived uncertainty. For instance, word term
such as "tax rate" which is likely to be seasonally affected and searched in a
way that is unrelated to uncertainty. Authors of the EURQ Index use a term
"tax rate" − "calculator", where the − sign, in a Google trends methodology,
means that results contain searches with "tax rate" but exclude searches with
"calculator", hence removing a possibility of searching for "tax rate calculator",
which is expected to not be related to uncertainty. Moreover, the 184 terms
are closely related to the terms used in the media-based EPU Index. Thus, the
EURQ should provide information on how the public perceives the uncertainty
instead of the media.

Google Trends are known to suffer from a sampling error due to the fact
that the Trends is compiled from only unknown fraction of searches (Steegmans
2021). However, Bontempi et al. (2021) uses terms that are expected to have a
large search volume, thus potentially a lower variance. Furthermore all the 184
terms are summed together, so the effect of sampling error may be averaged
out. Consequently, it is not adjusted for the Google Trends sampling error as
it is assumed to be only minor.

Kristoufek (2013) was among the first to investigate the relationship be-
tween Bitcoin price and an interest in searches of the word Bitcoin. The results
indicates that an increase in Bitcoin search volume increases its price. More
recent paper from Arratia & López-Barrantes (2021) finds the same patter,
however stress that it changes over time.

In this paper, we use Google Trends to gauge the public perception of
uncertainty and by measuring volatility spillovers we assess how shocks are
transmitted in our network of variables in time.



Chapter 3

Data

This thesis examines the volatility connectedness of Bitcoin, a leading cryp-
tocurrency, the Economic Policy Uncertainty Index, the VIX Index and the
EURQ Index. Bitcoin prices, the EPU Index, VIX Index and the EURQ Index
dataset spans from April 10th, 2015 to February 23th, 2022.

Table 3.1: Descriptive Statistics

sample size = 1723 BTC EPU VIX EURQ
Min 0.000 0.127 9.140 0.033
Mean 0.002 0.479 17.90 0.107
Median 0.001 0.477 15.84 0.101
Max 0.110 0.953 82.71 0.351

Note: This table displays the mean, median and standard deviation for the
volatility of Bitcoin and three uncertainty indexes. The observed time period
spans from April 2015 to February 2022.

3.1 Bitcoin
The data on Bitcoin prices in 5 minutes intervals were obtained from www.
tradingview.com WebSocket1 API. We transform the Bitcoin price data and
the S&P 500 data to daily realized volatility in the following way:

RVt =
T∑︂

i=1
log

(︄
Pt,i

Pt,i−1

)︄2

1We extend on the following GitHub repository https://github.com/rushic24/
tradingview-scraper on accessing data from www.tradingview.com by allowing to down-
load more than 500 time points.

www.tradingview.com
www.tradingview.com
https://github.com/rushic24/tradingview-scraper
https://github.com/rushic24/tradingview-scraper
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where RVt is the realized volatility for a given day, T represents the total
number of intraday observations and pt,j is the closing price of the jth partition
on a day t. As is common in financial literature, we use log returns as they
typically follow a normal distribution (see Fergusson & Platen 2006). The day
for a Bitcoin price is partitioned into 5 minutes intervals, from 00:00-24:00,
following our dataset of 5-minutes Bitcoin prices and the fact that Bitcoin is
traded non-stop.

Figure 3.1: Realized Volatility of Bitcoin
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Note: The figure shows realized volatility computed from 5 min Bitcoin price
data from April 2015 to February 2022.

Figure 3.2: Volatility of the Economic Policy Uncertainty Index
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Note: The figure plots the volatility of the EPU Index in the time period April
2015 – February 2022.

As can be seen in Figure 3.1, the volatility of Bitcoin experienced several
shocks. A long time of high uncertainty can be noticed at the end of 2017 when
Bitcoin reached that all-time high of nearly 20,000$ and subsequently crashed
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to less than 11,000$. Further, the highest volatility of 0.11 is recorded during
the COVID-19 period.

3.2 Uncertainty indexes
In this thesis, three uncertainty indexes are used. First, we use the Economic
Policy Uncertainty (EPU) Index, which measures the uncertainty about eco-
nomic and policy action from the media point of view. Secondly, the CBOE
Volatility Index (VIX index) is a measure of market uncertainty stemming
from the implied volatility of S&P 500 options. Moreover, Google Trends
Uncertainty Index, a search-based index, uncovers how the public perceives
uncertainty. The following three subsections provide information on how data
for each index were obtained.

3.2.1 EPU Index

The economic policy uncertainty index is retrieved from https://www.policyu
ncertainty.com. The website is run by Baker et al. (2016). We use the US EPU
index, which is computed daily. The global EPU index is only calculated on a
monthly scale and thus does not provide the desired frequency for our analysis.
The daily EPU Index, however, experiences many fluctuations and sudden
drops to low values from day to day with no particular trend. That effect is
pervasive in tranquil times. The reasons for it could be attributed to counting
words from newspaper articles. When economic policy-related words are not
under substantial interest, the word volumes are driven more by randomness
or other events unrelated to uncertainty. When the volatility was calculated
as the square root of log returns, the results were very misleading. Hence, we
estimate volatility as a 14-day rolling standard deviation of log returns.

3.2.2 VIX Index

The VIX index daily values were collected from the Chicago Board Options
Exchange website. As for S&P 500, the VIX index is computed on a business
day resulting in a total of 1723 observations. The VIX Index itself describes
volatility, hence we do not transform it in any way.
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Figure 3.3: CBOE Volatility Index (VIX)
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Note: In this figure, the VIX Index values are depicted, ranging from April
2015 to February 2022.

3.2.3 Google Trends Uncertainty Index

The EURQ index is computed every month, however, for this thesis analysis,
day observations are more suitable. Therefore we use the EURQ Index search
terms and compute daily values. Although data from Google trends are easily
accessible2, two characteristics set by Google complicate the creation of a daily
index for a long time period.

1st Charactericts The time-frequency of search values is set by Google
and is based on the observed time period (Table 3.2).

2nd Charactericts The results are scaled by a maximum number of
searches of a given term in an observed time period.

Firstly, following 1st Characteristics it is not possible to obtain daily data for
a long-time period in one download3. A possible solution would be to connect
shorter periods with daily values to obtain values for a 5-year period. However,
this method is not viable given the 2nd Characteristics . Changing periods will
likely change the scaling factor, as a maximum number of searches in different
periods are expected to be different, and thus make the connection of shorter
periods unreliable.

Secondly, the 2nd Characteristics prevents to sum results for different word
terms. Hacamoyand et al. (2011) use a method to make word terms comparable
and subsequently applicable to sum. This method uses the feature "compare"

2https://trends.google.com/
3Google only allows to obtain daily values up to approximately nine months period, then

the frequency is weekly.
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Figure 3.4: Volatility of the EURQ Index
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Note: This figure shows the volatility of the EURQ Index from April 2015 to
February 2022.

of Google Trends, which allows to compare up to 5 word terms. The scale
is always the maximum number of searches across all word terms. Thus, Ha-
camoyand et al. (2011) proposes to find a term that has, among selected terms,
the maximum number of searches and set it as a benchmark, which is used
for each iteration of the "compare" feature - 4 terms change, the benchmark
remains the same. Since we search for values in many time periods, finding a
benchmark for selected word terms for the EURQ index can be quite challeng-
ing as we need to have a word with the maximum number of searches among
all terms and also in each period. Another challenge in selecting a proper
benchmark is that it should not be a word that is searched a lot relative to
other terms, as the relative results for the other terms could be 0 or close to
0. Bontempi et al. (2021) uses the benchmark method to sum different terms,
but do not provide the benchmark term. Hence, in the end, the term "social
security" was selected as our benchmark. It satisfies all conditions of a bench-
mark and has one of the lowest search volumes, so in comparison with less
searched terms, words with non-zero values are still obtained. Now, it is pos-
sible to aggregate search volumes of different terms and thus create an index
representing all search terms. Further, daily values of the index need to be
connected to have values for desired 5 years period. As 1st Characteristics and
2nd Characteristics imply the daily values of different periods can not be simply
merged together. Hence, we apply algorithm4 based scaling by overlapped pe-

4The algorithm is based on the following GitHub repository: https://github.com/
qztseng/google-trends-daily

https://github.com/qztseng/google-trends-daily
https://github.com/qztseng/google-trends-daily
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Table 3.2: Google Trends Time Resolution

Time Period Data Frequency
last 7 days hourly
36 hours – 269 days daily
269 days – 5 years weekly
5 years+ monthly

Note: This table displays an overview of what Google Trends data frequency
is provided by Google for a selected time period.

riods. Firstly, the whole time frame of 5 years is divided intervals of maximum
length of 9 months (when daily values are obtained from Google Trends) with
100 day overlap for neighborhood intervals. Search volumes for these intervals
are then downloaded5. The scaling of the intervals is done by a ratio of max
values in the overlapped period of two neighborhood intervals.

For example, let’s consider an interval t1 = [1, 200] and t2 = [101, 300], with
overlap period of 100 days op = [101, 200]. Then, we define intersections of op

with t1 and t2 as z1 = t1 ∩ol and z2 = t2 ∩ol then the rescaling factor is defined
in a following way:

r = max(z2)
max(z1)

Rescaling is done on the next interval, just note that the process works back-
ward, hence t2 is obtained and then the rescaling ratio is applied for the latest
interval, i.e. t1. So, in this case, the daily index for time period of t2 ∪ t1 results
in I = (t2 \ z2) ∪ (t1 · r). This algorithm is used on all intervals and in the end,
a daily index for the desired time period of more than 9 months is obtained.

As well as the monthly EURQ Index defined by Bontempi et al. (2021)
suffers from seasonality, our daily version also experiences seasonal effects. We
employ Ollech (2018) method that is specifically designed remove seasonallity
from daily time series. A Seasonal Trend Loess regression (STL) is applied
iteratively to decompose a time series into a trend, seasonal and irregular com-
ponent. Also, the RegARIMA model is used to correct for calendar and outlier
effects. Further, we proceed with the computation of volatility. Given that,
during calm times, the search frequencies are lower and variance is higher,
sharp jumps between days are very common. So a simple square root of daily

5Using Python package PyTrends freely available at https://pypi.org/project/
pytrends/

https://pypi.org/project/pytrends/
https://pypi.org/project/pytrends/
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log return would not appropriately account for the variance as all the jumps
would result in high volatility. To eliminate the influence of sharp jumps in
calm periods, we estimate volatility as a standard deviation of the previous 14
days log returns (resulting in dropping the first 14 days).



Chapter 4

Methodology

4.1 Dynamic Network Framework
Barunik & Ellington (2020) elaborate on Diebold & Yilmaz (2012) and Barunik
& Krehlik (2018) to propose a time-varying parameter vector autoregression
(TVP-VAR) to estimate Dynamic Network connectedness through an adja-
cency matrix defined by a time-varying variance decomposition matrix. The
TVP-VAR (p) with assets following a locally stationary process is given by

X t,T = Φ1(t/T )X t−1,T + . . . + Φp(t/T )X t−p,T + ϵt,T (4.1)

where (Φ1(t/T ), ..., Φp(t/T ))T refers to the time-varying coefficients, X t,T =
(X1

t,T , . . . , XN
t,T )T is a vector of variables, p is the lag order, ϵt,T is the residual

term, t is the time index and T is the final time observation. The process Xt,T

can be regarded as weakly locally stationary if it can be, in a neighborhood
of a fixed time point, approximated by a stationary process. Additionally,
time is rescaled into a continuous time parameter u = t/T , for t ∈ [1, . . . , T ].
Furthermore, the TVP-VAR process follows vector moving average VMA(∞)
(Dahlhaus & Polonik 2009; Roueff & Sanchez-Perez 2018)

X t,T =
∞∑︂

h=−∞
Ψt,T (h)ϵt−H . (4.2)

where Ψt,T (h) is a stochastically bounded process containing an infinite number
of lags and hence has to be approximated with a finite number of horizons.

The connectedness measure stems from a variance decomposition as we can
assess how much of a shock in a variable j is transferred to the system of vari-
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ables. In Barunik & Ellington (2020) setting, the decomposition is done by
transforming the information in Ψt,T (h). Standard variance decomposition is
assessed by Cholesky decomposition, which assumes certain order of variables in
which the shock will progress. However, the shocks do not have to appear alone,
hence Barunik & Ellington (2020) uses Pesaran & Shin (1998) method of a gen-
eralized identification scheme that does not require any ordering and adjusts
it to a locally stationary process. To include frequency domain, developed by
Barunik & Krehlik (2018), Barunik & Ellington (2020) apply time-varying lo-
cal frequency response function (FRF) of a shock Ψ(u)e−iω = ∑︁

h e−iωhΨ(u, h),
where i =

√
−1. The FRF measures how the shock propagates through the sys-

tem at each time-frequency, i.e. each time horizon (Hanus & Vacha 2018). The
following equation then describes the core block in the network construction -
the adjacency matrix (Barunik & Ellington 2020):

[θ(u, d)j,k] =
σ−1

kk

∫︁ b
a

⃓⃓⃓
[Ψ(u)e−iω ∑︁∑︁∑︁(u)]j,k

⃓⃓⃓2
dω∫︁ π

−π

[︂
{Ψ(u)e−iω}∑︁∑︁∑︁(u) {Ψ(u)eiω}T

]︂
j,j

dω
(4.3)

where ∑︁∑︁∑︁(u) represents time-varying covariance matrix.
The adjacency matrix is an important element in the network literature.

To follow the correct terminology of network literature – nodes are variables
and edges are the connections between nodes. The adjacency matrix then de-
scribes interconnections among nodes in a matrix way. Commonly, adjacency
matrices values are binary, i.e. a connection exists or not. The frequency-
dependent dynamic adjacency matrix defined by Barunik & Ellington (2020)
provides weighted edges that reflect the connection’s strength. Further, clas-
sical network structures have a symmetric adjacency matrix. Such networks
are called undirected and do not differentiate between a direction of a con-
nection between two nodes. Barunik & Ellington (2020) allows for a directed
connections, i.e. the link of nodes k to j can be different to link between j to
k.

Having defined the adjacency matrix with all the necessary network infor-
mation, useful metrics concerning network characteristics can be derived. The
total connectedness measure at a time point u and frequency d is defined as
the ratio of the off-diagonal values to the sum of the entire matrix:

C(u, d) = 100 ·
∑︁N

j,k=1,j ̸=k[θ̃(u, d)]j,k∑︁N
j,k=1[θ̃(u, ∞)]j,k

(4.4)
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where θ̃jk is the normalized adjacency matrix by corresponding row sums since
the rows sum of the adjacency matrix does not always sum to one (Barunik &
Ellington 2020).

Using the property to measure directional connectedness, so-called to con-
nectedness can be defined as a shock from the system to a variable j by summing
all directional edges to a variable j weighted by the sum of the whole matrix
(Barunik & Ellington 2020):

Cj←•(u, d) = 100 ·
∑︁N

k=1,j ̸=k[θ̃(u, d)]j,k∑︁N
j,k=1[θ̃(u, ∞)]j,k

(4.5)

Analogically, from connectedness is defined:

Cj→•(u, d) =
∑︁N

k=1,j ̸=k[θ̃(u, d)]k,j∑︁N
j,k=1[θ̃(u, ∞)]kj

(4.6)

By subtracting the from connectedness from to connectedness for a variable j it
can be assessed whether the variable is a net receiver or transmitter of shocks
(Barunik & Ellington 2020):

CNET
j (u, d) = Cj→•(u, d) − Cj←•(u, d) (4.7)

Lastly, we define a ratio that measures how much of the total connectedness
is driven by just a subset of variables. An off-diagonal sum of a sub-matrix of
variables of interest is divided by the off-diagonal sum of the whole matrix.

R(u, d) = 100 ·
∑︁N

j,k=1,j ̸=k[θ̃(u, d)]j,k · 1j∈S∑︁N
j,k=1,j ̸=k[θ̃(u, ∞)]j,k

(4.8)

where 1j∈S is the indicator function that specifies whether a variable j is part
of the selected subset of variables S.

In our case, we use the R ratio to determine how much of the total connect-
edness is driven solely by the connectedness among economic uncertainty.

4.2 Model Estimation
The model proposed by Barunik & Ellington (2020) is estimated by Quasi-
Bayesian Local-Likelihood (QBLL). This estimation applies a Gaussian kernel
weighting function that adds more weight to observations that are close to the
time point at which the model is being estimated (Petrova 2019). Barunik &
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Ellington (2020) further stresses an important feature of the QBLL method:
capturing a distribution of a network’s measures parameters, which allows for
the construction of parameters’ confidence intervals.

Regarding assumptions, inputed time-series should follow a locally station-
ary process. As Barunik & Ellington (2020) explains, a locally stationary pro-
cess can be understood as a process that can be approximated by stationary
ones on small intervals around a fixed time points. To our knowledge, no
formal test was found in the existing literature and following other studies
using the same methodology, we assume that our selected variables follow a
locally stationary process. Furthermore, in classical TVP-VAR models, time-
varying parameters have to follow specific distribution, however, thanks to
QBLL estimation proposed by Petrova (2019) the time-variation enters in a
non-parametric way hence no assumption on the law of motion is required. Fi-
nally, the model allows for heteroskedasticity, hence there is no need to adjust
for it (Barunik & Ellington 2020).

To estimate the model, several specifications are required. Firstly, a number
of lags need to be determined. Commonly, a lag selection is usually based on
Information Criterion. However, upon examination of results with a different
number of lags p ∈ {2, 5, 10} results for network measures did not change dra-
matically hence we chose to follow the common practice of p = 2. Secondly, a
number of horizons have to be specified. That is to approximate the infinite
VMA(∞). Barunik & Ellington (2020) use H = 100 and report that for differ-
ent quantities of H (50, 100 and 200) the results are close to identical. Hence,
we also set H = 100 for the estimation of the TVP-VAR model. Thirdly,
the kernel’s bandwidth, also known as a smoothing parameter, specifies how
smooth are the network measures (Barunik & Ellington 2020). Setting a large
bandwidth produces a smoother and more gradual time-evolution of results,
while shorter bandwidth results are usually more volatile and experience sharp
jumps. As Barunik & Ellington (2020) explains, it is because the larger band-
width is, the Gaussian kernel weighting function weights the larger number of
observations in the neighborhood of an estimated time point. Further, by simu-
lating several processes Barunik & Ellington (2020) find that larger bandwidth
values tend to have a lower fit. The length of the kernel’s bandwidth is set to
W = 7. In case of the horizon-decomposition, we set the intervals similarly to
Barunik & Ellington (2020) – short-connectedness from 0 to 5 days, medium
from 5 to 20 and above 20 is considered as a long-term. Finally, 500 simulations
are drawn from the quasi posterior distribution at each time point, similarly to
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Barunik & Ellington (2020). And importantly, the estimation is done without
correlation, i.e. the covariance matrix ∑︁∑︁∑︁(u) is diagonalized, thus, the contem-
poraneous effects are removed, which results in the network connections with
the causal interpretation.

With above specification and N = 4 variables, T = 2533 and p = 2 following
TVP-VAR is estimated:

Xt,T = Φ0(t/T ) + Φ1(t/T )Xt−1,T + Φ2(t/T )Xt−2,T + ϵt,T

where Φ0(t/T ) are intercepts, Φ1(t/T ), Φ2(t/T ) are the model’s parameters
and Xt,T is

Xt,T =

⎛⎜⎜⎜⎜⎜⎜⎝
BTCt

EPUt

V IXt

EURQt

⎞⎟⎟⎟⎟⎟⎟⎠
and ϵt,T is the error term.

Barunik & Ellington (2020) distribute package in programming language
JULIA that estimates the TVP VAR model and computes above model defined
measures. Further, it is possible to obtain adjacency matrices values for each
time observation, simplifying an additional individual analysis of the network.



Chapter 5

Results and discussion

The main results show that Bitcoin is mainly a net-receiver of volatility from
uncertainty indexes throughout our observed period. However, as Figure 5.1
displays, only a few periods show a significant volatility spillover. Furthermore,
the contagion effect during most events is very subtle. One exception was the
COVID-19 crisis when Bitcoin received substantially more than in the other
periods. The main uncertainty transmitter to Bitcoin changed over time. In
the pre-COVID-19 period, a lot of contagion originated from the EPU Index,
as is seen in the Figure 5.5. The VIX Index was the strongest transmitter of
uncertainty during the COVID-19 period and the spillover from VIX Index to
the Bitcoin market remained even after the initial COVID-19 shock. During
the period of inflation fears at the end of 2021, contagion toward Bitcoin was
driven by the EURQ Index, describing the public perception of uncertainty.

The Figure 5.1 exhibits that Bitcoin also contributed to the network. No-
tably, during the burst of the Bitcoin bubble at the end of 2017, Bitcoin was
transmitting volatility shocks to the uncertainty indexes. Even more intense
spillover from Bitcoin to economic uncertainty emerged during the COVID-19
crisis. Implying that Bitcoin can possess some information that transfers to
the economic uncertainty.

The Figure 5.2 presents the total connectedness of our network together
with a line showing how much of the total connectedness is driven by the
connectedness among uncertainty indexes. Further, the Figure 5.3 shows the
decomposition of the total connectedness into short-, medium- and long-term
connectedness. Note that the horizon specific connections sum to the total
connectedness.

The most significant connection within the system is formed at the beg-
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Figure 5.1: Directional TO and FROM Connectedness for Bitcoin

Note: The figure on the left shows directional to connectedness Cj←•(u, d) stem-
ming from Equation 4.5 for Bitcoin. The figure on the right then plots from
connectedness Cj→•(u, d) defined in Equation 4.6 for Bitcoin. The grey areas
depict, in both figures, 95 % confidence bands.

ging of the COVID-19 outbreak. In Figure 5.3 it can be noticed that long-
term connectedness surpasses short- and medium-term connectedness during
the COVID-19 shock. Such occurrence is also present in Barunik & Ellington
(2020) measure of connectedness within S&P 500 sectors, where as well during
turbulent times, long-term connectedness passes short-term connectedness. At
the end of 2022, long-term connection rose above the short-term one but never
above both of the shorter horizons as it did during the COVID-19 period. As
Barunik & Krehlik (2018) explains, fundamental changes in investors’ expecta-
tions may have a long-term impact on the system of variables. In the case of the
COVID-19 connectedness, the long-term connectedness was very likely driven
by the exogenous nature of the shock and little knowledge surrounding the
virus at that time. Both of these reasons might led to a challenging assessment
of the COVID-19-induced uncertainty, resulting in long-term connectedness of
uncertainty. Further, as Figure A.1 displays, most of the uncertainty was driven
by the VIX Index, while Bitcoin, the EPU Index and the EURQ Index were
mainly receivers. The Figure 5.4 then shows the state of the network during
its highest total connectedness on March 11, 2020, which is around the period
of the highest stock market falls during COVID-19 bear market.

A short-term connectedness is mainly formed when agents process informa-
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tion rapidly, so a shock to a variable causes only short-term cyclical behavior
(Barunik & Krehlik 2018). The short-term connectedness seems to prevail in
our observed period. In quiet times or after a shock, e.g. COVID-19, the domi-
nance of a short-term connectedness emerges as faster processing of uncertainty
shocks results in shocks being only short-lived. Short-term connectedness also
seems to lead even during a mild shock. Although the total connectedness pro-

Figure 5.2: Total Dynamic Network Connectedness

Note: This figure plots the total connectedness of our system of variables C(u, d)
from Equation 4.4 on y-axis. Grey areas represent 95 % confidence intervals of
the total network connectedness. The red line is the ratio describing how much
of the connectedness is driven by connectedness among uncertainty indexes
described in Equation 4.8.

vides valuable insights into the network as a whole, we are more interested in
the connectedness of Bitcoin with the uncertainty indexes and mainly with the
EPU Index. To investigate this connectedness, we plot TO, FROM connect-
edness in the Figure 5.1 and NET connectedness in the Figure 5.6 for Bitcoin.
Generally, Bitcoin can be considered a net receiver of shocks of uncertainty.
The most intensive shock to Bitcoin was transferred during the COVID-19 bear
market and around 80% of that shock came from the VIX Index. The EPU
Index accounted only for less than 10%. During the 2017 Bitcoin Crash, when
the total connectedness was mainly dominated by the connectedness between
Bitcoin and uncertainty indexes, Bitcoin was a net transmitter of uncertainty.
The highest values of that directional connectedness from Bitcoin to the sys-
tem appeared around 22.12.2017, a day when Bitcoin fell by 45%. In figure
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Figure A.5 it can be seen how the shock was evenly distributed among all three
uncertainty indexes on that day.

Figure 5.3: Horizon Specific Decomposition of Total Connectedness

Note: The total connectedness decomposition into short-, medium- and long-
term connectedness is depicted in the above figure. The red line describes
the long-term connectedness, the blue line the medium-term and the green
the short-term. Shaded areas in corresponding colors to lines represent 95 %
confidence intervals.

Bitcoin is a net receiver during an increased connectedness amid inflation
fears and reports about reducing asset purchases. In December, the Federal
Open Market Committee (FOMC) reported a further decrease in asset pur-
chases and several possible increases in interest rates in 2022. Thus, giving
a signal of tightening the USA’s monetary policy and turning the focus from
pandemic recovery to fighting inflation. In this period, uncertainty was mainly
transmitted from the public-based EURQ Index. We hypothesis that most of
the public fear was influenced by the rising inflation that is easy to detect for a
person and has a direct impact on lowering a person’s budget constraint. Such
influences conceivably drove public uncertainty , estimated by the EURQ Index
during that time. Our results show that this uncertainty was mainly transferred
to the media-based EPU Index, i.e. the opposite direction of influence is no-
ticed as the EPU Index is usually a transmitter of shocks to the EURQ Index
(Figure A.2, Figure A.3). Also, Bitcoin was a substantial receiver of that shock
from the EURQ Index, while the VIX Index remained largely intact. Suggest-
ing that the Bitcoin market was more sensible to the increased uncertainty
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Figure 5.4: Snapshot of the Network on March 11, 2020

BTC

VIX

EPU

EURQ

Note: This figure shows the directional connectedness among the network on
March 11, 2020.

likely driven by public inflation fears than the VIX Index representing financial
market uncertainty.

Before the COVID-19 outbreak, five significant shocks can be noticed – in
three cases, Bitcoin was a net-receiver (May 2015, December 2016, October
2018) and in the other two a net-transmitter (February 2017, November – Jan-
uary 2017). Chronologically, in May 2015, most of the uncertainty to Bitcoin
was coming from the EURQ Index, the EPU Index attributed by about rel-
atively 40 % from the three uncertainty indexes (Figure 5.5). In December
2016, Bitcoin was a net-receiver until February 2017, when Bitcoin started to
transmit uncertainty to the system of variables. During that period, the EPU
Index rose dramatically in two days, when FED announced a raise in interest
rates for the second time since 2008. This action likely led to an increase in
the EPU Index volatility and Bitcoin seems to receive some of this shock.

From November to January 2017, Bitcoin was a strong net-transmitter of
uncertainty. It is the longest Bitcoin’s transmission of shock to the system of
variables in our time period. Also, as can be seen in Figure 5.2, during that
time, the relative connectedness of Bitcoin with the three uncertainty indexes
was at its top. The background in this period is that Bitcoin’s price surged
to nearly 20,000$ and then fell below 11,000$. The shock was quite uniformly
distributed among all three uncertainty indexes.

The shock in October 2018, when Bitcoin was a net-receiver, was intense but
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Figure 5.5: Decomposition of TO Connectedness to Bitcoin

Note: This figure describes the relative distribution of TO connectedness to
Bitcoin from the three uncertainty indexes.

short-lived. Although, more extended periods of mild net-receiving for Bitcoin
preceded and followed the October 2018 shock, which was likely mainly caused
by the stock market turmoil. The announcement of a rate increase by the FED
on 25th September 2018 did not lead to any dramatic shock this time. The
shock started in late October and culminated in November when Bitcoin fell
from around 6,500$ to 3,500$.

In quiet time, however, the connectedness weakens and the transmission of
uncertainty is deficient. These results appear to be in line with Bouri et al.
(2017) and Wang et al. (2019) that stated that the relationship between the
EPU Index and Bitcoin is mainly negligible but becomes significant during
increased time of uncertainty. In the case of the VIX Index, we can confirm
the increased contagion during the COVID-19 period, as stated by Guo et al.
(2021). Further, we provide more evidence on the pre-COVID-19 period, when
we identify several significant spillover periods and their background. Also, we
capture the contagion effect from the EURQ Index to the whole system.
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Figure 5.6: NET Directional Connectedness for Bitcoin

Note: The net connectedness for Bitcoin defined as the difference between to
connectedness and from connectedness (Equation 4.7) is plotted in this figure.

The interpretation of results should take into consideration the sensitivity
of our measure to the type of volatility, especially in the case of the EPU
Index, which exhibits sharp day-day jumps, which does not necessarily have to
correspond to changes in uncertainty. These jumps can create large jumps in
volatility and, consequently, a false connectedness. While we tried to control
for it by computing volatility as a 14-day rolling standard deviation, some
inaccuracy might still be present. Also, the jumps may be caused by counting
words related to uncertainty in a newspaper. Firstly, it can not always be
determined whether the increase in word count truly reflects an increase in
uncertainty. Secondly, certain uncertainty unrelated events can take up media
space, thus lowering uncertainty word count and the EPU Index, while there
was no real decrease in uncertainty.



Chapter 6

Conclusion

This thesis investigates the volatility connectedness between Bitcoin and three
uncertainty indexes – the Economic Policy Uncertainty Index, the VIX Index
and the EURQ index derived from Google Trends – that asses uncertainty
from different points of view. Our findings show several significant volatility
spillover effects during an increased time of uncertainty. Most notable is the
uncertainty spillover effect in the course of the COVID-19 crisis, when Bitcoin
received most of the risk from the VIX Index. Also, we show that Bitcoin acted
as a receiver of EURQ index induced shock in uncertainty amid inflation fears
at the end of 2021.

Further, we identify 3 significant shocks before 2020 – May 2015, December
2016 and October 2018 – when Bitcoin received risk spillover from uncertainty
indexes and primely from the EPU Index. It is hard to asses the true motives
behind the EPU Index shocks, however in both December 2016 and October
2018, the beginning of risk spillover was marked by the FED interest rate rise.
Spillover effects from Bitcoin to economic uncertainty emerged during the 2017
Bitcoin crash and the COVID-19 period, hinting that Bitcoin is not irrelevant
to economic uncertainty.

Nonetheless, apart from the COVID-19 crisis, the contagion effects are
vastly bland, suggesting that Bitcoin is independent of uncertainty indexes dur-
ing calm times, embrace a subtle contagion during mild periods of increased
uncertainty, but fails to protect against a widespread and an intensive economic
uncertainty.

Following research could incorporate more cryptocurrencies to extend the
analysis on the cryptocurrency market. Further, a good and bad volatility could
be distinguished to see which type of volatility shocks drive the connectedness.
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Appendix A

Figures
Figure A.1: Directional TO and FROM Connectedness for the VIX

Index

Note: The figure on the left shows directional to connectedness Cj←•(u, d) for
the VIX Index. The grey areas depict 95 % confidence bands.

Figure A.2: Directional TO and FROM Connectedness for the EPU
Index

Note: The figure on the left shows directional to connectedness Cj←•(u, d) for
the EPU Index. The grey areas depict 95 % confidence bands.



A. Figures II

Figure A.3: Directional TO and FROM Connectedness for the EURQ
Index

Note: The figure on the left shows directional to connectedness Cj←•(u, d) for
the EURQ Index. The grey areas depict 95 % confidence bands.

Figure A.4: NET Directional Connectedness for the EPU Index

Note: The net connectedness for the EPU Index is plotted in this figure.



A. Figures III

Figure A.5: Snapshot of the Network on December 22, 2017

BTC

VIX

EPU

EURQ

Note: This figure shows the directional connectedness among the network on
December 22, 2017.
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