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Introduction
By classical result due to Raynaud and Gruson [Raynaud and Gruson, 1971] and
its later corrected proof by Perry [Perry, 2010], projectivity of modules descends
through faithfully flat ring homomorphisms. That is if R→ S is a faithfully flat
homomorphism of commutative rings andM is an R-module such thatM⊗RS is a
projective S-modules, thenM is a projectiveR-module. This result has important
corollaries in algebraic geometry, where it among other things assures locality of
(possibly infinite dimensional) vector bundles. This classical result has since
been generalized. Notably the original setting doesn’t contain commutative ring
homomorphisms, which split as module homomorphisms. These need not be flat,
but projectivity does descend through them. This leads to considering pure ring
homomorphisms, which encompass both split and faithfully flat homomorphisms.
This setting is further bolstered by the fact, that pure ring homomorphism are
precisely effective descent morphisms, that is morphisms providing a version of
descent in more abstract categorical setting, e.g. in Mesablishvili [2000], where an
original unpublished proof is attributed to Joyal and Tierney. Projectivity does
in fact descend through pure homomorphisms of commutative rings, as shown in
[Angermüller, 2015], in this thesis it is proven as Theorem 7.14.

Further possible generalization is in showing descent for different module prop-
erties, e.g. pure projectivity, or, as this thesis attempts, projectivity relative to a
class of finitely presented modules, of which pure projectivity and projectivity are
special cases. Pure descent for pure projectivity is currently being studied in an,
as of writing of this thesis, unpublished work [Herbera et al.]. We prove it inde-
pendently as Theorem 7.14. Relative properties have been studied e.g. in [Mehdi,
2013], without the context of descent. Here we prove faithfully flat descent for
relative projectivity as Theorem 7.16. The question, whether the hypothesis of
flatness can be weakened, remains open.

Another generalization that we explore is a shift to homomorphisms of non-
commutative rings. Non-commutative version of the classical proof of Raynaud
and Gruson is mentioned in [Osofsky, 1979] for right pure ring homomorphisms
in a priori presence of flatness, though the cited source doesn’t provide the proof.
In this thesis we provide a rigorous proof of descent of projectivity for ring ho-
momorphisms which are pure as both left and right module homomorphisms and
already descend flatness (Theorem 7.13 (A)). In the case of descent for pure
projectivity a stronger variant of ring homomorphism purity is needed – that of
reflecting pure epimorphisms. For such ring homomorphisms, we prove descent
of pure projectivity (Theorem 7.13 (B)). For such homomorphisms that are also
flat we prove the descent of relative projectivity (Corollary 7.15).

In this text Chapters 1 and 2 recall important facts about modules in gen-
eral and Mittag-Leffler modules respectively. Next two chapters are concerned
with relative module properties, Chapter 3 establishes construction of Auslander-
Bridger transpose, which is used in Chapter 4, where relative module properties
are defined and where we prove important facts about them, including variants
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of Kaplansky’s theorem, Lazard’s theorem and Drinfeld characterization of rela-
tively projective modules.

Chapter 5 defines the notions of ascent and descent for (relative) module
properties and sketches the connection to local properties. Chapter 6 is concerned
with different variants of purity for homomorphisms of non-commutative rings.

Chapter 7 then proves ascent and descent for various module properties over
ring homomorphisms satisfying various conditions. In Chapter 8 the results are
applied to a particular type of non-commutative ring homomorphisms, namely
central extensions of pure and faithfully flat central ring homomorphisms.

4



1. Preliminaries
All rings in this text are associative unitary. Pure homomorphisms, projective
and flat modules have their usual meaning, though proper definitions are given
later in Chapter 4, any undefined notation has standard meaning, generally as in
[Göbel and Trlifaj, 2006].

1.1 Selection of general theorems
Some proofs later in this thesis use or are direct applications of theorems and
facts from module theory, which hold in a more general setting and whose detailed
proof might obstruct the idea of presented proof. Such theorems and facts are
recounted and proven here. For this section we fix a ring R, all modules are
considered right R-modules.

First of these is a general countable version of Kaplansky’s theorem, which will
be applied on case of relative projective modules.

Lemma 1.1. Let M ⊕ N = ⨁︁
i∈I Qi, m ∈ M be an element. Then there is a

countable subset I ′ ⊆ I and countable generated submodules M ′ ⊆ M , N ′ ⊆ N
such that M ′ ⊕N ′ = ⨁︁

i∈I′ Qi and m ∈M ′.

Proof. We construct chains (Mn)n<ω and (Nn)n<ω of countably generated sub-
modules of M and N respectively and a chain of subsets (In)n<ω such that
m ∈ M0 and for each n < ω we have Mn ∩ Nn = 0, Mn ⊕ Nn ⊆

⨁︁
i∈In

Qi

and ⨁︁
i∈I Qi ⊆ Mn+1 ⊕ Nn+1. Then putting M ′ = ⋃︁

n<ωMn, N ′ = ⋃︁
n<ωNn and

I ′ = ⋃︁
n<ω In will be as required.

Put M0 = mR, N0 = 0. For n < ω if Mn, Nn are defined, put In = {i ∈
I | πi(Mn ⊕ Nn) ̸= 0} where πi are canonical projections. Set In is countable,
as Mn ⊕ Nn is countably generated and each of its generators x ∈ ⨁︁

i∈I Qi is
only non-zero at finitely many components. If the set In is defined, we put
Mn+1 = πM (⨁︁i∈In

Qi) and Nn+1 = πN (⨁︁i∈In
Qi) where πN , πM are the re-

spective canonical projections. Modules Mn+1 and Nn+1 are countably gener-
ated as epimorphic images of a countably generated module ⨁︁i∈In

Qi and clearly⨁︁
i∈In

Qi ⊆Mn+1 ⊕Nn+1.

Theorem 1.2 (Kaplansky). Let R be a ring, T be a class of at most countably
generated R-modules. Then a module M ∈ Add(T ) is isomorphic to a direct sum
of countably generated modules in Add(T ).

Proof. Take M ∈ Add(T ), that is M ⊕ N = ⨁︁
i∈I Qi for some module N and

modules Qi ∈ T . Choose a well ordering on M = {mα | α < κ} by a cardinal
κ. Then construct by transfinite induction non-decreasing chains of modules
(Mα)α<κ, (Nα)α<κ and a non-decreasing chain (Iα)α<κ of subsets of I such that
for every α < κ we have Mα ⊕Nα = ⨁︁

i∈Iα
Qi.

Take Iα = ∅, M0 = N0 = 0. If Mα for an α < κ is already constructed,
construct Mα+1 as follows. If mα ∈ Mα, take Mα+1 = Mα. Otherwise consider
element mα+Mα ∈M/Mα⊕N/Nα = ⨁︁

i∈I\Iα
Qi. Find M ′

α, N ′
α and I ′

α as M ′, N ′
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and I ′ in the Lemma. Put Mα+1 = M ′
α+Mα, Nα+1 = N ′

α+Nα and Iα+1 = Iα∪I ′
α.

Because ⨁︁i∈Iα+1 Qi = ⨁︁
i∈Iα

Qi ⊕
⨁︁

i∈I′
α
Qi necessarily already Mα+1 = M ′

α ⊕Mα

and Nα+1 = N ′
α ⊕ Nα. For a limit ordinal β < κ put Mβ = ⋃︁

α<βMα, Nβ =⋃︁
α<β Nα, Iβ = ⋃︁

α<β Iα.
Now for α < κ we have mα ∈ Mα+1, Mα+1 = Mα ⊕ M ′

α for a countably
generated M ′

α ∈ Add(T ) and for a limit β < κ we have Mβ = ⋃︁
α<βMα. Then

clearly M = ⋃︁
α<κMα = ⨁︁

α<κM
′
α and the theorem holds.

Next two lemmas deal with useful properties of directed limits with respect
to finitely presented modules.

Lemma 1.3. Let M = lim−→i∈IMi be a direct limit of a directed system (Mi; fji)i∈I .
Let Q be a finitely presented module and g : Q → M a module homomorphism.
Then there exists an index i ∈ I and a map g′ : Q → Mi such that g = fig

′,
where fi : Mi →M is the canonical map into the direct limit.

Proof. By properties of direct limits M = ⋃︁
i∈I fi(Mi). As Q is finitely generated,

there is already an index j ∈ I such that g(Q) ⊆ fj(Mj). Consider a presentation
0 → K → Rm p−→ Q → 0. Then there is a map gj = Rn → Mj such that gp =
fjgj. By properties of direct limits, for each of finitely many generators of the
kernel k ∈ K there is an index l ∈ I such that fljgj(k) = 0. Taking i as maximum
of these, we get K ⊆ Ker(fijgj). By homomorphism theorem then there is a
homomorphism g′ : Q → Mi such that g′p = fijgj and fig

′p = fifijgj = gp and
as p is an epimorphism also fig′ = g.

Lemma 1.4. Let C be a class of finitely presented right modules, let M be a right
module. Then the following are equivalent.

(i) M ∼= lim−→i∈I Ci for some system (Ci, fji)j,i∈I of modules from C

(ii) For an arbitrary finitely presented module Q and a map f : Q → M , there
is a module C ∈ C and maps g : Q→ C, h : C →M such that f = hg.

Proof. (i) implies (ii). Let M = lim−→i∈I Ci and let Q be a finitely presented module
and f : Q → M a homomorphism. Then previous lemma immediately provides
the required module and maps. (ii) implies (i). Express M as a direct limit of
a directed system (Mi, fji)i∈I of finitely presented modules with canonical maps
fi : Mi → M . By property (ii) there is for each i ∈ I a module Ci ∈ C and
homomorphisms gi : Mi → Ci and hi : Ci → M such that higi = fi. As Ci are
finitely presented, there is by Lemma 1.3 also an index j ∈ I homomorphism
hi : Ci → Mji such that h′

i = fjihi. It is possible to pick j > i, then fjiifji =
fi = higi = fjiih

′
igi and by properties of direct limit and the fact that maps

between finitely presented modules have finite generated kernels, there is an index
ki > ji such that fkijifjii = fkijih

′
igi. Then we can construct a new directed set

I ′ = I ⊔ {li}i∈I with ordering given by the original ordering on I, and i < li < ki
for each i ∈ I. Note, that I ′ is still an upwards directed set, and both I and
{li}i∈I are cofinal in I ′. Now we construct the directed system (M ′

l , f
′
ml)l<m∈I′

where M ′
i = Mi, M ′

li
= Ci, for i ∈ I ′, f ′

ji = fji for i < j ∈ I, and f ′
lii

= gi and
f ′
kili

= fkijih
′
i for i ∈ I, all other maps are constructed by needed composition.

This is in fact a directed system and its limit is M . As modules Ci form a cofinal
subsystem in (M ′

l , f
′
ml)l<m∈I′ , M is a limit of a system of modules from C.
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2. Mittag-Leffler modules
Important part in characterization of pure projectivity, projectivity and related
module properties is played by Mittag-Leffler modules. This chapter recalls their
definition and basic characterization as well as some properties. The proofs are
mostly omitted.

Definition 2.1. Let (Ai, fij)i,j∈I be an inverse system of sets and maps. The
system will be called inverse Mittag-Leffler system if for any i ∈ I the system
(Im(fij))j≥i stabilizes, that is there is an element k ∈ I k ≥ i such that for any
j ∈ I, j ≥ k we have Im fik = Im fij.

Lemma 2.2. Let
0→ Ai → Bi → Ci → 0, i ∈ I

be a countable inverse system of exact sequences of R-modules. Let further (Ai)i∈I
be an inverse Mittag-Leffler system. Then the inverse limit sequence

0→ lim←−
i∈I

Ai → lim←−
i∈I

Bi → lim←−
i∈I

Ci → 0

is exact.

Proof. [Perry, 2010, Lemma 6.5]. This proof is done in commutative setting,
commutativity of R is however not used.

Theorem 2.3. Let R be a ring, (Mi, fij)i,j∈I be a directed system of finitely
presented right modules M = lim−→Mi be their direct limit. Then the following are
equivalent.

(i) For an arbitrary right module N the inverse system (HomR(Mi, N))i∈I is
inverse Mittag-Leffler.

(ii) For each i ∈ I there is i ≤ j ∈ I such that for each i ≤ k ∈ I there is a map
g : Mk →Mj such that fji = g ◦ fik

(iii) For each i ∈ I there is i ≤ j ∈ I such that for an arbitrary left module N
we have ker(fi ⊗R idN) ⊆ ker(fji ⊗R idN).

(iv) For each i ∈ I there is i ≤ j ∈ I such that in the pushout diagram

Mi Mj

M N

fji

fi

⌜
h

g

the map h is a pure monomorphism.

Proof. [Perry, 2010, $6.6, in particular Lemma 6.10 and Proposition 6.11] The
proof is again done for R commutative but doesn’t use commutativity of R
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Definition 2.4. A directed system of modules satisfying the equivalent condi-
tions of Theorem 2.3 is called a Mittag-Leffler (directed) system.

Theorem 2.5. Let R be a ring, (Mi, fij) be a directed system of finitely presented
right modules M = lim−→Mi be their direct limit. Then the following are equivalent.

(i) The system (Mi, fij) is Mittag-Leffler.

(ii) For any map f : F → M where F is a finitely presented module there are
a finitely presented module F ′ and a map g : F → F ′ such that for any left
module N we have ker(f ⊗R idN) = ker(g ⊗R idN).

(iii) For an arbitrary system (Qk)k∈K of left modules the map

M ⊗R
∏︂
k∈K

Qk →
∏︂
k∈K

(M ⊗R Qk)

m⊗R (qk)k∈K ↦→ (m⊗R qk)k∈K

is monic.

Proof. [Göbel and Trlifaj, 2006, Theorem 3.14]

Definition 2.6. A module satisfying the equivalent conditions of Theorem 2.5
is called a Mittag-Leffler module. Class of Mittag-Leffler modules (over a fixed
ring) will be denoted ML.

Here we compile more useful properties of Mittag-Leffler modules.

Proposition 2.7. Finitely presented modules are Mittag-Leffler.

Proof. In condition (ii) of Theorem 2.5 it is enough to take g = f .

Proposition 2.8. Class ML is closed under direct sums and direct summands.

Proof. Using the condition (iii) of Theorem 2.5, note that putting a direct sum
in place of M produces the following map

(︄⨁︂
i∈I

Mi

)︄
⊗R

⎛⎝∏︂
k∈K

Qk

⎞⎠ ∼= ⨁︂
i∈I

⎛⎝Mi ⊗R
∏︂
K∈k

Qk

⎞⎠
⨁︁

i∈I
νi

−→⨁︂
i∈I

∏︂
k∈K

(Mi ⊗R Qk) ⊆
∏︂
k∈K

⨁︂
i∈I

(Mi ⊗R Qk).

Here the map ⨁︁i∈I νi is injective if and only if all of the maps νi are injective.
So, M is Mittag-Leffler if and only if all the modules Mi are Mittag-Leffler.

Proposition 2.9. Let M be a countably generated Mittag-Leffler module. Then
M is countably presented.

Proof. [Stacks project authors, 2022, Lemma 10.92.1]. This is again a proof done
in commutative setting, but not using the commutativity of R.
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3. Classes of finitely presented
modules and Auslander-Bridger
transpose
Before giving definitions of relative module properties, we review a few facts
about classes of finitely presented modules and in particular the construction of
Auslander-Bridger transpose, which will play an important role.

Definition 3.1. Let R be a ring, then denote

A(mod−R)

the system of classes of finitely presented right R-modules, closed under finite di-
rect sums, direct summands and isomorphic images, containing finitely presented
projective modules.

Note, that as mod−R is essentially small, A(mod−R) is a set, and it is par-
tially ordered by inclusion. As such it is bounded, with the smallest element P<ω0
the class of finitely presented projective modules, and the largest element the
whole of mod−R.

Similarly we define the partially ordered set

A(R−mod) = A(mod−Rop).

The construction of Auslander-Bridger transpose comes from [Auslander and
Bridger, 1969]. Notably, the way in which it is defined in this thesis, it does
not constitute a functor or even produce unique transpose modules. It does, as
proven in [Auslander and Bridger, 1969, Theorem 2.6] form a functor of stable
categories of small modules. Setting of stable categories of modules is beyond
the scope of this thesis, this theorem however provides a kind of “uniqueness”
(Lemma 3.5), which is important.

Definition 3.2. Let M be a finitely presented right R module with presentation

Rm p−→ Rn →M → 0

note that p can be represented by a matrix (rij)n,mi=1,j=1, denote p⊤ the map of left
modules given by the transpose matrix. Note, that p⊤ = HomR(p,R).

A left R-module N will be called an Auslander-Bridger transpose (or just
transpose) of M if N is isomorphic to Coker(p⊤) for some presentation of M .

For C a class of finitely presented right R-modules let C⊤ denote the class of
left R-modules that are transposes of modules in C

Lemma 3.3. Let P be a finitely presented right R-module, let Q be a finitely
presented left R-module which is an Auslander-Bridger transpose of P . Then P
is projective if and only if Q is projective.

Proof. Let P be projective, let p : Rm → Rn be a homomorphism such that
Coker(p) ∼= P and Coker(p⊤) ∼= Q. As p = (p⊤)⊤ = HomR(p⊤, R), and the
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contravariant functor HomR(−, R) is left exact, we have Ker(p) = HomR(Q,R).
As P is projective, so is Ker(Rn → P ) = Im(p) and hence HomR(Q,R) is a finitely
presented projective module. As HomR(−, R) commutes with finite direct sums,
Q must be a finitely presented projective left R-module. Playing the same game
with map p⊤ yields the other implication.
Lemma 3.4. Let M and N be two finitely presented right R-modules. Let finitely
presented left R-modules M ′ and N ′ be Auslander-Bridger transposes of M and
N respectively. Then M ′⊕N ′ is an Auslander-Bridger transpose of M⊕N . From
this follows, that if C is closed under finite direct sums, then so is C⊤.
Proof. Let pM , pN be presentations of the modules M and N respectively such
that M ′ = Coker(p⊤

M) and N ′ = Coker(p⊤
N). Then p = (pM⊕pN) is a presentation

of M ⊕N and Coker(p⊤) = M ′ ⊕N ′.
Lemma 3.5. Let M be a right R-module and let

Rni
pi−→ Rmi →M → 0, i = 1, 2

be two of its presentations. Then there are finitely presented left R-modules P1,
P2, such that Coker(p⊤

1 )⊕ P1 ∼= Coker(p⊤
2 )⊕ P2.

Proof. Omitted. Version working for this setting can be found in [Maşiek, 2000,
Proposition 4]. Alternatively it follows from [Auslander and Bridger, 1969, The-
orem 2.6], which states that Auslander-Bridger transpose is a functor of stable
categories of modules.
Corollary 3.6. Let C ∈ A(mod−R) be a class of finitely presented right R-
modules. Then C⊤ ∈ A(R−mod).
Proof. The class C⊤ is certainly a class of finitely presented left R-modules. By
Lemma 3.4 it is closed under finite direct sums. It certainly contains the left
regular module of R, as it is a transpose of the right regular module of R via
presentation R

0−→ R→ R→ 0. It remains to show, that C⊤ is closed on direct
summands. Let A and B be finitely presented left R-modules with presentations
pA, pB, such that their direct sum A⊕B is an Auslander-Bridger transpose of some
module C ∈ C. Denote A′ = Coker(p⊤

A) and B′ = Coker(p⊤
B). Homomorphism

pA ⊕ pB is a presentation of A ⊕ B and Coker(p⊤
A) ⊕ Coker(p⊤

B) = A′ ⊕ B′ is a
transpose of A⊕B. Therefore by Lemma 3.5 there are finitely presented projective
modules P1, P2 such that C ⊕ P1 ∼= A′ ⊕ B′ ⊕ P2. As C is closed under direct
sums, direct summands and contains all finitely presented projectives, A′, B′ ∈ C
and hence also their transposes A,B ∈ C⊤.
Corollary 3.7. Let C ∈ A(mod−R). Then (C⊤)⊤ = C. So, the map

A(mod−R)→ A(R−mod) : C ↦→ C⊤

is an isomorphism of partially ordered sets.
Proof. We show two inclusions. Clearly C ⊆ (C⊤)⊤, as any module M is a
transpose of any of its transposes. To show that (C⊤)⊤ ⊆ C, consider a module
M ∈ (C⊤)⊤. Then there must be M ′ ∈ C⊤ such that M is its transpose and then
there must be M ′′ ∈ C such that M ′ is its transpose. Then by Lemma 3.5 there
are finitely presented projective modules P1, P2 such that M⊕P1 ∼= M ′′⊕P2. By
properties of C then already M ∈ C. The fact that map C ↦→ C⊤ is monotonous
follows immediately from the definitions.

10



4. Relative properties
The two module properties whose interactions with ring homomorphisms this
text seeks to explore are projectivity and pure projectivity. They both however
can be viewed as extreme cases of more general property of relative projectivity.
This chapter introduces the notion of relative projectivity as well as notions of
relative flatness and relative pure exact sequences. All these properties are tied
together in fashion similar to the usual notions of projectivity, purity and flat-
ness. Notably, analogues of Kaplansky’s theorem, Lazard’s theorem, and Drinfeld
characterization hold.

Results similar to this chapter have been published in doctoral thesis of Akeel
Ramadan Mehdi [Mehdi, 2013]. The proofs in this text however are done inde-
pendently and using more elementary machinery.

The properties are made relative by taking in their definition some full subcate-
gory of finitely presented modules. Specifically these are elements of the partially
ordered set A(mod−R) defined in the previous chapter, so subcategories closed
under finite direct and direct summands and containing already all finitely pre-
sented projective modules.

For the remainder of this chapter let us fix a not necessarily commutative ring
R.

Definition 4.1. Let C ∈ A(mod−R) be a class of finitely presented right R-
modules. An exact sequence of right R-modules

0→ A
ν−→ B

π−→ C → 0

is called C-pure if for all modules M ∈ C the sequence

0→ HomR(M,A) ν∗−→ HomR(M,B) π∗−→ HomR(M,C)→ 0

is exact. Then ν is called a C-pure monomorphism and π is called a C-pure
epimorphism. The class of C-pure sequences will be denoted ∗C.

A right R-module P is called C-projective if for any C-pure sequence

0→ A→ B → C → 0

the sequence

0→ HomR(P,A)→ HomR(P,B)→ HomR(P,C)→ 0

is exact. The class of C-projective modules will be denoted PC.
A leftR-module F is called C-flat if for any C-pure sequence of rightR-modules

0→ A→ B → C → 0

the sequence
0→ A⊗R F → B ⊗R F → C ⊗R F → 0

is exact. The class of C-flat modules will be denoted FC.
Similarly, taking C ∈ A(R−mod) we define the C-pure sequences of left R-

modules, C-projective left R-modules and C-flat right R-modules.
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Remark. Note, that if we use an arbitrary subcategory of finitely presented mod-
ules S in place of C in the previous definition, then adding to it finitely presented
projectives, finite direct sums or direct summands does not change the class ∗S
and consequently the classes PS and FS . Hence, we only need to consider classes
C ∈ A(mod−R). Later, we will explicitly use both the fact that they contain
finitely presented projectives and that they are closed under finite direct sums
and direct summands.

The usual notions of exactness, projectivity and flatness, and the notion of
pure exactness and pure projectivity are clearly edge cases of the relative prop-
erties.

Taking C = mod−R produces precisely the usual notion of purity and pure
projectivity. This is the largest class C can be. In this case, all modules are C-flat.

Taking C = P<ω0 produces the usual notion of projectivity and flatness. This
is the smallest class C can be.

For the needs of the rest of this thesis, these serve as definitions of the usual
notions.

Definition 4.2. A right R-module monomorphism (epimorphism) will be called
pure if it is (mod−R)-pure. A (mod−R)-projective module shall be called pure
projective, A P<ω0 -flat module will be called flat and P<ω0 -projective will be called
projective.

Lemma 4.3. Let C ⊆ C ′ be two elements of A(mod−R). Then ∗C′ ⊆ ∗C, PC ⊆
PC′, and FC ⊆ FC′

Proof. This is immediate from the definitions.

Corollary 4.4. Let C ∈ A(mod−R). Then any pure exact sequence of right
R-modules is C-pure, any projective right R-module is C-projective and any C-
projective right R-module is pure projective, and any flat left R-module is C-flat.

The classes of modules with relative properties have the expectable closure
properties.

Proposition 4.5. Let C ∈ A(mod−R). Then PC and FC are closed under arbi-
trary direct sums and direct summands. Class FC is further closed under direct
limits. ∗C is closed under direct limits.

Proof. Let P = ⨁︁
i∈I Pi be a right R-module, let π be an epimorphism. Us-

ing natural isomorphism HomR(⨁︁i∈I Pi,M) ∼=
∏︁
i∈I HomR(Pi,M) we see that

HomR(P, π) is onto if and only if all of HomR(Pi, π) are onto. Considering this
for all C pure epimorphisms we get that P is C-projective if and only if each of
Pi are C-projective. Hence, PC is closed under direct sums and direct summands.

The fact that FC is closed under direct sums, direct summands and direct
limits follows similarly from the fact, that tensor product commutes with these
constructions and taking direct limit is an exact functor.

The fact, that ∗C is closed under direct limits is again argued similarly, using
the natural isomorphism lim−→(HomR(M,Ai)) ∼= HomR(M, lim−→(Ai)) for M finitely
presented.
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4.1 Basic properties of relative projectivity
This section shows, that relative projective modules share some convenient prop-
erties with the usual projective modules. The main result here is a version of
Kaplansky’s theorem. What will later come useful, is the fact, that the class of
relatively projective modules admits a relatively pure precover for every module.

In the rest of this chapter we fix a subcategory C ∈ A(mod−R).

Proposition 4.6. Let M be a right R-module. Then there exists a C-pure exact
sequence

0→ K → C →M → 0
where C is a direct sum ⨁︁

i∈I Ci of modules Ci ∈ C.

Proof. Category mod−R is essentially small, so we can take a set of representa-
tives {Ci}i∈I of the class C. Take now a disjoint union J = ⨆︁

i∈I HomR(Ci,M) and
take direct sum C = ⨁︁

f∈J Cf where Cf ∼= Ci for f ∈ HomR(Ci,M). Construct
map p : C → M given on the summands as f : Cf → M for f ∈ J . Map p is
onto, because RR ∈ C. Thus we obtain an exact sequence

0→ Ker(p)→ C
p−→M → 0.

This sequence is C-pure, as any map g : Ci →M certainly factorizes as f = p◦νf
where νf : Cf →M is the canonical inclusion.

Remark. In the edge cases of projectivity and pure projectivity there are simpler
constructions of the precover. In the case of usual projectivity all that is needed is
a free cover, as in this case the C-purity reduces to exactness. In the case of pure
projectivity, we use the presentation of M as a direct limit of finitely presented
modules and the fact that the natural map ⨁︁i∈IMi → lim−→i∈IMi is pure.

Theorem 4.7. Let M be a right R-module. M is C-projective if and only if it
is a direct summand in a direct sum of modules from C, that is PC = Add(C).
Specially for Q ∈ PC finitely generated already Q ∈ add C = C.

Proof. Applying the previous proposition to a C-projectve module P yields a
C-pure exact sequence

0→ K → C → P → 0
which splits and so P is a direct summand in C. Furthermore, if P is taken
finitely generated, then it is already a direct summand in a finite direct sum.

Corollary 4.8. Let κ be an infinite cardinal and let P be an at most κ-generated
C-projective module. Then P is at most κ-presented.

Proof. In the previous proof we note that if P is at most κ-generated, then it is
already a direct summand in a direct sum of at most κ finitely presented modules,
and is as such at most κ-presented.

Corollary 4.9. Projective modules are precisely direct summands in free modules,
pure projective modules are precisely direct summand in direct sums of finitely
presented modules.
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This lets us prove relative version Kaplansky’s theorem.

Theorem 4.10. Let P be a C-projective module. Then P ∼=
⨁︁

i∈I Pi where Pi are
countably presented C-projective modules.

Proof. We directly apply Theorem 1.2, taking C for T . Thus we get P ∼=
⨁︁

i∈I Pi,
with Pi countably generated. However, by previous corollary, each Pi is already
countably presented.

4.2 Properties of relative purity
In this section we explore some properties of relatively pure homomorphisms.
Importantly, the Auslander-Bridger transpose enters the scene, allowing for a
definition of relatively pure monomorphisms through tensor product.

Note, that as (C⊤)⊤ = C, in all of this section the sidedness of modules and
the roles of C and C⊤ could be reversed with no effect on the proofs.

Most important facts will follow from the following proposition.

Theorem 4.11. Let
0→ A

ν−→ B
π−→ C → 0

be an exact sequence of right modules. Let r : Rn → Rm be a map of free right
R-modules with matrix (rij)n,mi=1,j=1

let M = Coker(r) and Q = Coker(r⊤). (This makes the right module M
and the left module Q Auslander-Bridger transposes of each other). Then the
following are equivalent.

(i) The sequence 0 → HomR(M,A) → HomR(M,B) → HomR(M,C) → 0 is
exact.

(ii) In any commutative square of shape

Rm Rn

A B

r

ν

a map h : Rn → A exists, making the top triangle commute.

(iii) Understanding ν as an inclusion A ⊆ B, if ai ∈ A, i = 1, . . . ,m and bi ∈
B, j = 1, . . . , n are such that

n∑︂
i=1

bi · rij = aj, j = 1, . . . ,m,

then there are also a′
j ∈ A, j = 1, . . . , n such that

n∑︂
i=1

a′
i · rij = aj, j = 1, . . . ,m

(iv) The sequence 0→ A⊗R Q→ B ⊗R Q→ C ⊗R Q→ 0 is exact.
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Proof. Ideas of this proof are taken from [Perry, 2010, Theorem 3.11], adjustments
are made to fit the relative setting.

Firstly, (i) implies (ii). Take a commutative square as in (ii), then there is
also a map of cokernels denoted f ′′ in the commutative diagram

Rm Rn M 0

0 A B C 0

r

f ′

q

f f ′′

ν π

By (i) the map π∗ : HomR(M,B) → HomR(M,C) is surjective and hence there
is map h′ : M → B such that π ◦ h′ = f ′′.

Take now map h′q−f and note, that π(h′q−f) = πh′q−πf = f ′′q−f ′′q = 0.
Therefore, Im(h′q − f) ⊆ Ker(π) = Im(ν) and as ν is an injective map, there is
a map h : Rn → A such that νh = h′q− f . Finally, νhr = (h′q− f)r = fr = νf ′

and with ν being a monomorphism we have hr = f ′, so h is the right map making
the top triangle commute.

Next let’s see that (ii) implies (i). It is enough to show that the map π∗ :
HomR(M,B) → HomR(M,C) is surjective. Let there be a map g : M → C. In
the commutative diagram

Rm Rn M 0

0 A B C 0

r

g′′

q

g′ g

ν π

the map g′ comes from the projective property of Rn and the map g′′ comes
from the projective property of Rm and the fact that g′r = gqr = 0 and hence
Im(g′r) ⊆ Ker(π) = Im(ν). By (ii) there is a map h′ : Rn → A such that h′p = g′′

Now take map g′−νh′ and notice that (g′−νh)r = g′r−νh′r = νg′′−νg′′ = 0,
and hence there is map h : M → B such that hq = νh − g. Finally, πhq =
π(g′ − νh′) = πg′ − 0 = gq and with q being an epimorphism we have πh = g.
Thus, we found for an arbitrary map g : M → C a preimage with respect to π∗.

The condition (iii) is a reformulation of condition (ii) in language of equations.
The map r : Rm → Rn specifies the coefficients of the system of equations, map
Rm → A is the same as a choice of elements ai, i = 1, . . . ,m, map Rn → B is the
same as a choice of elements bj, j = 1, . . . , n, map h : Rn → A is the same as a
choice of elements ′

j, j = 1, . . . , n. The first system of equalities is then precisely
the statement of the square commuting, while the second system is the statement
of the upper triangle commuting after introducing the map h.

Let’s now show the equivalence of (iii) and (iv). Tensoring map A ν−→ B and
sequence Rn r⊤

−→ Rm → Q→ 0 produces diagram

An Am A⊗R Q 0

Bn Bm B ⊗R Q 0

rA

νn

qA

νm
ν′

rB qB
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with exact rows and where

rA = idA ⊗R r⊤ : (ai)ni=1 ↦→
(︄

n∑︂
i=1

ai · rij
)︄m
j=1

rB = idB ⊗R r⊤ : (bi)ni=1 ↦→
(︄

n∑︂
i=1

bi · rij
)︄m
j=1

and ν ⊗R idRk = νk for k = n, m. The condition (iv) boils down to the map
ν ′ = ν ⊗R idQ being injective.

Assume first the condition (iii). To prove the injectivity of map ν ′ let us
choose an element x ∈ A⊗RQ such that ν ′(x) = 0. By surjectivity of qA there is
an element a = (aj)mj=1 ∈ Am such that qA(a) = x. Then qBν

m(a) = ν ′qA(a) = 0
and by exactness of the bottom row there is an element b = (bi)ni=1 ∈ Bn such
that (interpreting ν as an inclusion)(︄

n∑︂
i=1

bi · rij
)︄m
j=1

= rB(b) = νm(a) = (aj)mj=1

This is precisely the first system of equations in (iii), and therefore there is an
element a′ = (a′

i)ni=1 ∈ An such that

rA(a′) =
(︄

n∑︂
i=1

a′
i · rij

)︄m
j=1

= (aj)mj=i = a

Then by exactness of the top row x = qA(a) = qArA(a′) = 0. So, the map ν ′ is
injective.

Suppose on the other hand that (iv) holds and so ν ′ is injective. Let aj, j =
1, . . . ,m and bi, i = 1, . . . , n be such that

n∑︂
i=1

bi · rij = aj, j = 1, . . . ,m

that is for elements a = (aj)mj=1 ∈ Am and b = (bi)ni=1 ∈ BN = n we have
rB(b) = νm(a). Then by exactness of the bottom row ν ′qA(a) = qBν

m(a) = 0, by
injectivity of ν ′ we have qA(a) = 0 and by exactness of the top row there is an
element a′ = (a′

i)ni=1 ∈ An such that rA(a′) = a and so
n∑︂
i=1

a′
i · rij = aj, j = 1, . . . ,m

and condition (iii) holds.
Proposition 4.12. In the previous theorem the condition (ii) can be strengthened
as follows
(ii’) In any commutative square of shape

N N ′

A B

p

ν

where Coker(p) ∼= M a map h : N ′ → A exists, making the top triangle
commute.
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Proof. Clearly, (ii’) implies (ii). It suffices to show that (i) implies (ii’). To show
that, it is enough to notice, that the proof that (i) implies (ii) doesn’t use any
properties of map R beyond it’s cokernel.

Remark. The conditions (ii) or (iii) in the previous theorem could be easily taken
as a definition of a relatively pure submodule, more akin to the model theoretic
definition. Informally they say that a module is relatively pure submodule of
a larger module, whenever certain systems of linear equations solvable in the
larger module also admits a solution in it. Difference from the normal notion of
purity comes from restricting our attention to a certain class of systems of linear
equations, namely those which define modules of class C.

The equivalence of (i) a (iv) then lets us give a tensor product definition of
relative purity.

Corollary 4.13. An exact sequence

0→ A→ B → C → 0

of right R-modules is C-pure if and only if for any Q ∈ C⊤ the sequence

0→ A⊗R Q→ B ⊗R Q→ C ⊗R Q→ 0

is exact.

Taking C = mod−R, we get a characterization of the usual notion of purity.

Corollary 4.14. Let 0 → A → B → C → 0 be an exact sequence. Then the
following are equivalent

(i) For a finitely presented right module M the sequence

0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C)→ 0

is exact.

(ii) For a finitely presented left module Q the sequence

0→ A⊗R Q→ B ⊗R Q→ C ⊗R Q→ 0

is exact.

(iii) For an arbitrary left module N the sequence

0→ A⊗R N → B ⊗R N → C ⊗R N → 0

is exact.

Proof. The equivalence of (i) and (ii) is precisely the statement of Proposition
(4.11), for the if direction taking a presentation of M as r, for the only if direction
taking a presentation of Q as r⊤.

The implication from (iii) to (ii) is immediate. The reverse implication arises
from the fact that N can be taken as a direct limit of a system of finitely presented
modules and taking direct limits commutes with tensor product and is an exact
functor.

Remark. This is of course one of the ways to define a pure exact sequence. This
result will be needed in the further discussion of relative flatness.

17



The final lemma of this section ties together C-pure sequences of right R-
modules and C⊤-pure sequences of left R-modules.

Lemma 4.15. Let 0 → A → B → C → 0 be an exact sequence of R-modules.
Then it is C-pure if and only if the sequence 0 → C∗ → B∗ → A∗ → 0, where
(−)∗ = HomZ(−,Q/Z) : (Mod−R)op → R−Mod is the character dual functor, is
C⊤-pure.

Proof. Recall that the functor (−)∗ = HomZ(−,Q/Z) : (Mod−R)op → R−Mod
is faithfully exact. For an arbitrary left R-module we then have that the sequence

0→ Q⊗R A→ Q⊗R B → Q⊗R C → 0

is exact if and only if the sequence

0→ (Q⊗R C)∗ → (Q⊗R B)∗ → (Q⊗R A)∗ → 0

is exact. This sequence is by tensor-hom adjunction isomorphic to sequence

0→ HomR(Q,C∗)→ HomR(Q,B∗)→ HomR(Q,A∗)→ 0.

By Corollary 4.13 a sequence 0→ A→ B → C → 0 is C-pure if and only if

0→ Q⊗R A→ Q⊗R B → Q⊗R C → 0

is exact for any Q ∈ C⊤, which is if and only if

0→ HomR(Q,C∗)→ HomR(Q,B∗)→ HomR(Q,A∗)→ 0

is exact for any Q ∈ C⊤, which is precisely the definition of

0→ C∗ → B∗ → A∗ → 0

being C⊤-pure.

4.3 Properties of relative flatness
Finally, relatively flat modules share many properties with the usual notion of
flatness. Importantly a version of Lazard’s theorem holds.

Following several propositions show basic relationship between C-projectivity
and C⊤-flatness, these both being properties of right modules. From now on,
whenever we speak of “relative flatness” we mean C⊤-flatness of right modules.
Now we show that relatively projective modules are already relatively flat and for
finitely presented modules this is an equivalence.

Proposition 4.16. Finitely presented module M is C-projective if and only if Q,
a transpose of M is C-flat.

Proof. It is enough to in Proposition 4.11 start with a finitely presented module
M , taking for r : Rm → Rn arbitrary presentation of its. Then Q = Coker(r⊤) is
a transpose of M. Take for the exact sequence 0→ A→ B → C → 0 an arbitrary
C-pure sequence. Then the equivalence of (i) and (iv) amounts precisely to this
proposition.
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Proposition 4.17. All C-projective modules are C⊤-flat.

Proof. Take a C⊤-pure exact sequence of left modules

0→ A→ B → C → 0.

By Proposition 4.15 the sequence

0→ C∗ → B∗ → A∗ → 0

is C-pure.
Take now an arbitrary C-projective module M . The sequence

0→ HomR(M,C∗)→ HomR(M,B∗)→ HomR(M,A∗)→ 0

is exact. Tensor-hom adjunction yields that also

0→ (M ⊗R C)∗ → (M ⊗R B)∗ → (M ⊗R A)∗ → 0,

is an exact sequence. As (−)∗ is faithfully exact, also

0→M ⊗R A→M ⊗R B →M ⊗R C → 0

is an exact sequence. Hence, M is C⊤-flat.

Corollary 4.18. Let Q be a finitely presented right R-module. Then Q is C-
projective if and only if it is C⊤-flat.

Proof. The only if direction comes directly from the previous proposition. Now
if Q is C⊤-flat then a transpose Q⊤ of Q is C⊤-projective and hence C-flat. Then
however Q is C-projective.

Corollary 4.19. Let Q be a finitely presented C⊤-flat module. Then Q ∈ C.

Proof. This is immediate consequence of the previous lemma and Theorem 4.7.

Now we can prove relative version of Lazard’s theorem.

Theorem 4.20. Let F be a right R-module, then the following are equivalent.

(i) F is C⊤-flat.

(ii) Any C-pure exact sequence

0→ A→ B → F → 0

is already pure.

(iii) For any finitely presented right module M and a map f : M → F there are
maps g, h and module C ∈ C forming commutative triangle

M C

F

f

g

h
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(iv) F = lim−→i∈I Ci for some directed system of modules Ci ∈ C.

Proof. (i) implies (ii). Let

0→ A→ B → F → 0

be such C-pure exact sequence. Let Q be an arbitrary left R-module. The proof
amounts to showing that the sequence

0→ A⊗R Q→ B ⊗R Q→ F ⊗R Q→ 0

is exact, namely that the map A⊗RQ→ B⊗RQ is a monomorphism. Proposition
4.6 for the class C⊤ provides a C⊤-pure sequence

0→ K → C → Q→ 0

with C C⊤-projective and therefore C-flat. Tensoring sequences

0→ A→ B → F → 0 and 0→ K → C → Q→ 0

yields commutative diagram

0 0 0

0 F ⊗R K F ⊗R C F ⊗R Q 0

B ⊗R K B ⊗R C B ⊗R Q 0

A⊗R K A⊗R C A⊗R Q 0

0

h

g

j

c

e

f

i

b

d a

with all rows and columns exact. Map A⊗R Q→ B ⊗R Q can be shown to be a
monomorphism by diagram chase as follows.

Take an element x ∈ A ⊗R Q such that a(x) = 0. By surjectivity of b there
is an element x′ ∈ A ⊗R C such that b(x′) = x and so cd(x′) = ab(x′) = 0.
Then by exactness of the middle row there is an element y ∈ B ⊗R K such that
g(y) = d(x′). Furthermore, hj(y) = eg(y) = ed(x′) = 0. By injectivity of h then
j(y) = 0 and by exactness of the left column there is an element x′′ ∈ A ⊗R K
such that i(x′′) = y and so df(x′′) = gi(x′′) = g(y) = d(x′). By injectivity of d
then f(x′′) = x′ and x = b(x′) = bf(x′′) = 0.

(ii) implies (iii). Let F , M and f be as in the formulation. Applying Propo-
sition 4.6 to F produces a C-pure exact sequence

0→ K →
⨁︂
i∈I

Ci
π−→ F → 0
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with Ci ∈ C. By (ii) it is already pure. Then however by properties of pure exact
sequences (corollary) there is a map g : M → C in

M

0 K C F 0

f
g

Since M is finitely generated, the image of map h is already contained in a finite
direct sum C = ⨁︁

i∈I′ Ci which is itself a module in C. Taking h = π|C completes
the proof.

(iii) implies (iv) by Lemma 1.4.
Finally, (iv) implies (i) because C ⊆ FC⊤ and FC⊤ is closed under taking direct

limits.

Condition (ii) in previous theorem provides a characterization of C⊤-flat mod-
ules similar to a well known characterization of flat modules summed up in the
following corollary.

Corollary 4.21. A right module F is flat if and only if any exact sequence

0→ A→ B → F → 0

ending in F is pure.

Proof. This arises from taking C = P<ω0 in the previous Theorem.

This characterization lets us show more expected closure properties of the
class of relatively flat modules.

Proposition 4.22. The class FC⊤ is closed under pure epimorphic images, pure
submodules and pure extensions.

Proof. To show that FC⊤ is closed under pure epimorphic images let M be a
C⊤-flat module, let M → M ′′ be a pure epimorphisms and let Q be a finitely
presented module and Q→M ′′ a map. In the diagram

C Q

M M ′′ 0∗

map Q→ M making the bottom triangle commute exists as M → M ′′ is a pure
epimorphism, module C ∈ C and maps Q→ C and C →M such that the upper
triangle commutes come from M being C⊤-flat. Composition C → M → M ′′

witnesses M ′′ being C⊤-flat.
For closure under pure submodules let M be a C⊤-flat module, let N ′ → M

be a pure monomorphism, and let Q be a finitely presented module and Q→M ′
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a homomorphism. We seek to factorize Q → M ′ through a module C ∈ C. In
the diagram

Q C

0 M ′ M∗

module C and maps Q → C and C → M come from M being C⊤-flat. Ho-
momorphism Q → C has finitely presented cokernel and M ′ → M is a pure
monomorphism, by Proposition 4.12 map C →M ′ exists making the top triangle
commute. Maps Q→ C and C →M ′ witness M ′ being C⊤-flat.

To show that FC⊤ is closed under pure extensions, let 0→M ′ →M →M ′′ →
0 be a pure exact sequence such that M ′ and M ′′ are C⊤-flat. Let A→ B be an
arbitrary C⊤-pure monomorphism of left R modules. Tensoring produces diagram

0 M ′ ⊗R A M ⊗R A M ′′ ⊗R A 0

0 M ′ ⊗R B M ⊗R B M ′′ ⊗R B 0

where the rows are exact, vertical maps on sides are monomorphisms by M ′ and
M ′′ being C⊤-flat, and the middle vertical map is a monomorphism by five lemma.
Thus, M is a C⊤-flat module.

Corollary 4.23. . The class FC⊤ can thus be characterized as

(i) Pure epimorphic images of C-projective modules,

(ii) direct limits of C-projective, or

(iii) direct limits of modules from C.

4.4 Drinfeld characterization
Armed with Lazard’s theorem, we can finish the main conclusion of this chapter
and characterize relative projective modules as relatively flat, Mittag-Leffler, Ka-
plansky decomposable modules. Proofs in this section are adaptations of [Perry,
2010, Lemma 7.2, Theorem 7.4].

For the whole picture, recall that in the finitely presented case (where the
Mittag-Leffler condition is void) the relative flatness and relative projectivity
merge (Corollary 4.18).

In the countable infinite case the Mittag-Leffler property starts playing an
important role.

Proposition 4.24. Let C be a class of finitely presented right R-modules contain-
ing R, closed under finite direct sums and direct summands. Let P be a countably
generated module then P is C-projective if and only if
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(a) P is C⊤-flat

(b) P is Mittag-Leffler

Proof. For the only if direction, immediately a C-projective module is C⊤-flat
by Proposition 4.17 and Mittag-Leffler as it is by Proposition 4.7 a direct sum-
mand in a direct sum of finitely presented modules, which are by Proposition 2.7
Mittag-Leffler and by Proposition 2.8ML is closed under direct sums and direct
summands.

Let now P be a countably generated C⊤-flat Mittag-Leffler module. By Propo-
sition 4.20 it is a direct limit of a system (Mi)i∈I of modules Mi ∈ C, by Proposi-
tion 2.9 it is countably presented, and therefore the system can be taken count-
able. Finally, it is Mittag-Leffler. Let now 0 → A → B → C → 0 be a C-pure
exact sequence. As Mi ∈ C, each of the exact sequences

0→ HomR(Mi, A)→ HomR(Mi, B)→ HomR(Mi, C)→ 0

is exact, and together they comprise an exact sequence of inverse systems. As
the system (Mi) is Mittag-Leffler, the system (HomR(Mi, A))i∈I is an inverse
Mittag-Leffler system and by Lemma 2.2 taking the inverse limit yields exact
sequence

0→ lim←−
i∈I

(HomR(Mi, A))→ lim←−
i∈I

(HomR(Mi, B))→ lim←−
i∈I

(HomR(Mi, C))→ 0

isomorphic to exact sequence

0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C)→ 0.

So, module M is C-projective.

In the general case we finally need the Kaplansky decomposition, as without
the countable presentation Mittag-Leffler property no longer makes the inverse
limit exact.

Proposition 4.25. Let C be a class of finitely presented right R-modules con-
taining R, closed under finite direct sums and direct summands. Let P be a right
R-module. Then P is C-projective if and only if

(a) P is C⊤-flat

(b) P is Mittag-Leffler

(c) P = ⨁︁
i∈I Pi where the modules Pi are countably generated.

Proof. For the only if direction let P be C-projective. Then it is C⊤ flat by
Proposition 4.17, and it is Mittag-Leffler as it is a direct summand in a direct
sum of finitely presented and therefore Mittag-Leffler modules. By Theorem 4.10
it is a direct sum of countably generated, even countably presented modules.

Let now P satisfy conditions (a), (b), and (c). By condition (c) it decomposes
into a direct sum P = ⨁︁

i∈I Pi, with Pi countably generated. Furthermore, each
of the modules Pi is also C⊤-flat and Mittag-Leffler. By Proposition 4.24 the
modules Pi are therefore C-projective and, as PC is closed under direct sums, so
is P .
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Corollary 4.26. A right module P is pure projective if and only if it is a direct
sum of countably generated modules, and it is Mittag-Leffler.

Corollary 4.27. A right module P is C-projective if and only if it is pure pro-
jective and C⊤-flat.

Remark. There is an alternative and more immediate proof of this corollary.
Taking P as C⊤-flat renders the sequence

0→ K → C → P → 0

of Proposition 4.6 pure, taking P pure projective makes it split and makes P a
direct summand in a C-projective module.

This betrays that the crux of the proof lays in countably generated Mittag-
Leffler modules being pure projective.

4.5 Another relativization of flatness
The condition (ii) of Theorem 4.20 and Corollary 4.21 raise a question, whether
we might weaken the condition of flatness in the corollary in another way, asking
for an arbitrary sequence ending in our module to be relatively pure. This leads
to characterization through the TorR1 functor and turns out to be the “other half”
of usual flatness, that we dropped when weakening it into a relative version. This
section is illustrative and results from it will not be needed in the rest of this
text.

Lemma 4.28. Let R be a ring, let C be a class of finitely presented right R-
modules closed under finite direct sums and direct summands and containing
finitely presented projective modules, let M be a right R-module. Then the fol-
lowing are equivalent.

(i) For a finitely presented right R-module C ∈ C and a map f : C →M there
is a free module F of finite rank and the maps making the following diagram
commute

C F

M

f

(ii) Any short exact sequence

0→ A→ B →M → 0

is C-pure.

(iii) TorR1 (M, C⊤) = 0

Proof. For implication from (i) to (ii) take a short exact sequence 0→ A→ B →
M → 0 and a map f : C → M for some C ∈ C. In the following commutative
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diagram maps C → F come from (i) and map F → B from the projective
property of F .

F C

0 A B M 0

For the inverse implication, consider the exact sequence 0 → K → F ′ →
M → 0 where F ′ is a suitable free module, and map C → M for a C ∈ C. By
(ii) the exact sequence is C-pure and there is a map C → F ′ making the triangle
commute.

C

0 K F ′ M 0

As C is finitely presented, the map already factorizes through a finite rank free
submodule F ⊆ F ′.

For the implication from (ii) to (iii) consider again exact sequence 0→ K →
F ′ → M → 0 where F ′ is a suitable free module. Take an arbitrary left module
Q ∈ C⊤. Tensoring the exact sequence with Q produces a long exact sequence

0 = TorR1 (F,Q)→ TorR1 (M,Q)→ K ⊗R Q ↪→ F ⊗R Q→M ⊗R Q→ 0

where K ⊗R Q ↪→ F ⊗R Q is injective because the original sequence was C-pure.
Sandwiched between an injective map and zero module, TorR1 (M,Q) = 0.

For the inverse implication consider an arbitrary exact sequence ending in M .
Tensoring it with a left module Q ∈ C⊤ produces a sequence

0 = TorR1 (M,Q)→ A⊗R Q→ B ⊗R Q→M ⊗R Q→ 0

making the sequence 0 → A ⊗R Q → B ⊗R Q → M ⊗R Q → 0 exact and the
sequence 0→ A→ B →M → 0 C-pure.

Proposition 4.29. The class {M ∈ Mod−R | TorR1 (M, C⊤)} is closed under
direct sum and direct summands, direct limits, pure submodules, pure epimorphic
images and arbitrary extensions.

Proof. Omitted, comes directly from properties of the TorR1 functor.

Proposition 4.30. Let F be a right module such that TorR1 (F, C⊤) = 0 and it is
C⊤-flat. Then F is flat.

Proof. Let F be one such module. Let 0 → A → B → M → 0 be an arbitrary
exact sequence ending in F . According to the Lemma 4.28 it is already C-pure.
Then however by Theorem 4.20, condition (ii) it is already pure. So, by the
Corollary 4.21 module F is flat.

Alternatively we could use the condition (ii) of previous lemma and the con-
dition (iii) of Theorem 4.20 which together compose into an analogue of (iii) for
usual flatness.
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5. Ad-properties and local
properties
The main proof in this thesis is concerned with descent of module properties
through certain types of ring homomorphisms. This chapter recalls the definitions
of ascent and descent for module properties and generalizes them for the case of
relative properties.

Let us recall that given a ring homomorphism φ : R → S, the ring S is
automatically imbued with a (R,R)-bimodule structure and becomes an algebra.

Recall further that there is a standard construction of making R-modules into
S-modules via the tensor product functors

−⊗R S : Mod−R→ Mod−S

and
S ⊗R − : R−Mod→ S−Mod

5.1 Ascending and descending properties
Let us denote a general property of modules as P, then we denote the class of
right modules over a ring R as P(Mod−R).

If P is a property relative to a subcategory of modules, let us denote the class
of right R-modules possessing the property P with respect to a class C ⊆ Mod−R
as PC(Mod−R).

Definition 5.1. Let φ : R → S be a ring homomorphism. We say that the
property P ascends through the homomorphism φ as a right module property,
or that φ ascends P from the right, if for any right R-module M , whenever
M ∈ P(Mod−R) then also M ⊗R S ∈ P(Mod−S).

We say that the property P descends through φ as a right module property,
or that φ descends P from the right, if for any R-module M whenever M ⊗R S ∈
P(Mod−S) than also M ∈ P(Mod−R).

We define ascending and descending as a left module property or ascending
and descending a property from the left similarly.

Certain provisions need to be made in order to define ascent and descent for
relative properties, namely we need to interpret the subcategories of finitely pre-
sented modules in their definitions over different rings. To this end we introduce
the following natural definition.

Definition 5.2. Let R → S be a ring homomorphism, take C ∈ A(mod−R).
Then we denote CS = add({C ⊗R S | C ∈ C}) ∈ A(mod−S).

Similarly, for C ∈ A(R−mod) we put CS = add({S ⊗R C | C ∈ C}) ∈
A(S−mod).

Proposition 5.3. The map A(mod−R)→ A(mod−S) : C ↦→ CS is monotonous.
Furthermore, (P<ω0 (R))S = P<ω0 (S), that is it takes the class of finitely presented
projective modules over R to the class of finitely presented projective modules over
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S. Finally, it commutes with taking the Auslander-Bridger transpose, that is for
any C ∈ A(mod−R) there is an identity (CS)⊤ = (C⊤)S ∈ A(S−mod).

Proof. Monotonicity is immediate from the construction. Class (P<ω0 (R))S con-
tains S = R ⊗R S and as it is closed under finite direct sums and direct sum-
mands, it also contains all the finitely presented projective S-modules. Now, for
any finitely presented module P , the module P ⊗R S is a finitely presented pro-
jective module, as P is a direct summand in some Rn and so P ⊗R S is a direct
summand in Sn.

Let now C ∈ A(mod−R). To show that (CS)⊤ = (C⊤)S we prove two inclu-
sions. For the inclusion (C⊤)S ⊆ (CS)⊤ it is enough to check that each module
of form S ⊗R C for some C ∈ C⊤ in fact is contained in (CS)⊤. For such module
C there is a transpose C ′ ∈ C. It is easily confirmed, that then also S ⊗R C and
Q′ ⊗R S are each other’s transposes, as for a presentation p : Rn → Rm we have
(idS ⊗R p⊤) = (p⊗R idS)⊤.

To prove the inclusion (CS)⊤ ⊆ (C⊤)S, take a module Q ∈ (CS)⊤. Let Q′ ∈ CS
be a transpose of Q. Then Q′ is a direct summand of module C ⊗R S for some
C ∈ C. By construction similar to that in Lemma 3.4 we construct a module Q′′,
which is a transpose of (C ⊗R S) and Q is a direct summand in Q′′. Next we
take a module C ′, which is a transpose of C. Then, similarly to previous part,
S ⊗R C ′ is a transpose of C ⊗R S, and clearly S ⊗R C ′ ∈ (C⊤)S. By Lemma
3.5 there are finitely presented projective left S-modules P1 and P2, such that
(S ⊗R C ′)⊕ P1 ∼= Q′′ ⊕ P2. Class (C⊤)S contains all finitely presented projective
left S-modules and is close under finite direct sums and direct summands, so
Q ∈ (C⊤)S.

Now we can define the ascent and descent of properties relative to a class
C ∈ A(mod−R).

Definition 5.4. Let φ : R→ S be a ring homomorphism and fix C ∈ A(mod−R).
We say that the relative property P with respect to subcategory C ascends

through the homomorphism φ as a right module property, or that φ ascends P
from the right, if for any right R-module M , whenever M ∈ PC(Mod−R) then
M ⊗R S ∈ PCS

(Mod−S).
We say that the relative property P with respect to subcategory C descends

through φ as a right module property, or that φ descends P from the right, if for
any R-module M whenever M⊗RS ∈ PCS

(Mod−S) than also M ∈ PC(Mod−R).
If for all C ∈ A(mod−R) the relative property P with respect to C ascends

or descends through φ, we say in short that the relative property P respectively
descends or ascends through φ.

Similarly we define ascending and descending as a left module property or
ascending and descending a property from the left.

We will be using formulation like ‘C-projectivity descends through the ho-
momorphism R → S (as a right module property)’ or ‘The morphism R → S
ascends relative projectivity from the left’.

Definition 5.5. Let R be a subcategory of rings and let P be a module property.
If P ascends and descends through all morphisms in R as a right (left) module
property, we say that P is a right (left) ad-property in R. If P is both right and
left ad-property in R, we simply say it is an as-property in R.
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Remark. If R is taken as a subcategory of commutative rings and faithfully flat
ring homomorphism, the previous definitions amount to the usual commutative
notions of ad-properties.

The definitions of ascent and descent of relative properties leave a question
open, whether different relative versions of flatness or projectivity over the domain
even ascend into different versions of it over the target ring. What we wish
to know is whether the map A(mod−R) → A(mod−S) : C ↦→ CS is injective.
Notably, this isn’t generally true, even for pure ring homomorphisms.
Example. For an example without requiring purity, take flat homomorphism Z→
Z(p) for a prime p. Taking C = add({Zp,Z}), we get CZ(p) = P<ω0 (Z(p)), because
Zp ⊗R Z(p) = 0. While flatness will later play a role in our proofs, this example
shows that some properties of purity are also needed. In fact, whenever R → S
is such that there is some finitely presented module M such that M ⊗R S = 0

Example with both purity and flatness is given in it own section, as it is a
rather important non-example for several parts of this thesis.

Clearly, if for some distinct classes C, C ′ ∈ A(mod−R) classes CS and C ′
S are

the same, then descent of relative properties becomes nonsensical.
Later we show, that the map C ↦→ CS is injective when R → S is a faithfully

flat homomorphism of commutative rings (Corollary 6.17) or a faithfully flat
homomorphism which recognizes pure epimorphisms (Corollary 7.7). The proofs
in the main body are in a sense “putting the cart before the horse”, as injectivity
of C ↦→ CS will in fact follow from descend for relative flatness.

5.2 An important non-example
This is an example of a ring homomorphism, which is both pure and flat and in
fact even splits, but no version of flatness or projectivity descends through it.

Let k be a field and let A be a finite dimensional k-algebra. Consider the
ring Homk(A,A) and give it a structure of A-algebra via homomorphism φ :
A → Homk(A,A), a ↦→ a · (−). Now, Homk(A,A) ∼= An : f ↦→ (f(ei))ni=1, where
n = dimkA and (ei)ni=1 is a k-basis of A is an isomorphism of left A-modules,
meaning φ is both pure and flat at least from one side (for proof cf Lemmas
6.4 and 6.5). As Homk(A,A) is really a matrix algebra over field k, it is in fact
semisimple and all modules over it are projective. Picking A not-semisimple,
we acquire an example of a faithfully flat ring homomorphism, which does not
descend projectivity, flatness or any of its relative versions.

One such choice is A = k[x]/(x2), over which the cyclic module k[x]/(x) is not
projective. Here the homomorphism A → Homk(A,A) is even split as both left
and right A-module homomorphism. The homomorphism is explicitly defined by

1 ↦→
(︄

1 0
0 1

)︄
x ↦→

(︄
0 1
0 0

)︄
,

viewing Homk(A,A) as the algebra of 2× 2 matrices over k. The section as a left
A-module homomorphism ψL and the section as a right A-module homomorphism
ψR are defined as

ψL

(︄
a b
c d

)︄
= a+ bx, ψR

(︄
a b
c d

)︄
= c+ ax
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This example hints, that not even both sided faithful flatness is enough for
descent of projectivity. Importantly, this homomorphism isn’t central.

5.3 Local properties
The title of this thesis talks about local properties of modules. This name arises
from a geometric setting, where an ad property of modules makes for a sensible
property of sheaves over schemes or of modules over topological rings. Ring ho-
momorphisms arising from this setting are faithfully flat, motivating examination
of faithfully flat descent.
Example. Let R be commutative ring. Let (fi)ni=1 be a set of its elements which
generate the regular module R. Let Rf = R[f−1] be a localization of R in the
element f . Then the homomorphism R → ∏︁n

i=1 Rfi
is faithfully flat. This ho-

momorphism is called Zariski covering and correspond to an open set covering
of the spectrum of R. Properties of modules over rings Rf correspond to prop-
erties of sheaves over their spectra. Ascent of properties can be interpreted as
open subsets of spectrum inheriting some properties of the whole space, descend
through the homomorphism R → ∏︁n

i=1 Rfi
corresponds to a situation, when a

property holding for each set of an open covering is also possessed by the whole
space. This motivates the name local.
Example. The homomorphism Z → Zp̂ of p-adic completion is a faithfully flat
homomorphism, corresponding to completion of the ring with respect to some
topology. Ascend here means that a property satisfied on a dense subspace ex-
tends to the entire space. Descent correspond to a property restricting.
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6. Morphisms of interest
In the case of commutative rings, it is pure and faithfully flat homomorphisms
that provide setting for descent of various properties. Different parts of the proof
then use various facets of their purity. In the non-commutative setting the picture
becomes more complicated, as the key property of reflecting pure epimorphisms no
longer follows from mere purity of the ring homomorphism. In this chapter various
sides of pure ring homomorphisms are recounted and relationships between them
are explored. At the end we discuss, how the setting of commutative rings makes
everything simple.

6.1 Purity of non-commutative ring homomor-
phisms

In the following we fix a homomorphism φ : R→ S of not necessarily commuta-
tive rings.

Definition 6.1. We say that φ

(a) is left (right) pure, if it is a pure monomorphism of left (right) R-modules,

(b) reflects monomorphisms from the right (left), if whenever ν : A→ B is a map
of right (left) R-modules such that ν ⊗R idS (idS ⊗R ν) is a monomorphism
of S-modules, then also ν is a monomorphism,

(c) reflects epimorphisms from the right (left), if whenever π : A → B is a map
of right (left) R-modules such that π⊗R idS (idS ⊗R π) is an epimorphism of
S-modules, then also ν is an epimorphism,

(d) is right (left) object faithful, if whenever M ⊗R S = 0 (S ⊗R M = 0) for a
right (left) R-module M , then also M = 0,

(e) is right (left) faithful, if whenever A → B → C is such sequence of right
(left) R-modules, that 0→ A⊗R S → B ⊗R S → C ⊗R S → 0 (respectively
0→ S ⊗R A→ S ⊗R B → S ⊗R C → 0) is an exact sequence of S modules,
then also the sequence 0→ A→ B → C → 0 is exact,

(f) reflects pure monomorphisms from the right (left), if whenever ν : A → B
is a map of right (left) R-modules such that ν ⊗R idS (idS ⊗R ν) is a pure
monomorphism of S-modules, then also ν is a pure monomorphism,

(g) reflects pure epimorphisms from the right (left), if whenever π : A → B is
a map of right (left) R-modules such that π ⊗R idS (idS ⊗R π) is a pure
epimorphism of S-modules, then also ν is a pure epimorphism,

(h) left (right) flat, if S is flat as a left (right) R-module.

(i) right (left) faithfully-flat, if it is right faithful and left flat (respectively vice
versa)
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The following set of lemmas draws connections between these properties.

Lemma 6.2. The homomorphism φ is left pure if and only if it reflects monomor-
phisms from the right.

Proof. For the only if direction let φ be left pure and let A → B be right R-
module homomorphism, such that A ⊗R S → B ⊗R S is a monomorphism of
S-modules. Tensoring A → B with φ from the right produces the following
commutative square

A B

A⊗R S B ⊗R S
.

In it the bottom composition is injective, therefore the top map A→ B must be
a monomorphism.

For the if direction we take an arbitrary right R-module M . Tensoring φ
by M from the left and by S from the right produces homomorphism M ⊗R
R ⊗R S → M ⊗R S ⊗R S, which is a split monomorphism, admitting a section
m⊗ s⊗ s′ ↦→ m⊗ 1⊗ ss′. As φ reflects monomorphisms, M ⊗R R→M ⊗R S is
a monomorphism and R→ S is left pure.

Lemma 6.3. The homomorphism φ is right object faithful if and only if it reflects
epimorphisms from the right.

Proof. For the if direction let φ reflect epimorphisms from the right, and let M
be such that M ⊗R S = 0. Then the zero map 0 → M produces after tensoring
a map 0 → 0 which is epimorphic. So 0 → M is itself epimorphic rendering M
zero.

For the only if part let φ be object faithful and let π : A → B be such that
π ⊗R idS is an epimorphisms. Take cokernel Q = Coker(π). Then tensoring it
with S produces 0 = Coker(π ⊗R idS) = Q ⊗R S. As φ is object faithful, also
Q = 0 and π is epimorphic.

Lemma 6.4. The homomorphism φ is right faithful if and only if it reflects both
epimorphisms and monomorphisms from the right.

Proof. For the only if direction, let φ be right faithful. Let ν : A → B be an
R-module homomorphism such that ν ⊗R idS is a monomorphism. Let us take
cokernel

A→ B → Q→ 0,

then tensoring produces exact sequence

0→ A⊗R S → B ⊗R S → Q⊗R S → 0.

By faithfulness of φ 0 → A → B → Q → 0 is also exact, rendering A → B a
monomorphism.

To show that φ reflects epimorphisms, we show that it is object faithful. Let
M be such a right R-module, that R ⊗R S = 0. Then the sequence 0→ M → 0
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when tensored with S produces an exact sequence 0 → M ⊗R S → 0 and hence
is itself exact. So, M = 0.

For the if direction, let A → B → C be a sequence of right R modules, such
that

0→ A⊗R S → B ⊗R S → C ⊗R S → 0
is an exact sequence. As φ reflects both mono- and epimorphisms, A → B is
already a monomorphism and B → C is an epimorphism. It remains to show,
that the sequence is exact in the center. First let us show, that it is at least
a complex. As φ is left pure, according to Lemma 6.2, tensoring φ with the
sequence A→ B → C produces diagram

A B C

A⊗R S B ⊗R S C ⊗R S

f

h

g

i

j k
,

in which we seek to show, that gf = 0. For any a ∈ A we have igf(a) = kjh(a) =
0 and as i is a monomorphism, gf(a) = 0, so gf = 0.

We’ll show now that in fact C ∼= Coker(A→ B). Take a cokernel Q of A→ B.
The map B → C factorizes through it, we obtain diagram

Q 0

0 A B C 0

.

Tensoring it with S produces

Q⊗R S 0

0 A⊗R S B ⊗R S C ⊗R S 0

∼ ,

whereQ⊗RS → C⊗RS is an isomorphism from the universal property of cokernel.
As φ reflects both monomorphisms and epimorphisms, the homomorphism Q→
C must be a bijection an as such an isomorphism. Thus, C is in fact cokernel of
A→ B and the sequence

0→ A→ B → C → 0

is exact.

Lemma 6.5. If the homomorphism φ reflects monomorphisms from the right,
then it is right object faithful. If φ is left flat, then also if it is right object
faithful, it reflects monomorphisms.

Proof. Let φ reflect monomorphisms and let M be a right R-module such that
M ⊗R S = 0. The zero map M → 0, when tensored with S becomes a monomor-
phism 0→ 0. It must therefore be itself a monomorphism, rendering M = 0.
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Let now be φ left flat and right object faithful. Let A → B be a homomor-
phism of right R-modules such that A ⊗R S → B ⊗R S is a monomorphism of
right S-modules. Consider kernel K of the map A→ B. As S is flat, this means
that K ⊗R S = Ker(A⊗R S → B ⊗R S) = 0. As φ is object faithful, also K = 0
and A→ B is monic.
Lemma 6.6. If φ reflects pure monomorphisms from the right, then it is both
left and right pure.
Proof. Tensoring φ from the right with S produces split and hence also pure
monomorphism R ⊗R S → S ⊗R S with a section s ⊗ s′ ↦→ 1 ⊗ ss′. As φ reflect
pure monomorphisms from the right, it must be a right pure ring homomorphism.

To see that φ is left pure, we utilize again the proof of Lemma 6.2, this time
noting that the monomorphism M ⊗R R⊗R S →M ⊗R S ⊗R S is pure.
Lemma 6.7. If φ reflects pure epimorphisms from the right, then it is right object
faithful and reflects epimorphisms from the right.
Proof. We will prove that φ is right object faithful. Let M be a right R-module
such that M ⊗R S = 0. Consider a presentation R(J) → R(I) → M → 0.
Tensoring it with S produces S(J) → S(I) → 0 with the map S(J) → S(I) being
an epimorphisms ending in a flat module and therefore a pure epimorphism (cf
Corollary 4.21). Then however R(J) → R(I) must also be a pure epimorphism
and its cokernel M is zero.

Remark. Reflection of pure epimorphisms is stronger than reflection of epimor-
phisms. Ring homomorphism which reflects epimorphisms might not pick the
pure among them.
Lemma 6.8. If φ reflects pure epimorphisms from the right, then it also reflects
pure monomorphisms from the right.
Proof. Let φ reflect pure epimorphisms. Let ν : A→ B be such that ν ⊗R idS is
a pure monomorphism. Now we take cokernel

A→ B → Q→ 0.
Tensoring with S produces pure cokernel

0→ A⊗R S
∗−→ B ⊗R S

∗−→ Q⊗R S → 0
and as φ reflects pure epimorphisms,

A→ B
∗−→ Q→ 0

is pure.
We will show, that A is in fact kernel of the pure epimorphism B → Q. To

this end, construct its kernel K. The homomorphism A→ B factorizes through
it. Let us also take the kernel L of the map A→ K.

K

A B Q 0

L

∗

∗
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Tensoring the whole diagram with S produces

0 K ⊗R S

0 A⊗R S B ⊗R S Q⊗R S 0

L⊗R S

∗

∼

∗

where A⊗R S → K ⊗R S is an isomorphism, by the universal property of kernel.
But that is also a pure epimorphism, so A → K is pure. Thus, L → A is a
pure monomorphism, being a kernel of pure epimorphism. But then L ⊗R S =
Ker(A⊗R S → L⊗R S) = 0 and as φ is also object faithful (Lemma 6.7), L = 0,
and A→ K is an isomorphism. So, A is in fact the kernel of B → Q and A→ B
is a pure monomorphism.
Lemma 6.9. If φ is left flat and reflects pure monomorphisms from the right,
then it also reflects pure epimorphisms from the right.
Proof. Let A → B be a right R-module homomorphism such that A ⊗R S →
B ⊗R S is a pure epimorphism. Let K be kernel of A→ B. As S is flat

0→ K ⊗R S → A⊗R S → B ⊗R S → 0

is an exact sequence of right S-modules, as A⊗R S → B ⊗R S is pure it is pure
exact. By combination of previous Lemmas φ is faithful, so the sequence

0→ K → A→ B → 0

is exact. As φ reflects pure monomorphisms, it is pure exact and A → B is a
pure epimorphism.

From previous lemmas it follows, that the strongest considered property of
pure ring homomorphisms is the reflection of pure epimorphisms. This is the
property which we will end up needing for descent of pure projectivity.

Following are several examples and non-examples.
Example. Homomorphism k[x]/(x2) → Endk(k[x]/(x2)) from section 5.2 is an
example of both left and right faithfully flat homomorphism, which doesn’t reflect
pure epimorphisms from the right. If it did so, it would, as will be proven later,
descend flatness.
Example. Any commutative ring homomorphisms which is split as a module ho-
momorphism will be pure and also descend pure epimorphism. Homomorphism
Z→ Z⊕Zp for any prime number p will be an example of such homomorphism,
which is not flat.
Example. Ring homomorphism Z → ∏︁

p∈P,n∈N Zpn is not flat, but it is a non-
splitting example of a pure homomorphism of commutative rings. Such homo-
morphisms in fact possess all of the properties from Definition 6.1, except flatness.
This shows that, in general, flatness of ring homomorphisms is not needed for de-
scent.

35



More examples of non-commutative ring homomorphisms possessing these
properties will be generated in Chapter 8.

For the descent of relative properties, preserving relative purity will be impor-
tant. Unlike the usual purity, it is not preserved by arbitrary homomorphisms.
Definition 6.10. Take a subcategory C ∈ A(mod−R), then we say that φ
(a) preserves C-pure epimorphisms, if whenever π : A → B is a C-pure epimor-

phism of right R-modules, then π ⊗R idS is a CS-pure epimorphism of right
S-modules,

(b) preserves C-pure monomorphisms, if whenever ν : A→ B is a C-pure monomor-
phism of right R-modules, then ν⊗R idS is a CS-pure monomorphism of right
S-modules.

Lemma 6.11. Let C ∈ A(mod−R). If φ preserves C-pure monomorphisms, then
it also preserves C-pure epimorphisms. If it is flat, then also the other direction
holds.
Proof. Let first φ preserve C-pure monomorphisms. Let M → N be a C-pure
epimorphism. Taking the kernel we get a C-pure exact sequence

0→ K →M → N → 0.
As φ preserves C-pure monomorphisms, the sequence

0→ K ⊗R S →M ⊗R S → N ⊗R S → 0
is CS-pure exact, specially M ⊗R S → N ⊗R S is a CS-pure epimorphism.

Let now φ be flat and preserve C-pure epimorphisms. Let M → N be a C-pure
monomorphism. Taking the cokernel we get a C-pure exact sequence

0→M → N → Q→ 0.
As φ is flat and preserves C-pure epimorphisms, the sequence

0→M ⊗R S → N ⊗R S → Q⊗R S → 0
is exact, epimorphism N ⊗R S → Q ⊗R S is C-pure and the sequence is C-pure
exact. Specially, monomorphism M ⊗R S → N ⊗R S is C-pure.

When relating the purity over different rings, we can check that the forgetful
functor in fact preserves purity. For the usual purity it is an easy tensor product
computation, this however holds for relative purity as well.
Lemma 6.12. Let R → S be an arbitrary ring homomorphism and let C ∈
A(mod−R). Let M → N be a CS-pure epimorphism (monomorphism) of right
S-modules. Then it is also C-pure as a homomorphism of R-modules.
Proof. Let π : M → N be a CS-pure epimorphism of right S-modules. Take Q ∈ C
and an R-module homomorphism f : Q→ N . By properties of functor −⊗R S,
this homomorphism factorizes uniquely through R-module homomorphism Q→
Q ⊗R S and S-module homomorphism f ′ : Q ⊗R S → N . As Q ⊗R S ∈ CS,
there is a homomorphism g′ : Q ⊗R S → M such that πg′ = f ′. Then πg′f ′′ =
f ′f ′′ = f , so the R-module homomorphism g′f ′′ witnesses that M → N is a
C-pure epimorphism. If M → N is a CS-pure monomorphism, then its cokernel
is a C-pure epimorphisms, making the monomorphism M → N also C-pure.

36



6.2 The case of pure and flat homomorphisms
of commutative rings

In the classical setting of pure homomorphisms of commutative rings (though in
fact it is enough for the domain to be commutative, as long as the homomorphism
is central) the entirety of previous section collapses into a simple case, as pure
homomorphisms of commutative rings posses all the properties of Definition 6.1
apart from being flat. It is enough to show that they reflect pure epimorphisms.
The following proof is an adaptation of Proposition 2.3 in [Mesablishvili, 2002].

Lemma 6.13. Let 0 → A → B → C → 0 be an exact sequence of R-modules,
then 0 → A → B → C → 0 is pure exact if and only if the sequence 0 → C∗ →
B∗ → A∗ → 0 splits.

Proof. Omitted, [Göbel and Trlifaj, 2006, Lemma 2.19].

Proposition 6.14. Let φ : R → S be a pure homomorphism of commutative
rings. Let π : M → N be such homomorphism of R-modules, that π ⊗R S :
M ⊗R S → N ⊗R S is a pure epimorphism of (right) S-modules. Then π is a
pure epimorphism.

Proof. First, R→ S is object faithful, so π is an epimorphism. We will determine
that it is pure by showing, that π∗ : N∗ → M∗ splits. First, as φ : R → S is
a pure monomorphism, the epimorphism φ∗ : S∗ → R∗ splits. Let us fix a
section τ : R∗ → S∗. Now for any module M we denote τM = HomR(M, τ) :
HomR(M,R∗) → HomR(M,S∗). By tensor-hom adjunction and the fact that R
and S are commutative this is in fact a homomorphism of R-modules

τM : M∗ → (M ⊗R S)∗.

Furthermore, it constitutes a section of epimorphism σM = (idM ⊗R φ)∗ ∼=
HomR(M,φ∗) : (M ⊗R S)∗ →M∗, as we have

HomR(M,φ∗) ◦ HomR(M, τ) = HomR(M,φ∗ ◦ τ) = HomR(M, idR∗) = idM∗

Now, as π ⊗R idS : M ⊗R S → N ⊗R S is a pure epimorphism of S-modules, the
monomorphism (π ⊗R idS)∗ : (N ⊗R S)∗ → (M ⊗R S)∗ admits a section ψ. The
square

N∗ M∗

(N ⊗R S)∗ (M ⊗R S)∗

π∗

τN τM

(π⊗RidS)∗

commutes, as maps τM are constructed functorially. Finally, the map σNψτM is
a section of π∗, as

σNψτMπ
∗ = σNψ(π ⊗R idS)∗τN = idN∗ .

Hence, π is a pure epimorphism.
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The setting of commutative rings also simplifies the situation for relative prop-
erties

Proposition 6.15. Let R → S be a flat homomorphism of commutative rings
and C ∈ A(mod−R). Then R → S preserves C-pure monomorphisms and epi-
morphisms.

Proof. Let M → N be a C-pure monomorphism of R-modules. We want to
check, that M ⊗R S → N ⊗R S is CS-pure. Take a module Q ∈ C⊤. Then
M ⊗R Q → N ⊗R Q is a monomorphism. As S is a flat R-module, also M ⊗R
Q⊗RS → N ⊗RQ⊗RS is a monomorphism and thanks to natural isomorphisms

−⊗R Q⊗R S ∼= −⊗R S ⊗R Q ∼= (−⊗R S)⊗S (S ⊗R Q)

also (M ⊗R S)⊗S (S ⊗R Q)→ (N ⊗R S)⊗S (S ⊗R Q) is a monomorphism. This
is enough to check, that the monomorphism M ⊗R S → N ⊗R S is CS-pure. Pure
epimorphisms are then preserved by Lemma 6.11.

This lets us give a first minor result on descent.

Proposition 6.16. Let R→ S be a faithfully flat homomorphism of commutative
rings. Then relative flatness descends through R→ S.

Proof. Take C ∈ A(mod−R) and let M be an R-module such that S⊗RM is CS-
flat. Let A→ B be a C-pure monomorphism. Then A⊗RS → B⊗RS is a CS pure
monomorphism by Proposition 6.15. Therefore, (A⊗R S)⊗S (S⊗RM)→ (B⊗R
S)⊗S (S⊗RM) is a monomorphism. By the same chain of natural isomorphisms
used in the previous proof it is isomorphic to monomorphism (A⊗RM)⊗R S →
(B⊗RM)⊗RS and as R→ S is faithful, the homomorphism A⊗RM → B⊗RM
is a monomorphism. So, M is a C-flat module.

This shows, that in the case of faithfully flat homomorphisms of commutative
rings, descent of relative properties is sensible.

Corollary 6.17. Let R → S be faithfully flat homomorphism of commutative
rings. Then the map C ↦→ CS is injective.

Proof. Let us take C ∈ A(mod−R). We need to show, that for any finitely
presented R-module M such that M ⊗R S ∈ CS, already M ∈ C. But clearly
M ⊗R S ∈ FCS

⊤ , by Proposition 6.16 M ∈ FC⊤ and, as M is finitely presented,
by Proposition 4.19 already M ∈ C.

Remark. This proof will be almost verbatim repeated in the next section, when we
get different criteria for descent of relative flatness in a non-commutative setting.
Remark. For wider generality, in this section it suffices for R to be commutative
and for S to be a central algebra. Important property coming from commutativity
is that all R-modules posses (R,R)-bimodule structure (from commutativity) and
that the left and right module structure on S is the same (centrality).
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7. Ascent and descent of
pertinent properties
This chapter shows proofs of ascent and descent of properties discussed and de-
fined in previous parts of the text. Importantly, the proofs are done over not nec-
essarily commutative rings, trying to pose as little hypotheses on the morphisms
as possible in each case. In the next chapter some special non-commutative mor-
phisms will be proven to possess the relevant properties.

7.1 Ascent
It is quite easy to show that all discussed properties ascend, in fact through
arbitrary ring homomorphisms. This follows from the fact, that each of discussed
properties admits some characterization by a construction commuting with the
tensor product.

Proposition 7.1. Let R → S be a ring homomorphism, let M be a right R-
module, and let us fix C ∈ A(mod−R). Then if M is

(A) < κ-generated

(B) < κ-presented

(C) a direct sum of countably generated submodules

(D) Mittag-Leffler

(E) C⊤-flat

(F) C-projective

(G) flat

(H) projective

(I) pure projective

then so is M ⊗R S as an S-module (relative to subcategory CS, where applicable).

Proof. In parts (A), (B) it is enough to take a tensor of a free precover or pre-
sentation. Part (C) follows from (A) (with κ = ω+) and the fact, that tensor
product commutes with direct sums.

For part (D) we express the module M as direct limit of a Mittag-Leffler
system (Mi, fji)i≤j∈I . As tensor product commutes with taking direct limits,
M ⊗R S is the limit of system (Mi ⊗R S, fji ⊗R idS)i≤j∈I , which can be shown to
be Mittag-Leffler as it clearly satisfies condition (ii) of Theorem 2.3.

For part (E) we express M as direct limit of a system (Ci, fi,j)i≤j∈I where
Ci ∈ C. Then M ⊗R S is the limit of system (Ci ⊗R S, fji ⊗R idS)i≤j∈I where, by
definition, Ci ⊗R S ∈ CS.
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Part (F) follows similarly from expressing M as a direct summand in a direct
sum ⨁︁

i∈I Ci where Ci ∈ C and noting that, as tensor product commutes with
direct sums, M ⊗R S is a direct summand in ⨁︁i∈I(Ci ⊗R S).

Parts (G) and (H) follow from parts (E) and (F) respectively, taking C = P<ω0 .
Part (I) follows from (F) taking C = mod−R. Note that in this case CS

projectivity is not the same as pure projectivity over S, but in fact more special.

7.2 Generatedness and presentedness
Descent of upper limits on amount of generators and relations plays important
role in the proof of descent for projectivity and pure projectivity. Countable
generation lies in the heart of Kaplansky decomposition. While a limit on gen-
eration descends already with an object faithful morphism, we use left purity for
the presentedness.

Proposition 7.2. Let R → S be a right object faithful ring homomorphism,
let κ be an infinite cardinal and M be such a right R-module, that M ⊗R S is
< κ-generated. Then M is < κ-generated.

Proof. Take a set {∑︁nα
i=1 mαi ⊗ sαi | α < λ} of generators of M ⊗R S for some

cardinal λ < κ. Then we construct map p : R(⨆︁α<λ
nα) → M given on the

basis elements e(α,i), α < λ, 0 < i ≤ nα as p(e(α,i)) = mαi. Then the map
p⊗R idS : S(⨆︁α<λ

nα) →M ⊗R S is onto, as for each α < λ we have

(p⊗R idS)
(︄
nα∑︂
i=1

e(α,i) ⊗ sαi
)︄

=
nα∑︂
i=1

mαi ⊗ sαi.

Because R→ S is object faithful and so reflects epimorphisms, map p is also
onto. As λ < κ and each of the nα are finite, the disjoint union ⨆︁

α<λ nα is of
cardinality less than κ. So, map p witnesses that M is < κ generated.

Proposition 7.3. Let R → S be a left pure ring homomorphism, then if M is
such right R-module that M ⊗R S is an at < κ-presented S-module, then also M
is a < κ-presented R-module.

Proof. By Proposition 7.2 M is < κ-generated, as R → S is object faithful.
Consider some exact sequence

0→ K
ν−→ R(λ) π−→M → 0

for a cardinal λ < κ. Tensoring with S produces exact sequence

K ⊗R S → S(λ) π⊗RidS−→ M ⊗R S → 0.

As M⊗RS is < κ presented, there is some cardinal µ < κ such that Ker(π⊗R idS)
is µ generated and therefore there is a set of elements {kα ∈ K}α<µ such that
elements {(ν⊗R idS)(kα⊗1)} generate Ker(π⊗R idS). We will show, that elements
{kα ∈ K}α<µ generate the kernel K.
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Let r = (rβ)β<λ be an element of R(µ) such that π(r) = 0. Then (π⊗R idS)(r⊗
1) = 0 and therefore there is an element x = ∑︁n

i=1(kαi
⊗ si) ∈ K ⊗R S such that∑︁n

i=1(ν(kαi
)⊗si) = (ν⊗R idS)(x) = r⊗1. As all of ν(kαi

) = (kiβ)β<λ are elements
of R(λ) ⊆ S(λ), we can rewrite this identity by components as a finite system of
identities

n∑︂
i=1

kiβj
· si = rβj

, j = 1 . . .m,

where {βj}1≤j≤m are the indices at which at least one of ν(kαi
) or r is nonzero.

As R→ S is left pure, there is a set {r′
i}1≤i≤n such that

n∑︂
i=1

kiβj
· r′

i = rβj
, j = 1 . . .m.

Then however ∑︁n
i=1 kαi

· r′
i = r. So, the kernel K is generated by the elements

{kα ∈ K}α<µ, and M is < κ presented.

7.3 Flatness and relative flatness
Descent of flatness and its relative versions is, where the reflection of pure epi-
morphism first shines. It suffices for descent of flatness. Relative version requires
that the ring homomorphism further preserves relatively pure epimorphisms.

Proposition 7.4. Let R → S be a ring homomorphism reflecting pure epimor-
phisms from the right. Take C ∈ A(mod−R) and let R → S preserve C-purity.
Then C⊤-flatness of right R-modules descends through R→ S.

Proof. Let M be such right R-module, that M ⊗R S is a C⊤
S -flat. Lemma 4.6

yields a C-pure epimorphism P →M for some C-projective module P . Tensoring
this map with S produces a CS-pure epimorphism P ⊗R S → M ⊗R S, with
M ⊗R S being CS-flat. By Proposition 4.20 this epimorphism is already pure. By
hypothesis on the homomorphism R → S the epimorphism P → M is pure and
by Proposition 4.22 the module M is C⊤-flat.

This has immediate corollary for the usual flatness.

Corollary 7.5. Flatness of right modules descends through ring homomorphisms
reflecting pure epimorphisms from the right.

Proof. Taking C = P<ω0 , this follows immediately. In this case C-pure epimor-
phism reduces to just an epimorphism, which is preserved by any ring homomor-
phism (as tensor product is right exact).

Thanks to the Proposition 6.14 we have a good result for pure homomorphisms
of commutative rings.

Corollary 7.6. Let R be a commutative ring, S a central R-algebra and let
the corresponding ring homomorphism R → S be pure. Then flatness descends
through R→ S.
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Remark. There are multiple proofs of pure descent for flatness, using commuta-
tivity of R in different ways. One computational is recounted in [Angermüller,
2015], the one in [Stacks project authors, 2022] is a version of the one used here,
adapted also from [Mesablishvili, 2002].

Now we’re finally able to name some non-commutative conditions, under
which the relative properties ascend distinctly, and therefore descent for them
makes sense.

Corollary 7.7. Let R→ S be ring homomorphism reflecting pure epimorphisms
from the right, such that for any C ∈ A(mod−R), homomorphism R → S pre-
serves C-pure epimorphisms. Then the map C ↦→ CS is injective (and hence strictly
monotonous).

Proof. Let us take C ∈ A(mod−R). We need to show, that for any finitely
presented R-module M such that M ⊗R S ∈ CS, already M ∈ C. But clearly
M ⊗R S ∈ FCS

⊤ , by Proposition 7.4 M ∈ FC⊤ and, as M is finitely presented, by
Proposition 4.19 already M ∈ C.

Remark. As any ring homomorphism reflecting pure epimorphisms from the right
is already pure on both sides, we don’t even need to take M finitely presented to
begin with, as it will be finitely presented by Proposition 7.3.

Corollary 7.8. Let R be a commutative ring and S a central R-algebra, let
the corresponding ring homomorphism R → S be faithfully flat. Then the map
A(mod−R)→ A(mod−S) : C ↦→ CS is strictly monotonous.

7.4 Mittag-Leffler modules
Descent of Mittag-Leffler property another key part of descent of projectivity and
pure projectivity. Here the reflection of pure epimorphisms can be weakened in
two different ways. The next section will make use of the second one, however in
the spirit of trying to use as little hypotheses as possible, the first version is also
included.

The first weakening of this condition comes from only requiring reflection of
pure monomorphisms, rather than pure epimorphisms.

Theorem 7.9. Let f : R→ S be a ring homomorphism reflecting pure monomor-
phisms. Then Mittag-Leffler property descends through f , that is if M is a right
R-module such that M ⊗R S is a Mittag-Leffler module as a right S-module then
also M is Mittag-Leffler as a right R-module.

Proof. The ideas of this proof come from [Stacks project authors, 2022, Lemma
10.95.1], care has been taken to respect the non-commutative setting.

Write M as a direct limit of a directed system of finitely presented modules
(Mi, fji)i≤j∈I . We will prove that this system is a Mittag-Leffler direct system
by verifying the condition (iv) of Theorem 2.3. Pick arbitrary i ∈ I. As tensor
product commutes with taking colimits, we have M⊗RS ∼= lim−→(Mi⊗SS). Because
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M⊗RS is a Mittag-Leffler module the system (Mi⊗RS, fji⊗RidS)i≤j∈I is a Mittag-
Leffler system and for chosen i there exists i ≤ j ∈ I satisfying the condition 2.3
(iv). Tensoring the pushout diagram

Mi Mj

M N

fji

fi

⌜
h

g

with S produces pushout diagram (as tensor commutes with pushouts)

Mi ⊗R S Mj ⊗R S

M ⊗R S N ⊗R S

fji⊗RidS

fi⊗RidS

⌜
h⊗RidS

g⊗RidS

Here by the choice of j the map h⊗R idS is a pure monomorphism. Map f reflects
pure monomorphisms, hence also h is a pure monomorphism. This verifies the
condition and M is indeed a Mittag-Leffler module.

The second way to weaken the hypothesis is to require descent for flatness
and purity from the right. Again, a ring homomorphism which reflects pure
epimorphisms possesses both of these properties.

In the a priori presence of flatness it is enough for the ring homomorphism
to be right pure.

Theorem 7.10. Let R → S be a right pure ring homomorphism. If M is a flat
right R-module such that M ⊗R S is Mittag-Leffler as a right S-module, then M
is Mittag-Leffler as a right R-module.

Proof. The ideas of this proof are taken from [Angermüller, 2015, Lemma 5],
changes are made for the non-commutative setting, especially in considering the
particular type of purity.

We will check that M satisfies the condition (iii) of Theorem 2.5 Let {Qk}k∈K
be a system of left R-modules. In the diagram

M ⊗R
∏︁
k∈K Qk M ⊗R

∏︁
k∈K(S ⊗R Qk) (M ⊗R S)⊗S

∏︁
k∈K(S ⊗R Qk)

∏︁
k∈K(M ⊗R Qk)

∏︁
k∈K(M ⊗R (S ⊗R Qk))

∏︁
k∈K((M ⊗R S)⊗S (S ⊗R Qk))

∼

∼

homomorphisms Qk → S ⊗R Qk are monomorphisms, as R → S is right pure,
maps M ⊗RQk →M ⊗R S⊗RQk are monic because M is right flat, ∏︁k∈K(M ⊗R
Qk) →

∏︁
k∈K(M ⊗R (S ⊗R Qk)) is monic as a product of monomorphisms, and

similarly M ⊗R
∏︁
k∈K Qk →M ⊗R

∏︁
k∈K(S ⊗R Qk) is monic, as it is a product of
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monomorphisms tensored with a flat module. The isomorphisms arise from the
fact that S ⊗R Qk and ∏︁k∈K S ⊗R Qk are left S-modules.

Finally, the homomorphism

(M ⊗R S)⊗S
∏︂
k∈K

(S ⊗R Qk)→
∏︂
k∈K

((M ⊗R S)⊗S (S ⊗R Qk))

is monic, as M ⊗R S is Mittag-Leffler. This makes the composition along the top
and right side of the diagram monic, and hence also the homomorphisms

M ⊗R
∏︂
k∈K

(Qk)→
∏︂
k∈K

(M ⊗R Qk)

must be monic and the module M Mittag-Leffler.

This immediately leads to following corollary, using condition weaker than
reflection of pure epimorphisms.

Corollary 7.11. Let f : R → S be a ring homomorphism, which is pure as a
right R-module homomorphism and flatness of right modules descends through it.
Then the property of being flat Mittag-Leffler module descends through f .

7.5 Projectivity
With most of the parts of Drinfeld characterization of projectivity and pure pro-
jectivity descending, it remains to show, that also the Kaplansky decomposition
descends, in presence of projectivity or pure projectivity. The following proof is
done in two different, ways. Branch (A) deals with descent of projectivity and
uses the weaker condition of purity (here on both sides) and descent of flatness.
This is not an unexpected result, it is mentioned (though without proper proof
and specification of whether left or right purity is needed) in [Osofsky, 1979, page
233].

Branch (B) proves descent of pure projectivity in the case, that the ring
homomorphism reflects pure epimorphisms. Corollary of this is pure descent for
pure projectivity (over commutative rings). This is again an expected result. As
communicated orally to the advisor result on pure descent for pure projectivity
will also appear in the independent work [Herbera et al.] by Herbera, Př́ıhoda,
and Wiegand.

The proof is done by devissage à la Kaplansky, each step will make use of the
following lemma.

Lemma 7.12. Let R→ S be a ring homomorphism, let M be a right R-module
such that M ⊗R S = ⨁︁

i∈I Qi is a direct sum of countably generated right S-
modules. Let N ⊆ M be a countably generated submodule. Then there is a
countably generated submodule N ′ such that N ⊆ N ′ ⊆M and (⊆ ⊗RidS)(N ′⊗R
S) = ⨁︁

i∈I′ Qi for some countable subset I ′ ⊆ I.
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Proof. We construct a chain of countably generated submodules (Nn)n<ω and a
chain of countable subsets (In)n<ω as follows. Let N0 = N . If for n < ω the
module Nn is already constructed, we put In = {i ∈ I | πi((⊆ ⊗RidS)(Nn ⊗R
S)) ̸= 0}, where πi : N ⊗R S → Qi, i ∈ I are the canonical projections. The
set In is countable, as the module Nn is countably generated, therefore also
Nn⊗RS is countably generated and for each its generator x the set {i ∈ I | πi((⊆
⊗RidS)(x)) ̸= 0} is finite. Clearly, (⊆ ⊗RidS)(Nn ⊗R S) ⊆ ⨁︁i∈In

Qi.
If the set In is already constructed, construct the submodule Nn+1 ⊆ M as

follows. The submodule⨁︁i∈In
Qi ⊆M⊗RS is a countable direct sum of countably

generated modules and is therefore countably generated. Let
{︂∑︁kα

j mαj ⊗ sαj
}︂
α<ω

a set of its generators. Then we construct module N ′
n as a submodule of M

generated by the countable set {mαj}α<ω,1≤j≤kα and module Nn+1 = Nn + N ′
n.

Clearly, ⨁︁i∈In
Qi ⊆ (⊆ ⊗RidS)(Nn ⊗R S) and Nn ⊆ Nn+1.

As for each n < ω we have ⨁︁i∈In
Qi ⊆ (⊆ ⊗RidS)(Nn ⊗R S), by construction

of In+1 also In ⊆ In+1.
Having constructed the chains, we put I ′ = ⋃︁

n<ω In and N ′ = ⋃︁
n<ωNn. As a

union of a countable chain of countable sets, I ′ is countable and as a union of a
countable chain of countably generated modules N ′ is countably generated. It is
easily checked that (⊆ ⊗RidS)(N ′ ⊗R S) = ⨁︁

i∈I′ Qi, as (⊆ ⊗RidS)(N ′ ⊗R S) =⋃︁
n<ω(⊆ ⊗RidS)(Nn ⊗R S) and ⨁︁i∈I′ Qi = ⋃︁

n<ω

⨁︁
i∈In

Qi.

Theorem 7.13. Let R → S be a ring homomorphism, which is pure as a left
R-module homomorphism. Let M be a right R-module. Then:

(A) If R → S is further also right pure and flatness descends through it, then
projectivity descends through R→ S.

(B) If R → S further recognizes pure epimorphisms, then pure projectivity de-
scends through R → S In this case R → S also descends flatness and pro-
jectivity.

Proof. The proofs of both parts are similar, we’ll do them at the same time,
noting where the proof differs.

Let M be such that M ⊗R S is (pure) projective. To finish the proof it is
enough to show that M = ⨁︁

j∈JM
′
j for some system of countably generated

modules, because

(A) by lemma 7.10 M is already Mittag-Leffler and by the hypothesis on R→ S
it is flat. Hence, M is projective by Theorem 4.25 for usual projectivity.

(B) by lemma 7.9 M is already Mittag-Leffler and hence it is already pure pro-
jective by Theorem 4.25 for pure projectivity.

By Kaplansky’s theorem (Theorem 4.10) we can decompose M⊗RS = ⨁︁
i∈I Qi

as a direct sum of countably generated (pure) projective modules.
Fix on M a well ordering by a cardinal κ and denote M = {mα}α<κ. We’ll

construct a chain (Mα)α<κ of submodules of M and chain (Iα)α<κ of subsets of I
with following properties.

1. M0 = 0, I0 = ∅
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2. Mα ⊆Mβ, Iα ⊆ Iβ whenever α < β < κ,

3. for each limit ordinal β < κ we have Mβ = ⋃︁
α<βMα and Iβ = ⋃︁

α<β Iα, and

4. for each α < κ:

(a) mα ∈Mα+1

(b) 0→Mα →M →M/Mα → 0 is pure exact and Mα ⊗R S = ⨁︁
i∈Iα

Qi,
(c) 0→Mα →Mα+1 →M ′

α → 0 splits and M ′
α is countably generated.

We claim that such chain (Mα)α<κ already produces direct decomposition
M = ⨁︁

α∈κM
′
α.

By induction on κ we see that for each α < κ already Mα = ⨁︁
γ<αM

′
γ. For

α = 0 we have M0 = 0. If for some α < κ already Mα
∼=
⨁︁

γ<αM
′
γ, then by

condition 4.(c)
Mα+1 ∼= Mα ⊕M ′

α
∼=

⨁︂
γ<α+1

M ′
γ.

For β < κ a limit ordinal we have by condition 3.

Mβ =
⋃︂
α<β

Mα =
⋃︂
α<β

⨁︂
γ<α

M ′
γ =

⨁︂
γ<β

M ′
γ,

viewing M ′
γ as submodules in M . Finally, by condition 4.(a)

M =
⋃︂
α<κ

Mα =
⋃︂
α<κ

⨁︂
γ<α

M ′
γ =

⨁︂
γ<κ

M ′
γ.

The chains shall be constructed by induction on the cardinal κ. Put M0 = 0,
I0 = ∅. Now, if for a limit cardinal β < κ there already are Mα, Iα for all α < β,
we put Mβ = ⋃︁

α<βMα and Iβ = ⋃︁
α<β Iα. Then all required conditions except

4.(b) are trivially satisfied. To check the condition 4.(b) express the short exact
sequence

0→Mβ →M →M/Mβ → 0
as a direct limit of the system of pure exact sequences

0 Mα M M/Mα 0

0 Mα′ M M/Mα′ 0

⊆α′α ∼ φα′α

with the map on the left being the inclusion for α ≤ α′ and the map on the
right being the projection M/Mα → (M/Mα)/(M/Mα′) ∼= M/Mα′ . Furthermore,
because union of a chain is a type of direct limit and tensor commutes with direct
limits we have

Mβ ⊗R S = lim−→
α<β

(Mα ⊗R S) =
⋃︂
α<β

⨁︂
i∈Iα

Qi =
⨁︂
i∈Iβ

Qi.

If for α < κ we already have Mα, we construct Mα+1 as follows. Tensoring
the pure exact sequence

0→Mα →M →M/Mα → 0
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with S produces a sequence

0→Mα ⊗R S →M ⊗R S →M/Mα ⊗R S → 0

isomorphic to
0→

⨁︂
i∈Iα

Qi →
⨁︂
i∈I

Qi →
⨁︂
i∈I\Iα

Qi → 0

by the condition 4.(b) for α.
Put Nα ⊆ M/Mα as the submodule generated by element mα + Mα. Then

lemma 7.12 yields a countable generated submodule M ′
α ⊆ M/Mα and the set

I ′
α ⊆ I such that Im(⊆ ⊗RidS) = ⨁︁

i∈I′
α
Qi. Put Iα+1 = Iα ∪ I ′

α and take Mα+1
as the pullback in the diagram

0 0

M/Mα+1 M/Mα+1

0 Mα M M/Mα 0

0 Mα Mα+1 M ′
α 0

0 0

∼=

∼

⌝

(7.1)

where all rows and columns are exact, and the isomorphisms arise from prop-
erties of pullback of an epimorphism along a monomorphism. Let us prove, that
the sequence

0→M ′
α →M/Mα →M/Mα+1 → 0

is in fact pure. Tensoring it with S produces a right exact sequence

M ′
α ⊗R S → (M/Mα)⊗R S → (M/Mα ⊗R S)/ Im(⊆ ⊗RidS)→ 0

which is in turn isomorphic to

M ′
α ⊗R S →

⨁︂
i∈I\Iα

Qi →
⨁︂

i∈I\Iα+1

Qi → 0

which splits.

(A) Module (M/Mα+1) ⊗R S ∼=
⨁︁

i∈I\Iα+1 Qi is therefore a direct summand in
a flat module M ⊗R S and as such it is itself flat. By the hypothesis on
homomorphism R→ S so is the module M/Mα+1. Then however the exact
sequence

0→M ′
α →M/Mα →M/Mα+1 → 0

ends in a flat module and is pure.
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(B) The epimorphism M/Mα⊗R S →M/Mα+1⊗R S is split and therefore pure.
By the hypothesis on R→ S, also M/Mα →M/Mα+1 is a pure epimorphism
and hence the exact sequence

0→M ′
α →M/Mα →M/Mα+1 → 0

is pure.

With M ′
α ⊆M/Mα being a pure inclusion we have already M ′

α ⊗R S = Im(⊆
⊗RidS) = ⨁︁

i∈I′
α
Qi. As a direct summand in a (pure) projective module M ⊗R S

the module M ′
α ⊗R S is itself (pure) projective. As it is countably generated,

as a pure projective module it is already countably presented, and as R → S is
pure as a left module morphism, by Proposition 7.2 the module M ′

α is already
countable generated.

(A) By hypothesis on R → S the module M ′
α is flat, by Proposition 7.10 it is

Mittag-Leffler and by Proposition 4.24 it is projective. Hence, the sequence

0→Mα →Mα+1 →M ′
α → 0

splits.

(B) By Proposition 7.9 the module M ′
α is Mittag-Leffler and by Proposition 4.24

it is pure projective. The sequence

0→Mα →Mα+1 →M ′
α → 0

is pure as the epimorphism Mα+1 →M ′
α is a pullback of a pure epimorphism.

Therefore, it splits.

Finally, the homomorphism Mα+1 → M is a pure extension of an isomorphism
and a pure monomorphism and is therefore itself a pure monomorphism. So the
sequence

0→Mα+1 →M →M/Mα+1 → 0
is pure. This concludes construction of desired chains and as such the whole
proof. In part (B) further by Corollary 7.5 the homomorphism R → S already
descends flatness and thanks to characterization of a projective module as a flat
pure projective module, it already descends projectivity.

Corollary 7.14. Let R → S be a pure homomorphism of commutative rings.
Then pure projectivity and projectivity descend through R→ S.

Corollary 7.15. Let R → S be a ring homomorphism recognizing pure epimor-
phisms from the right. Let C ∈ A(mod−R) be a class and let R → S further
preserve C-pure epimorphisms. Then C-projectivity descends through R→ S.

Proof. Let M be such right R-module, that M ⊗R S is CS-projective. By version
(B) of Theorem 7.13, the homomorphism R→ S descends pure projectivity and
so M is pure projective. By Proposition 7.4 it also descends C-flatness and by
characterization in Corollary 4.27 it descends C-projectivity.

Corollary 7.16. Let R→ S be a faithfully flat homomorphisms of commutative
rings, then relative projectivity descends through R→ S.
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8. Application on central
extensions of central pure
homomorphisms
Having proved the descent of projectivity and pure projectivity through ring
homomorphisms under some conditions, we will show descend through a con-
crete type of homomorphisms of central algebras over a commutative ring –
those, which arise as extensions of pure (faithfully flat) central homomorphisms
starting in R, by a central R-algebra. Note that the non-example k[x]/(x2) →
Endk k[x]/(x2) of section 5.2 is not central and is therefore a non-example for this
setting as well.

8.1 Descent through central extensions of cen-
tral homomorphisms

For this section, we fix the following situation. Let R be a commutative ring
and let S and A be central R-algebras with φ : R → S and ψ : R → A being
the corresponding ring homomorphisms. The module A ⊗R S is imbued with a
central R algebra structure via

(a⊗ s) · (a′ ⊗ s′) = aa′ ⊗ ss′.

Now the R bimodule isomorphism A⊗R S → S ⊗R A : (a⊗ s ↦→ s⊗ a) is in
fact an R algebra isomorphism. We denote A ⊗R S ∼= S ⊗R A ∼= B. This data
makes a commutative square

R S

A B

φ

ψ ψ′

φA

where φA = idA ⊗R φ and ψ′ = ψ ⊗R idS.
It is the bottom homomorphism in this square that is of interest. Algebra

homomorphisms constructed in this way offer a generalization of centrality. While
B is certainly not a central A-algebra, images of elements from A nonetheless
commute with anything in B that “does not come from A”, that is for any a ∈ A
and s ∈ S

(a⊗ 1) · (1⊗ s) = a⊗ s = (1⊗ s) · (a⊗ 1).

Importantly, ring homomorphism φA inherits important properties of the ho-
momorphism φ. This will secure descent of (pure) projectivity when φ is pure
and relative projectivity when φ is faithfully flat. This inheritance of properties
is facilitated by a handy natural isomorphism concerning extension of A-modules
by B.
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Lemma 8.1. There are natural isomorphisms

(−⊗A B) ∼= (−⊗R S)|Mod−A : Mod−A→ Mod−B

and
(B ⊗A −) ∼= (S ⊗R −)|A−Mod : A−Mod→ B−Mod

Proof. Let M be a right A-module. Let us check that M ⊗R S is in fact a right
B-module. The B-module structure is given by

(m⊗ s) · b = (m⊗ s) ·
n∑︂
i=1

(ai ⊗ si) =
n∑︂
i=1

(mai ⊗ ssi),

where ∑︁n
i=1(ai ⊗ si) is the interpretation of b in A⊗R S ∼= B.

Then the natural isomorphism of right S-modules

M ⊗A B ∼= M ⊗A (A⊗R S) ∼= M ⊗R S

is also an isomorphism of B-modules. The other isomorphism is constructed
similarly.

Another important observation is the fact, that the tensor product over R is
commutative, without jeopardizing the A-module structure.

Lemma 8.2. Let M be a right A module. Then the M⊗RS ∼= S⊗RM : m⊗s ↦→
s⊗m is an isomorphism of right A-modules.

Proof. The A-module on M ⊗R S is given as

(m⊗R s) · a = (ma⊗ s).

From this the R-module isomorphism M ⊗R S ∼= S ⊗R M : m ⊗ s ↦→ s ⊗ m is
clearly also a bijective A-module homomorphism.

These simple lemmas let us prove that φA has some useful properties. Imme-
diately we get flatness and preservation of relatively pure morphisms.

Proposition 8.3. Let in the situation above further R→ S be flat, then A→ B
is both right and left flat. Let C ∈ A(mod−A). Then A → B preserves C-pure
monomorphisms and epimorphisms.

Proof. Let M → N be a right module monomorphism. Then M⊗AB → N⊗AB
is isomorphic to M ⊗R S → N ⊗R S, which is monic. So, A → B is left flat.
Similarly we show, that A→ B is right flat.

Let now M → N be a C-pure monomorphism of right A-modules. We would
like to show, that M⊗AB → N⊗AB is a CB-pure monomorphism of B-modules.
Take a module Q ∈ C⊤. Then M ⊗A Q→ N ⊗A Q is a monomorphism. As S is
flat as a right R-module, also S⊗RM ⊗AQ→ S⊗RN ⊗AQ is monic and thanks
to natural isomorphisms

S ⊗R −⊗A Q ∼= (−⊗R S)⊗A Q ∼= −⊗A B ⊗A Q ∼= (−⊗A B)⊗ (B ⊗A Q)

so is (M ⊗A B)⊗ (B ⊗A Q)→ (N ⊗A B)⊗ (B ⊗A Q). So, M ⊗A B → N ⊗A B
is in fact CB-pure. By Lemma 6.11 A→ B also preserves C-pure epimorphisms.
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More importantly, if R → S is pure, then A → B inherits all the important
properties of purity.

Proposition 8.4. Let in the situation above further R → S be a pure central
ring homomorphism, then A→ B reflects pure epimorphisms.

Proof. Let R → S be pure. First we show that A → B reflects pure monomor-
phisms from the right. Let K →M be such homomorphism of right A-modules,
that K ⊗AB →M ⊗AB is a pure homomorphism of right B-modules. Let Q be
an arbitrary left A-module. Then (K⊗AB)⊗B (B⊗AQ)→ (M⊗AB)⊗B (B⊗AQ)
is a monomorphism. Thanks to natural isomorphism

(−⊗A B)⊗B (B ⊗A Q) ∼= (−⊗A B)⊗A Q ∼=
(−⊗R S)⊗A Q ∼= (S ⊗R −)⊗A Q ∼= S ⊗R (−⊗A Q)

also S⊗R(K⊗AQ)→ S⊗R(M⊗AQ) is monic and as R→ S is pure and therefore
faithful, K ⊗A Q→ M ⊗A Q is monic. So, K → M is a pure monomorphism of
right A-modules.

Let now M → N be a homomorphism of right A-modules such that M⊗AB →
M⊗AB is a pure epimorphism of B-modules. Homomorphism M⊗AB →M⊗AB
is also a pure epimorphism of S-modules (Lemma 6.12), and it is isomorphic to
M ⊗R S →M ⊗R S. As R→ S recognizes pure epimorphisms (Proposition 6.14,
using centrality), M → N is a pure epimorphism of R-modules. Considering its
kernel K, we obtain pure exact sequence of R-modules

0→ K →M → N → 0.

Tensoring it with S produces exact sequence

0→ K ⊗R S →M ⊗R S → N ⊗R S → 0.

Modules M and N are right A-modules and as M → N is a right A-module
homomorphism, so is K. Therefore, the sequence is isomorphic to

0→ K ⊗A B →M ⊗A B → N ⊗A B → 0,

which is a pure exact sequence of B-modules, specially K ⊗A B → M ⊗A B is a
pure monomorphism of B-modules. We already know, that A→ B reflects pure
monomorphisms, so K → M is a pure monomorphism of right A-modules and
its cokernel M → N is a pure epimorphism of right A-modules.

With all these properties in place, projectivity, pure projectivity and relative
projectivity descend through homomorphism A→ B.

Theorem 8.5. Let R be a commutative ring, ϕ : R → S be a central pure ring
homomorphism, let A be a central R-algebra. Then (pure) projectivity of both left
and right modules descends through the R-algebra homomorphism φA = idA⊗Rφ :
A→ B ∼= A⊗R S.

Proof. By Proposition 8.4 homomorphism φA reflects pure epimorphisms from
the right and from the left. By 7.13 pure projectivity and projectivity descend
through φA.
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Theorem 8.6. Let R be a commutative ring, φ : R → S be a central faithfully
flat ring homomorphism, let A be a central R-algebra. Then relative projectivity
of left and right modules descends through idA ⊗R φ : A→ B ∼= A⊗R S

Proof. By Proposition 8.4 homomorphism φA reflects pure epimorphisms from
the right and from the left, and by Proposition 8.3 it preserves relatively pure
epimorphisms. By 7.15 relative projectivity descends through φA.

Type of algebra homomorphisms described in this section offers a wide se-
lection of homomorphisms of non-commutative algebras. One such case is when
R → S is a p-adic completion of a noetherian ring and A a Noether R-algebra,
as in [Kanda and Nakamura, 2021, Appendix A]. Homomorphisms of this type
are also used in [Breaz et al., 2022, Section 4, Section 6] in the context of silting
complexes. Finally, we might simply take R → S to be a Zariski covering, then
discussed properties are local properties of sheaves of modules over a sheaf of
algebras over a scheme.
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