
MASTER THESIS

Jan Hr̊uza

Numerical simulations of interaction
between fluid flow and rigid particles

Mathematical Institute of Charles University

Supervisor of the master thesis: RNDr. Karel Tůma, Ph.D.
Study programme: Mathematical Modelling in Physics

and Engineering

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my appreciation to my supervisor RNDr. Karel Tůma,
Ph.D. for the guidance throughout the work. On top of that, I would like to
thank Jakub Fara for the access to the admesh library and my partner Adéla for
limitless support during my studies.

ii

Title: Numerical simulations of interaction between fluid flow and rigid particles

Author: Jan Hr̊uza

Institute: Mathematical Institute of Charles University

Supervisor: RNDr. Karel Tůma, Ph.D., Mathematical Institute of Charles Uni-
versity

Abstract: The thesis describes the implementation of a numerical model that
simulates the interaction between rigid particles and a fluid. The numerical model
is based on the arbitrary Lagrangian-Eulerian (ALE) method, which uses the
movement of the mesh to realize the movement of particles. The ALE method
is initially presented on a simple problem of calculating the drag force acting on
a single sphere moving through a viscous fluid. A general version of the model
capable of simulating tens of particles is then described and tested on various
benchmarks to prove the reliability of used method. Finally, a problem inspired
by the flow of red blood cells in the blood is studied to show the effect of shear
thinning emerging in a mixture of Newtonian fluid and rigid particles.

Keywords: finite element method, arbitrary Lagrangian-Eulerian method, fluid-
rigid solid interaction

iii

Contents

Introduction 2

1 Stokes formula benchmark for ALE method 3
1.1 Problem description . 3
1.2 Analytical solution . 3
1.3 Numerical computation . 7

1.3.1 Weak formulation . 8
1.3.2 Space discretization . 10
1.3.3 Time discretization . 11
1.3.4 ALE Method . 13

1.4 Numerical results . 14

2 Two-way coupled method description 18
2.1 Derivation of weak formulation 18
2.2 Numerical implementation . 21

2.2.1 Boundary condition . 22
2.2.2 Mesh movement . 23
2.2.3 Algorithm high-level overview 27
2.2.4 The source code . 27

3 Benchmarks and examples 28
3.1 Heavy ball in a channel flow . 28
3.2 Lubrication force . 31
3.3 Conservation of momentum . 35
3.4 Other examples . 38

3.4.1 Particle shape . 38
3.4.2 Particle count . 39

4 Results 40
4.1 Flow in a rectangular domain . 40

4.1.1 Apparent viscosity calculation 41
4.1.2 Numerical results . 42

4.2 Flow between two cylinders . 48
4.2.1 Apparent viscosity definition 48
4.2.2 Numerical results . 50

Conclusion 53

Bibliography 54

1

Introduction
Our aim is to describe the interactions between rigid particles and fluid flow. As
we deal with a mixture of a liquid and solids, one may perceive this problem
from a point of view of mixture theory, which gives us a description of various
complicated systems. The examples of such systems are solid particles submerged
in a liquid, a chemical reaction in a fluid mixture, flow of water through a porous
media, or various phase transitions. In all previously mentioned examples, tools
of continuum mechanics can be used to derive a system of partial differential
equations describing the mixture as a whole. This may not always be the most
suitable approach as for example the submerged particles may be too large to be
considered a part of the fluid in the model. We focus on a method that directly
solves the problem of interaction between fluid flow and relatively large rigid
particles that are described on individual level.

Let us consider another example, blood is a liquid composed of liquid blood
plasma and red blood cells, other components are neglected for this example. The
blood as a whole is known to show the non-Newtonian effect of shear thinning due
to complicated interactions between red blood cells as described in Lanotte et al.
[2016]. The flow of blood including the shear thinning effect can be described
by variety of different models as presented by Trdlicová [2021]. Our aim is to
show, that it is possible to replicate this behavior with a system of individual
rigid particles submerged in a Newtonian fluid. We show that this system as a
whole possesses the shear thinning property, although the fluid itself does not.

To obtain a numerical solution, we use the finite element method to discretize
the solution in space. We chose to use the arbitrary Lagrangian-Eulerian (ALE)
method for the particle motion as presented in Hu et al. [2001] to simulate tens
of large particles with a high precision. As an alternative method, well suited for
larger number of particles, the fictitious boundary method as described by Wan
and Turek [2006] could be used for this problem. The ALE method is based on
cutting out the particles from computational domain, prescribing the equation of
rigid motion to the particle and coupling the particle movement with the fluid
movement via boundary conditions. In each step, the computational domain is
thus moved according to particle movement.

To study the shear thinning properties of the mixture, we define the concept
of apparent viscosity to compare the response of the fluid-particle mixture to
the response of a pure Newtonian fluid. This method was used in Lefebvre and
Maury [2005] to investigate the dependence of the apparent viscosity of a fluid-
particle mixture under shear stress on various parameters, specifically the particle
distribution, interaction forces and the solid fraction. However, no investigation of
shear thinning, or the influence of shear rate magnitude on the apparent viscosity
in general, was done in this paper.

2

1. Stokes formula benchmark for
ALE method
In this chapter we show the calculation of a drag acting on a sphere moving
through a viscous incompressible Navier-Stokes fluid in an infinitely large domain.
For small values of Reynolds number, the drag forces are given by the Stokes
formula. This formula can be used as a benchmark for two types of numerical
computations. In the first example we assume the sphere is stationary and the
fluid moves, on the contrary in the second example we move the sphere using
ALE (arbitrary Lagrangian-Eulerian) method in a stationary fluid. Our aim is to
present ALE method on a simple example, which gives us a good starting point
for generalization presented in the following chapter.

1.1 Problem description
Let us consider a sphere submerged in an infinitely large volume of a still viscous
fluid moving in uniform linear motion. We denote the velocity of the sphere
with V. This setup and the resulting forces are equivalent to a problem, where
the sphere is stationary and the fluid moves with a velocity −V instead. In this
case the fluid velocity is considered in an infinite distance from the sphere. This
leads us to the following formulation of the problem.

Let Ω be a sphere in R3 with the center in the origin and the radius R. We
want to find a functions v : (0, T) × R3 \ Ω → R3 and p : (0, T) × R3 \ Ω → R
fulfilling the incompressible homogeneous Navier-Stokes equations

ρ

(︄
∂

∂t
v + (v · ∇) v

)︄
= divT in R3 \ Ω, (1.1)

div v = 0 in R3 \ Ω, (1.2)
T = −pI + µ

(︂
∇v + (∇v)T

)︂
, (1.3)

where µ > 0 is the dynamic viscosity and ρ > 0 is the fluid density. Throughout
the thesis, we use the notation D = 1

2

(︂
∇v + (∇v)T

)︂
for the symmetric gradient.

We demand that v satisfies the following boundary conditions

v = 0 on ∂Ω, (1.4)
v −−−−→

∥x∥→∞
V ∈ R3. (1.5)

We further assume, without loss of generality, that V = (V, 0, 0) is non-zero only
in the direction of the x coordinate axis. The use of this assumption is correct
due to spherical symmetry of the domain.

1.2 Analytical solution
In this section we present the method of obtaining the analytical solution of
the problem above presented by Brdička [2005]. To obtain explicit formula, we

3

assume the Reynolds number is very small, i.e.

Re = V Rρ

µ
≪ 1.

With this assumption we use the approximation of the convective term in the
balance of linear momentum equation (1.1)

v · ∇v ≈ V · ∇v.

Using this approximation, we simplify the problem to a linear partial differential
equation, the equations resulting from this approximation is often referred to
as Oseen equations. Omitting the convective term completely would lead to
Stokes equations. The problem is axially symmetric, therefore the solution should
be axially symmetric and should be identical in any plane that contains the x
coordinate axis. Let us define the spherical coordinates with variables (r, θ, φ),
where r ∈ [0,∞) is the distance from origin, θ ∈ [0, π] is the angle between the
given vector and the x coordinate vector and φ ∈ [0, 2π) is the azimuthal angle
of rotation around x axis. The previously stated assumption means that v does
not depend on φ. We can further assume no flow in the φ-direction vφ = 0.
Altogether we assume

vr = vr(r, θ), vθ = vθ(r, θ), vφ = 0, p = p(r, θ). (1.6)

As the next step we formulate the Navier-Stokes equations in spherical coor-
dinates. The balance of linear momentum equations are in the following form

∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
+ vφ

r sin θ
∂vr

∂φ
−
v2

θ + v2
φ

r
=

= −1
ρ

∂p

∂r
+ ν

(︄
1
r

∂2(rvr)
∂r2 + 1

r2
∂2vr

∂θ2 + 1
r2 sin2 θ

∂2vr

∂φ2 + cot θ
r2

∂vr

∂θ
− 2
r2
∂vθ

∂θ
−

− 2
r2 sin θ

∂vφ

∂φ
− 2vr

φ
−

2v2
φ cot
r

)︄
,

∂vθ

∂t
+ vr

∂vθ

∂θ
+ vθ

r

∂vθ

∂φ
+ vφ

r sin θ
∂vθ

∂φ
+ vrvθ

r
−
v2

φ cot θ
r

=

= − 1
ρr

∂p

∂θ
+ ν

(︄
1
r

∂2(rvθ)
∂r2 + 1

r2
∂2vθ

∂θ2 + 1
r2 sin2 θ

∂2vθ

∂φ2 + cot θ
r2

∂vθ

∂θ
−

− 2 cos θ
r2 sin2 θ

∂vφ

∂φ
+ 2
r2
∂vr

∂θ
− vθ

r2 sin2 θ

)︄
,

∂vφ

∂t
+ vr

∂vφ

∂r
+ vθ

r

∂vφ

∂θ
+ vφ

r sin θ
∂vφ

∂φ
+ vrvφ

t
+ vθvφ cot θ

r
=

= − 1
ρr sin θ

∂p

∂φ
+ ν

(︄
1
r

∂2(rvφ)
∂r2 + 1

r2
∂2vφ

∂θ2 + 1
r2 sin2 θ

∂2vφ

∂φ2 + cot θ
r2

∂vφ

∂θ
+

+ 2
r2 sin θ

∂vr

∂φ
+ 2 cos θ
r2 sin2 θ

∂vθ

∂φ
− vφ

r2 sin2 θ

)︄
.

The continuity equation is then in the form

∂vr

∂r
+ 1
r

∂vθ

∂θ
+ 1
r sin θ

∂vφ

∂φ
+ 2vr

r
+ vθ cot θ

t
= 0. (1.7)

4

These equations simplify significantly due to (1.6)

∂p

∂r
= µ

(︄
∂2vr

∂r2 + 1
r2
∂2vr

∂θ2 + 2
r

∂vr

∂r
+ cot θ

r2
∂vr

∂θ
− 2
r2
∂vθ

∂θ
− 2vr

r2 − 2vθ cot θ
r2

)︄
,

(1.8)
1
r

∂p

∂θ
= µ

(︄
∂2vθ

∂r2 + 1
r2
∂2vθ

∂θ2 + 2
r

∂vθ

∂r
+ cot θ

r2
∂vθ

∂θ
+ 2
r2
∂vr

∂θ
− vθ

r2 sin2 θ

)︄
, (1.9)

0 = ∂vr

∂r
+ 1
r

∂vθ

∂θ
+ 2vr

r
+ vθ cot θ

r
. (1.10)

The boundary conditions (1.4) and (1.5) in spherical coordinates transform to
the following conditions for components

vr = V cos θ, vθ = −V sin θ for r → ∞,

vr = 0, vθ = 0 for r = R.

Now we assume that both functions vr and vθ can be represented as a product
of a function depending only on r and a function depending only on θ. Moreover,
in accordance with the boundary conditions, let us assume

vr = F (r) cos θ, vθ = G(r) sin θ. (1.11)

The functions F and G have to fullfill

F (r) −−−→
r→∞

V, G(r) −−−→
r→∞

V, F (R) = 0, G(R) = 0.

By substituting (1.11) into (1.8) and (1.9) we obtain

∂p

∂r
= µ

(︃
F ′′ + 2

r
F ′ − 4

r2F − 4
r2G

)︃
cos θ,

1
r

∂p

∂θ
= µ

(︃
G′′ + 2

r
G′ − 2

r2G− 2
r2F

)︃
sin θ,

0 =
(︃
F ′ + 2

r
F + 2

r
G
)︃

cos θ.

(1.12)

From the first two equations, we see that the pressure has to be in the form

p(r, θ) = µH(r) cos θ.

We substitute this form of pressure into (1.12). The resulting equation have to
hold for any θ, we can therefore focus on the part depending only on the variable r

H ′ = F ′′ + 2
r
F ′ − 4

r2F − 4
r2G, (1.13)

H = G′′ + 2
r
G′ − 2

r2G− 2
r2F, (1.14)

G = −r

2F
′ − F. (1.15)

Using (1.15), we substitute G in (1.14) and obtain

H = r2

2 F
′′′ + 3rF ′′ + 2F ′, (1.16)

5

which after applying the derivative with respect to r gives

H ′ = r2

2 F
(iv) + 4rF ′′′ + 5F ′′.

Now, we subtract (1.13) from this equation and multiply the result by 2r to
obtain

0 = r3F (iv) + 8r2F ′′′ + 8rF ′′ − 8F ′. (1.17)
This ordinary differential equation is a homogenous Euler equation, and it can be
easily solved assuming F is in the form F = crn for some constant c. Substituting
this general form of F in (1.17) results in

0 = (n(n− 1)(n− 2)(n− 3) + 8n(n− 1)(n− 2) + 8n(n− 1) − 8n) rn,

0 = n((n− 1)(n− 2)(n− 3) + 8(n− 1)(n− 2) + 8(n− 1) − 8),
0 = n(n− 2)(n2 + 4n+ 3),
0 = n(n− 2)(n+ 1)(n+ 3).

The general solution therefore reads

F (r) = A+ B

r
+ C

r3 +Dr2.

Using (1.15) and (1.16) we obtain the general form of G and H

G(r) = −Q− B

2r + C

2r3 − 2Dr2,

H(r) = B

r2 + 10Dr.

By passing to infinity in the previous equations, we obtain the relations for con-
stants A and D

A = V, D = 0.
With this result and the boundary conditions for r = R, we obtain

V + 1
R
B + 1

R3C = 0,

−V − 1
2RB + 1

2R3C = 0.

Overall, we obtained the exact form of all constants

Q = V, B = −3
2RV, C = 1

2R
3V, D = 0.

With this final result, we obtained the velocity field describing the flow around
the sphere

vr = V cos θ
(︄

1 − 3R
2r + R3

2r3

)︄
,

vθ = −V sin θ
(︄

1 − 3R
4r − R3

4r3

)︄
,

p = −3µRV
2r2 .

(1.18)

6

The last step is to compute the drag force acting on the sphere. We therefore
need to integrate the traction over the sphere surface, where the traction t is
defined for surface with the unit outer normal vector n as

t = Tn. (1.19)

The outer unit normal is equivalent to local unit vector in the direction of in-
creasing r denoted by er. We therefore only need to compute the elements Trr

and Trθ of the Cauchy stress tensor T, because from the form of the unit normal
vector, we have

tr = Trr, tθ = Trθ, tφ = Trφ = 0.

The definition of the local coordinate basis of spherical coordinates gives

ex = cos θer − sin θeθ,

where e· are local coordinate vectors (unit vectors in the direction of increasing
given coordinate). This implies a similar relation for the elements of traction t

tx = tr cos θ − tθ sin θ = Trr cos θ − Trθ sin θ.

Now let us use the solution (1.18) to compute this vector

Trr = −p+ 2µ∂vr

∂r
= 3µV

2R cos θ,

Trθ = µ

(︄
1
r

∂vr

∂θ
+ ∂vθ

∂r
− ∂vθ

∂r

)︄
= −3µV

2R sin θ.

Finally, we have everything we need to compute the drag force

Fd =
∫︂

∂Ω
tx dS =

∫︂ π

0
(Trr cos θ − Trθ sin θ)2πR2 sin θ dθ

= 2πR2
∫︂ π

0

3µV
2R (cos2 θ + sin2 θ) sin θ dθ

= 3πµRV
∫︂ π

0
sin θ dθ

= 6πµRV.

1.3 Numerical computation
To simplify the equations we take advantage of the cylindrical symmetry of the
problem. We transition to cylindrical coordinates (x, r, φ)1, where x is the x1
coordinate, r is the distance from the x1 axis and φ ∈ [−π, π) is the angle defined
as cos(φ) = x2

r
. The solution is axially symmetric around the x1 axis, in other

words, the solution only depends on x and r. We can therefore solve a much
simpler two-dimensional problem instead of full three-dimensional one.

The major inconvenience with this problem is the infinite size of the domain
with fluid. As working with the infinite domain is rather difficult numerically,

1The cylindrical coordinates are in a non-standard order to preserve the order of x coordinate,
which is used instead of the usual z.

7

we use large, but finite, domain Ω1 instead. The domain used in numerical
computation is described in Figure 1.1. In this domain, we distinguish three parts
of the boundary: The semi-circular part Γb corresponds to the sphere surface, we
prescribe the no-slip boundary condition there. The outer part Γ1 represents the
“domain in infinite distance”, the fluid movement is thus prescribed there. The
remaining part Γ0 lies on the axis of symmetry, the fluid only moves along this
axis, thus we prescribe zero movement through this boundary, i.e. vr = 0.

Figure 1.1: Boundary of the domain used in numerical computation. The domain
is finite, with fixed width and height. Boundary velocity V, originally demanded
in infinity, is now prescribed on Γ1. The surface of a sphere reduces in cylindrical
coordinates to semicircle Γb.

1.3.1 Weak formulation
Let us now consider the cylindrical domain ˜︁Ω1 with a spherical hole defined by
revolving Ω1 around the x-axis. We denote the outer cylindrical boundary by ˜︁Γ1
and the surface of the inner sphere by ˜︁Γb. We start with the Oseen approximation
of equations (1.1) multiplied by sufficiently regular test functions ṽ : ˜︁Ω1 → R3

and p̃ : ˜︁Ω1 → R respectively. Integrating over domain ˜︁Ω1 results in the following
equations ∫︂

˜︁Ω1
ρ

(︄
∂v
∂t

+ (V · ∇)v
)︄

· ṽ dx−
∫︂
˜︁Ω1

div(T) ṽ dx = 0, (1.20)∫︂
˜︁Ω1

˜︁p div v dx = 0. (1.21)

Let us further assume that ˜︁v vanishes on ∂ ˜︁Ω1. Using this assumption and the
Gauss divergence theorem, we obtain the identity

−
∫︂
˜︁Ω1

(divT)ṽ dx =
∫︂
˜︁Ω1

T : ∇ṽ dx, (1.22)

where we define A : B = Tr
(︂
ATB

)︂
for any two tensors A, B. Substituting this

identity into (1.20) results in the following equation∫︂
˜︁Ω1
ρ

(︄
∂v
∂t

+ (V · ∇)v
)︄

· ṽ dx+
∫︂
˜︁Ω1

T : ∇ṽ dx = 0. (1.23)

Using the assumption of cylindrical symmetry and the assumption of zero flow
in the φ-direction we assume that the solution is in the form

v =

⎛⎜⎝vx(x, r)
vr(x, r)

0

⎞⎟⎠ , p = p(x, r).

8

The same assumptions are imposed on ṽ as well. We proceed with expressing
cylindrical forms of the differential operators that are significantly simplified by
the assumptions on v

∇v =

⎛⎜⎝
∂vx

∂x
∂vx

∂r
0

∂vr

∂x
∂vr

∂r
0

0 0 vr

r

⎞⎟⎠ , (v · ∇)v =

⎛⎜⎝V
∂vx

∂x

V ∂vz

∂x

0

⎞⎟⎠ ,

T : ∇ṽ = −p
(︄
∂ṽx

∂x
+ ∂ṽr

∂r
+ ṽr

r

)︄
+

+ 2µ
⎛⎝ ∂vx

∂x
1
2

(︂
∂vx

∂r
+ ∂vr

∂x

)︂
1
2

(︂
∂vx

∂r
+ ∂vr

∂x

)︂
∂vr

∂r

⎞⎠ :
(︄

∂ṽx

∂x
∂ṽx

∂r
∂ṽr

∂x
∂ṽr

∂r

)︄
+ 2µvr

r

ṽr

r
.

(1.24)

The integrals over ˜︁Ω1 are simplified using the independence on φ coordinate∫︂
˜︁Ω1
f(x, r) dx =

∫︂ 2π

0

∫︂
Ω1
rf(x, r) dx dφ = 2π

∫︂
Ω1
rf(x, r) dx. (1.25)

Let us now consider the equation in the original two-dimensional cross section
Ω1 with Cartesian coordinates, we define the function u : (0, T) × Ω1 → R2

as u = (u1, u2) = (vx, vr) and analogously ũ = (ṽx, ṽr). Using the fact that u is
a function defied in Cartesian coordinates, we can rewrite (1.24) in the following
form

T : ∇ṽ = −p div u − p
ũ2

r
+ 2µD(u) : ∇ũ + 2µu2

r

ũ2

r
.

The equations (1.23) and (1.21) are thus equivalent to the following
∫︂

Ω1
ρr

(︄
∂u
∂t

+ V
∂u
∂x

)︄
· ũ dx+

∫︂
Ω1
rTu : ∇ũ dx+

∫︂
Ω1

(︃
−p+ 2µu2

r

)︃
ũ2 dx = 0,

(1.26)∫︂
Ω1

(rdiv u + u2)p̃ dx = 0,
(1.27)

where the Cauchy stress tensor Tu is defined by the identity

Tu = −p(x, r)I + 2µD(u).

To define the weak solution, we denote by ub the boundary condition on Γb∪Γ1
and define suitable function spaces

V =
{︃

u ∈ W 1,2(Ω1,R2),u
⃓⃓⃓
Γb

= ub,u
⃓⃓⃓
Γ1

= ub, u2

⃓⃓⃓
Γ0

= 0
}︃
,

V0 =
{︃

u ∈ W 1,2(Ω1,R2),u
⃓⃓⃓
Γb

= 0,u
⃓⃓⃓
Γ1

= 0, u2

⃓⃓⃓
Γ0

= 0
}︃
.

The functions u ∈ L2 (0, T ;V) and p ∈ L2 (0, T ;L2(Ω1)) such that the time
derivative ∂u

∂t
∈ L2 (0, T ;L2(Ω1)) are a weak solution if for every pair of test

functions ũ ∈ V0 and p̃ ∈ L2(Ω1) and almost all t ∈ (0, T) the equations (1.26)
and (1.27) hold.

9

In the case of a steady flow, we prescribe the following boundary conditions

u = 0 on Γb,

u = (V, 0) on Γ1,

u2 = 0 on Γ0.

In the case in which the sphere moves through a stationary fluid the boundary
conditions are

u = (−V, 0) on Γb,

u = 0 on Γ1,

u2 = 0 on Γ0.

In both cases, the drag force can be obtained from the velocity and pressure by
integrating the traction over Γb. However, we must keep in mind that the total
force acting on semicircle Γb is not directly the force acting on the sphere. We
apply the correction for cylindrical coordinates in the integration

FD =
∫︂
˜︁Γb

tx dS =
∫︂ 2π

0

∫︂
Γ
rtx(x, r) dl dφ =

∫︂
Γb

2πr (Tun)x dl.

1.3.2 Space discretization
We discretize equation (1.26) and (1.27) in each time step (see below) using
the finite element method. As a first step, we approximate the domain Ω1 with
a triangular mesh. Let us denote Th the set of triangles in the mesh, in this case h
represents the size of the triangles in triangulation. One may imagine h as the
length of the longest edge or the diameter of circumscribed circle of the largest
triangle in Th. While the precise interpretation is not important, we assume that
lowering parameter h results in finer mesh. The fundamental requirements on Th

for our triangulation to make sense are:

1. The intersection of two distinct triangles from Th is either empty set, com-
mon vertex or common edge.

2. No vertex lies outside Ω1.

3. The domain Ω1 is covered by Th, i.e. Ω1 ⊂ ⋃︁
T ∈Th

T .

The first shall always hold. However, it may be impossible to cover some domains
in such way, that both the second and the third requirements hold. We therefore
construct the triangulation in a way, that the vertices of boundary triangle edges
lie on ∂Ω1 as indicated in Figure 1.2. This approach fulfills the second requirement
and for most domain shapes the domain Ω1 is almost covered in the following sense⃓⃓⃓⃓

⃓⃓Ω1 \
⋃︂

T ∈Th

T

⃓⃓⃓⃓
⃓⃓ −−→

h→0
0.

To lower the computational complexity of the problem without significant loss
of accuracy, we choose a non-uniform size of elements. The parts of Ω1 closer to

10

∂Ω

Figure 1.2: Approximation of domain boundary.

the particles are filled with finer mesh than parts of the domain that are further
away. This approach is used throughout all numerical solutions presented in this
thesis as the flow close to the particle surfaces is the most important and leaving
distant elements larger introduces no significant error.

To generate the mesh, we start with simple mesh with uniform triangle size
created by mshr, a mesh generating component of FEniCS. This mesh is then
refined around the sphere surface Γb (a semicircle in this case) via triangle sub-
divisions to obtain finer mesh in some defined distance from Γb. The subdivision
can be then repeated in gradually smaller distances from Γb as seen in Figure 1.3.
It is important to move any nodes, that would appear outside the Ω1 after sub-
division of an outer boundary edge, back on the boundary ∂Ω1.

From this mesh, we want to go one step further and generate the triangular
elements to have size proportional to square distance from the closest particle
(or similar metric that may be easier to compute for specific particle shapes),
with offset, coefficient and maximal value as variable parameters. In the case of
circular particles, we have

size ≈ min
(︂
a
(︂
||x − X||2 −R2

)︂
+ b, c

)︂
, (1.28)

where X and R are the center and the radius of the particle, for which this
expression has the smallest value. For circles with identical radii, X and R are
the center and the radius of the closest particle. This mesh is created from the
mesh created using triangle subdivision, the specific method is described in the
following chapter.

To approximate the solution, we use the Taylor-Hood elements. In other
words, Lagrange elements of order two for the velocity field and Lagrange elements
of order one for the pressure. A two-dimensional Lagrange finite element of order
k ∈ {1, 2} is a triplet (T, Pk,Σk), where T is a triangular closed set with vertices
a1, a2, a3, Pk is a space of polynomials of degree less than or equal to k on T ,
and Σk is a set of evaluation functionals in the vertices and the midpoints of edges

Σ1 = {Φi; ∀p ∈ Pk : Φi(p) = p(ai); i = 1, 2, 3} ,

Σ2 = Σ1 ∪
{︃

Φij; ∀p ∈ Pk : Φij(p) = p
(︃
ai + aj

2

)︃
; i, j = 1, 2, 3; i < j

}︃
.

The functionals from Σk are called degrees of freedom and are represented by
nodes in Figure 1.4. The Taylor-Hood elements are well suited for this problem
as they satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) condition as proven
by Verfürth [1984].

1.3.3 Time discretization
We finally see a significant difference between the two approaches. In the case
of stationary flow, we assume the solution is independent of time, thus the time

11

Figure 1.3: The original mesh (top) and the mesh after two iterations of subdi-
vision refinement (bottom). The semicircle in the bottom represents a particle
surface. Choosing finer mesh around the curved boundaries leads to much bet-
ter approximation of such boundaries, while the number of triangles stays much
lower than if the whole mesh was refined.

Figure 1.4: Lagrange element of the second order (left) with 6 degrees of freedom
are used to approximate the velocity field using locally quadratic polynomials.
Lagrange element of the first order (right) with 3 degrees of freedom are used to
approximate the pressure field with locally linear polynomials. The polynomial
function on the element is uniquely determined by values in nodes (degrees of
freedom).

derivative vanishes and no time discretization is needed. In the second case,
where the boundary moves, the situation is significantly more complicated. We
want to find a time-dependent solution in domain Ω1(t), with the domain itself

12

also evolving in time. More specifically, in each step, the boundary Γb moves
by the vector (−∆t V, 0), where ∆t is the time step of discretization in time.
Boundary Γ0 then moves in the direction of x according to the shift of Ωb such
that the endpoints shared with Γ1 stay fixed. For time discretization we use
the backwards Euler discretization scheme. More specifically, in time t = tn,
where tn = t0 + n∆t, n ∈ N, is the n-th time step, we approximate the time
derivative with

∂u
∂t

(tn,x) ≈ u(tn,x) − u(tn−1,x)
∆t .

1.3.4 ALE Method
To capture the movement of the computational domain, we use the ALE (ar-
bitrary Lagrangian-Eulerian) method described by Hughes et al. [1981]. The
method is based on splitting the deformation into two parts as indicated in Fig-
ure 1.5, in our case it is the the fluid flow (described by the fluid velocity u) and
the movement of the domain (described by the mesh velocity umesh). By changing
our approach from purely Eulerian description, we may expect some changes in
governing equations. However, the only change that has to be made due to the
ALE method is the introduction of the mesh velocity into the convection term of
Navier-Stokes equations as described in Donea et al. [2004]

(u · ∇) u → ((u − umesh) · ∇) u.

In the case of Oseen equations, we approximate this term by

((u − umesh) · ∇) u ≈ ((V − umesh) · ∇) u.

This will also cause a slight change in the weak formulation, the first term in
equation (1.26) is replaced by

∫︂
Ω1
ρr

(︄
∂u
∂t

+ ∇u(V − umesh)
)︄

· ũ dx. (1.29)

In practice for problems in this chapter, the mesh movement function umesh
is chosen as a harmonic function satisfying the boundary conditions for u. The
movement of the mesh is implemented using ALE.move() function in the FEniCS
library, which moves all nodes in the computational mesh according to a pre-
scribed vector field.

13

χ

Ωχ
ALE
configuration

x
Ωx

Current
configuration

X

ΩX

Reference
configuration

Ψ Φ

ϕ

Figure 1.5: The diagram used by Donea et al. [2004]. The domain Ωx represents
the current configuration and ΩX represents the reference material configuration.
Instead of defining the problem on Ωx or ΩX, we instead formulate the problem
on the ALE domain Ωχ, where Φ is the movement of the mesh. Clearly the
choice Φ = I results in Eulerian description, whereas Ψ = I results in Lagrangian
description.

1.4 Numerical results
As seen in Figure 1.6, both methods approximate closely the linear relation of
Stokes formula. One may notice that the ALE method deviates slightly from
Stokes law for higher velocities. There are more effects that may cause this, we
shall investigate the effect of some parameters.

As stated above, the Stokes formula assumes Re ≪ 1, we can therefore expect
the drag in numerical approximation to be closer to Stokes formula for smaller
values of Reynold number. We explore this effect by investigating the role of
viscosity. The results can be seen in Figure 1.7. We can clearly see that the
force does not depend linearly on the sphere velocity for µ = 0.1 Pa · s, where the
Reynolds numbers is up to Re = 2. Both methods get closer to the Stokes formula
with increasing viscosity (and in turn decreasing Reynolds number). However,
the solution using ALE method seem to be more sensitive to this effect, in this
case the flow at t = 1 s might not have converged to the stationary solution yet.

Convergence in time of the numerical solution using ALE method is given in
Figure 1.8. We can observe that the drag force converges to a stationary value
faster in the case with higher viscosity. Measuring the drag force later might give
more accurate result for µ = 10 Pa · s, but we would also see little improvement in
case µ = 100 Pa · s. Some minor improvement in Stokes formula approximation
can be achieved by choosing smaller time step, which can be seen clearly in
Figure 1.8.

The last significant factor that we study is the size of the domain. As seen in
Figure 1.9, the domain has to be large enough to approximate well the infinite
domain assumed in the derivation of the Stokes formula. As one would predict,
for smaller sizes the boundary condition prescribed on Γ1 influences the flow close
to sphere surface more than if the same velocity would be prescribed further away.
The effect is almost identical in stationary flow calculation, it is not ALE specific.

14

0.0 0.2 0.4 0.6 0.8 1.0

Velocity magnitude [m
s]

0

10

20

30

40

D
ra

g
fo

rc
e

[N
]

Stationary flow

ALE method

Stokes law

Figure 1.6: The dependence of the drag force (y axis) on the magnitude of velocity
(x axis). The viscosity of the fluid is chosen to be µ = 10 Pa · s and density
ρ = 1 kg

m3 , the size of computational domain is 60 m (width) by 40 m (height) and
the radius of the sphere is R = 0.2 m. The center of the sphere (represented by
a semicircle) is located at distance 20 m from the left border for the stationary
case. In ALE case, the sphere center is in the middle of lower border and moves
towards the left border. We used the time step ∆t = 0.1 s in ALE case, the force
is calculated at time t = 1 s.

15

0.0 0.2 0.4 0.6 0.8 1.0

Velocity magnitude [m
s]

0.0

0.5

1.0

1.5

2.0

D
ra

g
fo

rc
e

d
iv

id
ed

b
y

v
is

co
si

ty
[m

2 s
]

Stationary flow (µ = 0.1 Pa · s)
Stationary flow (µ = 1 Pa · s)
Stationary flow (µ = 10 Pa · s)
ALE method (µ = 1 Pa · s)
ALE method (µ = 10 Pa · s)
ALE method (µ = 100 Pa · s)
Stokes law

Figure 1.7: The dependence of the difference between the drag measured in the
numerical simulation and the drag predicted by Stokes formula (y axis) on the
magnitude of velocity V (x axis) for various viscosities. All parameters except the
viscosity are the same as described in the caption of the Figure 1.6. As the force
in Stokes formula is proportional to viscosity, we divide all results by viscosity to
enable the comparison.

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

3.8

4.0

4.2

4.4

D
ra

g
fo

rc
e

d
iv

id
ed

b
y

v
is

co
si

ty
[m

2 s
]

ALE method (µ = 10 Pa · s, ∆t = 0.1 s)

ALE method (µ = 100 Pa · s, ∆t = 0.1 s)

ALE method (µ = 100 Pa · s, ∆t = 0.05 s)

Stokes law

Figure 1.8: The dependence of the drag force acting on sphere surface in ALE
method divided by viscosity (y axis) on time (x axis). All parameters are the
same as described in the caption of the Figure 1.6, but the velocity magnitude is
set to a fixed value V = 1 m

s . A numerical solution with time step ∆t = 0.05 s is
added for comparison.

16

0.0 0.2 0.4 0.6 0.8 1.0

Velocity magnitude [m
s]

0

10

20

30

40

D
ra

g
fo

rc
e

[N
]

ALE method (6 m× 4 m)

ALE method (12 m× 8 m)

ALE method (60 m× 40 m)

Stokes law

Figure 1.9: The dependence of the drag force acting on sphere surface in ALE
method (y axis) on the velocity magnitude (x axis) computed in domains of
different sizes. All parameters, apart from the domain size, are the same as
described in the caption of the Figure 1.6. In particular, no parameters, with
the only exception being the domain size, change across the computations with
different domain sizes. Initially, the ball center lies in the middle of the lower
border.

17

2. Two-way coupled method
description
In this chapter we move from simple model shown in the previous chapter, where
particle velocity was prescribed, to a model where the particle velocity and the
angular velocity are determined by the fluid flow. We derive the numerical model
presented in Hu et al. [2001]. This model includes the required two-way coupling
between particle movement and fluid flow. Furthermore, this approach can be
implemented with finite element method in Python using FEniCS library. We
present details of our implementation in this chapter, the results obtained using
this method can be found in the following chapters.

2.1 Derivation of weak formulation
In this section we describe the derivation of the weak formulation of the problem
that models a flow of fluid with N submerged rigid particles. The method is
derived in two dimensions, as we aim to compute the numerical simulation for
the two-dimensional case only. However, the derivation of fully three-dimensional
model would differ only in the description of particle rotation, as we would need
a vector to describe particles rotation instead of a scalar.

Let Ω0(t) denote the domain occupied by the fluid at the time t ∈ [0, T]. Then
for the i-th particle, we denote the domain occupied by the particle by Ωi(t),
where i = 1, ..., N . We assume that Ω0(t),Ω1(t), ...,ΩN(t) are disjoint for every
time t and we further assume that the boundary ∂Ω0(t) consists ofN+1 connected
disjoint subsets, more precisely, it can be represented as

∂Ω0(t) =
(︄

N⋃︂
i=1

∂Ωi(t)
)︄

∪ Γ0,

where Γ0 denotes the fixed part of the boundary (in most cases the outer boundary
of the domain Ω0(t)). The example of such configuration is shown in Figure 2.1.

Γ0
Ω1(t)

Ω2(t)

Ω3(t)

Ω0(t)

Figure 2.1: Domain Ω0(t) is occupied by the fluid at time t, in this domain three
particles are cut out. The particles Ωi, i = 1, 2, 3, move in a rigid motion through
the fluid. The outer boundary Γ0 is considered to be fixed.

We prescribe the homogeneous incompressible Navier-Stokes equations inside
the domain Ω0(t). Let us denote Q = {(t,x),x ∈ Ω0(t)}. We are looking for

18

a velocity function v : Q → R2 and a pressure function p : Q → R fulfilling the
following equations in Q

div v = 0, (2.1)

ρ

(︄
∂v
∂t

+ (v · ∇)v
)︄

= divT + ρf , (2.2)

T = −pI + µ
(︂
∇v + (∇v)T

)︂
, (2.3)

where µ is the dynamic shear viscosity, ρ is the density of the fluid and f is
the external acceleration, such as gravity. We prescribe the no-slip boundary
condition on ∂Ω0(t). However, we need the velocity on the surface of the i-th
particle to be zero with respect to the movement of the corresponding particle, we
thus have to define the velocity and the angular velocity for each particle. These
quantities are for i-th particle denoted by Vi and ωi respectively. Accounting for
the velocity and angular velocity of the i-th particle, we prescribe the following
boundary conditions

v(t,x) = v0(t,x) on Γ0, (2.4)
v(t,x) = Vi(t) + ωi(t) × (x − Xi(t)) on ∂Ωi(t), (2.5)

where v0 : [0, T] × Γ → R2 is the prescribed boundary condition and a × b for
arbitrary a ∈ R and b ∈ R2 is defined as

a× b =
(︄

−ab2
ab1

)︄
=

⎛⎜⎝0
0
a

⎞⎟⎠×

⎛⎜⎝b1
b2
0

⎞⎟⎠
⃓⃓⃓⃓
⃓⃓
R2

.

In this derivation, we assume that the Dirichlet boundary condition is prescribed
on the outer boundary, but any different boundary condition may be prescribed
on Γ0 without any additional difficulty.

The forces acting on the i-th particle with massmi can be split into an external
force Fi and the force caused by interaction with fluid, which is computed by
integrating the traction as defined by (1.19) over the particle boundary. From
the second Newton law, we therefore obtain the equation for particle velocity

d(miVi)
dt

= Fi −
∫︂

∂Ωi(t)
Tn(x) dS, (2.6)

where n is the outer unit normal to ∂Ωi(t), which is in the opposite direction to
the outer unit normal of ∂Ω0(t), this results in the negative sign in front of the
surface integral. Analogously, we obtain the total torque acting on particle from
the traction, the second impulse law states

d

dt
(Iiωi) = −

∫︂
∂Ωi(t)

(x − Xi) × Tn dS, (2.7)

where Ii is the tensor of inertia, which is in the two-dimensional case reduced
to a scalar value. After the particle velocity and angular velocity are obtained,
the position Xi and rotation θi of the i-th particle can be simply computed as
a solution of following equations

dXi

dt
= Vi,

dθi

dt
= ωi.

(2.8)

19

The initial conditions for differential equations (2.8) are the initial particle posi-
tion and rotation respectively.

As a next step we derive the form of the weak formulation of this problem at a
fixed time step t. Let us now choose an arbitrary test functions ṽ ∈ C2(Ω0(t),R2),
Ṽ i ∈ R2 and ω̃i ∈ R, i = 1, . . . , N , which fulfill the boundary conditions (2.4)
and (2.5) with v0 = 0. We now multiply equation (2.2) by ṽ and integrate over
the domain Ω0(t)∫︂

Ω0(t)
ρ

(︄
∂v
∂t

+ (v · ∇)v − f
)︄

· ṽ dx−
∫︂

Ω0(t)
div (T)ṽ dx = 0. (2.9)

To simplify the notation, we define the material derivative as
dv
dt

= ∂v
∂t

+ (v · ∇)v.

Using the properties of ∂Ω0(t), symmetry of T and the Gauss divergence theorem,
with the assumption that the solution and the domain have sufficient regularity,
we obtain the following equality

−
∫︂

Ω0(t)
(divT)ṽ dx =

∫︂
Ω0(t)

T : ∇ṽ dx−
N∑︂

i=1

∫︂
∂Ωi(t)

(Tn) · ṽ dS. (2.10)

Substituting this identity into (2.9) results in the following equation∫︂
Ω0(t)

ρ

(︄
dv
dt

− f
)︄

· ṽ dx+
∫︂

Ω0(t)
T : ∇ṽ dx−

N∑︂
i=1

∫︂
∂Ωi(t)

(Tn) · ṽ dS = 0. (2.11)

Using the notation ṽb = Ṽi+ω̃i×(x−Xi), the integral over particle boundary
is expanded to a form

−
∫︂

∂Ωi(t)
(Tn) · ṽ dS = −

∫︂
∂Ωi(t)

(Tn) · (ṽb) dS −
∫︂

∂Ωi(t)
(Tn) · (ṽ − ṽb) dS. (2.12)

The second term is omitted with the assumption that ṽ satisfies (2.5). Using
equations (2.6) and (2.7), we further simplify (2.12) to the following form

−
∫︂

∂Ωi(t)
(Tn) · ṽb dS = −

∫︂
∂Ωi(t)

(Tn) · (Ṽi + ω̃i × (x − Xi)) dS

= Ṽi ·
(︄
d(miVi)

dt
− Fi

)︄
− ω̃i

∫︂
∂Ωi(t)

(x − Xi) × (Tn) dS

= Ṽi ·
(︄
d(miVi)

dt
− Fi

)︄
+ ω̃i

d(Iiωi)
dt

By substituting this result into (2.11), we obtain the following equation∫︂
Ω0(t)

ρ

(︄
dv
dt

− f
)︄

· ṽ + T : ∇ṽ dx+
N∑︂

i=1
Ṽi ·

(︄
d(miVi)

dt
− Fi

)︄
+

N∑︂
i=1

ω̃i
d(Iiωi)
dt

= 0.

(2.13)
To get the weak formulation of the continuity equation, we multiply the continuity
equation (2.1) by an arbitrary test function p̃ ∈ C(Ω0(t)) and integrate over the
domain Ω0(t) to obtain ∫︂

Ω0(t)
p̃ div v dx = 0. (2.14)

20

To define a weak solution, we first employ the time discretization. We split
the time interval into discrete nodes tn, n ∈ {0, 1, . . . , N}, in such a way, that
tn = tn−1 + ∆t, where ∆t is a fixed time step. The approximate solution at time
step tn is denoted by v(n), V(n)

i , ω(n)
i and p(n), analogously, the approximation of

domain Ω0(tn) is denoted by Ω(n)
0 . We employ the implicit Euler scheme, i.e. the

discretized equation is formulated at time tn and the time derivative is substituted
with a backward difference

∂v
∂t

(tn,x) ≈ v(n)(x) − v(n−1)(Φ−1(x))
∆t ,

∂Vi

∂t
(tn) ≈ V(n)

i − V(n−1)
i

∆t ,

∂ωi

∂t
(tn) ≈ ω

(n)
i − ω

(n−1)
i

∆t ,

(2.15)

where Φ is the mapping from Ω(n−1)
0 to Ω(n)

0 that is equivalent to the movement
of the mesh and implemented with ALE.move().

Let us now define the function spaces for the weak solution at time tn. The
space for the solution is defined as follows

V(n) =
{︂
(v,V1, . . . ,VN , ω1, . . . , ωN); v ∈ W 1,2(Ω(n)

0); v = v0 on Γ0; (2.16)

v = Vi + ωi × (x − Xi) on ∂Ω(n)
i ,Vi ∈ R, ωi ∈ R, i = 1, . . . , N

}︂
.

The space V(n)
0 for the test functions is defined in the same way, but the boundary

condition on Γ0 is replaced with v = 0. For the pressure function, we define the
space

Q(n) =
{︄
p ∈ L2(Ω(n)

0),
∫︂

Ω(n)
0

p dx = 0
}︄
.

The pressure p is present in equation only tn the form ∇p, the solution for a
Dirichlet boundary condition on Γ0 is therefore not determined uniquely without
the additional condition

∫︁
Ω(n)

0
p dx = 0. In the numerical implementation, this

can be replaced with condition p(x0) = 0, where x0 ∈ Ω̄0 is an arbitrarily chosen
fixed point. We further assume that the initial condition U(0) ∈ V(0) is provided.

A pair U(n) ∈ V(n) and p(n) ∈ Q(n), where

U(n) = (v(n),V(n)
1 , . . . ,V(n)

N , ω
(n)
1 , . . . , ω

(n)
N),

is a weak solution of the system described by equation (2.1)-(2.8) at time t = tn
if the identities (2.13) and (2.14) with approximation (2.15) hold for all Ũ ∈ V(n)

and p ∈ L2(Ω0(t)), where

Ũ = (ṽ, Ṽ1, . . . , ṼN , ω̃1, . . . , ω̃N).

2.2 Numerical implementation
The space discretization is done in the same way as described in Subsection 1.3.2.
Namely, the Taylor-Hood hood finite elements are used. The previously described

21

mesh generation is also used as a starting point to go one step further and generate
the triangular elements to have size proportional to square distance from the
closest particle (or similar metric that may be easier to compute for specific
particle shapes), with offset, coefficient and maximal value as variable parameters.
In the case of circular particles, we use

size ≈ min
(︂
a
(︂
||x − X||2 −R2

)︂
+ b, c

)︂
, (2.17)

where X and R are the center and the radius of the particle, for which this
expression has the smallest value. For circles with identical radii, X and R are
the center and the radius of the closest particle.

2.2.1 Boundary condition
As described above, we have a system of equations for functions v, p, Vi and ωi,
for i = 1, . . . , N . Only v and p are obtained using conventional finite element
method, by approximating the solution with locally polynomial functions. For
velocities Vi and angular velocities ωi, we have the ordinary differential equations
approximated using finite differences, that describe the change of these values in
time. However, these two pairs of function are not independent as they are linked
via the boundary conditions imposed on velocity v. This makes the problem
rather difficult, as in FEniCS it is not directly possible to prescribe a boundary
conditions, that contain unknown variables. We therefore need to add another
term to equation (2.13) to enforce this boundary condition. The simple solution
to this would be a basic penalization method

C
∫︂

∂Ωi

(v − (Vi + ωi × (x − Xi))) ·
(︂
ṽ − (Ṽi + ω̃i × (x − Xi))

)︂
dS.

The disadvantage of this approach is the size of the constant C, which has to be
very large to obtain reasonable solution, and may therefore cause some numerical
complication.

Instead of the straightforward approach, we use the symmetric Nitsche method
described by Nitsche [1971]. Let us for simplicity denote

vb(Vi, ωi) = Vi + ω̃i × (x − Xi),
T(v, p) = −pI + µ

(︂
∇v + (∇v)T

)︂
.

In this case, we keep the last term in (2.12) as a part of the equation. On top
of that, we multiply the difference v − vb(Vi, ωi) by a test function Φ̃ ∈ L2(∂Ω)
and integrate over ∂Ωi ∫︂

∂Ωi

Φ̃ · (v − vb(Vi, ωi)) dS.

As the velocity v is equal to vb(Vi, ωi) due to the boundary condition (2.5), this
integral is equal to zero for any test function. Using a specific choice of the test
function Φ̃, we obtain ∫︂

∂Ωi

T(ṽ, p̃)n · (v − vb(Vi, ωi)) dS.

22

As described in Chabiniok et al. [2021], the formulation is stable if the following
stabilization term is added∫︂

∂Ωi

2β
h

(v − vb(Vi, ωi)) · ṽ dS,

with sufficiently large parameter β > 0. In this case, h denotes a local size of
mesh edge. The whole term added to equation (2.13) is then the following

FNitsche = −
N∑︂

i=1

∫︂
∂Ωi

T(v, p)n · (ṽ − vb(Ṽi, ω̃i))

+T(ṽ, p̃)n · (v − vb(Vi, ωi))

−2β
h

(v − vb(Vi, ωi)) · ṽ dS.

The parameter β
h

is usually chosen between 10 and 104, but the solution does not
depend on the precise choice of this parameter.

2.2.2 Mesh movement
To describe the movement of our mesh, we use the ALE method as described
in the previous chapter. This approach results in the introduction of the mesh
velocity vmesh in the convective term of the balance of linear momentum

(v · ∇) v → ((v − vmesh) · ∇) v.

Mesh velocity vmesh should be a function that is zero on the outer boundary and
equal to particle velocity on particle surface. For circular particles, we define this
function as a solution of the following equation

∆vmesh = 0,
vmesh = Vi on ∂Ωi(t),
vmesh = 0 on ∂Ω0(t).

(2.18)

This approach results in a smooth mesh velocity function that can be easily
obtained numerically. In the case of non-circular particles, the movement on
particle boundary is more complicated as we have to account for the particle
rotation. To solve this problem, one may prescribe the same boundary condition
used for the fluid velocity Vi +ωi × (x − Xi). However, let us imagine a rotating
circle without any sliding motion. Each node on the boundary of this circle
moves on a straight line in the direction of local tangent vector each time step.
The distance from the center necessarily rises, which clearly leads to an expansion
of this circle in each step. We clearly need a better approach.

Let us divide the particle motion in two parts, the sliding motion and the
rotational motion. Let us denote the position vector of a boundary point x
relative to particle center by r = x − Xi. To calculate the position of this point
in the following step, we move the center by vector ∆tVi to get the center in the
new step, and then add the vector r rotated by ∆t ωi to the new center as shown
in Figure 2.2. The correct boundary condition is then

vmesh = Vi + 1
∆t

(︄
cos(∆t ωi) − 1 − sin(∆t ωi)

sin(∆t ωi) cos(∆t ωi) − 1

)︄
(x − Xi) on ∂Ωi(t). (2.19)

23

∆tVi

r

∆tωi

rnew

∆tvmesh

Figure 2.2: Movement of a particle divided into a sliding motion and rotational
motion.

In some cases, the choice of a mesh velocity as a solution of (2.18) may cause
the mesh movement to be concentrated in a proximity to the particle surface,
which may lead to mesh degradation. To reduce this effect, instead of pure
Laplace equation, we find vmesh as a solution of

∆(f vmesh) = 0, (2.20)

where f : Ω0(t) → R is an appropriately chosen scalar function that decreases
with increasing distance from particle surface. A good choice for circular particles
would be the inverse of (2.17). The effect of the function f is highly pronounced
when a single small particle moves through a large domain as seen in Figure 2.3,
where adding the function f clearly keeps the mesh quality higher after the mesh
movement. In this case, low mesh quality means that the mesh contains elongated
or similarly distorted triangles. This may after a few iterations of mesh movement
lead to triangle overlapping, which overwhelmingly leads to incorrect solution or
outright non-convergence. However, the addition of function f may not be that
useful for systems with multiple particles as the relative movement among the
particles is the prevalent cause of mesh degradation. In Figure 2.4 two particles
pass each other and flatten the elements in between. This problem can not be
easily solved by a better choice of mesh velocity, especially systems with higher
number of particles or systems where particle travels significantly larger distance
than the particle size.

To solve the mesh degradation in a more robust way, we introduce remeshing,
i.e. the process of creating a new mesh to replace the mesh used in a previous
time step. In our implementation, the new mesh is created after a fixed amount
of steps. This remeshing interval can be adjusted to reflect the complexity of a
given problem. In general, the interval should be small enough to mitigate the
mesh degradation as seen in Figures 2.3 and 2.4. But at the same time, to use the
solution from the previous time step (e.g. in the backward difference (2.15)) after
a new mesh was created, we need to project the function on a different space as
the mesh vertices and subsequently the basis functions of the Lagrange elements
are different on the new mesh. This introduces an interpolation error every time
we remesh, which motivates us to make the remeshing period as large as possible.
In our implementation, we use admesh library created by Fara [2022]. Instead
of creating a new mesh altogether, admesh modifies the existing mesh by adding
and removing vertices and edges to fix the flattened elements. This way, many

24

Figure 2.3: The comparison of the mesh velocity vmesh obtained as the solution
of equation (2.18) (left) and vmesh obtained as the solution of (2.20) for f chosen
as inverse of (2.17) for a = 1, b = 1 and c = ∞ (right). We show the magnitude
of vmesh in the first step of the computation (top) and the mesh after 25 steps
of the particle moving right (bottom). Triangles around the particle on the right
preserve their shape better that to the particle on the left, where the triangles
are more distorted.

25

Figure 2.4: The mesh deformation resulting from two circular particles moving
in opposite directions close to each other. The upper particle moves to the left,
the lower moves to the right.

elements stay intact, which reduces the error caused by the projection.
We also use admesh to create the initial mesh. The mesh resulting from a

subdivision process described in previous subsection is used as a starting point,
which already approximates the particle boundaries with a sufficient degree of
accuracy. This raw mesh is then modified by admesh to create a higher quality
mesh satisfying the requirements on the element sizes. The difference between
raw mesh and mesh created by admesh is shown in Figure 2.5.

Figure 2.5: The raw mesh created by subdivisions (left) accurately describes
the particle boundary. This mesh is modified by admesh with constraint (2.17)
(fulfilled with some tolerance) to create a new mesh of higher quality (right), i.e.
containing triangles with high ratio between the radii of the inscribed and the
circumscribed circle. Some triangles near the outer boundary are common for
both meshes as there was no necessity to update them.

26

2.2.3 Algorithm high-level overview
As all key parts of our method are described in the previous sections, we can
now turn our focus to a high-level overview of the order in which the individual
steps are performed. Before we start solving the problem, we first create the raw
mesh as described in the previous subsection. In the initial step, this mesh is
refined by admesh and all function spaces are defined on the refined mesh. With
all spaces prepared, we formulate the equations and prescribe the boundary and
initial conditions.

Let us now assume that we have a solution from a previous step denoted
by v(n−1), V(n−1)

i , p(n−1) and ω(n−1)
i . In the first step, the initial condition is used

instead. In the current step the following operations are preformed.

Step 1. If the amount of steps since previous remesh is higher than given value,
we create a new mesh and project all needed functions to the new mesh.

Step 2. We solve the fluid problem (2.13) to obtain v(n), p(n), V(n)
i and ω

(n)
i

for i = 1, . . . , N . In this step, we use the solution and the mesh movement
from the previous time step.

Step 3. Solution obtained in Step 2 is used as a boundary condition to obtain
the mesh velocity vmesh from the equation (2.18) or (2.20).

Step 4. We calculate the future positions and rotations of all particles according
to equations (2.8). The equations are discretized via explicit Euler scheme

X(n+1)
i := X(n)

i + ∆tV(n)
i , θ

(n+1)
i := θ

(n)
i + ∆t ω(n)

i . (2.21)

We keep track of particle position and rotation independently of mesh
movement as the position and rotation values are important to e.g. mark
the boundaries while remeshing or prescribe the boundary condition on
the particle surface.

Step 5. We use the ALE.move() function to move the mesh vertices according to
the mesh displacement ∆tvmesh.

This sequence is then repeated until the end time T is reached.

2.2.4 The source code
The source code of our implementation is available publicly in the following URL:
https://github.com/Hruza/Fluid-Particle-ALE

27

https://github.com/Hruza/Fluid-Particle-ALE

3. Benchmarks and examples
In this chapter we present multiple simple problems solved by our method to show
the reliability of the method. We choose examples in which the results obtained
using our method can be compared to results presented in an article, computed
analytically or numerically using different, well trusted, method. In the end, we
show a few more examples to present the capabilities of our method.

3.1 Heavy ball in a channel flow
In this example we replicate the flow around cylinder benchmark described in
Schäfer et al. [1996]. In two dimensions, a circle is placed inside a rectangular
domain and a parabolic velocity profile is prescribed at the inlet and the lift and
drag acting on the circle is recorded. To be more specific, we want to solve the
incompressible homogeneous Navier-Stokes equations

div v = 0,

ρ

(︄
∂v
∂t

+ (v · ∇)v
)︄

= divT,

T = −pI + 2µD.

(3.1)

in the domain Ω0 = (0 m, 2.2 m) × (0 m, 0.41 m) \ B, where B is a ball with a
center (0.2 m, 0.2 m) and radius 0.05 m. We split the boundary into four parts,
the left edge Γin, the right edge Γout, the union of the top edge, bottom edge and
the ball surface ΓD. The following boundary conditions are prescribed

v = 0 on ΓD, (3.2)
v = vin on Γin, (3.3)

(Tn)x = 0 on Γout, (3.4)

where vin =
(︂

4Uy(0.41−y)
0.412 , 0

)︂
. The shape of the domain and boundaries is shown

in Figure 3.1. The parameters are chosen as follows

ρfluid = 1 kg
m3 , µ = 0.001 Pa · s, U = 0.3m

s .

We are interested in the values of the coefficient of drag CD and the coefficient of
lift CL, which is defined as follows

CD = 2Fx

(2R)ρfluidU
2 , CL = 2Fy

(2R)ρfluidU
2 , (3.5)

where Fx and Fy is the force acting on the cylinder in the direction of x and y
coordinate respectively, and U is the mean inflow velocity. In our case, the mean
velocity is U = 0.2 m

s . This value is calculated from the following definition

U = 1
|Γin|

∫︂
Γin

(vin)x dx.

28

ΓD

Γout

ΓD

Γin ΓD

2.2 m

0.41 m
vin

Figure 3.1: The domain Ω0 (in blue) is a rectangle with a circle cut out. We
prescribe a parabolic velocity vin on the left edge Γin. We assume a zero traction
boundary condition at the outlet Γout and no-slip boundary condition on the
remaining three parts of the boundary, denoted together as ΓD.

To validate the reliability of our method, we approximate this benchmark
problem with a problem with moving boundary ΓD. Instead of prescribing the
Dirichlet boundary condition on the obstacle surface, we employ our method
described in the previous chapter. We assume that the solution of such problem
would be close to original benchmark problem for sufficiently large ρball. The
initial velocity of the ball is set to zero. The mesh used in the benchmark is
denser around the ball as shown in Figure 3.3a. Ball with lower density will be
pushed by the flow, we can therefore expect decrease of drag coefficient as the
relative velocity of the fluid will be lower. The time step is set to ∆t = 0.02 s
and to prevent mesh quality degradation, we create new mesh after each 10 steps
for ρball = 10 kg

m3 and each 50 steps for ρball = 102 kg
m3 , 103 kg

m3 , for ρball = 105 kg
m3

no remeshing is needed. However, by remeshing we introduce the interpolation
error, which arises when the solution from previous step is projected on the new
mesh. This effect should be reduced by the use of admesh library. The new mesh
created by the admesh library preserves as many vertices from previous step as
possible and changes only the most distorted cells.

ρball [kg
m3] CD CL position [m]

10 0.425554 -0.0123286 1.46037
102 3.11464 0.0080869 0.512656
103 5.11539 0.0127381 0.237611
105 5.56504 0.0106767 0.200386

Table 3.1: The drag and lift coefficients at time t = 7 s measured by integrating
the acting force over the ball surface. In the last column there is the x position
of the ball center at time t = 7 s. The initial position is y = 0.2 m, we can clearly
see the movement decrease withe particle size, which in turn increases the drag
coefficient.

The resulting numerical solutions converge to a steady state as indicated by
the drag and lift coefficient in Figure 3.2. As we are interested in the steady flow,
we investigate the resulting coefficients at time t = 7 s. The Schäfer et al. [1996]
observed the coefficient of drag between 5.57 and 5.59 and the coefficient of lift
between 0.0104 and 0.0110. Values from our method are close to this range for
large enough ball density, the precise values are shown in Table 3.1. The main
reason for slight deviation from expected range seems to be slight movement of

29

0 1 2 3 4 5 6 7

Time [s]

0

1

2

3

4

5

6

7

D
ra

g
co

effi
ci

en
t

ρball = 10 kg
m3

ρball = 102 kg
m3

ρball = 103 kg
m3

ρball = 105 kg
m3

Article results

0 1 2 3 4 5 6 7

Time [s]

0.00

0.01

0.02

0.03

0.04

L
if

t
co

effi
ci

en
t

ρball = 10 kg
m3

ρball = 102 kg
m3

ρball = 103 kg
m3

ρball = 105 kg
m3

Article results

Figure 3.2: The convergence of the coefficient of drag (top) and lift (bottom).
A clear convergence to the theoretical values with rising ball density can be
observed. As the lift coefficient is relatively small, we can see slight jumps in
calculated value due to interpolation error in remeshing.

even the heavies particles. This effect should make the force slightly lower as
the relative velocity of the fluid is also lower. For the heaviest particle we have
CD = 5.5712 at time t = 3 s, in this time the flow is already rather stationary, and
the ball does not move as much as at t = 7 s. From the results of this benchmark,
we can conclude, that our method behaves as expected in this benchmark.

30

(a) Mesh used in the benchmarks. The mesh is more dense around the ball, where the
velocity field is expected to be the most complicated.

(b) The velocity field at time t = 7 s.

Figure 3.3: The solution of the channel benchmark computed by the method for
the ball with density ρball = 1000 kg

m3 .

3.2 Lubrication force
Similarly to the previous section we investigate the forces acting on a particle in
a fluid flow. However, instead of the drag force, we observe the force acting on a
particle near a domain boundary. More specifically, there is a force slowing down
a particle approaching a flat boundary with a no-slip boundary condition in a
fluid described by the Navier-Stokes equation. The asymptotic behavior of this
force was described in Leal [1992] and has the following formula

FL = 3
√

2πµ
(︃
R

h

)︃ 3
2 dh

dt
, as h → 0, (3.6)

where R is the radius of the ball particle and h the distance between the wall and
the flat surface (the distance of two closest points). We refer to the force caused
by the proximity to a boundary as the lubrication force. Due to this force, a rigid
ball moving towards the surface in direction perpendicular to the flat surface will
stop before any contact occurs. Furthermore, a rigid ball does not bounce off
in such circumstances, i.e. the ball never moves away from the surface. This
phenomenon is described in detail by Gravina et al. [2022].

The problem solved with our method can be described as follows. We want
to solve the Navier-Stokes equation inside the domain Ω0 = (0,W) × (0, H) \B,
where B is initially a circular particle with center in (W

2 , h0) and with radius R.
The no-slip boundary condition is prescribed on the outer boundary of Ω0

v = 0 on ∂Ω0 \ ∂B. (3.7)

The model is then formulated as presented in the previous section. In particular,
the no-slip boundary condition is prescribed on the ball surface (the velocity is

31

zero with respect to the rigid movement of the ball). The initial ball velocity is
set to V(0) = (V0, 0). To have a comparison, we also compute the same problem
with zero traction boundary condition on Ω0 \ ∂B instead of no-slip

Tn = 0, on ∂Ω0 \ ∂B.

In this case, the circular particle is initially placed further from the boundary for
the purpose of eliminating the lubrication forces caused by the proximity to a
boundary. As the lubrication force is negligible in the zero traction case, we can
assume that all drag forces are caused by the viscosity of the fluid. Therefore,
if we subtract the force in the zero traction case from the forces in the no-slip
case, we expect to obtain a force described as (3.6). However, we can not directly
subtract these values as the particles in both problem move in a different rate
and therefore the drag force due to viscosity is also different.

Let us denote the y component of force acting on the particle in the no-slip
problem by F no and in the zero traction problem by F free. We assume that the
force F no is a sum of the drag force F no

D and the lubrication force F no
L , where F no

D
is proportional to the squared velocity, i.e.

F no = F no
D + F no

L , F no
D ∼ v2

y.

In particular, as shown previously in equations (3.5), F no
D

v2
y

should be a constant
that depends mostly on the variables common in both systems. And thus, as F free

is assumed to have the same properties, we obtain

F no
D

(vno
y)2 − F free

(vfree
y)2 ≈ 0.

Finally, this gives us a following identity.(︄
F no

(vno
y)2 − F free

(vfree
y)2

)︄
vno

y ≈ F no
L

vno
y

= 3
√

2πµ
(︃
R

h

)︃ 3
2
. (3.8)

We chose the following parameters for the presented simulation

w = h = 20m, R = 0.5 m, h0 = 5 m, ∆t = 0.02 s, V0 = 5m
s ,

as shown in Figure 3.4. The qualitative behavior matches the expectations, the
ball completely stops in the no-slip problem as shown in Figure 3.5. The difference
between F no and F free also matches the theory predicted by 3.6 quite well as shown
in Figure 3.6. Let us take a close look at the quality of the approximation. Let
us use the least squares method to approximate the left-hand side of (3.8) with
a curve in a form ah−b for some constants a ∈ R and b ∈ R. The results are
presented in Table 3.2. We can clearly see that the approximation gets closer
to theoretical values with increasing domain size and decreasing time step. The
error of our best approximation may be caused by the discretization error or
difference between the two compared problems, as it is not possible to compare
the results directly.

32

∂Ω0 \ ∂B Ω0

20 m

20 m

5 mv0

Figure 3.4: We start with a square domain with particle in the distance of 5 m
from the bottom edge. The particle has initial velocity of 5 m

s in the direction of
negative y coordinate, i.e. towards the bottom edge.

Calculated Calculated Calculated
Theory 10x10 square 20x20 square 20x20 square

∆t = 0.02 s ∆t = 0.02 s ∆t = 0.01 s

0.4712h−1.5 0.629h−1.23 0.570h−1.29 0.568h−1.34

Table 3.2: A comparison of curves obtained using the least square method for
various simulation variables.

Figure 3.5: The solution with a no-slip boundary condition at time t = 5 s. The
circular particle completely stops around t = 2.25 s and we see no significant
particle movement after this time. The particle is divided from the boundary by
two layers of elements.

33

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Distance to boundary [m]

0

5

10

15

20

25

30

D
ra

g
fo

rc
e

d
iv

id
ed

b
y

ve
lo

ci
ty

sq
u

ar
ed

[k
g m
]

Zero traction force

Noslip force

Theoretical lubrication force

Figure 3.6: The dependence of the y component of drag force divided by the y
component of ball velocity on the distances from the boundary. We compare two
values, F no

(vno
y)2 (blue) and F free

(vfree
y)2 (orange). The dashed line represents the force

predicted by (3.6), to be more specific, we use the following value derived from
equation (3.8): F free

(vfree
y)2 + 3

√
2πµ

(︂
R
h

)︂ 3
2 1

vno
y

. We observe that the theory matches
our calculations quite well.

34

3.3 Conservation of momentum
For systems with more particle interactions as a rather basic benchmark, we
investigate the conservation of total linear momentum. Let us first define the
total linear momentum in domain Ω

P (t) =
∫︂

Ω0(t)
ρv dx +

N∑︂
i=1

miVi. (3.9)

We expect the total momentum of the system P , for a zero traction boundary
condition prescribed on the outer boundary, to be independent of time as there
are no outside forces acting on the fluid. However, this is only true in Lagrangian
sense if we consider total momentum of the material in reference configuration. In
our case, we have to include the momentum that is exchanged with environment
via mass exchange through the outer boundary Γ

dP

dt
= −

∫︂
Γ
ρ (v · n) v dS, (3.10)

P (t) = −
∫︂ t

0

∫︂
Γ
ρ (v(τ) · n) v(τ) dS dτ + P (0). (3.11)

Of course, we can not expect that the linear momentum conserves exactly
in the numerical computation (due to the approximation error and the rounding
error). In particular, we can expect the error to gradually increase as the error
may incrementally add up. Therefore, we will observe the initial momentum P (0)
from (3.11) and check if the momentum conservation improves with decreasing
time step size.

We define an example problem, let Ω = (0 m, 10 m) × (0 m, 10 m) be a square
domain and let us add two circular particles with radius r = 0.4 m into the
system, the domain Ω with the two particles cut out is denoted by Ω0. The first
circle denoted by P1 is located in the left half of the domain and the second
particle denoted by P2 is then placed to the right of the first particle slightly
lower than P1. The initial distribution is described in detail in Figure 3.7. The
initial velocity of the fluid and particle P2 is set to 0, but the velocity of the
particle P1 is set to V0 = (5, 0) m

s . Although it seems that the particle P1 may
hit particle P2, the contact should never happen for small enough time step due
to the lubrication force described in the previous section. On the outer boundary
denoted by Γ0 we prescribe the zero traction boundary condition

Tn = 0 on Γ0.

The parameters of the system are chosen as follows

ρfluid = 1 kg
m3 , ρparticle = 4 kg

m3 , µ = 0.1 Pa · s.

We ran the simulation for three different time step sizes ∆t: 0.04 s, 0.02 s
and 0.01 s. In all cases the initial mesh was identical and the number of degrees
of freedom was around 105. The simulation result for ∆t = 0.02 s are shown in
Figure 3.8. We can see that the momentum of particle P1 is converted into
the momentum of the surrounding fluid, which in turn moves particle P2 as

35

Γ0

Ω0

P1
P2

V0

Figure 3.7: The initial state of the problem. The coordinates of particle centers
are X1 = (3 m, 3.35 m) and X2 = (4.5 m, 4.65 m). The initial particle position is
chosen in such a way, that the particles would barely overlap if we would move P1
horizontally above P2.

both particles get close to each other.The mesh and velocity magnitude in some
steps are shown in Figure 3.8. Regarding the quantitative result, the total linear
momentum in the direction of the x-axis can be seen in Figure 3.9. We can
see that in all cases the total momentum conserves quite well. Moreover, the
maximum deviation of total momentum from the correct value is lower for lower
time step. We also checked, that the error does not meaningfully decrease with
the increase of mesh density.

Figure 3.8: The result of numerical simulation at time t = 0.02 s (left), t =
0.44 s (middle) and t = 5 s (right). The increase of mesh density around the
particle surface is clearly visible. The color of mesh edges represents the velocity
magnitude on a scale from 0 m

s (blue) to 5 m
s (red).

Analogously, we can measure the total angular momentum of the system,
but in this case, the angular momentum depends on a point against which we
measure. If we denote this point by xc, the total angular momentum in this point
should be conserved

L(t) =
∫︂

Ω0(t)
ρ(x − xc) × v dx +

N∑︂
i=1

1
2mir

2
iωi +

N∑︂
i=1

mi(Xi − xc) × Vi, (3.12)

where ri is the radius of i-th particle. The angular momentum can be divided
into three parts corresponding to the three terms in (3.12), the contribution of

36

the fluid movement, particle rotation and particle translation. Analogously to the
previous example, we have to account for the angular momentum flowing through
the outer boundary, this gives us

L(t) = −
∫︂ t

0

∫︂
Γ
ρ (v(τ) · n) (x − xc) × v(τ) dS dτ + L(0). (3.13)

We measured the total angular momentum in the center and in the origin
(bottom left corner of Ω), in both cases the angular momentum is well-preserved
and the error decreases with the decrease of time step size. This effect can be
clearly seen in Figure 3.10 showing the total angular momentum in the center.

0 1 2 3 4 5

Time [s]

2.516

2.517

2.518

2.519

L
in

ea
r

m
om

en
tu

m
[k

g
·m
·s
−

1
]

∆t = 0.04 s

∆t = 0.02 s

∆t = 0.01 s

Figure 3.9: The total linear momentum in the direction of the x axis for three
different time step choices. All cases vary very slightly, the difference betwee
largest and smallest value of the momentum is under 0.005 kg · m · s−1, but lower
time step clearly results in lower variance. The behavior of y-component of linear
momentum is similar.

37

0 1 2 3 4 5

Time [s]

−0.888

−0.886

−0.884

−0.882

A
n

gu
la

r
m

om
en

tu
m

[k
g
·m

2
·s
−

1
]

∆t = 0.04 s

∆t = 0.02 s

∆t = 0.01 s

Figure 3.10: The total angular momentum for three different time steps, the
angular momentum is measured in the center of domain Ω, x = (5 m, 5 m). The
scale of the y-axis shows that even for the worst case the angular momentum
changes only very slightly and the improvement as the time step decreases is
clear.

3.4 Other examples
In this section, we discuss the versatility of our model. In particular, we describe
the technical limitations to the shape and count of particles that our model is
able to simulate.

3.4.1 Particle shape
In all the previous benchmarks we assumed circular particles. However, the model
described in Chapter 2 works for almost any particle shape1. The particles are
not modified or regenerated during computation. Therefore, any particle can be
simulated as long as we can create the initial mesh with a desired particle shape.
Although this is true in theory, in practice we have to define the particle boundary
after each remeshing to prescribe the boundary condition. This is easily done if
there exist a continuous function ψ such that ψ is negative inside the particle
and positive outside. For circular particles this function is the distance from the
center

ψi(x) = ∥x − Xi∥ − ri.

This function can be simply generalized to allow for elliptical particles using an
appropriately chosen matrix A

ψi(x) = ∥A(x − Xi)∥ − ri.

We tested the simultaion of elliptical particles on the following problem, let Ω0
be a rectangular domain with two ellipses next to each other cut out. We then

1In theory, the particles do not even need to be connected and we can consider e.g. rigid
“diparticles” or “quadruparticles” that consist of multiple disjoint components.

38

prescribed the initial angular velocities ω1 = 15 s−1 and ω2 = −15 s−1. The
solution at four different times is presented in Figure 3.11. We can see that the
angular velocity of the ellipses decreases (velocity near boundary is lower) and in
turn the fluid velocity increases in most parts of the domain.

(a) t = 0.01 s (b) t = 0.5 s

(c) t = 1 s (d) t = 1.5 s

Figure 3.11: The result of numerical simulation of rotating elliptical particles at
four different times.

3.4.2 Particle count
In all previous examples, no more than two particles are present, but similarly
to the particle shape, the model described in Chapter 2 allows for arbitrary
number of particles. In theory, the maximal number of particles is limited only
by the domain size. However, there are some limiting factors in the numerical
computation. First of all, to describe the particle boundary and the flow around
it accurately, we use denser mesh near the boundary surface. Although adding
particles decreases the size of the computational domain, the number of triangles
in the mesh usually increases with each particle, because the number of elements
around particle surface vastly outnumber the number of elements that would be
in the place of the particle. Examples with up to 40 particles are shown in the
following chapter.

39

4. Results
In this chapter, we investigate the effect of shear thinning caused by the addition
of rigid particles to a Newtonian fluid, which on itself does not possess a shear
thinning property. We start with a problem of the Couette flow between two
infinite parallel planes induced by a no-slip boundary condition on one plane and
prescribed velocity in the tangent direction on the other. We are then able to
define and calculate the apparent viscosity and investigate the change of viscosity
according to change of velocity and particle distribution. However, we show that
this approach is not suitable for the numerical calculation of apparent viscosity,
because simulating the system over long periods of time is not possible. We
therefore improve our model to mitigate this problem. In particular, we formulate
a similar Couette flow problem between two cylinders, that allows us to measure
apparent viscosity over long time intervals.

Before we start with the model implementation, we define the shear thinning
property.

Definition 1. The fluid is said to have a shear thinning property if the generalized
viscosity decreases under a shear rate. For two-dimensional problem, we define
the generalized viscosity µg as

µg = T12

D12
,

where T12 is the shear stress and D12 is the shear rate.

4.1 Flow in a rectangular domain
One way to observe and quantify shear thinning is to measure the apparent
viscosity as it may be done in the experiment. Let us have two infinite horizontal
planes on top of each other with a space in between of height h containing the
observed fluid. Let us start moving the upper plane. In the Newtonian case,
a force caused by the viscosity of the fluid acts against the motion of the plane.
Calculating the magnitude of the boundary forces lets us define the apparent
viscosity for a fluid-particle mixture. For this reason, we are interested in a
Couette flow of the particle-fluid system which we proceed to formulate.

Let Ω = (0, l) × (0, h) be a rectangular domain and let us cut out N circular
particles with radius r to obtain Ω0, a domain filled with a Newtonian fluid.
The particles are clustered on the left side of Ω at t = 0 to leave a room for a
movement on the right side. The distribution of particles in the initial cluster is
one of the parameters to investigate. The following boundary conditions for the
fluid velocity v are prescribed on the outer edges of Ω0

v = 0 on Γbottom,

v = (V, 0) on Γtop,

v2 = 0 on Γleft ∪ Γright,

(4.1)

where Γleft, Γright, Γbottom and Γtop denote the corresponding outer edges as shown
in Figure 4.1.

40

Γbottom

Γright

Γtop

Γleft

(V, 0)

l

h

Figure 4.1: Domain used in the Couette flow problem between two planes, the
particles start in a certain distribution on the left-hand side of the domain.

As this example is inspired by the flow of blood, we chose the parameters
to loosely match the parameters of blood flow. Parameters in Leuprecht and
Perktol [2001] are used as a baseline, but some values are modified for us to
better investigate the role of particles. For example, our computational domain
is much smaller than a typical blood vessel with such blood velocities. The blood
cell size is taken from Lanotte et al. [2016] and the density of particles is chosen
to be equal to the fluid density. The parameters used in the computation are as
follows

ρ = 1050 kg
m3 , r = 4µm,

µ = 3.896 · 10−3 Pa · s, h = 100µm,

V = 0.65 m
s , l = 500µm.

4.1.1 Apparent viscosity calculation
The apparent viscosity is calculated as presented in Lefebvre and Maury [2005].
Following the approach suggested above, let us now consider a Newtonian fluid
satisfying the incompressible homogeneous Navier-Stokes equations in Ω with
boundary conditions (4.1). The solution is in a form of linear velocity profile

v(x, y) = V
y

h

(︄
1
0

)︄
, p(x, y) = 0. (4.2)

We can simply verify this fact by substituting the functions to the governing
equations. The continuity equation (1.2) is clearly satisfied as div v = 0. The
balance of linear momentum is also satisfied, upon substituting (4.2) into the
ballance of linear momentum (1.1), one indeed obtains

ρ

(︄
∂v
∂t

+ (v · ∇)v
)︄

= −∇p+ µ div
(︂
∇v + (∇v)T

)︂
,

ρ (0 + 0) = −0 + µ div
(︄

0 V
h

V
h

0

)︄
= 0.

The boundary conditions are also clearly satisfied.
We now integrate the x component of the traction over Γtop and Γbottom to

obtain forces FT and FB respectively

FT =
∫︂

Γtop

tx ds =
∫︂

Γtop

Tn ·
(︄

1
0

)︄
ds =

∫︂
Γtop

T12 ds = µl
V

h
.

41

The calculation for FT is identical except the sign of normal vector. Therefore,
by subtracting the two forces, we obtain the identity

FT − FB = 2µlV
h
.

The forces on the left-hand side can be easily obtained using direct integration
over the according boundary. This leads us to the following definition of the
apparent viscosity µapp

µapp = h

2lV (FT − FB). (4.3)

This value for fluid-particle mixture is equal to the viscosity of a hypothetical
Newtonian fluid exerting the same force against the plane movement as given
mixture. We assume that this value approximates µg from Definition 1, the
decrease of apparent viscosity with shear strain is therefore interpreted as a shear
thinning.

4.1.2 Numerical results
To numerically simulate the fluid-particle system, we use the method described
in Chapter 2. However, we want to slightly modify the boundary conditions for
the mesh velocity (2.18). Instead of vmesh = 0, we prescribe (vmesh)2 = 0 on both
Γbottom and Γtop. Without this modification, we would have to deal with the mesh
deformation effect presented in Figure 2.4, as the mesh remains fixed on Γtop and
moves with particles that have the highest velocity near Γtop.

Figure 4.2: The fluid domain Ω0 with a particle cluster in a grid (top) and
distributed randomly (bottom). To obtain a random distribution, we sample
points uniformly in a chosen rectangle, if a choice of a point would cause an
overlap, we sample again until there is no overlap. To keep the cluster consistent
between different runs, a common initial seed is chosen to initialize the random
number generator.

42

Problem with zero initial condition

We compare two different particle distributions, a 4×5 uniform grid and a sample
from random uniform distribution on rectangle. The exact initial shape of Ω0 with
the particle clusters is shown in Figure 4.2. As the initial condition, we prescribe
no movement

v(0, x, y) =
(︄

0
0

)︄
, Vi(0) = 0, i = 1, . . . , N.

Boundary velocity V is initially zero and increases linearly, until it reaches desired
velocity V0 at time t = 0.02 ms . The velocity V can thus be expressed using the
following formula

V (t) = V0 min
(︃

t

2 · 10−5 , 1
)︃
.

To observe shear thinning, we perform the simulation with three different bound-
ary velocities V0 = 0.1, V0 = 0.3 and V0 = 0.65.

The apparent viscosity measured with our method is shown in Figure 4.3. As
the volume of particles is proportionally small compared to the domain size, the
differences between the apparent viscosities are rather small in absolute value, but
we can still see some differences between individual simulations. In particular,
the particles distributed in a grid result in a smaller value of apparent viscosity,
which is in line with the observations by Lefebvre and Maury [2005]. A slight
apparent viscosity decrease resulting from a velocity increase corresponding to a
shear thinning is indeed present. However, this effect is almost certainly caused by
particle separation shown in Figure 4.5, which occurs sooner in higher velocities.
We can verify this claim by comparing the apparent viscosities at similar stages
of system development.

For this purpose, we investigate the dependence of the apparent viscosity on
the traveled distance d = V t instead of the time directly. As d is proportional
to the boundary velocity V , it is an upper estimate of the distance traveled by
the fastest particle. The dependence of the apparent viscosity on d is shown in
Figure 4.4. Apart from the initial time-dependent steep decrease of the apparent
viscosity caused by the acceleration of the mixture, the apparent viscosity seems
to depend more on d rather than V . This effect is the most apparent in the
interval (0.4 mm, 0.6 mm), where the results for V = 0.65 align with the results
for V = 0.1 and steadily decrease as the particles become more distant from each
other.

This problem is clearly inappropriate for the apparent viscosity comparison
between different boundary velocities, as either the initial acceleration or the later
particle separation evolves in a different rate for each velocity.

43

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time [ms]

0.0040

0.0041

0.0042

0.0043

0.0044

A
p

p
a
re

n
t

v
is

co
si

ty
[P

a
·s

]

Random, V = 0.1 m
s

Random, V = 0.65 m
s

Random, V = 1.5 m
s

Grid, V = 0.1 m
s

Grid, V = 0.65 m
s

Grid, V = 1.5 m
s

Figure 4.3: The dependence of the apparent viscosity as defined by (4.3) on
time. The viscosity reduces with time as the particles start moving with the
fluid. In all cases the simulation ends slightly after the first particle collides
with Γright, when the mesh gets significantly distorted and the numerical method
does not converge. We can clearly see the difference between particles in a grid
and a random distribution as the system with particles in grid has observably
lower apparent viscosity. In some parts, the apparent viscosity of faster moving
system is lower or at least decreases faster, which would indicate shear thinning.
However, this effect is probably caused by separation of particles, which happens
faster with higher particle velocity.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Traveled distance [mm]

0.0040

0.0041

0.0042

0.0043

0.0044

A
p

p
ar

en
t

v
is

co
si

ty
[P

a
·s

]

Random, V = 0.1 m
s

Random, V = 0.65 m
s

Random, V = 1.5 m
s

Grid, V = 0.1 m
s

Grid, V = 0.65 m
s

Grid, V = 1.5 m
s

Figure 4.4: The dependence of apparent viscosity on the traveled distance defined
as a product of time t and the velocity V . The initial steep decrease is caused by
the acceleration of the initially stationary fluid. This process is time-dependent,
thus unlike in Figure 4.3, it is not synchronized across velocities. The apparent
viscosities between different velocities should be compared only after the initial
steep decrease.

44

Figure 4.5: The particle cluster towards the end of simulation with V0 = 0.65 m ·
s−1 at t = 0.9 ms. The particles that are initially in a cluster get separated as
each layer moves with a different speed, which decreases the apparent viscosity as
the particles can move freely outside the cluster. The color indicates the velocity
magnitude, which is zero at the lower boundary and equal to V0 at the top.

Problem with initial linear velocity profile

The initial acceleration from a stationary state poses some difficulty in apparent
viscosity comparison between different velocities, especially in the early stages of
system development. However, we are fairly interested in the apparent viscosity
in the early stages as the particles are still in a cluster and interactions between
particles play a major role. We therefore present a slight modification of the
Couette flow problem with linear velocity profile prescribed as the initial condition

v(0, x, y) = V
y

h

(︄
1
0

)︄
, Vi(0) = V

(Xi)2

h

(︄
1
0

)︄
.

The boundary velocity V is now constant in time, which should eliminate the
comparison problem described above. We also make the domain slightly narrower
and the initial cluster wider to increase the relative volume of particles, and in
turn increase the role of particles in the mixture response. The domain size is
chosen as follows

h = 60µm, l = 500µm.
All other fluid and particle parameters are the same as in previous example.

We investigate the particles initially distributed randomly and in a grid. On
top of the initial cluster with 20 particles, we simulated a problem with a wider
initial cluster containing 40 particles. The example of the initial distribution in
the 20 particle cluster is shows in Figure 4.6. In the apparent viscosity plot in
Figure 4.7, we can see an observable difference between the two types of initial
clusters, and more notably, there is also significant increase in viscosity with
increased number of particles. However, we do not observe any clear pattern that
would indicate shear thinning.

Rectangular boundary conclusion

We simulated a flow induced by a velocity prescribed on the upper boundary.
In the problem with a still initial condition, the apparent viscosity is difficult to
compare between different boundary velocities due to the inconsistency of the
initial acceleration of the mixture. To address this issue, we prescribed a linear
velocity profile as the initial condition with the aim to observe the apparent
viscosity at the beginning of the simulation. However, the apparent viscosity
varies in time significantly and no clear trend can be observed. The ideal solution

45

Figure 4.6: Initial random particle cluster used in the problem with linear initial
velocity profile with 20 particles. The domain is more narrow than in the problem
with stationary initial condition. In the problem with 40 particles, the initial
cluster is wider. In the case of the particles in a grid, we used a 5 × 4 and 10 × 4
grid.

to this problem would be averaging the apparent viscosity over longer periods of
time, which is impossible with the problem formulations used in this section as
the particle distribution changes significantly in time.

The obvious solution to this problem would be the introduction of a periodic
domain. However, our method is not well suited for periodic problems and the
implementation would be rather difficult. The difficulty with periodic domains
is the movement of particles through the boundary with the periodic boundary
condition. We would need to remesh in each time step during the transition as
well as keep track of the ball position on both sides. Although, this approach
would be valid, we show a simpler solution in the following section.

46

0.0 0.1 0.2 0.3 0.4 0.5

Traveled distance [mm]

0.00400

0.00405

0.00410

0.00415

0.00420

0.00425

0.00430

A
p

p
ar

en
t

v
is

co
si

ty
[P

a
·s

]

Simulation with 20 particles.

Random, V = 0.1

Random, V = 0.65

Random, V = 1.5

Grid, V = 0.1

Grid, V = 0.65

Grid, V = 1.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Traveled distance [mm]

0.0043

0.0044

0.0045

0.0046

0.0047

A
p

p
ar

en
t

v
is

co
si

ty
[P

a
·s

]

Simulation with 40 particles.

Figure 4.7: The dependence of the apparent viscosity as defined by (4.3) on time
for the problem with linear profile as initial condition. There is a difference in
behavior for uniformly distributed particles and particles in a grid. However, the
apparent viscosity changes significantly with time and no clear shear thinning can
be observed.

47

4.2 Flow between two cylinders
To extend the range of particle movement without the introduction of periodic
domains, we use a domain defined as an area between two concentric circles with
the particles orbiting around. This problem can be understood as a flow between
two cylinders infinitely long in the direction of z-axis, but as the solution does
not depend on z the two views are equivalent. We are still interested in a flow
induced by prescribed velocity on the outer circle. Let us denote the outer circle
by ΓO and the inner circle by ΓI as shown in Figure 4.8.

ΓO ΓI

V
r2

r1

Figure 4.8: Domain used for the fluid flow problem between two concentric circles,
the particles start randomly distributed in the space between the circles.

4.2.1 Apparent viscosity definition
The apparent viscosity definition for a problem of flow between two cylinders is
analogous to the previous problem of flow between two planes. The main idea
of our definition is to find a formula for viscosity using a solution of the problem
with a Newtonian fluid. As the problem is slightly more intricate than in previous
case, we present the whole process of obtaining the analytical solution.

The polar coordinates are a natural choice for this problem, we therefore
start with the formulation of the Navier-Stokes equations (1.1)-(1.3) in polar
coordinates. Let us denote the distance from the origin by r ≥ 0 and the signed
angle from the unit vector in the direction of the positive x-axis by θ ∈ [−π, π).
We a priori assume that the solution does not depend on θ. In particular, we
assume the velocity to be in a form

v(r, θ) = (0, vθ(r)).

With this assumption, the continuity equation is automatically satisfied. In the
ballance of linear momentum equation, let us first calculate the velocity gradient
in polar coordinates

∇v =
(︄

∂vr

∂r
1
r

∂vr

∂θ
− vθ

r
∂vθ
∂r

1
r

∂vθ

∂θ
+ vθ

r

)︄
=
(︄

0 −vθ

r
∂vθ

∂r
0

)︄
.

48

The convective term is reduced to the following form

(v · ∇)v =
(︄

−1
r
v2

θ

0

)︄
, (4.4)

and the Cauchy stress tensor reduces to the following form

T = −pI + µ

(︄
0 ∂vθ

∂r
− vθ

r
∂vθ

∂r
− vθ

r
0

)︄
. (4.5)

Expressions (4.4) and (4.5) substituted to the balance of linear momentum lead
to the following two equations

ρ

r
v2

θ = ∂p

∂r
,

∂

∂r

(︄
∂vθ

∂r
− vθ

r

)︄
+ 2
r

(︄
∂vθ

∂r
− vθ

r

)︄
= 0.

Using the first equation, pressure p is obtained directly from the the velocity
field. However, we are more interested in the second equation, let us reorder the
equation to see the structure more clearly

∂2vθ

∂r
+ 1
r

∂vθ

∂r
− vθ

r2 = 0.

We deal with the Euler equation, where the general solution is in form

vθ = ar − b
1
r
, (4.6)

where the coefficients a, b ∈ R are determined by the boundary conditions. The
boundary conditions that the solutions should satisfy are the following

vθ(r1) = 0, vθ(r2) = V.

We can now substitute solution (4.6) into the boundary conditions and solve for a
and b, this results in

a = r2

r2
2 − r2

1
V, b = − r2

1r2

r2
2 − r2

1
V,

vθ(r) = V r2

r2
2 − r2

1

(︃
r − r2

1
1
r

)︃
.

Analogously to the previous section, we calculate the total force acting on the
boundaries in the tangential direction. However, as the domain is circular, it is
more convenient to use moment of force M instead of force. Let us calculate
this moment for general circular boundary with the radius r and outward facing
normal vector

M(r) =
∫︂ 2π

0
r2Trθ dθ = 2πµr2

(︄
∂vθ

∂r
(r) − vθ(r)

r

)︄
= 2πµ r

2
1r2V

r2
2 − r2

1
. (4.7)

49

Similarly to the previous example we take the sum of the moments on both
boundaries

M(r1) +M(r2) = 4πµ r
2
1r2V

r2
2 − r2

1
.

This leads to the following choice of apparent viscosity for our problem.

µapp = r2
2 − r2

1
r2

1r2

M(r1) +M(r2)
4πV . (4.8)

To finish the computation, we show a way to numerically obtainM(r) from the
Cauchy stress tensor, as we have the solution in Cartesian coordinates by default.
The moment calculation can be easily simplified for r = |x| = r1, r2 using the
fact that the unit outer normal vector of a circular boundary is n = x

|x| = er(x).
In particular, we obtain the following identity for the Cauchy stress tensor

Trθ = eθ · Ter = n × Tn.

We used the property of the vector eθ = 1
r

∂x
∂θ

eθ = 1
r

(−y, x), eθ · y = n × y ∀y ∈ R2.

Using this identity and the equation (4.7), we obtain the following identity for a
circular boundary Γ with radius r

M(r) =
∫︂ 2π

0
r2Trθ dθ =

∫︂ 2π

0
rn × T(rn) dθ = 1

r

∫︂
Γ

x × Tx dx.

4.2.2 Numerical results
For this problem, we chose the same fluid parameters values as in the previous
case, the size of domain Ω is defined by

r1 = 30µm, r2 = 60µm.

The initial condition is chosen as zero movement for both the fluid and every
particle. We prescribe the velocity on the outer boundary to be a vector of
magnitude V in the tangent direction to the boundary, more specifically

v = V√
x2 + y2

(︄
−y
x

)︄
on ΓO.

A slight problem with the circular domain is caused by the way we move the
particles in our method. The motion of particle is computed using the explicit
Euler method, see 2.21. In particular, if we have a particle in a circular domain
with a fluid moving purely in tangential direction. Neglecting the effect a particle
has on the fluid, the particle should move in a circular trajectory. However, if we
use an explicit method, the particle will systematically drift away from the center
due to numerical error as shown in Figure 4.9. The effect is less significant with
smaller time step size, but for a long simulation may cause a collision between
particle and the outer wall. To address this problem without creating additional

50

center

∆tV(t1)

∆tV(t2)

Figure 4.9: Numerical approximation of a particle movement on a circular trajec-
tory results in a systematic drift of the particle away from the center of rotation.
Dashed line represents the expected trajectory, the arrow represents the real
movement of the particle with the use of an explicit numerical method.

computational complexity, we choose the particle density slightly lower than the
fluid density.

ρparticle = 1010 kg
m3 .

Similarly to the problem with the rectangular domain, the boundary condition
(2.18) for mesh velocity is a bad choice. As the particles move near the stationary
boundary with relatively large speed, the mesh would become deformed. However,
unlike in the previous problem, a simple vmesh · n = 0 on ΓO is not sufficient due
to more complicated geometry. We therefore prescribe the boundary condition
similar to (2.19):

vmesh = 1
∆t

(︄
cos(∆t ω) − 1 − sin(∆t ω)

sin(∆t ω) cos(∆t ω) − 1

)︄
x on ∂ΩO. (4.9)

The angular velocity ω is chosen to be close to the angular velocity of the fastest
particle, in our case

ω = r2 max {|Vi|, i = 1, ..., N} .

The same problem may occur near the inner boundary, we prescribe (4.9) on ΓI
with

ω = r1 min {|Vi|, i = 1, ..., N} .

We ran the simulation for multiple count of particles and we obtained the best
results for 20 particles as we are able to compute long simulations with enough
particle interactions. For 40 and more particles, the viscosity significantly varies
in time, which makes the viscosity comparison rather difficult. Moreover, the
simulation gets relatively expensive as we have to use a small time step to capture
particle interactions and avoid collisions. The apparent viscosity for 20 particles is
shown in Figure 4.11 and Table 4.1. We can clearly see that the average viscosity
of a run with a larger velocity is smaller than of the one with smaller velocity,
which can be interpreted as the effect of shear thinning. We also know, that this
effect is not caused by faster development of higher velocity system, as we observe
the values based on a traveled distance rather than passed time.

51

Velocity V [m
s] 0.1 0.65 1.5

Apparent viscosity [10−3 Pa · s] 5.429 5.289 5.181

Table 4.1: The average apparent viscosity on interval (0 mm, 2.3 mm) of traveled
distance. The result for each velocity are obtained as averages over 2 runs with
different initial particle distributions.

Figure 4.10: The initial particle distribution and mesh density in a problem of
flow between two circles with 20 (left), 40 (middle) and 53 (right) particles.

0.0 0.5 1.0 1.5 2.0

Traveled distance [mm]

0.0045

0.0050

0.0055

0.0060

0.0065

A
p

p
ar

en
t

v
is

co
si

ty
[P

a
·s

]

V = 0.1 m
s

V = 0.65 m
s

V = 1.5 m
s

Figure 4.11: The dependence of the apparent viscosity on traveled distance for a
problem in circular domain with 20 circular particles with common initial particle
distribution (random seed). The dashed line represents the average value over
interval (0.15 mm, 2.3 mm). Although the pattern is not as obvious in the raw
values, the shear thinning effect can be clearly seen in the averages.

52

Conclusion
In this thesis, we developed a numerical model based on the arbitrary Lagrangian-
Eulerian (ALE) method to study a system of rigid particles in a Newtonian fluid.
The main motivation was to study the interaction individual components and
resulting response of the mixture as a whole.

The ALE method was initially presented on a simple example of a fluid flow
around a sphere in an infinite domain. We were able to replicate the Stokes
formula for drag with a numerical method based on a boundary moving with a
fixed velocity. The approximation obtained from ALE method was comparable
to a more standard approach of using a stationary domain with prescribed fluid
velocity in large distance from the particle. We observed only a slightly increased
sensitivity to the numerical parameters.

To simulate a more complicated system, a more robust method to simulate
the full two-way coupling between fluid and particles was used. We described the
main issues connected with implementation of this method, namely the problems
emerging from the mesh movement leading to the necessity to remesh and the
intricacies of prescribing the boundary condition on particle surfaces for both the
fluid movement and mesh movement.

The resulting method is capable of simulating tens of rigid particles. Most
examples consider circular particles for computational simplicity, but an example
with elliptical particles was also presented. The method was tested on various
benchmarks that confirmed the reliability of the method. In particular, the model
captures the interaction of very heavy particles correctly. We were also able to
replicate the theoretical behavior of a particle approaching a flat surface with
fairly good numerical accuracy. On top of that, the conservation of both angular
and linear momentum was confirmed.

As the major point of interest, a shear thinning was calculated in problems
inspired by the blood flow. We initially formulated a problem with particles
in a rectangular domain with prescribed shear strain. An increase of apparent
viscosity with particle count was observed as well as the dependence of apparent
viscosity on particle distribution. However, no shear thinning was observed. To
study the system over longer periods of time, a problem of flow between two
cylinders was used, which resulted in a clear example of shear thinning. We
showed that the effective viscosity of the mixture of a Newtonian fluid and rigid
particles is higher than the viscosity of the pure Newtonian fluid. Furthermore,
the mixture as a whole effectively behaves as a shear thinning fluid.

53

Bibliography
M. Brdička. Mechanika kontinua. Česká matice technická ; roč. 110, č. spisu 503.

Academia, Praha, vyd. 3., rev. edition, 2005. ISBN 80-200-1344-X.

R. Chabiniok, J. Hron, A. Jaroĺımová, J. Málek, K.R. Rajagopal, K. Rajagopal,
H. Švihlová, and K. Tůma. A benchmark problem to evaluate implementa-
tional issues for three-dimensional flows of incompressible fluids subject to slip
boundary conditions. Applications in Engineering Science, 6:100038, jun 2021.
doi: 10.1016/j.apples.2021.100038.

J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodŕıguez-Ferran. Arbitrary La-
grangian–Eulerian Methods, chapter 14. John Wiley & Sons, Ltd, 2004. ISBN
9780470091357. doi: https://doi.org/10.1002/0470091355.ecm009.

J. Fara. ADmesh. https://bitbucket.org/FaraJakub/admesh/src/master/,
2022.

G. Gravina, S. Schwarzacher, O. Souček, and K. Tůma. Contactless rebound of
elastic bodies in a viscous incompressible fluid. Journal of Fluid Mechanics,
942:A34, 2022. doi: 10.1017/jfm.2022.243.

H. H. Hu, N.A. Patankar, and M.Y. Zhu. Direct numerical simulations of
fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. Jour-
nal of Computational Physics, 169(2):427–462, 2001. ISSN 0021-9991. doi:
https://doi.org/10.1006/jcph.2000.6592.

T. J.R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite
element formulation for incompressible viscous flows. Computer Methods in
Applied Mechanics and Engineering, 29(3):329–349, dec 1981. doi: 10.1016/
0045-7825(81)90049-9.

L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J. Fromental, V. Claveria,
F. Nicoud, G. Gompper, and M. Abkarian. Red cells’ dynamic morphologies
govern blood shear thinning under microcirculatory flow conditions. Proceed-
ings of the National Academy of Sciences, 113(47):13289–13294, nov 2016. doi:
10.1073/pnas.1608074113.

L. Gary Leal. Chapter 7 - thin films, lubrication, and related problems. In
L. Gary Leal, editor, Laminar Flow and Convective Transport Processes, pages
345–448. Butterworth-Heinemann, Boston, 1992. ISBN 978-0-7506-9117-8. doi:
https://doi.org/10.1016/B978-0-7506-9117-8.50014-7.

A. Lefebvre and B. Maury. Apparent viscosity of a mixture of a Newtonian fluid
and interacting particles. Comptes Rendus Mécanique, 333(12):923–933, dec
2005. doi: 10.1016/j.crme.2005.10.007.

A. Leuprecht and K. Perktol. Computer Simulation of Non-Newtonian Effects on
Blood Flow in Large Arteries. Computer Methods in Biomechanics and Biomed-
ical Engineering, 4(2):149–163, jan 2001. doi: 10.1080/10255840008908002.

54

https://bitbucket.org/FaraJakub/admesh/src/master/

J. Nitsche. Über ein variationsprinzip zur lösung von dirichlet-problemen bei ver-
wendung von teilräumen, die keinen randbedingungen unterworfen sind. Ab-
handlungen aus dem Mathematischen Seminar der Universität Hamburg, 36
(1):9–15, jul 1971. doi: 10.1007/bf02995904.

M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher. Benchmark Com-
putations of Laminar Flow Around a Cylinder. Vieweg+Teubner Verlag, 1996.
doi: 10.1007/978-3-322-89849-4 39.

J. Trdlicová. Blood flow modeling in cerebral aneurysm. Master’s thesis, Charles
University, Faculty of Mathematics and Physics, 2021.

R. Verfürth. Error estimates for a mixed finite element approximation of the
stokes equations. RAIRO. Analyse numérique, 18(2):175–182, 1984. doi: 10.
1051/m2an/1984180201751.

D. Wan and S. Turek. Direct numerical simulation of particulate flow via
multigrid FEM techniques and the fictitious boundary method. Interna-
tional Journal for Numerical Methods in Fluids, 51(5):531–566, 2006. doi:
10.1002/fld.1129.

55

	Introduction
	Stokes formula benchmark for ALE method
	Problem description
	Analytical solution
	Numerical computation
	Weak formulation
	Space discretization
	Time discretization
	ALE Method

	Numerical results

	Two-way coupled method description
	Derivation of weak formulation
	Numerical implementation
	Boundary condition
	Mesh movement
	Algorithm high-level overview
	The source code

	Benchmarks and examples
	Heavy ball in a channel flow
	Lubrication force
	Conservation of momentum
	Other examples
	Particle shape
	Particle count

	Results
	Flow in a rectangular domain
	Apparent viscosity calculation
	Numerical results

	Flow between two cylinders
	Apparent viscosity definition
	Numerical results

	Conclusion
	Bibliography

