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Introduction
Numerical solution of real-world problems is a process that typically consists
of several stages. First, the problem is described using a mathematical model.
After investigating the existence and uniqueness of its solution, the model is
discretized, resulting in a finite-dimensional problem, which can be formulated as
a system of algebraic equations. Finally, the solution of the algebraic system is
numerically approximated using an appropriate numerical method implemented
on a computer. In the case of direct methods the inaccuracy is determined by
the input data, machine precision and the numerical stability of the method. For
large algebraic systems the computation is usually carried out using an iterative
solver that is stopped (truncated) using stopping criteria that ideally allow to
control the distance of the computed approximate solution to the exact solution
of the algebraic problem.

The individual stages should not be seen in isolation but rather as parts of
the whole process. For example, in order to analyze the convergence behavior
of an iterative solver and derive its reliable stopping criteria one should combine
the aspects of all stages in the process. This matter is expressed, e.g., in the
Introduction of the book [17, p. 6] by Liesen and Strakoš:

Proper understanding of the interaction between all stages in solving
any real-world problem is fundamental for keeping the right perspective
while working within any specific stage. Isolating the algebraic stage
(...) leads to misunderstandings and misconceptions. For example,
sometimes the computational stage is considered a routine application
of a solver from some software package, and (...) the computational
errors (both the truncation and the roundoff parts) are completely ig-
nored, as though computers would give accurate solutions. In other
cases, stopping criteria and convergence evaluation of iterative solvers
are based on unrealistic assumptions, which can not be applied to prac-
tical computations.

Analogous discussion can be found, with references to literature published previ-
ously, in the introduction of [18].

In this thesis we consider numerical solution of boundary value problems
(BVPs) described using linear partial differential equations (PDEs). After dis-
cretizing the equations using the Galerkin finite element method (FEM), the re-
sulting system of linear algebraic equations is solved by a multilevel method.

A multilevel method can be considered as a sequence of iterations performed
using a sequence of refined meshes. The approximate solution is typically com-
puted using smoothing procedures and a solver on the coarsest level. For an
introduction to multilevel (multigrid) methods see, e.g., [6], [11, Chapter 13].
A short historical survey describing the development of convergence analysis can
be found, e.g., in the introduction of [27].

Convergence analysis of multilevel methods and derivation of its stopping
criteria is in literature typically done under the assumption that the coarsest
level problem is solved exactly; see e.g., the convergence analysis in [26, 27],
and the derivation of the stopping criteria in [2, Section 5]. This assumption
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is, however, not satisfied in practical computation either due to the use of an
iterative solver on the coarsest level, or due to the finite precision arithmetic,
or both; see, e.g., [16, Section 2.5.1, Chapter 5–7]. The aim of this thesis is to
revisit selected results presented in literature using weaker assumptions on the
solver on the coarsest level. In particular, we focus on the convergence analysis
and derivation of the uniform bound on the rate of convergence stated in [26, 27].

The text is organized as follows. In the first chapter we introduce the model
BVP problem described using second order linear elliptic PDE and its discretiza-
tion using the Galerkin finite element method with piecewise-linear basis func-
tions. Chapter 2 contains an abstract description of multilevel methods. After for-
mulating an infinite-dimensional abstract problem and introducing its discretiza-
tion, we describe the multilevel framework and the multilevel V-cycle schemes
in both the operator and matrix-vector formulations. A bound on the rate of
convergence of the multilevel V-cycle methods that does not dependent of the
number of levels is present in Chapter 3. In Chapter 4 we consider application of
the multilevel methods described in Chapters 2 and 3 to the model problem from
Chapter 1. We discuss both exact and inexact solvers on the coarsest level and
investigate the possibly different convergence behavior. Conclusions formulate
the main points. The Appendix contains the detailed proof of the contraction
property of the error propagation operator, which corresponds to the V-cycle
scheme method.

Throughout this thesis we assume exact arithmetic computations, i.e., the
inexactness that is considered is due to truncation of the algorithmic operations
and it is not affected by rounding errors.
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1. Model problem and its
discretization
In this chapter we briefly introduce the function spaces used in the text. Further,
we state the model problem and describe its discretization using the Galerkin
finite element method (FEM).

1.1 Function spaces
This section gives an overview of the notation and function spaces used in the
text. For general references see, e.g., [5, 13, 10, 1]. Our presentation is based on
[18, Chapter 1] and [5].

For any real Hilbert space V , with the scalar product and the associated norm

(·, ·)V : V × V → R, and ∥ · ∥V =
√︂

(·, ·)V ,

let V # denotes its dual space, i.e., the space of bounded linear functionals on V .
Further let

⟨·, ·⟩ : V # × V → R,

stand for the duality pairing and let ∥ · ∥V # be the dual norm, i.e.,

∥f∥V # = sup
v∈V ;∥v∥V =1

|⟨f, v⟩| for all f ∈ V #.

Let Ω ⊂ Rd be an open, connected, bounded, polyhedral set with Lipschitz
boundary. The boundary ∂Ω is said to be Lipschitz, cf. [18, p.10] and [13,
Definition 1.2.1.1], if there is ℓ ∈ N and the numbers α1 > 0 and α2 > 0, such that,
the boundary is described by ℓ mutually overlapping Lipschitz maps ϱ1, . . . , ϱℓ,
such that, for each map ϱ ∈ {ϱ1, . . . , ϱℓ}, upon appropriately reorienting the
coordinate axis, the sets

{x ∈ Rd; max
i=1,...,d−1

|xi| ≤ α1, ϱ(x1, . . . , xd−1) < xd ≤ ϱ(x1, . . . , xd−1) + α2}

are subsets of Ω and the sets

{x ∈ Rd; max
i=1,...,d−1

|xi| ≤ α1, ϱ(x1, . . . , xd−1) − α2 < xd ≤ ϱ(x1, . . . , xd−1)}

are contained in Rd \ Ω.
For an integer k ≥ 0, Ck(Ω) denotes the space of k times continuously differ-

entiable functions in Ω, i.e., the space of functions u such that, for any multiindex
α = (α1, . . . , αd) with integers αi ≥ 0, |α| := ∑︁d

i=1 αi ≤ k,

Dαu := ∂|α|u

∂xα1
1 · · · ∂xαd

d

is a continuous function in Ω; C∞(Ω) := ∩∞
k=1C

k(Ω) and C∞
c (Ω) consist of func-

tions from C∞(Ω) with compact support in Ω. Ck(Ω) is the space of functions u
from Ck(Ω) such that, for any multiindex α, |α| ≤ k, the function Dαu admits a
continuous extension to Ω.
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Lebesgue spaces
For 1 ≤ p < ∞, the Lebesgue space Lp(Ω) with the norm ∥ · ∥Lp is defined as (see,
e.g., [5, Chapter 4])

Lp(Ω) := {u : Ω → R; u is measurable and ∥u∥Lp(Ω) :=
(︃∫︂

Ω
|u|p

)︃1/p

< ∞},

L∞(Ω) := {u : Ω → R; u is measurable and ∥u∥L∞ < ∞},

where ∥ ·∥L∞(Ω) is the proper generalization of the maximum norm to measurable
functions. The technical difference is that the values of a function on a set
of measure zero do not affect the value of the ∥ · ∥L∞(Ω) norm, i.e., (with |Υ|d
denoting the d-dimensional Lebesgue measure of Υ ⊂ Ω)

∥u∥L∞ := inf
{Υ⊂Ω;|Υ|d=0}

sup
{x∈Ω\Υ}

{|u(x)| < ∞}.

Sobolev spaces
For an integer k ≥ 0, the Sobolev space Hk(Ω) with the norm ∥ · ∥Hk consists of
functions u ∈ L2(Ω), for which any weak derivative up to the order k belongs to
L2(Ω), i.e., for any multiindex α, |α| ≤ k there is gα ∈ L2(Ω) such that∫︂

Ω
uDαϕ = (−1)|α|

∫︂
Ω

gαϕ for all ϕ ∈ C∞
c (Ω);

see, e.g., [5, Section 9.1]. It is usual to write Dαu instead of gα, ∇u then denotes
the row1 vector of the first weak partial derivatives. In this formalism

Hk(Ω) := {u ∈ L2(Ω); Dαu ∈ L2(Ω), for all α; |α| ≤ k}

and

∥u∥Hk :=

⎛⎜⎝ ∑︂
|α|≤k

∥Dαu∥2
L2(Ω)

⎞⎟⎠
1
2

. (1.1)

The spaces L2(Ω) and H1(Ω) are Hilbert spaces with the inner products

(u, v)L2 :=
∫︂

Ω
uv and (u, v)H1 :=

∫︂
Ω

(uv + ∇u · ∇v) =
∫︂

Ω

⎛⎝uv +
d∑︂

i=1

∂u

∂xi

∂v

∂xi

⎞⎠ ;

see, e.g., [5, Proposition 9.1]. We shall also make use of the H1-seminorm (see,
e.g., [1, Section 4.29])

|u|H1 :=
(︃∫︂

Ω
∇u · ∇u

)︃ 1
2

= ∥∇u∥L2 .

The mapping (see, e.g., [13, Theorem 1.5.1.3])

u ↦→ u|∂Ω,

1Following the notation in [18], vectors with components corresponding to the individual
dimensions in Rd are row vectors. On the contrary, algebraic vectors associated with the
discrete algebraic formulations of various problems using matrix representations are column
vectors.
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which is defined for continuous functions on Ω, has a unique continuous extension
as an operator from H1(Ω) to L2(∂Ω) called the trace operator. Moreover the trace
inequality (cf. [13, Theorem 1.5.1.10]) says that there is a positive constant C
depending only on Ω such that

∥u∥L2(∂Ω) ≤ C∥u∥H1 , for all u ∈ H1(Ω). (1.2)

Further, H1
0 (Ω) denotes the space consisting of functions from H1(Ω) having a

zero trace on the boundary, i.e.,

H1
0 (Ω) :=

{︂
v ∈ H1(Ω); u|∂Ω = 0

}︂
.

There is a positive constant C depending only on Ω, such that

∥u∥L2 ≤ C|u|H1 , for all u ∈ H1
0 (Ω); (1.3)

see, e.g., [5, Corollary 9.19]. This inequality is known as the Poincaré–Fridrichs
inequality and it implies that | · |H1 is a norm on H1

0 (Ω) topologically equivalent
to ∥ · ∥H1 .

1.2 Model problem
Following [26], we consider the subsequent second order elliptic boundary-value
problem. Given Ω ⊂ R2, ã : Ω → R and f : Ω → R find u : Ω → R satisfying

−∇ · (ã∇u) = f in Ω,

u = 0 on ∂Ω,
(1.4)

where

PDE 1: Ω ⊂ R2, is an open, bounded, connected, polygonal set with Lipschitz
boundary,

PDE 2: ã ∈ C1(Ω) is uniformly positive, i.e., there is a positive constant cã such
that

0 < cã ≤ ã(x), for all x ∈ Ω,

PDE 3: f ∈ L2(Ω).

Defining the linear operator

A : H1
0 (Ω) →

(︂
H1

0 (Ω)
)︂#

, ⟨Au, v⟩ =
∫︂

Ω
(ã∇u) · ∇v,

and the linear functional

b ∈
(︂
H1

0 (Ω)
)︂#

, ⟨b, v⟩ :=
∫︂

Ω
fv,

the weak formulation of (1.4) reads as: find u ∈ H1
0 (Ω) such that

⟨Au, v⟩ = ⟨b, v⟩ for all v ∈ H1
0 (Ω), i.e., Au = b in (H1

0 (Ω))#; (1.5)

cf., [26, Section 5].
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Further we consider the space H1
0 (Ω) with the norm | · |H1 and discuss the

properties of the operator A and the functional b. The definition of A together
with the assumptions PDE 1-2 implies that A is self-adjoint (w.r.t. the duality
pairing), bounded and coercive, i.e.,

⟨Au, v⟩ = ⟨Av, u⟩ for all u, v ∈ H1
0 (Ω), (1.6)

there is a CA > 0 : sup
v∈H1

0 (Ω);|v|H1 =1
∥Av∥(H1

0 )# ≤ CA, (1.7)

there is a cA > 0 : inf
v∈H1

0 (Ω);|v|H1 =1
⟨Av, v⟩ ≥ cA. (1.8)

The boundedness and coercivity constants can be taken as

CA = max
x∈Ω

ã(x) and cA = cã. (1.9)

The assumption PDE 3 yields that b is bounded, i.e.,

there is a Cb > 0 : ∥b∥(H1
0 )# = sup

v∈H1
0 (Ω);|v|H1 =1

|⟨b, v⟩| ≤ Cb. (1.10)

For the proof of the properties (1.7) - (1.10) see, e.g., the discussions in [18,
Chapter 2] or the author’s bachelor thesis [23, Section 1.2], where it is proven in
more general setting.

The properties (1.6)-(1.8) yield that A defines an A-inner product on H1
0 (Ω)

(·, ·)A : H1
0 (Ω) × H1

0 (Ω) → R, (·, ·)A := ⟨A·, ·⟩

and the associated A-norm ∥ · ∥A :=
√︂

(·, ·)A is topologically equivalent to the
norm | · |H1 ; see, e.g., [18, Chapters 2-3].

The Lax–Milgram theorem (see, e.g., [18, Section 3.3]) says that there is a
unique weak solution u ∈ H1

0 (Ω) of (1.5) such that

|u|H1 ≤ 1
cA

∥b∥(H1
0 )# .

The regularity of the weak solution u of (1.5) depends on the assumptions
PDE 1-3; see, e.g., [13, 5, 19]. Assuming, for example, in addition to PDE 1-3
that Ω is convex, the weak solution u belongs also to H2(Ω); see, e.g., the result
in [13, Theorem 3.2.1.2].

1.3 Finite element method
In this section we briefly, describe the Galerkin discretization using the piecewise
linear finite element method (FEM). For a general introduction on FEM see, e.g.,
[7, 4, 11].

Triangulation and the finite element spaces
Consider the domain Ω defined in the assumption PDE 1. Let T be a triangu-
lation of Ω, i.e., a finite partition of Ω which satisfies the following assumptions
(see, e.g., [7, 4]).
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FEM 1: Every element in T is a triangle.

FEM 2: The closure of Ω is the union of all elements in T , i.e., Ω = ∪K∈T K.

FEM 3: Any two elements in T are either disjoint or share a common edge or
vertex.

For any element K ∈ T , hK denotes its diameter and ρK the diameter of the
largest disc inscribed into K. The mesh size parameter hT and the shape param-
eter CT are defined as (see, e.g., [25, 7, 4])

hT := max
K∈T

hK and CT := max
K∈T

hK

ρK

. (1.11)

Let N denote the set of all nodes (i.e. the vertices of the elements of T ) and
Nint := N \ ∂Ω the set of free nodes. A continuous function on Ω is said to be
piecewise linear on T , if its restriction to any element in T is a linear polynomial;
see, e.g., [7, 4]. For every node z ∈ N , let φz be the continuous piecewise linear
function on T that has a value one at node z and vanishes at all other nodes.

Let S denote the finite element space of continuous piecewise linear functions
on T , i.e., the space spanned by the functions {φz, z ∈ N } and let S0 denote the
subspace of S containing all functions from S that vanish on the boundary ∂Ω,
i.e., the space spanned by {φz, z ∈ Nint}; see, e.g., [7, 4]. The basis of S0 can be
written as Φ := (φ1, . . . , φN), where N is the number of free nodes. The spaces
S and S0 are finite dimensional subspaces of H1(Ω) and H1

0 (Ω), respectively; see,
e.g., [7, Theorem 2.1.1.].

Galerkin discretization
The Galerkin discretization of (1.5) reads as

find uT ∈ S0 : ⟨AuT , v⟩ = ⟨b, v⟩ for all v ∈ S0; (1.12)

see, e.g., [7, 4]. The solution uT is in the literature called the Galerkin solution.
The formulation of (1.12) yields that the residual

r(uT ) := b − AuT ∈ (H1
0 (Ω))#

is orthogonal (w.r.t. the duality pairing) to the subspace S0, i.e.,

⟨r(vh), v⟩ = ⟨b − AuT , v⟩ = 0 for all v ∈ S0.

This property is in the literature known as the Galerkin orthogonality; see, e.g.,
[4, Proposition 2.5.9].

Exploiting the linearity of A and b, the problem (1.12) can be formulated as
a system of linear algebraic equations for the coordinates of uT in the basis Φ

find u ∈ RN : Au = b, (1.13)

where

A ∈ RN×N , (A)ij = ⟨Aφj, φi⟩, i, j = 1, . . . , N,

b ∈ RN , (b)i = ⟨b, φi⟩, i = 1, . . . , N.

8



The self-adjointness and coercivity of A yield the symmetry and positive defi-
niteness of the matrix A; see Section 2.4 below, where it is shown in more general
setting. The local support of the basis functions {φz, z ∈ Nint} and the definition
of the matrix A imply that A is sparse, i.e., it has only few nonzero entries; see,
e.g., the discussion in [11, Section 4.1.2].
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2. Multilevel methods: Abstract
description
The exposition starts with formulation of an abstract infinite-dimensional prob-
lem. After discussing its properties and the existence of its solution the problem
is discretized. The multilevel methods are further described as methods for com-
puting the approximate solution of the discretized problem using a finite sequence
of finite-dimensional subspaces.

As mentioned in the Introduction, even though the multilevel methods are
formulated in the finite-dimensional framework, it is important to have the un-
derlying infinite-dimensional problem in mind. Especially, the properties of the
infinite-dimensional problem will be used when studying the convergence of the
multilevel methods in the next chapter.

This chapter contains the description of the two-level scheme and the V-cycle
schemes in both the operator and matrix-vector formulations and it concludes
with comments on connections with the subspace correction methods. The ex-
position of this chapter is motivated by and loosely follows the exposition in
[26, 27].

2.1 Infinite-dimensional problem
In this section we follow the exposition in [18, Chapters 2-3] and [15, Section 2].

Let V be a real infinite-dimensional Hilbert space with the inner product and
the associated norm

(·, ·)V : V × V → R and ∥ · ∥V :=
√︂

(·, ·)V .

Let V # denotes the dual space of V and let

⟨·, ·⟩ : V # × V → R, (2.1)

stands for the duality pairing.
Let A : V → V # be a linear operator that is self-adjoint (w.r.t. the duality

pairing (2.1)), bounded and coercive, i.e.,

⟨Au, v⟩ = ⟨Av, u⟩ for all u, v ∈ V,

there is a CA > 0 : sup
v∈V ;∥v∥V =1

∥Av∥V # ≤ CA, (2.2)

there is a cA > 0 : inf
v∈V ;∥v∥V =1

⟨Av, v⟩ ≥ cA. (2.3)

The inequalities (2.2) and (2.3) imply (see, e.g., [15, Section 2])

cA∥v∥2
V ≤ ⟨Av, v⟩ ≤ CA∥v∥2

V for all v ∈ V. (2.4)

The properties of A yield that A defines an inner product on V (see, e.g., [18,
Section 3.2])

(·, ·)A : V × V → R, (·, ·)A := ⟨A·, ·⟩,
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and the associated A-norm ∥ · ∥A :=
√︂

(·, ·)A.
Finally, given b ∈ V #, consider the problem:

find u ∈ V : ⟨Au, v⟩ = ⟨b, v⟩ for all v ∈ V, i.e., Au = b in V #. (2.5)

Using the Lax–Milgram theorem (see, e.g., [18, Section 3.3]), for each b ∈ V #

there is a unique solution u ∈ V of (2.5), i.e., the inverse mapping A−1 : V # → V
exists.

2.2 Discretization and multilevel framework
In order to perform numerical computations, the infinite-dimensional problem
(2.5) has to be discretized. Consider a finite sequence of finite-dimensional nested
subspaces of V

V0 ⊂ V1 ⊂ · · · ⊂ VJ . (2.6)

Since Vj, j = 0, 1, . . . , J , is a finite-dimensional space, all norms on Vj are topo-
logically equivalent and all linear functionals are therefore bounded (w.r.t. any
norm on Vj). The dual space V #

j is thus a space consisting of all linear functionals
on Vj and there holds

V #
0 ⊃ V #

1 ⊃ · · · ⊃ V #
J ⊃ V #.

Discretizing the problem (2.5) on the finest1 subspace VJ using the Galerkin
method read as

find uJ ∈ VJ : ⟨AuJ , v⟩ = ⟨b, v⟩ for all v ∈ VJ ,

i.e.,
find uJ ∈ VJ : AuJ = b in V #

J , (2.7)

The concept of the multilevel methods is to compute an approximation to the
solution of the discrete problem (2.7) using smoothing on levels 1, . . . , J , and a
solver on the coarsest level. For the introduction to the multilevel methods with
explanation of the concept of smoothing on concrete examples see, e.g., [6], [9,
Section 2.5] or the author’s bachelor thesis [23, Chapter 2].

The smoothing is on each level j = 1, . . . , J , described using a linear self-
adjoint (w.r.t. the duality pairing (2.1)), coercive operator Bj : Vj → V #

j , j =
1, . . . , J , called smoother, see, e.g., [26, Section 3.4]. Note that the properties of
Bj yield that it defines an inner product on Vj

(·, ·)Bj
: Vj × Vj → R, (·, ·)Bj

:= ⟨Bj·, ·⟩, (2.8)

and the existence of its inverse B−1
j : V #

j → Vj is guaranteed (by the Lax-Milgram
theorem).

The solver on the coarsest level is in the literature typically assumed to be
exact, see, e.g., [26, Algorithm 3.7], [27, p. 294]. However, as discussed in the

1In agreement with the literature (see, e.g., [26, 27, 21]), we say that Vj−1, is a coarser space
than Vj , and Vj is a finer space than Vj−1. Viewing (2.6) as a hierarchy of subspaces, the level
j − 1 is said to be coarser than the level j, respectively level j is finer than level j − 1.
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Introduction, in practical computations the iterative solvers are often used see;
e.g., [16, Section 2.5.1, Chapters 5–7]. In this text, we consider a solver on the
coarsest level, whose action can be expressed by a linear, self-adjoint (w.r.t. the
duality pairing (2.1)), coercive operator B0 : V0 → V #

0 , respectively its inverse
B−1

0 : V #
0 → V0.

2.3 Multilevel schemes
A multilevel method, for solving the discretized problem (2.7) can be considered
as a sequence of iterations

u(n) ∈ VJ , n = 0, 1, 2, . . . ,

that starts with a chosen initial approximation2 u(0). Having u(n) ∈ VJ the new
approximation u(n+1) is computed according to a multilevel scheme.

We first describe the idea on a two-level scheme, i.e., J = 1, and later introduce
its generalization, the so-called V-cycle scheme.

2.3.1 Two-level scheme
The two level scheme is stated in Algorithm 1; cf. [26, Algorithm 3.7]. The
idea behind it can be described as follows. The smoothing should eliminate the
oscillatory components of the error. Its smoother part should be then reduced
by being approximated on the coarse level. In particular, the defect is computed
and taken as a right-hand side of the problem on the coarse level

find v ∈ V0 : Av = d1 in V #
0 .

After computing the (approximate) solution of the coarse level problem, it is used
to correct the approximation on the fine level.

Algorithm 1 Two-level scheme, operator formulation.

v
[1]
1 := u(n) + B−1

1 (b − Au(n)) ◃smoothing
d1 := b − Av

[1]
1 ◃computation of the defect

v
[2]
0 := B−1

0 d1 ◃solution on the coarse level
v

[2]
1 := v

[1]
1 + v

[2]
0 ◃correction

u(n+1) := v
[2]
1

2.3.2 V-cycle scheme
The V-cycle scheme can be seen as a generalization of the two-level scheme for
more levels. We consider two versions stated as Algorithms 2 and 3; cf. [26,
Algorithms 3.6 and 3.7]. In Algorithm 2 smoothing is done before the solution
on the coarsest level, whereas in Algorithm 3 smoothing is preformed after the
solution on the coarsest level. See the graphic in Figure 2.1.

2If there are no information leading to a proper choice, we typically set u(0) = 0.
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Algorithm 2 V-cycle scheme with pre-smoothing, operator formulation.

v
[1]
J := u(n) + B−1

J (b − Au(n)) ◃smoothing on the finest level
dJ := b − Av

[1]
J

for j = J − 1, . . . , 1 do
v

[1]
j := B−1

j dj+1 ◃smoothing
dj := dj+1 − Av

[1]
j

end for
v

[2]
0 := B−1

0 d1 ◃solution on the coarsest level
for j = 1, . . . , J do

v
[2]
j := v

[1]
j + v

[2]
j−1 ◃correction

end for
u(n+1) := v

[2]
J

Algorithm 3 V-cycle scheme with post-smoothing, operator formulation.
dJ := b − Au(n)

v0 := B−1
0 dJ ◃solution on the coarsest level

for j = 1, . . . , J − 1 do
vj := vj−1 + B−1

j (dJ − Avj−1) ◃smoothing
end for
vJ := u(n) + vJ−1 ◃correction on the finest level
u(n+1) := vJ + B−1

J (b − AvJ) ◃smoothing on the finest level

smoothing solution	on	

the	coarsest	level

VJ

VJ-1

V0

.
.
.

V1

Figure 2.1: Ilustration of the V-cycle schemes - Algorithm 2 (left), and Algo-
rithm 3 (right).
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There exist also versions of the V-cycle scheme, where smoothing is performed
before and after the solution on the coarsest level (see, e.g., [26, Algorithm 3.8])
and other multilevel schemes, e.g., the W-cycle scheme and the full multigrid
algorithm (see, e.g., [14, Chapter 11]) which will be not considered in this text.

2.3.3 Error equations
Further we study the relation between the errors before and after one iteration
of the V-cycle scheme.

Let u(0) ∈ VJ be an arbitrary initial approximation to the solution of AuJ = b
in V #

J . Let u(n) and u(n+1) be the approximations computed after n and n + 1
iterations of the V-cycle scheme with pre-smoothing (Algorithm 2). Writing the
(n + 1)st error uJ − u(n+1) using the individual steps of Algorithm 2 yields

uJ − u(n+1) = uJ − (v[1]
J + v

[2]
J−1)

= uJ − (v[1]
J + v

[1]
J−1 + v

[2]
J−2)

· · ·
= uJ − (v[1]

J + v
[1]
J−1 + · · · + v

[1]
1 + v

[2]
0 )

= uJ − (v[1]
J + v

[1]
J−1 + · · · + v

[1]
1 + B−1

0 d1)
= uJ − (v[1]

J + v
[1]
J−1 + · · · + v

[1]
1 ) − B−1

0 d1.

Observing that dj = AuJ − (Av
[1]
J + · · ·+Av

[1]
j ) in V #

J , j = 1, . . . , J , and denoting
I the identity operator on VJ leads to

uJ − u(n+1) = (I − B−1
0 A)(uJ − (v[1]

J + v
[1]
J−1 + · · · + v

[1]
1 ))

= (I − B−1
0 A)(uJ − (v[1]

J + v
[1]
J−1 + · · · + v

[1]
2 + B−1

1 d2))
= (I − B−1

0 A)(uJ − (v[1]
J + v

[1]
J−1 + · · · + v

[1]
2 ) − B−1

1 d2)
= (I − B−1

0 A)(I − B−1
1 A)(uJ − (v[1]

J + v
[1]
J−1 + · · · + v

[1]
2 ))

· · ·
= (I − B−1

0 A)(I − B−1
1 A) · · · (I − B−1

J A)(uJ − u(n)).

Defining the operator E as

E := (I − B−1
0 A)(I − B−1

1 A) · · · (I − B−1
J A) : VJ → VJ

gives
uJ − u(n+1) = E(uJ − u(n)); (2.9)

cf. [26, Section 3.4]. The operator E is in literature called the error propagation
operator; see, e.g., [27, Section 5].

For the approximations u(n), u(n+1) computed after n and n + 1 iterations of

14



the V-cycle scheme with post-smoothing (Algorithm 3) holds

uJ − u(n+1) = uJ − (vJ + B−1
J (b − AvJ))

= uJ − (u(n) + vJ−1 + B−1
J (AuJ − A(u(n) + vJ−1)))

= (I − B−1
J A)(uJ − (u(n) + vJ−1))

= (I − B−1
J A)(uJ − (u(n) + vJ−2 + B−1

J−1(dJ − AvJ−2)))
= (I − B−1

J A)(uJ − (u(n) + vJ−2 + B−1
J−1(AuJ − Au(n) − AvJ−2)))

= (I − B−1
J A)(I − B−1

J−1A)(uJ − (un + vJ−2))
. . .

= (I − B−1
J A) · · · (I − B−1

1 A)(uJ − (u(n) − v0))
= (I − B−1

J A) · · · (I − B−1
1 A)(uJ − (u(n) − B−1

0 (b − Au(n))))
= (I − B−1

J A) · · · (I − B−1
1 A)(I − B−1

0 A)(uJ − u(n)).

Thus the errors satisfy the relation (cf. [26, Section 3.4])

uJ − u(n+1) = E∗(uJ − u(n)), (2.10)

where E∗ is the error propagation operator

E∗ := (I − B−1
J A)(I − B−1

J−1A) · · · (I − B−1
0 A) : VJ → VJ . (2.11)

The self-adjointness of A and B−1
j imply that the operators I − B−1

j A are
adjoint w.r.t. the A-inner product. Indeed,

⟨A(I − B−1
j A)u, v⟩ = ⟨Au, v⟩ − ⟨AB−1

j Au, v⟩
= ⟨Av, u⟩ − ⟨Av, B−1

j Au⟩
= ⟨Av, u⟩ − ⟨Au, B−1

j Av⟩
= ⟨Av, u⟩ − ⟨AB−1

j Av, u⟩,
= ⟨A(I − B−1

j A)v, u⟩.

Consequently, E∗ is the adjoint of E w.r.t. the A-inner product; cf. [26, Remark
3.1].

2.4 Matrix-vector representation
This section gives a matrix-vector representation of the discrete problem (2.7)
and the multilevel schemes presented above. We use analogous approach as in
[18, Chapter 6] and adopt it for the multilevel methods.

2.4.1 Discrete problem
Consider a basis of the NJ -dimensional space VJ

ΦJ = (φ(J)
1 , . . . , φ

(J)
NJ

)

and the associated canonical dual basis of V #
J

Φ#
J = (φ(J)#

1 , . . . , φ
(J)#
NJ

),
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i.e.,
⟨φ(J)#

i , φ
(J)
j ⟩ = δij, i, j = 1, . . . , NJ . (2.12)

Then each u ∈ VJ can be represented in RNJ using the vector u ∈ RNJ , whose
components are the coordinates of u in the basis ΦJ , i.e.,

u = (⟨φ(J)#
1 , u⟩, . . . , ⟨φ(J)#

NJ
, u⟩)T ,

symbolically written as
u = ΦJu.

Analogously each f ∈ V #
J can be represented in RNJ by its coordinates f ∈ RNJ

in the basis Φ#
J

f = Φ#
J f, f = (⟨f, φ

(J)
1 ⟩, . . . , ⟨f, φ

(J)
NJ

⟩)T .

The restriction of the operator A to the finite-dimensional space VJ can be rep-
resented by a matrix AJ ∈ RNJ ×NJ as follows. Since Aφ

(J)
j belongs to V # ⊂ V #

J

it can be expressed in the basis Φ#
J as

Aφ
(J)
j =

NJ∑︂
i=1

νiφ
(J)#
i , νi = ⟨Aφ

(J)
j , φ

(J)
i ⟩.

Denoting
AJ ∈ RNJ ×NJ , (AJ)ij := ⟨Aφ

(J)
j , φ

(J)
i ⟩ (2.13)

and defining

AΦJ : RNJ → V #
J , AΦJ := (Aφ

(J)
1 , . . . , Aφ

(J)
NJ

)

leads to
AΦJ = Φ#

J AJ, (2.14)

i.e., the jth column of the matrix AJ contains the coordinates of the image Aφ
(J)
j

in the basis Φ#
J .

The self-adjointness and coercivity of A yields the symmetry and positive
definiteness of the matrix AJ; let v ∈ RNJ , v ̸= 0 and consider the function
v = ΦJv, then

v∗AJv = ⟨Φ#
J AJv, ΦJv⟩ = ⟨Av, v⟩ ≥ cA∥v∥V > 0.

Rewriting the formulas in (2.7) using these matrix and vector representations

AuJ = AΦJuJ = Φ#
J AJuJ = b = Φ#

J b,

yields the reformulation of (2.7) as a system of linear algebraic equations for the
coordinates of uJ in the basis ΦJ

find uJ ∈ RNJ : AJuJ = b. (2.15)
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2.4.2 Prolongation and restriction matrices
For each j = 0, . . . , J , consider a basis of the Nj-dimensional space Vj

Φj = (φ(j)
1 , . . . , φ

(j)
Nj

)

and the associated canonical dual basis of V #
j

Φ#
j = (φ(j)#

1 , . . . , φ
(j)#
Nj

).

Since Vj−1 and Vj are nested subspaces, a function from Vj−1 can be expressed
in the basis Φj−1 as well as in the basis Φj. Specially a basis function φ

(j−1)
ℓ can

be written as

φ
(j−1)
ℓ =

Nj∑︂
k=1

⟨φ(j)#
k , φ

(j−1)
ℓ ⟩φ(j)

k . (2.16)

Introducing the prolongation matrix

Ij
j-1 ∈ RNj×Nj−1 , (Ij

j-1)kℓ := ⟨φ(j)#
k , φ

(j−1)
ℓ ⟩ k = 1, . . . , Nj; ℓ = 1, . . . , Nj−1,

gives the relation between the basis functions of Vj−1 and Vj

Φj−1 = ΦjIj
j-1. (2.17)

For each function u ∈ Vj−1 then holds

u = Φj−1u = ΦjIj
j-1u,

i.e., the prolongation matrix Ij
j-1 maps (prolongates) the coefficients of u in the

basis Φj−1 to the coefficients of u in the basis Φj.
Analogously, since V #

j ⊂ V #
j−1, a functional from V #

j can be expressed in both
dual bases Φ#

j and Φ#
j−1. Specially, a basis functional φ(j)#

m can be written as

φ(j)#
m =

Nj−1∑︂
ℓ=1

⟨φ(j)#
m , φ

(j−1)
ℓ ⟩φ(j−1)#

ℓ . (2.18)

Using (2.16) in (2.18) yields

φ(j)#
m =

Nj−1∑︂
ℓ=1

⟨φ(j)#
m ,

Nj∑︂
k=1

⟨φ(j)#
k , φ

(j−1)
ℓ ⟩φ(j)

k ⟩φ(j−1)#
ℓ

=
Nj−1∑︂
ℓ=1

Nj∑︂
k=1

⟨φ(j)#
k , φ

(j−1)
ℓ ⟩⟨φ(j)#

m , φ
(j)
k ⟩φ(j−1)#

ℓ

=
Nj−1∑︂
ℓ=1

⟨φ(j)#
m , φ

(j−1)
ℓ ⟩φ(j−1)#

ℓ ,

where the property of the canonical dual basis Φ#
j was used. Summarizing, there

holds
Φ#

j = Φ#
j−1

(︂
Ij

j-1

)︂∗
, (2.19)
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where
(︂
Ij

j-1

)︂∗
denotes the transpose of the matrix Ij

j-1 and each functional f ∈ V #
j

can be written as
f = Φ#

j f = Φ#
j−1

(︂
Ij

j-1

)︂∗
f,

i.e., the coefficients of f in the basis Φ#
j are mapped (restricted) using the re-

striction matrix
(︂
Ij

j-1

)︂∗
to the coefficients of f in the basis Φ#

j−1.
Moreover, denoting IJ

j ∈ RNJ ×Nj the matrix

IJ
j := IJ

J-1IJ-1
J-2 · · · Ij+1

j , j = 0, . . . , J − 1,

and using (2.17) and (2.19) recursively yields

Φj = ΦJIJ
j and Φ#

J = Φ#
j

(︂
IJ

j

)︂∗
, j = 0, . . . , J − 1. (2.20)

2.4.3 Representation of operators
For each j = 0, 1, . . . , J , the restrictions of the operator A to Vj can be represented
using a symmetric positive definite matrices

Aj ∈ RNj×Nj ,
(︂
Aj
)︂

kℓ
:= ⟨Aφ

(j)
ℓ , φ

(j)
k ⟩, AΦj = Φ#

j Aj; (2.21)

see the derivation of (2.14).
Having the matrix representation of the restriction of the operator A to VJ ,

the matrix representation of the restriction of A to Vj, j = 0, 1, . . . , J − 1, can be
also obtained using the prolongation and restriction relations (2.20)

AΦj = AΦJIJ
j = Φ#

J AJIJ
j = Φ#

j

(︂
IJ

j

)︂∗
AJIJ

j . (2.22)

Comparing (2.21) and (2.22) yields

Aj =
(︂
IJ

j

)︂∗
AJIJ

j . (2.23)

Analogously, for each j = 0, 1, . . . , J , the operator Bj can be represented by a
symmetric positive definite matrix

Bj ∈ RNj×Nj ,
(︂
Bj
)︂

kℓ
:= ⟨Bjφ

(j)
ℓ , φ

(j)
k ⟩, BjΦj = Φ#

j Bj. (2.24)

The matrix representation of the inverse operator B−1
j is then given by the inverse

of the matrix Bj, i.e., there holds

B−1
j Φ#

j = ΦjB−1
j . (2.25)

To show this, let v, f ∈ RNj and consider the function v = Φjv and the functional
f = Φ#

j f. Assuming that B−1
j Φ#

j = ΦjX for some matrix X ∈ RNj×Nj

v∗f = ⟨f, v⟩ = ⟨BjB−1
j f, v⟩ = ⟨BjB−1

j Φ#
j f, v⟩ = ⟨BjΦjXf, Φjv⟩ = v∗BjXf,

where the matrix representation (2.24) of the operator Bj was used. Since v
and f can be chosen arbitrary, comparison of the left and the right term yields
X = B−1

j .
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2.4.4 Two-level scheme
Using the above matrix and vector representations the formulas in the two-level
scheme (Algorithm 1) can be rewritten as follows: the smoothing process

v
[1]
1 = Φ1v[1]

1 = u(n) + B−1
1 (b − Au(n))

= Φ1u(n) + B−1
1 (Φ#

1 b − AΦ1u(n))
= Φ1u(n) + B−1

1 Φ#
1 (b − A1u(n))

= Φ1(u(n) + B−1
1 (b − A1u(n))),

the computation of the defect

d1 = b − Av
[1]
1 = Φ#

1 (b − A1v[1]
1 ) = Φ#

0

(︂
I1

0

)︂∗
(b − A1v[1]

1 ),

the solution on the coarse level

v
[2]
0 = Φ0v[2]

0 = B−1
0 d1

= B−1
0 Φ#

0

(︂
I1

0

)︂∗
(b − A1v[1]

1 )

= Φ0B−1
0

(︂
I1

0

)︂∗
(b − A1v[1]

1 ),

and finally the correction

v
[2]
1 = Φ1v[2]

1 = v
[1]
1 + v

[2]
0

= Φ1v[1]
1 + Φ0v[2]

0

= Φ1(v[1]
1 +

(︂
I1

0

)︂
v[2]

0 ).

The two-level method defined by Algorithm 1 can be hence reformulated purely
in terms of vectors and matrices as an iterative process

u(n) ∈ RN1 , n = 0, 1, 2, . . . ,

that computes an approximation of the solution u1 ∈ RN1 of (2.15). Given u(n),
the new approximation u(n+1) is obtained by Algorithm 4.

Algorithm 4 Two-level scheme with pre-smoothing, matrix-vector formulation.

v[1]
1 := u(n) + B−1

1 (b − AJu(n)) ◃smoothing
d1 := b − A1v[1] ◃computation of the defect
f0 :=

(︂
I1

0

)︂∗
d1 ◃restriction

v[2]
0 := B−1

0 f0 ◃solution on the coarse level

v[2]
1 := v[1]

1 +
(︂
I1

0

)︂
v[2]

0 ◃prolongation and correction

u(n+1) = v[2]
1
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Algorithm 5 V-cycle scheme with pre-smoothing, matrix-vector formulation.

v[1]
J := u(n) + B−1

j (b − AJu(n)) ◃smoothing on the finest level
dJ := b − AJv[1] ◃computation of the defect
fJ-1 :=

(︂
IJ

J-1

)︂∗
dJ ◃restriction

for j=J-1,. . . ,1 do
v[1]

j := B−1
j fj ◃smoothing

dj :=
(︂
Ij

j-1

)︂∗
(fj − Ajv[1]

j ) ◃computation of the defect

fj-1 :=
(︂
Ij

j-1

)︂∗
dj ◃restriction

end for
v[2]

0 := B−1
0 f0 ◃solution on the coarsest level

for j=1,. . . ,J do
v[2]

j := v[1]
j +

(︂
Ij

j−1

)︂
v[2]

j-1 ◃prolongation and correction
end for
u(n+1) = v[2]

J

Algorithm 6 V-cycle scheme with post-smoothing, operator formulation.
dJ := b − AJu(n) ◃computation of the defect
fJ-1 :=

(︂
IJ

J-1

)︂∗
dJ ◃restriction

for j = J-1,. . . ,1 do
fj-1 :=

(︂
Ij

j-1

)︂∗
fj ◃restriction

end for
v0 := B−1

0 f0 ◃solution on the coarsest level
for j=1,. . . ,J-1 do

vj :=
(︂
Ij

j−1

)︂
vj-1 ◃prolongation

vj := vj + B−1
j (fj − AJvj) ◃smoothing

end for
vJ := u(n+1) +

(︂
IJ

J−1

)︂
vJ-1 ◃prolongation and correction

u(n+1) := vJ + B-1
j (b − AJvJ) ◃smoothing on the finest level
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2.4.5 V-cycle scheme
Analogously to the two-level scheme, the V-cycle schemes (Algorithms 2 and 3)
can be reformulated using the above matrix and vector representations in purely
algebraic terms, see Algorithms 5 and 6.

We note that Algorithms 5 and 6 falls into the more general class of clas-
sical multigrid algorithms presented in [14, Section 11.4], where the considered
restriction and prolongation matrices does not need to be transpose of each other.

2.5 Link to multiplicative subspace correction
methods

The subspace correction methods, also known as Schwarz methods, see, e.g.,
[12], [26, Section 3], [21, Chapters 1-2], are based on a decomposition of the
search space into subspaces. The approximation is then computed by performing
corrections on the individual subspaces.

In this section we describe a multiplicative subspace correction method for
finding an approximation to the solution uJ of the discretized problem (2.7) that
uses the sequence of subspaces V0, . . . , VJ , the smoothers Bj, j = 1, . . . , J , and
the operator B0 describing the solver on the coarsest level.

Let v ∈ VJ be an approximation to uJ , the subspace correction w.r.t. the
subspace Vj reads as

v{j} := v + B−1
j (b − Av).

Combining the subspace corrections successively w.r.t. all subspaces Vj yields
one iteration of a multiplicative subspace correction method. We consider two
versions depending on the ordering of the subspace corrections. In Algorithm 7
the corrections are successively carried out on the subspaces VJ , VJ−1, . . . , V0,
whereas the reverse ordering is used in Algorithm 8; cf. [26, Algorithm 3.3]. See
the graphic in Figure 2.2.

Algorithm 7 Multiplicative subspace correction method - version 1, operator
formulation.

v{J} := u(n) + B−1
J (b − Au(n))

for j = J, . . . , 1 do
v{j−1} := v{j} + B−1

j−1(b − Av{j})
end for
u(n+1) := v{0}

Algorithm 8 Multiplicative subspace correction method - version 2, operator
formulation.

v{0} := u(n) + B−1
0 (b − Au(n))

for j = 1, . . . , J do
v{j} := v{j−1} + B−1

j (b − Av{j−1})
end for
u(n+1) := v{J}
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smoothing

solution	on	the	coarsest	level

VJ

VJ-1

V1
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.
.
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...
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VJ-1
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V0

.
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.

...

Figure 2.2: Illustration of the multiplicative subspace correction methods - Algo-
rithm 7 (top) and Algorithm 8 (bottom).
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Error equations
Let u(0) ∈ VJ be an arbitrary initial approximation to the solution of AuJ = b in
V #

J . Let u(n) and u(n+1) be the approximations given utilizing Algorithm 7 after
n and n + 1 iterations. Expanding the (n + 1)st error using the individual steps
of Algorithm 7 yields

uJ − u(n+1) = uJ − v{0}

= uJ − v{1} − B−1
J (b − Av{1})

= uJ − v{1} − B−1
J (AuJ − Av{1})

= (I − B−1
J A)(uJ − v{1})

· · ·
= (I − B−1

J A)(I − B−1
J−1A) · · · (I − B−1

0 A)(uJ − u(n)),

i.e.,
uJ − u(n+1) = E(uJ − u(n)).

Analogously for the approximations u(n), u(n+1) computed by Algorithm 8

uJ − u(n+1) = E∗(uJ − u(n)).

We see that the multilevel V-cycle scheme Algorithm 2 (respectively Algo-
rithm 3) and the multiplicative subspace correction method Algorithm 7 (respec-
tively Algorithm 8) give the same approximations u(n); when started with the
same initial approximation u(0).

This connection is the reason why the multilevel methods are in literature
often analysed from a viewpoint of the subspace correction methods; see, e.g.,
the approaches in [26, 27].
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3. Convergence of multilevel
methods: Abstract description

In this chapter we first introduce the concept of uniform convergence of the
multilevel methods. After specifying and commenting on the assumptions, the
main result on the uniform convergence is formulated. Even though the multilevel
methods are described in the finite-dimensional framework, it is important to
note that in order to prove the main result and also to verify its assumptions, the
properties of the infinite-dimensional problem will be used.

In contrast with the exposition in the previous chapter we first discuss the
properties of the V-cycle scheme with post-smoothing and later comment on the
variant with pre-smoothing.

Let u(0) ∈ VJ be an arbitrary initial approximation of the solution of AuJ = b
in V #

J . Let u(n) and u(n+1) be the approximations computed after n and n + 1
iterations of the V-cycle scheme with post-smoothing (Algorithm 3). As we have
shown in the previous chapter (see equation (2.10)) the errors satisfy

uJ − u(n+1) = E∗(uJ − u(n)), n = 0, 1, . . . , (3.1)

where E∗ is the operator

E∗ = (I − B−1
J A)(I − B−1

J−1A) · · · (I − B−1
0 A) : VJ → VJ .

Motivated by [27, 26] we will show that the operator E∗ is a contraction with
respect to the A-norm with a contraction factor independent of the number of
levels in the V-cycle scheme, i.e., show that there exists a contraction factor
ρ ∈ (0, 1) independent of J such that

∥E∗∥A := sup
v∈VJ ;∥v∥A=1

∥E∗v∥A ≤ ρ. (3.2)

Provided that (3.2) holds,

∥uJ − u(n+1)∥A = ∥E∗(uJ − u(n))∥A

≤ ∥E∗∥A∥uJ − u(n)∥A

≤ ρ∥uJ − u(n)∥A, n = 0, 1, . . . ,

i.e., the A-norm of the error is after each iteration of the multilevel method
reduced at least by the factor ρ that does not depend on the number of levels
in the multilevel method. This property is in literature known as the uniform
convergence of multilevel methods, see, e.g., [27, 26].

For approximations u(n) and u(n+1) computed using the V-cycle scheme with
pre-smoothing (Algorithm 2), holds (see equation (2.9))

uJ − u(n+1) = E(uJ − u(n)), (3.3)

where
E = (I − B−1

0 A)(I − B−1
1 A) · · · (I − B−1

J A) : VJ → VJ . (3.4)
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Since E and E∗ are adjoint w.r.t. the A-inner product (see Section 2.3), their
A-norms coincide (see, e.g., [8, Proposition 2.7]), i.e.,

∥E∥A = ∥E∗∥A. (3.5)

The results mentioned above for the V-cycle scheme with post-smoothing are
therefore valid also for the version with pre-smoothing.

In order to show that (3.2) holds, we consider the following five (rather tech-
nical) assumptions inspired by [27, Section 5]. The first assumption regards the
(geometric) relationship between the restrictions of the operator A to the sub-
spaces Vj and the smoothers Bj.

A1: There exists a constant ω ∈ (0, 2) independent of J such that for all
j = 1, . . . , J (cf. [27, p. 305])

⟨Av, v⟩ ≤ ω⟨Bjv, v⟩, for all v ∈ Vj. (3.6)

The convergence analysis of multilevel methods typically assumes that the
problem on the coarsest level is solved exactly; see, e.g., [27, 26]. Here we weaken
this assumption and allow inexact solver satisfying the following assumption.
This assumption is an analogy of A1.

A2: There exists a constant ω0 ∈ (0, 2) such that

⟨Av, v⟩ ≤ ω0⟨B0v, v⟩, for all v ∈ V0. (3.7)

In order to formulate the next assumptions, we introduce the concept of split-
ting into subspaces, see, e.g., [27, Section 5], [26], [21, Chapter 1], [12] and the
references therein. This concept is here used only as a tool to show the uniform
convergence of the multilevel methods and it does not enter the practical com-
putation. The concept of splitting into subspaces is also used in the context of
operator preconditioning, see, e.g., [15] and references therein.

Motivated by [27, Section 5], we consider splitting of the space VJ into sub-
spaces,

W0 := V0 and Wj ⊂ Vj, j = 0, 1, . . . , J, (3.8)

such that each function v from VJ can be uniquely represented as

v =
J∑︂

j=0
wj, wj ∈ Wj.

In other words the space VJ is the direct sum of subspaces Wj

VJ =
⨁︂

j=0,...,J

Wj.

Each subspace Wj, j = 0, 1, . . . , J , is considered with its own inner product and
the associated norm

(·, ·)j : Wj × Wj → R and ∥ · ∥j :=
√︂

(·, ·)j. (3.9)
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Since each v ∈ VJ can be uniquely written as v = ∑︁J
j=0 wj, wj ∈ Wj, the individ-

ual norms ∥ · ∥j induce a norm in the space VJ

∥v∥2
S :=

J∑︂
j=0

∥wj∥2
j . (3.10)

This norm is in literature called the additive Schwarz norm; see, e.g., [21, Defini-
tion 2.1.1].

The following assumptions describe the required relations between the intro-
duced splitting and the multilevel framework; cf. [27, Section 5].

A3: There exists a constant CS > 0 independent of J such that for all v ∈ VJ

holds
∥v∥2

S ≤ CS∥v∥2
V , (3.11)

where ∥v∥S is defined in (3.10).

A4: There exists a constant CB > 0 independent of J such that for all
j = 1, . . . , J ,

⟨Bjw, w⟩ ≤ CB∥w∥2
j , for all w ∈ Wj. (3.12)

A5: There exist constants γjk, j = 0, 1, . . . , J , k = 0, 1, . . . , j, such that for all
v ∈ Vk and all w ∈ Wj holds

⟨Av, w⟩ ≤ γjk∥v∥V ∥w∥j. (3.13)

More importantly, forming the symmetric matrix

M ∈ R(J+1)×(J+1), Mjk := γjk for j ≥ k,

there exist a constant Γ > 0 independent of J that bounds the spectral
radius of M from above1.

Let us further denote CB0 > 0 the constant such that

⟨B0w, w⟩ ≤ CB0∥w∥2
0 for all w ∈ W0. (3.14)

Since ⟨B0·, ·⟩ induces a norm in the finite-dimensional space W0, where all norms
are topologically equivalent, the constant CB0 exists; see Section 2.2.

Providing the assumptions A1-A5 are satisfied, the contraction property (3.2)
holds with the contraction factor

ρ =

⌜⃓⃓⃓
⃓⃓⎷1 − 2 − max{ω, ω0}

CS

cA

(︄
max

{︃√
CB,

√︂
CB0

}︃
+ Γ

cA
max{

√
ω,

√
ω0}

)︄2 < 1, (3.15)

where cA is the coercivity constant of the infinite-dimensional operator A defined
in (2.3). Proof of this statement, which is inspired by the proof of Theorem 5.1
in [27, Section 5], is included in Appendix.

Let us summarise the results of this section in the following theorem.
1The assumption A5 is in the literature known as the Cauchy-Schwarz type inequality, [27,

Section 5].
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Theorem 1. Let u(0) ∈ VJ be an arbitrary initial approximation to the solution
of AuJ = b in V #

J . Let
u(n), n = 1, 2, . . . ,

be the approximations computed by the V-cycle scheme - Algorithm 2 or Algorithm
3. Providing that Assumptions A1-A5 are satisfied, u(n) converges to the solution
uJ and there holds

∥uJ − u(n+1)∥A ≤ ρ∥uJ − u(n)∥A, n = 0, 1, 2, . . . , , (3.16)

where ρ is the contraction factor (3.15) independent of the number of levels in
the V-cycle scheme.
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4. Convergence of multilevel
methods for the model problem
In this chapter we consider the application of the presented multilevel methods
to the model problem (1.5) and its finite element discretization. After defining
the hierarchy of the finite element spaces we briefly comment on the choice of
the smoothers and the solvers on the coarsest level. Further we discuss the ver-
ification of the assumptions A1-A5. The chapter ends with commenting on the
dependence of the convergence behavior on the mesh size of the initial triangula-
tion.

Definition of spaces
Consider the setting and model problem (1.5) presented in Section 1.2. Let V
be the Sobolev space H1

0 (Ω) equipped with the inner product and the associated
norm

(u, v)V :=
∫︂

Ω
∇u · ∇v, for all u, v ∈ V,

∥u∥V := |u|H1 , for all u ∈ V.

The subspace Vj from the definition of the multilevel framework (Section 2.2)
will be defined as the finite element subspaces corresponding to the uniformly
refined triangulations. Let T0 be an initial triangulation of Ω and let T1, . . . , TJ

be the triangulations obtained by successive uniform refinements of T0, i.e., the
triangles in Tj+1 are generated by dividing the triangles in Tj into four congruent
subtriangles. It follows from the construction that the corresponding mesh sizes
h0, . . . , hJ satisfy hj = h0/2j, j = 0, . . . , J and that the shape parameters (see
(1.11))

CTj
:= max

K∈Tj

hK

ρK

(4.1)

coincide for all j = 0, . . . , J , i.e., CTj
= CT0 . Moreover, let K(j−1) ∈ Tj−1 be

the element in the coarser triangulation containing K(j) and let K(0) ∈ T0 be the
element in the initial triangulation containing both K(j) and K(j−1) then

|K(j)| = |K(j−1)|
4 = |K(0)|

4j
, (4.2)

where |K(j)| denote its Lebesgue measure.
Using this construction, the space Vj is, for each j = 0, . . . , J , defined as the

finite element space of continuous piecewise linear functions on Tj that vanish on
the boundary ∂Ω.

Smoothing
Smoothing is in the multilevel methods typically done using few iterations of a
classic stationary iterative method such as the Richardson method, the (damped)
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Jacobi method, or the (damped) Gauss-Seidel method, see, e.g., [6, Chapter 2],
[14, Chapter 11].

As an example, we consider smoothing performed by one iteration of the
Richardson method. For each j = 1, . . . , J , let Ij denote the identity matrix
in RNj and let σ(Aj) be the spectral radius of the matrix Aj. The corresponding
operators Bj = ΦjBj, j = 1, . . . , J , are defined as

Bj := σ(Aj)Ij.

Since Aj is a symmetric matrix, for all j = 1, . . . , J , holds

v∗Ajv ≤ σ(Aj)v∗v = v∗Bjv, for all v ∈ RNj ,

or equivalently in the operator form (see Section 2.4)

⟨Av, v⟩ ≤ ⟨Bjv, v⟩, for all v ∈ Vj,

The assumption A1 is thus satisfied with ω = 1.
We remark that it is also possible to define the operators Bj, j = 1, . . . , J , such

that they correspond to two or more iterations of a stationary iterative method,
see, e.g., [27, p. 293].

Solver on the coarsest level
The solver on the coarsest level is the literature typically assumed to be exact;
see, e.g., [26, Algorithm 3.7], [27, p. 294]. This is represented by defining the
operator B0 as the restriction of A to V0, i.e.,

⟨B0u, v⟩ := ⟨Au, v⟩, for all u, v ∈ V0. (4.3)

The assumption A2 is then trivially satisfied with ω0 = 1.
The framework described in Chapters 2 and 3 allow us to consider also an

inexact solvers. As an example we consider the solver composed of one iteration
of the Richardson method, i.e.,

B0 = Φ0B0, B0 := σ(A0)I0, (4.4)

where I0 denotes the identity matrix in RN0 and σ(A0) is the spectral radius
of A0. The assumption A2 is for this choice again satisfied with ω0 = 1.

Splitting into subspaces
In order to verify the assumptions A3-A5, the splitting (3.8) - (3.9) of VJ has to
be chosen. We consider the L2-like orthogonal splitting presented in [27, Section
7] that enable us to verify the assumption A3-A5 for the problem (1.5) with the
weak solution u ∈ H1(Ω). In the cases where the problem (1.5) has a regular
weak solution u ∈ H2(Ω) one can also use the A orthogonal splitting; see the
discussion in [27, Sections 6-7].

Let (·, ·)L2,T0 : V × V → R denote the scaled L2 inner product on V

(u, v)L2,T0 :=
∑︂

K∈T0

1
|K|

∫︂
K

uv, for all u, v ∈ V, (4.5)
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and let for each j = 0, 1, . . . , J , Qj : V → Vj be the projection onto Vj which is
orthogonal with respect to this inner product, i.e.,

(Qju, v)L2,T0 = (u, v)L2,T0 , for all u ∈ V, v ∈ Vj.

The projections Qj are used to decompose the space VJ into the space W0 = V0
and the orthogonal complements (cf. [27, Section 7])

Wj := {Qjv − Qj−1v ; v ∈ V }.

The inner product on W0 is chosen as the restriction of the inner product on V
to W0, i.e.,

(·, ·)0 = W0 × W0 → R, (u, v)0 := (u, v)V = (u, v)H1 , for all u, v ∈ W0.

The spaces Wj, j = 1, . . . , J , are considered with the scaled L2 inner products

(·, ·)j = Wj × Wj → R, (u, v)j :=
∑︂

K∈Tj

1
|K|

∫︂
K

uv, for all u, v ∈ Wj. (4.6)

The definition of the scaled inner products (4.6) takes into the account the sizes
of the triangles in the corresponding triangulations and use their sizes as weights.
This choice will enable us to verify the assumptions A3-A5. Note that by (4.2)
there holds for all u, v ∈ Wj, j = 1, . . . , J ,

(u, v)j =
∑︂

K∈Tj

1
|K|

∫︂
K

uv = 4j
∑︂

K∈T0

1
|K|

∫︂
K

uv = 4j(u, v)L2,T0 .

Verification of the assumptions A3 and A5
Let us now comment on the verification of the assumptions A3, A5. In order to
do that we will need the following Lemma 2 and Lemma 3, which are proven in
[3, Theorem 7.6]1 and [26, Lemma 6.1], [27, Lemma 6.1], respectively. The proofs
of these lemmas use the properties of the infinite-dimensional problem.

Lemma 2. There exists a constant CS > 0 depending only on the domain Ω and
the shape parameter CT0 of the triangulations such that for all v ∈ VJ holds

∥v∥2
S = |Q0v|2H1 +

J∑︂
j=1

4j∥(Qj − Qj−1)v∥2
L2,T0 ≤ CS|v|2H1 . (4.7)

Lemma 3. There exist a constant Cα > 0 depending only on the domain Ω, the
shape parameter CT0 of the triangulations, boundedness of A and boundedness of
the derivative of ã such that for all j = 0, 1, . . . , J and k = 0, 1, . . . , j holds

⟨Av, w⟩ ≤ Cα

⎛⎝√
2

2

⎞⎠j−k

|v|H12j∥w∥L2,T0 , for all v ∈ Vk, w ∈ Vj. (4.8)

1See also [27, Section 7], [21, Sections 2.2-2.4] and [20].
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The assumption A3 follows directly from Lemma 2. To verify the assumption
A5 we use Lemma 3 which gives (3.13) with γjk =

(︃√
2

2

)︃j−k

. The matrix M is
then of the form

M = Cα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√

2
2

(︃√
2

2

)︃2
· · ·

(︃√
2

2

)︃J

√
2

2 1
√

2
2 · · ·

(︃√
2

2

)︃J−1

(︃√
2

2

)︃2 √
2

2 1 · · ·
(︃√

2
2

)︃J−2

... ... ... . . . ...(︃√
2

2

)︃J (︃√
2

2

)︃J−1 (︃√
2

2

)︃J−2
· · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The following derivation is inspired by the proof of [26, Lemma 4.6]. The spectral
radius σ(M) of matrix M can be estimated using the Gershgorin theorem (see
e.g., [22, Theorem 2.1], [24, Corollary 1.12]) as

σ(M) ≤ max
k=0,1,...,J

J∑︂
j=0

Mjk.

Then

max
k=0,1,...,J

J∑︂
j=0

Mjk < 2Cα

J∑︂
j=0

⎛⎝√
2

2

⎞⎠j

< 2Cα

+∞∑︂
j=0

⎛⎝√
2

2

⎞⎠j

= 2Cα

1 −
√

2
2

= 2Cα(2 +
√

2).

Finally, taking the constant Γ as 2Cα(2 +
√

2) yields that the assumption A5 is
fulfilled.

Verification of the assumption A4
We comment on the verification of the assumption A4. The algebraic represen-
tation of the inequality (3.12) considered on the whole Vj reads as

σ(Aj)v∗v ≤ CBv∗Mjv, for all v ∈ RNj , j = 1, . . . , J, (4.9)

where Mj denotes the mass matrix corresponding to the inner product (·, ·)j, i.e.,
(︂
Mj

)︂
mn

:= (φ(j)
n , φ(j)

m )j =
∑︂

K∈Tj

1
|K|

∫︂
K

φ(j)
n φ(j)

m , m, n = 1, . . . , Nj, (4.10)

where φ(j)
n , n = 1, . . . , Nj are the basis finite element functions of the space Vj.

Inequality (4.9) can be equivalently reformulated as

CB ≥ σ(Aj)
1

v∗Mjv
v∗v

, for all v ∈ RN0 , v ̸= 0, j = 1, . . . , J. (4.11)

Thus, in order to find a constant CB > 0 satisfying (4.11), it is sufficient to give
an upper bound on σ(Aj) and lower bound on v∗Mjv

v∗v for all nonzero v ∈ RNj

valid for all j = 1, . . . , J . If those bounds are independent of J , the constant CB
satisfies the same.
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Let us now focus on the spectral properties of the scaled mass matrix Mj.
The result in [9, Equation (1.116)] gives for the standard mass matrix(︂

Pj
)︂

mn
:=
∫︂

Ω
φ(j)

n φ(j)
m =

∑︂
K∈Tj

∫︂
K

φ(j)
n φ(j)

m , m, n = 1, . . . , Nj, (4.12)

that there exist constants cP > 0 and CP > 0 depending only on the shape
parameter CT0 such that

cPh2
j ≤ v∗Pjv

v∗v
≤ CPh2

j , for all v ∈ RNj . (4.13)

Although we do not give the complete proof here, we believe that using the same
technique as in the proof of (4.13), it can be shown that there exist constants
cM > 0 and CM > 0 depending only on the shape parameter CT0 such that

cM ≤ v∗Mjv
v∗v

≤ CM, for all v ∈ RNj . (4.14)

The reason is that the elements in the matrices Mj and Pj differs only in the
weights which are of the order h−2

j . Thus cM gives the desired lower bound.
It remains to show the existence of the upper bound on σ(Aj). The algebraic

representation of the inequality (2.4) considered on the finite-dimensional space
Vj reads as

cAv∗Ljv ≤ v∗Ajv ≤ CAv∗Ljv, for all v ∈ RNj , (4.15)

where Lj denotes the matrix corresponding to the inner product (·, ·)j, i.e.,(︂
Lj
)︂

mn
=
∫︂

Ω
∇φ(j)

n · ∇φ(j)
m , m, n = 1, . . . , Nj,

where φ(j)
n , n = 1, . . . , Nj are the basis finite element function of the space Vj.

The result [9, Theorem 1.33] gives the existence of the constant CL > 0 depending
only on the shape parameter CT0 such that the spectral radius σ(Lj) ≤ CL.

Summarizing, defining
CB = cM · CAv · CL

ensures that the assumption A4 is satisfied.

Dependence of the convergence behavior on the mesh size
of the initial triangulation
At this point we have verified or comment on the verification of all of the assump-
tions A1-A5 of Theorem 1. We already know that the contraction factor ρ (3.15)
is independent of the number of levels of the multilevel scheme. However as it
will be shown below it can depend on the mesh size of the initial triangulation,
via the constant CB0 . Let us discuss the dependence of the constant CB0 for the
above mentioned choices of the solver on the coarsest level.

For the multilevel method with exact solver on the coarsest level, the inequal-
ity (3.14) reads as

⟨Aw, w⟩ ≤ CB0∥w∥H1 , for all w ∈ W0. (4.16)
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Using (2.4) and (1.9), the constant CB0 can be taken as

CB0 = CA = max
x∈Ω

ã(x),

and thus depends only on the properties of the infinite-dimensional problem.
The situation is different for the method with the inexact solver on the coarsest

level defined in (4.4). We will use the algebraic formulation of (3.14)

σ(A0)w∗w ≤ CB0w∗L0w, for all w ∈ RN0 , (4.17)

where L0 denotes the matrix corresponding to the inner product (·, ·)0, i.e.,

(L0)mn =
∫︂

Ω
∇φ(0)

n · ∇φ(0)
m , m, n = 1, . . . , N0,

where φ(0)
n , n = 1, . . . , N0 are the basis finite element function of the space V0.

Inequality (4.17) can be equivalently reformulated as

1
CB0

≤ 1
σ(A0)

w∗L0w
w∗w

, for all w ∈ RN0 , w ̸= 0.

Taking the minimum over all vectors w ∈ RNj we have

CB0 ≥ σ(A0)λ−1
min(L0). (4.18)

Note that the term σ(A0) comes from the choice of the Richardson method,
whereas the term λ−1

min(L0) comes from the norm on the space W0. From (4.18)
we see that the constant CB0 is bounded from below by the spectral radius of A0
multiplied by the inverse of the smallest eigenvalue of the matrix L0.

In concrete examples with additional assumptions on the mesh geometry we
are able to use the Fourier analysis and show that

λmin(L0) = O(h2
0) and λmax(L0) = O(1), (4.19)

see, e.g., [9, pp. 58-59]. Using (2.4) restricted on the finite-dimensional space W0,
which in the algebraic representation reads as

cAw∗L0w ≤ w∗A0w ≤ CAw∗L0w, for all w ∈ RN0 , (4.20)

gives together with (4.19) that σ(A0) = O(1). Thus

CB0 = O(h−2
0 ). (4.21)

This indicates that the constant CB0 and thus also the contraction factor ρ
can in general depend on the mesh size of the initial triangulation.
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Conclusion
The aim of this thesis was to study the convergence behavior of the multilevel
methods with inexact solver on the coarsest level. Such methods are often used
in practice. The analysis presented in literature is typically carried out under
the assumption that the problem on the coarsest level is solved exactly. Our
exposition is built upon the articles [26, 27]. We present a coherent abstract
description of the multilevel methods in the Hilbert spaces and discuss in detail
their operator and matrix-vector formulations. In compliance with our aim, we
allow inexact solve on the coarsest level, and modify existing convergence proof.
The rate of the convergence is independent of the number of levels.

Further we consider a boundary value problem formulated using a second
order elliptic PDE and apply the described multilevel methods to its finite element
discretization. For the choice of the exact solver on the coarsest level the bound on
the rate of convergence is independent on the mesh size of the initial triangulation.
On the other hand, the presented discussion indicates that for the choice of the
inexact solver the convergence bound can depend on the mesh size of the initial
triangulation.

Many questions remain open. In the future we would like to generalize the
presented analysis to an arbitrary inexact solver on the coarsest level, e.g., the
conjugate gradient method or the inaccurate direct solvers based, e.g., on incom-
plete LU factorization.

This thesis focus on the a priori convergence analysis. In practice it is impor-
tant to have a reliable a posteriori error estimates. The results in this field are
typically derived also under the assumption on the exact solve on the coarsest
level; see e.g., [2]. We would like to weaken this assumption to allow inexact
solvers. Another interesting question is to take into the account the effects of
finite precision arithmetic on the convergence properties of the multilevel meth-
ods.
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Appendix
In the Appendix we give the proof of the contraction property of the error prop-
agation operator presented in Chapter 3. More precisely, let E∗ be the operator
defined in (2.11), i.e.,

E∗ = (I − B−1
J A)(I − B−1

J−1A) · · · (I − B−1
0 A) : VJ → VJ .

We will prove that if the assumptions A1-A5 formulated in Chapter 3 are satis-
fied, there holds

∥E∗∥A = sup
v∈VJ ;∥v∥A=1

∥E∗v∥A ≤ ρ, (i)

where

ρ =

⌜⃓⃓⃓
⃓⃓⎷1 − 2 − max{ω, ω0}

CS

cA

(︄
max

{︃√
CB,

√︂
CB0

}︃
+ Γ

cA
max{

√
ω,

√
ω0}

)︄2 < 1.

The constants cA and CB0 are defined in (2.3) and (3.14) and the constants ω,
ω0, CS, CB and Γ are specified in the assumptions A1-A5. The following proof,
which is rather technical, is inspired by the proof of Theorem 5.1 in [27, Section
5].

Let us first establish a useful notation. For each j = 1, . . . , J − 1, let Ej be
the operator defined as

E∗
j := (I − B−1

j A) · · · (I − B−1
1 A)(I − B−1

0 A) : VJ → VJ .

The operator E∗
j can be seen as the error propagation operator corresponding

to the V-cycle scheme where the post-smoothing is done only on levels 1, . . . , j.
Denoting further E∗

J := E∗ and E∗
−1 := I, the following relation hold

E∗
j = (I − B−1

j A)E∗
j−1, j = 0, . . . , J, (ii)

E∗
j−1 − E∗

j = B−1
j AE∗

j−1, j = 0, . . . , J,

I − E∗
j−1 =

j−1∑︂
k=0

E∗
k−1 − E∗

k =
j−1∑︂
k=0

B−1
k AE∗

k−1, j = 1, . . . , J. (iii)

In order to show (i), let v be an arbitrary function from VJ , such that ∥v∥A = 1.
The term ∥E∗v∥2

A can be written as

∥E∗v∥2
A = ∥v∥2

A − ∥v∥2
A + ∥E∗

0v∥2 − ∥E∗
0v∥2

+ · · · + ∥E∗
J−1v∥2 − ∥E∗

J−1v∥2 + ∥E∗v∥2
A

= ∥v∥2
A −

J∑︂
j=0

(︂
∥E∗

j−1v∥2
A − ∥E∗

j v∥2
A

)︂
.

(iv)

The differences ∥E∗
j−1v∥2

A − ∥E∗
j v∥2

A, j = 0, 1, . . . , J, can be rewritten using (ii)
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and the self-adjointness of A as

∥E∗
j−1v∥2

A − ∥E∗
j v∥2

A

= ⟨AE∗
j−1v, E∗

j−1v⟩ − ⟨AE∗
j v, E∗

j v⟩
= ⟨AE∗

j−1v, E∗
j−1v⟩ − ⟨A(I − B−1

j A)E∗
j−1v, (I − B−1

j A)E∗
j−1v⟩

= ⟨AE∗
j−1v, E∗

j−1v⟩ −
(︂
⟨AE∗

j−1v, E∗
j−1v⟩ − ⟨AE∗

j−1v, B−1
j AE∗

j−1v⟩

−⟨AB−1
j AE∗

j−1v, E∗
j−1v⟩ + ⟨AB−1

j AE∗
j−1v, B−1

j AE∗
j−1v⟩

)︂
= 2⟨AB−1

j AE∗
j−1v, E∗

j−1v⟩ − ⟨AB−1
j AE∗

j−1v, B−1
j AE∗

j−1v⟩. (v)

Bounding
⟨AB−1

j AE∗
j−1v, B−1

j AE∗
j−1v⟩, j = 0, 1, . . . , J,

in (v) using the assumptions A1 and A2, we have

∥E∗
j−1v∥2

A − ∥E∗
j v∥2

A

≤ 2⟨AB−1
j AE∗

j−1v, E∗
j−1v⟩ − max {ω, ω0} ⟨BjB−1

j AE∗
j−1v, B−1

j AE∗
j−1v⟩

=
(︁
2 − max {ω, ω0}

)︁
⟨AE∗

j−1v, B−1
j AE∗

j−1v⟩. (vi)

Combining (iv) and (vi) yields

∥E∗v∥2
A ≤ ∥v∥2

A −
(︁
2 − max {ω, ω0}

)︁ J∑︂
j=0

⟨AE∗
j−1v, B−1

j AE∗
j−1v⟩, (vii)

The sum on the right-hand side of (vii), will be bounded using the following
lemma. Its prove is for the ease of the exposition postpone for later.

Lemma 4. Provided that the assumptions A3-A5 are satisfied, there holds

∥v∥2
A ≤ K

J∑︂
j=0

⟨AE∗
j−1v, B−1

j E∗
j−1v⟩, for all v ∈ VJ , (viii)

where

K = CS

cA

(︄
max

{︃√︂
CB,

√︂
CB0

}︃
+ Γ

cA
max

{︂√
ω,

√
ω0
}︂)︄2

.

Bounding the sum on the right-hand side of (vii) using Lemma 4 gives

∥E∗v∥2
A ≤ ∥v∥2

A −
(︁
2 − max {ω, ω0}

)︁
K

∥v∥2
A,

and consequently

∥E∗v∥A ≤
√︄

1 −
(︁
2 − max {ω, ω0}

)︁
K

∥v∥A.

Taking the supremum over all v ∈ VJ , ∥v∥A = 1, yields (i).
The proof of Lemma 4 is given in the end of the Appendix. To be able to

complete the proof of Lemma 4 we need to formulate and prove the following
auxiliary Lemmas 5 and 6.
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Lemma 5. Let u0, u1, . . . , uJ be arbitrary functions from VJ and for each j =
0, 1, . . . , J , let wj be an arbitrary function from Wj. Provided that the assumption
A4 is satisfied, there holds

J∑︂
j=0

⟨Auj, wj⟩ ≤ max
{︃√︂

CB,
√︂

CB0

}︃⎛⎝ J∑︂
j=0

∥wj∥2
j

⎞⎠ 1
2
⎛⎝ J∑︂

j=0
⟨Auj, B−1

j Auj⟩

⎞⎠ 1
2

. (ix)

The following proof of Lemma 5 is inspired by the the proof of Lemma 5.2 in
[27].

Proof of Lemma 5. Rewriting the left-hand side of (ix) as

J∑︂
j=0

⟨Auj, wj⟩ =
J∑︂

j=0
⟨BjB−1

j Auj, wj⟩ =
J∑︂

j=0
(B−1

j Auj, wj)Bj

and using the Cauchy–Schwarz inequality for each Bj-inner product give

J∑︂
j=0

⟨Auj, wj⟩ =
J∑︂

j=0
(B−1

j Auj, wj)Bj
≤

J∑︂
j=0

(B−1
j Auj, B−1

j Auj)
1
2
Bj

(wj, wj)
1
2
Bj

=
J∑︂

j=0
⟨BjB−1

j Auj, B−1
j Auj⟩

1
2 ⟨Bjwj, wj⟩

1
2

=
J∑︂

j=0
⟨Auj, B−1

j Auj⟩
1
2 ⟨Bjwj, wj⟩

1
2 .

Using the Cauchy–Schwarz inequality

J∑︂
j=0

ajbj ≤

⎛⎝ J∑︂
j=0

a2
j

⎞⎠ 1
2
⎛⎝ J∑︂

j=0
b2

j

⎞⎠ 1
2

, aj, bj ∈ R,

for
aj := ⟨Auj, B−1

j Auj⟩
1
2 and bj := ⟨Bjwj, wj⟩

1
2

yields
J∑︂

j=0
⟨Auj, wj⟩ ≤

⎛⎝ J∑︂
j=0

⟨Auj, B−1
j Auj⟩

⎞⎠ 1
2
⎛⎝ J∑︂

j=0
⟨Bjwj, wj⟩

⎞⎠ 1
2

.

Bounding ⟨B0w0, w0⟩ using the inequality (3.14) and ⟨Bjwj, wj⟩, j = 1, . . . , J
using Assumption A4, we have

J∑︂
j=0

⟨Auj, wj⟩ ≤

⎛⎝ J∑︂
j=0

⟨Auj, B−1
j Auj⟩

⎞⎠ 1
2
⎛⎝CB0∥w0∥2

0 + CB

J∑︂
j=1

∥wj∥2
j

⎞⎠ 1
2

,

which yields (ix).

Lemma 6. Providing that the assumption A5 is satisfied, there holds

J∑︂
j=0

J∑︂
k=0

Mjkxjyk ≤ Γ
⎛⎝ J∑︂

j=0
x2

j

⎞⎠ 1
2
⎛⎝ J∑︂

j=0
y2

j

⎞⎠ 1
2

, for all x, y ∈ RJ+1. (x)
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The following proof of Lemma 6 is inspired by the proof of Lemma 4.6 in [26].

Proof of Lemma 6. Let x, y be arbitrary vectors from RJ+1. Writting the left-
hand side of (x) in matrix-vector form we have

J∑︂
j=0

J∑︂
J=0

Mjkxjyk = y∗Mx. (xi)

Let ∥ · ∥ denote the Euclidean norm in RJ+1. The Cauchy-Schwarz inequality
gives

y∗Mx ≤ ∥Mx∥∥y∥. (xii)
Let σ(M) denotes the spectral radius of matrix M. Since M is a symmetric matrix
there holds

∥Mx∥ ≤ σ(M)∥x∥, (xiii)
see, e.g., [24, Corollary 1.8]. Combining (xi), (xii), (xiii) and bounding σ(M)
using Γ from above finishes the proof.

Now we are ready to give the proof of the Lemma 4. It is inspired by the
proofs of Theorem 5.1 in [27], and the proofs of Lemma 4.3 and Theorem 4.4 in
[26].

Proof of Lemma 4. Let v be arbitrary function from VJ and consider its decom-
position into the subspaces Wj, j = 0, 1, . . . , J , i.e., v = ∑︁J

j=0 wj, wj ∈ Wj. Then

∥v∥2
A =

J∑︂
j=0

⟨Av, wj⟩

=
J∑︂

j=0
⟨A

(︂
E∗

j−1 + I − E∗
j−1

)︂
v, wj⟩

=
J∑︂

j=0
⟨AE∗

j−1v, wj⟩ +
J∑︂

j=0
⟨A

(︂
I − E∗

j−1

)︂
v, wj⟩

=
J∑︂

j=0
⟨AE∗

j−1v, wj⟩ +
J∑︂

j=1
⟨A

(︂
I − E∗

j−1

)︂
v, wj⟩, (since E∗

−1 = I). (xiv)

The first sum in (xiv) is bounded by Lemma 5 as
J∑︂

j=0
⟨AE∗

j−1v, wj⟩

≤ max
{︃√︂

CB,
√︂

CB0

}︃⎛⎝ J∑︂
j=0

∥wj∥2
j

⎞⎠ 1
2
⎛⎝ J∑︂

j=0
⟨AE∗

j−1v, B−1
j AE∗

j−1v⟩

⎞⎠ 1
2

= max
{︃√︂

CB,
√︂

CB0

}︃⎛⎝ J∑︂
j=0

⟨AE∗
j−1v, B−1

j AE∗
j−1v⟩

⎞⎠ 1
2

∥v∥S, (xv)

we have also used the definition of the additive Schwarz norm ∥ · ∥S; see (3.10).
Rewriting the second sum in (xiv) utilizing the relation (iii) gives

J∑︂
j=1

⟨A
(︂
I − E∗

j−1

)︂
v, wj⟩ =

J∑︂
j=1

j−1∑︂
k=0

⟨AB−1
k AE∗

k−1v, wj⟩. (xvi)
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Using the assumption A5 and the coersivity of A leads to
J∑︂

j=1

j−1∑︂
k=0

⟨AB−1
k AE∗

k−1v, wj⟩ ≤ 1
cA

J∑︂
j=1

j−1∑︂
k=0

γj,k∥B−1
k AE∗

k−1v∥A∥wj∥j

≤ 1
cA

J∑︂
j=0

J∑︂
k=0

γj,k∥B−1
k AE∗

k−1v∥A∥wj∥j. (xvii)

Applying Lemma 6 for

xj = ∥wj∥j, yk = ∥B−1
k AE∗

k−1v∥A,

gives

J∑︂
j=0

J∑︂
k=0

γj,k∥B−1
k AE∗

k−1v∥A∥wj∥j ≤ Γ
⎛⎝ J∑︂

j=0
∥B−1

j AE∗
j−1v∥2

A

⎞⎠ 1
2
⎛⎝ J∑︂

j=0
∥wj∥2

j

⎞⎠ 1
2

= Γ
⎛⎝ J∑︂

j=0
⟨AB−1

j AE∗
j−1v, B−1

j AE∗
j−1v⟩

⎞⎠ 1
2

∥v∥S.

(xviii)

Bounding ⟨AB−1
j AE∗

j−1v, B−1
j AE∗

j−1v⟩, j = 0, 1, . . . , J , using the assumptions A1
and A2 we have

J∑︂
j=0

⟨AB−1
j AE∗

j−1v, B−1
j AE∗

j−1v⟩ ≤ max {ω, ω0}
J∑︂

j=0
⟨BjB−1

j AE∗
j−1v, B−1

j AE∗
j−1v⟩

= max {ω, ω0}
J∑︂

j=0
⟨AE∗

j−1v, B−1
j AE∗

j−1v⟩. (xix)

Combining (xvi), (xvii), (xviii) and (xix) gives
J∑︂

j=1
⟨A

(︂
I − E∗

j−1

)︂
v, wj⟩

≤ Γ
cA

max
{︂√

ω,
√

ω0
}︂⎛⎝ J∑︂

j=0
⟨AE∗

j−1v, B−1
j AE∗

j−1v⟩

⎞⎠ 1
2

∥v∥S. (xx)

Bounding the sums on the right-hand side of (xiv) using (xv) and (xx) yields

∥v∥2
A ≤ K̃

⎛⎝ J∑︂
j=0

⟨AE∗
j−1v, B−1

j AE∗
j−1v⟩

⎞⎠ 1
2

∥v∥S

where
K̃ := max

{︃√︂
CB,

√︂
CB0

}︃
+ Γ

cA
max

{︂√
ω,

√
ω0
}︂

.

Finally, using the assumption A3 and subsequently the coercivity of A to bound
the norm ∥v∥S we have

∥v∥2
A ≤

√
CS√
cA

K̃

⎛⎝ J∑︂
j=0

⟨AE∗
j−1v, B−1

j AE∗
j−1v⟩

⎞⎠ 1
2

∥v∥A
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and consequently

∥v∥2
A ≤ CS

cA
K̃

2
J∑︂

j=0
⟨AE∗

j−1v, B−1
j AE∗

j−1v⟩,

which finishes the proof.
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