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1. Introduction
These days, enormous amounts of text data are created every day. There are
e-mails to one’s colleagues, business documents written for the customers, social
media posts for one’s friends, newspaper articles written for the general public
and many others. Although they differ in many aspects such as the form, tar-
get audience or device they have been written on, they all have been written by
humans. As such, they often contain errors such as typos or missing punctua-
tion that are caused by the lack of our time, the patience and sometimes even
knowledge to review and correct the texts.

As errors make texts more difficult to read and comprehend, to be processed
by automatic systems, as well as they may embarrass their authors, great efforts
have been made to correct them. These include paid services employing human
editors, volunteer proofreading and corrections by automatic systems. In this
work, we aim at improving and developing automatic error correction systems for
natural languages.

The motivation and the need for correcting texts is universally acknowledged.
People also agree that the corrected text should preserve the meaning, be com-
prehensible and accurate. However, people differ in their needs on what errors to
correct. While for example authors writing shorter texts in their native language
do not typically seek for larger edits affecting the text fluency, the same people
want the corrector to propose also fluency edits when writing essays in their non-
native language. When compared to other natural language processing tasks like
named entity recognition or morphological tagging, the wide difference in users’
requirements on automatic correction makes the formalization of the task more
difficult.

Despite the above-mentioned issues, there is a consensus that a large group of
necessary corrections such as errors in morphology (Every days), typos (He wrtes)
or errors in word order (This great is) should be always corrected. We certainly
include this set of generally accepted errors to be attended in natural language
correction. It is however the grammatical error correction that is considered the
holy grail and widely acknowledged interpretation of the natural language cor-
rection task. The grammatical error correction is usually defined as correcting
an original erroneous sentence with a (minimal) set of edits so that the seman-
tics remains unchanged, and the corrected sentence is grammatically correct and
fluent. Natural language correction comprises also other tasks that require cor-
recting only a subset of all error types. An example of such tasks are spelling
error correction, which aims at correcting typos, and diacritics restoration, which
aims at generating diacritical marks to text without them.

The major difficulty in natural language correction tasks stems from ambiguity
and that context is needed to choose the best correction variant. This can be
illustrated on a simple example comprising original text Do he go there? that
without any additional context has two very probable GEC corrections: Does he
go there? and Do we go there?. For this reason, simple rule-based methods as well
as specific error classifiers turned out insufficient, and large neural networks are
now employed as they are capable of processing large contexts effectively. Despite
that using these networks improved performance significantly, there is still a large
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gap to optimal performance.
Until recently, the main research focus has been devoted to English. This

includes development of a large variety of datasets, metrics and models for gram-
matical error correction. In Czech, on the other hand, only a limited number of
research has been conducted so far. This involves mainly models aiming primary
at two specific subtasks of natural language correction: spelling error correction
and diacritics restoration tasks. Being a native speaker of Czech, using Czech on
an everyday basis and knowing that there is a non-trivial amount of people using
the Czech correcting tools lagging behind English state of the art by a large mar-
gin, the focus of my work was set to natural language correction with a specific
focus in Czech.

1.1 Thesis Contributions
The main contribution of the work done during my Ph.D. studies are the im-
provements in the Czech natural language correction. Specifically, in its two
tasks: grammatical error correction and diacritics restoration. For each task I
created and published a new dataset as both tasks lacked such a dataset. Fur-
thermore, I developed two state-of-the-art neural-based models for each task, and
I conducted a meta-evaluation of metrics in Czech grammatical error correction
to select the metric best correlating with humans.

Apart from the Czech natural language correction, I have also worked on
grammatical error correction in languages with low amount of annotated data. I
have shown that in such scenarios, strategies that synthetically generate training
examples using relatively simple word-replacement rules work remarkably well,
and outperform contemporary state-of-the-art results.

Lastly, I conducted analysis on model robustness when presented with data
comprising all types of human errors. By doing analysis over multiple languages
and tasks, I have shown that even the current neural-based models are still very
sensitive to input noise, and their performance significantly deteriorates when
they are presented with noisy texts. Moreover, I have shown that we can improve
model robustness by either training the model on a mixture of original and noisy
data and also by pre-processing the texts with an external correction system.

In this thesis, I describe 7 papers that I have published in natural language
correction [Náplava et al., 2018, Náplava and Straka, 2019b,a, Náplava et al.,
2021, Náplava et al., 2021, 2022, Straka et al., 2021]. In all but the last paper, I
was the principal investigator. Regarding the last paper, where I am the second
author, I have developed the model and also co-created the alignment algorithm.

1.2 Thesis Structure
The thesis is published as a dissertation by publication.

I open the first part by introducing the natural language correction together
with its main background: tasks, metrics, datasets and history. I follow with
my contribution, which comprises a story of my doctorate studies describing the
main approaches, decisions, models and datasets I have created. I conclude the
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first part of the thesis with discussion of my contributions, and discuss possible
future directions.

The second part comprises 7 papers that I have published in peer-reviewed
journals, conferences and their workshops in the field of natural language correc-
tion.
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2. Background
Natural language correction comprises a set of tasks that aim at correcting errors
in users’ text. Formally, an original sequence x = {x0, x1, . . . , xNx} should be
mapped to a corresponding target sequence y = {y0, y1, ..., yNy} (often called
gold or reference annotation) that satisfies the task requirements such as being
error-free. The output of a correction system ŷ = {ŷ0, ŷ1, ..., ŷNg

} is called a
system hypothesis (or simply model output).

Undoubtedly, the task with the most recent focus, the most conducted re-
search and the holy grail of natural language correction is the grammatical
error correction (GEC). This task requires detecting and correcting all er-
rors present in a source text with error types ranging from the simplest ones in
spelling up to more complex errors in grammar and even fluency. Although the
deployed systems should work upon detokenized texts, for historical and evalua-
tion reasons, the GEC datasets are most commonly distributed with tokenized
original texts. We illustrate two examples of erroneous sentences comprising sev-
eral grammatical errors with their corrections in Figure 2.1. The first example
presents rather simpler corrections consisting of single word replacements and
deletions, and the second example illustrates a scenario in which a larger rewrite
is needed to improve the text fluency.

In fact , in the political , economic and defence terms I feel realocation of resources can and will be so positive .
reallocation

this,
very

So I think we can not live if old people could not find siences and tecnologies and they did not developed .
would not be alive our ancestors did not develop sciences and technologies

Figure 2.1: Examples of erroneous sentences with their corrections taken from
existing English GEC corpora: W&I+LOCNESS [Bryant et al., 2019, Granger,
2014] and JFLEG [Napoles et al., 2017a].

Grammatical error correction is the task for which most datasets, metrics
and models have been developed, and we will discuss them later in more detail.
Until recently, grammatical error detection task, whose objective is only to
detect erroneous spans in a text without attempting at correction, was the focused
research topic. However, with recent methods and advances, it seems that the
majority of research has shifted to the full-scale grammatical error correction
comprising both erroneous span detection and correction, and in our work, we
solve both span detection and error correction jointly.

As correcting complex grammatical and fluency errors has been too difficult
problem for a long time, and also because such corrections are often not needed,
several other simpler tasks are solved. One of the most popular is the spelling er-
ror correction. So called spell-checkers or spelling error correction tools are well
known software features appearing in a variety of commercial and non-commercial
writing tools, in which they help both to detect errors and for each detected error
to also propose a list of correction suggestions. As the name of the task suggest,
the goal of spelling error correction is to detect and correct misspellings, local
errors commonly caused by the lack of exact word spelling knowledge or miss-
clicking keyboard keys resulting in a typographical error (typo). We illustrate
two examples of sentences with spelling errors and their corrections in Figure 2.2.
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Thay arrived befor us .
They before

Wherre are you going tdoay ?
Where today

Figure 2.2: Examples of erroneous sentences comprising spelling errors including
their corrections. While the first sentence illustrates errors originating from word
pronunciation similarity, the second sentence illustrates errors originating from
typography with missclicked computer keyboard keys.

In languages with letters with diacritics (e.g. Czech or Vietnamese), diacrit-
ics restoration, also known as diacritics generation or accent restoration,
is another commonly discussed task. In these languages, people frequently write
without diacritics, because it is often significantly faster and also for historical
reasons as there used to be problems with encoding diacritics. Although that re-
moving diacritics creates new groups of homonymy (dal/dál, krize/kříže), the text
remains readable and makes sense. Having the text with no diacritics, the objec-
tive of the diacritics restoration task is to correctly restore diacritical marks for
all letters in a text. It is important to emphasize that in the diacritics restoration
setting, the source texts for the task lack any diacritics whatsoever, as opposed
to (partially) omitted/misspelled diacritics in the spelling correction or the gram-
mar correction task. An example with both undiacritized and correctly diacritized
sentences in Czech is presented in Figure 2.3.

K nejvyznamnejsim patri zminovane vily.
    ý        ě ší        ří      ň     é   

V ruznych podanich existuji vily hodne a vily zle.
ů   ý         á í            í   í         é     í     é 

Figure 2.3: Examples of Czech sentences without diacritics and correct diacritized
variants for their characters.

Note that similarly to diacritics restoration, there are also correction tasks
aiming at single error type correction such as punctuation and casing restora-
tion, but these are typically used as post-processing techniques for other systems
such as automatic speech recognition or demonstration techniques rather than
being a stand-alone natural language correction task operating over users’ text.

Finally, the last common task belonging to the natural language correction
is text normalization. Generally, the task’s objective is to transform a non-
standard text to a standard register, commonly also formulated as converting
non-canonical texts to their canonical equivalent. There are three main areas in
which the task is used: historical data [Tang et al., 2018, Bollmann, 2019], medical
data [Dirkson et al., 2019] and social media texts [Han et al., 2013, van der Goot
et al., 2021]. There are differences in the task setting as some researchers [Han
et al., 2013] restrict the task to exact one-to-one mapping (one correction word
replaces one source word) between words, and consider only out-of-vocabulary
words for normalization, while newer works [van der Goot et al., 2021] soften
the restrictions by allowing normalization to happen also on in-vocabulary words,
and also allow for one-to-many and many-to-one replacements. To illustrate the
task, we provide examples in Figure 2.4.

Recall that for all the tasks, the main difficulty stems from ambiguity. This
means that often, multiple correction variants for a piece of text are possible, and
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þe quene was ryght gretly displisyd with us both 
The queen    right greatly displeased

Muscle pain from fibromalgia is reduced.
fibromyalgia

social ppl r troublesome
Social people are

Figure 2.4: Examples of original unnormalized sentences and their normalization
variants in three domains: (1) historical texts, (2) medical texts and (3) social
media texts.

a context is needed to disambiguate between them, and choose the best correction.
Despite that ambiguity is present across all described tasks, the highest level of
it is indisputably in grammar error correction, which makes it the hardest task.

During my Ph.D. studies, I mainly dealt with two specific tasks: grammar
error correction (GEC) and diacritics restoration. I also dealt a bit with
spelling error correction. Therefore, these tasks will be introduced more thor-
oughly in the rest of this chapter. Specifically, first, the metrics commonly used
for evaluating model performance are outlined. Further, common datasets are
introduced, and a short history of developing models for natural language cor-
rection is described. I end the model history section in 2017 when my doctorate
studies started, and describe the models introduced later that were important
to my work in the following chapter. Then, I discuss commercial systems, and
compare their performance to state-of-the-art models. Finally, I discuss models
and datasets specific for Czech.

2.1 Evaluating Systems
First, the GEC metrics are described as they are the most universal, i.e. generally,
these metrics could be used for assessing model performance in other natural
correction tasks. However, as GEC metrics are relatively new and other tasks
simpler, we often refer to their metrics specifically, although they are often only
specializations of the GEC metrics.

2.1.1 GEC Metrics
There are two type of metrics commonly used for evaluating system performance
in GEC: edit-based and machine-translation-alike. The first group, edit-based
methods evaluate system performance by means of correctly performed edits,
where an edit consists of a part of the noisy text and its correction. The correc-
tions are typically string to string replacements in a token span performed on the
word level. Requiring to correct an entire edit is important as correcting only its
subpart may lead to a text of even worse quality than the original text has. A
simple example is correcting He have eating. to He has eaten., where a full edit
have eating −→ has eaten has to be performed to make a meaningful correction.

Supposing that a corpus contains annotated gold edits, these gold edits are
compared with edits extracted from a system hypothesis and the F-score com-
puted over the gold and system edits is reported.
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Formally, having a set of N sentences and the respective set of gold edits
{g1, g2, ..., gN} and system edits {e1, e2, ..., eN}, where gi = {g1

i , g2
i , ..., gO

i } and
ei = {e1

i , e2
i , ..., eP

i } contain gold and system edits for i-th sentence, the precision,
recall and final Fβ-score are computed as follows:

P =
∑N

i=1 |ei ∩ gi|∑N
i=1 |ei|

R =
∑N

i=1 |ei ∩ gi|∑N
i=1 |gi|

Fβ = (1 + β2) · P · R

(β2 · P ) + R

where the intersection between i-th sentence system edits ei and gold edits gi is
defined as:

ei ∩ gi = {e ∈ ei|∃g ∈ gi, match(g, e)}

where the matching function match(g, e) checks equality of the system edit e
and gold edit f , i.e. whether they correct the same source span with the same
string. Note that as multiple corrections are sometimes possible for a sentence,
GEC corpora often contain multiple references for each sentence produced by
multiple annotators. In this setting, the gold reference producing maximum F-
score for a given system hypothesis is chosen independently for each sentence.
Finally, in grammar error correction, proposing of a bad edit is considered worse
than omitting an error, hence precision is emphasized over recall, and, therefore,
Fβ-score with β = 0.5 (F0.5-score) is typically used:

F0.5 = (1 + 0.52) · R · P

R + 0.52 · P

The two most popular edit-based scorers differ in how they extract system
edits. The MaxMatch (M2)-scorer [Dahlmeier and Ng, 2012a] extracts system
edits that have the highest overlap with the gold standard annotation, i.e. the set
of edits that yields the maximum F-score. Specifically, Dahlmeier and Ng [2012a]
first construct the two-dimensional Levenshtein matrix for the tokenized source
sentence si and system hypothesis hi. They further use the breadth-first search
algorithm to extract the shortest path lattice, in which the vertices correspond
to Levenshtein matrix cells, each edge represents one of four atomic operations
(token insertion, token deletion, token substitution and keeping token unchanged)
and each edge has a unit cost. It is a well known fact that each path through
this lattice corresponds to the shortest sequence of edits that transform si to hi.
To allow for phrase-level edits, transitive edges that satisfy a predefined length
limit and change at least one word are added to the lattice with a cost being the
sum of its parts. Finally, to support usage of gold edits, the cost of each edge
corresponding to any gold edit is reduced. The start-end path with the lowest
cost is then extracted and Dahlmeier and Ng [2012a] prove that with properly
set constants for reducing gold edges costs, the set of edits that belong to the
extracted path has the maximum overlap with the gold standard annotation.

The ERRANT-scorer [Bryant et al., 2017] works differently. One of the ma-
jor differences to the M2-scorer is that it does not require edit annotations for the
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gold data, but extracts them automatically using the same process as it extract
edits for the system hypothesis. To extract edits, it uses a linguistically-enhanced
alignment algorithm proposed by Felice et al. [2016]. More specifically, linguistic
features such as part-of-speech tags and lemmas are used as additional cost func-
tions in a Damerau-Levenshtein algorithm to make it more likely that tokens with
similar linguistic properties are aligned, and a set of manually designed merging
rules is used to create meaningful edits. The extracted edits were shown to match
the human edits with circa 80% F1. Apart from extracting edits, ERRANT can
also classify individual edits into 25 predefined categories such as PUNCT (er-
ror in punctuation), PREP (wrong preposition) or NOUN:NUM (error in noun
number) and report model performance in individual error-type categories.

The third scorer belonging to edit-based metrics is the I-Measure [Felice and
Briscoe, 2015]. In comparison to M2 and ERRANT that require edits to comprise
a contiguous span of tokens and edits produced by different annotators are consid-
ered independently, the annotation scheme of Felice and Briscoe [2015] allows for
non-continuous original spans and assumes that every pair of intersecting edits
produced by different annotators are alternating, and that non-intersecting edits
are independent, i.e. it groups errors from multiple annotators whenever they
refer to the same underlying error. Consequently, it generates a reference set by
taking every combination of independent edits. Moreover, it does not evaluate
whole edits, but rather individual tokens. Specifically, based on the alignment
between the source sentence, hypothesis and gold reference, I-score is computed
using weighted accuracy where true-positives and false-positives are weighted
higher than true-negatives and false-negatives. By computing weighted accuracy
with true-negatives, the I-Measure can discriminate between the ”do-nothing”
baseline and models proposing only wrongs edits.

GLEU [Napoles et al., 2015] is a metric that belongs to metrics inspired by
machine-translation metrics. It is based on the famous BLEU metric [Papineni
et al., 2002]. The BLEU metric is based on comparing n-grams of the system
hypothesis with n-grams of the reference sentence. The BLEU score is computed
as the geometric mean of n-gram precision scores (for n=1,2…,N with N being
typically set to 4) with penalization for too short translations. The GLEU metric
extends this machine-translation metric with two features modifying the precision
calculation: (1) extra weight is assigned to n-grams present in the candidate that
overlap with the reference but not the source (correct edits), and (2) reduced
weight is assigned to n-grams that are in the hypothesis and source but not in
the reference (missed corrections).

Apart for the four described metrics, several other metrics were proposed.
These include for example scorer of [Gotou et al., 2020] that tries to take into
account the difficulties of individual errors or reference-less metrics [Napoles et al.,
2016, Asano et al., 2017, Choshen and Abend, 2018, Yoshimura et al., 2020].
However, to the best of our knowledge, neither of these metrics has so far been
widely accepted and used.

To assess the quality of individual GEC metrics, several studies were con-
ducted [Grundkiewicz et al., 2015, Napoles et al., 2015, Chollampatt and Ng,
2018a, Napoles et al., 2019]. A standard approach to analysing metric quality is
to measure their correlation with human judgements. Grundkiewicz et al. [2015]
and Napoles et al. [2015] analysed outputs of models submitted to the CoNLL
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2014 Shared Task [Ng et al., 2014] and found that while M2 has a moderate corre-
lation with human judgements, I-Measure and BLEU have low or even negative
correlation. Motivated by this, Napoles et al. [2015] proposed GLEU. Grund-
kiewicz et al. [2015] also found that although F-score with β = 1.0 does indeed
correlate better than F-score with β = 0.5, the best correlation on the CoNLL
2014 test set is observed with β = 0.2. Later, Chollampatt and Ng [2018a] con-
ducted sentence-level correlation experiments including significance testing and
found that not only no evidence that GLEU performs better than M2 as claimed
by Napoles et al. [2015], but in certain scenarios M2 has even higher correlation.
Despite all these studies, the most used metric is still the M2-scorer with β = 0.5,
which is used to evaluate system performance not only on the CoNLL 2014 test
data, but also on several other datasets in languages other than English.

2.1.2 Metrics for Spelling Error Correction and Diacritics
Restoration

Unlike GEC where a single error often affects multiple words, the errors in di-
acritics and spelling happen separately in individual words, i.e. correcting any
word that contains either a spelling or a diacritical error results in better text.
Note that probably for their marginal occurrence, errors in whitespace as a result
of accidentally missclicking space bar inside a word or not clicking space bar are
typically not considered by spelling correction systems.

Having edits comprising exactly one word in original and corrected text, the
three most popular metrics for evaluating system performance in spelling error
correction are word error rate (WER), word accuracy (WAcc), and F-score
computed over words. Following standard definition of true-positives (TP, ”count
of words with correctly fixed errors”), false-positives (FP, ”count of words for
which a bad correction was performed”), false-negatives (FN, ”count of words for
which a correction was falsely not proposed”) and false-positives (FP, ”count of
words for which a correction was falsely proposed”), the word error rate and word
accuracy metrics are defined as follows:

WAcc = TP + TN
TP + FP + TN + FN

WER = 1 − WAcc
Recall from Section 2.1.1, that the F-score is typically defined using precision

(P, ”how many of the changed words were corrected correctly”) and recall (R,
”how many of the words that should have been corrected were actually corrected”),
and parametrized using a parameter β that specifies the ratio of recall to precision.
The typical values of β are β = 1 to weight recall and precision equally and β = 0.5
that weights precision twice as much as recall.

Regarding diacritics restoration, all metrics described for spelling error cor-
rection are being used. Besides them, so called alpha-word accuracy that
evaluates the word accuracy only on words comprising at least one alphabetical
characters is used. The last often used metrics is the diacritization error rate
(DER), which is the proportion of letters incorrectly labelled with diacritics to
the count of all letters with diacritics in the corpus.
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2.2 Datasets
To evaluate performance of developed models and compare them to other systems
as well as to train new models, datasets containing original uncorrected texts with
their corrected versions are needed.

Generally, the datasets can be classified based on the language of texts they
are written in (e.g. English or Czech), the domain of the original texts (e.g.
second learners or native speakers), the type of the text (e.g. essay or social
media post), the dataset size and quality (e.g. whether texts were corrected by
professional annotators or using crowdsource platforms). The individual datasets
also differ in the number of references annotated by different annotators that they
contain for each piece of text. The combination of domain and type of the text
is often referred to as user domain.

While grammar error correction is well established with multiple existing and
commonly used datasets, the situation in spelling error correction and diacritics
restoration is more chaotic. In spelling error correction, the only available public
datasets such as the dataset of Birkbeck spelling error corpus / Roger Mitton
or Peter Norvig1 consists of individual uncorrected and corrected word variants
completely lacking the context. In diacritics restoration, it is important to re-
alize that due to the fact that its inputs are completely undiacritized texts, a
dataset for the task can be easily created by stripping all diacritics from a clean
text, thus requiring no manual annotations such as in spelling error correction
or GEC datasets. A typical scenario in spelling error correction and also diacrit-
ics restoration is thus training and evaluating systems on a custom dataset. We
further discuss datasets specific to GEC.

Since the CoNLL 2013 Shared Task on GEC [Ng et al., 2013], the de facto
standard format for distributing GEC datasets is the M2 format. In M2 format,
there is a set of annotation edits for each original noisy tokenized sentence. An
annotation edit comprises start and end offsets to the original sentence, edit
type, correction string and also a unique ID of the annotator. Besides the edit
information, the format also uses two currently useless fields for historical reasons.
A simple example for original tokenized sentence Besides that , the risk of the
known genetic is very serious that it can not be described . annotated by two
annotators with ID 0 and ID 1 is provided below:

S Besides that , the risk of the known genetic is very serious
that it can not be described .

A 9 9|||Wci|||disease|||REQUIRED|||-NONE-|||0
A 10 11|||Wci|||so|||REQUIRED|||-NONE-|||0
A 8 9|||Others|||disorder|||REQUIRED|||-NONE-|||1
A 10 11|||Wci|||so|||REQUIRED|||-NONE-|||1

We can see that while both annotators agree on changing that to so, they
offer two correction variants on fixing the missing noun around known genetic.
The annotator with ID 0 suggests adding a word disease resulting in known ge-
netic disease and the annotator with ID 1 suggests replacing the word genetic by
disorder resulting in known disorder. Having two gold sentences, the evaluated

1http://norvig.com/ngrams/spell-errors.txt
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system would score positive points if proposing any of the two alternatives.
We further provide an overview of all public GEC datasets known to us in

Table 2.1. We split the table into three time periods: (1) until 2017 (before
the work on the doctorate thesis started), (2) between 2017 and September 2019
when the results of the BEA 2019 Shared Task on GEC [Bryant et al., 2019]
were announced, and (3) between September 2019 and December 2021 when the
work on the doctorate ended. For each dataset, we report its name, number
of sentences it comprises, average token error rate of its texts, user domain of
writers who wrote the erroneous texts and number of reference annotations that
each testing sentence has.

Language Corpus Sentences Err. r. Domain # Refs.

until 2017

English

Lang-8 1 147 451 14.1% SL 1
NUCLE 57 151 6.6% SL 1
CoNLL 2014 test 1 312 8.2% SL 2,10,8
JFLEG 1 511 — SL 4
FCE 33 236 11.5% SL 1
AESW over 1M — scientific writing 1

2017-09/2019
English W&I+LOCNESS 43 169 11.8% SL, native students 5
German Falko-MERLIN 24 077 16.8% SL essays 1
Russian RULEC-GEC 12 480 6.4% SL, heritage speakers 1

09/2019-12/2021
English GMEG 6 000 — web, formal articles, SL 4

CWEB 13 574 ∼2% web 2
Czech AKCES-GEC 47 371 21.4% SL & Romani heritage speakers essays 2

GECCC 83 058 18.2% AKCES-GEC + native + web 2
Spanish COWS-L2H 12 336 — SL, heritage speakers 2
Ukrainian UA-GEC 20 715 7.1% natives/SL, translations and personal texts 2
Romanian RONACC 10 119 — native speakers transcriptions 1

Table 2.1: Comparison of GEC corpora in size, token error rate, domain and
number of annotations of the test portion. SL = second language learners. We
divide the datasets into three time periods.

Table 2.1 shows that until 2017, GEC datasets were available only for English.
Moreover, all but one dataset contain corrected texts of second learner students
of English. We provide a short description of these datasets below:

• NUCLE [Dahlmeier et al., 2013] – consists of essays written by undergrad-
uate students of the National University of Singapore. It was used as the
official training data for the CoNLL 2014 Shared Task on GEC.

• CoNLL14 Shared Task test set [Ng et al., 2014] – this testing set consists
of 50 essays written by 25 South-East Asian undergraduates and was used
as the official testing data for the CoNLL 2014 Shared Task on GEC. Since
then, the majority of research papers reported their performance on it using
the M2-scorer. Due to its popularity, the original 2 reference annotations
were later extended by 10 additional annotations from Bryant and Ng [2015]
and 8 alternative annotations from Sakaguchi et al. [2016]. We further refer
to this test set in a shorter form: CoNLL14 test set.

• Lang-8 [Tajiri et al., 2012] – large corpus of English language learner texts
collected from the Lang-8 social networking system2. Because texts were

2https://lang-8.com/

14

https://lang-8.com/


corrected by other users of the social platform, the corrections are often
of a low quality. On the other hand, the corpus is very large and allows
for training data hungry [Koehn and Knowles, 2017] machine-translation
models.

• JFLEG [Napoles et al., 2017a] – GEC corpus with focus on fluency edits
in addition to usual grammatical edits. GLEU scorer is used to assess the
performance on this dataset.

• FCE [Yannakoudakis et al., 2011] – short essays written by non-native
learners for the Cambridge ESOL First Certificate in English

• AESW [Daudaravicius et al., 2016] – large corpus of scientific writing (over
1M sentences, mostly in physics and mathematics), edited by professional
editors. Probably due to the domain specificity, this dataset is used margi-
nally in GEC compared to other datasets from this time period.

In 2018, the German FALKO-MERLIN GEC [Boyd, 2018] was released, be-
coming the first non-English GEC dataset. It was compiled from two German
learner corpora and as we can see in Table 2.1, it was the noisiest dataset by then
with circa every 8-th token erroneous. To create the dataset from aligned pairs
of original and corrected sentences, Boyd [2018] extended original English ER-
RANT to German. The list of non-English GEC datasets was further extended
in 2019, when Rozovskaya and Roth [2019] introduced the Russian RULEC-GEC
comprising data from Russian second learners and heritage speakers. In accor-
dance with the CoNLL14 test set, both Boyd [2018] and Rozovskaya and Roth
[2019] decided to use the M2-scorer to assess model performance.

The BEA 2019 Shared Task on GEC introduced a Write&Improve+Locness
(W&I+LOCNESS) dataset comprising texts from English second learners and
more importantly also corrected essays originally written by English native stu-
dents. Compared to the CoNLL14 test set, the W&I+LOCNESS test contains
more than 3 times more sentences (4,477 vs 1 312) that were written by authors
from around the world (as opposed to South-East Asian undergraduates only in
the CoNLL14 test set). Moreover, the second learners’ texts are split into 3 CEFR
levels groups – A (beginner), B (intermediate), and C (advanced). To evaluate
system performance on this dataset, Bryant et al. [2019] decided to use ERRANT,
because it can provide more detailed feedback, e.g. in terms of performance on
specific error type.

Shortly after the BEA 2019 Shared Task on GEC, we [Náplava and Straka,
2019a] released the first Czech GEC dataset: AKCES-GEC. We compiled it from
Czech learner corpora with two user domains: Czech second learners and Romani
speakers. As can be seen in Table 2.1, it is of a decent size and its texts are
quite noisy. As opposed to the English-only time period before 2017, several
other non-English datasets were futher released: Spanish COWS-L2H [Davidson
et al., 2020], Ukrainian UA-GEC [Syvokon and Nahorna, 2021] and Romanian
RONACC [Cotet et al., 2020a].

The work naturally continued also in English. Specifically, Flachs et al. [2020]
released CWEB, a collection of website texts, aiming at contributing lower error
density data and broadening the restricted variety of user domains. Napoles et al.
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[2019] had the similar intention, and they released GMEG, a GEC test set span-
ning three user domains: native formal writing (articles from Wikipedia), native
informal writing (web posts from Yahoo Answers) and second learner writing
(FCE essays).

By the end of 2021, we released Grammar Error Correction Corpus for Czech
(GECCC), which is an improved version of the AKCES-GEC dataset. It contains
two new user domains: essays written by native speakers and web discussion
posts, completely new annotations for the testing, development and part of the
training set, and we have opted to use the M2 scorer with β=0.5, which was
shown to have the highest correlation with human judgements.

To sum up, nowadays, there is a plethora GEC datasets for training and
evaluating system performance on English. The most commonly used testing
sets are CoNLL 14 test set and W&I+LOCNESS test set. To train systems, any
described dataset can be used and often, models are trained on their combination.
Regarding other languages, there is now exactly one GEC corpus for German,
Russian, Czech, Spanish, Ukrainian and Romanian.

2.3 Brief History of Developing Models for Cor-
recting Texts up to 2017

Early natural language correction attempts focused on correcting isolated words.
The work on computer techniques for automatic spelling correction began as
early as the 1960s [Kukich, 1992]. The research mainly focused on two issues:
how to detect non-words in a text and how to correct them. One of the first
commercial tools to detect spelling errors is the UNIX SPELL [McIlroy, 1982],
which contains a list of 30 000 correct English words. As the module for correcting
the detected errors is not part of the program, users either had to correct the
words by themselves or could use tools for isolated word spelling correction such
as grope [Taylor, 1981].

The first systems that aimed to correct a larger variety of errors employed
hand-coded rules. One of such tools is Writer’s Workbench [Macdonald et al.,
1982] included with Unix systems as far back as the 1970s. It was based on simple
pattern matching and string replacement and its style and diction tools could high-
light common grammatical and stylistic errors and propose corrections. Other
systems such as GramCheck [Bustamante and León, 1996] or EPISTLE [Heidorn
et al., 1982] employed syntactic analysis with manually designed grammar rules.
The great advantage of the hand-coded rules is their interpretability and also the
fact that for certain error types, they can be implemented easily. On the other
hand, it is nearly impossible to define rules to cover all errors in grammar (or
fluency), therefore, not much of current research is conducted in this direction.

Despite that mainstream research slowly changed its focus from rule-based
systems, several systems have been further developed using this approach. A
great example is a Czech system Kontrola české gramatiky [Petkevič, 2014] that
was used as the official grammar checker in Microsoft Word software product from
version 2003 up to version 2013. It employs circa 2 000 disambiguation and 820
grammar hand-coded rules operating over word morphological tags and lemmas.
These are used alongside a complex pipeline to detect mainly grammatical and
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also some orthographic and stylistic errors and propose their corrections in Czech
texts. Petkevič [2014] reported that their tool detects 30-40% of errors in Czech
texts and has a low rate of false positives.

In the 1990s, researchers in natural language processing started utilizing data-
driven approaches and applied machine learning to NLP tasks. Because article
and preposition errors are both difficult for manual rules but have a small span,
multiple machine learning models were proposed to tackle them [Knight and
Chander, 1994, Minnen et al., 2000, Han et al., 2004, Nagata et al., 2005]. Fea-
tures encoding context such as neighbouring words or their part-of-speech tags
are typically used as inputs into a machine learning classification model. For
example, Han et al. [2004] trained a max-entropy classifier to detect article errors
and achieved an accuracy of 88%.

As each trained classifier can only correct a single error type, several such
classifiers, one per each error type, must be combined to allow more realistic
usage for GEC. Dahlmeier et al. [2012] used a pipeline system comprising several
sequential steps. [Dahlmeier and Ng, 2012b] employ specific classifiers together
with a language model to score a beam of hypotheses. These are iteratively
generated by so-called proposers, each allowed to propose only a small incremental
change. Although their system worked quite well, it has many flaws such as the
beam size growing with the number of proposers or that designing a classifier for
certain more complex error types might be complicated.

The Czech system for context-sensitive spelling correction and diacritics resto-
ration Korektor of Richter et al. [2012] does not use any specific classifiers, but
its approach can be seen as a generalization of the approach of Dahlmeier and Ng
[2012b]. It uses the noisy channel approach with a candidate model, that for
each word proposes its variants up to a predefined edit distance. As it would be
intractable to make a beam of all the hypothesis, the authors employ a Hidden
Markov Model with vertices being the variants of words proposed by the candidate
model. Instead of using separate error classifiers, the transition costs are deter-
mined from three N -gram language models built over word forms, lemmas and
part-of-speech-tags. To find an optimal correction, the Viterbi algorithm [Forney,
1973] is used.

Brockett et al. [2006] proposed to consider GEC to be a machine trans-
lation problem of translating grammatically incorrect sentences into correct
ones. Although they used a statistical machine translation (SMT) system
for correcting only mass noun errors, such model was already powerful enough to
correct a variety of error types as well as make stylistic changes if trained on large
enough data [Leacock et al., 2010]. Since then, several other papers utilizing SMT
were proposed Mizumoto et al. [2011], but the real advent of GEC started with
the Helping Our Own and CoNLL shared tasks between 2011 and 2014 [Dale and
Kilgarriff, 2011, Dale et al., 2012, Ng et al., 2013, 2014]. Two out of three top per-
forming teams in CoNLL 2014 shared task [Felice et al., 2014, Junczys-Dowmunt
and Grundkiewicz, 2014] used machine translation approaches.

While the SMT approach has also been successfully used in diacritics restora-
tion [Diab et al., 2007, Pham et al., 2013] and spelling error correction [Hasan
et al., 2015, Chiu et al., 2013], by 2017 the approaches utilizing large language
models to choose the best variant proposed by relatively simple methods such
as the described Korektor or diacritization system of Ljubešić et al. [2016] still
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provided comparable results.
On the other hand in GEC, the prevailing number of papers utilized machine

translation approach in the following years. Grundkiewicz and Junczys-Dowmunt
[2014] trained an SMT system with filtered sentences from Wikipedia revisions
that matched a set of rules derived from NUCLE training data (GEC corpus).
The SMT system was further tuned and extended by a rich set of task-specific
features and incorporation of large language models in Junczys-Dowmunt and
Grundkiewicz [2016]. An SVM ranking model to re-rank correction candidates
proposed by SMT output was then implemented by Yuan [2017].

With the continuing success of neural networks in machine translation [Cho
et al., 2014, Sutskever et al., 2014, Heidorn et al., 1982, Bahdanau et al., 2015] and
the inability of SMT to capture long range dependencies and generalize beyond
patterns seen during training, it was only a matter of time, when the neural
models strike into the area of GEC.

Yuan and Briscoe [2016] proposed a first GEC system based on neural ma-
chine translation. Its backbone was a classical encoder-decoder word-level
recurrent model, and they use a two-step approach to address out-of-vocabulary
words, which may occur quite frequently due to errors in spelling. The two-step
approach started by aligning the unknown words in the target sequence to their
origins in the source sentence with an unsupervised aligner and translating these
words with a word-level translation model. Xie et al. [2016] proposed to operate on
character level and implemented a neural sequence-to-sequence recurrent model
comprising a character level pyramidal encoder and a character decoder with an
attention mechanism. Although the use of characters as basic units eliminated
the problem with out-of-vocabulary words and the pyramidal encoder reduced
the size of potentially large attention matrices, we speculate that its inability to
effectively leverage word-level information and longer training time caused that
this model was surpassed by Ji et al. [2017]. Similarly to Yuan and Briscoe [2016],
they utilized a word-level encoder-decoder model, but the decoder used two nested
levels of attention to overcome out-of-vocabulary problem: word level and char-
acter level. The word level was used in the classical manner, but whenever there
was an out-of-vocabulary word in the target sequence, they used hard attention
mechanism and character level decoder to output the target word character by
character. The important aspect of the model was its combined loss term, which
allowed the character level decoder to be trained jointly. The SMT approach
once reappeared when Grundkiewicz and Junczys-Dowmunt [2018] achieved new
state-of-the-art results with neural machine translation model being a re-scoring
component in its SMT system. However, since then the backbone of most models
in GEC became either the Transformer architecture [Vaswani et al., 2017] or
the convolutional encoder-decoder model proposed by Chollampatt and Ng
[2018b]. Both models use subword units to mitigate out-of-vocabulary issue and
replace the slow-to-train recurrent units with either self-attention mechanism or
convolution operations.

2.4 Applications
Nowadays (and even in 2017), there are various commercial and open source
tools for natural language correction. Among the most known are spelling and
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grammar features of Office 365 Word3 and Google Docs4 that work across multiple
languages, and also English-specific Grammarly5 and open-source LanguageTool6.
Recently, also Writefull7 that aims at scientific writing correction appeared. As
these tools rarely provide any information on their internal workings, we decided
to conduct a simple extrinsic analysis by evaluating their performance on the
popular CoNLL 2014 test set.

We evaluated the following five systems:

• Office 365 Word (build 16.0.14709.41008)

• Google Docs

• Writefull (version v2021.18.1, premium licence)

• LanguageTool (release 5.5.1, basic account)

• Grammarly (edu account, we used only the Correctness suggestion type. We
also experimented with correcting errors proposed by all suggesters, but it
provided worse results in terms of final F0.5)

When there were multiple correction proposals, we always took the first of
them, and repeated this process until there were no proposals left. All corrections
were performed on 21st November 2021. Note that only random 400 sentences of
the entire test set were corrected as this procedure requires manual user interac-
tion. Also note that as the CoNLL 2014 test set comprises tokenized sentences,
we first detokenized them using Moses detokenizer,8 corrected detokenized data
using the individual correcting tools, and tokenized them back using the UDPipe
tokenizer [Straka et al., 2016].

Before presenting the results themselves, note that we compared only the sys-
tem performance by means of correctly performed edits, while sometimes users
may also benefit from further error explanations that some tools provide. Fur-
thermore, please be aware that the CoNLL 2014 test set that we used for system
comparison contains texts written by South-East Asian undergraduates. Our
analysis thus evaluates systems only on one specific user domain, and more user
domains such as noisy text written by English native speakers must be tested
to draw any general conclusions. Nevertheless, our analysis still provides useful
information on what performance to expect from the tested systems, and how
these deployed systems compare to models from research papers.

The results of the analysis are presented in Table 2.2. To put the system
results into context, Table 2.2 also contains results of several systems presented in
Section 2.3. Furthermore, as the commercial and open source tools were evaluated
in 2021, we also present results of several chosen research papers conducted after
2017. Note that for better clarity, we split the results of research papers into
three time periods similarly to what we did with English datasets in Table 2.1.

3https://www.office.com/
4https://docs.google.com/
5https://www.grammarly.com/
6https://languagetool.org/
7https://www.writefull.com/
8https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

detokenizer.perl
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System P R F0.5 System Approach

until 2017
Felice et al. [2014] 39.71 30.10 37.33 rules, SMT, LM
Yuan and Briscoe [2016] – – 39.90 NMT (word RNN seq2seq)
Xie et al. [2016] 49.24 23.77 40.56 NMT (char RNN seq2seq, LM)
Junczys-Dowmunt and
Grundkiewicz [2016] 61.27 27.98 49.49 SMT + task features

Ji et al. [2017] – – 45.15 NMT (word RNN seq2seq)

2018 – 06/2019
Grundkiewicz and
Junczys-Dowmunt [2018] 66.77 34.49 56.25 hybrid SMT + NMT, LM

Lichtarge et al. [2018] 62.2 37.8 54.9 NMT (iter. Transformer + Wiki edits)
Junczys-Dowmunt et al. [2018] 63.0 38.9 56.1 NMT (Transformer with low-res. tricks)
Chollampatt and Ng [2018b]* 65.49 33.14 54.79 NMT (CNN seq2seq, LM)
Ge et al. [2018] 74.12 36.30 61.34 NMT (iter. CNN seq2seq + non-public CLC)

06/2019 – 2021
Grundkiewicz et al. [2019] – – 61.30 NMT (Transformer, synth. data)
Kiyono et al. [2019] 73.3 44.2 64.7 NMT (Transformer, backtrans. synth. data)
Kaneko et al. [2020] 72.6 46.4 65.2 NMT (Transformer + BERT, synth. data)
Omelianchuk et al. [2020] 77.5 40.1 65.3 BERT, XLNet, word-rules
Rothe et al. [2021] – – 68.87 mT5-xxl (13B params), filtered Lang8

Commercial&other systems
Google Docs 66.12 40.25 58.59
Grammarly 56.51 39.20 51.92
LanguageTool 37.99 15.08 29.13
Office 365 Word 33.98 12.03 24.90
Writefull 48.27 30.13 43.08

Table 2.2: Comparison of F0.5 of selected models on the popular CoNLL 2014 test
set. The models are split into four sections: (1) until 2017 that shows systems
before my doctorate started, (2) 2018 – 06/2019 before the BEA 2019 Shared
Task on GEC happened (3) 06/2019 – 2021 after it, and (4) Commercial and
other systems that presents performance of commercial and other open source
systems. Asterisk next to a system denotes an ensemble.

The results of the commercial and open source systems presented in Table 2.2
reveal two interesting facts: (1) their quality varies a lot – while the best perform-
ing text correction module of Google Docs reaches F0.5 score of 58.59, the correc-
tions proposed by text correction module of Office 365 Word have only 24.90 F0.5
score, and (2) the results of the best performing Google Docs (and Grammarly)
are on the examined domain comparable to the best models proposed in the re-
search area up to 2019. The research models developed later seem to outperform
the examined commercial systems significantly. While we expected commercial
tools to differ from those from the research area by having higher precision and
possibly lower recall, the observed results do not confirm this hypothesis.

Note that we also perform a similar analysis comparing commercial and re-
search systems in Czech in Section 3.5.3. We do not present it here, because
no publicly available Czech dataset with a variety of error types existed by 2017
when my doctorate studies started.

2.5 Czech Systems
Probably the first complex system for automatic text correction in Czech is a
grammar checker Kontrola české gramatiky [Petkevič, 2014]. As we already dis-
cussed in Section 2.3, the system employs several thousands of hand-coded rules
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to correct users’ texts. It was used alongside spelling correction module developed
at Lingea9 in Microsoft Word software product from version 2003 up to version
2013, and Petkevič [2014] reported that it corrects 30-40% errors in Czech texts.
Historically, Lingea also offered its own grammar error correction tool Grammati-
con, but it is not sold anymore, and we did not find any information on its inner
workings.

In Section 2.3, we also discussed Korektor [Richter et al., 2012], a Czech
statistical and occasional grammar checker offered as a command line utility and
a web service. Unlike the tool of Petkevič [2014], it mainly aims at correcting
spelling errors occurring in individual words, and instead of using hand-coded
rules, it is based on a statistical approach. Its main power stems from the three
language models that can judge individual candidate hypothesis proposed by a
simple suggester based on the Levenshtein distance. Richter et al. [2012] tested
Korektor on three test sets, but, sadly, none of them is publicly available. The first
test set is an error corpus Chyby [Pala et al., 2003] that consists of corrected texts
written by Czech university students. Out of all annotated error types, Richter
et al. [2012] evaluated Korektor on spelling and morphological errors. Richter
et al. [2012] created the second test set by transcribing an audiobook and the
third test set by marking spelling errors in web texts by Korektor and annotating
the reported errors using human annotators. On the three test sets, Korektor
accuracy is 73-92%, with worst results on Chyby test set.

Apart from the two described systems and approaches, a few other tools
were also developed. These are mostly undocumented spelling correction and
diacritization online tools. An example of one of the documented tools is an
online diacritization tool CzAccent [Rychlý, 2012] that for each undiacritized word
suggests its most frequent diacritized variant as observed in a large corpus.

Being on the edge between deployed systems and research is the prototype
demo system for grammar checking of Holan et al. [1997] developed as early
as 1997. Their system heavily relies on syntactic parsing to reveal syntactic
inconsistencies. These are then checked for errors.

In the research area, three years before Holan et al. [1997], Kubon and Platek
[1994] sketched a specification for grammar-based grammar checker that itera-
tively runs two automata: the first one removing error-free subsequences of input
and the second one correcting the remaining blocks with errors. Not much re-
search has been further conducted on the full-scale GEC, but rather attempts
on developing models for specific areas of GEC were performed. These include
models for fixing errors in punctuation [Jakubíček and Horák, 2010, Kovář, 2014,
Kovář et al., 2016] or for errors in subject-predicate agreement [Kovář, 2014,
Novotná, 2018]. The proposed models usually comprise rules operating over syn-
tactic trees.

The first and to the best of our knowledge only attempts to experiment with
neural networks for correcting Czech texts were performed by the thesis author
in his diploma thesis [Náplava, 2017]. The experiments utilized two models: (1)
a simple character-level neural model comprising a bidirectional LSTM [Hochre-
iter and Schmidhuber, 1997] network for diacritics restoration, and (2) a similar
model operating over words for spelling error correction. To test the spelling
error correction model, CzeSL Grammatical Error Correction Dataset (CzeSL-

9https://www.lingea.cz/
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GEC) [Šebesta et al., 2017], a parallel dataset with original and corrected texts,
was compiled from two Czech learner corpora: Czesl-man corpus [Rosen, 2016]
with manually annotated transcripts of essays of non-native speakers of Czech
and unreleased parts of RoMI corpus with essays of Romani pupils with Romani
ethnolect. The accuracy of the model for diacritics restoration reached 99.25%,
and the accuracy of the spelling error correction model reached 98.70%. However,
both models remained prototypes, and were never deployed.

Regarding datasets for training and/or evaluating models in Czech, we already
mentioned non-public error corpus Chyby containing corrected essays and reviews
of software products written by Czech university students. This dataset contains
circa 410 000 original word forms and 8 639 errors annotated with their correction
and with one of seven error types. We also discussed publicly available CzeSL-
GEC that contains over 12k aligned sentences curated for spelling error correction.
Besides these two datasets, we are not aware of any other Czech dataset that
would be ready for training/testing model performance.

When comparing the GEC research conducted in Czech with research in En-
glish (see Section 2.3), it is evident that while Czech systems mostly utilize hand-
coded rules and simple statistical approaches, the research in English moved its
focus to utilizing the SMT and NMT approaches. With large enough training cor-
pora, the machine translation approaches were shown to outperform all previous
methods. Moreover, with good error type coverage, there is a great chance that
the model generalizes well, and corrects such errors also in unseen texts. This also
holds for difficult grammatical errors such as errors in agreement or punctuation
as well as stylistic errors, for which it is nearly impossible to define manual rules
nor to correct them based on simple statistical approaches.
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3. The Story of My Doctorate
The following text aims at describing the work done by the thesis author in the
field of natural language correction. The chapter is written in the chronological
order of publication with most technical details such as exact model hyperparam-
eters or learning rates omitted for better readability. For the technical details,
we refer the reader to the Part II of the thesis, which contains the published work.
We also note that the majority of the published work’s source code is publicly
available.

We illustrate our work on natural language correction in Figure 3.1. For each
topic we have worked on, we display two points indicating the start and end of
our work on the particular topic.

Figure 3.1: Illustration of the topics we worked on in the field of natural language
correction. For each work, we display its start date and end date as two separate
points.

We started by developing models for diacritics restoration. We proposed
and implemented a novel combination of a recurrent neural model and an external
language model and reached new state of the art on multiple languages. We
further created and published a multilingual dataset comprising 12 languages for
diacritics restoration as we found out that the field of diacritics restoration lacks
such a dataset. The paper comprising our work was published on LREC
2018 as Náplava [2017]. We discuss this work in Section 3.1.

We followed by discussing models that would be able to correct a larger variety
of errors. A natural choice seemed to be to focus on spelling error correction.
However, we found it extremely difficult to distinguish between typos and local
grammatical errors, and rather moved our focus to GEC.

As the new shared task on English GEC (BEA 2019 Shared Task on Gram-
matical Error Correction) was announced, we fully concentrated on developing
the best possible models for it. We developed a strong neural machine translation
based model and participated in all three Shared Task’s Tracks. Our work was
published on the BEA 2019 Workshop as Náplava and Straka [2019b],
and we discuss it in Section 3.3.

One of the most important outcomes of the Shared Task was the creation
and use of synthetic data. It was shown [Grundkiewicz et al., 2019] that we can
automatically create synthetic data that boost model performance by a significant
margin in English. Following this observation, we experimented with developing
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GEC models for languages that have low amount of annotated data, and
substantially outperformed previous state of the art. As no large enough Czech
GEC dataset with annotated errors in the M2 format existed, we further compiled
a first GEC dataset for Czech (AKCES-GEC) from existing learner corpora. We
presented this work on the 5th Workshop on Noisy User-generated
Text as Náplava and Straka [2019a], and discuss it in Section 3.4.

As we compiled AKCES-GEC from learner corpora, it naturally lacked texts
written by Czech natives. Furthermore, we opted to use the popular M2

β=0.5 as
the metric, however, there were some studies indicating that in certain scenarios,
other values of β or other metrics might correlate better with human judgements.
Therefore, we decided to create a new dataset that we named Grammar Error
Correction Corpus for Czech (GECCC), which includes texts from four user
domains, for which we created completely new annotations. We also conducted
a meta-evaluation of common GEC metrics against human judgements to select
the best metric. The final GECCC dataset ranks amongst the largest and most
diverse GEC datasets available in all languages. The paper describing our
work is accepted to be published in the TACL journal. We discuss this
work in Section 3.5.

During 2019, BERT [Devlin et al., 2019] was shown to outperform many
models in a variety of NLP tasks. We were naturally curious on how would
it perform in natural language correction, and started by proposing a BERT-
based model for diacritics restoration. We trained and evaluated the model
on our multilingual dataset, and showed that on 9 of 12 of them, the new model
significantly outperforms previous state-of-the-art combination of RNN with an
external language model. We further inspected model performance on Czech
in detail by evaluating it on a large set of domains, and also analysed model
errors. The paper was published in the Prague Bulletin of Mathematical
Linguistics journal as Náplava et al. [2021]. We discuss it in Section 3.6.

We continued by building a GEC model based on BERT. We put an effort
into creating efficient rules and using these, trained the correction model. Al-
though the results are not state of the art, they are faster than our previous
neural machine translation based models. We presented our work on the
7th Workshop on Noisy User-generated Text as Straka et al. [2021].
We discuss our work in Section 3.7.

Finally, we moved our focus to testing model robustness in noisy scenarios.
We developed a tool for inserting natural noise into texts. The tool tries to
mimic humans by estimating human errors’ distribution on GEC datasets. We
used the tool to evaluate various models in multiple languages, and confirmed
that even current state-of-the-art models suffer from natural noise. We further
proposed two ways to mitigate noise and evaluated them. We presented our
work on the 7th Workshop on Noisy User-generated Text as Náplava
et al. [2021]. We discuss our work in Section 3.8.

3.1 Diacritics Restoration
The full paper is available in Chapter 5, and it was published as Náplava et al.
[2018].
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Diacritics Restoration                    
Reborn

Model Robustness

We started our work in natural lan-
guage correction with diacritics restora-
tion task. Recall that we introduced
the diacritics restoration task and pro-
vided several examples in Chapter 2. Al-
though this task covers only one of the
plethora of possible error types, it is a well-defined and practical task as in certain
languages, people for various reasons often write without diacritics. Apart from
solving the task, we also hoped that experiences gained from developing models
for diacritics restoration could also help us in the future with developing models
capable of correcting a larger variety of error types.

Back in 2017, the state-of-the-art approaches for diacritics restoration mostly
utilized large statistical n-gram language models [Richter et al., 2012, Ljubešić
et al., 2016]. These were used to disambiguate between several variants obtained
either by variants of the Viterbi algorithm applied on the prebuilt Hidden Markov
model or lexicon approaches proposing dictionary variants. Meanwhile, in other
areas of natural language processing, recurrent-neural networks seemed to excel.
They were shown to outperform previous state of the art statistical models in
machine translation [Sutskever et al., 2014, Cho et al., 2014, Bahdanau et al.,
2015], named-entity-recognition [Huang et al., 2015, Lample et al., 2016], part-
of-speech-tagging [Huang et al., 2015, Ling et al., 2015] and many other areas.
One of the key factors behind their success was their ability to consider a larger
context. While statistical n-gram language models need to, for computational
reasons, use a limited context of for example 5 neighbouring tokens, the recurrent
neural networks operate over the whole input. Therefore, we were interested in
whether we can combine the two approaches (the recurrent neural network, which
has a large perceptive field, and language model that on the other hand gains
general language knowledge from large monolingual corpora), in the diacritics
restoration task to achieve superior results. Moreover, we hypothesized that a
recurrent model may exhibit good results even alone, i.e. without a language
model.

As we discussed in Section 2.2, in diacritics restoration it was, unfortunately,
a common practice that each new paper presented their model performance on a
new dataset, and unlike GEC, there were no standardized datasets. On the other
hand, diacritics restoration was an active area of research in many languages
such as Czech [Richter et al., 2012], Vietnamese [Nguyen and Ock, 2010, Pham
et al., 2013] or Croatian [Ljubešić et al., 2016]. To make the future research and
model comparison easier, we decided to create a multilingual corpus for diacritics
restoration covering a broad range of languages.

Objectives of the work

1) Explore the possibilities of using models based on recurrent neural net-
works and their combination with statistical language models in diacritics
restoration task.
2) Create a dataset covering a broad range of languages for which diacritics
restoration is a relevant task.
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3.1.1 Model
One of the most popular recurrent neural architectures is the sequence-to-sequence
(seq2seq) architecture [Sutskever et al., 2014, Cho et al., 2014]. The seq2seq ap-
proach comprise a bidirectional encoder [Schuster and Paliwal, 1997] that from
given tokenized text produces a vector representation of the input sequence. This
vector is then processed by a decoder that outputs the desired target sequence
one token at a time autoregressively (autoregressive = predictions from a previous
state are used to generate the next step). To overcome the bottleneck of the single
vector representation of the input sequence, an attention mechanism [Bahdanau
et al., 2015] was proposed, and it allows the decoder to attend to specific tokens
when decoding. This model is particularly useful for tasks with an unknown
mapping between the input and target tokens such as machine translation, and it
could also be useful for other tasks such as diacritics restoration. Given enough
training data, it outperforms previous state-of-the-art results. By 2017, such mod-
els came also to grammatical error correction, when Xie et al. [2016] proposed
a character-level seq2seq model for grammatical error correction in English with
promising results.

In our first attempt at diacritization model with RNN, we considered that di-
acritics restoration has a clear mapping between source and target tokens. There-
fore, a simpler sequence tagging approach was considered and implemented. It is
based on a bidirectional encoder with LSTM unit [Hochreiter and Schmidhuber,
1997] that for each input character predicts its correctly diacritized variant. Addi-
tionally, our model uses two stacked LSTM layers with residual connections [He
et al., 2016], because our experiments proved them efficient. An illustration of
the model architecture without residual connections is displayed in Figure 3.2

Figure 3.2: Recurrent neural model for diacritics restoration. Embedded char-
acters are inputted into a bidirectional recurrent-neural network, whose outputs
are projected using a linear layer and softmax classifier into a distribution over a
set of possible diacritized variants of input characters.
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Operating over characters instead of whole words was decided for two reasons:
1) to mitigate the issue with out-of-vocabulary words, 2) to reduce the size of
an output layer which now has to accommodate the (much smaller) character
vocabulary instead of the entire word vocabulary. Although we considered it the
best option at that time, retrospectively, using intermediate subword units such as
that outputted by the WordPiece algorithm [Schuster and Nakajima, 2012] would
most probably be a better choice. While keeping the size of input and output
vocabularies decent, using subwords would result in shorter distances between
relevant pieces of text that would probably make the distant reasoning easier.

We further extended the recurrent neural model with an external language
model in the decoding phase. Technically, in each decoding step, a beam of
hypothesis is extended by the most probable variants as proposed by the recurrent
model, and each time a whole word is decoded, the probabilities of items in the
beam are weighted using external language model probabilities. Given that x
denotes the input sequence, y stands for the sequence of decoded symbols, PNN

and PLM are neural network and language model probabilities and α specifies the
weight of the language model, the hypothesis probability in step k was computed
as:

P (y1:k|x) = (1 − α) log PNN(y1:k|x) + α log PLM(y1:k),

3.1.2 Model Evaluation
To evaluate system performance, we use the standard diacritics measure called
alpha-word accuracy (see Section 2.1.2 for overview of common metrics in diacrit-
ics restoration) in all our experiments.

One of our main intentions when planning the work was to improve per-
formance on Czech. However, the datasets used by prior works [Rychlý, 2012,
Richter et al., 2012] were not available to us. Therefore, we first evaluated our
model on a dataset of Ljubešić et al. [2016] comprising 3 Slavic languages (Croat-
ian, Serbian and Slovene) from two sources (Wikipedia articles and Twitter posts).
Moreover, we created a new dataset for Czech from the SYN2010 corpus [Křen
et al., 2010] and PDT3.0 [Hajič et al., 2018] and compared our model to all rel-
evant baselines and prior works. Note that in English, diacritics restoration is
not a discussed task as the standard English alphabet does not contain letters
with diacritics. Finally, for the apparent lack of supervised diacritization data,
we collected a multilingual dataset for diacritization as a follow-up work to the
development of our model, and we describe the resulting multilingual corpus in
Section 3.1.3.

Regarding the Slavic dataset of Ljubešić et al. [2016], we compared our model
with two methods of Ljubešić et al. [2016]: Lexicon and Corpus. The simple
Lexicon method replaces each undiacritized word with its most frequent variant
as seen in the training data (in Czech, this is the same approach as Rychlý [2012]).
The state-of-the-art Corpus method incorporates a pretrained language model via
a log-linear model (in Czech, this is similar to Richter et al. [2012]). As can be
seen in Table 3.1, the combination of the recurrent model and the language model
outperforms the Corpus method by a large margin, and reduces its error by more
than 20% on all languages. Moreover, even the recurrent model alone performs
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satisfactorily. It outperforms Corpus method on clean Wikipedia data, but has
slightly worse results on noisier data from Twitter.

System wiki tweet
hr sr sl hr sr sl

Lexicon 99.36% 99.24% 99.33% 99.17% 98.93% 98.20%
Corpus 99.57% 99.47% 99.62% 99.38% 99.17% 99.12%
RNN model 99.67% 99.61% 99.70% 99.32% 99.39% 98.82%
RNN model + LM 99.73% 99.68% 99.74% 99.51% 99.44% 99.30%

Error reduction 36.81% 39.74% 30.45% 21.62% 32.14% 20.77%

Table 3.1: Diacritics restoration results obtained Croatian (HR), Serbian (SR)
and Slovenian (SL) Wikipedia and Twitter testing sets of Ljubešić et al. [2016].

Regarding the experiments on Czech, we used the large SYN2010 corpus [Křen
et al., 2010] with more than 8M sentences collected from Czech literature and
newspapers for training. To evaluate the model, PDT3.0 [Hajič et al., 2018]
testing set with 13 136 sentences originating from Czech newspapers was used. We
compared our system to several systems available at that time: Microsoft Office
Word 2010, ASpell [Atkinson, 2006], Lexicon and Corpus methods as proposed
by Ljubešić et al. [2016], CZAccent [Rychlý, 2012] and a former state-of-the-art
model for Czech diacritics restoration Korektor [Richter et al., 2012]. Because
Microsoft Office Word and ASpell require user interaction, only a decent subset
of the testing set was corrected and compared. As can be seen in Table 3.2,
our recurrent model reaches the best results. Moreover, when combined with a
language model, it reduces error of the former state-of-the-art Korektor by more
than 64%.

System Word accuracy
Microsoft Office Word 2010 (*) 89.10%
ASpell (*) 88.39%
Lexicon 95.27%
CZACCENT 96.07%
Corpus 97.13%
Korektor 98.61%
RNN model 98.87%
RNN model + LM 99.51%

Table 3.2: Diacritics restoration results obtained on Czech. The (*) denotes
reduced test data.

3.1.3 Multilingual Dataset
During development of the diacritization model, we suffered from the lack of
publicly available datasets for diacritics restoration. Although there is a large
amount of languages with diacritics, the vast majority of works on diacritization
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focused on either a single language or small set of languages. Moreover, in a non-
trivial amount of cases, the training and evaluation datasets were newly created
for each new model using custom pipelines such as in works of Ljubešić et al.
[2016], Richter et al. [2012] or Rychlý [2012]. To help future research, we decided
to assemble and publish a new dataset covering a broad range of languages.

An obvious way of creating diacritization corpus is to strip the diacritics. How-
ever, the standard method for stripping diacritics has some drawbacks, which
prelude the straightforward usage for creation of diacritization datasets as means
for supervised machine learning: Specifically, the standard method for stripping
diacritics was to convert input word to NFD [The Unicode Consortium, 2017,
Normalization Form D] which decomposes composite characters into a base char-
acter and a sequence of combining marks, then remove the combining marks, and
convert the result back to NFC. However, we noted that the method does not
strip diacritics from some letters (e.g. ø, ł or đ) and proposed a new method. For
each character of a word, it inspects its name in the Unicode Character Database.
If it contains a word WITH, we remove the longest suffix starting with it, try
looking up a character with the remaining name and yield the character if it
exists. The method is illustrated below:

ø (hex code: 00F8) −→ LATIN SMALL LETTER O WITH STROKE
−→ LATIN SMALL LETTER O
−→ o (hex code: 006F)

We followed by identifying languages for which the diacritics restoration is a
relevant and non-trivial task. Naturally, to include a language, its alphabet must
contain characters with diacritics. Moreover, so that the task itself is not trivial,
multiple diacritized variants should exist for an undiacritized word. To identify
a potential set of languages, we considered every language contained within UD
2.0 [Nivre et al., 2017], took its plain texts, and stripped diacritics using the
described method from them. This provided us with word diacritics ratio in each
language. To satisfy the task complexity needs, we estimated a ratio of words
for which the diacritics restoration could be difficult. Specifically, we estimated a
word error rate of the Lexicon baseline method: for each undiacritized word, its
most frequent diacritized variant was obtained from CoNLL 2017 Shared Task
raw data [Ginter et al., 2017], and the word error rate was then estimated on
a dedicated different part of the same dataset. Given the percentages of words
and word error rate numbers, we selected 12 languages with higher error rate as
the most relevant and non-trivial for the diacritization task, and present them in
Table 3.3.

Comparing the 12 selected languages with published literature, we found that
the selected set contains relevant languages, but also misses Arabic. Although the
diacritization task is also performed in Arabic, the diacritics in Arabic behaves
differently to already discussed languages. Instead of the diacritics being repre-
sented as variants of the underlying letters, the diacritical marks (short vowels and
consonant length) are represented as stand-alone Unicode combining characters
in Arabic script, plus several such mark characters can be combined. Given that
we lacked the expertise in the Arabic language and were not confident that we
would create a high-quality dataset, we therefore decided not to include Arabic.
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Language Words with Word error rate of
diacritics Lexicon

Vietnamese 88.4% 40.53%
Romanian 31.0% 29.71%
Latvian 47.7% 8.45%
Czech 52.5% 4.09%
Slovak 41.4% 3.35%
Irish 29.5% 3.15%
French 16.7% 2.86%
Hungarian 50.7% 2.80%
Polish 36.9% 2.52%

Table 3.3: 12 languages selected for the new multilingual diacritics restoration
dataset. For each language, we report the percentage of words with diacritics and
the word error rate of Lexicon.

Having identified the 12 interesting languages from the diacritization point
of view, we compiled the multilingual dataset for 12 languages from two sources:
W2C corpus [Majliš, 2011] with texts from Wikipedia and the general web, and
the CommonCrawl corpus with language annotations generated by Buck et al.
[2014] with a substantially larger amount of general web texts. While the Wiki-
pedia data were distributed into both training, development and testing sets,
the general web texts comprise only a training part of the dataset due to their
potential noisiness. The basic dataset statistics together with performance of
4 systems (Lexicon, Corpus, Recurrent Model, Recurrent Model with LM) are
presented in Table 3.4. The dataset is publicly available at https://lindat.
mff.cuni.cz/repository/xmlui/handle/11234/1-2607.

Language Wiki Web Lexicon Corpus Our model Our model
sentences sentences +LM

Vietnamese 819 918 25 932 077 71.64% 86.39% 96.22% 97.73%
Romanian 837 647 16 560 534 85.33% 90.46% 90.18% 98.37%
Latvian 315 807 3 827 443 91.01% 94.57% 96.08% 97.49%
Czech 952 909 52 639 067 95.90% 98.14% 98.52% 99.06%
Polish 1 069 841 36 449 109 97.08% 98.41% 98.91% 99.55%
Slovak 613 727 12 687 699 97.34% 98.37% 98.68% 99.09%
Irish 50 825 279 266 97.35% 98.00% 98.42% 98.71%
Hungarian 1 294 605 46 399 979 97.49% 98.32% 98.88% 99.29%
French 1 818 618 78 600 777 97.93% 99.31% 99.48% 99.71%
Turkish 875 781 72 179 352 98.78% 99.05% 99.12% 99.28%
Spanish 1 735 516 80 031 113 99.11% 99.53% 99.56% 99.65%
Croatian 802 610 7 254 410 99.31% 99.47% 99.51% 99.67%

Table 3.4: Statistics of the new multilingual dataset for diacritics restoration. We
also report results of 4 automatic systems.

Given the results obtained from experiments in Section 3.1.2 as well as from
experiments conducted on the new multilingual dataset, we could state that the
proposed at-that-time-novel combination of the neural recurrent model and the
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external language model greatly outperforms the previous models and is a state-
of-the-art method for four languages (Czech, Slovenian, Croatian and Serbian)
in two datasets. Moreover, we have shown that even the recurrent model alone
performs satisfactorily, which may be beneficial for cases in which the external
language model would be too slow.

Main outcomes and conclusions

1) We proposed a new architecture for diacritics restoration based on a
recurrent neural network and an external language model.
2) We compiled a new multilingual dataset for diacritics restoration cover-
ing 12 languages, and evaluated two baseline methods on it.
3) We evaluated the proposed model on one existing dataset comprising 3
Slavic languages, one new Czech corpus and the newly created multilingual
dataset. In all cases, the combination of recurrent model with external stat-
ical language model outperformed previous results. Moreover, even without
language model, the recurrent neural network achieved surprisingly solid
results.

3.2 Towards Spelling Error Correction
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Diacritics Restoration 
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Spelling Error Correction

2019 2020 2021

GEC - BEA Shared Task
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for Fast GEC 

GECCC - Czech GEC dataset

Diacritics Restoration                    
Reborn

Model Robustness

After achieving state-of-the-art results
on the diacritics restoration task, we
moved our focus to developing systems
capable of correcting larger variety of er-
ror types. A natural choice was extend-
ing our system with spelling correction
as it is a common part of many current
tools, and given that spelling errors affect only single words, similar model to
diacritics restoration could be used.

According to Jurafsky and Martin [2000], spelling errors can be divided into
two categories: non-word errors or real-world errors, motivated by the fact that
accidentally misclicking a computer key may result either in an invalid or a valid
word. Given that even a valid word may actually be wrong makes the task more
difficult as a simple error detection method based on existence in a dictionary
would provide suboptimal results.

Though we were not happy with the fact that there was no standard dataset
for diacritics restoration, the situation in the spelling error correction appeared
to be even worse. The available public datasets such as the dataset of Birkbeck
spelling error corpus / Roger Mitton or Peter Norvig1 consisted of individual un-
corrected and corrected word variants completely lacking context. If the datasets
contained context such as the datasets developed by Brill and Moore [2000] or Li
et al. [2018], they were not publicly available [Hagiwara and Mita, 2020].

Having no dataset for spelling error correction, we decided to create a new
dataset on our own. We started writing annotation rules for what a spelling error
in a text is. However, it turned out extremely difficult, as many local errors

1http://norvig.com/ngrams/spell-errors.txt
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differing in a single character are actually not spelling errors but other error
types such as subject-verb-agreement errors (he appear vs he appears) or verb-
tense errors (he likes vs he liked). Moreover, standard approaches did omit cases
where a word could be split by accident into two words and vice versa, which,
however, should belong there according to us.

By the time we were at a loss about how to approach the task, a new shared
task on grammatical error correction on English appeared. It was a great incentive
to change our focus, and, instead of spending time on an intermediate task of
vaguely defined spelling error correction, to start developing a general system
capable of correcting any grammatical error.

3.3 Grammatical Error Correction
The full paper is available in Chapter 5, and it was published as Náplava and
Straka [2019b].
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Diacritics Restoration                    
Reborn

Model Robustness

Latest CoNLL 2014 Shared Task
on Grammatical Error Correction [Ng
et al., 2014] introduced a dataset of
uncorrected and corrected English es-
says written by South-East Asian under-
graduates. Compared to three previous
shared tasks on error correction [Dale
and Kilgarriff, 2011, Dale et al., 2012, Ng et al., 2013], the task’s main objec-
tive changed to correcting all error types instead of only a subset of error types.
Moreover, the metric was decided to be F0.5 instead of F1 to emphasize precision
over recall (see Section 2.1.1 for more details on metrics). The introduction of the
dataset together with an improved metric and strong baselines proposed by the
Shared Task participants attracted research interest into the area of grammatical
error correction. When compared to the situation previously described in the di-
acritics restoration and spelling error correction, the shared task’s contributions
to future research were extremely valuable.

As we discussed in Section 2.3, between 2014 and the end of 2018, when
the next shared task was announced (Building Educational Applications 2019
Shared Task: Grammatical Error Correction [Bryant et al., 2019]), much research
was done on grammatical error correction. The system architecture has slowly
changed from using a combination of separate classifiers [Dahlmeier et al., 2012]
and statistical machine translation approaches [Brockett et al., 2006, Felice et al.,
2014, Junczys-Dowmunt and Grundkiewicz, 2014] to using neural based models,
and especially, neural machine translation [Sutskever et al., 2014, Cho et al., 2014,
Vaswani et al., 2017]. Using neural models and public datasets, the scores on the
de-facto-standard CoNLL 2014 test set improved from 37.33% [Felice et al., 2014]
to more than 56% F0.5 score [Junczys-Dowmunt et al., 2018, Lichtarge et al., 2018]
(see Table 2.2). Training on a non-public Cambridge Learner Corpus [Nicholls,
2003], Ge et al. [2018] even report reaching human-level performance scores.

Apart from the progress in the development of models, several tools and data
appeared. One of the most important is ERRANT [Felice et al., 2016, Bryant
et al., 2017], which is a tool for automatic annotation and evaluation for grammat-
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ical error correction. Furthermore, as neural models require large training data,
Wikipedia revision histories were found to be a valuable source of large amounts
of rather noisy training data [Grundkiewicz and Junczys-Dowmunt, 2014]. Fi-
nally, to test not only grammaticality of the text but also its fluency, JFLEG
dataset [Napoles et al., 2017a] was proposed.

3.3.1 BEA-2019 Shared Task on Grammatical Error Cor-
rection

At the beginning of year 2019, Building Educational Applications Workshop an-
nounced a new shared task on grammatical error correction: The BEA-2019
Shared Task on Grammatical Error Correction [Bryant et al., 2019]. One of its
main objectives was to provide a platform on which systems could be evaluated
under controlled conditions. To ensure this, three tracks were defined:

• Restricted Track – limits the annotated training data to specified datasets
(FCE, Lang-8 Corpus of Learner English, NUCLE, W&I+L – see Table 2.1
for more information on their sizes and user domains)

• Unrestricted Track – allows using any data for training systems

• Low-Resource Track – forbids using any annotated data different from
W&I+L development set for training systems

Along with the shared task, a new dataset was introduced: the Cambridge
English Write & Improve and LOCNESS corpus. The corpus originates from two
sources: Write & Improve [Yannakoudakis et al., 2018] with annotated texts of
second learners of English and LOCNESS [Granger, 2014] that contains decent
amount of annotated essays of native English students. Note that the corpus is
often referred to as W&I+L or BEA 2019. Compared to the CoNLL 2014 test
set, the W&I+L test set is almost 4 times bigger (1 312 vs 4 477 sentences), it
contains larger variety of user domains (note that user domain is a combination of
the domain of the user and the type of the text and was mentioned in Section 2.2)
with annotated English levels, and was written by people all around the globe
(as opposed to South-East Asian undergraduates only in the CoNLL 2014 test
set). The scorer used to compute the F0.5 score was changed from MaxMatch
to ERRANT scorer as ERRANT can also report performance with respect to
individual error types (see Section 2.1.1).

Objectives of the work

1) Propose and implement the best possible system for each of the three
Tracks of the Shared Task.

3.3.2 BEA 2019 Submission
Our work on grammatical error correction started with discussions of the model
architecture. By the beginning of 2019, the recurrent models seemed to already
be outperformed by the Transformer architecture [Vaswani et al., 2017], which

33



was on the model side attributed to the self-attention mechanism that removed
recurrences and allowed to model long range dependencies better, and also to
the availability of large enough training data [Junczys-Dowmunt et al., 2018].
In GEC, two papers Junczys-Dowmunt et al. [2018], Lichtarge et al. [2018] using
the Transformer architecture and having state-of-the-art results were already pub-
lished. An alternative GEC research was represented by a convolutional encoder-
decoder model [Chollampatt and Ng, 2018b] that used convolutions to replace
recurrences. We decided to use the Transformer model, which showed promising
results across the NLP field.

We re-implemented the model proposed by Junczys-Dowmunt et al. [2018].
Specifically, we extended the standard Transformer model by source word dropout
[Srivastava et al., 2014], and its loss by term that assigns higher weight to words
that should change. To make regularization even more effective, we decided to
dropout also whole target word embeddings randomly in training.

As the so called iterative decoding [Lichtarge et al., 2018, Ge et al., 2018]
turned out effective, we implemented it as well. In iterative decoding, the trained
system is used incrementally until a stopping criterion is met. While Ge et al.
[2018] use additional language model probabilities to estimate sentence fluency
and use these as a stop criterion, we follow an approach of Lichtarge et al. [2018],
who rely solely on the trained model probabilities. Specifically, we use the model
log-likelihood as the cost function, and run iterative decoding as long as the cost
of the correction is less than the cost of the identity translation times a learned
constant.

Finally, to reduce variance during training and hopefully also achieve better
results, we used checkpoint averaging as described by Popel and Bojar [2018].

3.3.3 Data
We decided to participate in all three tracks of the shared task, therefore, we
needed to think about what data sources to use.

In the Restricted track, the possible data sources were strictly defined. We
did not find it meaningful to omit any data source, and used all allowed data
for training the model. As the majority of data came from the noisiest Lang-8
corpus, we however oversampled other datasets to make the proportions of noisy
and cleaner data more equal.

Regarding the Low-Resource track which forbids to use any annotated data,
we decided to incorporate Wikipedia revisions. These contain complete edit his-
tory for each page on Wikipedia, and were already previously successfully used for
training systems for GEC. To create a training corpus from Wikipedia revisions,
Grundkiewicz and Junczys-Dowmunt [2014] defined a set of rules employing edit
distances that were used to decide, whether a sentence before the revision and
its edited variant are similar enough to be considered a training pair. Although
the resulting corpora are typically quite noisy as many sentences do not contain
grammatical errors but for example factual improvements, their size is enormous.
Lichtarge et al. [2018] have shown that in a two-stage training, in which a system
is first trained on the Wikipedia corpus and then finetuned on authentic data (e.g.
NUCLE corpus), the system performance is significantly better than when only
one-stage training with authentic data is used. Moreover, even when the system is
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trained only with the Wikipedia data, the results seemed quite strong, especially
with the iterative decoding. We followed an approach of Lichtarge et al. [2018],
and created 190M aligned pairs of noisy and corrected segments from Wikipedia
revision history dump, and used them for training.

Finally, in the Unrestricted Track, we used the data from the Restricted and
Unrestricted Tracks.

3.3.4 Training and Results
We used the Restricted Track as an experimental playground, on which we tried
numerous hyperparameters and settings. Specifically, we experimented with the
value of source and target word dropout, weight for non-identity words in the
modified objective, constant used in iterative decoding, oversampling cleaner data
and the differences between lighter Transformer-BASE and heavier Transformer-
BIG architecture. As can be seen in Table 3.5, the chosen hyperparameters
improved the performance of the baseline Transformer model by almost 12 points
in the final score. It is also evident that each proposed improvement boosted the
model performance greatly. Note that while the column Combined in Table 3.5
shows scores on the entire W&I+L development set, the columns A, B and C
present scores on specific subsets of the development set that differ in the CEFR
level of the writer of the original noisy text (A – beginner, B – intermediate, C –
advanced), and the N column presents scores on the subset of the development
set that comprises original noisy texts written by native speakers.

System A B C N Combined

Transformer-BASE architecture 39.98 32.68 23.97 14.49 32.47
Transformer-BIG architecture 39.70 35.13 26.22 20.20 34.20
+ 0.2 src drop, 0.1 tgt drop, 3 MLE 42.06 38.25 28.72 23.80 38.15

+ Extended dataset 45.99 41.79 32.52 27.89 40.86
+ Averaging 8 checkpoints 47.90 44.13 36.19 29.05 43.29

+ Iterative decoding 48.75 45.46 37.09 30.19 44.27

Table 3.5: F0.5 scores of incremental improvements of our system on the W&I+L
development set.

In the Low Resource Track, we used the best hyperparameters from the Re-
stricted Track to train the model on the Wikipedia data only.

Finally, in the Unrestricted Track, we used the best system from the Low-
Resource track that was trained on parallel data from Wikipedia revisions, and
finetuned it on the training data from the Restricted Track.

The results of our systems together with performance of best performing sys-
tems and number of participants are summarized in Table 3.6. Our system ranked
10th out of 21 systems in the Restricted Track, 3rd out of 7 submitted systems
in the Unrestricted Track and 5th out od 9 systems in the Low-Resource Track.

There were two reasons behind the performance gap between ours and the
best performing models. First, the best models typically used multiple models
combined into ensembles, and, more importantly, they utilized large synthetically
generated noisy data for pretraining. It is important to describe the concept of
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Track P R F0.5 Best Rank
Restricted 67.33 40.37 59.39 69.47 10 / 21
Unrestricted 68.17 53.25 64.55 66.78 3 / 7
Low Resource 50.47 29.38 44.13 64.24 5 / 9

Table 3.6: Official results of Building Education Applications 2019 Shared Task
on Grammatical Error Correction. The reported scores are precision, recall and
F0.5 measured on the test set.

pretraining systems and synthetic data here as we will further use this approach.
In the traditional approach to machine learning, models are typically trained in
a single stage to model the authentic training data, and by doing so hopefully
also generalize to unseen test data. As deep learning models, such as the recur-
rent neural networks or models based on Transformer, require large amounts of
training data to work well and these are often not available, a different two-stage
strategy appeared. The so-called synthetic (sometimes also known as artificial)
data that try to mimic the real data are first automatically created, and the
model is trained with them. This process is typically called pretraining. A simple
synthetic data for GEC can be for example created by taking a clean text and
inserting random words to it and deleting some of its words. Although the quality
of generated synthetic data is lower than of the authentic annotated data, we can
generate large amount of them as they typically require only clean texts. Given
large enough synthetic data with decent quality, we hope that in the pretrain-
ing phase the model learns patterns that will be useful for the second stage, in
which the authentic annotated data are used. The second stage is typically called
finetuning phase, and the pretrained model’s weight are further readjusted with
authentic data. As the model was already pretrained, to reach a similar model
performance on separate testing data, the amount of authentic data needed is
typically lower than when no pretraining is used.

Both Grundkiewicz et al. [2019], who won the shared task, and Choe et al.
[2019], who placed the second, generated synthetic data to boost their model
performance. Choe et al. [2019] first extracted edits from W&I+L training set
and also defined custom manual noising scenarios for preposition, nouns and
verbs, and used these to noise a large clean text. Grundkiewicz et al. [2019], on
the other hand, used an unsupervised approach, and when noising a text, they
allowed deleting a word, inserting a random word, shuffling of nearby words and
also replacing a word with one of its spell-checker suggestions. Especially the
simple replacing rule turned out particularly effective as it can generate examples
that are hard to detect and correct.

Recall, that our model in the Unrestricted Track was first pretrained on
Wikipedia revisions, and then finetuned with the authentic data. As can be
seen from that our system is in the Unrestricted Track better by circa 5 points
than our model in the Restricted Track, the large Wikipedia data also helped
the model to better generalize, and thus provide better corrections. However,
probably due to the noisy nature of the Wikipedia data, and the fact that not all
filtered corrections between two consecutive snapshots need to be grammatical
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errors, the approach of two best teams of Grundkiewicz et al. [2019], Choe et al.
[2019] turned out better.

Main outcomes and conclusions

1) We developed strong Transformer-based models for GEC and submitted
them to all three Tracks of the shared task. Our systems ranked 10th out
21 systems in the Restricted Track, 3rd out of 7 systems in the Unrestricted
Track and 5th out of 9 systems in the Low Resource Track.

3.4 GEC in Low Resource Scenarios
The full paper is available in Chapter 5, and it was published as Náplava and
Straka [2019a].

2017

Diacritics Restoration 

2018

Spelling Error Correction

2019 2020 2021

GEC - BEA Shared Task

Low-Resource GEC

Constructing Rules 
for Fast GEC 

GECCC - Czech GEC dataset

Diacritics Restoration                    
Reborn

Model Robustness

GEC in English is a long stud-
ied problem, with many existing sys-
tems and datasets. However, there
has been only a limited research on er-
ror correction of other languages. As
we discussed in Section 2.2, by the
end of 2019, datasets existed for Ger-
man [Boyd, 2018] and Russian [Rozovskaya and Roth, 2019], and efforts to cre-
ate annotated learner corpora were also done for Chinese [Zhao et al., 2018],
Japanese [Koyama et al., 2020] and Arabic [Alfaifi and Atwell, 2013]. One of the
main reasons why the majority of research has been conducted on English is the
availability of data. While there are at least 6 datasets for GEC in English with
millions of sentences altogether (see Table 2.1), in languages other than English,
we know of only a single dataset consisting of at most tens of thousands of sen-
tence pairs. This is naturally an issue as the current approaches based on neural
machine translation require large corpora to train properly.

One of the outcomes of the BEA Shared Task 2019 on Grammatical Error
Correction (see Section 3.3.4) was the fact that generating synthetic errors for
training is surprisingly effective on English. It helps to overcome the lack of
annotated data, and also improves model performance even if large annotated
data are available. As we can see from Table 3.6, Grundkiewicz et al. [2019]
managed to train models without any authentic annotated data that are worse
only by as little as 5 points than the best models utilizing also annotated data.

Motivated by the fact that synthetic data help models in English even in
the Restricted Track setting with large annotated data, the fact that F0.5 scores
of state-of-the-art models in languages such as German (45.22 [Boyd, 2018]) or
Russian (21.0 [Rozovskaya and Roth, 2019]) lag behind those of English (69.47,
61.30 [Grundkiewicz et al., 2019]) by a large margin, and the fact that datasets
of these languages are relatively small, we decided to concentrate on these low-
resource languages.
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Key research questions of the work

1) Explore, whether incorporating synthetic data into training helps in case
of low-resource languages such as German or Russian?
2) Do synthetic data help also in case of Czech?

3.4.1 Synthetic Data Generation
We identified two languages other than English with datasets prepared for gram-
matical error correction: German FALKO-MERLIN [Boyd, 2018] and Russian
RULEC-GEC [Rozovskaya and Roth, 2019]. As can be seen in Table 2.1, the
German dataset consists of 24 077 sentences, and the Russian dataset has 12 480.
Having experience in training models for English on various datasets, we knew
that training a model solely on these data would result in heavily overfitted mod-
els with poor results. We therefore decided to generate synthetic data to enlarge
the training set. There are three main approaches for generating synthetic data:

1. Rule-based approach – the synthetic data are created from clean texts
by rule-based substitutions or by using a subset of the following operations:
token replacement, token deletion, token insertion, multitoken swap and
spelling noise introduction. In Section 3.3.4, we have already described two
approaches of Grundkiewicz et al. [2019] and Choe et al. [2019] that were the
newest representatives of this approach. To name a few others, Brockett
et al. [2006] used a set of hand-constructed regular expressions to create
noisy data exhibiting characteristics of countability errors associated with
mass nouns as produced by Chinese second learners such as much advice
−→ many advice or much good advice −→ many good advices, Yuan and
Felice [2013] extracted edits from NUCLE dataset and applied them on a
clean text, and Zhao et al. [2019] use a straightforward approach and allow
deleting a word, inserting a random word, replacing a word with random
word and shuffling of neighbouring words.

2. Model-based approach – is based on the so-called backtranslation model.
The core of this approach is a machine translation model trained in the
opposite direction, i.e. it learns to translate from correct into incorrect
sentences [Rei et al., 2017].

3. Generating from other sources – by 2019, such a source was mainly
Wikipedia revision histories as described for example by Grundkiewicz and
Junczys-Dowmunt [2014]. Shortly after publicizing this work [Náplava and
Straka, 2019a], GitHub Typo Corpus Hagiwara and Mita [2020] with errors
extracted from GitHub appeared.

After considerations, we decided to use the first approach and method similar
to Grundkiewicz et al. [2019] for the following reasons: (1) it was shown to
provide high-quality difficult examples on English and can be easily extended to
other languages, (2) we already tried using Wikipedia revisions and we already
confirmed that using Wikipedia revisions is ineffective, (3) the backtranslation
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approach requires large volumes of training data, which is in the case of low
resource languages intractable.

The algorithm of Grundkiewicz et al. [2019] works as follows. Given a clean
sentence, it first samples a fixed number of words to modify. For each chosen
word, one of the following operations is performed with a predefined probabil-
ity: substituting the word with one of its ASpell proposals, deleting it, swapping
it with its right-adjacent neighbour, or inserting a random word from a dictio-
nary after the current word. To make the system more robust to spelling errors,
the same operations are also used on individual characters. Grundkiewicz et al.
[2019] set the probability of performing a word-level operation to 0.15 and 0.02
for character-level operations, and additionally set the probability for word sub-
stitution arbitrarily to 0.7, and the three remaining operations are chosen with a
probability of 0.1. Recall that Grundkiewicz et al. [2019] performed the experi-
ments on English, therefore, when extending the approach to other languages, we
ran a small grid-search for each language that modified the probabilities slightly.

Because models after training often failed to correct errors in casing, we fur-
ther extended the word-level operations of the algorithm by adding an operation
that allows to change word casing. When later applied to generate synthetic
samples also for Czech, we additionally included also an operation which changes
diacritics.

We illustrate several sentences generated by the algorithm together with the
original clean sentences in Table 3.7. Note that while some errors such as simple
spelling errors or the subject-verb agreement error in the third sentence resemble
real human errors, there are errors such as the newly introduced word promulgat-
ing in the fourth example that are on the other hand unlikely to be produced by
a human.

O: Best known as a novelist , Matar was born in New York , grew up in Tripoli and Cairo , and now
lives in England .

N: Best is a novelist , matar wasp in born New York , grew up in Tripoli and Cairo , and now
England .

O: The machines became more lighthearted in the enlightened 18th century .
N: machines The became more IN the enligtened 18Y centuery ,

O: Do I think it ’s essential that a member wears a tie ?
N: Do I think it ’s essential a member wear a tie ?

O: Jimmy Kimmel is a guest on the series premiere .
N: Jimmy Kimmel is a guests on teh series premiere promulgating .

O: She made lots of stir - frie’s and curries . . .
N: She made lotus oe stir - fire’s and curries . . .

Table 3.7: Examples of synthetic sentences generated for English. The sentences
preceded by O: are the original tokenized clean sentences, and the sentences
preceded by N: are the generated noisy synthetic sentences.

We would like to stress the importance of using ASpell dictionary to propose
word candidates as part of our method for synthetic data generation. ASpell
generates confusion sets of lexically and phonetically similar words, and thus
introduces errors that are both hard to detect and correct. It is for example
capable of generating errors in subject-verb agreement (he agrees vs he agree),
errors in verb-tense (I did see it vs I did seen it) or errors in morphology (He is
smart than me vs He is smarter than me). We would also like to note that two
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years later, in 2021, Flachs et al. [2021a] have experimented with using ASpell
and Unimorph,2 and have shown that although using ASpell works better than
using Unimorph alone, mixing errors produced by ASpell with errors produced
by Unimorph leads to better results on Czech and Russian, while it does not
improve results on German and Spanish.

Having the algorithm for generating synthetic samples, we generated artificial
data for German and Russian, and trained the GEC models.

3.4.2 German and Russian Results
We employed the described pipeline to generate large synthetic data comprising
10M sentences for English, Russian and German from clean WMT News Crawl
monolingual training data [Bojar et al., 2017]. We opted to prepare data for and
train also the English models to compare our models to current state of the art
in English.

We used the synthetic data to pretrain the modified Transformer model, which
is exactly the same as we used in the BEA Shared Task and described in Sec-
tion 3.3.2. We trained a separate model for each language. As can be seen from
Table 3.8 and Table 3.9, although these models never saw any authentic data, they
were already better than the previous state-of-the-art systems on German [Boyd,
2018] and Russian [Rozovskaya and Roth, 2019] (see row Our work – pretrained).

System Precision Recall F0.5

Rozovskaya and Roth [2019] 38.0 7.5 21.0
Our work – pretrained 47.76 26.08 40.96
Our work – finetuned 63.26 27.50 50.20

Table 3.8: Comparison of our systems on Russian RULEC-GEC test set.

System Precision Recall F0.5

Boyd [2018] 51.99 29.73 45.22
Our work – pretrained 67.45 26.35 51.41
Our work – finetuned 78.21 59.94 73.71

Table 3.9: Comparison of our systems on German Falko-Merlin test set.

We further finetuned the pretrained models on a mixture of authentic3 and
synthetic data, which increased the performance even further (see row Our work
– finetuned in Table 3.8 and Table 3.9). We found it important to use a mixture
of authentic and synthetic data for finetuning, especially for German and Rus-
sian. When only the authentic data were used for finetuning, the model quickly

2Unimoph (https://unimorph.github.io/) is a database of morphological variants of
words.

3For Russian, we used training data from RULEC-GEC, for German from Falko-Merlin and
for English Lang-8 data, FCE, NUCLE and W&I+L.
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System W&I+L test CoNLL 14 test
No W&I+L With W&I+L

including ensembles
Lichtarge et al. [2019] – 60.40 –
Zhao et al. [2019] – 61.15 –
Xu et al. [2019] 67.21 – 63.20
Choe et al. [2019] 69.06 57.50 –
Grundkiewicz et al. [2019] 69.47 61.30 64.16

no ensembles
Lichtarge et al. [2019] – 56.80 –
Xu et al. [2019] 63.94 – 60.90
Choe et al. [2019] 63.05 – –

no ensembles
Our work – pretrained 51.16 41.85 44.12
Our work – finetuned 69.00 60.76 63.40

Table 3.10: Comparison of systems on two English GEC datasets. CoNLL 2014
Test Set is divided into two system groups (columns): those which do not train
on W&I+L training data and those which do.

overfitted, and the results were significantly worse than when finetuning with the
data mixture.

Regarding the results on English, the comparison is slightly more difficult.
Many papers publish the results using ensemble models, which are however not
directly comparable with a single system. As we can see from Table 3.10, our
finetuned model outperformed all single models, while performing slightly worse
than ensembles of Grundkiewicz et al. [2019] and Zhao et al. [2019] on the W&I+L
and CoNLL14 test sets.

3.4.3 AKCES-GEC – First Czech GEC Dataset
As we mentioned in the Introduction of this thesis (see Section 1), developing
models for Czech is one of our long-term goals. Unfortunately, no Czech dataset
for GEC was available by 2019. Probably closest to it was a dataset of Náplava
[2017], which consists of aligned sentences extracted from Czech learner corpora.
Although the dataset could be used for training models, the absence of extracted
edits make it impossible for evaluation by any of the standard GEC scorers.

Despite that no GEC datasets for Czech existed, several annotated learner
corpora were being developed. These, in spite of existing in learner corpora
specific formats, should have contained all information required to compile a
GEC dataset. Therefore, we decided to compile a Czech GEC dataset from these
learner corpora on our own.
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Building the Dataset

Recall from Section 2.2 that the standard format for distributing and evaluating
GEC datasets is the M2 format [Dahlmeier and Ng, 2012a]. This contains the
original uncorrected sentences and for each original sentence a list of edits com-
prising its span, a replacement string and an error type. M2 format is used for
the majority of GEC datasets, and other formats are used rarely. An example of
dataset with different format is JFLEG [Napoles et al., 2017b], where different
format was used because the dataset addresses fluency rewrites with large edits,
for which the M2 format may not be optimal. Given the fact the learner corpora
contain standard grammatical errors, we decided to use the M2 format.

The Czech learner corpora have been collected under an umbrella project
AKCES [Šebesta, 2010]. This project comprises several acquisition resources –
CzeSL (learner corpus of Czech as a second language), ROMi (Romani ethnolect
of Czech Romani children and teenagers) and SKRIPT and SCHOLA (written
and spoken language collected from native Czech pupils, respectively).

By the time we were performing the work, only the annotated Czesl-man
corpus [Rosen, 2016] consisting of manually annotated transcripts of essays of
non-native speakers of Czech was publicly available. Apart from it, we also
managed to obtain additional data from CzeSL and ROMi authors: unreleased
parts of CzeSL-man and also essays of Romani pupils with Romani ethnolect of
Czech as their first language from ROMi corpus. Given these resources, we built
a first Czech GEC corpus: AKCES-GEC. We tried to keep the error annotations
where possible, and present the list of them in Table 3.11.

Error type Description Example Occ

unspec unspecified error type 69 123
incorBase incorrect word base musíš to [posvětlit → posvětit] 20 334
incorInfl incorrect inflection [pracovají → pracují ] v továrně 8 986
dep error in valency bojí se [pes → psa]; otázka [čas → času] 6 733
agr violated agreement rules to jsou [hezké → hezcí ] hoši; Jan [čtu → čte] 5 162
lex error in lexicon or phraseology dopadlo to [přírodně → přirozeně] 3 967
stylColl colloquial expression viděli jsme [hezký → hezké] holky 3 533
use error in the use of a grammar category pošta je [nejvíc blízko → nejblíže] 1458
wbdOther other word boundary error [mocdobře → moc dobře]; [atak → a tak] 1 326
rflx error in reflexive expression dívá [∅ → se] na televizi; Pavel [si → se] raduje 915
sec secondary error (supplementary flag) stará se o [našich holčičkách → naše holčičky] 866

vbx error in analytical verb form or
compound predicate musíš [přijdeš → přijít]; kluci [jsou] běhali 864

wbdPre prefix separated by a space or
preposition w/o space musím to [při pravit → připravit] 817

ref error in pronominal reference dal jsem to jemu i [jejího → jeho] bratrovi 344

problem supplementary label for problematic
cases 175

fwNC foreign word váza je na [Tisch → stole] 166

stylOther bookish, dialectal, slang, hyper-correct
expression rozbil se mi [hadr] 156

neg error in negation [půjdu ne → nepůjdu] do školy 111
wbdComp wrongly separated compound [český anglický → česko-anglický] slovník 92
fwFab non-emendable, „fabricated“ word pokud nechceš slyšet [smášky] 78
disr disrupted construction znám [hodné spoustu → spoustu hodných] lidí 64

flex
supplementary flag used with fwFab
and fwNC marking the presence
of inflection

jdu do [shopa → obchodu] 34

stylMark redundant discourse marker [no]; [teda]; [jo] 15

Table 3.11: Error types used in the AKCES-GEC corpus taken from Jelínek et al.
[2012], including the number of occurrences in the dataset.
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The original data the corpus was built from contain explicit metadata on
whether text were written by Romani or Czech second learners. Second learners
are further divided based on their mother tongue, specifically, whether they come
from the Slavic group or not. We enhanced our dataset with this information,
and also used it when performing the dataset split into training, development
and testing sets (in a ratio 90:5:5). As original texts sometimes contain two
annotations from two different users for the same document, we also considered
this fact when performing the dataset split by including the documents with two
annotations in the development and testing set to make the evaluation of future
systems more fair. The detailed statistics of the final AKCES-GEC dataset are
presented in Table 3.12.

To evaluate models on the new AKCES-GEC dataset, we opted to use the
M2-scorer as it requires only model outputs, reference M2 file, and is actively
used in many other datasets (see Section 2.1.1).

Train Dev Test
Doc Sent Word Error r. Doc Sent Word Error r. Doc Sent Word Error r.

Foreign. Slavic 1 816 27 242 289 439 22.2 % 70 1 161 14 243 21.8 % 69 1 255 14 984 18.8 %
Other 45 804 8 331 23.8 % 45 879 9 624 20.5 %

Romani 1 937 14 968 157 342 20.4 % 80 520 5 481 21.0 % 74 542 5 831 17.8 %

Total 3 753 42 210 446 781 21.5 % 195 2 485 28 055 22.2 % 188 2 676 30 439 19.1 %

Table 3.12: Statistics of the AKCES-GEC dataset – number of documents, sen-
tences, words and error rates.

We made the AKCES-GEC dataset publicly available at http://hdl.handle.
net/11234/1-3057.

Developing Strong Baselines

Having created a new Czech GEC dataset, we trained models similarly to Ger-
man and Russian (see Section 3.4.2). First, we generated additional synthetic
data using the process described in Section 3.4.1 with additional character-level
operation for simulating errors in diacritics. We generated 10M sentences from
clean WMT News Crawl monolingual training data [Bojar et al., 2017].

Similarly to the previous experiments on English, German and Russian, we
used the two-stage training scheme. First, we used the synthetic data to pretrain
the model. Then, we finetuned it with a mixture of synthetic and authentic train-
ing data from the AKCES-GEC dataset. We present the results in Table 3.13
and compare our model to previous state-of-the-art model Korektor [Richter et al.,
2012]. Despite that Korektor can make only local changes and cannot for example
insert a new word, it reaches surprisingly solid results. Nevertheless, both the
pretrained-only model (Our work – pretrained) and the finetuned model (Our
work – finetuned) outperform it by a large margin in both precision, recall and
combined F0.5 score. For the finetuned model, we also provide results on in-
dividual user domains of the test set: second learners with Slavic background
(Foreigners – Slavic), second learners with other than Slavic background (For-
eigners – Other) and Romani students (Romani). The best results are achieved
on Romani subset, followed by the Slavic group of second learners and worst re-
sults are observed on the rest second learners. We hypothesize that this effect is
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caused by the fact that Romani as an ethnolect group with Czech as their mother
tongue do produce texts with errors that are easiest to correct, and similarly peo-
ple with Slavic background do learn Czech faster than when coming from different
background. As can be seen in Table 3.12, this fact is also supported by individ-
ual error rates of the specific groups: on the development set, the error rate of
Romani is 21.0%, Foreigners–Slavic 21.8% and the Foreigners–Other 23.8%.

System Test Subset P R F0.5

Richter et al. [2012] All 68.72 36.75 58.54
Our work – pretrained All 80.32 39.55 66.59

Our work – finetuned

Foreigners – Slavic 84.34 71.55 81.43
Foreigners – Other 81.03 62.36 76.45
Romani 86.61 71.13 83.00
All 83.75 68.48 80.17

Table 3.13: Results on AKCES-GEC Test Set (Czech).

We would like to make a small proposal for future experimenting with Czech.
As we have already described, Flachs et al. [2021a] have later shown that mixing
ASpell and Unimorph proposals transitively results in better model results. For
Czech, other source of morphologically relevant words exists – MorfFlex [Hajič
et al., 2020] contains data larger by more than two order of magnitude (26 511 962
unique forms vs 134 527 for Unimoph). Moreover, there exists the DeriNet
project [Vidra et al., 2021] that for circa million lemmas also contains their deriva-
tions, and can provide even more useful noisy examples such as Prahanoun →
pražskýadjective or důma house → domeka small house. An example for English would
be dog → doggie.

Main outcomes and conclusions

1) We have shown that utilizing synthetic data for low-resource languages
provides a great performance boost. We used it to pretrain the model based
on the Transformer architecture, and managed to achieve new state-the-art
results on German, Russian and Czech.
2) We compiled the first dataset for Czech GEC called AKCES-GEC from
the available learner corpora, and made it publicly available.

3.4.4 Remark on Future Development
Since 2019, when we proposed our state-of-the-art models, several studies have
been conducted for the low-resource languages [Takahashi et al., 2020, Yamashita
et al., 2020, Flachs et al., 2021b, Rothe et al., 2021]. Although these comprised
interesting ideas, Rothe et al. [2021] were the only work that actually outper-
formed our system by using an enormously large multilingual mT5 model [Xue
et al., 2021] in the xxl setting with 13B parameters. Apart to the standard mT5
pretraining, Rothe et al. [2021] also additionally pretrained their model on a syn-
thetic corpus created by corrupting text by a manually designed set of rules such
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as dropping a span of tokens or token swap. Having the model pretrained, they
finally finetuned it on the authentic data. Apart for the xxl configuration, Rothe
et al. [2021] also reported results using more decent base configuration with 580M
parameters, which, however, did not reach state-of-the-art results.

3.5 GECCC – New Czech Multi-Domain GEC
Dataset

The full paper is available in Chapter 5, and it is currently in print and available
on arXiv as Náplava et al. [2022].

2017

Diacritics Restoration 

2018

Spelling Error Correction

2019 2020 2021

GEC - BEA Shared Task

Low-Resource GEC

Constructing Rules 
for Fast GEC 

GECCC - Czech GEC dataset

Diacritics Restoration                    
Reborn

Model Robustness

Previously (see Section 3.4.3), we
have compiled AKCES-GEC, the first
Czech dataset for grammatical error cor-
rection. To create it, we utilized avail-
able annotated learner corpora compris-
ing second learner and Romani user do-
mains. For practical reasons, we decided
to use the M2 format and the M2-scorer to evaluate the best models. This resulted
in a dataset of decent size – circa twice as big as German FALKO-MERLIN [Boyd,
2018] and circa four times bigger than Russian RULEC-GEC [Rozovskaya and
Roth, 2019]. Later, we found four issues with the new dataset:

1. User Domains – AKCES-GEC dataset contains texts written by Czech
second learners and Romani. It thus completely lacks texts from native
speakers. This is a big concern as we naturally believe that our correcting
tools will be also used by native Czech speakers.

2. Annotation Style – We found that the edits proposed by annotators when
annotating the learner corpora are rather decent and local. This issue is
most prominent in cases when either two sentences should be merged into
one or a larger edit would be needed to improve overall fluency, but anno-
tators fixed only the basic spelling, and did not propose a larger rewrite.

3. Tokenization – The learner corpora annotations are provided on tokenized
texts. This leads to losing information about possible bad spacing around
punctuation (mostly commas).

4. Scorer – To evaluate model performance on AKCES-GEC dataset, we
have decided to use M2-scorer with β = 0.5. Although that we argued
that it is a common metric used by majority of existing GEC datasets, it
should be validated whether the selected metric correlates well with human
judgements on the corpus.

Given the described issues, we decided to create a new corpus that we named
Grammar Error Correction Corpus for Czech (GECCC) comprising also
texts written by Czech natives, annotated as original detokenized texts, contain-
ing data with proper fluency rewrites and the metric selected as the one that
correlates the best with human judgements.

45



Objectives of the work

1) Create a new dataset for GEC in Czech that would cover a variety of
user domains including annotated texts written by Czech natives.
2) The metric selected for evaluating model performance on the dataset
should be the metric with the highest correlation with human judgements.
3) Apart for the dataset itself, models should be trained and evaluated to
set baseline performance.

3.5.1 Historical Window
The narrow range of user domains that the AKCES-GEC dataset may suffer from,
has actually been a common thing in GEC for a long time. As can be seen from
Table 2.1, up to 2017, the existing GEC datasets consisted of only a single user
domain which was in all but a single case second learners. This even includes
data in the popular CoNLL 2014 Shared Task in which both the training and test-
ing texts were written solely by English second learners. The situation turned
better with the BEA 2019 Shared Task on GEC. It’s official dataset W&I+L cov-
ered both texts written by second learners and native speakers. Several month
later, the Russian RULEC-GEC dataset with the same user domains was intro-
duced. Later, the Spanish COWS-L2H [Yamada et al., 2020], the Ukrainian
UA-GEC [Syvokon and Nahorna, 2021] and the English GMEG [Napoles et al.,
2019] GEC datasets covering both the second learners and native speakers were
introduced.

Despite being only a test set of decent size, the work of Napoles et al. [2019]
on the GMEG dataset was probably the closest to what we planned to achieve.
GMEG test set contains 6k English sentences written by second learners and na-
tives that were further divided into formal texts with original texts downloaded
from Wikipedia and informal texts with original texts from Yahoo web posts.
Each text was corrected by 4 annotators. Except for the dataset itself, Napoles
et al. [2019] also analysed the correlation between human judgements and auto-
matic metrics and ultimately proposed a new metric being a linear combination
of existing metrics which was shown to correlate with human judgements the
best.

As we have described in Section 2.1.1, there are several automatic metrics for
evaluating GEC systems. Probably the most popular metric has been the M2-
scorer. Although it has initially been used with β = 1.0, i.e. weighting precision
equally to recall, authors of the CoNLL 14 Shared Task decided to change the
β to 0.5 to emphasize precision over recall. A year after the end of the Shared
Task, Grundkiewicz et al. [2015] asked annotators to rank the outputs of systems
submitted to the Shared Task on the Shared Tasks’s test data and used these
annotations to assess the correlation between human judgements and automatic
metrics. They found that although the M2-scorer with β = 0.5 correlates with
human judgements better than the M2-scorer with β = 1.0, it is even better to
use β = 0.18 on the CoNLLL 14 test set. They also found that I-measure has
very weak negative correlation and BLEU negatively correlates with the human
judgements. Later, Napoles et al. [2019] have shown that β = 0.5 correlates
better than β = 0.2 on the FCE dataset (theirs second learner domain), but that
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β = 0.2 correlates much better than β = 0.5 on Yahoo web posts and Wikipedia.
Napoles et al. [2019] further formulated a hypothesis that larger β = 0.5 correlates
better on higher error density domains and vice versa. Despite all these works,
we are not aware of any dataset that would use M2-scorer with β different from
0.5.

3.5.2 Creating the Dataset
Having the need for better annotations and new domains, it was obvious that
completely new annotations are needed. As such, the high-level dataset creation
had the following stages.

1. Selecting user domains that should be contained within a dataset

2. Acquiring source texts with errors for each selected user domain

3. Defining annotation rules and annotation scheme

4. Data preprocessing

5. Annotation of the texts

6. Annotation analysis such as computing agreements between annotators

7. Finalising dataset and making it publicly available

Selecting User Domains

As already described, one of the most prominent issues with the AKCES-GEC
dataset is that it does not represent Czech native speakers. While thinking about
it, we identified two subdomains of Czech native writing that in our opinion
differed in their writing that much that each of them should be represented as a
separate dataset domain. The first of them is the native formal domain, which
represents longer pieces of texts that are of high quality such as essays or articles.
The second of them is then native informal domain, which represents shorter
pieces of texts of lower quality such as social media posts or text messages.

Regarding other user domains, similarly to AKCES-GEC, we decided to in-
clude also the second learner and the Romani user domain in the dataset. These
cover texts written in a different user style to texts from natives and are definitely
an important part of the dataset as we suppose that the developed correcting tools
will also aim at these two user groups.

To sum up, 4 user domains were identified and will be represented in the
dataset: Natives-Formal and Natives-Informal, Second Learners and Romani.

Selecting Source Texts with Errors

Although that we decided not to use the old annotations from learner corpora
as we did when creating AKCES-GEC, we could use the original noisy texts as
input texts for annotators. Apart from the released Czesl-man and unreleased
parts of Czesl-man and ROMi corpus that we used for compiling AKCES-GEC,
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we also identified and used original Czech texts from multilingual learner cor-
pus MERLIN [Boyd et al., 2014]. These corpora provided us with enough data
representing the second learners and the Romani domain.

Regarding the Czech natives, we decided to use original texts from SKRIPT
2012, which was compiled in the AKCES project and released shortly before we
started working on the GECCC dataset. These texts were written by Czech
pupils of Czech elementary schools and thus represent a formal domain of texts
with decent quality. To create texts for informal domain, we decided to use
website discussion from Czech Facebook Dataset [Habernal et al., 2013] and also
discussions from Czech news site novinky.cz that were provided us by Seznam.cz
a.s.4 As the informal texts come solely from web domains, we decided to rename
the user domain from Natives-Informal to Natives Web Informal.

Annotation Scheme

We formulated the annotation rules as following: The corrected text must not
contain any spelling or grammatical errors and should sound fluent. The text
semantics must be preserved. Whenever multiple corrections exist, the correction
that affects the least tokens should be preferred. Fluency edits are allowed if the
original text is incoherent. Note that annotators can join or split sentences and
even paragraphs if needed.

The entire document was given as a context for the annotation. Annotators
were further instructed to remove too incomprehensible documents or those that
contain private information, which was an issue mostly for Czech discussions.

Regarding the annotation tool, we considered two options: using simple
text editor such as Notepad5 or using more complex annotation tools such as
Teitok [Janssen, 2016] that is being used for annotating learner corpora. The
great advantage of the first approach is the simplicity of the annotation process
as annotators are only correcting texts by simple rewriting. To propose a word
correction using the second approach, annotators typically need to mark a word
span containing an error and fill in the correction in a new window. On the other
hand, when using simple text editor, annotators cannot mark and classify individ-
ual edits. After considerations, we chose the first simple approach for following
reasons: (1) we believed that the tool simplicity will not discourage annotators
from making fluency edits, (2) using the simple tool will allow us to collect more
annotations quickly, (3) there are tools such as ERRANT that can infer the edits
automatically. Naturally, using automatic tools such as ERRANT for inferring
edits provides only suboptimal results when compared to manual annotation and
also the error types that can be automatically classified are typically more high-
level, nevertheless, it is quite common decision also in other languages [Bryant
et al., 2019, Boyd, 2018, Cotet et al., 2020b].

Data Preprocessing and Annotation

Having acquired the input data, we selected a subset of documents for annotation.
Naturally, not all documents from each domain could be annotated for annotation

4https://seznam.cz
5https://notepad.org/
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budget reasons as for example there are 10 000 discussion posts in the Facebook
dataset and much more also in discussion posts from Novinky.cz. For each of 4
user domains, we sampled a set of documents so that each domain has roughly the
same number of sentences. Moreover, we utilized available additional metadata
such as user proficiency level in MERLIN to support the split balance. Table 3.14
shows the original number of documents in each data source and also the number
of documents that we took for annotation. Note that all documents from the
development and testing sets of AKCES-GEC dataset are selected for annotation.

Dataset Documents Selected

AKCES-GEC-test 188 188
AKCES-GEC-dev 195 195
MERLIN 441 385
Novinky.cz — 2 695
Facebook 10 000 3 850
SKRIPT 2012 394 167
ROMi 1 529 218

Table 3.14: Data resources for the new Czech GEC corpus.

Our main objective was to perform data split so that the development and
testing data contain enough documents to maintain representativeness, cover-
age and are also backwards compatible to AKCES-GEC.6 Similarly to selecting
documents for annotations, we split the selected documents so that (i) test and
development data contain roughly the same amount of annotated data from all
domains, (ii) original AKCES-GEC dataset splits remain unchanged, (iii) avail-
able additional detailed annotations such as user proficiency level in MERLIN are
leveraged to support the split balance. Regarding the training data, we decided
to use new annotations for the Natives Web Informal domain as there are no such
previously annotated data and also as a small part in the Second Learners do-
main. For other domains, we collected existing annotations from SKRIPT 2012;
the MERLIN corpus and the AKCES-GEC and thus cover the Natives Formal,
the Romani and partially also the Second Learners domain.

Because certain data sources such as AKCES-GEC provide only tokenized
data which comes from the fact that their underlying texts come from tokenized
second learner corpora, and we wanted to operate over detokenized data, we
had to detokenize all data from such sources. To detokenize data, we used the
Moses detokenizer7 with slight changes. We publish the corpus in two variants:
tokenized and detokenized.

Having selected, preprocessed and split the data, we hired 5 annotators to an-
notate texts. All test data were annotated by two annotators to increase chances
of covering multiple alternatives for sentences with multiple appropriate correc-
tions. The half of development data was annotated twice and the second half of
the development set as well as training data then received one annotation.

6The development data of AKCES-GEC are fully contained within the development set of
the new dataset and this holds similarly also for the testing sets.

7https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
detokenizer.perl
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Once the data were annotated, we used ERRANT to enhance the raw docu-
ment-aligned data with edits. As ERRANT was originally developed for English,
we had to make several changes. Similarly to Boyd [2018] who adapted ERRANT
for German, we adjusted the original English error types to the Czech language
and present all error types together with examples in Table 3.15 and their detailed
description below:

• POS – the part-of-speech-tag of an original word and a corrected word are
the same. It is additionally subtyped by :INFL in cases where the original
and corrected words share a common lemma. The POS error types are
based on the UD POS tags [Nivre et al., 2020]

• MORPH – original and corrected words share a common lemma, but have
a different POS

• ORTH – we distinguish between errors in casing (ORTH:CASING) and
errors differing in spacing (ORTH:WSPACE).

• SPELL – incorrect word spelling leading to original word being a non-word.
We use the word list from MorfFlex [Hajič et al., 2020] to detect non-words.

• WO – words are in a different order. It is subtyped by :SPELL when there
are also spelling errors.

• QUOTATION – wrongly used quotation marks.

• DIACR – original and corrected words differ in diacritical marks

• OTHER – all errors not covered by any other rule. It often comprises edits
that have a different number of words in the original and corrected text.

Error Type Subtype Example

POS (15) tažené → řízené
:INFL manželka → manželkou

MORPH maj → mají
ORTH :CASING usa → USA

:WSPACE přes to → přesto
SPELL ochtnat → ochutnat

WO plná jsou → jsou plná
:SPELL blískají zeleně → zeleně blýskají

QUOTATION ” → „
DIACR tiskarna → tiskárna
OTHER sem → jsem ho

Table 3.15: Czech ERRANT Error Types.

Having classified individual edits, we measured proportions of individual er-
ror types in the dataset. Specifically, we sorted error types according to their
occurrence count in each user domain and display the top 10 most occurring
in Figure 3.3. It is evident that each domain has another distribution of error
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types, however, errors in punctuation (PUNCT) are the most common error in 3
domains. Errors in either missing or wrongly used diacritics (DIACR), spelling er-
rors (SPELL) and errors in orthography (ORTH) are also common, with varying
frequency across domains.

As errors in punctuation (PUNCT) are the most common error, we further
inspected them in more detail and found out that 9% (Natives Formal) - 27%
(Natives Web Informal) are caused by either missing or wrongly used punctuation
at the end of the sentence (linguistically uninteresting as simple rules could be
possibly written to fix them) and the rest (75-91%) appears in a sentence, most of
which (35% [Natives Web Informal] - 68% [Natives Formal]) is either a missing or
a redundant comma. Errors that require splitting a sentence into two or joining
two sentences are also quite common as they occur in 5-7%.
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Figure 3.3: Distribution of top-10 ERRANT error types per domain in the devel-
opment set of the GECCC dataset.

Annotation Analysis

As multiple corrections often exist for a text, the inter-annotator agreement can-
not be computed by simply comparing equality on two references of the testing
set. Instead, a different approach is used commonly in GEC [Rozovskaya and
Roth, 2010, 2019, Syvokon and Nahorna, 2021]: random sentences corrected by
one annotator are shown to a different annotator who should judge the need for
a correction, i.e. whether he would make any modifications if he saw such data
in the original first annotation round. We followed this approach and employed
three annotators from the first annotation round to judge the sentence correctness
in the second pass. In the second pass, each of the three annotators annotated a
disjoint set of 120 sentences. Once the second pass was annotated, we computed
the inter-annotator agreement scores as the percentage of sentences judged cor-
rect and provide these scores in Table 3.16. To put the scores into context, we
computed the mean and standard deviation: 82.96±12.12 and compared them to
numbers reported on English (63 ± 18.46 [Rozovskaya and Roth, 2010]), Russian
(80 ± 16.26 [Rozovskaya and Roth, 2019]) and Ukrainian (69.5 ± 7.78 [Syvokon
and Nahorna, 2021]). As our numbers seem similar or even slightly better than
others, we considered our first round annotations strong.
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First →
Second ↓ A1 A2 A3 A4 A5

A1 — 93.39 97.96 89.63 72.50
A2 84.43 — 95.91 90.18 78.15
A3 68.80 87.68 — 79.39 57.50

Table 3.16: Inter-annotator agreement based on second-pass judgements for
GECCC dataset: numbers represent percentage of sentences judged correct in
second-pass proofreading. Five annotators annotated the first pass, three anno-
tators judged the sentence correctness in the second pass.

Dataset Publishing

Traditionally, models for GEC have been operating over a single sentence. How-
ever, by the beginning of 2021 when we were finishing the work on the dataset, pre-
liminary approaches on document-level GEC were published [Chollampatt et al.,
2019b, Yuan and Bryant, 2021]. The models were shown to benefit from larger
context as certain errors such as errors in tense choice or errors in articles often
require large context. To ease the future work with our dataset, we decided to
release it on three alignment levels: (1) traditional sentence-level, (2) paragraph-
level and (3) document-level.

Apart for the three alignment levels, we further decided to publish the dataset
in two formats: the traditional tokenized M2 format and the detokenized format.
While the tokenized M2 is the de-facto standard for distributing GEC datasets
and in comparison to detokenized format also contains the error type for each
correction edit, it does in certain cases lose information about errors in original
spacing. Moreover, despite that GEC models are typically trained in a tokenized
mode for evaluation reasons, one would typically need to have them in a detok-
enized mode when used in practice. For these reasons, we release also the dataset
in the detokenized format which retains full information about the original spac-
ing and allows for training detokenized models.

We present the statistics of the GECCC dataset in Table 3.17. GECCC
dataset contains more than 83k sentences in total out of which about 8k newly
annotated sentences are in the development and testing sets. It is evident that
apart for edit types, individual user domains also differ in error rates: while in
the Natives Formal domain the average number of erroneous tokens is about 6%,
circa every fourth token contains error in the Romani and the Second Learners
domain.

GECCC dataset contains more than 83k sentences total that makes it the
largest among GEC datasets other than English. It is surpassed in size only by
the English Lang-8 and AESW datasets (see Table 2.1).

3.5.3 GEC Models
We further evaluated six existing systems on the GECCC dataset and also trained
one new model:

• Office 365 Word – We used the Spelling & Grammar module of Office 365
Word. For each proposed correction, we applied the first proposal variant.
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Sentence-aligned Paragraph-aligned Doc-aligned
#sentences #paragraphs #docs Error Rate

Train Dev Test Train Dev Test Train Dev Test

Natives Formal 4 060 1 952 1 684 1 618 859 669 227 87 76 5.81%
Natives Web Informal 6 977 2 465 2 166 3 622 1 294 1 256 3 619 1 291 1 256 15.61%
Romani 24 824 1 254 1 260 9 723 574 561 3 247 173 169 26.21%
Second Learners 30 812 2 807 2 797 8 781 865 756 2 050 167 170 25.16%

Total 66 673 8 478 7 907 23 744 3 592 3 242 9 143 1 718 1 671 18.19%

Table 3.17: GECCC dataset statistics at three alignment levels: sentence-aligned,
paragraph-aligned and doc-aligned. Average Error rate was computed on the
concatenation of development and test data in all three alignment levels.

We ran the correction process until no other corrections were proposed. As
this requires manual user interaction, we did not correct the whole dataset,
but only 400 randomly sampled sentences from each domain. The texts
were corrected on November 8, 2021 using build 16.0.14704.41015.

• Google Docs – We used the Spelling and grammar module of Google Docs.
For each proposed correction, we applied the first proposal variant. We ran
the correction process until no other corrections were proposed. As this
requires manual user interaction, we did not correct the whole dataset, but
only 400 randomly sampled sentences from each domain (same sentences
as for Office 365 Word). The texts were corrected on November 8, 2021.

• Korektor – a pre-neural state-of-the-art statistical spellchecker and (occa-
sional) grammar checker (see Section 2.3 and Section 2.5 for more details
on the system)

• Synthetic trained – Transformer-based model pretrained on synthetic
data and described in Section 3.4.3. We previously referred to this model
as Our work – pretrained.

• AKCES-GEC finetuned – Transformer-based model pretrained on syn-
thetic data and finetuned on authentic train data of AKCES-GEC. We
described the system in Section 3.4.3. We previously referred to this model
as Our work – finetuned.

• GECCC finetuned – newly trained model. Similarly to AKCES-GEC
finetuned, we pretrained the model on synthetic data, but instead of fine-
tuning it on AKCES-GEC, we finetuned it on the new train set of the
GECCC dataset.

• Joint GEC+NMT – Transformer-based model trained in multitask set-
ting with two objectives: GEC in English and Czech and translation be-
tween Czech and English. The training data for GEC were created by the
KaziText tool (see Section 3.8.1 for more information on KaziText), which
is our statistical tool that tries to mimic human errors by estimating their
characteristics from training data. The training data for translation are
from the parallel CzEng corpus [Kocmi et al., 2020]. We trained this model
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with initial hypothesis that the combined objective might provide some ben-
efits (e.g. model may learn paraphrases better), but its final performance
did not meet our expectations, and we used it only for this analysis.

The left part of Table 3.18 summarizes the evaluation of the seven grammar
error correction systems, evaluated with the highest-correlating and widely used
metric, the M2 scorer with β = 0.5. For the meta-evaluation of GEC metrics
against human judgements, see the following Section 3.5.4.

M2
0.5-score Mean human score

System NF NWI R SL Σ NF NWI R SL Σ

Original — — — — — 8.47 7.99 7.76 7.18 7.61

Office 365 Word* 50.57 51.20 48.76 54.40 51.21 – – – – –
Google Docs* 38.17 28.10 48.48 47.74 43.37 – – – – –
Korektor 28.99 31.51 46.77 55.93 45.09 8.26 7.60 7.90 7.55 7.63
Synthetic trained 46.83 38.63 46.36 62.20 53.07 8.55 7.99 8.10 7.88 7.98
AG finetuned 65.77 55.20 69.71 71.41 68.08 8.97 8.22 8.91 8.35 8.38
GECCC finetuned 72.50 71.09 72.23 73.21 72.96 9.19 8.72 8.91 8.67 8.74
Joint GEC+NMT 68.14 66.64 65.21 70.43 67.40 9.06 8.37 8.69 8.19 8.35

Reference — — — — — 9.58 9.48 9.60 9.63 9.57

Table 3.18: Mean score of human judgements and M2
0.5 score for each GEC system

in domains (NF = Natives Formal, NWI = Natives Web Informal, R = Romani,
SL = Second Learners, Σ = whole dataset). Note that models denoted by asterisk
(Office 365 Word and Google Docs) were evaluated on a reduced test set.

The first three systems in Table 3.18 (Office 365 Word, Google Docs and
Korektor) are the commercial baselines being actively used in practice. Out of
them, Office 365 Word works surprisingly solid while outperforming all other
commercial baselines on all domains as well as on the whole dataset. While
the performance of Google Docs and Korektor seems to deteriorate badly on the
Natives Formal and Natives Web Informal domains, Office 365 Word provides
stable results across all domains.

Despite the solid performance of Office 365 Word, all our neural-based models
outperformed it on the whole dataset. When the authentic training data are used
for training, the models (AG finetuned, GECCC finetuned and Joint GEC+NMT)
surpass Office 365 Word in all domains by a large margin. The incorporation of
authentic data clearly improves results as can be observed on the performance
gap between Synthetic trained and the other neural models. Moreover, utilizing
larger and domain-richer training data from new GECCCC dataset as opposed
to AKCES-GEC training set leads to significant improvements (see the difference
between AG finetuned and GECCC finetuned that differ only in the finetuning
data). Finally, using the authentic data directly seems superior to using them
indirectly for more accurate synthetic data creation (see the slightly worse results
of Joint GEC+NMT).

The best model GECCC finetuned significantly8 outperformed all other sys-
tems in all domains as well as on the whole dataset. Being the best model, we
further analysed its performance with respect to individual error types. For sim-
pler analysis, we grouped all POS-related errors into two error types: POS and

8With p-value < 0.001, using the Monte Carlo permutation test with 10M samples and
probability of error at most 10−6 [Fay and Follmann, 2002, Gandy, 2009]
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POS:INFL for words which are erroneous only in inflection and share the same
lemma with their correction.

As we can see in Table 3.19, the model is very good at correcting local er-
rors in diacritics (DIACR), quotation (QUOTATION), spelling (SPELL) and
casing (ORTH:CASING). Unsurprisingly, small changes are easier than longer
edits: similarly, the system is better in inflection corrections (POS:INFL, words
with the same lemma) than on POS (correction involves finding a word with a
different lemma).

Should the word be split or joined with an adjacent word, the model does
so with a relatively high success rate (ORTH:WSPACE). The model is also able
to correctly reorder words (WO), but here its recall is rather low. The model
performs the worst on errors categorized as OTHER, which includes edits that
often require rewriting larger pieces of text. Generally, the model has higher
precision than recall, which suits the needs of standard GEC, where proposing a
bad correction for a good text is worse than being inert to an existing error.

Error Type # P R F0.5

DIACR 3 617 86.84 88.77 87.22
MORPH 610 73.58 55.91 69.20
ORTH:CASING 1 058 81.60 55.15 74.46
ORTH:WSPACE 385 64.44 74.36 66.21
OTHER 3 719 23.59 20.04 22.78
POS 2 735 56.50 22.12 43.10
POS:INFL 1 276 74.47 48.22 67.16
PUNCT 4 709 71.42 61.17 69.10
QUOTATION 223 89.44 61.06 81.83
SPELL 1 816 77.27 75.76 76.96
WO 662 60.00 29.89 49.94

Table 3.19: Analysis of GECCC finetuned model performance on individual error
types. For this analysis, all POS-error types were merged into a single error type
POS.

3.5.4 Meta-evaluation of Metrics
Having created the dataset, we were further interested in what metric has the
highest correlation with human judgements and thus should be used for evaluating
system performance. As we have described in Section 2.1.1, there are several
metrics that can be used and some of them such as M2 and ERRANT must be
further specified by the exact value of β parameter, which defines the ratio of
precision and recall.

Human Judgements Annotation

In order to evaluate correlations of several GEC metrics with human judgements,
we first needed to collect human judgements of texts corrected by a range of GEC
systems. For ranking the corrections, we used the suitable hybrid partial ranking
with scalars [Sakaguchi and Van Durme, 2018] approach in which the annotators
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judge the original erroneous sentence, the manually corrected gold references and
automatic corrections made by GEC systems on a scale 0–10 (from ungrammatical
to correct). We employed three annotators who judged the sentences with respect
to the context of the document. As the commercial systems (Office 365 Word and
Google Docs) were not included in the original analysis, but were added later for
the completeness of this dissertation thesis itself, they were not annotated in this
annotation round. Note that we decided to use the partial ranking with scalars
approach, as it was previously shown [Sakaguchi and Van Durme, 2018, Novikova
et al., 2018, Napoles et al., 2019] to be more reliable than other approaches such
as direct assessment framework used by the Workshop (Conference) on Machine
Translation [Bojar et al., 2016] and earlier GEC approaches [Grundkiewicz et al.,
2015, Napoles et al., 2015].

We selected a representative subset of the GECCC dataset for annotation. It
contained circa 1 100 documents with about 4 300 original sentences and about
15 500 unique corrected variants and gold references of the sentences. To make
the inter-annotator agreement analysis possible, the annotators annotated 127
documents jointly and the rest were annotated by a single annotator.

Once the annotation process was over, we computed the agreement in human
judgements on the set of jointly annotated documents. We performed the analysis
on individual domains and also on the whole dataset on the system-level: the
annotator’s judgements for each system were averaged over individual sentences
and the correlation was computed for each pair of the three annotators. We report
the common Pearson correlation and Spearman’s rank correlation coefficient in
Table 3.20.

Domain r ρ

Natives Formal 92.01 92.52
Natives Web Inf. 95.33 91.80
Romani 88.73 85.90
Second Learners 96.50 97.23

Whole Dataset 96.11 95.54

Table 3.20: Inter-annotator agreement between the human judgements on the
system-level: Pearson (r) and Spearman (ρ) mean correlation between 3 human
judgements of 5 sentence versions.

Metrics Correlations with Judgements

For the metric correlation analysis, we selected the following most common GEC
metrics: M2, ERRANT, GLEU and I-Measure. Moreover, for the M2 and ER-
RANT, we varied the value of β parameter, i.e. the proportion of precision and
recall.

For a given domain and metric, we computed the correlation between the au-
tomatic metric evaluations of the five GEC systems on one side and the human
judgements on the other side. Similarly to the analysis of inter-annotator agree-
ment in human judgements, we performed the metric correlation analysis on the
system level, i.e. the human score for a GEC system is an average of all human
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scores of its sentences in a domain (or whole dataset respectively). In order to
obtain smoother estimates and also to estimate standard deviations, we employed
the bootstrap resampling method, with 100 samples. We report the final Pearson
correlation in Table 3.21 and further visualize correlations for different values of
β for M2 and ERRANT in more detail in Figure 3.4.

Metric Pearsons’ r

GLEU 97.37 ± 1.52
I-measure 95.37 ± 2.16
M2

0.2 96.25 ± 1.71
M2

0.5 98.28 ± 1.03
M2

1.0 95.62 ± 1.81
ERRANT0.2 94.66 ± 2.44
ERRANT0.5 98.28 ± 1.04
ERRANT1.0 95.70 ± 1.80

Table 3.21: System-level Pearson correlation r between the automatic metric
scores and human annotations.
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Figure 3.4: Left: System-level Pearson correlation coefficient r between human
annotation and M2

β-scorer for various values of β. Right: The same correlation
for ERRANTβ.

Table 3.21 reveals that although the GLEU and I-measure correlate with
human judgements quite well, the metrics that correlates best are M2

0.5 and
ERRANT0.5. Figure 3.4 further reveals that for the M2-scorer, slightly smaller
β = 0.48 correlates even better. Interestingly, as can be seen in Figure 3.4, the
value of best correlating β remains roughly the same across all domains for both
the M2-scorer and ERRANT.

Out of the two best correlating metrics, we decided to opt for the M2-scorer
mainly because it is language agnostic and does not need an additional POS
tagger, lemmatizer, morphological dictionary and language specific rules as ER-
RANT does. We also decided to use the value of β = 0.5 as the difference in the
correlation to the optimal β = 0.48 is only marginal and β = 0.5 is a standard
common choice in other datasets.
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3.5.5 Human Evaluations of GEC Systems
We previously reported results of the selected GEC systems obtained using the
automatic M2

β=0.5-scorer in Section 3.5.3 and presented them in the left part of
Table 3.18. Having the human scores for the subset of sentences annotated for
the metric correlation in Section 3.5.4, we further averaged the sentence scores
to obtain human scores for the GEC systems in individual domains and present
them in the right part of Table 3.18. Recall that since we did not include Office
365 Word and Google Docs in the human score annotation, they do not have the
human scores and whenever we further refer to all systems, they are excluded.

As we can see in Table 3.18, the GEC systems are ordered in the same way
using both the automatic metric and the human scores when measured over the en-
tire dataset. When inspecting the ordering in specific domains, minor differences
can be observed such as between Akces-GEC finetuned and GECCC finetuned in
the Romani domain.

Compared to the M2-scorer, we can use the human scores to reveal whether
using a GEC system for a particular domain provides better results than the
simple ”do nothing” baseline. As we can see, measured over the entire dataset, all
system have higher human score than the ”do nothing” baseline (row Original).
This implies that having documents mixed from all domains, using any of the
GEC systems would result in a better text. However, when we focus on individual
domains, we can see that Korektor scores are worse than the ”do nothing” baseline
on two domains: Natives Formal and Natives Web Informal. When inspecting
the issue more thoroughly, we identified that this is mainly due to named entities
that occur frequently in two domains and which upon an eager change disturb
the meaning of a sentence, leading to severe penalization by human annotators.

The human judgements also confirmed that there was still a large gap between
the optimal Reference score and the best performing models. Regarding the
domains, the neural models in the finetuned mode that had access to data from all
domains seemed to improve the results consistently across each domain. However,
given the fact that the source sentences in the Second Learners domain received
the worst scores by human annotators, this domain seems to hold the greatest
potential for future improvements.

Finally, we used the human scores to illustrate capabilities and also differences
between three systems: Korektor, Synthetic trained and GECCC finetuned. While
Korektor represents the statistical approach with relatively straightforward sug-
gester, two other systems represent the newer neural based approach capable of
performing any operations. Although there are cases in which Korektor corrects
sentences better than even GECCC finetuned, we picked the examples following
the order of human evaluations over whole systems and show them in Table 3.22.

As can be seen in Table 3.22, Korektor replaces original non-words by existing
words in text. Although the proposed variants are often correct in the sense that
they replace out-of-vocabulary words for their correct counterparts, there are
cases in which the replacements are wrong given the context such as replacing
kamarádmi by kamarádi in the second example. Also, Korektor sometimes fails
to correct an existing but, given the context, wrongly used word – keeping hraji
in the third example or sem in the fourth example. The Synthetic trained model
seems to disambiguate between these cases better and does also insert new words
(a in the fifth example), delete redundant words (že in the first example) and also
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reorders words (můžu si → si můžu in the second example). The main benefit of
using the best GECCC finetuned seems to be in a better correction of complicated
cases such as by proposing more appropriate preposition (na instead of v in the
first example) or inserting words for better fluency (si in the fourth example).

System Correction Human Score

Original To je, myslím že, nejkrásnější město ve célem světě. 7
Korektor To je, myslím že, nejkrásnější město v celém světě. 8
Synthetic trained To je, myslím, nejkrásnější město v celém světě. 9
GECCC finetuned To je, myslím, nejkrásnější město na celém světě. 10

Original Chtelá bych také vedet jestli můžu si u Vas objednat jídlo. 6
Korektor Chtěla bych také vedet jestli můžu si u Vas objednat jídlo. 7
Synthetic trained Chtěla bych také vědět jestli si můžu u vás objednat jídlo. 9
GECCC finetuned Chtěla bych také vědět, jestli si u vás můžu objednat jídlo. 10

Original Nejdůležitým je, co má clověk na duši, jaké vstahy má s lidmi
(kamarádmi, kolegami atd), co dělá pro ně. 5

Korektor Nedůležitým je, co má člověk na duši, jaké vztahy má s lidmi
(kamarádi, kolega atd), co dělá pro ně. 6

Synthetic trained Nejdůležitější je, co má člověk na duši, jaké vztahy má s lidmi
(kamarády, kolegy atd), co dělá pro ně. 7

GECCC finetuned Nejdůležitější je, co má člověk na duši, jaké vztahy má s lidmi
(kamarády, kolegy atd.), co pro ně dělá. 8

Original Tatinek a syn hraji v moří. 6
Korektor Tatínek a syn hraji v moři. 7
Synthetic trained Tatínek a syn hrají v moři. 8
GECCC finetuned Tatínek a syn si hrají v moři. 10

Original Máma vaří uklízí, chodí do práce pere pro nás , stará se o nás. 5
Korektor Máma vaří uklízí, chodí do práce pere pro nás, stará se o nás. 7
Synthetic trained Máma vaří a uklízí, chodí do práce a pere pro nás, stará se o nás. 8
GECCC finetuned Máma vaří, uklízí, chodí do práce, pere pro nás, stará se o nás. 9

Table 3.22: Examples of corrections and the scores assigned to them by human
annotators illustrating the improvements between the original sentence and three
automatic systems: Korektor, Synthetic trained and GECCC finetuned.

Main outcomes and conclusions

1) We have created a new dataset for GEC in Czech: Grammar Error Cor-
rection Corpus for Czech (GECCC) with 83 058 sentences that cover four
diverse domains including essays written by native students, informal web-
site texts, essays written by Romani ethnic minority children and teenagers
and essays written by non-native speakers. All domains were professionally
annotated for GEC errors in a unified manner. The dataset is the largest
non-English GEC dataset and is publicly available.
2) We compared several strong Czech GEC systems including commercial
baselines and the newly trained system. The neural models set a strong
baseline for further research.
3) We conducted a meta-evaluation of common GEC metrics across do-
mains in our data. We concluded that M2 and ERRANT scorers with
β = 0.5 are the measures most correlating with human judgements on our
dataset, and we chose the M2

0.5 as the preferred metric for the GECCC
dataset.
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3.6 Diacritics Restoration Reborn
The full paper is available in Chapter 5, and it was published as Náplava et al.
[2021].

2017

Diacritics Restoration 

2018

Spelling Error Correction

2019 2020 2021

GEC - BEA Shared Task

Low-Resource GEC

Constructing Rules 
for Fast GEC 

GECCC - Czech GEC dataset

Diacritics Restoration                    
Reborn

Model Robustness

In the beginning of 2020, while the
annotation process for the new GECCC
dataset was running, we focused on new
developments in NLP and their possi-
ble utilization for (Czech) GEC. During
2019, the BERT model [Devlin et al.,
2019] revolutionized NLP, and became
the backbone of plentiful state-of-the-art models [Devlin et al., 2019, Kondratyuk
and Straka, 2019, Wang et al., 2019, Pires et al., 2019, Wu and Dredze, 2019].
From the architecture perspective, BERT consists of the Transformer encoder. It
thus processes input subwords and using several encoder layers comprising multi-
head self-attention followed by dense layers, computes for each input subword
its contextualized embedding. The great advantage of BERT is that it is (unsu-
pervisedly) pretrained on enormously large corpora, and it has been empirically
shown that the model can be quickly and using a relatively small amount of
supervised data finetuned for various NLP tasks with great success.

Given the success of applying BERT to various tasks, the natural question
was whether and to what extent would it be possible to build a good GEC system
based on BERT. The most prominent issue with the BERT model is that it is just
an encoder that outputs only as many contextualized embeddings as there are
subwords on the input. Building a model that for each input subword predicts
the possible replacement string would lead to the model that can correct local
errors, but would not be able to cover complex rewrites that change multiple
nearby tokens. Nevertheless, the model would most likely be much faster than
the Transformer model that we previously used for GEC (see Section 3.3.2) as it
does not contain an autoregressive decoder.

While discussing whether giving up several complex error types in favour of
higher speed allowed by non-autoregressive decoding and possibly also higher
accuracy on perhaps more frequent local errors, we decided to first try the model
on the diacritics restoration task. In the diacritics restoration task, there is a
one-to-one mapping between input and target characters (subwords) and thus
this task is an ideal candidate for experimenting with the BERT model. As we
have already developed the multilingual dataset covering 12 languages [Náplava
et al., 2018], it would be meaningful to train and evaluate the model on this
dataset, and compare the new results to the previous ones.

Apart for the model results themselves, we were further interested in a detailed
model analysis on Czech. Specifically, we considered three research questions:

• While the testing set of our previous multilingual dataset consists of only
clean Wikipedia sentences, it is a well known fact that the (deep neural)
models may deteriorate substantially when the input domain is changed [Be-
linkov and Bisk, 2017, Rychalska et al., 2019]. We were therefore inter-
ested, how well would the model perform on user domains different from
Wikipedia.
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• Our multilingual dataset was created by acquiring Wikipedia articles and
by stripping the diacritics from them. This naturally implies that for each
undiacritized text, there is a single gold reference text. It is, however, possi-
ble that the diacritization stripping process introduces ambiguity, i.e. that
for an undiacritized text, multiple texts with diacritics are correct and plau-
sible. Moreover, even the original texts on Wikipedia may had contained
wrong diacritics. Given these two issues, we formulated the second ques-
tion, which was to explore the model errors in detail and classify them
to four groups: (1) real errors, (2) plausible variants, (3) mistakes in the
annotation, (4) mistakes in both the annotation and prediction.

• Finally, we were interested, whether there is an observable characteristic
in the real model errors that will be identified by the previously described
analysis.

Objectives of the work

1) Implement and train a model for diacritics restoration based on BERT,
and evaluate it on our multilingual dataset comprising 12 languages.
2) Test model robustness on domains other than Wikipedia.
3) Analyse model errors on the Czech language in detail. Specifically, cat-
egorize them based on whether they are real errors or plausible variants.
Further, inspect the real errors thoroughly.

3.6.1 Model
Vaswani et al. [2017] proposed to finetune BERT for token classification tasks
by adding a single dense layer that is applied on all outputs. When compared
to the recurrent model that we used previously for the diacritics restoration (see
Section 3.1.1 and Figure 3.2), the models differ in two main aspects: (1) bidirec-
tional RNN got replaced by BERT model, and (2) input tokenization changed
from individual characters to subwords.

Using BERT model instead of RNN layers provides multiple benefits. First,
several pretrained checkpoints exist for BERT, and these make the finetuning for
various tasks easier. We remark that before BERT, RNNs were pretrained on
large unlabelled data to produce contextualized word embeddings [Peters et al.,
2018], however, the pre-trained BERT model reaches considerably better results.
Second, the self-attention mechanism used in BERT layers allows capturing long
range dependencies easier. And third, the BERT model does not employ recurrent
layers and thus can be parallelized better.

Changing input tokenization from characters to subwords provides a good
trade-off between the size of the input vocabulary and the actual size of the input
passed to the model. However, when used naively for diacritics restoration, it
brought a potential issue with the size of the output vocabulary. If we used
the naive approach that would for each input subword predict its replacement
as its diacritized variant, the size of the output vocabulary may happen to be
quite large as it contains all the subwords used in the language. Having the large
output vocabulary could make the training difficult. Therefore, we decided to
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input instruction result note
dite 1:CARON;3:ACUTE dítě optimal instruction
dite 1:CARON díte
dite 3:ACUTE ditě
dite <KEEP> dite no change
dite 2:RING ABOVE dite impossible instruction ignored

Figure 3.5: Diacritization instructions examples for input ”dite (dítě)” with 4
characters, indexed from 0 to 3. Index-instruction tuples generate diacritics for
the given input.

instead predict instructions on how to restore diacritics. Specifically, one such
instruction consists of index-diacritical mark tuples that define on what index of
the input subword a particular diacritical mark should be added. It is evident
that the size of the final output vocabulary is in this case at most the size of
the direct diacritized variant approach, but usually much smaller as for certain
different subwords and their different diacritized variants, the same instruction
exist. A simple example are two undiacritized subwords dam and sam with correct
diacritized variants dám and sám covered by a single instruction 1:CARON.

An example of a diacritization instructions set can be seen in Figure 3.5.
Given an input subword dite (dítě), with four characters indexed from 0 to 3, the
appropriate diacritization instruction is 1:ACUTE;3:CARON, in which acute is
to be added to i and caron is to be added to e, resulting in a properly diacritized
word dítě. Obviously, the network can choose to leave the (sub)word unchanged,
for which a special instruction <KEEP> is reserved. Should the network acciden-
tally select an impossible instruction, no operation is carried out and the input
(sub)word is left unchanged.

To construct the set of possible diacritization instructions, we tokenize the
undiacritized text of the particular training set, and align each input token to
the corresponding token in the diacritized text variant. The diacritical mark in
each instruction is obtained from the Unicode name of the diacritized character
(see Section 3.1. We keep only those instructions that occurred at least twice in
a training set to filter out extremely rare instructions that originate for example
from foreign words or wrong spelling.

To assess the extent to which the usage of instructions reduced the size of
output vocabulary when compared to using direct diacritized variants, we con-
structed vocabularies for both cases. For each language, we used the training data
from the multilingual dataset for diacritics restoration. To filter out extremely
rare cases, we again removed all diacritized variants and instructions that oc-
curred only once. As can be Seen in Table 3.23, the instruction approach shrinks
the size of the output vocabulary by an order of magnitude.

As we already stated, the great advantage of BERT is that it comes with a
set of pretrained models. We use the well-known bert-base-multilingual-uncased
model9. It was trained on 102 languages, and all 12 languages that we use are
among them. The input texts are tokenized using WordPiece algorithm, and the
vocabulary consists of 110 000 subwords.

9https://github.com/google-research/bert
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Language Direct Variants Instructions
Set Size Set Size

Czech 38 635 1 005
Vietnamese 23 106 2 018
Latvian 30 026 720
Polish 20 034 1 005
Slovak 37 851 785
French 23 577 681
Irish 6 846 189
Spanish 26 233 492
Croatian 16 180 541
Hungarian 35 124 767
Turkish 17 565 1 005
Romanian 33 349 1 677

Table 3.23: Comparison of final output set size for using the direct variants and
intructions options.

ka[CLS]
1 2

##
3

zde dite
4

mus
5

spat
6

i
7

##

BERT
1 2 3 4 5 6 7

FFNN + softmax

0.5%

...

79%

...

0%

<KEEP>

1:ACUTE;3:CARON

0:RING ABOVE;3:CARON

Figure 3.6: Model architecture. Text without diacritics, tokenized into subwords,
is fed to BERT, and for each of its outputs, a fully-connected layer followed by
softmax is applied to obtain the most probable instruction for diacritization. The
##-prefixes of some subwords are added by the BERT tokenizer.

We present the final model architecture in Figure 3.6. The input texts are
tokenized into subwords, these are then processed by BERT, and for each input
subword, a distribution over a set of instructions is obtained by applying a dense
layer followed by a softmax. We select the instruction with maximum probability.

3.6.2 Evaluation on the Multilingual Dataset
We trained a separate BERT model on each of the 12 languages present in our
previously created multilingual dataset (see Section 3.1.3). We present the mod-
els’ alpha-word accuracy including 95% confidential intervals computed using the
bootstrap resampling method in Table 3.24. For each language, we further show
the size of the instruction set, and we also include results of our previous RNN
model and the former state-of-the-art combination of RNN model and an exter-
nal language model (RNN+LM) for comparison. Finally, we report the error
reduction of our BERT model with respect to RNN+LM.

On 9 out of 12 languages, our approach significantly outperforms previous
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Language Instruction RNN RNN+LM Ours Error
Set Size [Náplava et al., 2018] [Náplava et al., 2018] Reduction

Czech 1005 98.71 99.06 99.22 ±0.046 17 %
Vietnamese 2018 97.55 97.73 98.53 ±0.037 35 %
Latvian 720 96.57 97.49 98.63 ±0.045 45 %
Polish 1005 99.03 99.55 99.66 ±0.041 24 %
Slovak 785 98.84 99.09 99.32 ±0.030 25 %
French 681 99.54 99.71 99.71 ±0.016 0 %
Irish 189 98.46 98.71 98.88 ±0.040 13 %
Spanish 492 98.46 99.65 99.62 ±0.018 − 9 %
Croatian 541 99.51 99.67 99.73 ±0.018 18 %
Hungarian 767 99.02 99.29 99.41 ±0.038 17 %
Turkish 1005 99.18 99.28 98.95 ±0.046 − 46 %
Romanian 1677 97.99 98.37 98.64 ±0.056 17 %

Table 3.24: Comparison of alpha-word accuracy of our model including 95% con-
fidential intervals to previous state-of-the-art on 12 languages.

state-of-the-art RNN+LM. The most significant improvements are achieved on
Vietnamese and Latvian, for which the error gets reduced by more than 30%. On
11 out of 12 languages, our approach significantly outperforms RNN approach
that does not utilize an external language model. Although we tried to inspect,
why BERT performs substantially worse on Turkish, we did not find any obvious
reason.

3.6.3 Model Domain Robustness
Having trained the new state-of-the-art model for Czech, we were further inter-
ested, how well such model performs on various text domains. As we previously
created the new Czech dataset for grammatical error correction GECCC that
comprises four different user domains, we decided to test the model robustness
on these data.

The input texts in the GECCC dataset comprise all types of different errors.
To create target data for our experiment, we applied all correcting edits that fix
errors in diacritics and casing.10 We left other errors intact, but did not evaluate
on words that contain these errors, because they are not directly relevant to
diacritics, and in many cases, the errors are so severe that evaluation would be
controversial. Although the severely perturbed words are omitted from evaluation,
they still remain in the sentence context, and may still confuse the diacritization
system, making the task potentially more difficult.

We evaluated our model on all domains of the GECCC dataset, and present
the results in Table 3.25 in the column Original. For comparison, we also report
the results previously obtained on the multilingual dataset (row Wiki). Surpris-
ingly, the model performance remains roughly stable on all domains despite their
noisiness. On each domain, the results stay above the 99% alpha-word accuracy
indicating strong performance. We hypothesise that one of the facts behind the
strong results is the model itself, and especially that it operates over subwords.
These might help the model to recover in cases with smaller typos. Further, we
also hypothesise that although the writers produced quite noisy texts, they at the
same time avoided foreign words that are generally harder to correctly diacritize.

10We corrected casing due to the manual error analysis performed further.
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Domain Original Annotated Annotated w/o
annotated typos

Wiki 99.22 99.49 99.66
Natives Formal 99.50 99.75 99.75
Natives Web Informal 99.12 99.53 99.62
Romani 99.11 99.46 99.54
Second Learners 99.18 99.73 99.79

Table 3.25: Alpha-word accuracy of Czech model on 5 datasets from various
domains.

3.6.4 Detailed Error Analysis on Czech
Having trained the new state-of-the-art model for Czech, we were further inter-
ested in the remaining potential on Czech diacritics restoration, i.e. in a detailed
error classification. Recall that we identified two main subtasks:

1. Classify the reported errors into 4 categories: (1) system correct, gold cor-
rect (plausible variant), (2) system correct, gold wrong (system corrects a
data error), (3) system wrong, gold wrong (uncorrected error in data) and
(4) system wrong, gold correct (real errors).

2. Obtain better insight into real errors.

We employed annotators to classify each reported model error. For each model
error, annotators classified two annotation items: whether the model prediction is
correct, and whether the gold variant is correct. For each variant, they responded
to three questions: (1) Is the word correct given a context of the current sentence?
(2) Is the word still correct if the context is extended by two previous and two
following sentences? (3) Does the word contain a spelling error? The motivation
behind the first two questions was that certain ambiguities may be resolved on a
document context, but not on a sentence context. A simple example of this phe-
nomenon is the following sentence: K nejvýznamnějším patří zmiňované vily/víly.
The third question was added to clean the data as they sometimes contained
uncorrected spelling errors.

Annotators classified 4 702 mispredicted words from the Wikipedia domain
from the multilingual dataset (see Section 3.6.2) and also from the four domains
of the GECCC dataset (see Section 3.6.3).

The basic analysis of the annotated system errors revealed that out of 4 702
wrongly diacritized words in the all our data, 960 of the mispredicted words
contain a spelling error, and we do not consider them further. The remaining
3 742 mispredicted words were categorized as follows:

1. System correct, gold correct: 19% (694 of 3 742) (plausible variants)

2. System correct, gold wrong: 25% (964 of 3 742) (system corrects a data
error)

3. System wrong, gold wrong: 1% (31 of 3 742) (uncorrected error in data)

4. System wrong, gold correct: 55% (2 084 of 3 742) (real errors)
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Interestingly, the annotations revealed that about 44% of originally reported
errors are not errors at all. In 694 cases (19%) both the system word and the
gold word are correct, which is justified by the plausible variants. In 964 cases
(25%) the original gold annotation was wrong whereas the system annotation
was correct, which means that the system effectively corrected some errors in the
original data. We used these observations to refine results previously reported in
Table 3.25 and extended them by two types of results: Annotated, which uses the
new annotations to change the false negative data to correct in the evaluation,
and Annotated w/o annotated typos, which also removes words with reported
spelling errors from the evaluation. As can be seen, using the new annotations
we report 35% to 67% error reduction. Moreover, when the spelling errors are
further excluded from evaluation, the error gets additionally reduced by up to
33%.

The annotations also revealed 2 084 real system errors. In these errors, anno-
tations confirmed the existence of an interesting discourse phenomenon, in which
a word is correctly diacritized given the current sentence, however it is incorrectly
diacritized given a larger context. As these cases constituted only 50 out of 2 084
real system errors, improving diacritization model to process larger contexts effec-
tively to correct them promises only marginal improvements. To further inspect
the real errors in more detail, we employed morphological annotations. Specifi-
cally, we analysed real errors by means of the Universal POS tags and Universal
features [Nivre et al., 2020]. For better insight into obtained characteristics, we
also analysed morphological features of plausible variants, and found out that
the morphological characteristics of the real errors and plausible variants bear
similarities. Unlike plausible variants, the real errors differ more often also in
their lemma.

Main outcomes and conclusions

1) We implemented a model for diacritics restoration based on BERT.When
evaluated on the multilingual dataset with 12 languages, it outperformed
previous state-of-the-art combination of recurrent neural model combined
with an external language model on 9 languages, and the sole recurrent
neural model without an external language model on 11 languages signifi-
cantly.
2) The model exhibited stable performance even if we tested it on other
more noisy domains.
3) We annotated all reported mispredictions on Czech, and found out that
44% of the model errors were not errors, but either plausible variants or
errors in the original data. Finally, we analysed the real errors using mor-
phological annotations.

3.7 Rules and Model For Fast Grammatical Er-
ror Correction

The full paper is available in Chapter 5, and it was published as Straka et al.
[2021].
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As we were training and evaluating
models for diacritics restoration based
on BERT, Omelianchuk et al. [2020] pro-
posed a model named GECTOR that
employed BERT for English GEC. They
reported new state-of-the-art results as
well as speed-ups up to 10 times compared to the previous state-of-the-art seq2seq
models based on Transformer. Omelianchuk et al. [2020] in their approach first
construct a dictionary comprising word-level rules that are of two types: basic
(KEEP, DELETE, 1 167 token-dependent APPENDs and 3 802 REPLACEs) and
g-transformations (custom-made rules for e.g. casing change, singular to plural
noun change or verb tense change). The constructed rules are then used to create
training data for the model so that exactly one tag is predicted for every word.
The model itself is based on BERT, upon which a linear layer followed by the
softmax activation is stacked to predict the most probable instruction. As the
rules are constructed on the word level, outputs are considered only for the first
subword of each word. Finally, authors employ several other tricks to achieve
state-of-the-art results as for example a detection layer to be able to tweak preci-
sion in favour of recall, three-stage training and iterative decoding.

The set of rules constructed by Omelianchuk et al. [2020] was efficient for
English corpora, which rarely contain spelling errors, and for English language,
which does not have diacritization marks, and its morphology is very modest
compared to morphologically rich languages such as Czech or Russian. Using a set
of word-level transformations designed for English, all character-level corrections
would have to be handled by the generic word-for-word REPLACE rule, leading
to an explosion of rules. As our primary focus was on developing models for Czech,
we were naturally interested in a set of rules of modest size and good coverage
for a broad variety of Czech errors, including even complicated categories such as
spelling errors and errors in diacritics. As opposed to Omelianchuk et al. [2020],
who manually designed their g-transformations to boost the coverage of errors, we
were rather interested in an approach for constructing the rules without manual
intervention, which could be easily applied also to other languages. Naturally,
having good error coverage does not necessary imply good model performance,
therefore, we were also interested in the results of a GEC model trained using the
best rule set.

Objectives of the work

1) Propose and evaluate different approaches to creating rules for GEC
model based on BERT.
2) Evaluate the best rule set by training the BERT GEC model.

3.7.1 Constructing Rules
Operating on the word-level rules allowed Omelianchuk et al. [2020] to define
specific g-transformations for changing the word grammatical properties such as
the tense in case of a verb or number in case of nouns. On the other hand, as we
already described, the word-level approach poses issues with representing errors
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for example in spelling, as naively representing every possible misspelling with
one REPLACE rule would result in a dictionary of enormous size. Given that
we encode an input sentence using subwords for BERT, it also seemed natural
to create rules already on the subword level. As it is definitely more probable to
share rules on the subword level than on the word level, it is likely that the final
dictionary will be smaller for the subword level approach.

Recall that Omelianchuk et al. [2020] proposed two types of word-level rules:
basic and g-transformations. As g-transformations are manually created specif-
ically for English, we decided to keep only the basic rules comprising KEEP,
DELETE, token dependent APPENDs and REPLACEs operations for further
experiments and refer them as string later. Although there are now two mod-
ifying operations (REPLACE and APPEND), the situation still resembles the
previously discussed issue in diacritics restoration (see Section 3.6.1), where we
proposed to use character-level instructions instead of direct diacritized variants.
These turned out being often shared between individual subwords, and utilizing
them reduced the dictionary size significantly. Similarly, in the GEC scenario,
we considered using character-level instructions instead of the word-level basic
transformations. This time, we decided to base them on minimal edit scripts, i.e.
the sequence of character-level inserts, replaces and deletes that convert the orig-
inal subword to a correct one. To further reduce the dictionary size, we decided
to index each edit operation either from the beginning of the input subword (if
it involves the first half of it) or from the end of it (otherwise).

Overall, we identified two dimensions of the rule construction: the unit on
which the rules are applied (word vs subword) and the granularity of the trans-
formations (string or char). These give rise to a set of 4 possible combinations:

• character transformations applied on each subword separately (char-at-
subword),

• character transformations applied on each complete word (char-at-word),

• string transformations applied on each subword (string-at-subword),

• string transformations applied on each complete word (string-at-word).

In such terminology, the transformations proposed by Omelianchuk et al.
[2020] can be referred to as string-at-word, and our previous diacritical transfor-
mations as char-at-word. An example of the described transformation types is
illustrated in Figure 3.7.

To assess the effect of the number and the type of transformations, we com-
puted the potential maximum F0.5 score with the M2-scorer. We evaluated it for
4 languages: Czech, German, Russian and English by first generating transforma-
tion dictionary from a mixture of authentic training data and a small portion of
synthetic data (see Section 3.4.1), and then measuring the coverage on the par-
ticular language test set (AKCES-GEC for Czech11, FALKO-MERLIN GEC for
German, RULEC-GEC for Russian and CoNLL 2014 test set for English). As we
were computing the potential maximum F0.5 score, we allowed to use any trans-
formation from the generated set of rules for each gold correction which results

11Note that by the time of performing the experiments the GECCC dataset was not yet
compiled.
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Input gatherin leafes
Correct Gathering leaves

Subwords ␣gathe rin ␣lea fes

string-at-word ␣Gathering ␣leaves
string-at-subword ␣Gathe append g keep ves

char-at-word append g,
uppercase 2nd

replace 3rd
from end
with v

char-at-subword uppercase 2nd append g keep replace 1st
with v

Figure 3.7: Example of the four types of transformations that we proposed and
evaluated for BERT-based GEC.

in the desired target. Whenever a particular error was unrepresentable using the
generated dictionary, the original input was copied. For each transformation type
and language, we generated three dictionaries differing in the minimal count the
transformation had to appear in training data to be kept: once, twice and three
times. Moreover, we experimented with both the cased and uncased versions of
the multilingual BERT. We visualize the results of the experiment in Figure 3.8.

From Figure 3.8 it was evident that across all four measured languages, the
character-level transformations applied at subwords (char-at-subword, green) had
the highest potential in terms of upper-bound F0.5 score. At the same time, word-
level replacements (string-at-word, red) did not scale well. This effect was par-
ticularly apparent for languages other than English, for which the upper-bound
string replacement F0.5 (string-at-word, red) falls below the current GEC systems
state-of-the-art F0.5. This means that even if the model was trained to predict
everything perfectly, it would still not reach state of the art. On the other hand,
the baseline scores of all transformations sets provided solid results for English,
which confirmed that the case is not that difficult for English.

3.7.2 Model
We trained the GEC model using the char-at-subword transformations, which
achieved the best upper-bound score. We used the same model as for the diacrit-
ics restoration, i.e. input subwords are passed into the pretrained BERT, BERT
creates for each input subword a contextualized embedding vector, and the em-
bedding vectors are fed into a simple softmax classifier that projects embedding
vectors into a distribution over a set of transformations from which the instruc-
tion with the highest probability is selected. We trained the model for Czech,
German and Russian, in two stages: first, models were pretrained on a large
synthetic corpus, and then finetuned on a mixture of synthetic and authentic
data.

Similarly to our experiments on the BEA 2019 Shared Task on Grammatical
Error Correction, we applied two additional tricks: iterative decoding, which re-
runs the model iteratively on the corrected output, and class weighting, which
assigns different weight to the KEEP class and other classes in the training objec-
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Figure 3.8: F0.5 depending on number and type of transformations, if all transfor-
mations were correctly predicted (upper bound). Top and left is better (higher
F0.5, fewer rules), bottom and right is worse (lower F0.5, more rules). Circled
numbers 1⃝, 2⃝ and 3⃝ denote that we kept transformations present at least
once, twice or three times in the training data, respectively (larger means less
transformations).

tive. We present the results on Czech, German and Russian in Table 3.26 for the
three versions of the model: (1) model that was only pretrained on synthetic data
(Ours pretrained), (2) model that was also finetuned on the mixture of authen-
tic and synthetic data (Ours finetuned) and (3) the same model when applied
iteratively (Ours finetuned iterative). We compare our results to the results that
we previously achieved with the seq2seq Transformer model (see Section 3.4.2
and Section 3.4.3), to the models of Rothe et al. [2021] and to Korektor [Richter
et al., 2012] on Czech, Boyd [2018] on German and Rozovskaya and Roth [2019]
on Russian.

Table 3.26 shows that our prototype models exhibit solid results, which are
however inferior to their former seq2seq counterparts. We hypothesized that
similarly to Omelianchuk et al. [2020], more training tricks such as the two-stage
finetuning or an additional error detection branch would be needed to make our
prototype model more competitive. In the end, we had to perform several tweaks
previously also in the case of the seq2seq Transformer model.

Following Omelianchuk et al. [2020], who reported speed-ups of the model up
to 10 times when compared to the autoregressive baselines, we also compared
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Model Params F0.5
Czech German Russian

Richter et al. [2012] 58.54 – –
Boyd [2018] – 45.22 –
Rozovskaya and Roth [2019] – – 21.00
Náplava and Straka [2019a]synt 210M 66.59 51.41 40.96
Náplava and Straka [2019a]fine 210M 80.17 73.71 50.20
Rothe et al. [2021] base 580M 71.88 69.21 26.24
Rothe et al. [2021] xxl 13B 83.15 75.96 51.62

Ours pretrained 172M 64.29 44.29 25.36
Ours finetuned 172M 72.86 62.92 36.62
Ours finetuned iterative 172M 75.06 65.95 38.68

Table 3.26: Comparison of our GEC models based on BERT evaluated on Czech
(AKCES-GEC), German (FALKO-MERLIN GEC) and Russian (RULEC-GEC).
For each system, we report the F0.5 score on the particular test set.

the runtime performance of our BERT base model to the previous seq2seq model
based on Transformer architecture, and found out that our model based on BERT
is circa four times faster as can be seen in Table 3.27.

Model Time Per Sentence
CPU GPU

Seq2Seq Transformer 162.34 22.36
BERT-GEC 41.26 5.09

Table 3.27: Average time in milliseconds required to process a single sentence in
the Czech test set, measured using both (a) CPU decoding (32-core Intel Xeon)
and (b) GPU decoding (Nvidia Quadro P5000).

Main outcomes and conclusions

1) We compared the character transformations to previously used word-
level transformation instructions in a BERT GEC model, and have shown
that character-based rules have better coverage and scale better in Czech,
German and Russian.
2) We also trained character-based GEC tagging models for these languages
with promising results.

3.8 Understanding Model Robustness to User
Generated Noisy Data

The full paper is available in Chapter 5, and it was published as Náplava et al.
[2021].
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The last topic we have worked on
slightly differs from the previously dis-
cussed topics as it does not directly
aim at developing systems or datasets
for natural language correcting systems,
but rather tests state-of-the-art systems
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under noisy data. It is a well known fact
that when models are run with data containing natural noise such as spelling er-
rors, their performance deteriorates [Belinkov and Bisk, 2017, Heigold et al., 2018,
Glockner et al., 2018, Ribeiro et al., 2018, Rychalska et al., 2019]. This is natu-
rally an important concern for practical applications as system results are often
reported on clean test sets, but they are often significantly worse when deployed
and tested with real user texts, which often contain natural errors.

Although several studies were conducted on assessing performance drop of
models under noisy data, the studies were mostly limited either to a single system
(e.g. machine translation), a single user domain (e.g. errors from second learners),
a single language (e.g. English) or the errors used to test models did not resemble
the real human errors (e.g. the probability of introducing spelling error was chosen
arbitrarily).

Motivated by these issues, we decided to create a framework that would model
real human errors realistically, and use the system to test the robustness of mul-
tiple state-of-the-art systems for various NLP tasks in several languages. Fur-
thermore, if our evaluation confirms the performance drop in model performance
in noisy settings, we wanted to propose and evaluate strategies to mitigate the
performance drop.

Objectives of the work

1) We want to implement a system capable of introducing errors that would
resemble real human errors. The framework should work in multiple lan-
guages, and be capable of modelling errors of a particular user group.
2) The proposed system should be used to test performance drop of the
current state-of-the-art systems.
3) If the performance drop is substantial, strategies to mitigate it should
be proposed and evaluated.

3.8.1 KaziText
Robustness of NLP models to natural noise would ideally be evaluated on texts
with authentic noise, with error corrections annotated by humans. This perfect-
world setting, however, requires an immense annotation effort, as multiple target
domains have to be covered by well-educated human annotators for multiple
NLP tasks in a range of languages. To ease the annotation burden, we proposed
a framework, which we named KaziText, for introducing errors likely produced
by a human in a text.

To make the introduced errors and their distribution similar to human er-
rors, we decided to estimate them from existing GEC corpora. We considered
basic edits as present in the typical M2 format, and represented them as rewrites
corrected fragment → original fragment. For each such pair, the probability of
replacing the corrected fragment with the original fragment in a text would be
proportional to how often the corrected fragment got actually replaced from orig-
inal fragment in the corpus. The main issue of this simple approach lies in the
fact that it can only introduce previously seen patterns, and does not generalize
to other unseen errors. Ideally, when seeing for example that a lower-cased word
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was all upper-cased, one would want to obtain a generic rule applicable to all such
words and not only to one specific. To accomplish that, apart for this simple error
rewrite category (Common Other aspect), we defined a set of additional 7 error
categories, in our work called aspects, that model the most typical error types,
and their internal probabilities are estimated from GEC corpora:

1. Diacritics Strip diacritics either from a whole sentence or randomly from
individual characters.

2. Casing Change casing of a word, distinguishing between changing the first
letter and other ones.

3. Spelling Insert, remove, replace or swap individual characters (for example
wrong → worng) or use ASpell12 to transform a word to other existing word
(break → brake).

4. Suffix/Prefix Replace common suffix (do → doing) and prefix (bid → for-
bid).

5. Punctuation Insert, remove or replace punctuation.

6. Whitespace Remove or insert spaces in text.

7. Word Order Reorder several adjacent words.

8. Common Other Insert, replace or substitute common phrases as seen in
data (the → a, a lot of → many). This is the aspect which should learn
language specific rules.

The probability of each aspect is estimated separately, and in general, any
subset of them can be used to noise a text. In our experiments, we either took
only the first four of them in case that we were testing systems for which the
number of input words should have remained unchanged, or all of them in the
rest of the cases. The framework does allow to noise the text at a particular
error rate of the final text by scaling up or down its internal probabilities. In this
context, we refer to a corpus error level being the error rate corresponding to the
error rate of a particular GEC corpus.

A complete set of estimated aspects’ probabilities is called a user profile. We
estimated such user profiles for 4 languages, and for each language also for mul-
tiple user domains:

• English: natives and second learners

• Czech: natives, natives web informal, second learners and Romani

• German: second learners

• Russian: second learners
12http://aspell.net/
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3.8.2 Assessing Performance Drop in Noisy Settings
We identified 5 common NLP tasks morpho-syntactic analysis, named entity
recognition (NER), neural machine translation (NMT), GLUE benchmark and
reading comprehension), obtained the existing state-of-the-art systems, and tested
them against natural noise in two settings: (1) with respect to amount of noise
in the text, and (2) with respect to error types.

,We present a visualization of robustness of the state-of-the-art BERT model
trained on 4 subtasks of the GLUE benchmark to the varying text noisiness
noised using two English profiles (English natives and English second learners)
in Figure 3.9. We can see that the performance decreases roughly linearly with
respect to the amount of erroneous tokens for all subtasks. The performance
drop is the largest for the Quora Question Pairs subtask (QQP), for which we
can see that when the text of the questions is noised using a natives’ corpus level
error, the expected performance drop is circa 3 relative points, and when noised
on the second learners’ corpus level error, the expected performance drop is more
than 8 relative points. We can also see that the performance drop is circa the
same for the lines with the same colour. This is an interesting observation, as the
dashed line and the dotted line show two different user domains with significantly
different errors.
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Figure 3.9: GLUE model performance deterioration with respect to the amount
of token edits in its texts. We present a relative task score and each tasks’ text is
noised using two user profiles: English native speakers (dashed line) and English
second learners (dotted line).

After running multiple experiments with multiple systems on multiple tasks
and languages, we found out that the following observations applies across all
the measurements: (1) the system performance decreases approximately
linearly with the amount of token edits, and (2) it is the sheer amount
of noise rather than the distribution of aspects that contributes to the
model performance deterioration. The second observation comes from the
fact that models behave similarly on texts noised with different user profiles, while
their performance decreases with increasing text noisiness.

We also analysed model robustness with respect to error types. One such
experiment for NER with additively stacked error types is presented in Figure 3.10.
We did not find any general conclusions from these experiments that would hold
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for all measurements such as we found out when doing measurements with respect
to the text noisiness level. Nevertheless, the experiments revealed that some
tasks are more sensitive to certain error types: (1) spelling and affixes make for
the major performance drop in morpho-syntactic analysis, NER and NMT, (2)
casing is a crucial aspect for NER, and (3) punctuation is important for NMT
and reading comprehension. Finally, some tasks, most notably lemmatization,
were shown to be more sensitive to noise than others.
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Figure 3.10: NER model performance deterioration with respect to additively
stacked error types. We present a relative task score for models in 3 languages
and texts noised multiple user profiles.

3.8.3 Noise Mitigating Strategies
Having observed a significant performance drop for all measured tasks, we were
further interested in strategies to alleviate the model deterioration. The majority
of research on improving model robustness is dedicated to training on a mixture of
original and noisy data. The same procedure is usually used for generating both
the test corpus and the training data [Belinkov and Bisk, 2017, Heigold et al.,
2018, Ribeiro et al., 2018, Rychalska et al., 2019]. This approach is often called
adversarial training, although the training data are typically not found using
adversarial attacks [Kurakin et al., 2018], but rather using synthetic approaches
or backtranslation [Sennrich et al., 2016]. We decided to examine this approach,
and to generate the noisy part of the training corpus using KaziText.

The second approach we came up with was text preprocessing with a GEC
model. In this approach, we first correct the noisy texts using a GEC model,
and then input the corrected data into the tested systems. For correcting texts,
we use our best models for Czech, English, Russian and German as described in
Section 3.4. We further refer to this approach as the external approach, given
that the corrections are performed externally. The first approach, in which the
model is trained on a mixture of original and noisy data, is further referred to as
the internal approach as the model must perform corrections internally.

Similarly to experiments on testing model robustness in the previous section,
we performed extensive measurements by testing the models on all 5 selected
tasks in multiple languages. Note that for the internal approach, this involved
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retraining noise-aware models, while the external approach reuses the original
ones. We present one such experiment in Figure 3.11 (the complete results can be
found in the full paper in Chapter 5), which visualizes experiments performed for
lemmatization models in Czech and English with the original models (solid lines),
internal approach (dotted lines) and external approach (dashed lines). We can
see that despite that the original model performs slightly better on the original
clean texts (0% token edits), from circa 3% error rate, both noise mitigating
strategies start outperforming the original model. It is evident that the slope of
lines depicting the original approach is significantly steeper than the slope of lines
for both noise mitigating strategies. It is also evident that for lemmatization, the
external approach works better. When the noise is introduced on the corpus error
level (see vertical lines EN corpus level and CS corpus level), the error measured
for the external approach is smaller by more than half when compared to the error
of the original model.
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Figure 3.11: Comparison of different noise coping strategies on the lemmatization
task. The solid lines depict the original model, the dotted lines represent the
internal approach to alleviate the performance drop and the dashed lines represent
the external approach.

After running multiple experiments with multiple systems on multiple tasks
and languages, we found out two interesting observations that hold for all settings:

• Despite the original model working better on error-free texts, from rel-
atively low noise levels of circa 5% token edits, both the inter-
nal and the external approaches alleviating the performance drop
perform better. With increasing amount of noise in a text, the difference
between the original and our two noise mitigating approaches grows. Ta-
ble 2.1 and Table 3.17 illustrate that error rates of circa 5% are typical
for texts written by native speakers, and that other user domains such as
second learners produce texts with significantly higher amount of noisiness.
This observation indicates that for any system that processes real human
data, either one of the noise mitigating strategies should be considered.

• The external approach works better than internal approach on
low resource tasks (e.g. morphosyntactic analysis and NER), for which
the training data are rather scarce. On the other hand, the internal
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approach works better on the machine translation task, for which
there is a large amount of training data and a model with greater capacity.
We illustrate this observation on three tasks: morpho-syntactic analysis,
NER and NMT or Czech models in Figure 3.12. Its first row presents
performance of models on error-free texts, and the second row illustrates
performance on texts noised using the second learners user profile at the
corpus error level, i.e. tested on texts that have the same error rate as the
typical texts produced by second learners.
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Figure 3.12: Comparison of three models – clean, noise-trained (internal) and
GEC-preprocessed (external) – on three tasks in Czech second learners profile.
The upper row presents the results on the original clean test data, the lower row
on the test data with corpus error level noise.

Main outcomes and conclusions

1) We proposed a tool named KaziText for statistical modelling of natural
noise that estimates the error probabilities from GEC corpora.
2) We extensively evaluated several state-of-the-art NLP downstream sys-
tems with respect to their robustness to input noise, both in increasing
level of text noisiness and in variations of error types. We confirmed that
the noise hurts the model performance substantially.
3) We compared two coping strategies: training with noise and prepro-
cessing with GEC, concluding that each strategy is beneficial in different
scenarios.
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4. Conclusion
Over the course of my Ph.D. studies, the state of natural language correction
has advanced significantly. The deep neural models have pushed the original
statistical models, such as the phrase-based machine translation systems used in
grammatical error correction, to the sideline, datasets that in 2017 existed only for
English and only for specific user domains, such as English second learners, now
exist for multiple languages and for multiple user domains, and consequently,
also the correction models now work decently in multiple languages. Finally,
evaluation metrics have been better analysed to find the metrics that correlate
the best with human judgements. Our work has contributed to natural language
correction in three major areas: (1) diacritics restoration, (2) grammatical error
correction and (3) testing model robustness under noisy scenarios. In the majority
of our work, we concentrated on Czech, which in our opinion lacked behind the
work done in English in many aspects such as non-existence of standardized
datasets or using only pre-neural models. In nearly five years of our work, the
situation turned significantly better – we created multiple datasets and models,
analysed evaluation metrics, and altogether brought the Czech field closer or even
matched it to the research being conducted on English.

Starting with diacritics restoration, we have compiled and made freely avail-
able a dataset comprising 12 languages, for which the diacritics restoration is
relevant and non-trivial task. We used the dataset to build two state-of-the-art
models. The first one combines a bidirectional recurrent neural network with
an external statistical n-gram language model, while the second model developed
three years later is based purely on a neural network called BERT. After reaching
new state-of-the-art results, we further analysed the latter model more thoroughly
on Czech, and found that manual evaluation of model outputs is needed to assess
the real model performance as multiple diacritization variants often exist for an
undiacritized text. Our analysis also revealed that the performance of our model
is surprisingly stable across texts that contain also other type of errors such as
grammatical or spelling ones that come from different user domains such as native
speakers or second learners.

One of the major outcomes of our work in grammatical error correction is
that we have shown that using synthetic data in languages with low amount of
annotated data works remarkably well. Using a relatively simple process to gen-
erate artificial data, our model based on a seq2seq Transformer outperformed
the baselines in low-resource German and Russian significantly. Moreover, we
outperformed previous state of the art in German and Russian even when using
only synthetic data and no annotated data at all. We have also compiled a new
dataset for grammatical error correction in Czech (AKCES-GEC) from available
learner corpora, and have shown that the same approach with synthetic data
works for Czech as well. As our proposed state-of-the-art model based on Trans-
former is rather slow in both training and inference, we further proposed another
model that is based on BERT and a subword tagging approach. Although its
performance turned out slightly worse than the Transformer-based model base-
line, it is on the other hand significantly faster, and offers an interesting trade-off
between speed and performance. Finally, we created a large and diverse gram-
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matical error correction dataset for Czech (GECCC), analysed several strong
Czech models, and conducted a meta-evaluation of metrics to select the metric
that correlates the best with human judgements on the new dataset. The newly
developed GECCC dataset comprises four types of user domains (essays from
native speakers and second learners, online discussion posts written by native
speakers and texts written by students from Romani ethnolect minority), and is
the largest available dataset for grammatical error correction in languages other
than English.

Our last contribution to the natural language correction is in the area of test-
ing model robustness to user generated noisy texts. We created a tool named
KaziText that models user errors and can introduce them in a text. We used the
tool to test robustness of multiple models for multiple tasks in multiple languages,
and we showed that even current state-of-the-art systems are very sensitive to
noise, and their performance deteriorates roughly linearly with the amount of
noise in the text. Furthermore, we evaluated two strategies to cope with the
observed performance degradation, and we showed that using a grammatical er-
ror correction system before inputting the data into the model is beneficial in
scenarios in which there is a low amount of annotated training data, while in sce-
narios with large amount of training data, it is better to re-train the model on a
mixture of authentic annotated data and noisy examples. These observations are
important as many even commercial tools report their performance on testing sets
lacking no natural errors, and their user might be surprised that they often per-
form significantly worse when presented with real world human data. With our
tool KaziText, the expected performance deterioration can be estimated easily
for a model, and one of the two noise coping strategies can be incorporated.

As we already stated, we have witnessed great progress in developing models
for natural language correction over the last five years. This can be illustrated on
GEC models evaluated on the popular English ConLL14 test set. As presented
in Table 2.2, the nowadays best F0.5-score of Rothe et al. [2021] is almost twice
as big as the score of Felice et al. [2014], who won the CoNLL 2014 Shared Task
on GEC. Despite the great improvements, correction models are still not perfect.
In our analysis described in Section 3.6.4, we have shown that even the state-of-
the-art model for the simplest task of diacritics restoration still has a non-trivial
error rate. In grammatical error correction, which as a task contains substantially
larger range of errors than diacritics restoration and is thus a more challenging
task, the gap between current models and perfect model is naturally even bigger.

One possible direction to improve current GEC models is to use byte-level
models utilizing large pretrained models instead of currently used subword-level
models. The byte-level models already proved efficient in the lexical normaliza-
tion task [Samuel and Straka, 2021]. Furthermore, we believe that one of the
future directions in GEC is also incorporation of a larger context into models.
Traditionally, correction models have been operating over a single sentence. In
English GEC, Chollampatt et al. [2019a] and later Yuan and Bryant [2021] have
shown that taking into account larger context shows promising results. A context
larger than a sentence is necessary for correcting certain error types in certain
situations (such as the use of definite and indefinite articles), and it may also
help the model to better understand the situation in which it operates. In Czech
diacritics restoration, we have shown that only a marginal amount of errors theo-
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retically requires larger context, however, it does not mean that it may not help
models to generalize better.

Another direction of possible future research is to model multilingualism, i.e.
into developing models that can correct texts in multiple languages. The mul-
tilingual models were shown to perform well in many other NLP tasks such as
machine translation [Johnson et al., 2017] or question answering [Lewis et al.,
2019], and also pretrained multilingual BERT models exist. One of the benefits
of having multilingual models may be that patterns learnt in languages with a
large amount of high-quality annotated data might help the model to work better
at languages in which only a limited amount of annotated data exists.
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5. Published Works
The second part of the thesis comprises the original prints of the 7 papers that I
have published in the area of natural language correction and described in detail
in Section 3. I provide their list below:

• Diacritics Restoration Using Neural Networks [Jakub Náplava, Mi-
lan Straka, Pavel Straňák, Jan Hajič], 11th Edition of Language Resources
and Evaluation Conference (LREC 2018)

• CUNI System for the Building Educational Applications 2019
Shared Task: Grammatical Error Correction [Jakub Náplava, Mi-
lan Straka], Fourteenth Workshop on Innovative Use of NLP for Building
Educational Applications (BEA 2019)

• Grammatical Error Correction in Low-Resource Scenarios [Jakub
Náplava, Milan Straka], 5th Workshop on Noisy User-generated Text (W-
NUT 2019)

• Czech Grammar Error Correction with a Large and Diverse Cor-
pus [Jakub Náplava, Milan Straka, Jana Straková, Alexandr Rosen], Trans-
actions of the Association for Computational Linguistics (TACL)

• Diacritics Restoration using BERT with Analysis on Czech lan-
guage [Jakub Náplava, Milan Straka, Jana Straková], The Prague Bulletin
of Mathematical Linguistics 116 (PBML 116)

• Character Transformations for Non-Autoregressive GEC Tagging
[Milan Straka, Jakub Náplava, Jana Straková], Seventh Workshop on Noisy
User-generated Text (W-NUT 2021)

• Understanding Model Robustness to User-generated Noisy Texts
[Jakub Náplava, Martin Popel, Milan Straka, Jana Straková], Seventh
Workshop on Noisy User-generated Text (W-NUT 2021)
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Diacritics Restoration Using Neural Networks

Jakub Náplava, Milan Straka, Pavel Straňák, Jan Hajič
Institute of Formal and Applied Linguistics

Charles University, Faculty of Mathematics and Physics
Malostranské náměstí 25, Prague, Czech Republic

{naplava,straka,stranak,hajic}@ufal.mff.cuni.cz

Abstract
In this paper, we describe a novel combination of a character-level recurrent neural-network based model and a language model applied
to diacritics restoration. In many cases in the past and still at present, people often replace characters with diacritics with their ASCII
counterparts. Despite the fact that the resulting text is usually easy to understand for humans, it is much harder for further computational
processing. This paper opens with a discussion of applicability of restoration of diacritics in selected languages. Next, we present a neural
network-based approach to diacritics generation. The core component of our model is a bidirectional recurrent neural network operating at
a character level. We evaluate the model on two existing datasets consisting of four European languages. When combined with a language
model, our model reduces the error of current best systems by 20% to 64%. Finally, we propose a pipeline for obtaining consistent
diacritics restoration datasets for twelve languages and evaluate our model on it. All the code is available under open source license on
https://github.com/arahusky/diacritics_restoration.

Keywords: neural networks, diacritics, diacritics generation, error correction

1. Introduction
When writing emails, tweets or texts in certain languages,
people for various reasons sometimes write without diacrit-
ics. When using Latin script, they replace characters with
diacritics (e.g. c with acute or caron) by the underlying ba-
sic character without diacritics. Practically speaking, they
write in ASCII. We offer several possible reasons for this
phenomenon:
• Historically, many devices offered only an English key-
board and/or ASCII encoding (for example oldermobile
phones and SMS).

• Before Unicode became widespread, there were encod-
ing problems among platforms and even among pro-
grams on the same platform, and many people still have
this in mind.

• Even though text encoding is rarely a problem any more
and all modern devices offer native keyboards, some
problems persist. In situations of frequent code switch-
ing between English and a language with a substantially
different keyboard layout, it is very hard to touch type
in both layouts. It is much easier to type both languages
using the same layout, although one of them without
proper diacritics.

• In some circumstances typing with diacritical marks
is significantly slower than using just basic latin char-
acters. The most common example is on-screen key-
boards on mobile devices. These keyboards do not in-
clude the top row (numerical on US English), so lan-
guages that use that row for accented characters are
much slower to type. Naturally, users type without ex-
plicit accents and rely on the auto-completion systems.
However, these systems are usually simple, unigram-
based, and based on the word form ambiguity for a given
language (cf. Table 1), which introduces many errors.
Postponing the step of diacritics generation would be
beneficial both for typing speed and accuracy.

• For example in Vietnamese, the language with most dia-

critics in our data (cf. Table 1), both the above problems
are very pronounced: Because Vietnamese uses diacrit-
ical marks to distinguish both tones (6) and quality of
vowels (up to 3), a vowel can have (and often has) 2
marks. This need to provide efficient typing of very
many accented characters led to the invention of sys-
tems like unikey.org that allow a user to type all the ac-
cented characters using sequences of basic letters. For
instance to typeset “đường” a user types “dduwowngf”.
While this system elegantly solves the problems above
with switching keyboard layouts and missing top row of
keys, it requires a special software package and it still
results in 9 keystrokes to type 5 characters. That is why
typing without accents in informal situations like emails
or text messages is still common and system for efficient
generation of diacritics would be very useful.

Typical languages where approximately half of the words
contain diacritics are Czech, Hungarian or Latvian. Never-
theless, as we discuss in Sections 2 and 3, diacritics restora-
tion (also known as diacritics generation or diacritization) is
an active problem also in many languages with substantially
lower diacritics appearance.

Current approaches to restoration of diacritics (see Section 3)
are mostly based on traditional statistical methods. However,
in recent years, deep neural networks have shown remark-
able results in many areas. To explore their capabilities, we
propose a neural based model in Section 4 and evaluate its
performance on two datasets in Section 5.

In Section 6, we describe a way to obtain a consistent mul-
tilingual dataset for diacritics restoration and evaluate our
model on them. The dataset can be downloaded from the
published link. Finally, Section 7 concludes this paper with
a summary of outcomes.
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Language Words with Word error rate of
diacritics dictionary baseline

Vietnamese 88.4% 40.53%
Romanian 31.0% 29.71%
Latvian 47.7% 8.45%
Czech 52.5% 4.09%
Slovak 41.4% 3.35%
Irish 29.5% 3.15%
French 16.7% 2.86%
Hungarian 50.7% 2.80%
Polish 36.9% 2.52%
Swedish 26.4% 1.88%
Portuguese 13.3% 1.83%
Galician 13.3% 1.62%
Estonian 19.7% 1.41%
Spanish 11.3% 1.28%
Norwegian-Nynorsk 12.8% 1.20%
Turkish 30.0% 1.16%
Catalan 11.1% 1.10%
Slovenian 14.0% 0.97%
Finnish 23.5% 0.89%
Norwegian-Bokmaal 11.7% 0.79%
Danish 10.2% 0.69%
German 8.3% 0.59%
Croatian 16.7% 0.34%

Table 1: Analysis of percentage of words with diacritics and
the word error rate of a dictionary baseline. Measured on UD
2.0 data, using the uninames method, and CoNLL 17 UD
shared task raw data for dictionary. Only words containing
at least one alphabetical character are considered.

2. Diacritics Restoration in Languages using
Latin Script

Table 1 presents languages using (usually some extended ver-
sion of) a Latin script. EmployingUD 2.0 (Nivre et al., 2017)
plain text data, we measure the ratio of words with diacritics,
omitting languages with less than 5% ofwords with diacritics.
In eleven of the languages, at least every fifth word contains
diacritics; in another eleven languages, at least every tenth
word does.
Naturally, high occurrence of words with diacritics does not
imply that generating diacritics is an ambiguous task. Con-
sequently, we also evaluate word error rate of a simple dic-
tionary baseline to diacritics restoration: according to a large
raw text corpora we construct a dictionary of the most fre-
quent variant with diacritics for a given word without diacrit-
ics, and use the dictionary to perform the diacritics restora-
tion.
Table 1 presents the results. We utilized the raw corpora
by Ginter et al. (2017) released as supplementary material of
CoNLL 2017 UD Shared task (Zeman et al., 2017), which
contain circa a gigaword for each language, therefore provid-
ing a strong baseline. For nine languages, the word error rate
is larger than 2%, and eight more languages have word error
rate still above 1%. We conclude that even with a very large
dictionary, the diacritics restoration is a challenging task for
many languages, and better method is needed.

Letter Hex Unicode namecode
ø 00F8 LATIN SMALL LETTER OWITH STROKE
ł 0142 LATIN SMALL LETTER LWITH STROKE
đ 0111 LATIN SMALL LETTER DWITH STROKE
ʂ 0282 LATIN SMALL LETTER SWITH HOOK

ç 00E7 LATIN SMALL LETTER CWITH CEDILLA
š 0161 LATIN SMALL LETTER SWITH CARON

Table 2: Unicode characters that cannot be decomposed us-
ing NFD (first 4 lines), and those that can. The suffix of the
name removed by the uninamesmethod is show in italics. As
we can see, the strucutre of names is identical, so the method
works for all of these characters.

2.1. Methods of Diacritics Stripping
Although there is no standard way of stripping diacritics, a
commonly usedmethod is to convert input word toNFD (The
Unicode Consortium, 2017, Normalization Form D) which
decomposes composite characters into a base character and
a sequence of combining marks, then remove the combining
marks, and convert the result back to NFC (Unicode Nor-
malization Form C). We dub this method uninorms.
We however noted that this method does not strip diacritics
for some characters (e.g. for đ and ł).1 We therefore pro-
pose a new method uninames, which operates as follows: In
order to remove diacritics from a given character, we inspect
its name in the Unicode Character Database (The Unicode
Consortium, 2017). If it contains a word WITH, we remove
the longest suffix starting with it, try looking up a character
with the remaining name and yield the character if it exists.
The method is illustrated in Table 2, which presents four
characters that do not decompose under NFD, but whose di-
acritics can be stripped by the proposed method.
As shown in Table 3, the proposed uninames method rec-
ognizes all characters the uninorms method does, and some
additional ones. Therefore, we employ the uninames method
to strip diacritics in the paper.

3. Related Work
One of the first papers to describe systems for automatic di-
acritics restoration is a seminal work by Yarowsky (1999),
who compares several algorithms for restoration of diacrit-
ics in French and Spanish. Later, models for diacrization
in Vietnamese (Nguyen and Ock, 2010), Czech (Richter
et al., 2012), Turkish (Adali and Eryiğit, 2014), Ara-

1What constitutes a “diacritic mark” is a bit of a problem. On
one hand not all characters with a graphical element added to a let-
ter letter contain diacritics, e.g. ¥ (symbol of Japanese Yen) or Ð/ð
(Icelandic “eth”). On the other end of the spectrum we have clear
diacritics with Unicode canonical decomposition into a letter and a
combining mark. Between these clear borders there are the char-
acters that do not have a unicode decomposition, but their names
still indicate they are latin letters with some modifier and often they
are used the same as characters that do have decomposition. E.g.
Norwegian/Danish ø is used exactly like ö in Swedish, it is just an
orthographic variation. However while the latter has canonical de-
composition in Unicode, the first does not. This is why we opted to
treat these characters also as “letters with diacritics”.
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Lowercased letters with diacritics
í 15.7% ů 2.5% ș ī ņ ō
á 11.7% ú 1.6% ā ē ū ŕ
é 9.8% ö 1.5% ñ ą ï ĺ
ě 6.6% ă 1.3% ł ò ļ ţ
ä 6.0% ø 1.1% ć ż ń ì
č 5.5% à 0.9% ň ğ ù ό
ř 5.2% ç 0.9% â ś û ḥ
ž 4.9% ü 0.8% õ ď ű ǎ
ý 4.5% ã 0.8% ť ô ķ ί
š 4.4% è 0.6% ê đ ģ έ
ó 3.2% î 0.5% ę ő ź ά
å 2.9% ț 0.5% ş ľ ë ʂ

Table 3: Most frequent characters with diacritics from data
listed in Table 1, together with their relative frequency.
The bold characters are recognized only using the uninames
method.

bic (Azmi and Almajed, 2015) Croatian, Slovenian, Ser-
bian (Ljubešic et al., 2016), and many other languages were
published. The system complexity ranges from simplest
models, that for each word apply its most frequent transla-
tion as observed in the training data, to models that incor-
porate language models, part-of-speech tags, morphological
and many other features. One of the most similar model to
ours is a system by Belinkov and Glass (2015) who used re-
current neural networks for Arabic diacritization.

4. Model Architecture
The core of our model (see Figure 1) is a bidirectional re-
current neural network, which for each input character out-
puts its correct label (e.g. its variant with diacritics). The in-
put and output vocabularies contain a special out-of-alphabet
symbol.
The input characters are embedded, i.e. each character in
the input sentence is represented by a vector of d real num-
bers. The character embeddings are initialized randomly and
updated during training.
The embeddings are fed to a bidirectional RNN (Graves and
Schmidhuber, 2005). The bidirectional RNN consists of two
unidirectional RNNs, one reading the inputs in standard or-
der (forward RNN) and the other in reverse order (backward
RNN). The output is then a sum of forward and backward
RNN outputs. This way, bidirectional RNN is processing in-
formation from both preceding and following context. The
model allows an arbitrary number of stacked bidirectional
RNN layers.
The output of the (possibly multilayer) bidirectional RNN
is at each time step reduced by an identical fully connected
layer to an o-dimensional vector, where o is the size of the
output alphabet. A nonlinearity is then applied to these re-
duced vectors.
Finally, we use a softmax layer to produce a probability dis-
tribution over output alphabet at each time step.
The loss function is the cross-entropy loss summed over all
outputs.

Figure 1: Visualisation of our model.

4.1. Residual connections
The proposed model allows an arbitrary number of stacked
RNN layers. The model with multiple layers allows each
stacked layer to process more complex representation of cur-
rent input. This naturally brings potential to improve accu-
racy of the model.
As stated by (Wu et al., 2016), simple stacking of more RNN
layers works only up to a certain number of layers. Beyond
this limit, the model becomes too difficult to train, which
is most likely caused by vanishing and exploding gradient
problems (Pascanu et al., 2013). To improve the gradient
flow, (Wu et al., 2016) incorporate residual connections to
the model. To formalize this idea, let RNNi be the i-th RNN
layer in a stack and x0 = (inp1, inp2, . . . , inpN ) input to the
first stacked RNN layer RNN0. The model we have proposed
so far works as follows:

oi, ci = RNNi(xi)

xi+1 = oi

oi+1, ci+1 = RNNi+1(xi+1),

where oi is the output of i-th stacked RNN layer and ci is a
sequence of its hidden states. The model with residual con-
nections between stacked RNN layers then works as follows:

oi, ci = RNNi(xi)

xi+1 = oi + xi

oi+1, ci+1 = RNNi+1(xi+1)

4.2. Decoding
For inference we use a left-to-right beam search decoder
combining the neural network and the language model like-
lihoods. The process is a modified version of standard beam
search used by Xie et al. (2016) for decoding sequence-to-
sequence models.
Let b denote the beam size. The hypotheses in the beam are
initialized with the b most probable first characters. In each
step, all beam hypotheses are extended with b most probable
variants of the respective character, creating b2 hypotheses.
These are then sorted and the top b of them are kept.
Whenever a space is observed in the output, all affected hy-
potheses are reranked using both the RNN model output
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probabilities and language model probabilities. The hypoth-
esis probability in step k can be computed as:

P (y1:k|x) = (1− α) logPNN (y1:k|x) + α logPLM (y1:k),

where x denotes the input sequence, y stands for the decoded
symbols contained within current hypothesis, PNN andPLM

are neural network and language model probabilities and the
hyper-parameter α determines the weight of the language
model. To keep both logPNN and logPLM terms within
a similar range in the decoding, we compute the logPNN as
the mean of output token log probabilities and additionally
normalize PLM by the number of words in the sequence.
To train the language model as well as to run it, we use the
open-source KenLM toolkit (Heafield, 2011).

5. Experiments
To compare performance of our model with current ap-
proaches, we perform experiments using two existing
datasets. The first one, created by Ljubešic et al. (2016),
consists of Croatian, Serbian and Slovenian sentences from
three sources: Wikipedia texts, general Web texts and texts
from Twitter. Since Web data are assumed to be the noisi-
est, they are used only for training. Wikipedia and Twitter
testing sets should then cover both standard and non-standard
language. The second evaluation dataset we utilize consists
of Czech sentences collected mainly from newspapers, thus
it covers mostly standard Czech.

5.1. Training and Decoding Details
We used the same model configuration for all experiments.
The bidirectional RNN has 2 stacked layers with resid-
ual connections and utilizes LSTM units (Hochreiter and
Schmidhuber, 1997) of dimension 300. Dropout (Srivastava
et al., 2014) at a rate of 0.2 is used both on the embedded
inputs and after each bidirectional layer. All weights are ini-
tialized using Xavier uniform initializer (Glorot and Bengio,
2010).
The vocabulary of each experiment consists of top 200 most
occurring characters in a training set and a special symbol
(<UNK>) for unknown characters.
To train the model, we use the Adam optimizer (Kingma and
Ba, 2014) with learning rate 0.0003 and a minibatch size of
200. Each model was trained on a single GeForce GTX 1080
Ti for approximately 4 days. After training, the model with
the highest accuracy on the corresponding development set
was selected.
To estimate the decoding parameter α, we performed an ex-
haustive search over [0,1] with a step size of 0.1. The pa-
rameter was selected to maximize model performance on a
particular development set. All results were obtained using a
beam width of 8.

5.2. Croatian, Serbian and Slovenian
The original dataset contains training files divided into Web,
Twitter and Wikipedia subsets. However, Ljubešic et al.
(2016) showed that concatenating all these language-specific
sets for training yields best results. Therefore, we used only
concatenated files for training the models for each of three
languages in our experiments. The training files contain

17 968 828 sentences for Croatian, 11 223 924 sentences for
Slovenian and 8 376 810 sentences for Serbian.2 All letters
in the dataset are lowercased.
To remove diacritics from the collected texts, Ljubešic et al.
(2016) used a simple script that replaced four letters (ž, ć,
č, š) with their ASCII counterparts (z, c, c, s), and one let-
ter (đ) with its phonetic transcription (dj). This results in
the input and target sentences having different length. Since
our model requires both input and target sentences to have
the same length, additional data preprocessing was required
before feeding the data into the model: we replace all occur-
rences of the dj sequence in both input and target sentences
by a special token, and replace it back to dj after decoding.
The results of the experiment with comparison to previ-
ous best system (Lexicon, Corpus) are presented in Table 4.
The Lexicon method replaces each word by its most fre-
quent translation as observed in the training data. The Corpus
method extends it via log-linear model with context probabil-
ity. These methods were evaluated by Ljubešic et al. (2016)
and the Corpus method is to the best of our knowledge state-
of-the-art system for all three languages. System accuracy is
measured, similarly to the original paper, on all words which
have at least one alphanumerical character.
We incorporated the same language models as used by the
authors of the original paper. There are two points in the
results we would like to stress:
• Our system with language model reduces error by more
than 30% on wiki data and by more than 20% on tweet
data. Moreover, our model outperforms the current
best system on wiki data even if it does not incorporate
the additional language model, which makes the model
much smaller (˜30MB instead of several gigabytes of
the language model).

• Diacritics restoration problem is easier on standard lan-
guage (wiki) than on non-standard data (tweets). This
has, in our opinion, two reasons. First, the amount of
wiki data in the training sets is substantially higher than
the amount of non-standard data (tweets). This makes
the model fit more standard data. Second, due to lower
language quality in Twitter data, we suppose that the
amount of errors in the gold data is higher.

5.3. Czech
The second experiment we conducted is devoted to diacritics
restoration in Czech texts. To train both the neural network
and language models, we used the SYN2010 corpus (Křen et
al., 2010), which contains 8 182 870 sentences collected from
Czech literature and newspapers. To evaluate the model,
PDT3.0 (Hajič et al., 2018) testing set with 13 136 sentences
originating from Czech newspapers is used. Both the train-
ing and testing set, thus, contain mainly standard Czech. For
language model training, we consider only those {2,3,4,5}-
grams that occurred at least twice, and use default KenLM
options.
Table 5 presents a comparison of our model performance
with Microsoft Office Word 2010, ASpell, CZACCENT
(Rychlý, 2012) and Korektor (Richter et al., 2012), the lat-
ter being the state-of-the-art system of diacritics restoration

2The Serbian dataset is based on a Latin script.
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System wiki tweet
hr sr sl hr sr sl

Lexicon 0.9936 0.9924 0.9933 0.9917 0.9893 0.9820
Corpus 0.9957 0.9947 0.9962 0.9938 0.9917 0.9912
Our model 0.9967 0.9961 0.9970 0.9932 0.9939 0.9882
Our model + LM 0.9973 0.9968 0.9974 0.9951 0.9944 0.9930
Error reduction 36.81% 39.74% 30.45% 21.62% 32.14% 20.77%

Table 4: Results obtained on Crotian (HR), Serbian (SR) and Slovenian (SL) Wikipedia and Twitter testing sets. Note that
the word accuracy presented in the table is not measured on all words, but only on words having at least one alphanumerical
character.

System Word accuracy
Microsoft Office Word 2010 (*) 0.8910
ASpell (*) 0.8839
Lexicon 0.9527
CZACCENT 0.9607
Corpus 0.9713
Korektor 0.9861
Our model 0.9887
Our model + LM 0.9951
Error reduction 64.75%

Table 5: Comparison of several models of restoration of di-
acritics for Czech. The (*) denotes reduced test data (see
text).

for Czech. Note that evaluation using Microsoft OfficeWord
2010 and ASpell was performed only on the first 746 (636)
sentences, because it requires user interaction (confirming
the suggested alternatives).
As the results show, models that are not tuned to the task
of diacritics restoration perform poorly. Our model com-
bined with a language model reduces the error of the pre-
vious state-of-the-art system by more than 60%; our model
achieves slightly higher accuracy than Korektor even if no
language model is utilized.

5.3.1. Ablation Experiments
One of the reasons why deep learning works so well is the
availability of large training corpora. This motivates us to
explore the amount of data our model needs to perform well.
As Figure 2 shows, the RNN model trained on 50 000 ran-
dom sentences from SYN2010 corpus performs better on the
PDT3.0 testing set than the Lexicon baseline trained on full
SYN2010 corpus. Further, up to 5M sentences the perfor-
mance of the RNN model increases with the growing train-
ing set size. We do not observe any performance difference
between the RNN model trained on 5M and 8M sentences.
The second ablation experiment examines the effect of resid-
ual connections. We trainedmodels with 2, 3, 4 and 5 stacked
layers each with and without residual connections. We also
trained a simple model with 1 bidirectional layer without
residual connections. The results of this experiment are pre-
sented in Figure 3. Apart from the big difference in word
accuracy between the model with 1 layer and other models,
we can see that models with residual connections perform
generally better than when no residual connections are incor-
porated. It is also evident that when more layers are added
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Figure 2: Comparison of RNN and Lexicon performance
with varrying training data size.
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Figure 3: Effect of using residual connections with respect to
the number of stacked layers.

in stack, performance of models without residual connec-
tions deteriorates while performance of models with addi-
tional residual connections does not.

6. New Multilingual Dataset
As discussed in the preceding sections, diacritics restora-
tion is an active field of research. However, to the best of
our knowledge, there is no consistent approach to obtaining
datasets for this task. When a new diacritics restoration sys-
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tem is published, a new dataset is typically created both for
training and testing. This makes it difficult to compare per-
formance across systems. We thus propose a new pipeline
for obtaining consistent multilingual datasets for the task of
diacritics restoration.

6.1. Dataset
As the data for diacritics restoration need to be clean, we
decided to utilize Wikipedia for both development and test-
ing sets. Because there may be not enough data to train po-
tential diacritics restoration systems on Wikipedia texts only,
we further decided to create training sets from the (general)
Web. We chose two corpora for this task: the W2C cor-
pus (Majliš, 2011) with texts fromWikipedia and the general
Web in 120 languages, and the CommonCrawl corpus with
language annotations generated by Buck et al. (2014) with a
substantially larger amount of general Web texts in more than
150 languages.
To create training, development and testing data from the
Wikipedia part of the W2C corpus, its data are first seg-
mented into sentences, these are then converted to lowercase
and finally split into disjoint training, development and test-
ing set. The split was performed in such a way that all three
sets consist of sentences collected from whole articles rather
then being randomly sampled across all articles. Each test-
ing set consists of 30 000 sentences, development set of ap-
proximatelly 15 000 sentences and the rest of the data are
preserved for training set.
The pipeline for creating additional training data from the
CommonCrawl corpus starts with the removal of invalid
UTF8 data and Wikipedia data. These filtered data are then
segmented into sentences and converted to lowercase. Since
these data come from general Web and may be noisy (e.g.
contain sentences with missing diacritics), only those sen-
tences that have at least 100 characters and contain at least
a certain amount of diacritics are preserved. The constant
determining the minimum amount of diacritics is language
specific and is derived from Table 1. Finally, sentence in-
tersection with existing development and testing set is re-
moved and maximally ten similar sentences are preserved in
the training data. Since both baseline methods (Lexicon and
Corpus) require data to be word tokenized, all texts are also
word tokenized.
The dataset was created for 12 languages (see Table 6), where
the additional training sets were generated from the 2017_17
web crawl. Complete dataset can be downloaded from http:
//hdl.handle.net/11234/1-2607.

6.2. Experiments
We train and evaluate our model on the created dataset and
compare its performance to two baseline methods. The same
model hyperparameters as described in Section 5.1 are used,
except for the RNN cell dimension, which is 500.
Training was performed in two phases. First, each lan-
guage specific model was trained on particular Common-
Crawl (Web) training set for approximately four days. Then,
eachmodel was fine-tunedwith a smaller learning rate 0.0001
on respective Wikipedia training set for three more days. Fi-
nally, as all models seemed to be continuously improving on
the development sets, we took the last model checkpoints for

evaluating.
Both baseline methods and language models were trained
on concatenation of Wikipedia and CommonCrawl training
data. For language model training, we considered only those
{2,3,4,5}-grams that occurred at least twice, and used default
KenLM options.
To measure model performance, modified word error accu-
racy is used. The alpha-word accuracy considers only words
that consist of at least one alphabetical character, because
only these can be potentially diacritized. The testing set re-
sults ofLexicon andCorpus baselines, as well as of ourmodels
before and after fine-tuning, and with a language model are
presented in Table 6.
As results show, our model outperforms both baselines even
if no language model is used. Moreover, incorporation of
the language model helps the model perform better as well
as does model fine-tuning. Without fine-tuning, all models
but the Romanian outperform baselines. We suspect that the
reason why the Romanian model before fine-tuning performs
worse than the Corpusmethod is that non-standard Web data
differ too much from standard data from Wikipedia. It is
also an interesting fact that the biggest error reduction is at
Vietnamese and Romanian which seem to be most difficult
for both baseline methods.

7. Conclusion
In this work, we propose a novel combination of recurrent
neural network and a language model for performing diacrit-
ics restoration. The proposed system is language agnostic as
it is trained solely from parallel corpora of texts without dia-
critics and diacritized texts. We test our system on two exist-
ing datasets comprising of four languages, and we show that it
outperforms previous state-of-the-art systems. Moreover, we
propose a pipeline for generating consistent multilingual dia-
critics restoration datasets, run it on twelve languages, publish
the created dataset, evaluate our system on it and provide a
comparison with two baseline methods. Our method outper-
forms even the stronger contextual baseline method on the
new dataset by a big margin.
Future work includes detailed error analysis, which could re-
veal types of errors made by our system. Since certain words
may be correctly diacritized in several ways given the context
of the whole sentence, such error analysis could also set the
language specific limit on the accuracy that can be achieved.
Further, when designing our multilingual dataset we decided
to use testing sets with sentences from Wikipedia articles.
This was well motivated as we wanted it to contain sentences
with proper diacritics. However, such testing sets contain
mainly standard language and are thus worse for comparison
of models aiming to generate diacritics for non-standard lan-
guage. Therefore, we plan to create additional development
and testing sets in the future work.
While experimenting with the model on Czech we found out
that when it is trained to output instructions (e.g. add caron)
instead of letters, it performs better. Future work thus also
includes thorough inspection of this behavior when applied
to all languages.
Finally, the system achieves better results when a language
model is incorporated while inferring. Because the use of
an external model both slows down the inferring process and
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Language Wiki Web Words with Lexicon Corpus Our model Our model Our model Error
sentences sentences diacritics w/o finetuning + LM reduction

Vietnamese 819 918 25 932 077 73.63% 0.7164 0.8639 0.9622 0.9755 0.9773 83.33%
Romanian 837 647 16 560 534 24.33% 0.8533 0.9046 0.9018 0.9799 0.9837 82.96%
Latvian 315 807 3 827 443 39.39% 0.9101 0.9457 0.9608 0.9657 0.9749 53.81%
Czech 952 909 52 639 067 41.52% 0.9590 0.9814 0.9852 0.9871 0.9906 49.20%
Polish 1 069 841 36 449 109 27.09% 0.9708 0.9841 0.9891 0.9903 0.9955 71.64%
Slovak 613 727 12 687 699 35.60% 0.9734 0.9837 0.9868 0.9884 0.9909 44.21%
Irish 50 825 279 266 26.30% 0.9735 0.9800 0.9842 0.9846 0.9871 35.55%
Hungarian 1 294 605 46 399 979 40.33% 0.9749 0.9832 0.9888 0.9902 0.9929 58.04%
French 1 818 618 78 600 777 14.65% 0.9793 0.9931 0.9948 0.9954 0.9971 58.11%
Turkish 875 781 72 179 352 25.34% 0.9878 0.9905 0.9912 0.9918 0.9928 24.14%
Spanish 1 735 516 80 031 113 10.41% 0.9911 0.9953 0.9956 0.9958 0.9965 25.57%
Croatian 802 610 7 254 410 12.39% 0.9931 0.9947 0.9951 0.9951 0.9967 36.92%

Table 6: Results obtained on new multilingual dataset. Note that the alpha-word accuracy presented in the table is measured
only on those words that have at least one alphabetical character. The last column presents errror reduction of our model
combined with language model compared to the Corpus method.

requires significantly more memory, it would be desirable to
train the model in such way that no additional languagemodel
is needed. We suspect that multitask learning (e.g. training
the model also to predict next/previous letter) may compen-
sate for the absence of a language model.
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Abstract

In this paper, we describe our systems submit-

ted to the Building Educational Applications

(BEA) 2019 Shared Task (Bryant et al., 2019).

We participated in all three tracks. Our models

are NMT systems based on the Transformer

model, which we improve by incorporating

several enhancements: applying dropout to

whole source and target words, weighting tar-

get subwords, averaging model checkpoints,

and using the trained model iteratively for cor-

recting the intermediate translations. The sys-

tem in the Restricted Track is trained on the

provided corpora with oversampled “cleaner”

sentences and reaches 59.39 F0.5 score on the

test set. The system in the Low-Resource

Track is trained from Wikipedia revision histo-

ries and reaches 44.13 F0.5 score. Finally, we

finetune the system from the Low-Resource

Track on restricted data and achieve 64.55

F0.5 score, placing third in the Unrestricted

Track.

1 Introduction

Starting with the 2013 and 2014 CoNLL Shared

Tasks on grammatical error correction (GEC),

much progress has been done in this area. The

need to correct a variety of error types lead most

researchers to focus on models based on ma-

chine translation (Brockett et al., 2006) rather than

custom designed rule-based models or a combi-

nation of single error classifiers. The machine

translation systems turned out to be particular-

ity effective when Junczys-Dowmunt and Grund-

kiewicz (2016) presented state-of-the-art statisti-

cal machine translation system. Currently, mod-

els based on statistical and neural machine trans-

lation achieve best results: in restricted settings

with training limited to certain public training

sets (Zhao et al., 2019); unrestricted settings with

no restrictions on training data (Ge et al., 2018);

and also in low-resource track where the training

data should not come from any annotated corpora

(Lichtarge et al., 2018).1

In this paper, we present our models and their

results in the restricted, unrestricted, and low-

resource tracks. We start with a description of

related work in Section 2. We then describe our

systems together with the implementation details

in Section 3. Section 4 is dedicated to our results

and ablation experiments. Finally, in Section 5 we

conclude the paper with some proposals on future

work.

2 Related Work

Transformer (Vaswani et al., 2017) is currently one

of the most popular architectures used in machine

translation. Its self-attentive layers allow better

gradient flow when compared to recurrent neural

models and the masking in decoder provides faster

training. Junczys-Dowmunt et al. (2018) propose

several improvements for training Transformer on

GEC: using dropout on whole input words, assign-

ing weight to target words based on their align-

ment to source words, and they also propose to

oversample sentences from the training set in or-

der to have the same error rate as the test set.

Majority of work in grammatical error correc-

tion has been done in restricted area with a fixed

set of annotated training datasets. Lichtarge et al.

(2018), however, show that training a neural ma-

chine translation system from Wikipedia edits can

lead to surprisingly good results. As the authors

state, corpus of Wikipedia edits is only weakly

supervised for the task of GEC, because most of

the edits are not corrections of grammatical errors

and also they are not human curated specifically

for GEC. To overcome these issues, the authors

use iterative decoding which allows for incremen-

tal corrections. In other words, the model can re-

1Note that in this settings Wikipedia revisions are allowed
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peatedly translate its current output as long as the

translation is more probable then keeping the sen-

tence unchanged. Similar idea is also presented in

(Ge et al., 2018), where the translation system is

trained with respect to the incremental inference.

3 Our System

In this section, we present our three systems sub-

mitted to each track of the BEA 2019 Shared Task.

We start with the Restricted Track In Section 3.1,

where we present a series of improvements to the

baseline Transformer model. In Section 3.2, we

describe our model trained on Wikipedia revisions

which was submitted to the Low-Resource Track.

Finally, in Section 3.3, we describe the model sub-

mitted to the Unrestricted Track.

All our models are based on the Trans-

former model from Tensor2Tensor framework ver-

sion 1.12.0.2

3.1 Restricted Track

In the Restricted Track, we use the 5 pro-

vided datasets for system development: FCE v2.1

(Yannakoudakis et al., 2011), Lang-8 Corpus of

Learner English (Mizumoto et al., 2011; Tajiri

et al., 2012), NUCLE (Dahlmeier et al., 2013),

Write & Improve (W&I) and LOCNESS v2.1

(Bryant et al., 2019; Granger, 1998). From Lang-

8 corpus, we took only the sentences annotated by

annotators with ID 0 (A0) and ID 1 (A1). All but

the development sets from W&I and LOCNESS

datasets were used for training. The simple statis-

tics of these datasets are presented in Table 1. The

displayed error rate is computed using maximum

alignment of original and annotated sentences as a

ratio of non-matching alignment edges (insertion,

deletion, and replacement).

We use the transformer base configuration of

Tensor2Tensor as our baseline solution. The train-

ing dataset consists of 1 230 231 sentences. Af-

ter training, beam search decoding is employed

to generate model corrections and we choose the

checkpoint with the highest accuracy on a devel-

opment set concatenated from the W&I and LOC-

NESS development sets.

3.1.1 Transformer Big

The first minor improvement was to use the

transformer big configuration instead of trans-

former base. This configuration has bigger capac-

2https://github.com/tensorflow/tensor2tensor

Dataset Sentences
Average

error rate

Lang8
A0 1 037 561 13.33 %

A1 67 975 25.84 %

FCE v2.1

train 28 350 11.31 %

dev 2 191 11.67 %

test 2 695 12.87 %

NUCLE 57 151 6.56 %

W&I

train A 10 493 18.13 %

train B 13 032 11.68 %

train C 10 783 5.62 %

dev A 1 037 18.32 %

dev B 1 290 12.46 %

dev C 1 069 5.91 %

LOCNESS dev N 998 4.72 %

Table 1: Statistics of available datasets. The error

rate is computed as a ratio of non-matching alignment

edges.

ity and as Popel and Bojar (2018) show, it reaches

substantially better results on certain translation

tasks.

3.1.2 Source and Target Word Dropout

Dropout (Srivastava et al., 2014) is a regulariza-

tion technique that turned out to be particularly ef-

fective in the field of neural networks. It works

by masking several randomly selected activations

during training, which should prevent the neural

network from overfitting the training data. In the

area of NLP, it is a common approach to apply

dropout to whole embeddings, randomly zeroing

certain dimensions. As Junczys-Dowmunt et al.

(2018) show, we can also apply dropout to whole

source words to reduce trust in the source words.

Specifically, full source word embedding vector is

set to zero vector with probability p. We further

note this probability as the source word dropout.

To make regularization even more effective, we

decided to dropout also whole target word embed-

dings. We refer to the probability with which we

dropout entire target word embeddings as the tar-

get word dropout.

3.1.3 Edited MLE

Compared to traditional machine translation task,

whose goal is to translate one language to another,

GEC operates on a single language. Together with

the relatively low error rate, the translation system

may converge to a local optimum, in which the
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model copies the input unchanged to the output.

To overcome this issue, Junczys-Dowmunt et al.

(2018) propose to change the maximum likelihood

objective to assign bigger weights to target tokens

different from the source tokens. More specifi-

cally, they start by computing the word alignment

between each source x = (x0, x1, ..xN ) and tar-

get sentence y = (y0, y1, ...yM ). Then they set the

weight λt of the target word yt to 1 if it is matched,

and otherwise, if it is an insertion or replacement

of a source token, λt is set to some predefined con-

stant. Modified log-likelihood training objective

then takes following form:

L(x, y) = −
M∑

t=1

λt logP (yt|x, y0, . . . , yt−1).

3.1.4 Data oversampling

It is crucial to have training data from the same

domain as the test data, i.e., training data con-

taining similar errors with similar distribution as

the test data. As we can see in the Table 1, the

vast majority of our training data comes from the

Lang-8 corpus. However, as it is quite noisy and

of low quality, it matches the target domain the

least. Therefore, we decided to oversample other

datasets. Specifically, we add the W&I training

data 10 times, all FCE data 5 times and NUCLE

corpus 5 times to the training data. The oversam-

pled training set consists of 1 900 551.

In Table 1, we can also see token error rate of

each corpus. The development error rate in W&I

and LOCNESS varies from 5.91% up to 18.32%.

This gives us a basic idea how the test data looks

like, and since the test data does not contain anno-

tations from which set (A, B, C, N) it comes, we

decided not to optimize the training data against

the token error rate any further.

3.1.5 Checkpoint Averaging

Popel and Bojar (2018) report that averaging sev-

eral last Transformer model checkpoints during

training leads both to lower variance results and

also to slightly better performance than the base-

line without averaging. They propose to save

checkpoints every one hour and average either 8

or 16 last checkpoints. Since we found out that

the model overfits the oversampled dataset quite

quickly, we save checkpoints every 30 minutes.

3.1.6 Iterative decoding

A system for grammatical error correction should

correct all errors in the text while keeping the rest

Data: input sent; max iters; threshold

for iter in [1,2,..,max iters] do

beam results = decode(input sent);

identity cost = +∞;

non identity cost = +∞;

non identity sent = None

for beam item in beam results do

text = beam item[”text”];
cost = beam item[”cost”];
if text == input sent then

identity cost = cost;

else if cost < non identity cost

then

non identity cost = cost;

non identity sent = text;

end

if non identity cost ≤
threshold · identity cost then

input sent = non identity sent;

else

break;

end

end

return input sent;
Algorithm 1: Iterative decoding algorithm

of the text intact. In many situations with multi-

ple errors in a sentence, the trained system, how-

ever, corrects only a subset of its errors. Lichtarge

et al. (2018) and Ge et al. (2018) propose to use

the trained system iteratively to allow the sys-

tem to correct certain errors during further itera-

tions. Iterative decoding is done as long as the

cost of the correction is less than the cost of the

identity translation times a predefined constant.

While Lichtarge et al. (2018) use the same trained

model log-likelihoods as the cost function, Ge

et al. (2018) utilize an external language model for

it. Because the restricted track does not contain

enough training data to train a quality language

model, we adopted the first approach and utilize

the trained system log-likelihoods as a stopping

criterion.

The iterative decoding algorithm we use is pre-

sented in Algorithm 1. Note that when the re-

sulting beam does not contain the identical (non-

modified) sentence, the correction with the lowest

cost is returned regardless of the provided thresh-

old. We adopted this approach for two reasons

– efficiently obtaining the log-likelihood of the

identical sentence would require non-trivial mod-
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ification of the Tensor2Tensor framework, and for

threshold > 1 (i.e., allow generating changes

which are less likely than identical sentence) the

results are the same.

3.1.7 Implementation Details

Apart from the first experiment in which we use

transformer base configuration, all our experi-

ments are based on transformer big architecture.

We use Adafactor optimizer (Shazeer and Stern,

2018), linearly increasing the learning rate from 0

to 0.011 over the first 8000 steps, then decrease it

proportionally to the number of steps after that.3

We also experimented with Adam optimizer with

default learning rate schedule, however, training

converged poorly. We hypothesise that this was

caused by the higher learning rate.

All systems are trained on 4 Nvidia P5000

GPUs for approximately 2 days. The vocabu-

lary consists of approximately 32k most common

word-pieces, batch size is 2000 word-pieces per

each GPU and all sentences with more than 150

word-pieces are discarded. Model checkpoints are

saved every 30 minutes. We ran a grid search to

find values of all hyperparameters described in the

previous sections.

At evaluation time, we run iterative decoding

using a beam size of 4. Beam-search length-

balance decoding hyperparameter alpha is set to

0.6. This applies to all further experiments.

3.2 Low-Resource Track

The dataset for our experiments in the Low-

Resource Track consists of nearly 190M seg-

ment pairs extracted from Wikipedia XML revi-

sion dumps. To acquire these, we downloaded

all English Wikipedia revision dumps (155GB in

size) and processed them with the WikiRevision

dataset problem from Tensor2Tensor. The pro-

cessing pipeline extracts individual pages with

chronological snapshots, removes all non-text ele-

ments and downsamples the snapshots. With low

probability, additional spelling noise is added by

either inserting a random character, deleting a ran-

dom character, transposing two adjacent charac-

ters or replacing a character with a random one.

With the same low probability, a random text sub-

string (up to 8 characters) may also be replaced

with a marker, which should force the model to

3We use 8000 warmup steps and learn-
ing rate schedule=rsqrt decay

learn infilling. Finally, the texts from two consec-

utive snapshots are aligned and sequences between

matching segments are extracted to form a training

pair. Only 4% of identical samples are preserved.

Despite having an enormous size compared to

1.2M sentences in the Restricted Track, the train-

ing pairs extracted from Wikipedia are extremely

noisy, containing a lot of edits that are in no sense

grammatical correction. It is also worth noting that

the identical data modified by the spelling and in-

filling operations form nearly 50% of the training

pairs.

Since we want to re-use the system in other sce-

narios, we train the model on the original (untok-

enized) training data. To evaluate the model on the

BEA development and test data, we detokenize the

data using Moses,4 run model inference and finally

tokenize corrected sentences using spaCy.5

The training segments may contain newline and

tab symbols; therefore, we applied additional post-

processing in which we replaced both these sym-

bols with spaces.

Because overfitting should not be an issue

with the Wikipedia data, we decided to use

transformer clean big tpu configuration, follow-

ing Lichtarge et al. (2018). This configura-

tion, compared to transformer big, performs no

dropouts. The vocabulary consists of approxi-

mately 32k most common word-pieces, batch size

is 2000 word-pieces per each GPU and all sen-

tences with more than 150 word-pieces are dis-

carded. We train the model for approximately 10

days on 4 Nvidia P5000 GPUs. After training, the

last 8 checkpoints saved in 1 hour intervals are av-

eraged. Finally, we run a grid search to find opti-

mal values of threshold and max iters in iterative

decoding algorithm.

3.3 Unrestricted Track

Our system submitted to the Unrestricted Track

is the best system from the Low-Resource Track

finetuned on the oversampled training data as de-

scribed in Section 3.1.4. Since our system in

the Unrestricted Track was trained on detokenized

data, the training sentences for finetuning were

also detokenized. The tokenization and detok-

enization was done in the same way as described

in Section 3.2.

4We use mosestokenizer v1.0.0 and its detokenizer.
5We use spaCy v1.9.0 and the en core web sm-1.2.0

model.



187

Track P R F0.5 Best Rank

Restricted 67.33 40.37 59.39 69.47 10 / 21

Unrestricted 68.17 53.25 64.55 66.78 3 / 7

Low Resource 50.47 29.38 44.13 64.24 5 / 9

Table 2: Official shared task F0.5 scores on the test set.

System A B C N Combined

Transformer-base architecture 39.98 32.68 23.97 14.49 32.47

Transformer-big architecture 39.70 35.13 26.22 20.20 34.20

+ 0.2 src drop, 0.1 tgt drop, 3 MLE 42.06 38.25 28.72 23.80 38.15

+ Extended dataset 45.99 41.79 32.52 27.89 40.86

+ Averaging 8 checkpoints 47.90 44.13 36.19 29.05 43.29

+ Iterative decoding 48.75 45.46 37.09 30.19 44.27

Table 3: Development combined F0.5 score of incremental improvements of our system.

We finetune the system with the Adafactor op-

timizer. The learning rate linearly increases from

0 to 0.0003 over the first 20 000 steps and then re-

mains constant. We employ source word dropout,

target word dropout and weighted MLE. The train-

ing data for finetuning and the rest of the training

scheme are identical to Section 3.1.7.

4 Results

We now present the results of our system. Addi-

tionally, we present several ablation experiments,

which are evaluated on the concatenation of W&I

and LOCNESS development sets (the Dev com-

bined).

4.1 Shared Task Results

The official results of our three systems on the

blind test set are presented in Table 2. All our

systems have substantially higher precision than

recall. It is an interesting observation that the sys-

tem in the unrestricted track has similar precision

as the model in the restricted track while having

higher recall.

4.2 Restricted Track

The first experiment we conducted is devoted to

the incremental enhancements that we proposed in

Section 3.1. As Table 3 indicates, applying each

enhancement results in higher performance on the

development set. By applying all incremental im-

provements, total F0.5 score on the development

set increases by 11.8%.

We improved the F0.5 score by adding

Source Target

MLE

Dev

word word combined

dropout dropout F0.5

0 0 1 34.20

0.1 37.89

0.2 38.26

0.1 35.43

0.2 33.98

2 34.56

3 34.28

4 34.17

0.2 0.1 37.89

0.2 3 38.68

0.2 0.1 3 38.15

Table 4: The effect of source word dropout, target word

dropout, and MLE weight on development combined

F0.5 score.

source word dropout, target word dropout and

MLE weighting by almost 4%. To find out opti-

mal values of all three hyper-parameters, we ran

a small grid search. The results of this experi-

ment are presented in Table 4. The source-word

dropout improves the results the most, MLE pro-

vides minor gains, while the influence of target-

word dropout on the results is unclear.

In the next experiment, we examined the effect

of checkpoint averaging. Table 5 presents results

of the model without averaging and with averag-

ing 4, 6, and 8 model checkpoints. The best results

are achieved when 8 checkpoints are used and the

results indicate that the more checkpoints are av-
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Figure 1: Performance of iterative decoding depending

on number of iterations and threshold parameters.

eraged the better the results are.

Finally, we inspect the effect of iterative decod-

ing. Specifically, we run an exhaustive grid search

to find optimal values of threshold and max iters.

The results of this experimented are visualised in

Figure 1. We can see that increasing threshold

from 1 to values around 1.20 leads to substan-

tially better results. Moreover, using more itera-

tions also has a positive impact on the model per-

formance. Both of these improvements are caused

by the model generating more corrections which

are deemed less likely to the model, i.e., we in-

crease recall at the expense of precision.

4.3 Low-Resource Track

We train following models in the Low-Resource

Track:

1. the transformer big configuration with

Checkpointing Dev combined F0.5

No checkpointing 41.55

Averaging 4 checkpoints 43.00

Averaging 6 checkpoints 43.13

Averaging 8 checkpoints 43.29

Table 5: Maximum development combined F0.5 score

achieved by averaging the given number of check-

points.

ID Model

Dev

combined

F0.5

1
transformer big

22.03
0.2 src drop, 0.1 tgt drop

2
transformer clean big tpu

26.05
no src drop, no tgt drop

3
transformer clean big tpu

24.80
0.2 src drop, 0.1 tgt drop

4
transformer clean big tpu

21.16
no spelling or infillment errors

Table 6: Development combined F0.5 score achieved

with different models in the Low-Resource Track.

input word dropout set to 0.2 and tar-

get word dropout to 0.1 – settings similar to

the best system in the Restricted Track but

without edited MLE;

2. the transformer clean big tpu configuration

– this configuration uses no internal dropouts;

3. the transformer clean big tpu configu-

ration with input word dropout 0.2 and

target word dropout 0.1;

4. the transformer clean big tpu configura-

tion trained on sentences extracted from

Wikipedia revisions without introducing

additional spelling errors and infillment

marker.

All but the fourth model use the training data as

described in Section 3.2 and the training scheme

is in all models identical. The results of all models

are presented in Table 6.

The best results are achieved with the second

model which performs no dropouts. When we in-

corporate source and target word dropouts in the

third experiment, the performance deteriorates by

more than 1%. When we also add Transformer in-
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Figure 2: Performance of iterative decoding depending

on number of iterations and threshold parameters.

ternal dropouts in the first experiment, the perfor-

mance drops by additional 2.8%. This confirms

our assumption that the enormous amount of data

is strong enough regularizer and the usage of ad-

ditional regularizers leads to worse performance.

The results of the fourth model, which was

trained on data without additional spelling and in-

fillment noise, are almost 5% worse than when

training on data with this noise. It would be an

interesting experiment to evaluate the effect of

spelling and infillment noise separately, but this

was not done in this paper.

We also run an exhaustive grid search to find op-

timal values of threshold and max iters in iterative

decoding. As we can see in Figure 2, the optimal

value of threshold is now below 1 indicating that

precision is now increased at the expense of recall.

A performance gain in using more than one itera-

tion is clearly visible.

4.4 Unrestricted Track

In the Unrestricted Track, we tried finetuning the

pretrained system with two different learning rate

schedules:

• linearly increase learning rate from 0 to 0.011

over the first 8000 steps, then decrease it

proportionally to the number of steps after

that – exactly same as while training system

from scratch in the Restricted Track (see Sec-

tion 3.1.7);

• linearly increase learning rate from 0 to 3e-4

then keep the learning rate constant as pro-

posed by Lichtarge et al. (2018).

All other hyper-parameters and the training pro-

cess remain the same as described in Section 3.3.

The first finetuning scheme overfitted the train-

ing corpus quite quickly while reaching score of

48.33. The second scheme converged slower and

reached a higher score of 48.82.

5 Conclusion

We have presented our three systems submitted

to the BEA 2019 Shared Tasks. By employ-

ing larger architecture, source and target word

dropout, edited MLE, dataset extension, check-

point averaging, and iterative decoding, our sys-

tem reached 59.39 F0.5 score in the Restricted

Track, finishing 10th out of 21 participants.

In the Low Resource Track, we utilized

Wikipedia revision edits as a training data, reach-

ing 44.14 F0.5 score. Finally, we finetuned this

model using the annotated training data, obtaining

65.55 F0.5 score in the Unrestricted Track, ranking

3rd out of 7 submissions.

As future work, we would like to explore itera-

tive decoding algorithm more thoroughly. Specif-

ically, we hope that allowing threshold parameter

to change in each iteration might provide gains.

We would also like to train systems on Wikipedia

revisions in other languages.
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Abstract

Grammatical error correction in English is
a long studied problem with many existing
systems and datasets. However, there has been
only a limited research on error correction of
other languages. In this paper, we present
a new dataset AKCES-GEC on grammatical
error correction for Czech. We then make ex-
periments on Czech, German and Russian and
show that when utilizing synthetic parallel cor-
pus, Transformer neural machine translation
model can reach new state-of-the-art results on
these datasets. AKCES-GEC is published un-
der CC BY-NC-SA 4.0 license at http://
hdl.handle.net/11234/1-3057, and
the source code of the GEC model is avail-
able at https://github.com/ufal/

low-resource-gec-wnut2019.

1 Introduction

A great progress has been recently achieved in
grammatical error correction (GEC) in English.
The performance of systems has since CoNLL
2014 shared task (Ng et al., 2014) increased by
more than 60% on its test set (Bryant et al.,
2019) and also a variety of new datasets appeared.
Both rule-based models, single error-type classi-
fiers and their combinations were due to larger
amount of data surpassed by statistical and later by
neural machine translation systems. These address
GEC as a translation problem from a language of
ungrammatical sentences to a grammatically cor-
rect ones.

Machine translation systems require large
amount of data for training. To cope with this is-
sue, different approaches were explored, from ac-
quiring additional corpora (e.g. from Wikipedia
edits) to building a synthetic corpus from clean
monolingual data. This was apparent on recent
Building Educational Applications (BEA) 2019
Shared Task on GEC (Bryant et al., 2019) when

top scoring teams extensively utilized synthetic
corpora.

The majority of research has been done in En-
glish. Unfortunately, there is a limited progress on
other languages. Namely, Boyd (2018) created a
dataset and presented a GEC system for German,
Rozovskaya and Roth (2019) for Russian, Náplava
(2017) for Czech and efforts to create annotated
learner corpora were also done for Chinese (Yu
et al., 2014), Japanese (Mizumoto et al., 2011) and
Arabic (Zaghouani et al., 2015).

Our contributions are as follows:
• We introduce a new Czech dataset for

GEC. In comparison to dataset of Šebesta
et al. (2017) it contains separated edits to-
gether with their type annotations in M2 for-
mat (Dahlmeier and Ng, 2012) and also has
two times more sentences.

• We extend the GEC model of Náplava and
Straka (2019) by utilizing synthetic training
data, and evaluate it on Czech, German and
Russian, achieving state-of-the-art results.

2 Related Work

There are several main approaches to GEC in low-

resource scenarios. The first one is based on a
noisy channel model and consists of three com-
ponents: a candidate model to propose (word) al-
ternatives, an error model to score their likelihood
and a language model to score both candidate
(word) probability and probability of a whole new
sentence. Richter et al. (2012) consider for a given
word all its small modifications (up to character
edit distance 2) present in a morphological dictio-
nary. The error model weights every character edit
by a trained weight, and three language models
(for word forms, lemmas and POS tags) are used
to choose the most probable sequence of correc-
tions. A candidate model of Bryant and Briscoe
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(2018) contains for each word spell-checker pro-
posals, its morphological variants (if found in Au-
tomatically Generated Inflection Database) and, if
the word is either preposition or article, also a set
of predefined alternatives. They assign uniform
probability to all changes, but use strong language
model to re-rank all candidate sentences. Lacroix
et al. (2019) also consider single word edits ex-
tracted from Wikipedia revisions.

Other popular approach is to extract parallel
sentences from Wikipedia revision histories. A
great advantage of such an approach is that the re-
sulting corpus is, especially for English, of great
size. However, as Wikipedia edits are not hu-
man curated specifically for GEC edits, the corpus
is extremely noisy. Grundkiewicz and Junczys-
Dowmunt (2014) filter this corpus by a set of regu-
lar expressions derived from NUCLE training data
and report a performance boost in statistical ma-
chine translation approach. Grundkiewicz et al.
(2019) filter Wikipedia edits by a simple language
model trained on BEA 2019 development corpus.
Lichtarge et al. (2019), on the other hand, re-
ports that even without any sophisticated filtering,
Transformer (Vaswani et al., 2017) can reach sur-
prisingly good results when used iteratively.

The third approach is to create synthetic corpus
from a clean monolingual corpus and use it as ad-
ditional data for training. Noise is typically intro-
duced either by rule-based substitutions or by us-
ing a subset of the following operations: token re-
placement, token deletion, token insertion, multi-
token swap and spelling noise introduction. Yuan
and Felice (2013) extract edits from NUCLE and
apply them on a clean text. Choe et al. (2019)
apply edits from W&I+Locness training set and
also define manual noising scenarios for prepo-
sition, nouns and verbs. Zhao et al. (2019) use
an unsupervised approach to synthesize noisy sen-
tences and allow deleting a word, inserting a ran-
dom word, replacing a word with random word
and also shuffling (rather locally). Grundkiewicz
et al. (2019) improve this approach and replace
a token with one of its spell-checker suggestions.
They also introduce additional spelling noise.

3 Data

In this Section, we present existing corpora for
GEC, together with newly released corpus for
Czech.

3.1 AKCES-GEC

The AKCES (Czech Language Acquisition Cor-
pora; Šebesta, 2010) is an umbrella project com-
prising of several acquisition resources – CzeSL
(learner corpus of Czech as a second language),
ROMi (Romani ethnolect of Czech Romani chil-
dren and teenagers) and SKRIPT and SCHOLA
(written and spoken language collected from na-
tive Czech pupils, respectively).

We present the AKCES-GEC dataset, which
is a grammar error correction corpus for Czech
generated from a subset of AKCES resources.
Concretely, the AKCES-GEC dataset is based on
CzeSL-man corpus (Rosen, 2016) consisting of
manually annotated transcripts of essays of non-
native speakers of Czech. Apart from the released
CzeSL-man, AKCES-GEC further utilizes addi-
tional unreleased parts of CzeSL-man and also es-
says of Romani pupils with Romani ethnolect of
Czech as their first language.

The CzeSL-man annotation consists of three
Tiers – Tier 0 are transcribed inputs, followed by
the level of orthographic and morphemic correc-
tions, where only word forms incorrect in any con-
text are considered (Tier 1). Finally, the rest of er-
rors is annotated at Tier 2. Forms at different Tiers
are manually aligned and can be assigned one or
more error types (Jelínek et al., 2012). An exam-
ple of the annotation is presented in Figure 1, and
the list of error types used in CzeSL-man annota-
tion is listed in Table 1.

We generated AKCES-GEC dataset using the
three Tier annotation of the underlying corpus. We
employed Tier 0 as source texts, Tier 2 as cor-
rected texts, and created error edits according to
the manual alignments, keeping error annotations
where available.1 Considering that the M2 format
(Dahlmeier and Ng, 2012) we wanted to use does
not support non-local error edits and therefore can-
not efficiently encode word transposition on long
distances, we decided to consider word swaps over
at most 2 correct words a single edit (with the con-
stant 2 chosen according to the coverage of long-
range transpositions in the data). For illustration,
see Figure 2.

The AKCES-GEC dataset consists of an ex-
plicit train/development/test split, with each set di-
vided into foreigner and Romani students; for de-

1The error annotations are unfortunately not available in
the whole underlying corpus, and not all errors are annotated
with at least one label.
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Figure 1: Example of two-level annotation of a sentence in CzeSL corpus, reproduced from (Rosen, 2016).

original sentence

corrected sentence

A B C

C A B

A B C

CA B

D

D

Figure 2: Word swap over one or two correct words (on the left) is considered a single edit (A B C→ C A B). Word
swap over more than two correct words (on the right) is represented as two edits of deleting D and inserting D.

Error type Description Example Occ
incorInfl incorrect inflection [pracovají → pracují] v továrně 8 986
incorBase incorrect word base musíš to [posvětlit → posvětit] 20 334
fwFab non-emendable, „fabricated“ word pokud nechceš slyšet [smášky] 78
fwNC foreign word váza je na [Tisch → stole] 166
flex supplementary flag used with fwFab and jdu do [shopa → obchodu] 34

fwNC marking the presence of inflection
wbdPre prefix separated by a space or preposition w/o space musím to [při pravit → připravit] 817
wbdComp wrongly separated compound [český anglický → česko-anglický] slovník 92
wbdOther other word boundary error [mocdobře → moc dobře]; [atak → a tak] 1326
stylColl colloquial form [dobrej → dobrý] film 3 533
stylOther bookish, dialectal, slang, hyper-correct form holka s [hnědými očimi → hnědýma očima] 156
agr violated agreement rules to jsou [hezké → hezcí] chlapci; Jana [čtu → čte] 5 162
dep error in valency bojí se [pes → psa]; otázka [čas → času] 6 733
ref error in pronominal reference dal jsem to jemu i [jejího → jeho] bratrovi 344
vbx error in analytical verb form or compound predicate musíš [přijdeš → přijít]; kluci [jsou] běhali 864
rflx error in reflexive expression dívá [∅ → se] na televizi; Pavel [si → se] raduje 915
neg error in negation [půjdu ne → nepůjdu] do školy 111
lex error in lexicon or phraseology dopadlo to [přírodně → přirozeně] 3 967
use error in the use of a grammar category pošta je [nejvíc blízko → nejblíže] 1 458
sec secondary error (supplementary flag) stará se o [našich holčičkách → naše holčičky] 866
stylColl colloquial expression viděli jsme [hezký → hezké] holky 3 533
stylOther bookish, dialectal, slang, hyper-correct expression rozbil se mi [hadr] 156
stylMark redundant discourse marker [no]; [teda]; [jo] 15
disr disrupted construction známe [hodné spoustu → spoustu hodných] lidí 64
problem supplementary label for problematic cases 175
unspec unspecified error type 69 123

Table 1: Error types used in CzeSL corpus taken from (Jelínek et al., 2012), including number of occurrences in
the dataset being released. Tier 1 errors are in the upper part of the table, Tier 2 errors are in the lower part. The
stylColl and stylOther are annotated on both Tiers, but we do not distinguish on which one in the AKCES-GEC.

velopment and test sets, the foreigners are further
split into Slavic and non-Slavic speakers. Further-
more, the development and test sets were anno-
tated by two annotators, so we provide two refer-
ences if the annotators utilized the same sentence
segmentation and produced different annotations.

The detailed statistics of the dataset are pre-
sented in Table 2. The AKCES-GEC dataset is
released under the CC BY-NC-SA 4.0 license at

http://hdl.handle.net/11234/1-3057.
We note that there already exists a CzeSL-GEC

dataset (Šebesta et al., 2017). However, it consists
only of a subset of data and does not contain error
types nor M2 files with individual edits.

3.2 English

Probably the largest corpus for English GEC is
the Lang-8 Corpus of Learner English (Mizumoto
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Train Dev Test

Doc Sent Word Error r. Doc Sent Word Error r. Doc Sent Word Error r.

Foreign.
Slavic

1 816 27 242 289 439 22.2 %
70 1 161 14 243 21.8 % 69 1 255 14 984 18.8 %

Other 45 804 8 331 23.8 % 45 879 9 624 20.5 %

Romani 1 937 14 968 157 342 20.4 % 80 520 5 481 21.0 % 74 542 5 831 17.8 %

Total 3 753 42 210 446 781 21.5 % 195 2 485 28 055 22.2 % 188 2 676 30 439 19.1 %

Table 2: Statistics of the AKCES-GEC dataset – number of documents, sentences, words and error rates.

et al., 2011; Tajiri et al., 2012). It comes from
an online language learning website, where users
are able to post texts in language they are learn-
ing. These texts then appear to native speakers
for correction. The corpus has over 100 000 raw
English entries comprising of more than 1M sen-
tences. Due to the fact that texts are corrected by
online users, this corpus is also quite noisy.

Other corpora are corrected by trained annota-
tors making them much cleaner but also signifi-
cantly smaller. NUCLE (Dahlmeier et al., 2013)
has 57 151 sentences originating from 1 400 es-
says written by mainly Asian undergraduate stu-
dents at the National University of Singapore.
FCE (Yannakoudakis et al., 2011) is a subset of
the Cambridge Learner Corpus (CLC) and has
33 236 sentences from 1 244 written answers to
FCE exam questions. Recent Write & Improve
(W&I) and LOCNESS v2.1 (Bryant et al., 2019;
Granger, 1998) datasets were annotated for differ-
ent English proficiency levels and a part of them
also comes from texts written by native English
speakers. Altogether, it has 43 169 sentences.

To evaluate system performance, CoNLL-2014
test set is most commonly used. It comprises of
1 312 sentences written by 25 South-East Asian
undergraduates. The gold annotations are matched
against system hypothesis using MaxMatch scorer
outputting F0.5 score. The other frequently used
dataset is JFLEG (Napoles et al., 2017; Heilman
et al., 2014), which also tests systems for how
fluent they sound by utilizing the GLEU met-
ric (Napoles et al., 2015). Finally, recent W&I and
LOCNESS v2.1 test set allows to evaluate systems
on different levels of proficiency and also against
different error types (utilizing ERRANT scorer).

3.3 German

Boyd (2018) created GEC corpus for German
from two German learner corpora: Falko and
MERLIN (Boyd et al., 2014). The resulting
dataset comprises of 24 077 sentences divided into

training, development and test set in the ratio
of 80:10:10. To evaluate system performance,
MaxMatch scorer is used.

Apart from creating the dataset, Boyd (2018)
also extended ERRANT for German. She defined
21 error types (15 based on POS tags) and ex-
tended spaCy2 pipeline to classify them.

3.4 Russian

Rozovskaya and Roth (2019) introduced RULEC-
GEC dataset for Russian GEC. To create this
dataset, a subset of RULEC corpus with foreign
and heritage speakers was corrected. The final
dataset has 12 480 sentences annotated with 23 er-
ror tags. The training, development and test sets
contain 4 980, 2 500 and 5 000 sentence pairs, re-
spectively.

3.5 Corpora Statistics

Table 3 indicates that there is a variety of English
datasets for GEC. As Náplava and Straka (2019)
show, training Transformer solely using these an-
notated data gives solid results. On the other hand,
there is only limited number of data for Czech,
German and Russian and also the existing systems
perform substantially worse. This motivates our
research in these low-resource languages.

Table 3 also presents an average error rate of
each corpus. It is computed using maximum align-
ment of original and annotated sentences as a ratio
of non-matching alignment edges (insertion, dele-
tion, and replacement). The highest error rate of
21.4 % is on Czech dataset. This implies that circa
every fifth word contains an error. German is also
quite noisy with an error rate of 16.8 %. The av-
erage error rate on English ranges from 6.6 % to
14.1 % and, finally, the Russian corpus contains
the least errors with an average error rate of 6.4%.

2
https://spacy.io/
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Language Corpus Sentences Err. r.

English
Lang-8 1 147 451 14.1%
NUCLE 57 151 6.6%
FCE 33 236 11.5%
W&I+LOCNESS 43 169 11.8%

Czech AKCES-GEC 42 210 21.4%
German Falko-MERLIN 24 077 16.8%
Russian RULEC-GEC 12 480 6.4%

Table 3: Statistics of available corpora for Grammatical
Error Correction.

3.6 Tokenization

The most popular metric for benchmarking sys-
tems are MaxMatch scorer (Dahlmeier and Ng,
2012) and ERRANT scorer (Bryant et al., 2017).
They both require data to be tokenized; therefore,
most of the GEC datasets are tokenized.

To tokenize monolingual English and German
data, we use spaCy v1.9.0 tokenizer utilizing
en_core_web_sm-1.2.0 and de model. We use cus-
tom tokenizers for Czech3 and Russian4.

4 System Overview

We use neural machine translation approach
to GEC. Specifically, we utilize Transformer
model (Vaswani et al., 2017) to translate ungram-
matical sentences to grammatically correct ones.
We further follow Náplava and Straka (2019) and
employ source and target word dropouts, edit-
weighted MLE and checkpoint averaging. We do
not use iterative decoding in this work, because
it substantially slows down decoding. Our mod-
els are implemented in Tensor2Tensor framework
version 1.12.0.5

4.1 Pretraining on Synthetic Dataset

Due to the limited number of annotated data in
Czech, German and Russian we decided to create
a corpus of synthetic parallel sentences. We were
also motivated by the fact that such approach was
shown to improve performance even in English
with substantially more annotated training data.

We follow Grundkiewicz et al. (2019), who use
an unsupervised approach to create noisy input
sentences. Given a clean sentence, they sample
a probability perr_word from a normal distribu-
tion with a predefined mean and a standard de-

3A slight modification of MorphoDiTa tokenizer.
4
https://github.com/aatimofeev/spacy_russian_

tokenizer
5
https://github.com/tensorflow/tensor2tensor

viation. After multiplying perr_word by a num-
ber of words in the sentence, as many sentence
words are selected for modification. For each
chosen word, one of the following operations is
performed with a predefined probability: substi-
tuting the word with one of its ASpell6 propos-
als, deleting it, swapping it with its right-adjacent
neighbour or inserting a random word from dic-
tionary after the current word. To make the system
more robust to spelling errors, same operations are
also used on individual characters with perr_char
sampled from a normal distribution with a differ-
ent mean and standard deviation than perr_word

and (potentially) different probabilities of charac-
ter operations.

When we inspected the results of a model
trained on such dataset in Czech, we observed that
the model often fails to correct casing errors and
sometimes also errors in diacritics. Therefore, we
extend word-level operations to also contain op-
eration to change casing of a word. If a word is
chosen for modification, it is with 50% probabil-
ity whole converted to lower-case, or several in-
dividual characters are chosen and their casing is
inverted. To increase the number of errors in dia-
critics, we add a new character-level noising oper-
ation, which for a selected character either gener-
ates one of its possible diacritized variants or re-
moves diacritics. Note that this operation is per-
formed only in Czech.

We generate synthetic corpus for each language
from WMT News Crawl monolingual training
data (Bojar et al., 2017). We set perr_word to 0.15,
perr_char to 0.02 and estimate error distributions
of individual operations from development sets of
each language. The constants used are presented
in Table 4. We limited amount of synthetic sen-
tences to 10M in each language.

4.2 Finetuning

A model is (pre-)trained on a synthetic dataset
until convergence. Afterwards, we finetune the
model on a mix of original language training data
and synthetic data. When finetuning the model, we
preserve all hyperparameters (e.g., learning rate
and optimizer moments). In other words, the train-
ing continues and only the data are replaced.

When finetuning, we found that it is crucial
to preserve some portion of synthetic data in the
training corpus. Finetuning with original training

6
http://aspell.net/
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Language Token-level operations Character-level operations

sub ins del swap recase sub ins del recase toggle
diacritics

English 0.6 0.2 0.1 0.05 0.05 0.25 0.25 0.25 0.25 0
Czech 0.7 0.1 0.05 0.1 0.05 0.2 0.2 0.2 0.2 0.2
German 0.64 0.2 0.1 0.01 0.05 0.25 0.25 0.25 0.25 0
Russian 0.65 0.1 0.1 0.1 0.05 0.25 0.25 0.25 0.25 0

Table 4: Language specific constants for token- and character-level noising operations.

data leads to fast overfitting with worse results on
all of Czech, German and Russian. We also found
out that it also slightly helps on English.

We ran a small grid-search to estimate the ra-
tio of synthetic versus original sentences in the
finetuning phase. Although the ratio of 1:2 (5M
original oversampled training pairs and 10M syn-
thetic pairs) still overfits, we found it to work best
for English, Czech and German, and stop train-
ing when the performance on the development set
starts deteriorating. For Russian, the ratio of 1:20
(0.5M oversampled training pairs and 10M syn-
thetic pairs) works the best.

The original sentences for English finetuning
are concatenated sentences from Lang-8 Corpus
of Learner English, FCE, NUCLE and W&I and
LOCNESS. To better match domain of test data,
we oversampled training set by adding W&I train-
ing data 10 times, FCE data 5 times and NUCLE
corpus 5 times to the training set. The original
sentences in Czech, German and Russian are the
training data of the corresponding languages.

4.3 Implementation Details

When running grid search for hyperparameter tun-
ing, we use transformer_base_single_gpu config-
uration, which uses only 1 GPU to train Trans-

former Base model. After we select all hyperpa-
rameter, we train Transformer Big architecture on
4 GPUs. Hyperparameters described in following
paragraphs belong to both architectures.

We use Adafactor optimizer (Shazeer and Stern,
2018), linearly increasing the learning rate from 0
to 0.011 over the first 8000 steps, then decrease
it proportionally to the number of steps after that
(using the rsqrt_decay schedule). Note that
this only applies to the pre-training phase.

All systems are trained on Nvidia P5000 GPUs.
The vocabulary consists of approximately 32k
most common word-pieces, the batch size is 2000
word-pieces per each GPU and all sentences with

more than 150 word-pieces are discarded during
training. Model checkpoints are saved every hour.

At evaluation time, we decode using a beam size
of 4. Beam-search length-balance decoding hyper-
parameter alpha is set to 0.6.

5 Results

We present results of our model when trained on
English, Czech, German and Russian in this Sec-
tion. As we are aware of only one system in Ger-
man, Czech and Russian to compare with, we start
with English model discussion. We show that our
model is on par or even slightly better than current
state-of-the-art systems in English when no en-
sembles are allowed. We then discuss our results
on other languages, where our system exceeds all
existing systems by a large margin.

In all experiments, we report results of three
systems: synthetic pretrain, which is based on
Transformer Big and is trained using synthetic
data only, and finetuned and finetuned base sin-

gle GPU, which are based on Transformer Big
and Base, respectively, and are both pretrained and
finetuned. Note that even if the finetuned base sys-
tem has 3 times less parameters than finetuned, its
results on some languages are nearly identical.

We also tried training the system using anno-
tated data only. With our model architecture, all
but English experiments (which contain substan-
tially more data) starts overfitting quickly, yield-
ing poor performance. The overfitting problem
could be possibly addressed as proposed by Sen-
nrich and Zhang (2019). Nevertheless, given that
our best system on English is by circa 10 points in
F0.5 score better than the system trained solely on
annotated data, we focused primarily on the syn-
thetic data experiments.

Apart from the W&I+L development and test
sets, which are evaluated using ERRANT scorer,
we use MaxMatch scorer in all experiments.
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System W&I+L test W&I+L dev
CoNLL 14 test

No W&I+L With W&I+L
including ensembles

Lichtarge et al. (2019) – – 60.40 –
Zhao et al. (2019) – – 61.15 –
Xu et al. (2019) 67.21 55.37 – 63.20
Choe et al. (2019) 69.06 52.79 57.50 –
Grundkiewicz et al. (2019) 69.47 53.00 61.30 64.16

no ensembles
Lichtarge et al. (2019) – – 56.80 –
Xu et al. (2019) 63.94 52.29 – 60.90
Choe et al. (2019) 63.05 47.75 – –
Grundkiewicz et al. (2019) – 50.01 – –

no ensembles
Our work – synthetic pretrain 51.16 32.76 41.85 44.12
Our work – finetuned base single GPU 67.18 52.80 59.87 –
Our work – finetuned 69.00 53.30 60.76 63.40

Table 5: Comparison of systems on two English GEC datasets. CoNLL 2014 Test Set is divided into two system
groups (columns): those who do not train on W&I+L training data and those who do.

System P R F0.5

Boyd (2018) 51.99 29.73 45.22

Our work – synthetic pretrain 67.45 26.35 51.41
Our work – finetuned base single GPU 78.11 59.13 73.40
Our work – finetuned 78.21 59.94 73.71

Table 6: Results on on Falko-Merlin Test Set (German).

5.1 English

We provide comparison between our model and
existing systems on W&I+L test and development
sets and on CoNLL 14 test set in Table 5. Even
if the results on the W&I+L development set are
only partially indicative of system performance,
we report them due to the W&I+L test set being
blind. All mentioned papers do not train their sys-
tems on the development set, but use it only for
model selection. Also note that we split the results
on CoNLL 14 test set into two groups: those who
do not use the W&I+L data for training, and those
who do. This is to allow a fair comparison, given
that the W&I+L data were not available before the
BEA 2019 Shared Task on GEC.

The best performing systems are utilizing en-
sembles. Table 5 shows an evident performance
boost (3.27-6.01 points) when combining multi-
ple models into an ensemble. The best perform-
ing system on English is an ensemble system of
Grundkiewicz et al. (2019).

The aim of this paper is to concentrate on low-
resource languages rather than on English. There-
fore, we report results of our single model. De-
spite that our best system reaches 69.0 F0.5 score,
which is comparable to the performance of best
systems that employ ensembles. Although Grund-
kiewicz et al. (2019) do not report their single sys-
tem score, we can hypothesise that given develop-
ment set scores, our system is on par with theirs or
even performs slightly better.

Note that there is a significant difference be-
tween results reported on W&I+L dev and W&I+L
test sets. This is caused by the fact that each sen-
tence in the W&I+L test set was annotated by 10
annotators, while there is only a single annotator
for each sentence in the development set.

5.2 German

Boyd (2018) developed a GEC system for Ger-
man based on multilayer convolutional encoder-
decoder neural network (Chollampatt and Ng,
2018). To account for the lack of annotated
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System Test Subset P R F0.5

Richter et al. (2012) All 68.72 36.75 58.54

Our work – synthetic pretrain All 80.32 39.55 66.59
Our work – finetuned base single GPU All 84.21 66.67 80.00

Our work – finetuned

Foreigners – Slavic 84.34 71.55 81.43
Foreigners – Other 81.03 62.36 76.45
Romani 86.61 71.13 83.00
All 83.75 68.48 80.17

Table 7: Results on on AKCES-GEC Test Set (Czech).

Figure 3: Recall for each error type in the test set of AKCES-GEC, computed using the first annotator (ID 0).

data, she generated additional training data from
Wikipedia edits, which she filtered to match the
distribution of the original error types. As Table 6
shows, her best system reaches 45.22 F0.5 score on
Falko-Merlin test set. All our three systems out-
perform it.

Compared to Boyd (2018), our system trained
solely on synthetic data has lower recall, but sub-
stantially higher precision. The main reason be-
hind the lower recall is the unsupervised approach
to synthetic data generation. Both our finetuned
models outperform Boyd (2018) system by a large
margin.

5.3 Czech

We compare our system with Richter et al. (2012),
who developed a statistical spelling corrector for
Czech. Although their system can only make local
changes (e.g., cannot insert a new word or swap
two nearby words), it achieves surprisingly solid
results. Nevertheless, all our three system perform

better in both precision, recall and F0.5 score. Pos-
sibly due to already quite high precision of the
pretrained model, the finetuning stage improves
mainly model recall.

We also evaluate performance of our best sys-
tem on three subsets of the AKCES-GEC test set:
Foreigners–Slavic, Foreigners–Other and Romani.
As the name suggests, the first of them is a part
of AKCES-GEC collected from essays of non-
Czech Slavic people, the second from essays of
non-Czech non-Slavic people and finally Romani
comes from essays of Romani pupils with Romani
ethnolect of Czech as their first language. The
best result is reached on Romani subset, while on
Foreigners–Other the F0.5 score is by more than 6
points lower. We hypothesize this effect is caused
by the fact, that Czech is the primary language
of Romani pupils. Furthermore, we presume that
foreigners with Slavic background should learn
Czech faster than non-Slavic foreigners, because
of the similarity between their mother tongue and
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System P R F0.5

Rozovskaya and Roth (2019) 38.0 7.5 21.0

Our work – synthetic pretrain 47.76 26.08 40.96
Our work – finetuned base single GPU 59.13 26.05 47.15
Our work – finetuned 63.26 27.50 50.20

Table 8: Results on on RULEC-GEC Test Set (Russian).

Czech. This fact is supported by Table 2, which
shows that the average error rate of Romani de-
velopment set is 21.0%, Foreigners–Slavic 21.8%
and the Foreigners–Other 23.8%.

Finally, we report recall of the best system on
each error type annotated by the first annotator (ID
0) in Figure 3. Generally, our system performs
better on errors annotated on Tier 1 than on errors
annotated on Tier 2. Furthermore, a natural hy-
pothesis is that the more occurrences there are for
an error type, the better the recall of the system
on the particular error type. Figure 3 suggests that
this hypothesis seems plausible on Tier 1 errors,
but its validity is unclear on Tier 2.

5.4 Russian

As Table 8 indicates, GEC in Russian currently
seems to be the most challenging task. Although
our system outperforms the system of Rozovskaya
and Roth (2019) by more than 100% in F0.5 score,
its performance is still quite poor when compared
to all previously described languages. Because
the result of our system trained solely on synthetic
data is comparable with the similar system for En-
glish, we hypothesise that the main reason behind
these poor results is the small amount of anno-
tated training data – while Czech has 42 210 and
German 19 237 training sentence pairs, there are
only 4 980 sentences in the Russian training set.
To validate this hypothesis, we extended the origi-
nal training set by 2 000 sentences from the devel-
opment set, resulting in an increase of 3 percent
points in F0.5 score.

6 Conclusion

We presented a new dataset for grammatical er-
ror correction in Czech. It contains almost twice
as much sentences as existing German dataset and
more than three times as RULEC-GEC for Rus-
sian. The dataset is published in M2 format con-
taining both separated edits and their error types.

Furthermore, we performed experiments on
three low-resource languages: German, Russian

and Czech. For each language, we pretrained
Transformer model on synthetic data and fine-
tuned it with a mixture of synthetic and authentic
data. On all three languages, the performance of
our system is substantially higher than results of
the existing reported systems. Moreover, all our
models supersede reported systems even if only
pretrained on unsupervised synthetic data.

The performance of our system could be even
higher if we trained multiple models and com-
bined them into an ensemble. We plan to do that
in future work. We also plan to extend our syn-
thetic corpora with data modified by supervisedly
extracted rules. We hope that this could help es-
pecially in case of Russian, which has the lowest
amount of training data.
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Slovenskočeský NLP workshop (SloNLP 2016), vol-
ume 1649 of CEUR Workshop Proceedings, pages
80–87, Bratislava, Slovakia. Comenius University
in Bratislava, Faculty of Mathematics, Physics and
Informatics, CreateSpace Independent Publishing
Platform.

Alla Rozovskaya and Dan Roth. 2019. Grammar error
correction in morphologically rich languages: The
case of russian. Transactions of the Association for
Computational Linguistics, 7:1–17.

Karel Šebesta, Zuzanna Bedřichová, Kateřina
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Tereza Hrdličková, Jiří Hana, Vladimír Petkevič,
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Abstract

We introduce a large and diverse Czech cor-
pus annotated for grammatical error cor-
rection (GEC) with the aim to contribute
to the still scarce data resources in this
domain for languages other than English.
The Grammar Error Correction Corpus for

Czech (GECCC) offers a variety of four do-
mains, covering error distributions ranging
from high error density essays written by
non-native speakers, to website texts, where
errors are expected to be much less com-
mon. We compare several Czech GEC sys-
tems, including several Transformer-based
ones, setting a strong baseline to future re-
search. Finally, we meta-evaluate common
GEC metrics against human judgements on
our data. We make the new Czech GEC cor-
pus publicly available under the CC BY-SA
4.0 license at http://hdl.handle.net/
11234/1-4639.

1 Introduction

Representative data both in terms of size and do-
main coverage are vital for NLP systems devel-
opment. However, in the field of grammar error
correction (GEC), most GEC corpora are limited
to corrections of mistakes made by foreign or sec-
ond language learners even in the case of English
(Tajiri et al., 2012; Dahlmeier et al., 2013; Yan-
nakoudakis et al., 2011, 2018; Ng et al., 2014;
Napoles et al., 2017). At the same time, as re-
cently pointed out by Flachs et al. (2020), learner
corpora are only a part of the full spectrum of GEC
applications. To alleviate the skewed perspective,
the authors released a corpus of website texts.

Despite recent efforts aimed to mitigate the no-
torious shortage of national GEC-annotated cor-
pora (Boyd, 2018; Rozovskaya and Roth, 2019;
Davidson et al., 2020; Syvokon and Nahorna,
2021; Cotet et al., 2020; Náplava and Straka,
2019), the lack of adequate data is even more acute

in languages other than English. We aim to ad-
dress both the issue of scarcity of non-English data
and the ubiquitous need for broad domain cover-
age by presenting a new, large and diverse Czech
corpus, expertly annotated for GEC.

Grammar Error Correction Corpus for Czech

(GECCC) includes texts from multiple domains in
a total of 83 058 sentences, being, to our knowl-
edge, the largest non-English GEC corpus, as well
as being one of the largest GEC corpora overall.

In order to represent a diversity of writing styles
and origins, besides essays of both native and
non-native speakers from Czech learner corpora,
we also scraped website texts to complement the
learner domain with supposedly lower error den-
sity texts, encompassing a representation of the
following four domains:

• Natives Formal – essays written by native
students of elementary and secondary schools

• Natives Web Informal – informal website dis-
cussions

• Romani – essays written by children and
teenagers of the Romani ethnic minority

• Second Learners – essays written by non-
native learners

Using the presented data, we compare sev-
eral state-of-the-art Czech GEC systems, includ-
ing some Transformer-based.

Finally, we conduct a meta-evaluation of GEC
metrics against human judgements to select the
most appropriate metric for evaluating corrections
on the new dataset. The analysis is performed
across domains, in line with Napoles et al. (2019).

Our contributions include (i) a large and di-

verse Czech GEC corpus, covering learner cor-
pora and website texts, with unified and, in some
domains, completely new GEC annotations, (ii)
a comparison of Czech GEC systems, and (iii)
a meta-evaluation of common GEC metrics

against human judgement on the released corpus.



2 Related Work

2.1 Grammar Error Correction Corpora

Until recently, attention has been focused mostly
on English, while GEC data resources for other
languages were in short supply. Here we list a
few examples of English GEC corpora, collected
mostly within an English-as-a-second-language
(ESL) paradigm. For a comparison of their rele-
vant statistics see Table 1.

Lang-8 Corpus of Learner English (Tajiri et al.,
2012) is a corpus of English language learner texts
from the Lang-8 social networking system.

NUCLE (Dahlmeier et al., 2013) consists of es-
says written by undergraduate students of the Na-
tional University of Singapore.

FCE (Yannakoudakis et al., 2011) includes
short essays written by non-native learners for the
Cambridge ESOL First Certificate in English.

W&I+LOCNESS is a union of two datasets, the
W&I (Write & Improve) dataset (Yannakoudakis
et al., 2018) of non-native learners’ essays, com-
plemented by the LOCNESS corpus (Granger,
1998), a collection of essays written by native En-
glish students.

The GEC error annotations for the learner cor-
pora above were distributed with the BEA-2019
Shared Task on Grammatical Error Correction
(Bryant et al., 2019).

The CoNLL-2014 shared task test set (Ng et al.,
2014) is often used for GEC systems evaluation.
This small corpus consists of 50 essays written by
25 South-East Asian undergraduates.

JFLEG (Napoles et al., 2017) is another fre-
quently used GEC corpus with fluency edits in ad-
dition to usual grammatical edits.

To broaden the restricted variety of domains, fo-
cused primarily on learner essays, a CWEB collec-
tion (Flachs et al., 2020) of website texts was re-
cently released, aiming at contributing lower error
density data.

AESW (Daudaravicius et al., 2016) is a large
corpus of scientific writing (over 1M sentences),
edited by professional editors.

Finally, Napoles et al. (2019) recently released
GMEG, a corpus for the evaluation of GEC met-
rics across domains.

Grammatical error correction corpora for lan-
guages other than English are less common and
– if available – usually limited in size and do-
main: German Falko-MERLIN (Boyd, 2018),
Russian RULEC-GEC (Rozovskaya and Roth,

2019), Spanish COWS-L2H (Davidson et al.,
2020), Ukrainian UA-GEC (Syvokon and Na-
horna, 2021) and Romanian RONACC (Cotet
et al., 2020).

To better account for multiple correction op-
tions, datasets often contain several reference sen-
tences for each original noisy sentence in the test
set, proposed by multiple annotators. As we can
see in Table 1, the number of annotations typically
ranges between 1 and 5 with an exception of the
CoNLL14 test set, which – on top of the official
2 reference corrections – later received 10 annota-
tions from Bryant and Ng (2015) and 8 alternative
annotations from Sakaguchi et al. (2016).

2.2 Czech Learner Corpora

By the early 2010s, Czech was one of a few
languages other than English to boast a series
of learner corpora, compiled under the umbrella
project AKCES, evoking the concept of acquisi-

tion corpora (Šebesta, 2010).
The native section includes transcripts of hand-

written essays (SKRIPT 2012) and classroom con-
versation (SCHOLA 2010) from elementary and
secondary schools. Both have their counterparts
documenting the Roma ethnolect of Czech:1 es-
says (ROMi 2013) and recordings and transcripts
of dialogues (ROMi 1.0).2

The non-native section goes by the name of
CzeSL, the acronym of Czech as the Second Lan-

guage. CzeSL consists of transcripts of short hand-
written essays collected from non-native learners
with various levels of proficiency and native lan-
guages, mostly students attending Czech language
courses before or during their studies at a Czech

1The Romani ethnolect of Czech is the result of contact
with Romani as the linguistic substrate. To a lesser (and
weakening) extent the ethnolect shows some influence of Slo-
vak or even Hungarian, because most of its speakers have
roots in Slovakia. The ethnolect can exhibit various specifics
across all linguistic levels. However, nearly all of them are
complementary with their colloquial or standard Czech coun-
terparts. A short written text, devoid of phonological proper-
ties, may be hard to distinguish from texts written by learn-
ers without the Romani backround. The only striking excep-
tion are misspellings in contexts where the latter benefit from
more exposure to written Czech. The typical example is the
omission of word boundaries within phonological words, e.g.
between a clitic and its host. In other respects, the pattern
of error distribution in texts produced by ethnolect speakers
is closer to native rather than foreign learners (Bořkovcová,
2007, 2017).

2A more recent release SKRIPT 2015 includes a balanced
mix of essays from SKRIPT 2012 and ROMi 2013. For more
details and links see http://utkl.ff.cuni.cz/akces/.



Language Corpus Sentences Err. r. Domain # Refs.

English

Lang-8 1 147 451 14.1% SL 1
NUCLE 57 151 6.6% SL 1
FCE 33 236 11.5% SL 1
W&I+LOCNESS 43 169 11.8% SL, native students 5
CoNLL-2014 test 1 312 8.2% SL 2,10,8
JFLEG 1 511 — SL 4
GMEG 6 000 — web, formal articles, SL 4
AESW over 1M — scientific writing 1
CWEB 13 574 ∼2% web 2

Czech AKCES-GEC 47 371 21.4% SL essays, Romani ethnolect of Czech 2

German Falko-MERLIN 24 077 16.8% SL essays 1

Russian RULEC-GEC 12 480 6.4% SL, heritage speakers 1

Spanish COWS-L2H 12 336 — SL, heritage speakers 2

Ukrainian UA-GEC 20 715 7.1% natives/SL, translations and personal texts 2

Romanian RONACC 10 119 — native speakers transcriptions 1

Table 1: Comparison of GEC corpora in size, token error rate, domain and number of reference annota-
tions in the test portion. SL = second language learners.

university. There are several releases of CzeSL,
which differ mainly to what extent and how the
texts are annotated (Rosen et al., 2020).3

More recently, hand-written essays have been
transcribed and annotated in TEITOK (Janssen,
2016),4 a tool combining a number of corpus com-
pilation, annotation and exploitation functionali-
ties.

Learner Czech is also represented in MERLIN,
a multilingual (German, Italian and Czech) cor-
pus built in 2012–2014 from texts submitted as a
part of tests for language proficiency levels (Boyd
et al., 2014).5

Finally, AKCES-GEC (Náplava and Straka,
2019) is a GEC corpus for Czech created from
the subset of the above mentioned AKCES re-
sources (Šebesta, 2010): the CzeSL-man corpus
(non-native Czech learners with manual annota-
tion) and a part of the ROMi corpus (speakers of
the Romani ethnolect).

Compared to the AKCES-GEC, the new
GECCC corpus contains much more data (47 371
sentences vs. 83 058 sentences, respectively), by
extending data in the existing domains and also
adding two new domains: essays written by native
learners and website texts, making it the largest

3For a list of CzeSL corpora with their sizes and annota-
tion details see http://utkl.ff.cuni.cz/learncorp/.

4
http://www.teitok.org

5
https://www.merlin-platform.eu

non-English GEC corpus and one of the largest
GEC corpora overall.

3 Annotation

3.1 Data Selection

We draw the original uncorrected data from the
following Czech learner corpora or Czech web-
sites:

• Natives Formal – essays written by native
students of elementary and secondary schools
from the SKRIPT 2012 learner corpus, com-
piled in the AKCES project

• Natives Web Informal – newly annotated in-
formal website discussions from Czech Face-
book Dataset (Habernal et al., 2013a,b) and
Czech news site novinky.cz.

• Romani – essays written by children and
teenagers of the Romani ethnic minority from
the ROMi corpus of the AKCES project and
the ROMi section of the AKCES-GEC corpus

• Second Learners – essays written by non-
native learners, from the Foreigners section
of the AKCES-GEC corpus, and the MERLIN

corpus
Since we draw our data from several Czech cor-
pora originally created in different tools with dif-
ferent annotation schemes and instructions, we re-
annotated the errors in a unified manner for the
entire development and test set and partially also



Dataset Documents Selected

AKCES-GEC-test 188 188
AKCES-GEC-dev 195 195
MERLIN 441 385
Novinky.cz — 2 695
Facebook 10 000 3 850
SKRIPT 2012 394 167
ROMi 1 529 218

Table 2: Data resources for the new Czech GEC
corpus. The second column (Selected) shows the
size of the selected subset from all available docu-
ments (first column, Documents).

for the training set.
The data split was carefully designed to main-

tain representativeness, coverage and backwards
compatibility. Specifically, (i) test and devel-
opment data contain roughly the same amount
of annotated data from all domains, (ii) origi-
nal AKCES-GEC dataset splits remain unchanged,
(iii) additional available detailed annotations such
as user proficiency level in MERLIN were lever-
aged to support the split balance. Overall, the
main objective was to achieve a representative
cover over development and testing data. Table 2
presents the sizes of data resources in the num-
ber of documents. The first column (Documents)
shows the number of all available documents col-
lected in an initial scan. The second column
(Selected) is a selected subset from the available
documents, due to budgetary constraints and to
achieve a representative sample over all domains
and data portions. The relatively higher number
of documents selected for the Natives Web Infor-

mal domain is due to its substantially shorter texts,
yielding fewer sentences; also, we needed to pop-
ulate this part of the corpus as a completely new
domain with no previously annotated data.

To achieve more fine-grained balancing of the
splits, we used additional metadata where avail-
able: user’s proficiency levels and origin language
from MERLIN and the age group from AKCES.

3.2 Preprocessing

De/tokenization is an important part of data pre-
processing in grammar error correction. Some for-
mats, such as the M2 format (Dahlmeier and Ng,
2012), require tokenized formats to track and eval-
uate correction edits. On the other hand, detok-
enized text in its natural form is required for other

applications. We therefore release our corpus in
two formats: a tokenized M2 format and detok-
enized format aligned at sentence, paragraph and
document level. As part of our data is drawn
from earlier, tokenized GEC corpora AKCES-GEC

and MERLIN, this data had to be detokenized. A
slightly modified Moses detokenizer6 is attached
to the corpus. To tokenize the data for the M2 for-
mat, we use the UDPipe tokenizer (Straka et al.,
2016).

3.3 Annotation

The test and development sets in all domains were
annotated from scratch by five in-house expert an-
notators,7 including re-annotations of the develop-
ment and test data of the earlier GEC corpora to
achieve a unified annotation style. All the test sen-
tences were annotated by two annotators; one half
of the development sentences received two anno-
tations and the second half one annotation. The
annotation process took about 350 hours in total.

The annotation instructions were unified across
all domains: The corrected text must not con-
tain any grammatical or spelling errors and should
sound fluent. Fluency edits are allowed if the orig-
inal is incoherent. The entire document was given
as a context for the annotation. Annotators were
instructed to remove too incomprehensible docu-
ments or those containing private information.

To keep the annotation process simple for the
annotators, the sentences were annotated (cor-
rected) in a text editor and postprocessed auto-
matically to retrieve and categorize the GEC ed-
its by the ERRor ANnotation Toolkit (ERRANT)
(Bryant et al., 2017).

3.4 Train Data

The first source for the training data are the data
from the SKRIPT 2012; the MERLIN corpus and
the AKCES-GEC train set that were not annotated,
thus containing original annotations. These data
cover the Natives Formal, the Romani and the Sec-

ond Learners domain. The second part of the
training data are newly annotated data. Specifi-
cally, these are all Natives Web Informal data and
also a small part in the Second Learners domain.

6
https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/tokenizer/detokenizer.

perl
7Our annotators are senior undergraduate students of hu-

manities, regularly employed for various annotation efforts at
our institute.



All data in the training set were annotated with one
annotation.

3.5 Corpus Alignment

The majority of models proposed for grammati-
cal error correction operates over sentences. How-
ever, preliminary studies on document-level gram-
matical error correction recently appeared (Chol-
lampatt et al., 2019; Yuan and Bryant, 2021). The
models were shown to benefit from larger context
as certain errors such as errors in articles or tense
choice do require larger context. To simplify fu-
ture work with our dataset, we release three align-
ment levels: (i) sentence-level, (ii) paragraph-level
and (iii) document-level. Given that the state-of-
the-art grammatical error correction systems still
operate on sentence level despite the initial at-
tempts with document-level systems, we perform
model training and evaluation at the usual sentence
level.8

3.6 Inter-Annotator Agreement

As suggested by Rozovskaya and Roth (2010),
followed later by Rozovskaya and Roth (2019)
and Syvokon and Nahorna (2021), we evaluate
inter-annotator agreement by asking a second an-
notator to judge the need for a correction in a
sentence already annotated by someone else, in a
single-blind setting as to the status of the sentence
(corrected/uncorrected).9 Five annotators anno-
tated the first pass and three annotators judged the
sentence correctness in the second pass. In the sec-
ond pass, each of the three annotators judged a dis-
joint set of 120 sentences. Table 3 summarizes the
inter-annotator agreement based on second-pass
judgements: the numbers represent the percentage
of sentences judged correct in the second pass.

Both the average and the standard deviation
(82.96 ± 12.12) of our inter-annotator agreement
are similar to inter-annotator agreement measured
on English (63 ± 18.46, Rozovskaya and Roth
2010), Russian (80±16.26, Rozovskaya and Roth
2019) and Ukrainian (69.5 ± 7.78 Syvokon and
Nahorna 2021).

8Note that even if human evaluation in Section 5 is per-
formed on sentence-aligned data, human annotators process
whole documents, and thus take the full context into account.

9A sentence-level agreement on sentence correctness is
generally preferred in GEC annotations to an exact inter-
annotator match on token edits, since different series of cor-
rections may possibly lead to a correct sentence (Bryant and
Ng, 2015).

First →
Second ↓

A1 A2 A3 A4 A5

A1 — 93.39 97.96 89.63 72.50
A2 84.43 — 95.91 90.18 78.15
A3 68.80 87.68 — 79.39 57.50

Table 3: Inter-annotator agreement based on
second-pass judgements: numbers represent per-
centage of sentences judged correct in second-pass
proofreading. Five annotators annotated the first
pass, three annotators judged the sentence correct-
ness in the second pass.

3.7 Error Type Analysis

To retrieve and categorize the correction edits
from the erroneous-corrected sentence pairs, ER-
Ror ANnotation Toolkit (ERRANT) (Bryant et al.,
2017) was used. Inspired by Boyd (2018), we
adapted the original English error types to the
Czech language. For the resulting set see Table 4.
The POS error types are based on the UD POS
tags (Nivre et al., 2020) and may contain an op-
tional :INFL subtype when the original and the
corrected words share a common lemma. The
word-order error type was extended by an optional
:SPELL subtype to allow for capturing word order
errors including words with minor spelling errors.
The original orthography error type ORTH cover-
ing both errors in casing and whitespaces is now
subtyped with :WSPACE and :CASING to better
distinguish between the two phenomena. Finally,
we add two error types specific to Czech: DI-

ACR for errors in either missing or redundant di-
acritics and QUOTATION for wrongly used quo-
tation marks. Two original error types remain un-
changed: MORPH, indicating replacement of a to-
ken by another with the same lemma but different
POS, and SPELL, indicating incorrect spelling.

For part-of-speech tagging and lemmatization
we rely on UDPipe (Straka et al., 2016).10 The
word list for detecting spelling errors comes from
MorfFlex (Hajič et al., 2020).11

We release the Czech ERRANT at https://

github.com/ufal/errant_czech. We assume
that it is applicable to other languages with similar
set of errors, especially Slavic languages, if lem-
matizer, tagger and morphological dictionary are
available.

10Using the czech-pdt-ud-2.5-191206.udpipe model.
11We also use the aggresive variant of the stemmer from

https://research.variancia.com/czech_stemmer/.
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Figure 1: Distribution of top-10 ERRANT error types per domain in the development set.

Error Type Subtype Example

POS (15) tažené → řízené

:INFL manželka → manželkou

MORPH maj → mají

ORTH :CASING usa → USA

:WSPACE přes to → přesto

SPELL ochtnat → ochutnat

WO plná jsou → jsou plná

:SPELL blískají zeleně → zeleně blýskají

QUOTATION " → „

DIACR tiskarna → tiskárna

OTHER sem → jsem ho

Table 4: Czech ERRANT Error Types.

3.8 Final Dataset

The final corpus consists of 83 058 sentences and
is distributed in two formats: the tokenized M2

format (Dahlmeier and Ng, 2012) and the deto-
kenized format with alignments at the sentence,
paragraph and document levels. Although the
detokenized format does not include correction
edits, it does retain full information about the orig-
inal spacing.

The statistics of the final dataset are presented
in Table 5. The individual domains are balanced
on the sentence level in the development and test-
ing sets, each of them containing about 8 000 sen-
tences. The number of paragraphs and documents
varies: on average, the Natives Web Informal do-
main contains less than 2 sentences per docu-
ment, while the Natives Formal domain more than
20.

As expected, the domains differ also in the error
rate, i.e. the proportion of erroneous tokens (see
Table 5). The students’ essays in the Natives For-

mal domain are almost 3 times less erroneous than
any other domain, while in the Romani and Second

Learners domain, approximately each 4-th token
is incorrect.

Furthermore, the prevalence of error types dif-
fers for each individual domain. The 10 most com-
mon error types in each domain are presented in
Figure 1. Overall, errors in punctuation (PUNCT)
constitute the most common error type. They
are the most common error in three domains, al-
though their relative frequency varies. We fur-
ther estimated that of these errors, 9% (Natives

Formal) – 27% (Natives Web Informal) are unin-
teresting from the linguistic perspective, as they
are only omissions of the sentence formal end-
ing, probably purposeful in case of Natives Web

Informal. The rest (75–91%) appears in a sen-
tence, most of which (35–68% Natives Formal)
is a misplaced comma: In Czech, syntactic sta-
tus of finite clauses strictly determine the use
of commas in the sentence. Finally, in 5–7%
cases of all punctuation errors, a correction in-
cluded joining two sentences or splitting a sen-
tence into two sentences. Errors in either missing
or wrongly used diacritics (DIACR), spelling er-
rors (SPELL) and errors in orthography (ORTH)
are also common, with varying frequency across
domains.

Compared to the AKCES-GEC corpus, the
Grammar Error Correction Corpus for Czech con-
tains more than 3 times as many sentences in the
development and test sets, more than 50% sen-
tences in the training set and also two new do-
mains.

To the best of our knowledge, the newly intro-
duced GECCC dataset is the largest among GEC
corpora in languages other than English and it is
surpassed in size only by the English Lang-8 and
AESW datasets. With the exclusion of these two
datasets, the GECCC dataset contains more sen-
tences than any other GEC corpus currently known
to us.



Sentence-aligned Paragraph-aligned Doc-aligned
#sentences #paragraphs #docs Error Rate

Train Dev Test Train Dev Test Train Dev Test

Natives Formal 4 060 1 952 1 684 1 618 859 669 227 87 76 5.81%
Natives Web Informal 6 977 2 465 2 166 3 622 1 294 1 256 3 619 1 291 1 256 15.61%
Romani 24 824 1 254 1 260 9 723 574 561 3 247 173 169 26.21%
Second Learners 30 812 2 807 2 797 8 781 865 756 2 050 167 170 25.16%

Total 66 673 8 478 7 907 23 744 3 592 3 242 9 143 1 718 1 671 18.19%

Table 5: Corpus statistics at three alignment levels: sentence-aligned, paragraph-aligned and doc-aligned.
Average Error rate was computed on the concatenation of development and test data in all three alignment
levels.

4 Model

In this section, we describe five systems for auto-
matic error correction in Czech and analyze their
performance on the new dataset. Four of these sys-
tems represent previously published Czech work
(Richter et al., 2012; Náplava and Straka, 2019;
Náplava et al., 2021) and one is our new imple-
mentation. The first system is a pre-neural ap-
proach, published and available for Czech (Richter
et al., 2012), included for historical reasons as a
previously known and available Czech GEC tool;
the following four systems represent the current
state of the art in GEC: they are all neural network
architectures based on Transformers, differing in
the training procedure, training data or training
objective. A comparison of systems, trained and
evaluated on English, Czech, German and Rus-
sian, with state of the art is given in Table 6.

4.1 Models

We experiment with the following models:
Korektor (Richter et al., 2012) is a pre-neural

statistical spellchecker and (occasional) grammar
checker. It uses the noisy channel approach with
a candidate model that for each word suggests its
variants up to a predefined edit distance. Inter-
nally, a Hidden Markov Model (Baum and Petrie,
1966) is built. Its hidden states are the variants of
words proposed by the candidate model, and the
transition costs are determined from three N -gram
language models built over word forms, lemmas
and part-of-speech-tags. To find an optimal cor-
rection, Viterbi algorithm (Forney, 1973) is used.

Synthetic trained (Náplava and Straka, 2019) is
a neural-based Transformer model that is trained
to translate the original ungrammatical text to
a well formed text. The original Transformer

model (Vaswani et al., 2017) is regularised with an
additional source and target word dropout and the
training objective is modified to focus on tokens
that should change (Grundkiewicz and Junczys-
Dowmunt, 2019). As the amount of existing anno-
tated data is small, an unsupervised approach with
a spelling dictionary is used to generate a large
amount of synthetic training data. The model is
trained solely on these synthetic data.

AKCES-GEC (AG) finetuned (Náplava and
Straka, 2019) is based on Synthetic trained, but
finetunes its weights on a mixture of synthetic and
authentic data from the AKCES-GEC corpus, i.e.,
on data from the Romani and Second Learners do-
mains. See Table 6 for comparison with state of
the art in English, Czech, German and Russian.

GECCC finetuned uses the same architecture as
Synthetic trained, but we finetune its weights on a
mixture of synthetic and (much larger) authentic
data from the newly released GECCC corpus. We
use the official code of Náplava and Straka (2019)
with the default settings and mix the synthetic and
new authentic data in a ratio of 2:1.

Joint GEC+NMT (Náplava et al., 2021) is a
Transformer model trained in a multi-task setting.
It pursues two objectives: (i) to correct Czech and
English texts; (ii) to translate the noised Czech
texts into English texts and the noised English
texts into Czech texts. The source data come
from the CzEng v2.0 corpus (Kocmi et al., 2020)
and were noised using a statistical system Kazi-
Text (Náplava et al., 2021) that tries to model sev-
eral most frequently occurring errors such as dia-
critics, spelling or word ordering. The statistics of
the Czech noise were estimated on the new train-
ing set, therefore, the system was indirectly trained
also on data from Natives Formal and Natives Web

Informal domains, unlike the AG finetuned sys-



System Params
English Czech German Russian

W&I+L CoNLL 14 AKCES-GEC Falko-Merlin RULEC-GEC

Boyd (2018) – – – – 45.22 –
Choe et al. (2019) – 63.05 – – – –
Lichtarge et al. (2019) – – 56.8 – –
Lichtarge et al. (2020) – 66.5 62.1 – – –
Omelianchuk et al. (2020) – 72.4 65.3 – – –
Rothe et al. (2021) base 580M 60.2 54.10 71.88 69.21 26.24
Rothe et al. (2021) xxl 13B 69.83 65.65 83.15 75.96 51.62
Rozovskaya and Roth (2019) – – – – – 21.00
Xu et al. (2019) – 63.94 60.90 – – –

AG finetuned 210M 69.00 63.40 80.17 73.71 50.20

Table 6: Comparison of selected single-model systems on English (W&I+L, CoNLL-2014), Czech
(AKCES-GEC), German (Falko-Merlin GEC) and Russian (RULEC-GEC) datasets. Our reimplemen-
tation of the AG finetuned model is from Náplava and Straka (2019). Note that models vastly differ in
training/fine-tuning data and size (e.g., Rothe et al. (2021) xxl is 50 times larger than AG finetuned).

M2

0.5
-score Mean human score

System NF NWI R SL Σ NF NWI R SL Σ

Original — — — — — 8.47 7.99 7.76 7.18 7.61

Korektor 28.99 31.51 46.77 55.93 45.09 8.26 7.60 7.90 7.55 7.63
Synthetic trained 46.83 38.63 46.36 62.20 53.07 8.55 7.99 8.10 7.88 7.98
AG finetuned 65.77 55.20 69.71 71.41 68.08 8.97 8.22 8.91 8.35 8.38
GECCC finetuned 72.50 71.09 72.23 73.21 72.96 9.19 8.72 8.91 8.67 8.74

Joint GEC+NMT 68.14 66.64 65.21 70.43 67.40 9.06 8.37 8.69 8.19 8.35

Reference — — — — — 9.58 9.48 9.60 9.63 9.57

Table 7: Mean score of human judgements and M2
0.5 score for each system in domains (NF = Natives

Formal, NWI = Natives Web Informal, R = Romani, SL = Second Learners, Σ = whole dataset). All
results in the whole dataset (the Σ column) are statistically significant with p-value < 0.001, except
for the AG finetuned and Joint GEC+NMT systems, where the p-value is less than 6.2% for M2

0.5 score
and less than 4.3% for human score, using the Monte Carlo permutation test with 10M samples and
probability of error at most 10−6 (Fay and Follmann, 2002; Gandy, 2009).

tem. The statistics of the English noise were es-
timated on NUCLE (Dahlmeier et al., 2013), FCE

(Yannakoudakis et al., 2011) and W&I+LOCNESS

(Yannakoudakis et al., 2018; Granger, 1998).

4.2 Results and Analysis

Table 7 summarizes the evaluation of the five
grammar error correction systems (described in
the previous Section 4.1), evaluated with highest-
correlating and widely used metric, the M2 score
with β = 0.5, denoted as M2

0.5 (left); and with hu-
man judgements (right). For the meta-evaluation
of GEC metrics against human judgements, see
the following Section 5.

Clearly, learning on GEC annotated data im-
proves performance significantly, as evidenced by

a giant leap between the systems without GEC
data (Korektor, Synthetic trained) and the systems
trained on GEC data (AG finetuned, GECCC fine-

tuned and Joint GEC+NMT). Further addition of
GEC data volume and domains is statistically sig-
nificantly better (p < 0.001), as the only dif-
ference between AG finetuned and GECCC fine-

tuned systems is that the former uses the AKCES-

GEC corpus, while the latter is trained on larger
and domain-richer GECCC. Access to larger data
and more domains in the multi-task setting is
useful (compare Joint GEC+NMT and AG fine-

tuned on newly added Natives Formal and Natives

Web Informal domains), although direct train-
ing seems superior (GECCC finetuned over Joint

GEC+NMT).



Error Type # P R F0.5

DIACR 3 617 86.84 88.77 87.22
MORPH 610 73.58 55.91 69.20
ORTH:CASING 1 058 81.60 55.15 74.46
ORTH:WSPACE 385 64.44 74.36 66.21
OTHER 3 719 23.59 20.04 22.78
POS 2 735 56.50 22.12 43.10
POS:INFL 1 276 74.47 48.22 67.16
PUNCT 4 709 71.42 61.17 69.10
QUOTATION 223 89.44 61.06 81.83
SPELL 1 816 77.27 75.76 76.96
WO 662 60.00 29.89 49.94

Table 8: Analysis of GECCC finetuned model per-
formance on individual error types. For this analy-
sis, all POS-error types were merged into a single
error type POS.

We further analyse the best model (GECCC

finetuned) and inspect its performance with re-
spect to individual error types. For simpler anal-
ysis, we grouped all POS-related errors into two
error types: POS and POS:INFL for words which
are erroneous only in inflection and share the same
lemma with their correction.

As we can see in Table 8, the model is
very good at correcting local errors in diacrit-
ics (DIACR), quotation (QUOTATION), spelling
(SPELL) and casing (ORTH:CASING). Unsurpris-
ingly, small changes are easier than longer edits:
similarly, the system is better in inflection correc-
tions (POS:INFL, words with the same lemma)
than on POS (correction involves finding a word
with a different lemma).

Should the word be split or joined with an adja-
cent word, the model does so with a relatively high
success rate (ORTH:WSPACE). The model is also
able to correctly reorder words (WO), but here its
recall is rather low. The model performs worst on
errors categorized as OTHER, which includes ed-
its that often require rewriting larger pieces of text.
Generally, the model has higher precision than re-
call, which suits the needs of standard GEC, where
proposing a bad correction for a good text is worse
than being inert to an existing error.

5 Meta-evaluation of Metrics

There are several automatic metrics used for eval-
uating system performance on GEC dataset, al-
though it is not clear which of them is preferable in
terms of high correlation with human judgements

on our dataset.
The most popular GEC metrics are the Max-

Match (M2) scorer (Dahlmeier and Ng, 2012) and
the ERRANT scorer (Bryant et al., 2017).

The MaxMatch (M2) scorer reports the F-score
over the optimal phrasal alignment between a
source sentence and a system hypothesis reach-
ing the highest overlap with the gold standard an-
notation. It was used as the official metric for
the CoNLL 2013 and 2014 Shared Tasks (Ng
et al., 2013, 2014) and is also used on various
other datasets such as the German Falko-MERLIN

GEC (Boyd, 2018) or Russian RULEC-GEC (Ro-
zovskaya and Roth, 2019).

The ERRANT scorer was used as the official
metric of the recent Building Educational Appli-
cation 2019 Shared Task on GEC (Bryant et al.,
2019). The ERRANT scorer also contains a set of
rules operating over a set of linguistic annotations
to construct the alignment and extract individual
edits.

Other popular automatic metrics are the Gen-
eral Language Evaluation Understanding (GLEU)
metric (Napoles et al., 2015), that additionally
measures text fluency, and I-Measure (Felice and
Briscoe, 2015), that calculates weighted accuracy
of both error detection and correction.

5.1 Human Judgements Annotation

In order to evaluate the correlation of several GEC
metrics with human judgements, we collected an-
notations of the original erroneous sentences, the
manually corrected gold references and automatic
corrections made by five GEC systems described
in Section 4. We used the hybrid partial ranking

with scalars (Sakaguchi and Van Durme, 2018),
in which the annotators judged the sentences on
a scale 0–10 (from ungrammatical to correct).12

The sentences were evaluated with respect to the
context of the document. In total, three annota-
tors judged 1 100 documents, sampled from the
test set comprising about 4 300 original sentences
and about 15 500 unique corrected variants and
gold references of the sentences. The annotators
annotated 127 documents jointly and the rest was
annotated by a single annotator. This annotation
process took about 170 hours. Together with the

12Recent works (Sakaguchi and Van Durme, 2018;
Novikova et al., 2018) both found partial ranking with scalars
to be more reliable than direct assessment framework used
by WMT (Bojar et al., 2016) and earlier GEC evaluation ap-
proaches (Grundkiewicz et al., 2015; Napoles et al., 2015).



Sentence level System level
Domain r ρ r ρ

Natives Formal 87.13 88.76 92.01 92.52
Natives Web Inf. 80.23 81.47 95.33 91.80
Romani 86.57 86.57 88.73 85.90
Second Learners 78.50 79.97 96.50 97.23

Whole Dataset 79.07 80.40 96.11 95.54

Table 9: Human judgements agreement: Pearson
(r) and Spearman (ρ) mean correlation between
3 human judgements of 5 sentence versions at
sentence- and system-level.

model training, data preparation and management
of the annotation process, our rough estimation is
about 300+ man-hours for the correlation analysis
per corpus (language).

5.2 Agreement in Human Judgements

For the agreement in human judgements, we re-
port the Pearson correlation and Spearman’s rank

correlation coefficient between 3 human judge-
ments of 5 automatic sentence corrections at the
system- and sentence-level. At the sentence level,
the correlation of the judgements about the 5 sen-
tence corrections is calculated for each sentence
and each pair of the three annotators. The final
sentence-level annotator agreement is the mean of
these values over all sentences.

At the system level, the annotators’ judgements
for each system are averaged over the sentences,
and the correlation of these averaged judgements
is computed for each pair of the three annotators.
In order to obtain smoother estimates (especially
for Spearman’s ρ), we utilize bootstrap resampling
with 100 samples of a test set.

The human judgements agreement across do-
mains is shown in Table 9. On the sentence level,
the human judgements correlation is high on the
least erroneous domain Natives Formal, implying
that it is easier to judge the corrections in a low er-
ror density setting, and it is more difficult in high
error density domains, such as Romani and Second

Learners (compare error rates in Table 5).

5.3 Metrics Correlations with Judgements

Following Napoles et al. (2019), we provide a
meta-evaluation of the following common GEC
metrics robustness on our corpus:

• MaxMatch (M2) (Dahlmeier and Ng, 2012)
• ERRANT (Bryant et al., 2017)

• GLEU (Napoles et al., 2015)
• I-measure (Felice and Briscoe, 2015)

Moreover, we vary the proportion of recall and
precision, ranging from 0 to 2.0 for M2-scorer
and ERRANT, as Grundkiewicz et al. (2015) re-
port that the standard choice of considering preci-
sion two times as important as recall may be sub-
optimal.

While we considered both sentence-level and
system-level evaluation in Section 5.2, the auto-
matic metrics should by design be used on a whole
corpus, leaving us with only system-level evalu-
ation. Given that the GEC systems perform dif-
ferently on the individual domains (as indicated
by Table 7), we perform the correlation compu-
tation on each domain separately and report the
average.

For a given domain and metric, we compute the
correlation between the automatic metric evalua-
tions of the five systems on one side and the (av-
erage of) human judgements on the other side.
In order to obtain a smoother estimate of Spear-
man’s ρ and also to estimate standard devia-
tions, we employ bootstrap resampling again, with
100 samples.

The results are presented in Table 10. While
Spearman’s ρ has more straightforward interpreta-
tion, it also has a much higher variance, because
it harshly penalizes the differences in the ranking
of systems with similar performance (namely AG

finetuned and Joint GEC+NMT in our case). This
fact has previously been observed by Macháček
and Bojar (2013).

Therefore, we choose the most suitable GEC
metric for our GECCC dataset according to Pear-
son r, which implies that M2

0.5 and ERRANT0.5

are the metrics most correlating with human
judgements. Of those two, we prefer the M2

0.5

score, not due to its marginal superiority in cor-
relation (Table 10), but rather because it is much
more language-agnostic compared to ERRANT,
which requires a POS tagger, lemmatizer, morpho-
logical dictionary and language-specific rules.

Our results confirm that both M2-scorer and
ERRANT with β = 0.5 (chosen only by intu-
ition for the CoNLL 2014 Shared task; Ng et al.,
2014) correlate much better with human judge-
ments, compared to β = 0.2 and β = 1. The
detailed plots of correlations of M2

β score and
ERRANTβ score with human judgements for β

ranging between 0 and 2, presented in Figure 2,
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Figure 2: Left: System-level Pearson correlation coefficient r between human annotation and M2

β-scorer
for various values of β. Right: The same correlation for ERRANTβ .

System level
Metric r ρ

GLEU 97.37 ± 1.52 92.28 ± 6.19
I-measure 95.37 ± 2.16 98.66 ± 3.21
M2

0.2 96.25 ± 1.71 93.27 ± 9.45
M2

0.5 98.28 ± 1.03 97.77 ± 4.27
M2

1.0 95.62 ± 1.81 93.22 ± 4.30
ERRANT0.2 94.66 ± 2.44 91.19 ± 4.76
ERRANT0.5 98.28 ± 1.04 98.35 ± 4.81
ERRANT1.0 95.70 ± 1.80 93.61 ± 4.47

Table 10: System-level Pearson (r) and Spear-
man (ρ) correlation between the automatic metric
scores and human annotations.

show that optimal β in our case lies between 0.4

and 0.5. However, we opt to employ the widely
used β = 0.5 because of its prevalence and be-
cause the difference to the optimal β is marginal.

Our results are distinct from the results of
Grundkiewicz et al. (2015), where β = 0.18 corre-
lates best on the CoNLL 14 test set. Nevertheless,
Napoles et al. (2019) demonstrate that β = 0.5

correlates slightly better than β = 0.2 on the FCE

dataset, but that β = 0.2 correlates substantially
better than β = 0.5 on Wikipedia and also on Ya-

hoo discussions (a dataset containing paragraphs
of Yahoo! Answers, which are informal user an-
swers to other users’ questions).

In the latter work, Napoles et al. (2019) propose
that larger β = 0.5 correlate better on datasets
with higher error rate and vice versa, given that the
FCE dataset has 20.2% token error rate, compared

to the error rates of 9.8% and 10.5% of Wikipedia

and Yahoo, respectively. The hypothesis seems
to extend to our results and the results of Grund-
kiewicz et al. (2015), considering that the GECCC

dataset and the CoNLL 14 test set have token error
rates of 18.2% and 8.2%, respectively.

5.4 GEC Systems Results

Table 7 presents both human scores for the GEC
systems described in Section 4 and also results ob-
tained by the chosen M2

0.5 metric. The results are
presented both on the individual domains and the
entire dataset. Measuring over the entire dataset,
human judgements and the M2-scorer rank the
systems in accordance.

Judged by the human annotators, all systems
are better than the “do nothing” baseline (the
Original) measured over the entire dataset, al-
though Korektor makes harmful changes in two
domains: Natives Formal and Natives Web Infor-

mal. These two domains contain frequent named
entities, which upon an eager change disturb the
meaning of a sentence, leading to severe penaliza-
tion by human annotators. Korektor is also not
capable of deleting, inserting, splitting or join-
ing tokens. The fact that Korektor sometimes
performs detrimental changes cannot be revealed
by the M2-scorer as it assigns zero score to the
Original baseline and does not allow negative
scores.

The human judgements confirm that there is still
a large gap between the optimal Reference score
and the best performing models. Regarding the
domains, the neural models in the finetuned mode
that had access to data from all domains seemed



to improve the results consistently across each do-
main. However, given the fact that the source sen-
tences in the Second Learners domain received the
worst scores by human annotators, this domain
seems to hold the greatest potential for future im-
provements.

6 Conclusions

We release a new Czech GEC corpus, the
Grammar Error Correction Corpus for Czech

(GECCC). This large corpus with 83 058 sen-
tences covers four diverse domains, including es-
says written by native students, informal website
texts, essays written by Romani ethnic minority
children and teenagers and essays written by non-
native speakers. All domains are professionally
annotated for GEC errors in a unified manner,
and errors were automatically categorized with a
Czech-specific version of ERRANT released at
https://github.com/ufal/errant_czech. We
compare several strong Czech GEC systems, and
finally, we provide a meta-evaluation of common
GEC metrics across domains in our data. We con-
clude that M2 and ERRANT scores with β =

0.5 are the measures most correlating with hu-
man judgements on our dataset, and we choose
the M2

0.5 as the preferred metric for the GECCC

dataset. The corpus is publicly available under the
CC BY-SA 4.0 license at http://hdl.handle.

net/11234/1-4639.

Acknowledgements

This work has been supported by the Grant
Agency of the Czech Republic, project EXPRO
LUSyD (GX20-16819X). This research was also
partially supported by SVV project number 260
575 and GAUK 578218 of the Charles Uni-
versity. The work described herein has been
supported by and has been using language re-
sources stored by the LINDAT/CLARIAH-CZ
Research Infrastructure (https://lindat.cz) of
the Ministry of Education, Youth and Sports of
the Czech Republic (Project No. LM2018101).
This work was supported by the European Re-
gional Development Fund project “Creativity and
Adaptability as Conditions of the Success of
Europe in an Interrelated World” (reg. no.:
CZ.02.1.01/0.0/0.0/16_019/0000734).

We would also like to thank the reviewers and
the TACL action editor for their thoughtful com-
ments, which helped to improve this work.

References

Leonard E Baum and Ted Petrie. 1966. Statistical
Inference for Probabilistic Functions of Finite
State Markov Chains. The annals of mathemat-

ical statistics, 37(6):1554–1563.
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berger. 2013a. Facebook Data for Sentiment
Analysis. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Lin-
guistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Ivan Habernal, Tomáš Ptáček, and Josef Stein-
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Abstract
We propose a new architecture for diacritics restoration based on contextualized embed-

dings, namely BERT, and we evaluate it on 12 languages with diacritics. Furthermore, we con-
duct a detailed error analysis on Czech, a morphologically rich language with a high level of
diacritization. Notably, we manually annotate all mispredictions, showing that roughly 44% of
them are actually not errors, but either plausible variants (19%), or the system corrections of
erroneous data (25%). Finally, we categorize the real errors in detail. We release the code at
https://github.com/ufal/bert-diacritics-restoration.

1. Introduction

Diacritics Restoration, also known as Diacritics Generation or Accent Restoration,
is a task of correctly restoring diacritics in a text without any diacritics. Its main diffi-
culty stems from ambiguity where context needs to be taken into account to select the
most appropriate word variant, because diacritization removal creates new groups of
homonymy.

Current state-of-the-art algorithms for diacritics restoration aremostly based on ei-
ther recurrent neural networks combined with an external language model (Náplava
et al., 2018; AlKhamissi et al., 2020) or Transformer (Mubarak et al., 2019). Recently,
BERT (Devlin et al., 2019) was shown to outperform many models on many tasks
while being much faster due to the fact that it uses simple parallelizable classification
head instead of a slow auto-regressive approach.

In this work, we first describe a model for diacritics restoration based on BERT and
evaluate it on multilingual dataset comprising of 12 languages (Náplava et al., 2018).

© 2021 PBML. Distributed under CC BY-NC-ND. Corresponding author: naplava@ufal.mff.cuni.cz
Cite as: Jakub Náplava, Milan Straka, Jana Straková. Diacritics Restoration using BERT with Analysis on Czech
language. The Prague Bulletin of Mathematical Linguistics No. 116, 2021, pp. 27–42.
doi: 10.14712/00326585.013.
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We show that the proposed model outperforms the previous state-of-the-art system
(Náplava et al., 2018) in 9 languages significantly.

We further provide an extensive analysis of our model performance in Czech, a
language with rich morphology and a high level of diacritization. In addition to clean
data fromWikipedia (Náplava et al., 2018), themodelwas evaluated on data collected
fromother domains, including noisy data, andwe show that stable performance holds
even if the text contains spelling and other grammatical errors.

Sometimes, multiple plausible diacritization variants are possible, while only one
gold reference exists, which comes from the original text before diacritization was
automatically stripped to create test data. To assess the extent of these cases, we em-
ployed annotators to manually annotate all mispredictions and we found that 19% of
errors are plausible variants and 25% of errors are system corrections of errors in data.

Finally, we further analyse the remaining errors by analysing characteristics of
plausible variants.

2. Related Work

Diacritics Restoration is an active area of research in many languages: Vietnamese
(Nga et al., 2019), Romanian (Nuţu et al., 2019), Czech (Náplava et al., 2018), Turk-
ish (Adali and Eryiğit, 2014), Arabic (Madhfar and Qamar, 2020; AlKhamissi et al.,
2020) and many others.

There are three main architectures currently used in diacritics restoration: con-
volutional neural networks (Alqahtani et al., 2019), recurrent neural networks often
combined with an external language model (Belinkov and Glass, 2015; Náplava et al.,
2018; AlKhamissi et al., 2020) and Transformer-based models (Orife, 2018; Mubarak
et al., 2019). The convolutional neural networks are fast to train and also to infer.
However, compared to the recurrent and Transformer-based architectures, they do
generally achieve slightly worse results due to the fact that they model long-range
dependencies worse. On the other hand, recurrent- and Transformer-based architec-
tures are much slower.

Recently, the BERT model (Devlin et al., 2019) comprising of self-attention layers,
was proposed and shown to reach remarkable results on a variety of tasks. As it uses
no recurrent layers, its inference time ismuch shorter. We expect BERT to significantly
improve the performance over current state-of-the-art diacritization architectures.

3. Model Architecture

The core of our system is a pre-trained multilingual BERT model that uses self-
attention layers to create contextualized embeddings for tokenized text without dia-
critics. The contextual embeddings are fed into a fully-connected feed-forward neural
network followed by a softmax layer. This outputs a vector with a distribution over
a set of instructions that define diacritization operation over individual characters of

28



J. Náplava, M. Straka, J. Straková Diacritics Restoration (27–42)

ka[CLS]

1 2

##

3

zde dite
4

mus
5

spat
6

i
7

##

BERT
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FFNN + softmax

0.5%

...

79%

...

0%

<KEEP>

1:ACUTE;3:CARON

0:RING ABOVE;3:CARON

Figure 1. Model architecture. Text without diacritics, tokenized into subwords, is fed to
BERT and for each of its outputs, fully-connected network followed by softmax is applied
to obtain the most probable instruction for diacritization. ##-prefixes of some subwords

are added by the BERT tokenizer.

each input token. We select the instruction with maximum probability. The model is
illustrated in Figure 1.

3.1. Diacritization Instruction Set

To decrease the size of the final softmax layer, the output labels are not the dia-
critized variants of input subwords, as one would expect, but they are a set of instruc-
tions that provide prescription on how to restore diacritics. Specifically, one such in-
struction consists of index-diacritical mark tuples that define on what index of input
subword a particular diacritical mark should be added.

An example of a diacritization instructions set can be seen in Figure 2. Given an
input subword dite (dítě), with four characters indexed from 0 to 3, the appropriate
diacritization instruction is 1:ACUTE;3:CARON, in which acute is to be added to i and
caron is to be added to e resulting in a properly diacritized word dítě. Obviously, the
network can choose to leave the (sub)word unchanged, forwhich a special instruction
<KEEP> is reserved. Should the network accidentally select an impossible instruc-
tion, no operation is carried out and the input (sub)word is also left unchanged.

To construct the set of possible diacritization instructions, we tokenize the un-
diacritized text of the particular training set and align each input token to the corre-
sponding token in the diacritized text variant. The diacritical mark in each instruction
is obtained from the Unicode name of the diacritized character. We keep only those
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input instruction result note
dite 1:CARON;3:ACUTE dítě optimal instruction
dite 1:CARON díte
dite 3:ACUTE ditě
dite <KEEP> dite no change
dite 2:RING ABOVE dite impossible instruction ignored

Figure 2. Diacritization instructions examples for input ”dite (dítě)” with 4 characters,
indexed from 0 to 3. Index-Instruction tuples generate diacritics for given input.

instructions that occurred at least twice in a training set to filter out extremely rare
instructions that originate for example from foreign words or bad spelling.

3.2. Training Details

We train both the fully-connectednetwork andBERTwithAdamWoptimizerwhich
minimizes the negative log-likelihood. The learning rate linearly increases from 0 to
5e-5 over the first 10000 steps and then remains the same. We useHuggingFace imple-
mentation of BertForTokenClassification and initialize BERT-base values from bert-base-
multilingual-uncased model.

We use the batch size of 2048 sentences and clip each training sentence on 128
tokens. We train each model for circa 14 days on Nvidia P5000 GPU and select the
best checkpoint according to development set.

4. Automatic Evaluation on Diacritization Corpus with 12 Languages
We evaluate our approach on the dataset of Náplava et al. (2018). This dataset con-

tains training and evaluation data for 12 languages: Vietnamese, Romanian, Latvian,
Czech, Polish, Slovak, Irish, Hungarian, French, Turkish, Spanish and Croatian.

We evaluate the model performance using a standard metric, the alpha-word accu-
racy. This metric omits words composed of non-alphabetical characters (e.g., punctu-
ation).

For each language, we compute an independent set of operations and train a sep-
arate model. We use the concatenation of the Wiki and the Web training data of (Ná-
plava et al., 2018) both for computing a set of instructions and also as the training
data for our model.1 The size of each instruction set and our results in comparison

1In Romanian Web data, ş (LATIN SMALL LETTER S WITH CEDILLA) is for historical reasons often
used instead of ș (LATIN SMALL LETTER S WITH COMMA BELOW) and similarly ţ (LATIN SMALL
LETTER T WITH CEDILLA) is often used instead of ț (LATIN SMALL LETTER T WITH COMMA BE-
LOW).We replace the occurrences of the previously-used characters (the former ones) with their standard
versions (the latter ones).
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Language Instruction Náplava et al. (2018) Ours Error
Set Size Reduction

Czech 1005 99.06 99.22 ±0.046 17 %
Vietnamese 2018 97.73 98.53 ±0.037 35 %
Latvian 720 97.49 98.63 ±0.045 45 %
Polish 1005 99.55 99.66 ±0.041 24 %
Slovak 785 99.09 99.32 ±0.030 25 %
French 681 99.71 99.71 ±0.016 0 %
Irish 189 98.71 98.88 ±0.040 13 %
Spanish 492 99.65 99.62 ±0.018 − 9 %
Croatian 541 99.67 99.73 ±0.018 18 %
Hungarian 767 99.29 99.41 ±0.038 17 %
Turkish 1005 99.28 98.95 ±0.046 − 46 %
Romanian 1677 98.37 98.64 ±0.056 17 %

Table 1. Comparison of alpha-word accuracy of our model including 95% confidential
intervals to previous state-of-the-art on 12 languages.

with the previous state-of-the-art-results of Náplava et al. (2018) are presented in Ta-
ble 1. Apart for alpha-word accuracy itself, we also report 95% confidential intervals
computed using bootstrap resampling method.

On 9 of 12 languages, our approach significantly outperforms previous state-of-
the-art combined recurrent neural networks with an external language model. The
most significant improvements are achieved on Vietnamese and Latvian.

5. Detailed Analysis on Czech

We further provide a detailed analysis of our model performance in Czech, a lan-
guage with rich morphology and a high diacritization level: Of the 26 English alpha-
bet letters, a half of them can have one or two kinds of diacritization marks (Zeman,
2016). Czech is also the 4-th most diacritized language of the 12 languages found in
the diacritization corpus of Náplava et al. (2018).

Particularly, we are interested in the three following questions:

• How would our system perform outside the very clean Wiki domain? (Sec-
tion 5.1)

• Is it possible that some of the labeled mispredictions are actually plausible vari-
ants? (Section 5.2)

• Is there an observable characteristics in the real errors made by the system?
(Section 5.3)
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Domain Sentences Words Evaluated Words
Natives Formal 1 743 19 973 19 138
Natives Informal 7 223 99 352 86 720
Romi 1 490 15 971 13 080
Second Learners 5 117 63 859 50 630

Table 2. Basic statistics of new data for testing diacritics restoration in Czech.

5.1. Additional Domains

The testing dataset of Náplava et al. (2018) is composed of clean sentences orig-
inating from Wikipedia. It is, however, a well-known fact that the performance of
the (deep neural) models may deteriorate substantially when the input domain is
changed (Belinkov and Bisk, 2017; Rychalska et al., 2019). To test our system in other,
more challenging domains, we used data from a new Czech dataset (unpublished,
in annotation process) for grammatical-error-correction that contains data collected
from 4 sources:

• Natives Formal – Essays of elementary school Czech pupils (decent Czech pro-
ficiency)

• Natives Informal – texts collected from web discussions
• Second Learners – essays of Czech second learners
• Romi – texts of Czech pupils with Romani ethnolect (low Czech proficiency)
The dataset covers a wide range of Czech domains. It contains texts annotated

in M2 format, a standard annotation format for grammar-error-correction corpora.
In this format, each document contains original sentences with potential errors (e.g.
spelling, grammatical or errors in diacritics) and a set of annotations describing what
operations should be performed in order to fix each error.

To create target data for diacritics restoration, we apply all correcting edits that
fix errors in diacritics and casing. We leave other errors intact, but do not evaluate
on words that contain these errors, because they are not directly relevant to diacritics
and in many cases, the errors are so severe that evaluation would be controversial. To
rule out such words, we create a binary mask that distinguishes between evaluated
and omitted words. Although the severely perturbed words are omitted from evalu-
ation, they still remain in the sentence context and may still confuse the diacritization
system, making the task potentially more difficult. See examples of such misleading
sentence contexts in Figure 3.

The basic statistics of the newdataset are presented in Table 2. Wedisplay the num-
ber of sentences, the number of all words and the number of evaluated (unmasked)
words. Compared to the Wikipedia dataset (Náplava et al., 2018), our new dataset
has half the number of sentences and one third of its number of words.
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Potřebujeme nové idea i novych lidi/lidí* , ktery je přinesou .
Na ulicích vidíme často nekterý lidi , kteří nosí barevné/barevně* oblečeny , které
jsou snad hezké , ale určitě nejsou elegantní .

English translation (without ambiguities)
We need new ideas and also people to come up with them.
In the streets, we can see some people wearing colourful clothes, which may be nice but
certainly not elegant.

Figure 3. Examples of misleading contexts in noisy texts. Correct diacritization (bold) can
only be achieved by grammar corrections of the surrounding words (underlined).

Weevaluate ourmodel on all the above introducedCzech domains and present the
results in Table 3. Despite our initial concern that the model would performworse on
these domains due to the noisy nature of the data, the results show that the model
performance remains roughly stable on all domains. We suppose that although the
writers produced quite noisy texts, they at the same time avoided foreign words that
are generally harder to correctly diacritize.

5.2. Error Annotation

Clearly, removingdiacritics creates newgroups of homonymy (dal/dál, krize/kříže).
In most cases, the correct diacritization variant can be inferred by a method which
takes the sentence context into consideration. However, there are cases, inwhichmore
plausible variants are available, e.g., šachu/šachů, pradlena/přadlena, podána/podaná, as
illustrated in Figure 4. Furthermore, some variants can only be disambiguated in the
context of thewhole document, such as in: Knejvýznamnějším patří zmiňované vily/víly.
(more examples in Figure 6), not to mention other examples that can be only disam-
biguated by real-world knowledge such as in Povrch satelitu/satelitů Země už zkoumalo
několik sond.

However, all our evaluation data are limited only to a single gold reference for
each word without diacritics, given by the fact that the gold reference comes from the
original text with diacritics. To explore both phenomena among the mispredictions,
we hired annotators to examine: a) whether a word is correctly diacritized given the
context of current sentence; and b)whether it is correct given a context of twoprevious
sentences, current sentence and two following sentences (thus ruling out the words
with even longer document dependencies).

While the evaluation of the clear Wiki data (Náplava et al., 2018) is straightfor-
ward, some of our newly introduced noisy data may become controversial to evaluate
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Nebo záměna kapitol a jejich časová posloupnost v knize je pak ve filmu
podána/podaná rozdílně .
Hraní šachu/šachů , ale především karetních her , kritizoval také Petr Chelčický .
Jeho matka byla přadlena/pradlena , která ke sklonku života propadla alkoholu .
Hororová hudba slouží především pro dokreslení filmů/filmu .

English translation
The chapters and their chronological order in the book are then presented/given differently
in the film.
Playing a game of chess/games of chess , but especially card games was criticized by
Petr Chelčický .
His mother was a washerwoman/laundress who fell into alcoholism towards the end of
her life .
Horror music is mainly used to complete a movie/movies .

Figure 4. Examples of ambiguities, each illustrating two diacritization variants (bold),
both valid in a given context.

due to erroneous words. Therefore, such words were also marked by the annotators
and subsequently removed from our analysis.

An example of a final annotation item presented to an annotator is illustrated in
Figure 5.

To create the annotation items, we concatenated data from all domains, both the
original Wikipedia data (Náplava et al., 2018) and other domains (Section 5.1) and
we further considered those words in which the results of our system did not match
target word. Before annotation, we automatically filtered out some cases:

• Predictions, in which the system and the target words are variants (as marked
by MorphoDita (Straková et al., 2014)) were automatically marked correct.

• Predictions, inwhich the targetwordwasmarked as non-existing byMorphoDiTa,
while the system word was marked as Czech, were considered dubious and re-
moved from our analysis.

For the remaining 4702 words, two annotation items were created: one with the
predicted word and one with the gold reference word in the position of the annotated
Current Word. The annotation process took circa 70 hours.

The basic analysis of the annotated system errors is the following: There are 4702
wrongly diacritizedwords in the all our data concatenated. Annotations revealed that
960 of the mispredicted words contain a non-diacritical error and we do not consider
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Předpřechozí věta Popisujeme sítě , které nepoužívají sdílený přenosový prostředek .
Předchozí věta Přenosové rychlosti se velmi liší podle typu sítě .
Začátek aktuální věty Začínají na desítkách kilobitů za sekundu , ale dosahují i
Aktuální slovo rychlosti
Konec aktuální věty řádu několik gigabitů za sekundu .
Následující věta Příkladem takové sítě může být internet .
Věta po následující větě Mezi rozlehlé sítě patří :
Je správně vůči aktuální větě: Ano
Je správně vůči cel. kontextu: Ne
Obsahuje překlep: Ne

English translation
Before Previous Sentence: We describe networks that do not use a shared transmission medium .
Previous sentence: Transmission speeds vary greatly depending on the type of network .
Current Sentence Start: They start at tens of kilobits per second , but also reach
Current Word: speeds
Current Sentence End of the order of a few gigabits per second .
Next Sentence: An example of such a network is the Internet.
After Next Sentence: Large networks include :
Is Correct w.r.t. Cur. Sentence: True
Is Correct w.r.t. Whole Context: False
Contains Spelling Typo: False

Figure 5. Annotation item example. The annotator marks whether the word ”rychlosti” is
correct given a context of the current sentence, whether it is still correct in the context of

two previous and two following sentences and whether it contains a typo.

them further, as mentioned above. The remaining 3742 mispredicted words can be
categorized as follows:

• System correct, Gold correct: 19% (694 of 3742) – plausible variants
• System correct, Gold wrong: 25% (964 of 3742) – system corrects data error
• System wrong, Gold wrong 1% (31 of 3742) – uncorrected error in data
• System wrong, Gold correct 55% (2 084 of 3742) – real errors
Interestingly, the annotations revealed that about 44% of errors are not errors at

all. In 694 cases (19%) both the system word and the gold word are correct, which
is justified by the plausible variants. In 964 cases (25%) the original gold annotation
was wrong whereas the system annotation was correct, which means that the system
effectively corrected some of the errors in the original data. The remaining 31 cases
are for neither the system nor the gold word being correct. Finally, the annotations
confirmed 2084 real system errors, which we postpone for a more detailed analysis in
the following Section 5.3.

Plausible variants, which constitute 19% of the annotated errors, are the most in-
teresting item. Please note that our criterion for plausible variant was strict: only
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Domain Original Annotated Annotated w/o annotated typos
Wiki 99.22 99.49 99.66
Natives Formal 99.50 99.75 99.75
Natives Informal 99.12 99.53 99.62
Romi 99.11 99.46 99.54
Second Learners 99.18 99.73 99.79

Table 3. Alpha-word accuracy of Czech model on 5 datasets from various domains.

cases ambiguous both in the sentence and document context were marked as plausi-
ble variants. Circa 72% percent of these words share a common lemma. As Table 4.a
and Table 5.a show, singular/plural ambiguities by far most often arise in inanimate
masc. genitive (programu/programů, šachu/šachů). Another common ambiguity is pas-
sive participle vs. adjective (založena/založená), generally known to be difficult for di-
acritization disambiguation (Zeman, 2016). More interesting examples are given in
Table 4.a and Table 5.a.

To conclude, we use the collected annotations to refine our previous results, which
we display in Table 3. When considering all annotated words, including those pre-
processed with MorphoDiTa, we achieve 35% to 67% error reduction. When omitting
words newly marked by human annotators as containing another (non-diacritical)
error, the error rate gets additionally reduced by up to 33%.

5.3. Analysis of Real Errors

We followwith amorphological analysis of the remaining confirmed errors, which
constitute 55% of the annotated mispredictions. To determine the morphological cat-
egories of the erroneously predicted words, we use UDPipe (Straka et al., 2019) to
generate morphological annotations for all words in model hypotheses and gold sen-
tences. We then inspect the most frequent confusions between the system and the
gold morphological annotations of words, using the Universal POS tags and Univer-
sal features (Nivre et al., 2020).

The annotations confirmed an interesting discourse phenomenon: a word can be
correctly diacritized in multiple ways given the context of its sentence, however only
a single correct diacritization variant exists if a wider context is taken into account.
There are 50 such annotated cases; two examples are displayed in Figure 6. Although
this phenomenon is interesting from a discourse perspective, its low proportion to ac-
tual errors (50 of 2084) indicates that it is quite rare. This implies that trainingmodels
on longer texts (we currently train our model on examples comprising maximally 128
subwords – see Section 3.2) does not promise potential for overall improvement. Fi-
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nally, we offer a categorization of such ambiguities bymeans of theUniversal POS tags
and Universal features (Nivre et al., 2020) in Table 4.b and Table 5.b, respectively.

The remaining errors are amix of complicated disambiguation cases or rare named
entities. The most frequent errors bear similarity to plausible variants (compare Ta-
ble 5.a and Table 5.c), only with a different order of appearance. Unlike plausible
variants (Table 5.a), most frequent mismatches occur already at the level of lem-
mas (stát/stať, že/ze, see Table 5.c). Second most frequent cases are rare named en-
tities (Sokrates/Sókratés, Aristoteles/Aristotelés, Diogenés/Díogenés). Number is again
often hard to disambiguate in inanimate masc. genitive (milionu/milionů, reproduk-
toru/reproduktorů, dokumentu/dokumentů), followedby fem. case (ji/jí, ni/ní, zemi/zemí).

6. Conclusion

We implemented a model for diacritics restoration based on BERT that outper-
forms previous state-of-the-art models. Further analysis on Czech data collected from
additional, noisy domains shown that the model exhibits strong performance regard-
less the domain of the data.

We further annotated all reported mispredictions in Czech and found out that
more than one correct variant is sometimes possible. Rarely, disambiguation on doc-
ument level is necessary to distinguish between variants correct within the sentence
context. We elaborated on these phenomena using morphological annotations and
utilized them to further analyse real confirmed errors of the systems.

As for future work, we propose experimenting with a single joint model for a sub-
set of languages, despite our initial unsuccessful attempts at training a single model
for all languages, including an introduction of a larger XLM-Robertamodel (Conneau
et al., 2020).
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Tento motiv může být ovlivněn sibiřským šamanismem a průvodce pak má funkci psychopompa .
Kromě bohů znali pohanští Slované i celou řadu nižších bytostí , nazývány byly většinou slovem běs či
div , které souvisí s indickým déva .
K nejvýznamnějším patří zmiňované víly/vily .
V různých podáních existují víly lesní , vzdušné , horské a také víly zlé .
Existují další ženské bytosti jim podobné , patří mezi ně především rusalky , divé ženy nebo divoženky
doprovázené divými muži .

Další dokumenty týkající se Jana Žižky zKalichu jsou dva listy odeslané z kláštera veVilémově datované
k 16. březnu a 1. dubnu 1423 .
Slepý vojevůdce v nich vyzývá své straníky z orebského svazu k poradě naplánované na 7. či 8. dubna
do Německého Brodu .
Z dopisů/dopisu je patrné , že se pokoušel dokonaleji zorganizovat husitskou vojenskou moc ,
pro boj s domácím i zahraničním nepřítelem .
O čtrnáct dní později Žižka spolu s orebity vedl válku se spojenci krále Zikmunda , zejména na By-
džovsku s panem Čeňkem z Vartenberka .
Tohoto šlechtice s jeho leníky a spojenci porazil 20. nebo 23. dubna v bitvě uHořic , načež dál pokračoval
v plenění jeho zboží .

English translation
This motif can be influenced by Siberian shamanism , and the guide then has the function of a psychopomp .
Apart from the gods, the pagan Slavs knew a number of lower beings , mostly called Raver or Wonder , which is
related to Indian deva .
Among the most important are the mentioned fairies/villas.
There are wood fairies, air fairies , mountain fairies , and also evil fairies in various forms .
There are other female beings similar to them , they include mainly mermaids , wild women or witches accompanied
by wild men .

Other documents concerning Jan Žižka of the Kalich are two letters sent from the monastery in Vilémov dated
March 16 and April 1 , 1423 .
In them , the blind military leader invites his party members from the Orebic Union to a meeting scheduled for
April 7 or 8 in Německý Brod .
The letter shows/letters show that he has tried to better organize Hussite military power , to fight both domestic
and foreign enemies.
Fourteen days later , Žižka , together with the Orebits , waged war with King Zikmund’s allies , especially in the
Bydžov region with Mr. Čeněk of Vartenberk .
He defeated this nobleman with his feoffees and allies on April 20 or 23 at the Battle of Hořice , after which he
continued to plunder his goods .

Figure 6. Two examples of ambiguous diacritization determined by document context.
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Type Count Examples
NOUN ↔ NOUN 406 program[uů], šach[uů], text[uů]
ADJ ↔ ADJ 162 znám[áa], založen[aá], schopn[ií]
ADV ↔ ADJ 59 stejn[ěé], krásn[ěé], běžn[ěé]
PROPN ↔ PROPN 31 Aristotel[eé]s, Sokrates/Sókratés, J[aá]n
VERB ↔ VERB 20 zamýšlím/zamyslím, odráží/odrazí, os[ií]dlují
ADJ ↔ VERB 3 vznikl[áa], rádi/radí, splaskl[áa]
NOUN ↔ ADJ 2 přesvědčen[íi], očištěn[íi]
ADJ ↔ NOUN 2 veden[ií], považován[ií]
DET ↔ DET 2 jej[íi]ch, svoj[íi]

(a) Plausible variants.

Type Count Examples
NOUN → NOUN 32 stát/stať, objekt[uů], pulsar[uů]
VERB → VERB 4 narazí/naráží, řekn[ěe]te, žij[íi]
DET → DET 3 jej[ií]ch
ADJ → ADV 3 současn[éě], pravé/právě, praktick[ýy]
ADJ → ADJ 2 znám[áa], žádanou/zadanou
ADV → ADJ 2 stejn[ě/é]
NOUN → VERB 1 mysl[ií]

(b) Disambiguation from document context.

Type Count Examples
NOUN → NOUN 1596 stát/stať, lid[íi], program[uů]
PROPN → PROPN 587 Aristotel[eé]s, Sokrates/Sókratés, Kast[ií]lie
ADJ → ADJ 521 znám[aá], založen[aá], říd[ií]cí
VERB → VERB 193 m[ůu]že, M[aá]m, m[aá]
ADJ → ADV 134 krásn[éě], hezk[ýy], dobré/dobře
PRON → PRON 129 j[íi], n[íi], n[íi]ž
ADV → ADJ 112 stejn[ěé], pěkn[ěé], Obvykl[eé]
DET → DET 59 jej[íi]ch, svoj[ií], naš[ií]
NOUN → ADJ 47 mobiln[ií], brány/braný, češka/česká

(c) Real errors.

Table 4. Error categorization with universal POS. The context-dependent morphological
annotations were obtained automatically using UDPipe.
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Type Count Examples
Number 325 program[uů], šach[uů], objekt[uů]
Passive participle / adjective
+ more features 116 založen[aá], vzdálen[aá], nazývan[aá]

Lemma 82 l[eé]ty, mas[ií]vu, p[ée]rových
Adj ↔ Adv 59 stejn[éě], krásn[éě]
Variant + more features 31 znám[áa], schopn[ií], spokojen[íi]
Case 25 dr[aá]hami, dr[aá]hách, č[aá]rou
Lemma + more features 21 zamýšlím/zamyslím, ná[sš], pacht[uů]
Lemma, NameType 20 Aristotel[eé]s, Sokrates/Sókratés, [ÍI]lias
Case, Number 8 boh[ůu], násobk[uů], funkc[íi]
Number, Person 5 považuj[íi], věnuj[ií], kupuj[ií]

(a) Plausible variants.

Type Count Examples
Lemma + more features 15 stát/stať, tvář/tvar, pravé/právě
Number 15 objekt[ůu], pulsar[uů], muzikál[ůu]
Lemma 6 řazení/ražení, v[ií]ly
Adj ↔ Adv 4 stejn[ěé], současn[éě], praktick[ýy]
Case, Gender, Number 3 jej[ií]ch
Number, Person 2 narazí/naráží

(b) Disambiguation from document context.

Type Count Examples
Lemma + more features 924 stát/stať, [čc], [žz]e
Lemma, named entity
+ more features 382 D[ií]ogenés, Hal/Ħal, Dvořák/Dvorak

Number 226 milion[uů], reproduktor[ůu], dokument[ůu]
Case 149 j[ií], n[íi], zem[íi]
Adj ↔ Adv 132 pěkn[éě], česk[ýy], současn[éě]
Passive participle / adjective
+ more features 37 spojen[aá], pojmenovan[áa], prodaný/prodány

Case, Number 27 referent[uů], Dvořák[ůu], akademi[íi]
Case, Gender, Number 16 jej[íi]ch, j[íi]m
Number, Person 15 píš[ií], pracuj[ií], žij[íi]
Variant + more features 8 znám[áa], schopn[áa], hodn[áa]

(c) Real errors.

Table 5. Error categorization with extended Universal Features. The first column (Type) is
the (primary) difference between the context-dependent feature sets of the system word

and the gold word.
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Abstract

We propose a character-based non-

autoregressive GEC approach, with auto-

matically generated character transformations.

Recently, per-word classification of correction

edits has proven an efficient, parallelizable

alternative to current encoder-decoder GEC

systems. We show that word replacement edits

may be suboptimal and lead to explosion of

rules for spelling, diacritization and errors in

morphologically rich languages, and propose

a method for generating character transfor-

mations from GEC corpus. Finally, we train

character transformation models for Czech,

German and Russian, reaching solid results

and dramatic speedup compared to autoregres-

sive systems. The source code is released at

https://github.com/ufal/wnut2021_

character_transformations_gec.

1 Introduction

The current state of the art for grammatical error

correction (GEC) is achieved with encoder-decoder

architectures, leveraging large models with enor-

mous computational demands (Grundkiewicz et al.,

2019; Rothe et al., 2021). As such autoregressive

approach is slow on inference and is impossible

to parallelize, it has recently been suggested to

replace autoregressive sequence-to-sequence de-

coding with per-token tagging to enable parallel

decoding, achieving a dramatic speedup by a factor

of 10 in NMT (Gu et al., 2018) and very recently,

also in GEC (Omelianchuk et al., 2020).

Omelianchuk et al. (2020) approaches GEC as a

tagging task, discriminating between a set of word-

level transformations. The designed set is efficient

for English corpora, which rarely contain spelling

errors, and for English language, which does not

have diacritization marks and its morphology is

very modest compared to morphologically rich lan-

guages such as Czech or Russian. Using a set of

word-level transformations designed for English,

all character-level corrections would have to be

handled by generic word-for-word REPLACE rule,

leading to an explosion of rules.

We therefore suggest character transformations

on subword level. Moreover, our transformations

are automatically inferred from the corpus as op-

posed to being manually designed. Our approach

has the following advantages:

• character-level errors, such as diacritics,

spelling and morphology are handled,

• the transformations can be shared between

subwords, preventing an explosion of rules,

• the transformations are generated automati-

cally from corpus for each language.

We present an oracle analysis of various trans-

formations sets at different levels, in English and

three other languages: Czech, German and Rus-

sian. We find that the word-level set of rules may

be suboptimal for morphologically rich languages

and corpora with spelling errors and diacritics.

Finally, we train models with character transfor-

mations for non-autoregressive grammatical error

correction in Czech, German and Russian, reach-

ing solid results and dramatic speedup compared

to autoregressive systems.

2 Related Work

Awasthi et al. (2019) propose an alternative to

popular encoder-decoder architecture for GEC: a

sequence-to-edit model which labels words with

edits. Its advantage is parallel decoding while keep-

ing competitive results. Mallinson et al. (2020)

introduce a framework consisting of two tasks: tag-

ging, which chooses and arbitrarily reorders a sub-

set of input tokens to keep, and insertion, which

in-fills the missing tokens with another pretrained

masked language model. Omelianchuk et al. (2020)

develop custom, manually designed, per-token g-

transformations.

We further improve the sequence-to-edit model
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Algorithm 1: Extended LCS Alignment

Input: input subwords s, gold characters g

w[:, :]← 0

for i← |s| to 1 do

for j ← |g| to 1 do

w[i, j]← w[i+ 1, j]
for l← 1 to max(|g| − j, 8 + 3|s[i]|) do

g ← g[j : j + l]
if g.isspace() then continue

c←











1 if s[i] = g

0.75 if s[i].strip() = g.strip()

0.5 · LevenshSimilarity(s[i], g)

w[i, j]← max(w[i, j], c+w[i, j+1])
end

end

end

return alignment with weight w[0, 0], as in LCS

with an attempt at non-autoregressive grammati-

cal error correction for languages other than En-

glish, with character transformations applied at

subwords, inferred automatically from parallel

GEC corpus.

3 Transformations

Given that we encode an input sentence using

BERT (Devlin et al., 2019), it is natural to repre-

sent it using a sequence of subwords. We prepend

a space to every first subword in a word and use no

special marker for other subwords. Note that the

subwords might not correspond directly to parts of

input, because the bert uncased model strip input

casing and diacritics.

3.1 Alignment

In order to automatically encode the gold data

via character transformations, we first align the

input subwords and the corrected sentence. We

compute the alignment with Algorithm 1, which is

an extended version of LCS, where each subword

is aligned with a sequence of gold characters.

We ignore casing, diacritics and consider all

punctuation equal during the alignment, and bound

the maximum length of a correction (number of

characters aligned to a single input subword) by

8+3·input subword character length for efficiency.

3.2 Transformations

We consider four kinds of transformations, differ-

ing in two dimensions – the granularity of the trans-

Input gatherin leafes

Correct Gathering leaves

Subwords gathe rin lea fes

string-at-word Gathering leaves

string-at-subword Gathe APP. g KEEP ves

char-at-word
APPEND g,

UPPERC. 2nd

REPL. 3rd

from end
with v

char-at-subword UPPERC. 2nd
APP. g KEEP

REPL. 1st

with v

Figure 1: Example of the four types of transformations.

formation and the unit it is applied on:

• character transformations applied on each sub-

word separately (char-at-subword),

• character transformations applied on each

complete word (char-at-word),

• string transformations applied on each sub-

word (string-at-subword),

• string transformations applied on each com-

plete word (string-at-word).

In such terminology, the transformations proposed

by Awasthi et al. (2019) and Omelianchuk et al.

(2020) can be referred to as string-at-word. An

example of the described transformation types is

illustrated in Figure 1.

To apply a transformation on a complete word,

we concatenate the corresponding subwords and

aim to produce the concatenation of the subwords’

corrections.

A string transformation can be one of keep, re-

place by given string or append a given string be-

fore/after.

A character transformation consists of multiple

character edits, which we construct as follows:

1. We start by computing the standard smallest

edit script between an input subword and a

correction. The edit script is a sequence of

inserts, replaces and deletes, and we index

each edit operation either from the beginning

of the input subword (if it involves the first

half of it) or from the end of it (otherwise).

The edit script is computed on lowercased

strings, and in case of bert uncased models,

also on undiacritized strings.

2. Afterwards, the unmodified input subword

(i.e., including casing in case of bert cased

models) is processed by the edit script, ob-

taining a correction with possibly incorrect

casing. If some incorrectly lowercased charac-
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ters are indeed present, uppercase operations

are added, each indexing a single character

either from the beginning of the correction (if

the character is in the first half of it) or from

the end of it (otherwise).

3. Finally, for bert uncased models, we still need

to handle missing diacritics. We achieve it

analogously to step 2, adding missing diacrit-

ical marks with operations indexing single

characters again either from the beginning of

the correction (if the character is in the first

half) or from the end of it.

The reason for special handling of casing (and

diacritization for bert uncased models) is that

the proposed rules are more general, allowing to

capture for example corrections go→Going and

walk→Walking with a single rule append “-ing”,

uppercase first.

4 Transformations Upper-bound F-score

To assess the effect of number and type of transfor-

mations, we compute the potential maximum F0.5

score with the MaxMatch M2 scorer (Dahlmeier

and Ng, 2012).

We generate transformation dictionary from the

training portion of the following GEC corpora:

CoNLL-2014 shared task for English (Ng et al.,

2014), AKCES-GEC (Náplava and Straka, 2019)

for Czech, FALKO-MERLIN GEC (Boyd, 2018)

for German and RULEC-GEC (Rozovskaya and

Roth, 2019) for Russian. The sizes of the datasets

are quantified in Table 1.

We also generate transformations from synthetic

data augmentation used for training (Section 5); to

prevent the explosion of the transformation dictio-

nary, we consider only 1000 synthetic sentences,

except for Russian, which employs 5000 synthetic

sentences because of very small authentic data. Fi-

nally, we add a special uncorrectable error dictio-

nary element, indicating an error that cannot be

corrected by any dictionary transformation.

To encode a gold correction with a transforma-

tion, we first try looking it up in the dictionary. If

it is not present, we go through all dictionary trans-

formations in random order, accepting the first one

producing the correct output. If no transformation

match, we resort to the uncorrectable error (during

prediction, it will be replaced by the input token).

We show all combinations (character/string

at words/subwords), using cased and uncased

mBERT, in Figure 2. Clearly, character transforma-

Language Dataset Sentences

Czech AKCES-GEC 47 371

German Falko-MERLIN 24 077

Russian RULEC-GEC 12 480

Table 1: GEC datasets used for constructing rules and

for evaluation, including their size.

tions applied at subwords (char-at-subword, green)

have the highest potential in terms of upper-bound

F0.5 in all four languages. At the same time, word

replacements (string-at-word, red) do not scale

well. This effect is emphasized in morphologically-

rich Czech and Russian, for which the upper-bound

string replacement F0.5 (string-at-word, red) falls

below the current GEC systems state-of-the-art F0.5

(horizontal dotted line).

5 Experiments

We train the character subword GEC tagging model

using the char-at-subword transformation, which

have achieved the best upper-bound score.1 We

train the character subword GEC tagging model

(char-at-subword) for Czech, German and Russian,

in two stages: First, models are trained on a large

synthetic corpus, generated by a reimplementation

of Náplava and Straka (2019). Then, the models are

finetuned on a mixture of synthetic and authentic

data in ratio 1:2. The authentic data used in the sec-

ond stage are AKCES-GEC (Náplava and Straka,

2019) for Czech, FALKO-MERLIN GEC (Boyd,

2018) for German and RULEC-GEC (Rozovskaya

and Roth, 2019) for Russian.

The model is based on a pretrained BERT en-

coder (Devlin et al., 2019), specifically bert-base-

multilingual (uncased for Czech and German,

cased for Russian). After encoding the tokens, we

add a simple softmax classifier that projects embed-

dings for each subword into a distribution over a set

of transformations (Section 3) generated from au-

thentic data with a limited addition from synthetic

data (Section 4). We generate 7.7k transformations

for Czech, 4.3k transformations for German and

3.1k transformations for Russian.

GEC models based on Transformer and

BERT-encoder were shown to perform better

when applied iteratively (Lichtarge et al., 2018;

1We also performed preliminary experiments with char-at-
word GEC tagging model, and it performed worse than using
the char-at-subword transformations.
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Model Params F0.5

Richter et al. (2012) 58.54

Náplava and Straka (2019)synt 210M 66.59

Náplava and Straka (2019)fine 210M 80.17

Rothe et al. (2021) base 580M 71.88

Rothe et al. (2021) xxl 13B 83.15

Ours synthetic 172M 64.29

Ours finetuned 172M 72.86

Ours finetuned 4 iterations 172M 75.06

(a) Czech

Model Params F0.5

Boyd (2018) 45.22

Náplava and Straka (2019)synt 210M 51.41

Náplava and Straka (2019)fine 210M 73.71

Rothe et al. (2021) base 580M 69.21

Rothe et al. (2021) xxl 13B 75.96

Ours synthetic 170M 44.29

Ours finetuned 170M 62.92

Ours finetuned 4 iterations 170M 65.95

(b) German

Model Params F0.5

Rozovskaya and Roth (2019) 21.00

Náplava and Straka (2019)synt 210M 40.96

Náplava and Straka (2019)fine 210M 50.20

Rothe et al. (2021) base 580M 26.24

Rothe et al. (2021) xxl 13B 51.62

Ours synthetic 180M 25.36

Ours finetuned 180M 36.62

Ours finetuned 4 iterations 180M 38.68

(c) Russian

Table 2: Model results

encoder-decoder architecture from Náplava and

Straka (2019), which is of comparable size. The

measurements are performed using both a CPU-

only decoding (performed on a dedicated 32-core

Intel Xeon E5-2630) and GPU decoding (measured

on an Nvidia Quadro P5000). The results presented

in Table 3 show that the non-autoregressive system

is four times faster.

Model Time Per Sentence

T2T 162.34

BERT-GEC 41.26

(a) CPU decoding on a 32-core Intel Xeon

Model Time Per Sentence

T2T 22.36

BERT-GEC 5.09

(b) GPU decoding on Nvidia Quadro P5000

Table 3: Average time in milliseconds required to pro-

cess a single sentence in the Czech test set, measured

using both (a) CPU decoding and (b) GPU decoding.

6 Conclusion And Future Work

We proposed a character-based method to gener-

ate target transformation instructions for GEC tag-

ging models, as an alternative to autoregressive

models. We compared the character transforma-

tions to previously used word-level transforma-

tion instructions and have shown that character-

based rules have better coverage and scale bet-

ter in Czech, German and Russian. Moreover,

we trained character-based GEC tagging models

for these languages. The source code is avail-

able at https://github.com/ufal/wnut2021_

character_transformations_gec.

For future work, we propose to investigate ways

to generate synthetic data to achieve better cov-

erage of the target transformation set, since the

current process for generating synthetic errors is

well suited for encoder-decoder models, but may

fail to cover certain transformations.
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Abstract

Sensitivity of deep-neural models to input
noise is known to be a challenging prob-
lem. In NLP, model performance often dete-
riorates with naturally occurring noise, such
as spelling errors. To mitigate this issue, mod-
els may leverage artificially noised data. How-
ever, the amount and type of generated noise
has so far been determined arbitrarily. We
therefore propose to model the errors statis-
tically from grammatical-error-correction cor-
pora. We present a thorough evaluation of
several state-of-the-art NLP systems’ robust-
ness in multiple languages, with tasks includ-
ing morpho-syntactic analysis, named entity
recognition, neural machine translation, a sub-
set of the GLUE benchmark and reading com-
prehension. We also compare two approaches
to address the performance drop: a) train-
ing the NLP models with noised data gener-
ated by our framework; and b) reducing the
input noise with external system for natural
language correction. The code is released at
https://github.com/ufal/kazitext.

1 Introduction

Although there has recently been an amazing
progress in variety of NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019) with some models even
reaching performance comparable to humans on
certain domains (Ge et al., 2018; Popel et al., 2020),
it has been shown that the models are very sensitive
to noise in data (Belinkov and Bisk, 2017; Rychal-
ska et al., 2019).

Multiple areas of NLP have been studied to eval-
uate the effect of noise in data (Belinkov and Bisk,
2017; Heigold et al., 2018; Ribeiro et al., 2018;
Glockner et al., 2018) and a framework for text
corruption to test NLP models robustness is also
available (Rychalska et al., 2019). However, all
these systems introduce noise in a custom-defined,
arbitrary level and typically for a single language.

We suggest modeling natural noise statistically
from corpora and we propose a framework with the
following distinctive features:

• The error probabilities are estimated on real-
world grammatical-error-correction corpora.

• The intended noisiness can be scaled to a de-
sired level and various aspects (types) of er-
rors can be turned on/off to test the NLP sys-
tems robustness to specific error types.

Furthermore, we also present a thorough evalua-
tion of several current state-of-the-art NLP systems’
with varying level of data noisiness and a selection
of error aspects in multiple languages. The NLP
tasks include morpho-syntactic analysis, named
entity recognition, neural machine translation, a
subset of GLUE benchmark and reading compre-
hension. We conclude that:

• The amount of noise is far more important
than the distribution of error types.

• Sensitivity to noise differs greatly among NLP
tasks. While tasks such as lemmatization re-
quire correcting the input text, only an approx-
imate understanding is sufficient for others.

We also compare two approaches for increasing
models robustness to noise: training with noise and
external grammatical-error-correction (GEC) pre-
processing. Our findings suggest that training with
noise is beneficial for models with large capacity
and large training data (neural machine translation),
while the preprocessing with grammatical-error-
correction is more suitable for limited-data classifi-
cation tasks, such as morpho-syntactic analysis.

Finally, we also offer an evaluation on authentic
noise: We assembled a new dataset with authentic
Czech noisy sentences translated into English and
we evaluate the noise-mitigating strategies in the
neural machine translation task on this dataset.
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2 Related Work

Many empirical findings have shown the fact that
data with natural noise deteriorate NLP systems
performance. Belinkov and Bisk (2017) found that
natural noise such as misspellings and typos cause
significant drops in BLEU scores of character-
level machine translation models. To increase the
model’s robustness, they trained the model on a
mixture of original and noisy input and found out
that it learnt to address certain amount of errors.
Similar findings were observed by Heigold et al.
(2018) who tested machine translation and mor-
phological tagging under three types of word-level
errors.

Ribeiro et al. (2018) defined a set of substitu-
tion rules that produce semantically equivalent text
variants. They used them to test systems in ma-
chine comprehension, visual question answering
and sentiment analysis. Glockner et al. (2018) cre-
ated a new test set for natural language inference
and showed that current systems do not general-
ize well even for a single-word replacements by
synonyms and antonyms.

Rychalska et al. (2019) implemented a frame-
work for introducing multiple noise types into text
such as removing or swapping articles, rewriting
digit numbers into words or introducing errors in
spelling. They found out in four NLP tasks that
even recent state-of-the-art systems based on con-
textualized word embeddings are not completely
robust against such natural noise. They also re-
trained the systems on noisy data and observed
improvements for certain error types.

Similarly to Rychalska et al. (2019), we also de-
veloped a general framework that allows to test a
variety of NLP tasks. The difference is that we esti-
mate the probabilities of individual error types from
real-world error corpora. This makes the generated
sentences more similar to what humans would do.
Moreover, since we defined the individual error
types with no language-specific rules, we can apply
it to multiple languages with an available annotated
grammatical-error corpus.

Grammatical-error corpora are typically used as
training data for estimating error statistics in GEC
systems. In a setting similar to ours, Choe et al.
(2019); Rozovskaya et al. (2017) also estimated
error statistics and used them to generate additional
training data for GEC systems. However, compared
to our approach, they defined only a small set of
predefined error categories and used it specifically

for training GEC systems whereas we also use it to
asses model performance in noisy scenarios.

Authentic Noise Evaluation The growing interest
in developing production-ready machine transla-
tion models that are robust to natural noise resulted
in the First Shared Task on Machine Translation Ro-
bustness (Li et al., 2019). The shared task used the
MTNT dataset (Michel and Neubig, 2018), which
consists of noisy texts collected from Reddit and
their translations between English and French and
English and Japanese.

Improving Model Robustness Using Noisy Data

Majority of research on improving model robust-
ness is dedicated to training on a mixture of origi-
nal and noisy data. The same procedure is usually
used for generating both the test corpus and train-
ing data (Belinkov and Bisk, 2017; Heigold et al.,
2018; Ribeiro et al., 2018; Rychalska et al., 2019).

To generate synthetic training data, researchers
in machine translation and GEC often use so called
back-translation (Sennrich et al., 2016). A reverse
model translating in the opposite direction (i.e.
from the target language to the source language or
from the clean sentence into noisy sentence, respec-
tively) is trained (Rei et al., 2017; Náplava, 2017;
Kasewa et al., 2018; Xie et al., 2018). It is then
used on the corpus of clean sentences to generate
noisy input data. While this approach might gen-
erate high-quality synthetic data, it requires large
volumes of training data.

We evaluate two approaches to alleviate perfor-
mance drop on noisy data: We either train the sys-
tem on a mixture of synthetic (generated statisti-
cally from real error corpora) and original authen-
tic data; or we use an external grammatical-error-
correction system to correct the noisy data before
inputting them to the system itself. We are not
aware of any other work that compares these two
approaches and we believe that both approaches
may be beneficial under certain conditions.

3 Modeling Natural Noise from Corpora

Robustness of NLP models to natural noise would
ideally be evaluated on texts with authentic noise,
with error corrections annotated by humans. (We
present such authentic data evaluation in Section 7.)
This perfect-world setting, however, requires an
immense annotation effort, as multiple target do-
mains have to be covered by well-educated human
annotators for multiple NLP tasks in a range of lan-
guages. To ease the annotation burden, we propose
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a new framework, named KaziText, for introducing
natural-like errors in a text.

The core of KaziText is a set of several common
error type classes, aspects (following naming con-
vention of Rychalska et al., 2019). The aspects

are composable (can be combined) and the prob-
ability of the aspect manifestation as well as the
aspect’s internal probabilities are estimated from
grammatical-error-correction corpora.

3.1 Noising Aspects

One of the main objectives of our error aspects’
design was to avoid manually designed rules, es-
pecially those derived from a single language.
An ideal approach, automatically inferring the as-
pects themselves, is however limited by the amount
of available data. Therefore, we defined a rich
set of aspects which can be estimated from the
data:

1. Diacritics Strip diacritics either from a whole
sentence or randomly from individual charac-
ters.

2. Casing Change casing of a word, distinguish-
ing between changing the first letter and other.

3. Spelling Insert, remove, replace or swap in-
dividual characters (wrong → worng) or use
ASpell1 to transform a word to other existing
word (break → brake).

4. Suffix/Prefix Replace common suffix
(do → doing) and prefix (bid → forbid).

5. Punctuation Insert, remove or replace punc-
tuation.

6. Whitespace Remove or insert spaces in text.
7. Word Order Reorder several adjacent

words.
8. Common Other Insert, replace or substitute

common phrases as seen in data (the → a,
a lot of → many). This is the aspect which
should learn language specific rules.

The natural errors found in real-world texts
rarely fall into mutually exclusive categories. Cas-
ing errors are also spelling errors; common other
aspect covers all other aspects. Therefore, some of
the aspects naturally overlap. We therefore opted
for evaluating the aspects in a cumulative manner
in the designed order.

When designing the order of the aspects, our
goal was to respect the natural inclusion of aspects
and also error severity. We therefore start with
diacritical-only changes, given that for example in

1http://aspell.net/

Czech, users may deliberately write without dia-
critics. We then add casing changes, spelling errors
and then suffix/prefix changes (the latter being mor-
phologically motivated spelling errors). The first
four aspects do not modify tokenization, making
them suitable for tokenization-dependent tasks like
POS tagging or lemmatization.

The remaining aspects change the number of to-
kens or token boundaries. The punctuation, whites-
pace and word order aspects are relatively indepen-
dent, with the common other aspect covering all of
them and thus being the last one.

3.2 Estimating Noising Aspects Probabilities

We use grammatical-error-correction (GEC)
datasets to estimate probabilities of individual
aspects. The GEC datasets are distributed in
M2 format,2 which for a tokenized input noisy
sentence contains a set of correcting edits. Each
correcting edit contains the corresponding input
sentence span, the correction itself and the error
type. The noising aspect probabilities are estimated
by frequency analysis.3 To accurately model
the distribution of amount of errors in different
sentences, we also measure the standard deviation
of the token edit probability per sentence.

We collected M2 files from various grammatical-
error-correction corpora in 4 languages: English,
Czech, Russian and German. The majority of anno-
tated content comes from Second Learners of the
particular language and in addition, more speaker
groups are available in English and Czech:

• English

• Natives: LOCNESS v2.1 (Granger,
1998)

• Second Learners: NUCLE (Dahlmeier
et al., 2013), FCE (Yannakoudakis et al.,
2011), Write & Improve (Yannakoudakis
et al., 2018)

• Czech

• Natives: essays of Czech primary
schools students, in submission process

• Natives Informal: web discussions data,
in submission process

• Second Learners:
AKCES-GEC (Šebesta et al., 2019)

• Romani: AKCES-GEC (Šebesta et al.,
2019) – Romani ethnic minority children
and teenagers using Czech

2GEC file format since the CoNLL-2013 shared task
3We refer to the published source code for details.
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Language Corpus Sentences Error rate Domain

English

NUCLE (Dahlmeier et al., 2013) 57 151 6.6% SL
FCE (Yannakoudakis et al., 2011) 33 236 11.5% SL
W&I (Yannakoudakis et al., 2018) 37 704 11.7% SL
LOCNESS (Granger, 1998) 988 4.7% native students

Czech

Romani part of AKCES-GEC (Šebesta et al., 2019) 16 030 20.3% Romani heritage speakers
SL part of AKCES-GEC (Šebesta et al., 2019) 31 341 22.1% SL essays
Natives Informal 11 608 15.6% web discussions
Natives 7 696 5.8% native students

German Falko-MERLIN (Boyd, 2018) 24 077 16.8% SL essays

Russian RULEC-GEC (Rozovskaya and Roth, 2019) 12 480 6.4% SL, heritage speakers

Table 1: Comparison of used GEC corpora in size, token error rate and domain. SL = second language learners.

• German (Second Learners): Falko-MERLIN
GEC Corpus (Boyd, 2018)

• Russian (Second Learners): RULEC-
GEC (Rozovskaya and Roth, 2019)

An overview of the sizes and error rates of the
datasets above is presented in Table 1.

We call the resulting single file containing all
aspect probabilities for one group of speakers a
profile. The profile therefore describes the gram-
matical style of a particular given group of users,
derived from M2 file annotations.

Each profile has a development and test version
originating from the respective M2 development
and test files. The test profiles are used for synthe-
sising data intended directly for assessing models’
performance in noisy setting while the development
profile is intended for creating data for training the
models.

3.3 Adjusting the Percentage of Token Edits

In order to reach an intended percentage of token

edits, which directly corresponds to the amount of
noise in the generated data, we correspondingly
scale the aspects’ probabilities. We refer to the
percentage of token edits in the original corpus as
a corpus error level.

3.4 Noising the Data

When noising an input sentence, we first sample a
token edit probability from the error amount distri-
bution, scaled according to the required number of
token edits. We then introduce the desired aspects
with the chosen error level.

We allowed the framework to generate any
noising aspect, including adding new tokens, in
test sets without token-level gold annotations:
neural machine translation, GLUE benchmark,
tokens outside named entities in NER and to-

kens outside the answer in reading comprehen-
sion.

When introducing errors into classification test
sets with token-level gold annotations, we need
to maintain the original tokenization. For this
reason, we allowed only the first 4 aspects for
the following data: morpho-syntactic analysis, to-
kens inside named entity spans in NER and to-
kens inside answers in the reading comprehension
task.

All experiments are repeated with 5 different
random seeds and we report means with standard
deviations.

4 Evaluated Tasks

4.1 Morpho-syntactic Analysis

Model We employed UDPipe (Straka et al., 2019),
a tool for morpho-syntactic analysis.
Dataset We used the Universal Dependencies 2.3
(Nivre et al., 2018) corpus (UD 2.3).4

Metrics We utilized the following metrics (Zeman
et al., 2018) – UPOS: coarse POS tags accuracy,
UFeats: fine-grained morphological features ac-
curacy, Lemmas: lemmatization accuracy, LAS:
labeled attachment score and MLAS: combination
of morphological tags and syntactic relations.

4.2 Named Entity Recognition

Model Recently published architecture (Straková
et al., 2019) was used for NER evaluation.
Dataset For English and German, we evaluated on
the standard CoNLL-2003 shared task data (Tjong

4Many English UD test set tokens contain casing or
spelling errors, propagated into lemmas, rendering such data
unsuitable for analysis. We try to use only error-free English
test documents and we therefore drop all test documents con-
taining a sentence starting with a lowercase character, keeping
more than half of the data. Apart from the lemmatization
accuracy, the results for full test set are nearly identical.
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Kim Sang and De Meulder, 2003); for Czech, we
used a fine-grained Czech Named Entity Corpus
2.0 (Ševčíková et al., 2007) with 46 types of nested
entities.

Metric The evaluation metric is F1 score.

4.3 Neural Machine Translation

Model We chose a state-of-the-art Czech-to-
English NMT system CUBBITT (Popel et al.,
2020), but we trained it on the newest version (2.0)
of the CzEng parallel corpus (Kocmi et al., 2020).
We trained with batch size of ca. 23k tokens for
550k steps, saved a checkpoint each hour (ca. 4600
steps) and selected the checkpoint with the highest
dev-set BLEU (which was at 547k steps).

Dataset We use WMT17 (newstest2017, 3005 sen-
tences)5 as our development set. Our test set is a
concatenation of WMT13, WMT16 and WMT18
(8982 sentences in total).

Metric We evaluate the translation quality with
case-insensitive BLEU score.6

4.4 GLUE Benchmark

We select a subset of GLUE (Wang et al., 2018)
tasks, namely Microsoft Research Paraphrase Cor-
pus (MRPC), Semantic Textual Similarity Bench-
mark (STS-B), Quora Question Pairs (QQP) and
The Stanford Sentiment Treebank (SST-2). We
finetune BERT on each of these tasks and evaluate
them on various levels of noise.

Model We finetune pretrained BERT with an addi-
tional feed-forward neural network with one hidden
layer predicting score on particular task’s data. We
use bert-base-cased configuration and Hugging-
Face’s Transformers (Wolf et al., 2019) implemen-
tation.

Dataset We use official GLUE datasets as provided
by https://gluebenchmark.com/tasks.

Metric We report following metrics: F1 for MRPC
and QQP, Pearson-Spearman Corr for STS-B and
accuracy for SST-2.

5http://statmt.org/wmt17
6We use SacreBLEU (Post, 2018) with signature

BLEU+case.lc+numrefs.1+smooth.exp+tok.intl+version.1.4.14.
When using the case-sensitive version, the results show
similar trends, except for the Casing aspect, which causes
more harm to the score, as could be expected. However, it is
questionable if copying the “wrong” casing to the translation
(e.g. not capitalizing the first word in a sentence or using
all-uppercase) should be considered a translation error. We
thus opted for case-insensitive BLEU as our primary metric.
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Figure 1: Proportional distribution of the first 4 aspects
(diacritics, casing, spelling, affixes) in Czech and En-
glish.

4.5 Reading Comprehension

Model We utilize a BERT base architecture with
a standard SQuAD classifier on top (Devlin et al.,
2019).
Dataset We employ English SQuAD 2 (Rajpurkar
et al., 2018) and its Czech translation (Macková
and Straka, 2020).
Metric Our experiments are evaluated using F1
score.

5 Robustness to Noise

We evaluated the models robustness both to the
amount of noise (Figure 2) and to error types (Fig-
ures 3 and 4).

A unifying trend can be observed in models
performance with respect to increasing percent-
age of token edits. Solid lines in Figure 2 display
the morpho-syntactic MLAS, NER F1 and NMT
BLEU on texts with up to 30% of token edits. The
relative performance decreases roughly linearly
with the amount of token edits, in accordance with
previous findings (Rychalska et al., 2019). The
tendency is consistent across tasks, languages and
profiles: For example, compare the Czech and En-
glish Second Learners profiles in morpho-syntactic
analysis (Figure 2a) or Czech Native Speakers and
Czech Second Learners profiles in the NMT clean
model (Figure 2c), which exhibit similar behaviour
despite their differing distributions of aspects (Fig-
ure 1). This consistency implies that it is the sheer
amount of noise rather than the distribution of as-
pects, that contributes to the model performance
deterioration. More results are available in Supple-
mentary Material (Figures S2 and S3).

Estimating the amount of noise is important, as
the corpus error level differs greatly across lan-
guages and profiles. For example, compare the
Second Learners profile in English (11.3% token
edits) and Czech (27.1%) in Figure 2a, or in Czech,
see Native Speakers (6.4%) and Second Learners
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Figure 2: Increasing percentage of token edits with clean model, noise-trained model and grammatical-error-
correction. Numbers near lines are absolute values.
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Figure 4: Evaluation with additive noising aspects. The
amount of introduced errors is the corpus error level for
each aspect. Numbers near lines are absolute values.

(27.1%) in Figure 2c. Testing near the estimated
noisiness level provides more accurate evaluation
of the models’ performance.

From a qualitative point of view, spelling and

affixes make for the major performance drop in
morpho-syntactic analysis (Figure 3), NER (Fig-
ure 4a) and NMT (Figure 4b).

Some tasks are more sensitive to certain aspects:
Casing is a crucial aspect for NER. This is clearly
shown in the Czech Natives Informal profile, which
contains text scraped from the internet discussions
and contains nontrivial amount of casing errors
(Figure 4a). We further elaborate the casing aspect
effect on NER in Section S2 in Supplementary Ma-
terial. In NMT and reading comprehension, errors
in punctuation seem to decrease the model perfor-
mance consistently across all profiles (Figures 4b
and 4c, respectively).

For Czech as a language with diacritic marks,
diacritics is an interesting aspect. We can see that
when it is introduced at a corpus error level, the
Czech model’s performance on Lemmas drops by
circa 7 percent. Figure S1 in Supplementary Mate-
rial further illustrates that performance significantly
deteriorates when all diacritics is stripped, which is
quite common in informal Web texts. Similarly, to
emphasize the effect of the diacritization aspect on
NMT, we created a new profile Natives Informal

w/o Diacritics from the Natives Informal profile by
stripping all diacritization. Figure 4b shows that
not using diacritics at all results in a performance
drop of ca. 10 BLEU points.

Some tasks are more sensitive to noise than oth-
ers. Lemmatization is the most sensitive to errors
(20 times more errors when processing Czech Sec-
ond Learners texts with a clean model, see Fig-
ure 3), which is understandable, given that all
lemma characters must be generated correctly from
a corrupted surface token. The effect on POS tag-
ging is the least pronounced (Figure 3), although
8 times as many errors in Czech (when processing
noisy texts with a clean model) makes the POS tags
much less reliable.

6 Noise-coping Strategies

We implemented and evaluated two strategies
to alleviate the performance drop on noisy in-
puts: external and internal correction. In the ex-

ternal correction approach, we use a separately
trained grammatical-error-correction model to de-
noise texts before inputting them to the model itself.
In the internal correction approach, we instead di-
rectly train the model on a combination of noisy
and authentic texts.

We hypothesise that the external approach may
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Figure 5: Morpho-syntactic analysis: Training data in-
creasingly noised with each single profile, evaluation
with the corresponding profile corpus error level.

be better in scenarios with small amount of anno-
tated data. In such cases, only few iterations over
training data are typically performed to prevent
overfitting, and we suppose that learning the task
itself and denoising at the same time would harm
its performance a lot. Contrarily, with enough data
and appropriate model capacity, learning the de-
noising and the task jointly may reduce the amount
of potential false positives that might be otherwise
proposed by the external language corrector.

6.1 External Correction Model

We use the grammatical-error-correction system
of Náplava and Straka (2019) in our experiments.
Their models trained on Czech, German and Rus-
sian achieve state-of-the-art results and slightly be-
low state-of-the-art results on English. We use their
“pretrained” version.

We modified the pipeline of Náplava and Straka
(2019) to train on detokenized text. Furthermore,
we also trained new grammatical-error-correction
models which only make corrections that strictly
keep the given tokenization (important in morpho-
syntactic annotations). To sum up, we trained two
types of grammatical-error-correction models: 1.
detokenized error correction model (for NMT) 2.
tokenization-preserving error-correction model (for
morpho-syntactic tasks and NER).

6.2 Training on Noisy Data

In the internal approach to increase model robust-
ness, we train the systems on a mixture of original
and noisy data, while keeping the number of train-
ing steps unchanged. The noisy data are generated
using the KaziText framework operating on devel-
opment profiles and concatenated to original data.

We noise the training data with appropriately
estimated corpus error levels in all our experiments.
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Second Learners profile. Upper row Original clean
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To illustrate the effect of noise level introduced
into training data, we trained the UDPipe on
variably noised morpho-syntactic data for all
four Czech profiles. In each single profile, we
increasingly noised the morpho-syntactic training
data and evaluated on the testing data noised with
the corresponding profile corpus error level. In
all cases, the best performance is found near the
corpus error level (Figure 5).

When training the NMT model, the best check-
point on a development set consisting of concate-
nated standard WMT17 and WMT17 noised with
our framework is selected.

We train a single model for each language on a
concatenation of noisy data generated by all pro-
files of the particular language. This makes the final
model generalize well across all profiles, although
training a single model for each profile could make
sense for other scenarios.

6.3 Evaluation

We present the effect of both the internal and exter-

nal noise-coping strategies in Figure 2. There are
two main points of interest in the graphs: the first
one showing performance of models on clean texts
and the second one showing model performance
on texts with corpus level errors. Additionally,
an excerpt showing performance of Czech Second
Learners on these two levels is presented in Fig-
ure 6.

It is not a surprise that the model trained on clean
training data surpasses the noise-coping models on
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System
BLEU on Faust

Noisy Cleaned

clean 43.3 50.9
noise-trained 47.0 50.5
gec+clean 44.1 50.4

Table 2: NMT results on authentic user noisy texts. We
report BLEU on the Faust-Noisy test set with noisy in-
put sentences and also on Faust-Cleaned that has man-
ually corrected sentences on input.

the clean test data. Adapting to noise clearly comes
with a cost. Surprisingly though, the clean model
head start is only marginal in the NMT task.

The clean models perform substantially worse
than either of the two proposed methods in all
three tasks when errors are introduced in the same
amount as the corpus error level (marked with ver-
tical lines in Figure 2). Therefore, whenever noisy
inputs of particular domain are expected, it is ben-
eficial to adapt to noise using either of the two
methods.

With increasing noise, the gap between the clean
model and the external and internal model grows
in all three tasks (Figure 2). There is a threshold at
which the noise-coping models surpass the clean
model for each task. Interestingly, the threshold
oscillates around relatively low noise levels up to
5% of token edits.

Finally, we confirm our initial hypothesis that ex-

ternal approach with GEC model works better than
internal approach on low resource tasks: morpho-
syntactic analysis and named-entity recognition.
The internal approach then outperforms external

approach on machine translation task for which
there is a large amount of training data and a model
with greater capacity.

7 Evaluating on Authentic User Text

We assembled a new dataset for MT evaluation
consisting of 2223 authentic Czech noisy input
sentences translated into English, which we re-
lease at http://hdl.handle.net/11234/1-3775.
The sentences originate from the project FAUST7

where they were collected from various users of
reverso.net. The advantage of this dataset is that
in addition to the original Czech noisy sentences,
there are manually corrected Czech sentences and
manual translations to English.

7https://ufal.mff.cuni.cz/grants/faust

On this dataset, we evaluate our neural machine
translation models from Section 4.3 and Section 6,
specifically the clean model trained on clean data,
noise-trained model trained on a mixture of au-
thentic and noised data and their combination with
external grammatical-error-correction system. The
results of these systems on authentic noisy texts
are presented in Table 2. It is evident that noise-
trained model outperforms clean model by a large
margin on Faust-Noisy data while not losing much
precision on Faust-Cleaned data. Similarly to our
conclusions in Section 6, the external grammatical-
error-correction system helps the clean model on
noisy data, however is inferior to noise-trained
model.

8 Conclusions

We estimated natural error probabilities statistically
from real-world grammatical-error-correction cor-
pora in order to model and generate noisy inputs
for machine learning tasks. We extensively evalu-
ated several state-of-the-art NLP downstream sys-
tems with respect to their robustness to input noise,
both in increasing level of text noisiness and in
variations of error types. We confirmed that the
noise hurts the model performance substantially
and we compared two coping strategies: training
with noise and preprocessing with GEC, conclud-
ing that each strategy is beneficial in different sce-
narios. Finally, we also presented authentic noisy
data evaluation using a newly assembled dataset
for machine translation with authentic Czech noisy
sentences translated to English. We release both
the new framework (under MPL 2.0) at https:

//github.com/ufal/kazitext and the newly as-
sembled dataset (under CC BY-NC-SA license) at
http://hdl.handle.net/11234/1-3775.
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