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Abstract: Generalising the notion of an ultrafilter to structured sets, we con-
struct the ultrafilter monad in the categories of partially ordered sets and finitely
colourable graphs. This is done similarly to codensity monads, knowing that the
codensity monad of the inclusion of finite sets into sets is the ultrafilter monad.
We derive an equivalent definition of an ultrafilter on an object applicable for
general graphs, also giving rise to a monad. We show that ultrafilters on a poset
can be completely characterised in terms of suprema or infima of directed subsets
when the poset has only finite antichains. We attempt to classify algebras over
the poset ultrafilter monad; our results completely classify the algebras with all
antichains finite as posets with a particular compact Hausdorff topology.
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Introduction
Ultrafilters originate in set theory and have found many uses elsewhere, including
but not limited to topology. It is straightforward to generalise the definition of
ultrafilter for use in an arbitrary partial order instead of the power set of some
set. Both topological uses and general ultrafilters in posets appear in this thesis.

Intuitively, one can think of ultrafilters as strategies in the following number
guessing game. Player one fixes a secret natural number n. Player two wants
to find out the value of n, they ask questions of the form “Is n ∈ A?”, for some
subset A ⊆ N. Player one always answers yes or no. For their answers to be
consistent, the following have to hold:

• If the answer was yes to ‘n ∈ A’ and ‘n ∈ B’, then surely ‘n ∈ A ∩ B’ has
to be answered positively.

• Question ‘n ∈ ∅’ has to be answered negatively. On the other hand, ‘n ∈ N’
has to be true.

• If we have A ⊆ B and the answer was yes to ‘n ∈ A’, then the answer to
‘n ∈ B’ must also be yes.

• If the question ‘n ∈ A’ was answered negatively, then ‘n ∈ (N∖ A)’ has to
be true.

We can see that these conditions match exactly the definition of ultrafilters on
the set N. Exploiting the fact that at any point in time player two has so far
asked only finitely many questions, player one can cheat by picking a nontrivial
ultrafilter U on N and answering yes to n ∈ A iff A ∈ U .

Important property of set ultrafilters is that they pick from finite partitions
of the underlying set. That is if

A1 ⨿ A2 ⨿ . . .⨿ An = X,

any ultrafilter U on X contains the set Ai for one and only one i ∈ {1, . . . , n}.
Such a partition is essentially a function

f : X → {1, . . . , n}, f(x) = i ⇐⇒ x ∈ Ai.

Then the condition can be rephrased as U contains the fibre f−1(i) for exactly
one i ∈ {1, . . . , n}. This property can be used to define a peculiar integration
operator assigning to f the element whose f -fibre belongs to U . Properties of
such integration operators are what we use to derive a definition of ultrafilter in
other categories. From our results on partial orders it turns out that arbitrary
partitions are in general not the same as partitions into f -fibres, but both of these
partition conditions of ultrafilters still hold.

In chapter 1 we examine ultrafilters on sets using the language of integration
operators as mentioned above. Similar concept is shown for elements of double
dual of a vector space. In chapter 2 we define ultrafilters in categories of partial
orders and graphs, using the properties of integration operators from chapter 1.
The third chapter first connects these newly defined ultrafilters with ultrafilters
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in general partial orders. Then we define order or graph structure on the set of
all ultrafilters, which arises from a categorical limit. Here we define the ultrafilter
functor. Unlike for sets, we show it is sometimes possible to explicitly describe
nontrivial ultrafilters on partial orders. The fourth chapter contains construc-
tion of the ultrafilter monad and incomplete classification of its algebras in the
category of posets.

Previous work In 1969 Manes has shown in [7] that algebras over the set ul-
trafilter monad are precisely the compact Hausdorff spaces. A 2013 article [5]
of Tom Leinster has connected this and other previously known results, showing
the common category-theoretical properties of ultrafilters on sets and double du-
alisation of vector spaces. In 2016 Devlin, supervised by Leinster, has explored
ultrafilters in general algebraic theories in his PhD thesis [2]. A 2020 article [1]
by Adámek and Sousa shows general construction of the ultrafilter monad using
concepts similar to double dualisation of vector spaces.

Ideas appearing in this thesis are more reminiscent of those in Devlin’s work,
but are applied in different context. Our approach naturally leads to a different,
but equivalent, definition of ultrafilters on partial orders than the one in Adámek
and Sousa [1]. Our definition of graph differs, as we do not allow loops. With
this definition one cannot apply their general result about D-ultrafilters, as the
resulting category of loopless (finitely colourable) graphs has no finite cogenerator.
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1. First results
Here we briefly examine the better known cases of sets and vector spaces. We
define integration against an ultrafilter and observe which properties characterise
such an operator. Similar integral is defined for the vector space double dual.
Proof of the fact that this defines a functor and a monad induced by it is omitted,
as the proof for partial orders and graphs presented later is analogous.

1.1 Ultrafilters on sets

1.1.1 Definition
Given a set X, a filter on X is a nonempty collection U ⊆P(X) of its subsets,
satisfying

• ∅ /∈ U ,

• (∀A, B ∈ U ) A ∩B ∈ U ,

• (∀A, B ⊆ X)(A ⊆ B & A ∈ U ) =⇒ B ∈ U .
An ultrafilter on a set X is a maximal such collection. Important characterisation
says a filter U is maximal if and only if for every finite partition

A1 ⨿ A2 ⨿ . . .⨿ An = X,

exactly one Ai is an element of U . By partition we mean a collection of pairwise
disjoint, possibly empty, subsets, whose union is the whole set. We use the symbol
⨿ in place of the set union ∪, when the operands are disjoint sets. In particular,

A ∈ U or X ∖ A ∈ U ,

but not both. Proposition 1.5 in Leinster [5] tells us that any collection U ⊆
P(X) satisfying this partition property for any n ≥ 3 is an ultrafilter. A single
axiom characterisation of an ultrafilter U ⊆P(X) is

(∀A ⊆ X)(A ∈ U ⇐⇒ (∀n ∈ N ∀B1, . . . , Bn ∈ U ) A ∩B1 ∩ . . . ∩Bn ̸= ∅).

The set of all ultrafilters on a set X is denoted βX.

1.1.2 Integration
Here we use the partition property of ultrafilters to define a special integration
operator. Consider a function f : X → A of sets, where A is finite. Label
A = {a1, . . . , an}, then

f−1(a1) ∪ . . . ∪ f−1(an)
is a partition of the set X. Thus for any ultrafilter U ∈ βX we have a unique
a ∈ A, for which f−1(a) ∈ U .

For single points we denote the preimage (fibre) by f−1(a), whereas for a set
A we denote the preimage by f−1[A]. Throughout the text we use functions with
finite codomain, we call such functions simple. We also use the word simple for
morphisms with finite codomain in concrete categories.
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Definition. Let U be an ultrafilter on a set X. If f is a function from X into a
finite set, we define the integral of f with respect to U , denoted∫︂

X
f dU ,

to be the unique element for which

f−1
(︂∫︂

f dU
)︂
∈ U .

Proposition 1. Let X be a set, A, B finite sets and f : X → A, g : A → B
functions. Then

g
(︂∫︂

X
f dU

)︂
=

∫︂
X

g ◦ f dU .

Proof. If a =
∫︁

f dU and b = g(a), then (g◦f)−1(b) = f−1[g−1(b)] ⊇ f−1(a). But
f−1(a) ∈ U , thus the superset (g ◦f)−1(b) is also an element of U . By definition
b =

∫︁
g ◦ f dU .

Consider a map
∫︁

dx assigning to a function f : X → A of sets with finite
codomain A an element

∫︁
f dx ∈ A. We will call this map a simple integration

operator if it satisfies the condition

g
(︂∫︂

f dx
)︂

=
∫︂

g ◦ f dx, (1.1)

for any f : X → A, g : A → B with A, B finite. Here the dx serves no other
purpose than to distinguish the symbol from dU .

Lemma 2. For any simple integration operator
∫︁

f dx ∈ rng f .

Proof. Consider the inclusion i : rng f ↪→ A and corestriction f̃ : X ↠ rng f
of f onto its range. Then i ◦ f̃ = f . By (1.1) we have i(

∫︁
f̃ dx) =

∫︁
f dx, thus∫︁

f dx ∈ rng i = rng f .

We showed that any ultrafilter induces a simple integration operator. Now
from any such operator, we will recover the ultrafilter defining it in the above
sense. From this we conclude that this correspondence is bijective. Later, this
correspondence will be used to pick a proper definition of an ultrafilter in other
categories.

For a fixed simple integration operator on X define

U :=
{︂
f−1

(︂∫︂
f dx

)︂
: f : X → A, A finite

}︂
.

This is a subset of the power set of X. We want to show it is an ultrafilter,
and that integration against it is exactly

∫︁
dx. We will show for any partition

A1, . . . , An of X that exactly one Ai ∈ U . Then by Leinster [5], Proposition 1.5,
U is an ultrafilter on X.

Existence: Let A1, . . . , An be a finite partition of X. Then f : X → {1, . . . , n}
sending x ∈ Ai to i is a function with finite codomain. By definition f−1(j) ∈ U
for j =

∫︁
f dx. But f−1(j) = Aj, so Aj ∈ U .
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Uniqueness: First of all, if S ∈ U , we will show that there exists an f , for
which f−1(

∫︁
f dx) = S, its codomain is equal to {1, 2} and

∫︁
f dx = 1. Let

h : cod f → {1, 2} be defined as

h(a) :=
⎧⎨⎩1, a =

∫︁
f dx,

2, otherwise.

Then
∫︁

h ◦ f dx = h(
∫︁

f dx) = 1 and (h ◦ f)−1(1) = f−1(
∫︁

f dx) = S. Thus
h ◦ f : X → {1, 2} also witnesses S ∈ U .

Now assume for a contradiction F, G ∈ U and F ∩ G = ∅, with witnesses
f, g : X → {1, 2} satisfying

∫︁
f dx =

∫︁
g dx = 1. Define h : X → {1, 2, 3} by

h(x) :=

⎧⎪⎪⎨⎪⎪⎩
1, x ∈ F,

2, x ∈ G,

3, otherwise.

Then f = φ ◦ h, g = γ ◦ h, where

φ(k) :=
⎧⎨⎩1, k = 1,

2, k = 2, 3,
γ(k) :=

⎧⎨⎩1, k = 2,

2, k = 1, 3,
k ∈ {1, 2, 3}.

Thus 1 =
∫︁

f dx = φ(
∫︁

h dx), hence 1 =
∫︁

h dx. But then
∫︁

g dx = γ(
∫︁

h dx) =
γ(1) = 2, a contradiction. Hence U does not contain disjoint sets and the choice
from partition is unique.

Now we know that U is indeed an ultrafilter. The equality
∫︁

dU =
∫︁

dx is
easy to see from definition of U .

1.2 Vector spaces and their duals
Let us recall some basic notions from linear algebra. We will assume all vector
spaces to be over a fixed field k. For a vector space V a linear form on V is
a linear map V → k. The space of all linear forms is also a vector space, denoted
by V ∗ and called the dual of V . We can iterate this construction to arrive at the
double dual V ∗∗ = (V ∗)∗. For a finite dimensional vector space V with a basis
(e1, . . . , en) there is a dual basis of V ∗ (ε1, . . . , εn), where εi is the form assigning
to x ∈ V the i-th coordinate of x w.r.t. the basis (e1, . . . , en). For any V and
x ∈ V we can define an element Ex ∈ V ∗∗, Ex(f) := f(x), f ∈ V ∗. This element
is called evaluation at x. For finite dimensional vector spaces the evaluation map
E : V → V ∗∗, x ↦→ Ex is an isomorphism.

1.2.1 Integration
Let V be a k-vector space, v ∈ V ∗∗. For a linear map f : V → N , where N is
finite dimensional and has a basis (e1, . . . , en), denote the dual basis of N∗ by
(ε1, . . . , εn) and define ∫︂

V
f dv :=

n∑︂
i=1

v(εi ◦ f)ei.
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Simple integration operators on sets returned element whose f -fibre was element
of the ultrafilter. If we want to somehow test f against v, we need to provide
a linear form, not a subset. Natural option is to use the components of f with
respect to the chosen basis of N . We can express them as εi ◦ f , i = 1, . . . , n.
We get back scalars instead of a yes or no answer from an ultrafilter, those can
be used as coefficients with respect to the same basis of N .

However the choice of basis of N was arbitrary, and has to be done for each
finite dimensional vector space. We will show the value of integral is in fact
independent on the choice of basis. Similarly to the case of sets, the following
identity ∫︂

V
g ◦ f dv = g

(︂∫︂
V

f dv
)︂

(1.2)

holds for every linear map g of finite dimensional spaces.
Let N be finite dimensional, f : V → N linear, (e1, . . . , en), (x1, . . . , xn)

two bases of N with respective dual bases (ε1, . . . , εn), (ξ1, . . . , ξn). Express the
coordinates of each with respect to the other as xi = ∑︁n

k=1 ai
kek, ek = ∑︁n

i=1 αk
i xi.

Then ∑︁n
k=1 ai

kαk
j = δij, where δij is the Kronecker delta.

First we prove the following statement:
n∑︂

i=1
ai

kξi = εk

Proof. It suffices to show this equality on basis elements

(︂ n∑︂
i=1

ai
kξi

)︂
(el) =

n∑︂
i=1

ai
kξi

(︂ n∑︂
j=1

αl
jxj

)︂
=

n∑︂
i=1

n∑︂
j=1

ai
kαl

jξ
i(xj)

=
n∑︂

i=1

n∑︂
j=1

ai
kαl

jδij =
n∑︂

i=1
ai

kαl
i = δkl = εk(el).

Then

n∑︂
i=1

v(ξi ◦ f)xi =
n∑︂

i=1
v(ξi ◦ f)

n∑︂
k=1

ai
kek

=
n∑︂

k=1
v

(︃(︂ n∑︂
i=1

ai
kξi

)︂
◦ f

)︃
ek =

n∑︂
k=1

v(εk ◦ f)ek =
∫︂

V
f dv,

hence
∫︁

f dv is defined correctly, independent of the basis.
Additionally let M be finite dimensional, g : N →M and (b1, . . . , bm) a basis

of M with a dual basis (β1, . . . , βm). Express g(ei) = ∑︁m
k=1 γi

kbk. To prove (1.2)
we will use

n∑︂
i=1

γi
kεi = βk ◦ g.

Proof.

(βk ◦ g)(ej) = βk
(︂ m∑︂

i=1
γj

i bi

)︂
=

m∑︂
i=1

γj
i δki = γj

k =
(︂ n∑︂

i=1
γi

kεi
)︂
(ej).
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Then

g
(︂∫︂

V
f dv

)︂
= g

(︂ n∑︂
i=1

v(εi ◦ f)ei

)︂
=

n∑︂
i=1

v(εi ◦ f)g(ei)

=
m∑︂

k=1
v

(︃(︂ n∑︂
i=1

γi
kεi

)︂
◦ f

)︃
bk =

m∑︂
k=1

v(βk ◦ (g ◦ f))bk =
∫︂

V
g ◦ f dv,

which proves the desired identity (1.2).
Now similarly to the case of ultrafilters, call

∫︁
V dx a simple integration oper-

ator if it assigns to linear maps f : V → N with N some finite dimensional vector
space a value

∫︁
V f dx ∈ N , and satisfies the identity (1.2). From this operator we

want to extract a corresponding element of the double dual.

Lemma 3. For any simple integration operator
∫︁

f dx ∈ rng f .

Proof. Let f : V → N be linear, N finite dimensional. rng f is a subspace of N ,
therefore it has finite dimension. The inclusion i : rng f ↪→ N is linear, so is the
corestriction f̃ : V ↠ rng f of f onto its image. Then i◦ f̃ = f . By (1.2) we have
i(

∫︁
f̃ dx) =

∫︁
f dx, thus

∫︁
f dx ∈ rng i = rng f .

The map
p : N2 → N, (x, y) ↦→ x + y,

the projections
πi : Nn → N, (x1 . . . , xn) ↦→ xi,

and scalar multiplication

st : N → N, x ↦→ tx, t ∈ k,

are all linear. By applying the identity (1.2) on all πi’s we get∫︂
V

(f1, . . . , fn) dx =
(︂∫︂

V
f1 dx, . . . ,

∫︂
V

fn dx
)︂
, (1.3)

where fi : V → N are linear, i = 1, . . . , n, and (f1, . . . , fn) is the product map
V → Nn, v ↦→ (fi(v))n

i=1. In other words the i-th component of an integral
is integral of the i-th component of a map. Using this fact, further applying
the identity on p and st, we get linearity of the operator

∫︁
V dx on each of the

spaces Hom(V, N) = {f : V → N linear}. In particular, taking N = k, we get
w :=

∫︁
V dx ↾ V ∗ (restriction of integral on the dual) is an element of V ∗∗. Now

using (1.3) for N = k and f : V → kn we get

πj

(︂∫︂
V

f dx
)︂

=
∫︂

V
πj ◦ f dx = w(πj ◦ f) = πj

(︂∫︂
V

f dw
)︂
,

thus
∫︁

V f dx =
∫︁

V f dw, as all their components are equal. Choosing a basis of M
and using (1.2) this equality transfers to f : V → M with M being an arbitrary
finite dimensional vector space.

We have proved that simple integration operators on a vector space V are
in bijective correspondence with elements of the double dual V ∗∗, similarly to
ultrafilters on sets.
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2. Integration of simples in
structured sets
So far, we have seen a general construction of ultrafilters on sets, which have
no particular structure, and dualisation of a vector space. A different notion of
finiteness occurred there, finite dimension instead of cardinality of the underlying
set. Functions on sets have no condition to satisfy, whereas linear maps need to
preserve the vector space structure. Thus the resulting objects are very different
and their similarities are not immediately obvious. In this chapter, we will derive
a sensible definition of an ultrafilter on sets with a single binary relation, partially
ordered sets and (undirected) graphs.

2.1 Partially ordered sets
A set P is partially ordered by a relation ≤ if ≤ is reflexive, transitive and weakly
antisymmetric, i.e. for all x, y, z ∈ P it holds

• x ≤ x,

• x ≤ y & y ≤ z =⇒ x ≤ z,

• x ≤ y & y ≤ x =⇒ x = y.

Ordered sets need not be linear, meaning some elements might be incomparable.
With partial orders we consider order homomorphisms, or monotone maps, those
being f : (P,≤P )→ (Q,≤Q) satisfying

x ≤P y =⇒ f(x) ≤Q f(y).

This is the standard choice of morphisms, the resulting category is denoted Poset.
For partially ordered sets we also use the short word posets.

For vector spaces subsets closed under relations were vector subspaces. In or-
dered sets we substitute subspaces with intervals, with the same definition used
to characterise intervals on the real line.

Definition. A set A ⊆ P in an ordered set (P,≤) is an interval, if

(∀x, z ∈ A ∀y ∈ P ) x ≤ y ≤ z =⇒ y ∈ A.

We write A ⊑ P , whenever A is an interval in P .

Lemma 4. The preimage of a single point under a monotone map is an interval.

Proof. Let f : P → Q be homomorphism of orders, q ∈ Q. Then for x, z ∈ f−1(q)
and y ∈ P satisfying x ≤ y ≤ z we have f(x) ≤ f(y) ≤ f(z) due to the monotony
of f . But f(x) = f(z) = q, thus q ≤ f(y) ≤ q, so q = f(y). Hence y ∈ f−1(q).

This lemma tells us the importance of intervals for our use. In our context,
elements of ultrafilters were preimages of points under maps with finite codomain.
The same will happen for posets and graphs. Lemma 4 can be immediately
generalised:

11



Lemma 5. The preimage of an interval under a monotone map is again an
interval.

Proof. Let f : P → Q be monotone and A ⊑ Q an interval. Consider x, z ∈
f−1[A] and y ∈ P such that x ≤ y ≤ z. Then again f(x) ≤ f(y) ≤ f(z). Because
A is an interval and f(x), f(z) ∈ A, we get f(y) ∈ A. This gives y ∈ f−1[A].

However, unlike for vector subspaces, the image of an interval need not be an
interval. For example consider the inclusion Z ↪→ R.

Lemma 6. Let A be an interval in (P,≤). Then B ⊆ A is an interval in A iff
it is an interval in P . Intersection of any system of intervals is an interval.

Proof. Clear.

Before diving into integration, we examine products of partial orders.

Definition. Let (Pi,≤Pi
), i ∈ I, be ordered sets. By the product order we mean

a relation on the cartesian product×i∈I
Pi defined as

(ai)i∈I ≤ (bi)i∈I ⇐⇒ (∀i ∈ I) ai ≤Pi
bi.

We denote this product of ordered sets by ∏︁
i∈I(Pi,≤Pi

).

Reflexivity, transitivity and weak antisymmetry all follow from the same prop-
erty of every ≤Pi

. This is actually the categorical product in Poset.

Lemma 7. Let fi : X → Pi be order homomorphisms, i ∈ I. Define

(fi)i∈I : X →×
i∈I

Pi, x ↦→ (fi(x))i∈I , x ∈ X.

Then

(i) (fi)i∈I is monotone,

(ii) the projections πj : ∏︁
i∈I Pi → Pj, (pi)i∈I ↦→ pj are all monotone,

(iii) fj = πj ◦ (fi)i∈I , (fi)−1
i∈I((pi)i∈I) = ⋂︁

i∈I f−1
i (pi).

Proof. Clear from the definitions.

2.1.1 Integration and ultrafilters
Similarly as in Set, by a simple integration operator on a partial order (X,≤)
we mean an operator

∫︁
X dx satisfying the following condition. For P, Q finite

ordered sets, f : X → P and g : P → Q monotone maps, it holds that

g
(︂∫︂

X
f dx

)︂
=

∫︂
X

g ◦ f dx. (2.1)

Fix (X,≤) and a simple integration operator on it. Consider the following col-
lection of intervals

U :=
{︂
f−1

(︂∫︂
X

f dx
)︂

: f is homomorphism X → P, P finite ordered
}︂
.

12



We will show that U is closed under finite intersections and upwards closed for
intervals. Precisely, with every A ∈ U , all intervals B ⊑ X satisfying A ⊆ B are
also in U . Additionally, we will show a partition property – given a partition of
X into intervals

A1 ⨿ . . .⨿ An = X,

exactly one Ai belongs to U .
Firstly, same as in Lemma 2, we get

∫︁
f dx ∈ rng f . The proof works because

rng f is a (finite) poset and the inclusion is monotone. This ensures ∅ /∈ U . We
already know that preimages of points are intervals. Here we show the converse.

Proposition 8. Let A ⊑ X be an interval. Then there exists a homomorphism
f : (X,≤)→ (P,≤) and a ∈ P such that A = f−1(a) and P is finite.

Proof. Consider the sets

U := {x ∈ X ∖ A : (∃a ∈ A) a ≤ x},
L := {x ∈ X ∖ A : (∃a ∈ A) x ≤ a},

N := {x ∈ X ∖ A : (∀a ∈ A) x ≰ a & a ≰ x}.

The following hold:

(i) There do not exist u ∈ U and a ∈ A, such that u ≤ a. Otherwise we have
a′ ∈ A s.t. a′ ≤ u. Because A is an interval, u ∈ A, a contradiction.

(ii) U is upwards closed, hence an interval. Let u ∈ U and x ∈ X, u ≤ x. x /∈ A
from (i). Then we have a ∈ A s.t. a ≤ u. But then a ≤ x, thus x ∈ U .

(iii) U ∩ L = ∅. Follows from (i).

(iv) There do not exist l ∈ L and a ∈ A, such that l ≥ a. Similarly to (i).

(v) L is downwards closed, hence an interval. Similarly to (ii).

(vi) There do not exist u ∈ U and l ∈ L such that u < l. Otherwise we have
a1, a2 ∈ A for which a1 ≤ u and l ≤ a2. But then a1 ≤ u ≤ a2 and
a1 ≤ l ≤ a2, thus u, l ∈ A, a contradiction.

(vii) N ∩ A = N ∩ U = N ∩ L = ∅. From the definition of N .

(viii) N is an interval. Let n1, n2 ∈ N and x ∈ X satisfy n1 < x < n2. Suppose
there is a ∈ A for which a ≤ x. Then a < n2 contradicts n2 ∈ N . Similarly,
x ≤ a would imply n1 < a, again a contradiction.

Thus A, U, L, N are pairwise disjoint intervals and for a ∈ A, u ∈ U, l ∈ L, n ∈ N
the following cannot occur: u < a from (i), a < l from (iv), u < n from (ii) and
(vii), n < l from (v) and (vii), n < a and a < n from the definition, u < l (vi).

Define a four-element ordered set P4 = {pA, pU , pL, pN} with relations pL <
pA < pU , pL < pN < pU .

pA

pU

pL

pN

13



Let f : X → P4 assign to x ∈ X the point pS if x ∈ S, S ∈ {A, U, L, N}. Then f is
monotone, because the relations missing in P4 which could contradict monotony
are exactly those ruled out above. By definition we have f−1(pA) = A.

Corollary 9. Intervals in ordered sets are precisely the preimages of single points
under monotone maps (maps into finite posets suffice).

The ordered set P4 from proof of above proposition is important and will be
commonly used later.

Lemma 10. Let A ∈ U . Then there exists a homomorphism f : X → P4 with
f−1(

∫︁
f dx) = A and

∫︁
f dx = pA.

Proof. By definition of U there exists finite (Q,≤) and g : X → Q monotone
with g−1(

∫︁
g dx) = A. Let i =

∫︁
g dx. Then {i} is an interval. Let h : Q→ P4 be

the homomorphism from Proposition 8 with h−1(pA) = {i}. Then h◦ g : X → P4
and ∫︂

h ◦ g dx = h
(︂∫︂

g dx
)︂

= h(i) = pA.

The condition (h ◦ g)−1(pA) = A is also satisfied, thus f = h ◦ g is the map we
were looking for.

Lemma 11. For f1, . . . , fn homomorphisms X → Pi, with Pi finite, it holds∫︂
(f1, . . . , fn) dx =

(︂∫︂
f1 dx, . . . ,

∫︂
fn dx

)︂
.

Proof. For each i = 1, . . . , n use (2.1) for πi:

πi

(︂∫︂
(f1, . . . , fn) dx

)︂
=

∫︂
πi ◦ (f1, . . . , fn) dx =

∫︂
fi dx.

Lemma 12. U is closed under finite intersections.

Proof. Let A1, A2 ∈ U and f1, f2 be the associated homomorphisms for which
f−1

i (
∫︁

fi dx) = Ai, i = 1, 2. Set s = (f1, f2) to be the product homomorphism.
Then

∫︁
s dx = (

∫︁
f1 dx,

∫︁
f2 dx) by Lemma 11. By definition s−1(

∫︁
s dx) ∈ U ,

because the product of finite codomains of f1, f2 is finite. But Lemma 7 gives us

s−1
(︂∫︂

s dx
)︂

= (f1, f2)−1
(︂∫︂

f1 dx,
∫︂

f2 dx
)︂

= f−1
1

(︂∫︂
f1 dx

)︂
∩ f−1

2

(︂∫︂
f2 dx

)︂
= A1 ∩ A2,

hence A1 ∩ A2 ∈ U .

Lemma 13. With every element, U contains all larger intervals.

Proof. Let A ∈ U and A′ ⊇ A an interval in X. We will show that the usual
homomorphism f ′ : X → P4 mapping A′ to pA ∈ P4 satisfies

∫︁
f ′ dx = pA. Then

we will get A′ = f ′−1(
∫︁

f ′ dx) ∈ U .
We already know that U is closed under finite intersections. If it were∫︁

f ′ dx ̸= pA, we would get

U ∋ A ∩ f ′−1
(︂∫︂

f ′ dx
)︂
⊆ A′ ∩ f ′−1

(︂∫︂
f ′ dx

)︂
= f ′−1(pA) ∩ f ′−1

(︂∫︂
f ′ dx

)︂
= ∅,

but ∅ /∈ U , a contradiction. Hence
∫︁

f ′ dx = pA, which proves the initial asser-
tion.
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Lemma 14. For every finite partition of X into intervals A1, . . . , An, exactly one
Ai ∈ U .

Proof. Let fi : X → P4 be such that f−1
i (pA) = Ai, i = 1, . . . , n. By Lemmata 7

and 11

∅ ≠ (f1, . . . , fn)−1
(︂∫︂

f1 dx, . . . ,
∫︂

fn dx
)︂

=
n⋂︂

i=1
f−1

i

(︂∫︂
fi dx

)︂
.

For each i = 1, . . . , n, f−1
i (

∫︁
fi dx) is either equal to Ai or an interval contained

in the set X ∖ Ai. Because Ai’s cover X, we have ⋂︁n
i=1(X ∖ Ai) = ∅. Therefore

the right hand side must be of the form
n⋂︂

i=1
f−1

i

(︂∫︂
fi dx

)︂
⊆ Aj ∩

⋂︂
i ̸=j

(X ∖ Ai) = Aj,

for some j. By upwards closure Aj ∈ U . Uniqueness follows from ∅ /∈ U .

We will use these properties to define ultrafilters on ordered sets. Afterwards
we will show these suffice for determining a simple integration operator. Note the
terminology: we say ultrafilter on sets, similarly we are about to define ultrafilters
on partial orders. The order-theoretic filters (upwards closed and downwards di-
rected subsets) for a given partial order will be called (ultra)filters in the partially
ordered set. This may not be conventional, but is used to distinguish between
these terms. Later we will prove a connection between these.

Definition. Let (X,≤) be partially ordered. We call a collection U of intervals
of X an ultrafilter on X, if it satisfies

(i) (∀A, B ∈ U ) A ∩B ∈ U ,

(ii) (∀A ∈ U ∀B ⊑ X interval) A ⊆ B =⇒ B ∈ U ,

(iii) For every finite partition into intervals X = A1 ⨿ . . .⨿An, there is exactly
one i ∈ {1, . . . , n} such that Ai ∈ U .

Now let U be any ultrafilter on a partial order (X,≤). For a homomorphism
f : X → P with P = {p1, . . . , pn} finite,

f−1(p1), . . . , f−1(pn)

is a partition of X into intervals upon applying Lemma 4. Then by the third
property there exists exactly one i ∈ {1, . . . , n} such that f−1(pi) ∈ U . Thus we
can define

∫︁
X f dU = pi. Proof of (2.1) is identical to the case of ultrafilters on

sets.
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2.2 Graphs

2.2.1 Choice of definitions
Multiple different types of structures are commonly used under the name graph.
By default we consider undirected graphs, but results should generally transfer
to the directed ones too. In our case there is at most one edge between a given
pair of vertices (or at most one arrow between an ordered pair). Next we have
to decide whether or not we allow loops, that is edges or arrows on a single
vertex. In many practical uses loops are undesirable, but by disallowing them we
lose some nice properties of the resulting category. For reasons discussed below,
our definition does not allows loops. Additionally, any graph admitting “well
behaved” ultrafilters needs to be finitely colourable. For morphisms we consider
edge preserving maps. If we were to additionally allow contracting ends of an edge
into a single vertex, this would be in some sense equivalent to allowing loops in
the codomains.

Definition. Graph G is a set G of vertices together with a set E of edges, where
an edge is a two element subset of G. Equivalently, we could have provided a
symmetric antireflexive binary relation on G. Homomorphism of graphs is an
edge preserving map, that is f : (G, E)→ (H, F ) such that

(∀x, y ∈ G) {x, y} ∈ E =⇒ {f(x), f(y)} ∈ F.

For a graph G we also write V (G) for its set of vertices and E(G) for the set of
edges. The resulting category of all graphs is denoted Graph, its full subcategory
of finitely colourable graphs is denoted FCGraph.

In Adámek and Sousa [1] loops on graphs are allowed. In that case, their
result shows that ultrafilters on a graph are exactly the ultrafilters on its set of
vertices. We provide a sketch of a proof of this fact.

Consider the complete graph D on two vertices 0, 1, including the loops.
If (G, E) is a graph and A ⊆ G a set of its vertices, then the function χA : G→ D,
sending elements of A to 1 and elements of the complement to 0, is a homomor-
phism. It satisfies χ−1

A (1) = A. Thus ultrafilters need to differentiate among all
subsets. Similarly, a partition of G into n sets can be represented as a homomor-
phism into a complete graph on n vertices. Hence we can use the same proof as
in the case of sets.

2.2.2 Preliminary results
It is common knowledge that graph homomorphisms are closely related to colour-
ings. Colouring of a graph G = (G, E) is a function c : G→ S, where S is a set of
colours, such that if {x, y} ∈ E then c(x) ̸= c(y). Usually we have S = {1, . . . , n}
for some n ∈ N, then we speak about an n-colouring. This can be interpreted as
an edge preserving map into the complete graph KS with vertices S. Below the
word colouring is loosely used for this homomorphism. Two connected vertices
can only be assigned two different colours, because those are also connected in the
codomain KS. General homomorphisms extend this behaviour, in a set of colours
we connect via an edge those colours which are compatible, meaning connected
vertices can have these two colours.
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Proposition 15. Let G = (G, E) be a graph. There exists a homomorphism
f : G→ H into a finite graph H iff G is finitely colourable.

Proof. If there exists an n-colouring, by the introductory discussion we can inter-
pret it as a homomorphism G → Kn. Conversely, we can add all possible edges
to a codomain of any homomorphism, to turn it into a complete graph. Then the
map stays edge preserving, but now is also a colouring.

Next we look which sets are the analogues of intervals in posets.

Definition. In a graph G a set A ⊆ V (G) is called independent, if no two of
its vertices are connected with an edge. When A is an independent set of G, we
write A ⊑ G.

Lemma 16. The preimage of a single point under an edge preserving map is an
independent set.

Proof. Consequence of the absence of loops.

Lemma 17. The preimage of an independent set under an edge preserving map
is again independent.

Proof. Clear.

Lemma 18. Let G be finitely colourable and A ⊆ V (G) independent. Then there
exists a homomorphism f : G→ H into H finite such that f−1(a) = A for some
vertex a of H.

Proof. Let c be any n-colouring of G. Define c̃ by

c̃(v) =
⎧⎨⎩c(v), v /∈ A,

n + 1, v ∈ A.

Because A is independent, we never assigned the same colour to connected ver-
tices. Thus c̃ is a colouring and can be interpreted as a homomorphism. It holds
that c̃−1(n + 1) = A.

Notice we only added a new point and connected it to every old point in the
codomain. This can be applied to the graph itself and identical (edge preserving)
map id : X→ X. Thus we get

Corollary 19. Independent sets in graphs are precisely preimages of single points
under edge preserving maps. For finitely colourable graphs, independent sets are
preimages of single points under homomorphisms into finite graphs (or in partic-
ular, colourings).

Similarly to partial orders, we will use products to capture intersections of
independent sets. This definition is in fact the category-theoretical product.

Definition. Let Gi, i ∈ I be graphs. Their product graph ∏︁
i∈I Gi has as vertices

the cartesian product G =×i∈I
V (Gi) and edges satisfying

{(xi)i∈I , (yi)i∈I} ∈ E
(︂∏︂

i∈I

Gi

)︂
⇐⇒ (∀i ∈ I){xi, yi} ∈ E(Gi).
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Not only does ∏︁
i∈I Gi have no loops, but if any i-th component of two vertices

is the same, they are not connected.

Lemma 20. Let fi : X → Gi, i ∈ I be homomorphisms of graphs. Define
(fi)i∈I : X→ ∏︁

i∈I Gi by

(fi)i∈I(x) = (fi(x))i∈I , x ∈ X.

Then

(i) (fi)i∈I preserves edges,

(ii) the projections πj : ∏︁
i∈I Gi → Gj, (xi)i∈I ↦→ xj preserve edges,

(iii) fj = πj ◦ (fi)i∈I and (fi)−1
i∈I((xi)i∈I) = ⋂︁

i∈I f−1
i (xi),

(iv) if any Gj is finitely colourable, then ∏︁
i∈I Gi is too.

Proof. Identically to the version for posets, (i) to (iii) are clear from definition.
For the last point, if Gj has n-colouring c, then c ◦ πj is a colouring of the whole
product.

2.2.3 Integration and ultrafilters
For sets and partial orders we studied ultrafilters via morphisms with finite
codomains. In order to do the same for graphs, we need finite colourability.
Otherwise, no such morphisms exist at all.

Fix a finitely colourable graph X = (X, E) and a simple integration operator
on it. That is for all finite graphs G, H and edge preserving maps f : X → G,
g : G→ H, the following holds:

g
(︂∫︂

X
f dx

)︂
=

∫︂
X

g ◦ f dx. (2.2)

Consider

U :=
{︂
f−1

(︂∫︂
X

f dx
)︂

: G finite graph, f : X→ G homomorphism
}︂
,

same as for posets, we will prove it is closed under finite intersections, upwards
(for larger independent sets) and has the partition property. Argument for ∅ /∈ U
follows right below.

Lemma 21. Adding edges or new vertices to the codomain of f does not change
the integral

∫︁
f dx.

Proof. Apply (2.2) for g inclusion.

Applying this to the induced subgraph rng f , we get
∫︁

f dx ∈ rng f for any f
into a finite graph. Which in turn implies ∅ /∈ U . Compare this with Lemma 2.

Corollary 22. If A ∈ U , then there exists an n-colouring c of X such that
A = c−1(1) and

∫︁
X c dx = 1.
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Proof. A ∈ U requires a witness f : X → H, H some finite graph. Suppose it
has n vertices. We can label its vertices 1, . . . , n. By Lemma 21 we can add edges
to turn H into the complete graph Kn and the integral

∫︁
f dx stays the same.

Applying (2.2) to a permutation of vertices, we can ensure
∫︁

f dx = 1.

Lemma 23. U is closed under finite intersections.

Proof. Apply Lemma 20 in the same way as we did for partial orders.

Lemma 24. Let A ∈ U and A′ ⊑ X be independent such that A ⊆ A′. Then
A′ ∈ U .

Proof. Let A ∈ U and A′ ⊇ A be an independent set in X. We will show that
an n-colouring c of X with c−1(1) = A′ (which exists by Corollary 19) satisfies∫︁

c dx = 1. Then we will get A′ = c−1(
∫︁

c dx) ∈ U .
From Lemma 23 and the definition we know that U contains the set

A ∩ c−1
(︂∫︂

c dx
)︂
.

Hence the set is nonempty. For any i ̸= 1 we have

A ∩ c−1(i) ⊆ A′ ∩ c−1(i) = c−1(1) ∩ c−1(i) = ∅,

implying
∫︁

c dx = 1, which proves our assertion.

Lemma 25. Let A1 ⨿ . . . ⨿ An be a partition of V (X) into independent sets.
Then exactly one Ai belongs to U .

Proof. Such a partition naturally defines an n-colouring c. From this we get
c−1(

∫︁
c dx) = Ai for some i, hence Ai ∈ U . Uniqueness follows from closure

under finite intersections and the fact ∅ /∈ U .

Definition. Let X be a finitely colourable graph. We call a collection U of
independent sets of vertices of X an ultrafilter on X, if it satisfies

(i) (∀A, B ∈ U ) A ∩B ∈ U ,

(ii) (∀A ∈ U ∀B ⊆ V (X) independent) A ⊆ B =⇒ B ∈ U ,

(iii) For every finite partition into independent sets V (X) = A1⨿ . . .⨿An, there
is exactly one i ∈ {1, . . . , n} such that Ai ∈ U .

Again, if U is an ultrafilter on a finitely colourable graph, we could use it to
define a simple integration operator.
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3. Ultrafilters on structured sets

3.1 General filters
Filters and ultrafilters on a set are special cases of filters in general partial orders,
which we discuss now. We consider only proper filters.

Definition. A filter in a partially ordered set (P,≤) is a nonempty subset F ⊆ P
such that

(i) F ̸= P (proper),

(ii) (∀a ∈ F ∀b ∈ P ) a ≤ b =⇒ b ∈ F (upwards closed),

(iii) (∀a, b ∈ F ∃c ∈ F ) c ≤ a & c ≤ b (downwards directed),

If P = P(X) is the powerset of a set X, then filters in P are precisely
filters on X. The only difference in definition is closure under finite intersections
vs. being downwards directed. But those are equivalent in P because of upwards
closure.

Definition. An ultrafilter in an ordered set (P,≤) is a ⊆-maximal filter.

We will not prove any general facts about ultrafilters in posets, but we will
restrict ourselves to a special poset P . Its properties will be those of the meet-
semilattices consisting of intervals of a particular partial order, or of independent
sets of a graph.

For the remainder of this section, let X be a fixed set, P ⊆P(X) a collection
of some subsets ordered by inclusion, which has at least two nonempty elements
and satisfies

(i) (∀a, b ∈ P ) a ∩ b ∈ P ,

(ii) (∀a ∈ P ∃x ∈ P maximal) a ⊆ x (i.e. Zorn’s lemma holds in P ),

(iii) (∀a ∈ P ∀x ∈ P maximal, a ⊆ x ∃a1, . . . , an ∈ P ) a⨿ a1 ⨿ . . .⨿ an = x.

If X itself is an element of P , the second condition is trivial and the third condition
reduces to the existence of a finite partition of X containing a. For partial orders
and finitely colourable graphs, we have seen existence of finite partitions of X,
even though generally X ∈ P only for posets. This more general setting will
allow us to study graphs which are not finitely colourable (thus have no finite
partition of X).

Proposition 26. Let U ⊆ P be a filter. Then the following are equivalent

(a) U is maximal (hence an ultrafilter),

(b) U has the following partition property

(∀n ≥ 2 ∀a1, . . . , an ∈ P ∀x ∈ U ) a1 ⨿ . . .⨿ an ⊇ x

=⇒ (∃!j ∈ {1, . . . , n}) aj ∈ U .
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Proof.

(b)⇒ (a) Let U satisfy the partition property, but suppose for contradic-
tion that V ⊋ U is a larger filter. Thus there exists a ∈ V ∖ U . Because
∅ ≠ U , let b ∈ U be arbitrary. Then b ∈ V , hence c = a∩b ∈ V . Let x ∈ P
be any maximal element larger than b. We get x ∈ U . Let c⨿ a1⨿ . . .⨿ an

be any finite partition of x into disjoint elements of P . As a /∈ U , we have
c /∈ U . Then the unique element of U from the partition property must
be one of the ai’s. But ai ∈ U gives ai ∈ V , thus ∅ = c ∩ ai ∈ V , a
contradiction.

(a)⇒ (b) Let x ∈ U and a′
1, . . . , a′

n ∈ P such that x ⊆ a′
1⨿. . .⨿a′

n. Because
they are disjoint, two of them together can not be elements of U . Consider
ai = a′

i ∩ x, i = 1, . . . , n; if we prove aj ∈ U , then also a′
j ∈ U , as we want.

Let
Vi := {b ∈ P : (∃u ∈ U ) u ∩ ai ⊆ b}, i = 1, . . . , n.

Then we see

• ai ∈ Vi,
• U ⊆ Vi,
• Vi is upwards closed,
• Vi is closed under finite intersections; if b1, b2 ∈ Vi, we have u1, u2 ∈ U

such that uj∩ai ⊆ bj, j = 1, 2. Then (u1∩u2)∩ai = (u1∩ai)∩(u2∩ai) ⊆
b1 ∩ b2 and u1 ∩ u2 ∈ U .

There are two possibilities:

• For some i ∈ {1, . . . , n}, Vi is a (proper) filter. This means ∅ /∈ Vi.
Because U ⊆ Vi and U is maximal, Vi = U and thus ai ∈ U .

• No Vi is a filter, i = 1, . . . , n. Then ∅ ∈ Vi for all i, so there is ui ∈ U
such that ui ∩ ai = ∅. Then

U ∋ x ∩
n⋂︂

i=1
ui =

(︂ n⋃︂
j=1

aj

)︂
∩

n⋂︂
i=1

ui

=
n⋃︂

j=1

(︂
aj ∩

n⋂︂
i=1

ui

)︂
⊆

n⋃︂
j=1

(aj ∩ uj) =
n⋃︂

j=1
∅ = ∅.

Hence ∅ ∈ U , a contradiction.

The following gives us a way to obtain ultrafilters in P from ultrafilters on
sets. The assumption of nonemptyness is always satisfied if we can partition X
into finitely many elements of P , which is true for posets and finitely colourable
graphs.

Lemma 27. Let F be an ultrafilter on the set X. Then if F ∩ P ̸= ∅, this
intersection is an ultrafilter in P .

Proof. It is a filter, because P contains intersections. It satisfies the partition
property of Proposition 26, because F satisfies it.
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Lemma 28 (“the ultrafilter theorem”). Any nonempty subsystem of P with the
finite intersection property can be extended into an ultrafilter.

Proof. Instead of proving this directly, we use the same fact for ultrafilters on a
set. Then use the previous lemma.

Lemma 29. Let U be an ultrafilter in P . For A ∈ P it holds

A ∈ U ⇐⇒ (∀U ∈ U ) A ∩ U ̸= ∅.

Proof. If A ∈ U , we get U∩A ̸= ∅ for all U ∈ U , because U is closed under finite
intersections and ∅ /∈ U . Assuming the right-hand side, we get that U ∪ {A}
has the finite intersection property, thus it extends into an ultrafilter F in P
containing U . From maximality F = U , hence A ∈ U .

Note that ultrafilters on posets and finitely colourable graphs as defined in
chapter 2 indeed coincide with ultrafilters in the semilattice of intervals or of
independent sets. The partition property restricted to partitions of X is equiv-
alent to the stronger partition property from 26, since in these special cases any
partition a1 ⨿ . . .⨿ an of a subset x ⊆ X can be completed into a finite partition
of the whole set X.

3.2 Posets
For a partial order (P,≤) denote by U(P ) the set of ultrafilters on the order P .
By βP we will mean the set of ultrafilters on the underlying set P . To turn U
into a functor, we need to endow U(P ) with some order relation and also define
it on morphisms. Next in this section, we will show how to construct ultrafilters
in terms of the order structure of P and provide a classification of ultrafilters
with some additional assumptions on P .

Definition. For an order (P,≤) and U , V ∈ U(P ), set U ≤ V if

(∀(Q,≤) finite order ∀f : P → Q monotone)
∫︂

P
f dU ≤

∫︂
P

f dV .

It is easy to see that this is indeed a partial order. For x, y ∈ P and the
trivial ultrafilters E (x), E (y) ∈ U(P ), we have E (x) ≤ E (y) iff for all f holds∫︁

f dE (x) = f(x) ≤ f(y) =
∫︁

f dE (y) iff x ≤ y. Note that if x, y are incom-
parable, a suitable homomorphism P → P4 sends x and y to the incomparable
elements. Thus we see that P embeds into U(P ).

We can immediately formulate an important equivalent definition of order on
U(P )

Proposition 30. Let U , V ∈ U(P ). Then U ≤ V iff

(∀U ∈ U ∀V ∈ V ∃u ∈ U ∃v ∈ V ) u ≤ v.

Proof. (⇒) By contradiction, fix U ∈ U , V ∈ V such that for any u ∈ U, v ∈ V
we have u ≰ v. Then for f : P → P4 from Proposition 8 such that
f−1(pA) = U , we get f(u) ≰ f(v) for any u ∈ U, v ∈ V (f(u) is pA by
definition, v is either incomparable with anything in U and then f(v) is
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incomparable with f(u), or its smaller than something and then f(u) >
f(v)). Because U is sent to one point, f−1(f(u)) = U for any u ∈ U . This
gives

∫︁
f dU = f(u) for any u ∈ U . Next f−1(

∫︁
f dV ) ∩ V ∈ V , hence is

nonempty, thus contains some v. This v then satisfies f(v) =
∫︁

f dV . But
then

∫︁
f dU = f(u) ≰ f(v) =

∫︁
f dV contradicts U ≤ V .

(⇐) Let f : P → Q be a homomorphism, Q finite. We want
∫︁

f dU ≤
∫︁

f dV .
Set U = f−1(

∫︁
f dU ) ∈ U , V = f−1(

∫︁
f dV ) ∈ V . By assumption there

exist u ∈ U, v ∈ V such that u ≤ v. But then
∫︁

f dU = f(u) ≤ f(v) =∫︁
f dV .

Definition. Let f : (P,≤)→ (Q,≤) be monotone and U ∈ U(P ). Define

f#U := {A ⊑ Q : f−1[A] ∈ U }.

Let us show f#U ∈ U(Q).

Proof. Let A, B, A1, . . . , An ⊑ Q be intervals. We check the definition of an
ultrafilter on Q. Note the use of Lemma 5.

• Suppose A ⊆ B, A ∈ f#U . Then f−1[B] ⊇ f−1[A] gives f−1[B] ∈ U , thus
B ∈ f#U .

• Suppose A, B ∈ f#U . Then f−1[A ∩ B] = f−1[A] ∩ f−1[B] ∈ U , giving
A ∩B ∈ U .

• Assume A1 ⨿ . . . ⨿ An = Q. Then f−1[A1] ⨿ . . . ⨿ f−1[An] = P , thus for
one and only one j we have f−1[Aj] ∈ U . But then only for j we get
Aj ∈ f#U .

Lemma 31. Let f : P → Q, g : Q → R be monotone, U ∈ U(P ). Then
(g ◦ f)#U = g#(f#U ).

Proof.

(g ◦ f)#U = {A ⊑ R : (g ◦ f)−1[A] ∈ U } = {A ⊑ R : f−1[g−1[A]] ∈ U }
= {A ⊑ R : g−1[A] ∈ f#U } = g#(f#U )

Lemma 32. For homomorphisms f : P → Q, g : Q → R, R finite, U ∈ U(P ),
it holds ∫︂

P
g ◦ f dU =

∫︂
Q

g d(f#U ).

Proof. Let i =
∫︁

Q g d(f#U ). Thus g−1(i) ∈ f#U , which means (g ◦ f)−1(i) =
f−1[g−1(i)] ∈ U . This gives

∫︁
P g ◦ f dU = i.

Proposition 33. The map U is a functor Poset→ Poset, assigning to (P,≤) the
order (U(P ),≤) and to a morphism f : P → Q the function U ↦→ f#U .

Proof. We know U preserves composition and that U(P ) is ordered. Clearly
id# U = U . It only remains to show that f# is a homomorphism for f : P → Q.
Given U ≤ V in U(P ) and a morphism g : Q→ R the previous lemma gives∫︂

g df#U =
∫︂

g ◦ f dU ≤
∫︂

g ◦ f dV =
∫︂

g df#V .

Hence f#U ≤ f#V .
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We can construct U(P ) as a limit – this limit appears in section 2 of Leinster
[5] as a possible definition of the codensity monad. Codensity monads provide
another approach to this topic, which we do not focus on in this thesis. Related
construction of βX in Set as a limit of partitions can be found in [6]. The proof
gives a reason for the particular definition of order on U(P ), it is in fact the only
possible one for this proposition to hold.
Proposition 34. Call ∆ = (Q∆, f∆) a functional partition of (P,≤) if Q∆ is
a finite ordered set and f∆ : P → Q∆ homomorphism. Define morphisms of
partitions ∆′ → ∆ as morphisms h : Q′

∆ → Q∆ such that h ◦ f∆′ = f∆. Write
h ∈ [∆′, ∆]. Then U(P ) is a limit of the diagram with objects Q∆ and morphisms
h ∈ [∆′, ∆] over all functional partitions ∆′, ∆ of P .
Proof. Note that the diagram can be equivalently expressed in terms of a small
category. The corresponding limit projection has components

∫︁
P f∆ d .

U(P ) is a cone:
Q∆

U(P )

Q∆′

∫︁
P

f∆′ d

∫︁
P

f∆ d

h

This holds from the property (2.1) of integration, and the fact that h satisfies
h ◦ f∆′ = f∆. The maps

∫︁
f∆ d are monotone by definition of order on U(P ).

It is a terminal cone: suppose (K, π) is a cone

Q∆

K U(P )

Q∆′
π∆′

π∆

∃!µ

∫︁
P

f∆′ d

∫︁
P

f∆ d

h

Define µ : K → U(P ) by specifying a simple integration operator for each k ∈ K.
Let f : P → Q be a morphism, Q finite. Then ∆ = (Q, f) is a functional
partition. Set ∫︂

f dk := π∆(k), k ∈ K.

If h : Q → R is a morphism of finite orders, we get a partition ∆0 = (R, h ◦ f),
by definition h ∈ [∆, ∆0]. Because (K, π) is a cone, we get h(π∆(k)) = π∆0(k),
or h(

∫︁
f dk) =

∫︁
h ◦ d dk. Hence

∫︁
dk is a simple integration operator, thus it

determines a unique element of U(P ), call it µ(k).
Uniqueness of µ: Suppose (K, π) also factors through U(P ) via ν ̸= µ. Then

there is k ∈ K for which ν(k) ̸= µ(k). Those are different ultrafilters, hence there
is V ∈ ν(k), V /∈ µ(k). Consider the map f : P → P4 satisfying f−1(pA) = V .
∆ = (P4, f) is a functional partition, hence part of the limit diagram. By V ∈
ν(k) ∖ µ(k) we get ∫︂

P
f dµ(k) ̸= pA =

∫︂
P

f dν(k).

This contradicts the assumption on ν, since we must have∫︂
P

f dν(k) = π∆(k) =
∫︂

P
f dµ(k).
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Lemma 35. Let I ⊆ P be an upwards directed set and f : P → Q monotone,
Q finite. Then maxi∈I f(i) is well defined. Similarly for F a downwards directed
set, minu∈F f(u) is well defined.

Proof. If I is upwards directed and f monotone, so is f [I] ⊆ Q. Because Q is
finite and any upwards directed set has upper bounds of finite subsets, f [I] has
a greatest element.

Lemma 36. If I ⊆ P has a greatest element x and f : P → Q is monotone, we
have f(x) = maxi∈I f(i).

Proof. This is obvious.

Proposition 37. Let (P,≤) be ordered, I ⊆ P nonempty upwards directed set.
Then there exists H ∈ U(P ) such that H = supU(P ){E (i) : i ∈ I}. Integration
against H is given by

∫︁
f dH = maxi∈I f(i).

Dually, for ∅ ≠ F ⊆ P downwards directed we get D ∈ U(P ) such that D =
infU(P ){E (u) : u ∈ F}. Integration against D is given by

∫︁
f dD = minu∈F f(u).

Proof. Lemma 36 gives the identity (2.1) for maximum. Thus maxI is a simple
integration operator and as such defines an element H ∈ U(P ). For a homomor-
phism f : P → Q into finite Q we get

∫︁
f dE (i) = f(i) ≤ maxx∈I f(x) =

∫︁
f dH ,

for every i ∈ I, giving that H is an upper bound of {E (i) : i ∈ I}. If U is
another upper bound, then

∫︁
f dU ≥

∫︁
f dE (i) = f(i) for every i ∈ I. Hence∫︁

f dU ≥ maxx∈I f(x) =
∫︁

f dH , giving H ≤ U . Thus H is indeed the
supremum.

In the example below we use the following notation: if P is ordered, and
x ∈ P , we write

(←, x] := {a ∈ P : a ≤ x},
(←, x) := {a ∈ P : a < x},

and similarly [x,→) or (x,→) for the reverse relation. By an ideal in a poset we
mean the notion dual to filter, i.e. an upwards directed downwards closed set.
Example 38. 1. Let L be linearly ordered and p ∈ L. Suppose C = (←, p) is

nonempty and does not have a greatest element, i.e. p = sup C. Let

C = sup{E (x) : x ∈ C}.

Since E (p) is also an upper bound, we have C ≤ E (p). Moreover, the
function f : L→ {0, 1} such that f(x) = 0 iff x < p, otherwise f(x) = 1,
is monotone for which

∫︁
f dC = maxx<p f(x) = 0 < 1 = f(p) =

∫︁
f dE (p).

Hence C < E (p).

2. Let P be order with an infinite antichain A of cardinality κ. Then there
exist 22κ set-ultrafilters on A. Those have the finite intersection property,
and since antichains are intervals, these ultrafilters extend into (distinct)
elements of U(P ).
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3. Let A be infinite and P be the disjoint union of A copies of (N,≤) (or any
other infinite chain without a greatest element). Label those Nα for α ∈ A.
For every U ∈ βA the system S = {∐︁α∈U(nα,→) : nα ∈ Nα, U ∈ U }
has the finite intersection property. Hence it extends into S ∈ U(P ). If
U is nontrivial, for each α ∈ A we have U ∈ U such that α /∈ U . This
gives an interval D ∈ S disjoint with Nα. Hence for every p ∈ Nα, S is
incomparable to E (p).

4. Noteworthy applications of Proposition 37 are when I is a chain or fil-
ter/ideal in P . In Proposition 43 we show the converse statement in a spe-
cial case.

From the examples 2 and 3 we see that infinite antichains in P induce ultra-
fitlters with unclear structure.

Lemma 39. If U1, U2 ∈ U(P ) are incomparable, then there exists a simple mor-
phism h such that

∫︁
h dU1 and

∫︁
h dU2 are incomparable.

Proof. Because neither U1 ≤ U2 or U2 ≤ U1, by the definition of order on U(P )
either the claim holds or there exist simple morphisms f, g such that

∫︁
f dU1 <∫︁

f dU2 and
∫︁

g dU1 >
∫︁

g dU2. But then the codomain of (f, g) is also finite.
From properties of product and its pojections we get∫︂

(f, g) dUi =
(︂∫︂

f dUi,
∫︂

g dUi

)︂
, i = 1, 2.

But these elements are incomparable. Hence we can use h = (f, g).

Proposition 40. Let (P,≤) be ordered and U1, . . . , Un an antichain in U(P ).
Choose arbitrary Ai ∈ Ui, i = 1, . . . , n. Then there exists an antichain a1, . . . , an

in P such that ai ∈ Ai, i = 1, . . . , n.

Proof. Case n = 1 is trivial since A1 ̸= ∅. Otherwise let n > 1. For each
i, j s.t. 1 ≤ i < j ≤ n use Lemma 39 and find a simple morphism hij such
that

∫︁
hij dUi is incomparable with

∫︁
hij dUj. Let h = (hij : 1 ≤ i < j ≤ n), its

codomain is a finite product, hence finite. Then all elements
∫︁

h dUi, i = 1, . . . , n
are incomparable in the product order. That is because for i < j the i, j-th
components of the integrals

∫︁
h dUi and

∫︁
h dUj are

∫︁
hij dUi and

∫︁
hij dUj, re-

spectively, and those are incomparable. Now

h−1
(︂∫︂

h dUi

)︂
∩ Ai ∈ Ui, i = 1, . . . , n,

hence these intersections are nonempty and we can choose ai ∈ Ai such that
h(ai) =

∫︁
h dUi. Then the elements h(ai) are incomparable, from monotony also

ai, i = 1, . . . , n must have been incomparable in P .

Lemma 41. Suppose (P,≤) has only finite antichains. Then for every U ∈ U(P )
we have

{x ∈ P : E (x) ≤ U } ∈ U ∨ {x ∈ P : E (x) ≥ U } ∈ U .
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Proof. This is clear for U trivial. Assume U is nontrivial. Union of the intervals
in question is R = {x ∈ P : E (x) ≤ U ∨E (x) ≥ U }. Let p1, . . . , pm be a maximal
antichain in P ∖R. Then E (p1), . . . , E (pm), U is an antichain in U(P ). For every
A ∈ U Proposition 40 gives a ∈ A such that p1, . . . , pm, a is an antichain in P .
By maximality a ∈ R. Hence A ∩ R ̸= ∅ for any A ∈ U . We cannot simply say
R ∈ U , because R may not be an interval. But P ∖ R is an interval. Now

(P ∖ R)⨿ {x ∈ P : E (x) ≤ U } ⨿ {x ∈ P : E (x) ≥ U } = P

is a partition into intervals. Since R ∩ (P ∖ R) = ∅ and we have proven that
R has nonempty intersection with elements of U , we have P ∖R /∈ U . Thus the
claim must hold.

Lemma 42. Suppose E (m) ≤ U in U(P ) for some m ∈ P . Then [m,→) ∈ U .

Proof. M = [m,→) is an interval, because it is upwards closed. Since E (m) ≤ U ,
we must have witnesses of this relation in the sets {m} ∈ E (m) and any U ∈ U .
This gives u ∈ U such that m ≤ u. But then u ∈ M . Hence M ∩ U ̸= ∅ for any
U ∈ U , giving M ∈ U according to Lemma 29.

Proposition 43. Suppose (P,≤) has only finite antichains. Then for any non-
trivial U there are two possibilities

• there exists an infinite ideal I ⊆ P without a greatest element, such that
U = sup{E (x) : x ∈ I}, or

• there exists an infinite filter F ⊆ P without a least element, such that
U = inf{E (x) : x ∈ F}.

Proof. Denote

H = {x ∈ P : E (x) ≥ U }, D = {x ∈ P : E (x) ≤ U }.

Those are disjoint because U is nontrivial. By Lemma 41, either H ∈ U , or
D ∈ U . We will assume D ∈ U , the proof and the conclusion in the other case
is dual. We want to show that D is the sought ideal. It is clearly downwards
closed. Let a, b ∈ D. By Lemma 42 we get

A := [a,→) ∈ U , B := [b,→) ∈ U .

Thus A ∩B ∩D ∈ U , in particular it is nonempty. But

A ∩B ∩D = {x ∈ D : x ≥ a & x ≥ b},

giving that D is directed upwards. Hence D is indeed an ideal. We claim

U = sup{E (x) : x ∈ D}.

For a simple morphism f we have that maxx∈D f(x) exists because D is directed
upwards. Thus there is p ∈ D such that f(p) = maxx∈D f(x). Next [p,→) ∈ U ,
therefore S = [p,→) ∩D = {x ∈ D : x ≥ p} ∈ U . For x ∈ f−1(

∫︁
f dU ) ∩ S we

have
max
i∈D

f(i) ≥ f(x) ≥ f(p) = max
i∈D

f(i),
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hence
∫︁

f dU = maxi∈D f(i). From this and Proposition 37 we know that U is
the supremum of {E (x) : x ∈ D}.

Furter we claim D does not contain a greatest element, in fact, D has no
maximal element. Let m ∈ D. Then [m,→) ∈ U and from nontriviality
(m,→) = [m,→) ∖ {m} ∈ U . Hence there must exist l ∈ (m,→) ∩ D, giv-
ing m is not maximal in D.

It is not the case, that every U ∈ U(P ) would be “supremum” of a chain
in P . Suppose the first option from previous proposition holds, then I ∈ U .
For any a ∈ I we have I ∩ (a,→) ∈ U . Let f be a homomorphism satisfying
I ∩ (a,→) = f−1(

∫︁
f dU ) = f−1(maxi∈I f(i)). If U were a supremum of some

chain C, there would have to be maxi∈I f(i) = f(c) for some c ∈ C. Therefore

(∀a ∈ I ∃c ∈ C) c ≥ a.

Some orders do not have this property, as the following example shows.
Example 44. Let P = ω ×κ be the product order of these ordinals, where κ has
uncountable cofinality. Then P is an ideal. Therefore we have U = sup{E (x) :
x ∈ P} with integration given by calculating the maximum. Let us show there is
no chain C ⊆ P such that

(∀a ∈ P ∃c ∈ C) c ≥ a.

For contradiction suppose such a C exists. Define the following sequence βn, n <
ω of elements of κ by

βn := min{β : (∃m ∈ ω) (m, β) ∈ C & m ≥ n}.

For any α ∈ κ there exists (k, β) ∈ C such that (k, β) ≥ (0, α). In particular
β ≥ α. Then βk+1 ≥ β because C is a chain. Thus βk+1 ≥ α. We proved (βn)n<ω

is cofinal in κ, but this is a contradiction.
Remark 45. In Adámek and Sousa [1], D-ultrafilters are prime collections of up-
sets (upwards closed sets), whereas here they contain intervals. However, such
a collection contains the same information, thus these notions are equivalent: Let
U ∈ U(P ) be an ultrafilter on a poset P , and U ′ ⊆ U the collection of up-sets
in U . Then U ′ is prime (X ∪Y ∈ U ′ implies X ∈ U ′ or Y ∈ U ′), because U is
(the partition property is stronger), hence it is a D-ultrafilter. Any D-ultrafilter
can be extended into an element of U(P ). Moreover, U can be recovered from
U ′: for an interval A set

A+ := {x ∈ P : (∃a ∈ A) a ≤ x}, A− := {x ∈ P : (∃a ∈ A) x ≤ a}.

Then A = A+ ∩A− (because it is an interval), A+ is an up-set, A− is a down-set
(that is, complement of an up-set). A down-set is in U iff its complement is not
in U ′. Hence A ∈ U iff A+ ∈ U ′ and P ∖ A− /∈ U ′.
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3.3 Graphs
For a graph G denote U(G) the set of ultrafilters on G, i.e. ultrafilters in the
semilattice of independent sets of G. Let E (x) be the trivial ultrafilter for x ∈
V (G).

Definition. For a finitely colourable graph G and U , V ∈ U(G) let {U , V } be
an edge of U(G) iff for every homomorphism f : G→ H, with H finite, it holds{︂∫︂

f dU ,
∫︂

f dV
}︂
∈ E(H).

The resulting graph has no loops because the codomains had no loops. Finitely
colourable G embeds into U(G) via the map x ↦→ E (x): {x, y} ∈ E(G) gives
{f(x), f(y)} is an edge for any edge preserving f , for f simple this means that{︂∫︂

f dE (x),
∫︂

f dE (y)
}︂

is an edge. Conversely, if x, y do not form an edge, given any n-colouring c define
f : G→ {1, . . . , n + 2} as f ↾ V (G)∖ {x, y} = c and f(x) = n + 1, f(y) = n + 2.
Regard Kn+2 − {n + 1, n + 2} complete graph without this one additional edge
as the codomain of f . Then f is a homomorphism and

∫︁
f dE (x),

∫︁
f dE (y) do

not form an edge.
The following equivalent definition of edges in U(G), analogous to Proposi-

tion 30 for posets, does not use simple morphisms and as such can be used for
non-finitely colourable graphs.

Proposition 46. Let G be a finitely colourable graph, U , V ∈ U(G). Then
{U , V } ∈ E(U(G)) iff

(∀U ∈ U ∀V ∈ V ∃u ∈ U ∃v ∈ V ) {u, v} ∈ E(G).

Proof. (⇒) For a contradiction assume {U , V } ∈ E(U(G)) and let U ∈ U ,
V ∈ V be such that {u, v} /∈ E(G) for every u ∈ U , v ∈ V . Let c be
an n-colouring of G such that U = c−1(1), using Lemma 18. Define

A := {x ∈ V (G) : (∃u ∈ U){u, x} ∈ E(G)}.

Then set

f(u) = (0, c(u)) = (0, 1), u ∈ U,

f(a) = (0, c(a)), a ∈ A,

f(x) = (1, c(x)), x ∈ V (G) ∖ (U ∪ A).

Because c(x) ̸= c(y) implies f(x) ̸= f(y) for any pair of vertices, f does
not contract any edge into a point. This means we can turn im f into
a graph without loops such that f is a homomorphism. Consider only
necessary edges, that is {a, b} ∈ E(im f) only if a = f(x), b = f(y) for
some {x, y} ∈ E(G). In particular, (0, 1) ∈ im f is connected only to
(0, c(a)) for a ∈ A.
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We claim that this f contradicts {U , V } ∈ E(U(G)) because
∫︁

f dU and∫︁
f dV are not connected: The assumption ∀u ∈ U∀v ∈ V : {u, v} /∈ E(G)

implies V ∩ A = ∅. For the projection π : im f → Kn, (i, k) ↦→ k we get
c = π ◦ f , implying

∫︁
f dU = (0, 1). Then f−1(

∫︁
f dU ) = U . Next

f−1
(︂∫︂

f dV
)︂
∩ V ∈ V ,

giving that the intersection is nonempty. However, if
∫︁

f dV were connected
to (0, 1) =

∫︁
f dU , we would get f−1(

∫︁
f dV ) ⊆ A from construction and

the property of A discussed above. This contradicts V ∩ A = ∅.

(⇐) Let f be a simple homomorphism. For U = f−1(
∫︁

f dU ) ∈ U and V =
f−1(

∫︁
f dV ) ∈ V we have some u ∈ U , v ∈ V such that {u, v} ∈ E(G).

Then {
∫︁

f dU ,
∫︁

f dV } = {f(u), f(v)} is an edge of the codomain of f . The
morphism f was arbitrary, giving {U , V } ∈ E(U(G)) by definition.

Lemma 47. For finitely colourable graph G the graph U(G) has the same coloura-
bility.

Proof. Let c be an n-colouring of G. Define ĉ : U(G) → {1, . . . , n} by U ↦→∫︁
c dU . If {U , V } ∈ E(U(G)), by definition {

∫︁
c dU ,

∫︁
c dV } is an edge of Kn,

giving
∫︁

c dU ̸=
∫︁

c dV . Hence ĉ is an n-colouring of U(G).

Definition. Let f : G→ H be a graph homomorphism, U ∈ U(G). Define

f#U := {A ⊑ H : f−1[A] ∈ U }.

We want to show f#U ∈ U(H). Here we will not assume finite colourability.

Proof. Let A, B, A1, . . . , An are independent sets of H.

• upwards closure: Assume A ∈ f#U and B ⊇ A. Then f−1[B] ⊇ f−1[A] ∈
U , giving f−1[B] ∈ U , hence B ∈ f#U .

• intersections: Assume A, B ∈ f#U . This means f−1[A], f−1[B] ∈ U ,
giving f−1[A ∩B] = f−1[A] ∩ f−1[B] ∈ U . Thus A ∩B ∈ f#U .

• nontriviality follows from ∅ = f−1[∅], as ∅ /∈ U .

• partition property, as in Proposition 26. Suppose A1 ⨿ . . . ⨿ An ⊇ A and
A ∈ f#U . We have f−1[A] ∈ U and f−1[A1]⨿. . .⨿f−1[An] ⊇ f−1[A]. Thus
for one and only one j we get f−1[Aj] ∈ U , further giving Aj ∈ f#U .

Lemma 48. Let f : G → H and g : H → F be graph homomorphisms, U ∈
U(G). Then

(g ◦ f)#U = g#(f#U ).

Proof is identical to that of Lemma 31.

Lemma 49. Let f : G→ H and q : H→ F be graph homomorphisms, where F
is finite. Let U ∈ U(G). Then∫︂

H
q df#U =

∫︂
G

q ◦ f dU .
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Proof is identical to that of Lemma 32.

Proposition 50. Let U assign to graph G the graph U(G). If f is a morphism,
set U(f) : U ↦→ f#U . Then U is a functor Graph → Graph and restricts to
a functor FCGraph→ FCGraph.

Proof. First we need to show the definition is correct. U(G) is a graph; for finitely
colourable we defined edges via morphisms and came to equivalent formulation
in Proposition 46, which we use as definition in the general case. U(G) has no
loops because every U ∈ U is independent, and as such no u ∈ U is connected
to a v ∈ U . U(f) = f# preserves edges; suppose f ∈ Graph(G, H), then
U(f) is indeed a function U(G) → U(H) – proven after definition of f# . Let
{U , V } be an edge of U(G); we want {f#U , f#V } to be an edge of U(H). Let
A ∈ f#U , B ∈ f#V , then f−1[A] ∈ U , f−1[B] ∈ V . Because {U , V } is an
edge, by definition there exist a ∈ f−1[A], b ∈ f−1[B] such that {a, b} ∈ E(G).
Then {f(a), f(b)} ∈ E(H) because f preserves edges and f(a) ∈ A, f(b) ∈ B.
Hence f# ∈ Graph(U(G), U(H)).

It is clear from definition that U(idG) = idU(G). Lemma 48 states that U
preserves composition. Hence U is a functor.

If G is finitely colourable, Lemma 47 gives us that U(G) is also finitely
colourable. FCGraph is a full subcategory of Graph, thus U restricts to a functor
FCGraph→ FCGraph.

For partial orders without infinite antichains, we have seen in Proposition 40
that any finite antichain in U(P ) was inherited from P . Here we show a sim-
ilar type of statement about a first order property being preserved for finitely
colourable graphs.

Definition. Let G be a graph. We say that G has finite diameter d ∈ N, if for
every x, y ∈ V (G) there exists a path from x to y of edge length at most d, and
d is the smallest such number.

Proposition 51. Suppose G is a finitely colourable graph with finite diameter
≤ n. Then U(G) has diameter ≤ n.

Converse of this statement is not trivial, but still significantly simpler to prove.

Proof. We will use the following notation. A path P in G is a (finite) sequence
of vertices (p0, p1, . . . , pm) such that {pi−1, pi} is an edge of G, i = 1, . . . , m. We
also index the elements as P (i) = pi. Length of P is m, i.e. the number of edges.
Distance between two vertices is the minimal length of a path having them as
endpoints. Denote the distance with dist(u, v).

For U , V ∈ U(P ) define the number

m = min{k ∈ N : (∀U ∈ U ∀V ∈ V ∃u ∈ U ∃v ∈ V ) dist(u, v) ≤ k}.

By the assumption m ≤ n. We will show there is a path from U to V of
length m. For each U ∈ U , V ∈ V choose a path P UV of length exactly m with
P UV (0) ∈ U , P UV (m) ∈ V . Such a path must exist; suppose there are U ′ ∈ U ,
V ′ ∈ V such that for all u ∈ U ′, v ∈ V ′ there are only paths of length ≤ m − 1
from u to v. But then

(∀U ∈ U ∀V ∈ V ∃u ∈ U ∃v ∈ V ) u ∈ U ∩ U ′ & v ∈ V ∩ V ′,
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therefore for such u, v we have dist(u, v) ≤ m − 1. Thus k = m − 1 satisfies the
condition in definition of m, contradicting minimality of m.

Our goal is to construct a path (P0, P1, . . . , Pm) in U(G) with P0 = U ,
Pm = V . Continue recursively, there are two nested inductions. For i =
1, . . . , m− 1 consider the system of sets

σi
UV := {P U ′V ′(i) : U ′ ∈ U , V ′ ∈ V , P U ′V ′(i− 1) ∈ U, P U ′V ′(m) ∈ V },

Si := {σi
UV : U ∈Pi−1, V ∈ V }.

We will show that Si’s have the finite intersection property, hence we can extend
them into set-ultrafilters Si ∈ βV (G) and use these to construct Pi ∈ U(G);
via Pi = Si ∩ {A ⊑ G}. Note that we use finite colourability for Pi ̸= ∅. Let
us first prove by induction that σi

UV are nonempty. For i = 1 let U ∈ U , V ∈ V ,
then P UV (0) ∈ U by choice of P UV , hence P UV (1) ∈ σ1

UV by definition. For
i > 1 let U ∈Pi−1, V ∈ V , pick σi−1

U0V ∈ Si−1 with U0 arbitrary. By the induction
hypothesis Si−1 is an ultrafilter and contains the set σi−1

U0V ∩U , hence σi−1
U0V ∩U ̸= ∅.

Thus there exist U ′ ∈ U and V ′ ∈ V such that P U ′V ′(i − 1) ∈ U ∩ σi−1
U0V and

P U ′V ′(m) ∈ V . But then P U ′V ′(i) ∈ σi
UV by definition.

For U0, U1 ∈Pi−1, V0, V1 ∈ V we have

σi
(U0∩U1),(V0∩V1) = σi

U0V0 ∩ σi
U1V1 ,

hence Si indeed has the finite intersection property, which completes the con-
struction.

We want (P0, P1, . . . , Pm) to be a path in U(G). Let j ∈ {0, . . . , m − 2},
A ∈Pj, B ∈Pj+1. Let V ∈ V be arbitrary. Then because Sj+1 is closed under
finite intersections, B ∩ σj+1

AV ∈ Sj+1, so it is nonempty. It is even independent,
because B is, hence B ∩ σj+1

AV ∈ Pj+1. Thus for some U ′ ∈ U , V ′ ∈ V we have
P U ′V ′(j + 1) ∈ B ∩ σj+1

AV . By definition P U ′V ′(j) ∈ A. Then there is an edge
from A to B, namely {P U ′V ′(j), P U ′V ′(j + 1)}. Thus {Pj, Pj+1} ∈ E(U(G)).
Lastly, for j = m− 1 we want {Pm−1, V } to be an edge: For A ∈Pm−1, V ∈ V
we have P U ′V ′(m − 1) ∈ A ∩ σm−1

UV for some U, U ′ ∈ U and V ′ ∈ V , but then
P U ′V ′(m) ∈ V by the definition of σm−1

UV , hence {P U ′V ′(m − 1), P U ′V ′(m)} is an
edge from A to V .

Example 52. We examine properties of U(G) for some choices of the graph G:
1. Remarks on degree. Suppose v is a vertex of a finitely colourable graph G

and deg v = κ. Let N be the set of neighbours of v. If κ is finite, then
deg E (v) = κ: consider an edge {U , E (v)}, then for any U ∈ U either
U ∩ N or U ∖ N is an element of U . But U ∖ N ∈ U would contradict
the edge {U , E (v)}, hence U ∩N ∈ U . But N ∩ U is finite, because N is,
thus U is trivial. For trivial ultrafilters E (x) is connected to E (v) iff x is
connected to v, hence deg E (v) = κ.
On the other hand, if κ is infinite, N contains an infinite independent set
N ′ of cardinality κ by finite colourability of G and the pigeonhole principle.
Then any set-ulrafilter Ũ ∈ βN ′ is a system of independent sets with the
finite intersection property, hence it extends into an element U ∈ U(G)
(and different elements of βN ′ give different elements of U(G)). Clearly
{U , E (v)} is an edge. Thus deg E (v) ≥ 22κ , as we have 22κ elements of
βN ′.
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2. Consider a star graph G. We have a “central” vertex c and an infinite set
S; we define the edges by

E(G) := {(c, s) : s ∈ S}.

Then S is an independent set. If A is an independent set containing more
than one element, then c /∈ A. We can see that βS ∪ {E (c)} = U(G). For
any U ∈ βS and U ∈ U , we have edges from U to {c} (all vertices are
connected to c), hence U is connected to E (c). For different U , V ∈ βS
we have some U ∈ U and V ∈ V such that U /∈ V and V /∈ U . Because
U, V ⊆ S, there is no edge between them, giving that {U , V } is not an
edge. We can conclude that U(G) is also a star graph, and has larger
cardinality.

3. Let G have vertices N × 2 = {(n, i) : n ∈ N, i = 0, 1} and edges only
between vertices (n, 0) and (n, 1) for each n ∈ N. Set T = {(n, 1) : n ∈ N},
B = {(n, 0) : n ∈ N}, then T ⨿ B is a partition of V (G) into independent
sets. For U ∈ U(G) define its mirror image M(U ) by

M(U ) := {M(A) : A ∈ U },

where
M(A) = {(n, 1− i) : (n, i) ∈ A}, A ⊆ V (G).

Let {U , V } be an edge in U(G), and U ∈ U , V ∈ V . Set U ′ to be the set
of those vertices of U , which are connected to a vertex of V , similarly define
V ′ ⊆ V . Because {U , V } is an edge, we must have U ′ ∈ U , V ′ ∈ V . By
construction of G we get M(V ′) = U ′. But then V ′ = MM(V ′) = M(U ′) ∈
M(U ), by upwards closure V ∈ M(U ), hence V ⊆ M(U ). Since M(U )
is clearly an element of U(G), this inclusion gives V = M(U ). It is easy
to see that U is connected to M(U ) for every U ∈ U(G). Therefore every
element of U(G) is connected to precisely one vertex, just as holds in G.

4. Path infinite in one direction. Regard N as a graph with edges {n, n+1}, n ∈
N. Consider an ultrafilter U on N different from E (1). For a set A ⊆ N set

A+ := {n + 1 : n ∈ A}, A− := {n− 1 : n ∈ A & n > 1}.

Then denote

U + := {A+ : A ∈ U } ∪ {A+ ∪ {1} : A ∈ U & 1 /∈ A},
U − := {A− : A ∈ U }

One can check that U +, U − ∈ U(N). They are clearly both connected
to U . We can deduce U + ̸= U − from the partition of N into independent
sets

Ui := {3n + i : n ∈ N}, i = 0, 1, 2,

the fact that Ui ∈ U for only one i and that U+
i ∩ U−

i = ∅. Conversely, let
V be connected to U . For V ∈ V and U ∈ U we have either V ∩U− ∈ V
or V ∖ U− ∈ V . For other V ′ ∈ V the same must happen, otherwise

(V ∩ U−) ∩ (V ′ ∖ U−) = ∅ ∈ V ,
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or the other way around, a contradiction. In the first case we get U− ⊇
V ∩ U− ∈ V , hence U − = V . In the second case we must have had
V ∩ U+ ∈ V , then we conclude U+ ⊇ U+ ∩ V ∈ V , same for U+ ∪ {1} if
relevant, therefore U + = V . We now see that deg U = 2. Moreover, one
of the neighbours of U must be f#U where f(n) = n + 1.
Because E (1) can only be connected to E (2), we can conclude that U (N)
is composed from a copy of N and many copies of the double sided infinite
path Z (we get one of these from any of the uncountably many ultrafilters
on the set of even natural numbers).

5. Let G = ∐︁
n≥3 Cn, where Cn is the n-cycle with vertices vn

1 , . . . , vn
n. We

will show that U(G) contains an infinite path. Put Ak := {vn
k : n ≥ k}

for k ≥ 3. Choose a nontrivial ultrafilter U3 on the set A3 arbitrarily.
We will recursively construct nontrivial ultrafilters Uk ∈ βAk, k ≥ 3. For
k ≥ 3 the ultrafilter Uk must contain the set Ak ∖ {vk

k}, hence U ′
k =

Uk ∩P(Ak ∖ {vk
k}) ∈ β(Ak ∖ {vk

k}). Then set

Uk+1 := {{vn
k+1 : vn

k ∈ A} : A ∈ U ′
k}.

We have pushed U ′
k along a bijection Ak ∖ {vk

k} → Ak+1, giving that
Uk+1 ∈ βAk+1. It is nontrivial, because it contains only infinite sets. By
construction, for any A ∈ Uk and B ∈ Uk+1 there is an edge from A to B.
Now if we extend Uk into Vk ∈ U(G), we get that {Vk, Vk+1} is an edge for
any k ≥ 3. With minor changes to the construction, we could extend the
path infinitely in the other direction as well.

# 2 3 4 5

G

U(G)

Illustrations of the graphs in Example 52

After seing these examples and a partial result leading to Proposition 51, we
have conjectured the following:

For a finitely colourable graph G, the graph U(G) is an elementary
extension of G.

To interpret graphs as first order logic structures, we use the language with one
symmetric antireflexive binary relation describing the edges. This language is too
weak to capture finite colourability, which is also preserved by Lemma 47, hence
one could even strengthen the question. So far, neither one of us knows how to
prove or disprove this statement.
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4. Monads
Monad is a category-theoretical construction consisting of an endofunctor F :
C → C , and two natural transformations: multiplication µ : T 2 → T and unit
η : I → T . Following axioms are required, expressed as commutative diagrams,
referred to as associativity and unit law

T 3(X) T 2(X)

T 2(X) T (X)

T µX

µT (X) µX

µX

T (X) TT (X)

TT (X) T (X)

ηT (X)

T ηX µX

µX

Algebra over a monad (T, µ, η) is an object A of C together with a morphism
s ∈ C (T (A), A) such that the following diagrams commute

T 2(A) T (A)

T (A) A

T s

µA s

s

A T (A)

A

ηA

s

Algebras over a monad form a category called the Eilenberg-Moore category
of (T, µ, η). Morphisms of this category are homomorphisms of algebras, i.e. for
algebras (A, s), (B, t) morphism f ∈ C (A, B) is a homomorphism if the following
commutes

T (A) T (B)

A B

T f

s t

f

4.1 Partial orders
Ernst Manes proved in [7] that algebras over the ultrafilter monad on Set are the
compact Hausdorff topological spaces. Here we provide a similar, yet incomplete
classification of algebras over the ultrafilter monad on Poset. For posets without
infinite antichains, this characterisation is complete. Overall structure of the
proof was inspired by this original article of Manes.

4.1.1 Construction of ultrafilter monad
Lemma 53. Let (P,≤) be ordered. For interval A ⊑ P denote

Â := {U ∈ U(P ) : A ∈ U }.

Then Â is interval in U(P ).

Poset specific proof. If U , V ∈ Â and W satisfy U ≤ W ≤ V , let f : P → P4
be the morphism from Proposition 8 such that A = f−1(pA). Because A ∈ U , V ,
we have

∫︁
f dU =

∫︁
f dV = pA. But

∫︁
f dU ≤

∫︁
f dW ≤

∫︁
f dV now implies∫︁

f dW = pA, hence A ∈ W . This gives W ∈ Â, hence Â is indeed an interval.
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Generalisable proof. Let f : P → P4 be a morphism from Proposition 8 such
that f−1(pA) = A (the fact that cod f = P4 is not important). Then f̂ =

∫︁
f d :

U(P ) → P4 is a morphism for which Â = f̂
−1(pA) because

∫︁
f dU = pA iff

A = f−1(pA) ∈ U . Recall that preimage of a point is an interval.

Proposition 33 tells us that U is an endofunctor on Poset. Our goal is to show,
that U is monadic. Iterated applications of U are written as UU or Un.

Lemma 54. For U ∈ UU(P ) set

µU := {A ⊑ P : Â ∈ U}.

Then µU ∈ U(P ).

Proof. Let A, B, A1, . . . , An be intervals of P . Then

• ∅ /∈ µU because ∅ = ∅̂ /∈ U. P ∈ µU because U(P ) = P̂ ∈ U.

• Suppose A ⊆ B and A ∈ µU. Then Â ∈ U; because Â ⊆ B̂, we get B̂ ∈ U
and hence B ∈ µU.

• Suppose A, B ∈ µU. Then Â, B̂ ∈ U; because (A ∩ B)∧ = Â ∩ B̂, we have
(A ∩B)∧ ∈ U. Thus A ∩B ∈ µU.

• Assume A1 ⨿ . . . ⨿ An = P . Since every U ∈ U(P ) contains precisely one
Ai, we get

A1̂ ⨿ . . .⨿ An̂ = U(P ).

Hence for only one i it holds that Ai
ˆ ∈ U, giving Ai ∈ µU.

Lemma 55. µ : UU(P )→ U(P ) is monotone.

Proof. We will use Proposition 30. Let U ≤ V in UU(P ). Then consider U ∈ µU,
V ∈ µV. We have Û ∈ U, V̂ ∈ V, from the relation we get U ∈ Û and V ∈ V̂
such that U ≤ V . Then U ∈ U and V ∈ V , hence for some u ∈ U , v ∈ V we
get u ≤ v. It follows that µU ≤ µV.

Proposition 56. (U, µ, η) is a monad, where U is the ultrafilter functor on Poset,
multiplication µ = (µP ; (P,≤) ∈ Poset) is defined as

µP : UU(P )→ U(P ), U ↦→ {A ⊑ P : Â ∈ U}.

Unit η = (ηP : (P,≤) ∈ Poset) is defined as

ηP : P → U(P ), x ↦→ E (x) = {A ⊑ P : x ∈ A}.

Proof. First we show that µ, η are natural transformations, i.e. the following com-
mute

UU(P ) U(P )

UU(Q) U(Q)

UUf

µP

Uf

µQ

P U(P )

Q U(Q)

ηP

f U(f)
ηQ
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For the first diagram we want µQf##U = f#µPU, U ∈ UU(P ).

f#µPU = {A ⊑ Q : f−1[A] ∈ µU}
= {A ⊑ Q : f−1[A] ∈ {B ⊑ P : {U ∈ U(P ) : U ∋ B} ∈ U}}
= {A ⊑ Q : {U ∈ U(P ) : U ∋ f−1[A]} ∈ U}

µQf##U = µQ{B ⊑ U(Q) : (f#)−1[B] ∈ U}
= µQ{B ⊑ U(Q) : {U ∈ U(P ) : f#U ∈ B} ∈ U}
= {A ⊑ Q : {V ∈ U(Q) : V ∋ A}

∈ {B ⊑ U(Q) : {U ∈ U(P ) : f#U ∈ B} ∈ U}}
= {A ⊑ Q : {U ∈ U(P ) : f#U ∈ {V ∈ U(Q) : V ∋ A}} ∈ U}
= {A ⊑ Q : {U ∈ U(P ) : f#U ∋ A} ∈ U}
= {A ⊑ Q : {U ∈ U(P ) : A ∈ {B ⊑ Q : f−1[B] ∈ U }} ∈ U}
= {A ⊑ Q : {U ∈ U(P ) : f−1[A] ∈ U } ∈ U}

The second diagram says f#ηP (x) = ηQf(x) for all x ∈ P .

f#ηP (x) = f#E (x) = {A ⊑ Q : f−1[A] ∈ E (x)}
= {A ⊑ Q : x ∈ f−1[A]} = E (f(x)) = ηQf(x).

Associativity and the unit law hold

U3(P ) U2(P )

U2(P ) U(P )

UµP

µU(P ) µP

µP

U(P ) UU(P )

UU(P ) U(P )

ηU(P )

UηP µP

µP

Associativity requires µP (µP #u) = µP (µU(p)u) for u ∈ U3(P ).

µP (µP #u)
= µP{B ⊑ U(P ) : µ−1

P [B] ∈ u}
= {A ⊑ P : {U ∈ U(P ) : U ∋ A} ∈ {B ⊑ U(P ) : µ−1

P [B] ∈ u}}
= {A ⊑ P : µ−1

P [{U ∈ U(P ) : U ∋ A}] ∈ u}
= {A ⊑ P : {U ∈ U2(P ) : µP (U) ∋ A} ∈ u}
= {A ⊑ P : {U ∈ U2(P ) : A ∈ {B ⊑ P : {U ∈ U(P ) : B ∈ U } ∈ U}} ∈ u}
= {A ⊑ P : {U ∈ U2(P ) : {U ∈ U(P ) : A ∈ U } ∈ U} ∈ u}

µP (µU(P )u)
= µP{B ⊑ U(P ) : {U ∈ U2(P ) : U ∋ B} ∈ u}
= {A ⊑ P : {U ∈ U(P ) : U ∋ A}

∈ {B ⊑ U(P ) : {U ∈ U2(P ) : U ∋ B} ∈ u}}
= {A ⊑ P : {U ∈ U2(P ) : {U ∈ U(P ) : A ∈ U } ∈ U} ∈ u}
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For the unit µP (ηU(P )U ) = µP (ηP #U ) = U for all U ∈ U(P )

µP ηP #U = µP{B ⊑ U(P ) : η−1
P [B] ∈ U }

= {A ⊑ P : {V ∈ U(P ) : A ∈ V } ∈ {B ⊑ U(P ) : η−1
P [B] ∈ U }}

= {A ⊑ P : η−1
P [{V ∈ U(P ) : A ∈ V }] ∈ U }

= {A ⊑ P : {x ∈ P : E (x) ∈ {V ∈ U(P ) : A ∈ V }} ∈ U }
= {A ⊑ P : {x ∈ P : A ∈ E (x)} ∈ U }
= {A ⊑ P : {x ∈ P : x ∈ A} ∈ U } = {A ⊑ P : A ∈ U } = U

µP ηU(P )U = µpE (U )
= µP{B ⊑ U(P ) : U ∈ B}
= {A ⊑ P : {V ∈ U(P ) : A ∈ V } ∈ {B ⊑ U(P ) : U ∈ B}}
= {A ⊑ P : U ∈ {V ∈ U(P ) : A ∈ V }} = {A ⊑ P : A ∈ U } = U .

4.1.2 Topology and algebras

Well known theorems of topology used in this subsection are not cited directly.
Good reference on the subject is Engelking [3].

Interval topology

Firstly, we define the interval topology for general partial orders, which extends
the natural choice of topology for linear orders; the one generated by a basis of
open-ended intervals (a, b) = {x ∈ L : a < x < b}, a, b ∈ L.

Definition. Let (P,≤) be ordered. By interval topology we mean the topology
whose closed sets are generated by the subbasis consisting of intervals

(←, a] = {x ∈ P : x ≤ a},
[a,→) = {x ∈ P : a ≤ x}, a ∈ P

and ∅. Any closed set is thus an intersection of finite unions of these intervals.

It is easy to see that the open subbasic sets P ∖(←, a], P ∖ [a,→) are intervals
(they are even upwards or downwards closed). As their intersections are also
intervals, we can conclude that interval topology has a basis from open intervals.

We will later use the following statement, which is a special case of Theorem 1
in Erné [4]

Proposition 57. Let (P,≤) be ordered. If P does not contain any infinite an-
tichain, then the interval topology on P is Hausdorff.

It is not difficult to prove the compactness of the interval topology on U(P )
directly, but we will not need this fact.
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Topology induced by algebra structure

For an algebra (A, s) over the set-ultrafilter monad β, we can define a topology
by saying a set U ⊆ A is open iff

(∀U ∈ βA)(s(U ) ∈ U =⇒ U ∈ U ).

This definition mostly only rephrases what we want from limits of ultrafilters;
a set is open if it is contained in all ultrafilters which converge into it. This
topology on A is compact Hausdorff. Checking Hausdorffness is undoubtedly the
hardest part of the proof. The other way around, given a compact Hausdorff
space A, we define the structure map s to assign to an ultrafilter its (unique)
limit with respect to this topology.

Let (P, s) be an algebra over U . We want to define a topology in a similar
way to the Set case. Ultrafilters on P only contain intervals and not every open
set need be an interval, thus we need to adapt the formula. We want to keep
the fact that an interval A ⊑ P is open iff

(∀U ∈ U(P ))(s(U ) ∈ A =⇒ A ∈ U ).

In general, we define a set A ⊆ P to be open iff

(∀U ∈ U(P ))(s(U) ∈ A =⇒ (∃A′ ⊑ P ) A′ ⊆ A & A′ ∈ U ). (4.1)

Intuitively, this means A would have been an element of a set-ultrafilter extend-
ing U .

Conversely, a set F ⊆ P is closed iff

(∀U ∈ U(P ))((∀A′ ∈ U ) A′ ∩ F ̸= ∅) =⇒ s(U ) ∈ F.

The name s-topology is taken from Devlin [2].

Proposition 58. Open sets of an algebra (P, s) defined by the formula (4.1)
indeed form a topology. We call it the s-topology.

Proof. Empty set never satisfies the assumption, whole P always satisfies the con-
clusion, hence both are open. For open sets Ai, i ∈ I if s(U ) ∈ ⋃︁

i∈I Ai, there
exists j ∈ I such that s(U ) ∈ Aj; since Aj is open there is an interval A ⊆ Aj

such that A ∈ U . But then A ⊆ ⋃︁
i∈I Ai, hence the union is open. If A, B are

open and s(U ) ∈ A ∩ B, by the assumption we get intervals A′ ⊆ A, B′ ⊆ B
such that A′ ∈ U , B′ ∈ U . Then A′∩B′ ∈ U and it is a subset of A∩B, giving
A ∩B is open. In conclusion, we have a topology.

Lemma 59. In the free algebra (U(P ), µP ) µP -topology is generated by the basis
{Â : A ⊑ P}. Hence for T ⊆ U(P ) open we have

T =
⋃︂
{Â : A ⊑ P & Â ⊆ T}

Proof. For A ⊑ P we know that Â is an interval in U(P ) (Lemma 53); openness
follows from definitions as follows. µPU ∈ Â means A ∈ µPU by definition of Â,
from this Â ∈ U by definition of µP . Hence Â is open.
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Let T ⊆ U(P ) be open, we will prove the formula. The nontrivial inclusion
is ⊆. Thus we want

(∀U ∈ T ∃A ∈ U ) Â ⊆ T.

For a contradiction, suppose there is U ∈ T such that for all A ∈ U it holds
Â ∩ (U(P ) ∖ T ) ̸= ∅. Then

{Â : A ∈ U } ∪ {U(P ) ∖ T}

has the finite intersection property, let Ũ ∈ βU(P ) be an ultrafilter extending it.
We get U = Ũ ∩ {A ⊑ U(P )} ∈ UU(P ). Consider any interval I ⊑ U(P ) such
that I ⊆ T ; then I /∈ Ũ because T /∈ Ũ. Thus I /∈ U. Hence µPU /∈ T because
T is open. But for A ∈ U we have Â ∈ U, giving A ∈ µPU. We just proved
µPU = U , but U ∈ T and µPU /∈ T , a contradiction.

As a corollary we get that the µP -topology on U(P ) is generated by open
intervals. Dually, a set F ⊆ U(P ) is closed iff

F =
⋂︂
{U(P ) ∖ Â : A ⊑ P & Â ∩ F = ∅}.

In Set, one can simplify this expression using complements, because there U(P )∖
Â = (P ∖ A)∧. However, complement of an interval need not be an interval, so
we cannot use this.
Lemma 60. Let (P, s) be an algebra over U . Then the structure map s is closed,
i.e. the image of a closed set is closed.
Proof. Let F ⊆ U(P ) be closed. From Lemma 59 we know F = ⋂︁

i∈I(U(P )∖Mi
ˆ )

for some intervals Mi ⊑ P, i ∈ I. We want s[F ] to be closed. This means
(∀U ∈ U(P ))((∀A ∈ U ) A ∩ s[F ] ̸= ∅) =⇒ s(U ) ∈ s[F ].

Let U ∈ U(P ) satisfy the assumption (∀A ∈ U ) A ∩ s[F ] ̸= ∅, thus for each
A ∈ U the set

αA := {V ∈ U(P ) : s(V ) ∈ A & (∀i ∈ I) Mi /∈ V }

is nonempty. For A, B ∈ U it holds αA ∩ αB = αA∩B, therefore the system
{αA : A ∈ U } has the finite intersection property. Extend it into an ultrafilter
Ũ ∈ βU(P ) and extract from it U ∈ UU(P ) (via U = Ũ ∩ {A ⊑ U(P )}). Then

Us(U) = s#U = {B ⊑ P : s−1[B] ∈ U} = U ,

because for A ∈ U we have s−1[A] ⊇ αA and αA ∈ Ũ, hence also s−1[A] ∈ Ũ.
This is an interval, thus s−1[A] ∈ U. Thus s#U = U . Next

µPU = {A ⊑ P : Â ∈ U}

by definition. For every i ∈ I and any A ∈ U we have Mi
ˆ ∩ αA = ∅. Therefore

Mi
ˆ /∈ U and thus Mi /∈ µPU. From this µPU /∈ Mi

ˆ . In conclusion µPU ∈⋂︁
i∈I(U(P ) ∖ Mi

ˆ ) = F . By commutativity of the following algebra diagram

U2(P ) U(P )

U(P ) P

Us

µP s

s

we have
s(U ) = s(s#U) = s(µPU) ∈ s[F ].
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Definition. Let (P,≤) be ordered and G a topology on P . We call the order
relation continuous with respect to G , if

R(P,≤) := {(a, b) ∈ P 2 : a ≤ b}

is a closed set of P 2, i.e. the product of the space (P, G ) with itself.

Proposition 61. Let (P,≤) be ordered. Then the order on U(P ) is continuous
(w.r.t. the µP -topology).

Proof. Let (U , V ) /∈ R(U(P ),≤), that is U ≰ V . We want an open neighbourhood
which does not intersect R(U(P ),≤). The lack of relation U ≤ V by Lemma 30
means there exist A ∈ U , B ∈ V such that for all a ∈ A, b ∈ B we have a ≰ b.
From this any T , S ∈ U(P ) such that A ∈ T , B ∈ S satisfy T ≰ S . Meaning
Â× B̂ ⊆ U(P ) ∖ R(U(P ),≤). But Â, B̂ are open in P by Lemma 59, hence Â× B̂
is open in the product.

Lemma 62. µP -topology on U(P ) is compact Hausdorff.

Proof. We will show that every set-ultrafilter Ũ ∈ βU(P ) has precisely one limit,
namely µP (U) for U = Ũ∩{A ⊑ U(P )}. We know that the intervals Â, A ⊑ P are
a basis for this topology. We can test limits of ultrafilters on basic sets. Assume
Â ⊑ U(P ) is basic open and µPU ∈ Â. By definition of µ we have Â ∈ U,
therefore Â ∈ Ũ. Thus µPU is a limit of Ũ.

Assume U ∈ U(P ) is a limit of Ũ. For A ∈ U we have U ∈ Â. Since Â
is open and U ∈ Â a topological limit, we get Â ∈ Ũ. But Â is interval, hence
Â ∈ U. But this gives A ∈ µPU, concluding we have U = µPU. Hence the limit
is unique.

Lemma 63. Structure map s of a U-algebra (P, s) is continuous.

Proof. We will show that s preserves limits of ultrafilters, this implies continuity.
Let Ũ ∈ βU(P ) a set-ultrafilter on U(P ) and U = Ũ ∩ {A ⊑ U(P )} ∈ UU(P ).
Suppose U ∈ U(P ) is a topological limit of Ũ, we want to show that s(U ) is
a limit of s#Ũ ∈ βP (the definition of s# seamlessly extends to set-ultrafilters).
Because U(P ) is compact Hausdorff, the unique limit of Ũ is µPU, therefore
U = µPU. From the algebra axiom we get s(U ) = s(µPU) = s(s#U). The point
s(s#U) is a topological limit of s#Ũ from the definition of the topology. Hence
s#Ũ converges to s(U ) in P .

Theorem 64. Let (P, s) be an algebra over U . Then the s-topology on P is
compact Hausdorff and order on P is continuous.

Proof. We showed that s is continuous and closed. Its action on trivial ultra-
filters implies surjectivity. Image of a compact Hausdorff space under a closed
continuous map is itself compact Hausdorff, hence P is.

Because P is compact Hausdorff, P × P with the product topology is also
compact Hausdorff. So is U(P )×U(P ). The map (s, s) : U(P )×U(P )→ P ×P
is continuous, because it has continuous components. Its domain is compact and
codomain Hausdorff, implying (s, s) is a closed map. Since s is monotone, it maps
the relation set R(U(P ),≤) into R(P,≤). The existence of trivial ultrafilters implies
this is onto R(P,≤). By Proposition 61 R(U(P ),≤) is closed, therefore R(P,≤) is also
closed. Hence by definition the order on P is continuous.
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Proposition 65. Interval topology on an algebra (P, s) is coarser than s-topology.

Proof. We will show that subbasic closed sets of the interval topology are closed
in the s-topology. Let x ∈ P and without loss of generality F = [x,→) be
subbasic closed. Suppose U ∈ U(P ) with s(U ) /∈ F and F ∈ U . F ∈ U
gives for any M ∈ U that M ∩ F ̸= ∅, i.e. there exists m ∈ M such that
m ≥ x. By Proposition 30 we now have E (x) ≤ U . But s is monotone, giving
x = s(E (x)) ≤ s(U ), which contradicts s(U ) /∈ F = [x,→).

Theorem 66. Let (P,≤) be ordered and have a compact Hausdorff topology gen-
erated by a basis of open intervals, with respect to which the order is continuous.
Then P forms an algebra over U .

Proof. If U ∈ U(P ), let s(U ) denote the unique limit of any set-ultrafilter
Ũ ∈ βP extending U . We will show that s is a well defined function U(P )→ P
and is the structure map of an algebra.

s : U(P ) → P is a well defined function: Let Ũ , U ′ be two extensions of
U ∈ U(P ). Suppose lim Ũ ̸= lim U ′; then because of Hausdorffness they can be
separated by disjoint basic open sets A, B, we must have A ∈ Ũ and B ∈ U ′.
We have chosen A, B basic, i.e. open intervals, hence A ∈ U and B ∈ U , then
∅ = A ∩B ∈ U , a contradiction.

s is monotone: let U , V ∈ U(P ) such that U ≤ V . For a contradiction
assume s(U ) ≰ s(V ). Then (s(U ), s(V )) /∈ R(P,≤). The set P × P ∖ R(P,≤)
is open by continuity of the order. Therefore the point (s(U ), s(V )) /∈ R(P,≤)
has a basic open neighbourhood A × B ⊆ P × P ∖ R(P,≤), where A, B are open
intervals, s(U ) ∈ A, s(V ) ∈ B. Because they are open and contain the limit
of any extension of U , V , respectively, into a set-ultrafilter, we have A ∈ U ,
B ∈ V . By Proposition 30 and the assumption U ≤ V , we get a ∈ A, b ∈ B
such that a ≤ b. But then (a, b) ∈ A × B ⊆ P × P ∖ R(P,≤), meaning a ≰ b, a
contradiction.

s satisfies the algebra axioms

U2(P ) U(P )

U(P ) P

Us

µP s

s

P U(P )

P

ηP

s

The second diagram is clear; for any a ∈ P let A be an open basic set (interval),
which is a neighbourhood of a. By definition of ηP (a) = E (a) we have A ∈ E (a)
from a ∈ A. Therefore a is a limit of any ultrafilter extending E (a), giving
s(E (a)) = a.

For the first diagram let U ∈ UU(P ). We can test limits of set-ultrafilters, by
extension the values of s, via the basic open sets (intervals). By definitions

Us(U) = s#U = {A ⊑ P : s−1[A] ∈ U}, µP (U) = {A ⊑ P : Â ∈ U}.

Let B ⊆ P be an open interval containing s(s#U). Since B is an open neigh-
bourhood, we get B ∈ s#U. Then by the definition s−1[B] ∈ U. Condition
that B is open can be rewritten as s−1[B] ⊆ B̂ (all ultrafilters converging into
B must contain B, s is the limit by definition). Therefore B̂ ∈ U by upwards
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closure, hence B ∈ µP (U). We proved that µP (U) contains all basic neighbour-
hoods of s(s#U), so does any extension. Hence s(s#U) must be the limit, giving
s(µP (U)) = s(s#U).

In the following special case we can apply the preceding theorems to arrive
at a characterisation of algebras. Note that we are using Proposition 57. In the
general case we are left with the assumption of basis from open intervals, which
we need in order to construct an algebra but have not proven for a given general
algebra.

Corollary 67. Suppose (P,≤) has only finite antichains, then P forms an al-
gebra over U if and only if the interval topology on P is compact and the order
continuous.

Proof. Follows from the above classification if we use interval topology, see Propo-
sition 65 and recall that bijective continuous map of compact Hausdorff spaces is
a homeomorphism.

4.2 Graphs
In this section we briefly discuss the ultrafilter monad in categories Graph and
FCGraph. For general graphs we have to modify the definition compared to the
one from chapter 2, because morphisms into finite graphs might not exist. We
say U is an ultrafilter on G if it is an ultrafilter in the poset ({A ⊑ G},⊆).
Finitely colourable graphs are very similar to posets, but general graphs have
one major difference. Finitely colourable graphs have finite partitions on the
vertex set, implying that the condition F ∩ {A ⊑ G} ̸= ∅ in formulation of
Lemma 27 is trivial. However, a general graph G with κ > ω vertices might
have all independent sets of cardinality < κ. If F is a uniform ultrafilter on
V (G) (meaning every A ∈ F has cardinality κ), then F ∩ {A ⊑ G} is empty.
Nevertheless, nontrivial ultrafilters still exist if G has some infinite independent
sets. Many of the desired categorical properties will not work for general graphs
(U(G) is not a limit of finite graphs, concept of codensity, etc.).

In this section we take the formula

{U , V } ∈ E(U(G)) ⇐⇒ (∀U ∈ U ∀V ∈ V ∃u ∈ U ∃v ∈ V ) {u, v} ∈ E(G)

from Proposition 46 as the definition of edges on U(G), as it is applicable without
finite colourability.

Analogue of Lemma 53:

Lemma 68. Let G be a graph. For independent A ⊑ G denote

Â := {U ∈ U(G) : A ∈ U }.

Then Â is independent in U(G).

Proof. Suppose that ultrafilters U , V both contain A. There is no edge from A
to A, because A is independent. By definition U , V do not form an edge.

Below we use the fact that U(G) is finitely colourable if G was.
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Proposition 69. Let G = Graph, FCGraph. (U, µ, η) is a monad, where U is the
ultrafilter functor on G , multiplication µ is defined as

µG : UU(G)→ U(G), U ↦→ {A ⊑ G : Â ∈ U}.

Unit η = (ηG : G ∈ G ) is defined as

ηG : G→ U(G), x ↦→ E (x) = {A ⊑ G : x ∈ A}.

Proof is mostly identical to the case for Poset. We only have to check a dif-
ferent partition condition when showing that µGU ∈ U(G) for U ∈ UU(G), but
the argument is the same.
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Possible generalisation
The following are my (informal) thoughts on a possible generalisation of the entire
construction. Recall that the Čech–Stone compactification βT of a Tichonov
topological space T can be viewed as a quotient of the set of all set-ultrafilters
on T , with respect to the equivalence:

U ∼ V ⇐⇒ (∀f ∈M) lim f#U = lim f#V ,

where M is the class of all continuous functions from T into any compact Haus-
dorff space (then the limits on the right exist and are unique). An extensive
reference on the Čech–Stone compactification is Walker [8]. Since we are con-
cerned about convergence of the pushforwards f#U , the important information
is which open (or closed) sets does f#U contain. The definition is

f#U = {A ⊆ cod f : f−1[A] ∈ U }.

Hence if A is an open neighbourhood of lim f#U , U must contain f−1[A], and
so does any other equivalent ultrafilter. From this we see that the only subsets
of T important for the definition of ∼ are preimages of open sets in compact
Hausdorff spaces under continuous maps (for now call such sets compact-open,
they are complements of the more commonly used zero-sets). Then⋂︂

V ∼U

V (*)

is a collection of subsets of T closed upwards and under finite intersections, which
contains all of those compact-open sets, which are preimages of neighbourhoods of
the limit. Important question is, when is the filter (*) generated by these compact-
open sets – i.e. they form a filter basis. Then we may restrict our attention only
to

C(U ) = {A ∈ U : A is compact-open}.
For our investigation of ultrafilters the codomains were finite sets. Finite set
(with discrete topology) is a special case of compact Hausdorff space. We were
concerned with those subsets, which were preimages of single points under ap-
propriate morphisms. In discrete topology, singletons are open.

In light of these facts, the following setting is worth investigating: let C be
a complete concrete category, K its subcategory, which is also a subcategory of
CHaus, the category of compact Hausdorff spaces with continuous maps (plus
some assumptions on limits in K). To extend the construction from this thesis,
if U is an “ultrafilter” (to be defined precisely) on an object X of C, and f
a morphism from X to Y an object of K, let∫︂

X
f dU = lim f#U .

In the other direction, for such an integral/limit let

U =
{︂
f−1[A] : f ∈ C (X, Y ), Y ∈ objK, A open neighbourhood of

∫︂
X

f dx
}︂
.

For the analogy to hold, there would need to be a bijective correspondence be-
tween these. Whether or not this could be sufficient for calculating the algebras
in general is unclear to me.
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