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Abstract: A slide attack is an attack against block ciphers which have all rounds
the same. The success and the complexity of the attack is independent on the
number of rounds. The original slide attack was mainly used on a Feistel struc-
ture, but very rarely on SPN networks, because in general, SPN networks have
the last round diferent. This property does not allow to use normal slide attack.
In Dunkelman et al. [2020] are introduced new slide attacks (four of them) which
focus on SPN networks and they overcome a problem of the last round.

In this thesis we explain main idea of the original slide attack and the main idea of
two new slide attacks – a slid sets attack and a slide attack using a hypercube of
slid pairs. In both these attacks we create and use special structures of plaintexts
and ciphertexts to get more pairs of plaintexts which we call slid pairs. Moreover,
we explain some selected parts of two new slide attacks and we compute the
complexity.

The thesis is based on selected chapters in Dunkelman et al. [2020].
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Introduction
Many block ciphers are composed of r same components — rounds, which usually
use different round keys. One such round can be cryptographically weak and the
cipher is still secure because of the large number of rounds. Topic of this thesis
are slide attacks which attack ciphers whose encryption scheme is a sequence of
the same rounds. Rounds even use the same round key or a sequence of the same
keys is repeated. Slide attack has an interesting property: it can attack ciphers
with arbitrary number of rounds without change of the complexity.

During the attack we need to find a special pair of plaintexts, which is called
a slid pair (this will be described more precisely in the thesis). Once this pair is
found, only one weak round is attacked.

The original slide attack [Biryukov and Wagner, 1999] was mainly used on
Feistel structure, but very rarely on SPN networks, because in general SPN net-
works have the last round diferent or omitted. This property does not allow to
use normal slide attack.

In Dunkelman et al. [2020] authors introduce four new slide attacks which
attack SPN networks and overcome the problem of the last round. To attack
SPN we need more slid pairs. How to find them and how to use them to deduce
the key (or keys) is described in Dunkelman et al. [2020].

The aim of this thesis is to explain the main idea of the original slide at-
tack [Biryukov and Wagner, 1999] as well as the main idea of two selected new
slide attacks [Dunkelman et al., 2020]. The first chapter presents some preliminar-
ies that the reader should be familiar with before reading the thesis and sets up
terminology. In the second chapter we explain main idea of generic slide attacks
[Biryukov and Wagner, 1999]. In the third chapter we will look more closely on
two new slide attacks on SPN and we explain selected parts of the algorithm on
AES without a key schedule. We focus on AES with one key and secret S-boxes,
which will be explained in the thesis. We compute the complextity of attacks
as well. We extend some computations or explanations from Dunkelman et al.
[2020].
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1. Preliminaries
Some preliminaries are required for better understanding the thesis and for math-
ematical completeness. In this chapter we will introduce knowledge you should
be familiar with before reading the thesis.

Firstly, we will introduce some basic definitions. As a source we used lecture
notes written by Kozĺık [c] and Bashir and book Paar and Pelzl [2010].

This thesis is about attacks on block ciphers, thus our first three definitions
will explain what it means. Our first definiton is a definition of a cipher how we
understand it in cryptographic terms.

Definition 1. A cipher is a tuple (P , C, K, E, D), where P is a set of plaintexts,
C is a set of ciphertexts, K is a key space, E is an encryption algorithm E:
P × K → C and D is a decryption algorithm D: C × K → P.

Following two definitions explain us what we mean by symmetric and block
cipher.

Definition 2. (Bashir) A symmetric cipher is a cipher with an invertible encryp-
tion map E such that Dk = E−1

k for every key K∈ K and every plaintext P∈ P.
Briefly, it uses the same key for an encryption and a decryption.

Definition 3. (Delfs and Knebl [2015]) A block cipher is a cipher with symmetric
encryption algorithm E and decryption algorithm D such that

E(P, K) : Fn
2 × Fk

2 → Fn
2 ,

where plaintext has n bits, ciphertext has n bits and the lenght of the key is k bits.

A block cipher has a fixed length of input (key and plaintext) and output
(ciphertext). In this thesis we suppose k = n.

Exmples of such ciphers we will see in following sections. The following defini-
tion describes what is the product of ciphers. The definition is formal, in informal
way we could say that the product of cihers is when we use an encryption algo-
rithm of the first cipher and then of the second cipher, which creates us the new
encryption algorithm.

Definition 4. (Bashir, Kozĺık [c])Let us have two ciphers
S1 = (P1, C1, K1, E1, D1) and S2 = (C1, C2, K2, E2, D2). We define the product of
ciphers S1 and S2 to be a cipher S1 × S2 = (P1, C2, K1 × K2, E, D), where

E(x, (K1, K2)) = E2(E1(x, K1), K2)

and
D(y, (K1, K2)) = D1(D2(y, K2), K1)

for every x ∈ P1, every y ∈ C2 and every (K1, K2) ∈ K1 × K2.

If we repeat the encryption algorithm of one cipher n-times, we get its product
which is described in the following definition.

Definition 5. (Bashir) Let S be the cipher. We will use the following notation
for its product Sn = S × S × S × · · · × S, n ∈ N.
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The following definition describes formally an iterated cipher, a round function
and a key schedule. This will be needed for describing enryption schemes in
the next section. Informally, an encryption algorithm of an iterated cipher is
a product of the same round functions. A round functions use keys which are
created by a key schedule with one key as input.

Definition 6. (Bashir) Let us have two ciphers S1 = (P , C, K1, E1, D1) and
S = (P , C, K, E, D) with symmetric encryption algorithms E1 and E, where
P = C. Let f be the mapping f : S → Sn

1 and t be the mapping t : K → Kn
1 ,

n ∈ N. S is an iterated cipher and S1 is a round of S. S has n rounds. t is called
a key schedule, it creates n round keys.

In the next definition we will describe an isomorfism of two ciphers which
will be needed for the definition of a commutativity of two ciphers. Informally
we could say that for isomorfic ciphers is possible to transform first encryption
algorithm into second encryption algorithm.

Definition 7. (Bashir, Kozĺık [c]) Let us have two ciphers S1 = (P , C, K1, E1, D1)
and S2 = (P , C, K2, E2, D2). We call S1 and S2 isomorphic if there exists the
mapping f1 : K1 → K2 and the mapping f2 : K2 → K1 such that E1(x, K1) =
E2(x, f1(K1)) and E2(z, K2) = E1(z, f2(K2)) for every x ∈ P, every z ∈ P, every
K1 ∈ K1 and every K2 ∈ K2. We denote the isomorphism by S1 ≃ S2.

The following definition explains the commutativity of two ciphers. In follow-
ing section about encrypting schemes we will see how a commutativity of ciphers
can be used to manipulate with a key. It also can be used to shorten an encryption
algorithm.

Definition 8. (Bashir) Ciphers S1 and S2 commute if S1 × S2 ≃ S2 × S1.

We can classify attacks by knowledge and options the attacker has. In this
thesis we will see two types of attacks. They are defined below.

Definition 9. Known-plaintext attack is a situation when the attacker is able to
get some plaintexts (and encrypt them to get corresponding ciphertexts), but he
can not choose which ones.

Definition 10. Chosen-plaintext attack is a situation when the attacker is able
to choose plaintexts and he is able to encrypt them to obtain corresponding ci-
phertexts.

1.1 Encryption schemes and ciphers used in the
thesis

In this section we will introduce ecryption schemes used in the thesis. Again
sources of information were lecture notes by Bashir (SPN), the paper Dunkelman
et al. [2020] (KSA), lecture notes by Kozĺık [a](Feistel) and book Knudsen and
Robshaw [2011] (AES).

Firstly, we will describe SPN network and we will introduce two specific cas-
es used in the thesis – KSA structure, which is more general and AES cipher.
Secondly, we will introduce Feistel structure.
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1.1.1 SPN (Substitution-permutation network)
Definition 11. Let us have three ciphers S1, S2, S3, where P = C = Fn

2 . SPN (a
substitution permutation network) is an iterated cipher, with the round
S1 × S2 × S3. The last round is different, it has the form S1 × S2 × S1. The SPN
with n rounds has the following form

(S1 × S2 × S3)n−1 × (S1 × S2 × S1).

Ciphers S1, S2, S3 have the symmetric encryption algorithm and they can be de-
scribed following way:

• S1 = (P , C, K, E1, D1) – a key addition, E1(x, K) = x ⊕ K, for every x ∈ P
and for every K ∈ K = Fn

2 , it is equivalent to a vector addition in F2

• S2 = (P , C, {s}, E2, D2) – a substitution, the key s ∈ SP is a concatenation
of S-boxes s1, s2, . . . , sm. These S-boxes are strongly non linear mappings
s1, s2, . . . , sm : Fl

2 → Fl
2, n = m · l. In other words, s1, s2, . . . sm ∈ SFl

2
are

substitutions on Fl
2. E2 is a substitution on the input such that

E2(x, s) = s(x) for every x ∈ P .

• S3 = (P , C, {π}, E3, D3) – a permutation, the key is a permutation π ∈ Sn

(it defines us one permutation), E3 is a permutation on elements of the
input. For the input x ∈ P, x = (x1, x2, . . . , xk), we have
E3(x, π) = (xπ(1), xπ(2), . . . , xπ(k)).

The last operation is S1 - adding the round key. We call it a key whitening
and it will be explained in the next definition. There is omitted the permutation
layer S3, in the last round, because S1 and S3 commute. It has no effect to have
S3 in the last round, because it can be removed out of it.
Example. As an example we have a three round SPN which we can see in the
picture. The length of an input is n = 16 bits and the length of an input of one
S-box is l = 4 bits. P is a plaintext, C is a ciphertext, S denotes S-box and ⊕Ki

is an addition of a round key Ki, (i = 1, 2, 3, 4).

P

S S S S

S S S S

S S S S

C

⊕K1

⊕K2

⊕K3

⊕K4
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Definition 12. The addition of the key after the last round and in the first round
is called a key whitening. Without it, the substitution layer and the affine layer
could be removed out of the last (and the first) round, because they are public.
Removing them would shorten the encryption algorithm which is not desirable.

KSA

A specific case of SPN is KSA construction, which we can see in the picture (P
is a plaintext, C is a ciphertext):

P → → → → → → → → → → →CK K K KS S SA A A· · ·→

Let us have three layers in KSA:

• K denotes the key addition layer – it is same as in the SPN above,

• S denotes the substitution layer – S-boxes (they should be non linear, it is
the general property the S-boxes should have), S-boxes are same as in the
SPN above,

• A denotes the affine layer – this means some affine mapping a : Fn
2 → Fn

2 .

The KSA repeats the sequence of operations (K × S × A). At the end of the
encryption algorithm is the key whitening addition because, as in the SPN, the
affine and substitution layer are public and the algorithm could be shorten.
We will distinguish between the full KSA and the KSA with the truncated last
round.

Definition 13. The KSA, which consists of full k rounds – full KSA has an
encryption algorithm:

K × S × A × K × · · · × K × S × A = (K × S × A)k × K.

Definition 14. The KSA with the truncated last round – truncated KSA has an
encryption algorithm:

(K × S × A)k−1 × (K × S × K).

We would like to emphasise that an affine layer and a key addition layer
commute as in the SPN construction (where we denote them S1 and S3). Let
K be key and P be some text. For us it means that we can switch order of
operations in the following way:

• If we have somewhere in the encryption process part: A(K ⊕ P ) (as in
the definition of commutativity we have A × K), we can remove K out -
A(K) ⊕ A(P ) (we get A(K) × A).
It is caused by the linearity of affine layer. We obtain some key addition
again with A(K) instead of K, which is not a problem, because we know
A and A−1 (it is public information). Then we are able to compute A(K)
from K and vice versa.
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• On the other hand, if we have: K ⊕ A(P ) (K × A), we can put K inside
brackets, using A−1 we obtain A(A−1(K) ⊕ P ) (which is A × A−1(K)). It is
an affine layer applied on addition of key A−1(K). Again this A−1(K) can
be computed from K and vice versa.

Thus, by the definition of commutativity, K and A commute. By the affine
layer we mean multiplying by some matrix and adding a vector. We can show
that more specifically:
Let M be used matrix and v be added vector. Then M(K ⊕ P ) ⊕ v can be
rewritten as M−1(K) ⊕ M(P ) ⊕ v = (M−1(K)) ⊕ (M(P ) ⊕ v).
Similarly, K ⊕ M(P ) ⊕ v can be rewritten as M(M−1(K) ⊕ P ) ⊕ v.

This property will be used several times in the text.

AES

We will use AES cipher for demonstration and better understanding of attacks
in this thesis. It has similar structure to KSA structure - it has a key addition
layer, a substitution layer and also an affine layer and (like in SPN) its last round
is different. The affine layer in the last round is different as we will see later. We
will not use any key schedule, because attacks in this thesis are against ciphers
which use the same key through all rounds or repeat keys in some period. In
every round we have the same key or they are used periodically.
AES with r rounds has an encryprion scheme (without a key schedule):

• AddRoundKey (K) (whitening key addition)

• r-1 rounds

– SubBytes (SB)
– ShiftRows (SR)
– MixColumns (MC)
– AddRoundKey (K)

• the last round

– SubBytes (SB)
– ShiftRows (SR)
– AddRoundKey (K)

We shall briefly explain layers. For more details see Knudsen and Robshaw
[2011] The input of AES cipher is 128 bit plaintexts which is divided by bytes
and put into matrix (4 × 4).

Key K is also a matrix of 128 bits. The key addition proceeds byte by byte
(more exactly bit by bit). It is XORing of two vectors. This operation can be
seen as the addition of two vectors in F2(Z2) bit by bit.In the text we will denote
the key addition (AddRoundKey) by K.

The substitution layer consists of 16 8-bit S-boxes and they are applied on
every byte of the state separately in parallel. For the slide attack and thesis it is
not important how S-box exactly works inside.

7



There are more details in Knudsen and Robshaw [2011] and Paar and Pelzl [2010].
In this thesis substitution layer (SubBytes) is denoted by SB.

ShiftRows is the first part of an affine layer. The i-th row is shifted by i bytes
to the left. We denote this layer by SR.

MixColumns is the second part of an affine layer. It takes each column of
the state and mixes it into new column. To be more precise, it multiplies each
comlumn of the state by constant matrix. We compute with columns as with
4 × 1 vectors in GF (28) and matrix is 4 × 4 in GF (28). We denote it by MC.

As in the KSA, we will define truncated and full AES. Normal AES is of
course truncated, but for explaining how attack works we will sometimes use full
AES.

Definition 15. AES where MixColumns is omitted in the last round is called
truncated AES.

Definition 16. Modified AES where all rounds are identical is called full AES.

We have to distinguish if S-boxes are public or secrtet. In classical AES they
would be public, but for our uses we will also consider AES with secret S-boxes.

Definition 17. We call S-box public if it is publicly known and we are able to
applicate it on some plaintext. Whereas if S-box is secret, it is key-dependent and
we do not know inputs and outputs without the key.

Notation

Truncated AES we denote by AESt and truncated KSA we denote by KSAt. Full
AES we denote by AESf and full KSA we denote by KSAf. Secret S-boxes we
denote by s and public S-boxes by p.

For example truncated AES with secret S-boxes we denote by AESts. We
also note that we use notation for keys. In this thesis we will use encryption
algorithms which use the same key in each round. We denote such encryption
algorithm by 1K. For example truncated AES using one key with secret S-boxes
in denoted by 1K-AESts.

1.1.2 Feistel structure
The original slide attack was mostly used on a Feistle structure. A Feistel struc-
ture is a symmetric encryption scheme widely used in block ciphers. Let us denote
the left side of some general plaintext or ciphertext R by Rl. and the right side
Rr. An encryption proceeds following way:
1) The plaintext P is divided into two halves - P l and P r

2) Then the encryption proceeds using the following scheme:
P l

i+1 = P r
i

P r
i+1 = P l

i ⊕ f(P r
i , ki).

where ki is a round key and f is a round function. For abbreviation we denote
the encryption in round i by Fi, Fi(P l

i , P r
i ) = (P l

i ⊕ f(P r
i , ki), li) = (P l

i+1, P r
i+1).

3) The output is (P r
k ,P l

k) for k rounds - the output has halves in the opposite
order.

8



1.2 Other useful information
In this section we briefly introduce some basic terms used in the thesis.

1.2.1 Time and data complexity
The data, the memory and the time complexity is computed in the thesis several
times.

The data complexity means how many plaintexts (in general some data) we
need for the attack. Next important information is if these plaintexts are chosen
or just known.

The time complexity in general means how many elementary operations is
needed for the attack and it is dependent on the length of input (in bits). In
general we are intrested in the worst case which can happen. It means we are
interested in the asymptotic complexity, thus we consider oprations with the
greatest demands on time - in our attack it always will be encryption operations
(in general our encryptions can have an arbitrary number of rounds as we will see
later). In the text the time comlexity means number of encryption operations,
because other oprations are negligible if we compare them with the encryption.

The memory complexity means how many memory we need for the attack.
Again we are interested in the most demanding memory storage. In this thesis
it will aways be equal to the data complexity, because remaining used memory is
negligible if we compare it with stored plaintexts.

1.3 Useful probabilistic problems
In this section we will introduce two probabilistic problems that are mentioned in
the thesis and we use their results. The first will be the birthday paradox, which
is called paradox, because many people finds the result of it surprising and next
is the coupon collector’s problem.

1.3.1 Birthday paradox
Main idea

We are interested in finding a collision of some data – usually plaintexts, cipher-
texts or some sequences very often in this thesis. The crucial questin we should
ask is how many data and time we need to find the first collision. To compute it
we find useful the birthday paradox.

There is a lemma, proof and corollary as it was explained in lecture notes
Kozĺık [b]. I added my computation of the inequality 1 − x ≤ e−x.

Lemma 1 (Birthday paradox - general version). Let us have a set of n elements.
We choose an element from this set k-times, k ≤ n. The distribution of probability
of choosing one element is uniform and all choices are random and independent.
Then the probability of choosing one element more than once (in other words, the
probability that a collision occurs) is equal to

1 − n!
nk(n − k)!
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Proof. We first compute the probability that there in no collision p(n, k) of
choosing k different elements from the set of n elements. It is clear that if we
choose the first time we have n possible options, if we choose the second time we
get n-1 possible options etc. Thus

p(n, k) = n · (n − 1) · (n − 2) · · · (n − (k − 1))
nk

=
∏︁k−1

i=0 (n − i)
nk

= 1
nk

· n!
(n − k)! .

The complementary rule says that for an event A it holds that P (AC) =
1 − P (A). Hence the probability of choosing one element more than once is equal
to

1 − n!
nk(n − k)! .

Now we will prove the following corollary.
Corollary. For finding the first collision with probability greater than or equal to
1
2 , if we have n data (which is the fixed number), we need

√
n data.

We first show that 1 − x ≤ e−x for every x ∈ R. This part we show differently
than it was in Kozĺık [b]. It is evident that 1 − x ≤ 0 and e−x > 0 for every
x ∈ ⟨1, ∞) and consequently 1 − x ≤ e−x for every x ∈ ⟨1, ∞).
We need to show that 1 − x ≤ e−x for every x ∈ (−∞, 1⟩. To show it we use
Taylor series of e−x.

exp(−x) = 1 − x + x2

2! + x3

3! + x4

4! + x5

5! · · · .

Thus

e−x − (1 − x) = 1 − x + x2

2! + x3

3! + x4

4! + x5

5! · · · − (1 − x)

= x2

2! + x3

3! + x4

4! + x5

5! · · · = x2
(︃3 − x

3!

)︃
+ x4

(︃5 − x

5!

)︃
+ x6

(︃7 − x

7!

)︃
· · · .

It is easily seen that

x2
(︃3 − x

3!

)︃
+ x4

(︃5 − x

5!

)︃
+ x6

(︃7 − x

7!

)︃
· · · ≥ 0

for every x ∈ (−∞, 1⟩, because
x2, x4, x6 . . . ≥ 0 for every x ∈ R and

(︂
3−x

3!

)︂
,
(︂

5−x
5!

)︂
,
(︂

7−x
7!

)︂
. . . ≥ 0 for every

x ∈ (−∞, 3⟩. This gives 1 − x ≤ e−x for every x ∈ (−∞, 1⟩. It follows that
1 − x ≤ e−x for every x ∈ (−∞, 1⟩ ∪ ⟨1, ∞) = R.

Let us rewrite the formula of the probability

1 − n!
nk(n − k)! = 1 −

∏︁k−1
i=0 (n − i)

nk
= 1 −

k−1∏︂
i=0

(︃
1 − i

n

)︃
.

Replacing 1 − i
n
, i = 0, 1, 2, ..., k − 1, by exp(− i

n
) and using the fact that

1 − x ≤ exp(−x) and ∑︁k−1
i=1 − i

n
= (1−k)(− 1

n
− k−1

n
)

2 = −k(1−k)
2n

(sum of the arithmetic
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sequence) we obtain the inequality

1 −
k−1∏︂
i=0

(︃
1 − i

n

)︃
≥ 1 −

k−1∏︂
i=0

e− i
n = 1 − e

(︂∑︁k−1
i=0 − i

n

)︂
= 1 − e(−k(1−k)

2n ).

We would like to know when the probabilty p of the collision is greater than
1
2 . We have some fix n and we are interested in k which is the number of choices.
Let us express the inequlity as follows

p(n, k) = 1 − n!
nk(n − k)! ≥ 1 − e(−k(k−1)

2n ) ≥ 1
2 .

Let us approximate k. By the inequality above we have

1
2 ≥ e(−k(k−1)

2n )

Using the logarithm we get

ln
(︃1

2

)︃
≥ −k2 + k

2n
.

Which gives us the inequality

k2 − k − ln 2 · 2n ≥ 0.

Solving the inequality yields

k ≤ 1 −
√

1 + 4 · ln 2 · 2n

2 or k ≥ 1 +
√

1 + 4 · ln 2 · 2n

2 .

We are interested in an estimation of k. We need k to be greater than 0 (it
would not make the sence to have k ≤ 0, we choose elements) we thus choose
interval where k ≥ 1+

√
1+4·ln 2·2n

2 . We also want estimate lower bound of k, hence
the result is

k = 1 +
√

1 + 4 · ln 2 · 2n

2 ≈ 1.6774 ·
√

n.

Thus for finding the first collision, if we have n data, we need only
√

n choos-
ings. It means that

√
n data is enough for finding a collision. In the thesis is

number of data usually 2n, we thus need 2n/2 data.

1.3.2 Coupon collector’s problem
Main idea

Imagine the following problem. We collect coupons. There are n different kinds
of coupons and we want to collect them all. Coupons are sold in closed boxes and
we can not say which coupon is inside until we buy it and open it. The probability
that one exact coupon is inside is always equal to 1

n
. How many boxes we should

buy to collect all n kinds of coupons?

Definition 18. Let X be a random variable, which can have values x1, x2, . . . , xm

each with corresponding probability p1, p2, . . . , pm. We define the expected value
of X as ∑︁m

i=1 xi · pi and we denote it by E[X].

11



Definition 19. Bernoulli trials is the series of independent trials, where one trial
can be successful with probability p or unsuccessful with probability 1 − p.

Definition 20. Let us have a sequence of independent Bernoulli trials. We as-
sume the probability p of success is greater than 0. Let X be the random variable
which denotes the number of trials where the last one is successful and all previ-
ous trials are unssuccesful. Then P [X = k] = p(1 − p)k−1, for k = 0, 1, . . . This
probability distribution is called the geometric distribution.

We note that the expected value of the geometric distribution is equal to 1
p
. (p.

102 Gordon [1997])
Lemma 2. Let N be the random variable which denotes the number of boxes we
should buy to collect n kinds of coupons. Then E[N ] ≈ n ln(n).

This proof is taken from Ferrante and Saltalamacchia [2014], where the coupon
colloctor’s problem is described in more detail.
Proof. Let Ni be the random variable, it denotes the number of boxes we should
buy if we have i − 1 kinds of coupons and we want the i-th different coupon. The
probability pi (associated with Ni) of finding the coupon we have not collected yet,

if we have i − 1 different coupons, is equal to n − (i − 1)
n

(the number of coupons
we do not have yet divided by the number of all coupons) . The distribution of Ni

is geometric (we have unsuccessful trials until we find some new coupon). This
implies that E[Ni] = 1

pi

= n

n − (i − 1) . We know that N is the random variable
which denotes the total sum of boxes we need to buy, thus N = ∑︁n

i=1 Ni We can
now start the computation of the expected value.

E[N ] = E[
n∑︂

i=1
Ni].

Using the linearity of the expected value we get

E[
n∑︂

i=1
Ni] =

n∑︂
i=1

E[Ni] =
n∑︂

i=1

n

n − (i − 1) = n

n
+ n

n − 1 + n

n − 2 · · · n

1 = n
n∑︂

i=1

1
i
.

Authors of Ferrante and Saltalamacchia [2014] claim we can approximate the
expected value as n approaches the infinity as follows:

n∑︂
i=1

1
i

= ln(n) + γ + 1
2n

+ O( 1
n2 )

, where γ is the Euler-Mascheroni constant. γ ≈ 0.5772156649. Thus

E[N ] = n
n∑︂

i=1

1
i

≈ n(ln(n) + γ + 1
2n

+ O( 1
n2 )) = n ln(n) + nγ + 1

2 + O( 1
n

).

Hence
E[N ] ≈ n(ln(n)).

Coupon collector’s problem can be used in general way. If we want to collect n
values and we are not able to predict which values we will receive, then we should
take about n ln n values. We assume the probability is uniformly distributed.
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2. Slide attack
We will introduce some basic definitions [Biryukov and Wagner, 1999] which are
necessary for understanding the attack. This chapter is based on sections 2 and
3 Biryukov and Wagner [1999].

Definition 21. A self-similar cipher is a cipher whose encryption algorithm is a
sequence of r identical rounds Fk.

By definition every round function Fk uses the same key k. The definition can
be also viewed as a sequence of identical rounds using periodical keys (repeating
a sequence of the same keys).

P −→−→ −→ −→ −→ C· · ·Fk Fk Fk

Example. Full KSA using the same key K is a good example of a self-similar
cipher, its round function is (K × S × A).

P →→ → → → → → →→ CK K KS SA A· · ·

Definition 22. Let E be an encryption algorithm of a self-similar cipher,
E = Fk × Fk × · · · Fk × Fk. Let P and Q be plaintexts, C and D be ciphertexts
of P and Q, respectively. We call P and Q a slid pair if Q = Fk(P ). It follows
from the self-similarity of the encryption algorithm that D = Fk(C) also holds.

→ → → →→ → →P C· · ·
→ → → →→ → →· · ·Q D

Fk Fk Fk Fk Fk

Fk Fk Fk Fk Fk

Q

C

Example. The example of a slid pair P , Q (C, D are corresponding ciphertexts)
on KSA using the same key K.

P → → → → →
Q→ → →

· · ·→ → → →C

→ → → →D

K K K

K K

S S

S S

A A

A A

S

· · ·→ → → KS A→
→ A→

If we find a slid pair P , Q (with ciphertexts C, D), we obtain two equations
A(S(K ⊕ P )) = Q and K ⊕ A(S(C)) = D. This relation can be easily seen in
the previous picture.

Definition 23. A cipher when given two equations Fk(P1, k) = C1 and
Fk(P2, k) = C2 we are able to deduce the key k “easily” is called a cipher with a
weak round function.
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Example. An example for “weak” round function is one round of KSA, which
uses the same key K in all rounds. Once we have a slid pair P ,Q, we know that
A(S(K ⊕ P )) = Q, which means K ⊕ P = S−1(A−1(Q)) and thus
K = P ⊕ S−1(A−1(Q)). If we know P and Q, we are able to compute right-hand
side of the last equation and we immediately obtain a key.

Even one round of Feistel structure is weak as we will see in the following
section.

2.1 Slide attack
The slide attack is an attack on self-similar ciphers with weak round functions
using one key or periodical keys. Its advantage is that slide attack is independent
on the number of rounds. It is a structural attack, because it uses a weakness
of the structure of the encryption algorithm — it uses self-similarity. It was
first introduced in Biryukov and Wagner [1999]. Slide attacks were then demon-
strated on several real-life cryptosystems, for example on TREYFER, GOST etc.
[Biryukov and Wagner, 1999], [Biryukov and Wagner, 2000] Feistel scheme is the
most common for slide attacks on block ciphers. An example of slide attack on
KSA scheme (on SPN) can be found in the section 2 Dunkelman et al. [2020].

2.1.1 The algorithm
In general the algorithm has two phases:

• Finding a slid pair

• Using a slid pair to recover the key

After finding a slid pair it is “easy” to recover the key, because the cipher
we are attacking should have a weak round function. The attack is independent
on the number of rounds, because once we have a slid pair, we do not use the
encryption scheme, we use only round function to recover the key.

14



3. Slide attacks on almost
self-similar ciphers
First we will introduce some useful definitions. As a source we used Dunkelman
et al. [2020].

Definition 24. A cipher whose encryption algorithm repeats the same round
function as the self-similar cipher, but the last round is different, is called an
almost self-similar cipher.

In other words, the last round breaks the self-similarity of the encryption
algorithm. Again it uses the same key in all rounds (even in the last one) or
repeats a sequence of keys.
Example. An example of an almost self similar function is the SPN which uses
the same keys in all rounds, where the permutation layer is omitted in the last
round.

Definition of a slid pair in an almost self-similar cipher is similar to the one
in the previous chapter, where we used self-similar ciphers.

Definition 25. Let Fk be one of the same rounds of an almost self-similar cipher
and let Flast be the last round of an almost self-similar cipher (if we use one
key, in the case of two keys, Fk are two rounds we repeat in encryption and Flast

are two last rounds). Let us have plaintexts P and Q and their ciphertexts C
and D respectively. We call P and Q a slid pair if and only if Q = Fk(P ) and
D = Flast(C) hold.

In AES and in general KSA or SPN structure if Q = Fk(P ), then it follows that
D = Flast(C) holds. It follows from the commutativity of affine layer and from
the fact that the the key addition is the addition of vectors in Z2. An example
we will see in the subsection Settings 3.1.3, where we derive the equation for
1K-AESts.

3.1 New slide attacks
A motivation for new slide attacks is the fact that the original slide attack can
not be used on almost self-similar ciphers. Original slide attacks were mostly
used on a Feistel structure due to its self-similarity. New slide attacks focus on
SPN, where the self-similarity is broken by the last round. Some designers of
ciphers could think that a cipher with a weak key schedule and the different last
round should be resistent against slide attacks. Authors of Dunkelman et al.
[2020] explain that it is not true and their paper can be a warning for designers
of ciphers.

In this chapter we will explore two of the four new slide attacks introduced
in Dunkelman et al. [2020] - slid sets attack and attack using hypercube of slid
pairs. Both of these attacks are chosen-plaintext attacks. This chapter is based
on sections 3 and 4 in Dunkelman et al. [2020]. We will describe essential parts
of the algorithm of the slid sets attack on 1K-AESfs and 1K-AESts (1K-AESfs is
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described as it was in Dunkelman et al. [2020], whereas 1K-AESts was not fully
described there). We will also describe essential parts of the slide attack using
hypercube of slid pairs on general SPN with 1K-AESfs structure. For selected
parts we add explanations or computations for the general case.

3.1.1 Main idea
The idea is similar to the one in the original slide attack. First we collect some slid
pairs. In these attacks we need more than just one pair. Then we use “weakness”
of the cipher to solve the equations and to recover the key. The “weakness” is
caused by the structure of the encryption algorithm.

3.1.2 General algorithm
Attacks presented in this chapter have two parts.

• Collecting sufficiently many slid pairs

– Creating some structures of plaintexts where it is easy to find more
slid pairs, ideally all together in one structure

– Detecting these slid pairs

• Using these slid pairs to recover the key

3.1.3 Settings
We will use the definition of a slid pair to get equations and relations for a slid pair
in 1K-AESfs (which is self-similar) and 1K-AESts (which is almost self-similar).

1K-AESfs

1K-AESfs and 1K-AESts both use just one round key K. Suppose Pi and Qj

form a slid pair. By the definition of slid pair, we can write the first round as

(MC(SR(SB(K ⊕ Pi)))) = Qj,

We can rewrite it as
SB(K ⊕ Pi) = Qj

˜ , (3.1)
where Qj

˜ = SR−1(MC−1(Qj)).
Similarly we can get the equation for ciphertexts Ci, Dj of Pi, Qj, respectively.

We can write the last round as follows

K ⊕ MC(SR(SB(Ci))) = Dj.

From this equation we obtain

K∗ ⊕ SB(Ci) = Dj
˜ , (3.2)

where Dj
˜ = SR−1(MC−1(Dj)) and K∗ = SR−1(MC−1(K)).
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1-KSAts

Consider the same settings as for 1-KSAfs. We describe it in more detail than
in Dunkelman et al. [2020]. The last round is different but it is the only difference.
Let Pi be the plaintext and Ci its ciphertext. Then it follows that the following
relationship exists between them

Ci = K ◦ SR ◦ SB ◦ K ◦ MC ◦ SR ◦ SB ◦ K ◦ · · · ◦ MC ◦ SR ◦ SB ◦ K(Pi).

Let Qj be the slid counterpart of Pi and Dj be its ciphertext. Then

Qj = MC ◦ SR ◦ SB ◦ K(Pi).

and

Dj = K ◦ SR ◦ SB ◦ K ◦ MC ◦ SR ◦ SB ◦ K ◦ · · · ◦ MC ◦ SR ◦ SB ◦ K(Qj).

The task is to find the relation between Ci and Dj. Using the relation between
Pi and Qj and due to the fact that adding the key twice is equivalent to adding
zero (addition in Z2), we can rewrite the last two lines as follows

Dj = K ◦ SR ◦ SB ◦ K ◦ MC ◦ K ◦ K ◦ SR ◦ SB ◦ · · ·
· · · ◦ MC ◦ SR ◦ SB ◦ K ◦ MC ◦ SR ◦ SB ◦ K(Pi)⏞ ⏟⏟ ⏞

Qj

We now can see that Ci appears in this relation

Dj = K ◦ SR ◦ SB ◦ K ◦ MC ◦ K ◦
Ci⏟ ⏞⏞ ⏟

K ◦ · · · ◦ SB ◦ K ◦ MC ◦ SR ◦ SB ◦ K(Pi)⏞ ⏟⏟ ⏞
Qj

It easily follows that

Dj = K ◦ SR ◦ SB ◦ K ◦ MC ◦ K(Ci)

which can be rewritten as follows

K ⊕ (SR(SB(K ⊕ (MC(K ⊕ Ci))))) = Dj.

Using the linearity of MC and SR and substituting SR−1(K) by K∗, K ⊕MC(K)
by K♡, MC(Ci) by Ci

˜ and SR−1(Dj) by Dj
˜ we obtain

K∗ ⊕ SB(K♡ ⊕ Ci
˜ ) = Dj

˜ (3.3)

We note that all equations (3.1), (3.2), (3.3) have the following property.
Property. Operations SubBytes and KeyAddition are done byte by byte. In gen-
eral case of s-bit S-box, they are done by s-bit blocks separately. Thus in all
equations above can be seen as transformation of plaintexts or ciphertexts into
another plaintexts or ciphertexts by bytes separately, using 16 different functions.
One function stands for every byte. We call this property Byte by byte property.
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3.2 Slid sets attack
Firstly, we will define λ-set.

Definition 26. A λ−set of plaintexts (in this definition plaintexts of AES, s = 8)
is a set of 28k plaintexts where k bytes of the state are active. It means that
plaintexts in the λ-set attain all possible values in all active bytes separately. The
difference of plaintexts in all other bytes is equal to 0.

Example. In the slid sets attack we will use λ-set with the first byte active. We
can see how some plaintexts of one λ-set can look like in the picture below.

01

2a

03

ff

25 3c

57 b1

80 a9 12 a6

03e5 6103

2a

03

ff

25 3c

57 b1

80 a9 12 a6

03e5 6103

02

2a

03

ff

25 3c

57 b1

80 a9 12 a6

03e5 6103

03

2a

03

ff

25 3c

57 b1

80 a9 12 a6

03e5 6103

2a

03

ff

25 3c

57 b1

80 a9 12 a6

03e5 6103

fffe

· · ·

Secondly, we will define slid sets, which is a structure used in the attack.

Definition 27. Let us have sets of plaintexts A and B, |A| = |B|. We call them
slid sets when if some arbitrary plaintext Ai ∈ A has a slid counterpart Bj ∈ B,
then every plaintext in A has a slid counterpart in B.

Main idea and general information

The main idea of the slid sets attack is to use large slid sets (see definition 27). If
we find large slid sets, we will immediately have enough slid pairs, even without
the knowledge of exact pairs.

3.2.1 Construction of candidate sets
In this and following section we will describe the algorithm on 1K-AESfs. The
same algorithm can be applied on 1K-AESts, the only difference are equations
(which have the same Byte by byte property) and substitutions.

Consider two slid pairs P1, Q1 and P2, Q2. Let us compute Q1̃ and Q2̃ from
Q1 and Q2 the same way we did it in (3.1). Because of Byte by byte property it
follows that if P1 and P2 differ in one byte, then Q1̃ and Q2̃ differ in the same one
byte. This can be used in the construction of sets, which should be candidates
for slid sets.

Consider two λ - sets P and Q̃ where only the first byte of the state is active
as in the example 3.2. Without loss of generality we can assume it is the first
byte of the state.

By definition of the λ - set (26), the first byte attains all 256 (= 28) possible
values and other bytes of state have the same values in all plaintexts in the set.
Let Q be the set obtained from Q̃ such that every Qk ∈ Q is derived from Qk̃ ∈ Q̃
using the substitution we used before in (3.1). Thus for every Q̃k ∈ Q̃ it holds
that Qk = MC(SR(Q̃k)). It is obvious that all plaintexts in P differ only in
the first byte. Hence if there is any set Q such that P and Q are slid sets, the
corresponding set Q̃ is also a λ-set where the first byte is active.
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In general, let us consider SPN construction with n-bit input and output and
s-bit S-boxes. We use general λ-sets.

Definition 28. A general λ−set of plaintexts is a set of 2sk plaintexts where k
s-bit blocks of the state are active. It means that plaintexts in the λ-set attain all
possible values in all active s-bit blocks separately. The difference of plaintexts in
all other s-bit blocks is equal to 0.

The argumentation would be the same as above – we would derive equations,
where the transformation of slid plaintexts would be done by s-bit blocks sepa-
rately.

3.2.2 Detecting slid sets
The aim of this part of attack is to obtain the slid sets. Let us have many λ-sets,
which are our candidates for slid sets. We can use sets of ciphertexts to identify
the slid sets.

Let us have two sets of λ-sets – SP and SQ. Firstly, we encrypt every λ-set
P ∈ SP and for P we obtain set of ciphertexts C. Secondly, we encrypt every
λ-set Q ∈ SQ and for every Q we obtain set of ciphertexts D.

Let D̃ be obtained from D using the substitution we used before (3.2). Every
Dj
˜ ∈ D̃ is obtained from Dj ∈ D as follows: Dj

˜ = MC(SR(Dj)).
The main idea is to use the Eq. (3.2). The equation has Byte by byte property

which means Ci ∈ C is transformed into Dj
˜ ∈ D̃ using 16 functions one for each

byte separately. Therefore, for every two ciphertexts Ci, Cj ∈ C and arbitrary
byte l holds the equality C l

i = C l
j (l-th bytes of Ci and Cj are equal) if and

only if there exist D̃n, D̃m ∈ D̃ such that D̃
l

n = D̃
l

m. Using this property we can
construct a sequence of multiplicities for every byte for every set C created from
λ − set P ∈ SP . Then we try match such sequences of sequences using a hash
table. If match occurs for some C and D̃, then corresponding sets of plaintexts
P and Q are the slid sets.

This is described in the section 3 in Dunkelman et al. [2020] in more details.
Authors of the paper claim that with a high probability there should not be any
false match, in other words, a collision of non slid sets. We found a small typo
they made in one sentence in the paragraph about a collision. Sentence “If the
number of elements not appearing in both sets is different, then the sequences do
collide,” shoud be replaced by “If the number of elements not appearing in both
sets is different, then the sequences do not collide”.

3.2.3 Deducing slid pairs from slid sets
For attacking 1K-AESfs (or 1K-AESts) with a secret key dependent S-box, we
will also need to deduce exact slid pairs to determine the S-box. Suppose we
found some slid sets. For every pair of slid sets, we compute their ciphertexts
and corresponding set such that their plaintexts occurs in Eq. (3.2) or Eq. (3.3) (it
depends on the attack). We compute a sequence of sequences for every ciphertext
in such pair of slid sets. Then we try to match the sequences. The exact algorithm
is described in the section 3 in Dunkelman et al. [2020]. At the end of this process
we have find all slid pairs in a given pair of slid sets.
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3.2.4 1K-AESfs and 1K-AESts - Connecting slid pairs
The S-box is key dependent which means we can not guess the key and simply
compute multiplicities. Just knowledge of slid sets is not enough to recover the
secret material. We need to deduce exact counterparts from more given slid sets.

Assume P and Q is a given pair of slid sets and C, D are corresponding sets
of ciphertexts. D̃ is derived from D (like in (3.2), for every plaintext in D).

Now for every ciphertext Ci ∈ C and for each l-th byte of it we compute
the number of ciphertexts Cj ∈ C, i ̸= j, such that the l-th byte of Cj is equal
to l-th byte of Ci. Let us make the same computation for D. Let us make the
same computation for D. If Pi ∈ P , Qj ∈ Q form a slid pair, then corresponding
ciphertexts Ci ∈ C and Dj ∈ D have the same sequences, which follows from (3.2)
(the transformation of bytes separately). There are more details in the section 3
in Dunkelman et al. [2020]. Authors claim that if we find a match of sequences
for ciphertexts, their plaintexts form a slid pair with the high probability.

3.2.5 1K-AESfs - Recovering secret material
We can use the fact that the Eq. (3.2) has the Byte by byte property and it
determines 16 functions, one for each byte. In the previous step we connected
slid pairs Pi and Qj and we know their pairs of ciphertexts Ci, Dj, respectively.
Every such pair of ciphertexts Ci ∈ C and Dj ∈ D satisfies the equation. Thus
for every l-th byte there exists a function

Fl(x) = K∗
l ⊕ SB(x),

where input x is the l-th byte of a ciphertext Ci, K∗
l is the l-th byte of a key

K∗ = SR−1(MC−1(K)) and F (l, x) is equal to l-th byte of a corresponding
ciphertext Dj

˜ .
We will compute later, how many of connected pairs we need to get all possible

inputs and outputs of F (x). Firstly, suppose we have enough of slid pairs, thus
we have all possible input and output pairs of F (x) for all bytes.

The AES encryption process is

C = K ◦ MC ◦ SR ◦ SB ◦ K ◦ · · · ◦ K ◦ MC ◦ SR ◦ SB ◦ K(P )

which is equivalent to

C = MC ◦ SR ◦ (SR−1 ◦ MC−1 ◦ K) ◦ SB ◦ · · ·
· · · ◦ MC ◦ SR ◦ (SR−1 ◦ MC−1 ◦ K) ◦ SB ◦ K(P ),

which means

C = MC ◦ SR ◦ K∗ ◦ SB ◦ MC ◦ SR ◦ K∗ ◦ SB ◦ · · · ◦ MC ◦ SR ◦ K∗ ◦ SB ◦ K(P ),

where P is a plaintext and C is a ciphertext.
We are able to take ciphertext C and partially decrypt it because we know

inverses of MC and SR operations and now we know the inputs and outputs of
the function F (x) = K∗⊕SB(x) = SR−1(MC−1(K)⊕SB(x)) (which is equivalet
to F (x) = K∗ ◦ SB(x) = SR−1 ◦ MC−1 ◦ K ◦ SB(x)). Therefore we are able to
go through the encryption process and only operation which remains is K ⊕ P ,
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(which is equivalent to K(P )). Now we have everything we need — plaintext P
and corresponding ciphertext C (we can take some we already have), which is
partially decrypted (let denote it Cpart). Using simply XOR operation we can
solve the equation Cpart = P ⊕ K. Our key K is equal to Cpart ⊕ P.

Secondly, there is a question how many slid pairs we need to get all inputs
and outputs of Fl(x) which is the l-th byte of input and output of F (x).

We have 256 pairs of input and output values for every byte. Obviously to
retrieve all input and output values for every such function we will need more
than just one pair of slid sets or one slid hypercube, because we can assume
that one set or one hypercube of ciphertexts C does not contain all 256 needed
values in every byte (as inputs). To determine how many values we need we can
use the coupon collector problem 1.3.2. We can assume that values of l-th byte
are uniformely random distributed. Then the probability of every value is 1

256 .
Therefore using the expected value we should have n · ln n = 256 · ln 256 pairs to
recover Fl with high probability.

In general, we have n/s s-bit blocks and we want to recover all 2s input and
output pairs of function F (x) derived similarly like in the case of 1K-AESfs.
Bytes are replaced by s-bit blocks. Then the number of slid pairs needed for the
recovery of all input and output pairs of the function F (x) is equal to 2s ln(2s)
by coupon collector’s problem.

3.2.6 The data complexity
In the specific case of 1K-AESfs we can assume that one pair of slid sets gives us
256 pairs and ln 256 ≈ 6, thus we need 6 pairs of slid sets to recover all functions
for all 16 bytes. This implies how many plaintext we will need for the attack.
Firstly, we will compute how many data we need if we want to get one pair of
slid sets. We use chosen structures of plaintexts. We need two of them for the
attack algorithm. We need λ-sets with (without loss of generality) the first byte
active. To create them we can take all possible plaintexts and for every plaintext
permute its first byte. The number of all possible plaintexts is 2n = 2128 and 28

are all possible values of first byte. Hence, we can get 28 · 2128 = 2136 plaintexts
in all λ-sets in total. Plaintexts are obtained more than once. By birthday
paradox 1.3.1, 2(128+8)/2 of plaintexts is enough to detect a slid set. Hence, we
need two structures of 268 plaintexts. Let us denote them TP and TQ̃. Both
of these structures contain 260 λ − sets because there are 28 plaintexts in every
λ − set. Thus the data complexity of getting one slid pair is equal to 268 · 2 = 269

chosen plaintexts.
For retrieving secret material in the attack on 1K-AESfs and 1K-AESts we

need 6 pairs of slid sets, thus the data complexity is higher. If x denotes the
number of slid sets we have, then x · x is the number of all possible pairs we can
create and thus x · x = 6. From which follows that for us x =

√
6. Consequently,

our data complexity is 269 ·
√

6 = 269+log2
√

6 ≈ 269+1.3 = 270.3. It means 271 chosen
plaintexts. The time complexity is 271 encryptions and the same is the memory
complexity.

In general, for KSA with s-bit S-box the complexity of getting one slid pair
is (using the same steps as in not general case) 2 · 2(n+s)/2 = 2(n+s)/2+1 chosen
plaintexts. We add s+n in the exponent because 2n is a number of all plaintexts,
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2s all general λ − sets for them and we use the birthday paradox, so exponent is
divided by 2.

The attack on 1-KSAfs or 1-KSAts with s-bit S-boxes requires ln(2s) = s·ln(2)
slid pairs by the coupon collector’s problem. Using the same steps as before
in the not general case we have the data complexity 2 ·

√︂
s ln(2) · 2(n+s)/2 =√︂

s ln(2) · 2(n+s)/2+1 chosen plaintexts. The same is the memory and the time
complexity.

3.2.7 Slid sets 1K-AESts - Recovering secret material
The attack on 1-KSAts proceeds the same way as on 1-KSAfs, but instead of
Fl(x) = K∗

l ⊕ SB(x), we use the function Fl(x) = K∗
l ⊕ SB(K♡

l ⊕ x), which is
equivalent to Fl(x) = K∗

l ◦ SB ◦ K♡(x). However, the algorithm is the same.
Futhermore, the retrieving of the key, if we have enough inputs and outputs,
is done similarly. The only difference is the partial decryption of ciphertext C,
because we use Eq. (3.3).

We describe the algorithm in more detail than in Dunkelman et al. [2020].
Again, the AES encryption process is

C = K ◦ SR ◦ SB ◦ K ◦ MC ◦ SR ◦ SB · · · ◦ K ◦ MC ◦ SR ◦ SB ◦ K(P )

where P is a plaintext and C is a ciphertext. Using the fact that adding K twice
is equal to adding zero this can be rewritten as

C = K◦SR◦SB◦K◦MC◦K◦K◦SR◦SB◦· · ·◦K◦MC◦K◦K◦SR◦SB◦K(P ).

Using the linearity of SR we have

C = SR ◦ SR−1 ◦ K ◦ SB ◦ K ◦ MC ◦ K ◦ SR ◦ SR−1 ◦ K ◦ SB ◦ · · ·
· · · K ◦ MC ◦ K ◦ SR · SR−1 ◦ K ◦ SB ◦ K(P ).

If we subtitue SR−1 ◦ K by K∗ we obtain

C = SR ◦ K∗ ◦ SB ◦ K ◦ MC ◦ K ◦ SR ◦ K∗ ◦ SB ◦ · · ·
· · · K ◦ MC ◦ K ◦ SR · K∗ ◦ SB ◦ K(P ).

Using the linearity of MC we obtain

C = SR ◦ K∗ ◦ SB ◦ K ◦ (MC ◦ K) ◦ MC ◦ SR ◦ K∗ ◦ SB ◦ · · ·
· · · K ◦ (MC ◦ K) ◦ MC ◦ SR · K∗ ◦ SB ◦ K(P ).

If we subtitue K ◦ (MC ◦ K) by K♡ we have

C = SR ◦ K∗ ◦ SB ◦ K♡ ◦ MC ◦ SR ◦ K∗ ◦ SB ◦ · · ·
· · · K♡ ◦ MC ◦ SR · K∗ ◦ SB ◦ K(P ).

Now we can partially decrypt ciphertext C because we know inputs and outputs
of the function Fl(x) = K∗

l ⊕ SB(K♡ ⊕ x) which is equivalent to
Fl(x) = K∗

l ◦ SB ◦ K♡(x) and inverses of MC,SR. In the end of the partial
decryption only K ⊕ P remains and the rest of the retrieving key algorithm is
identical to the rest of key retrieving algorithm in the attack on 1K-AESfs 3.2.5.
The slid sets attack on 1-KSAts has the same time, memory and data complexity
because used equations are the only difference.
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3.3 Slide attack using a hypercube of slid pairs
Equations used in this section follow from 1K-AESfs. However, we will compute
with general SPN with s-bit S-boxes and n-bit input and output. All equations
will remain the same for simplicity. Operations MC, SR can be viewed as some
general affine operations, SB as some general substitution layer and K as an
addition of n-bit key K. These changes do not affect the algorithm. We note
that our general SPN network has secret S-boxes.

We will start with a formal definition of a hypercube. Firstly, we will define
a graph.

Definition 29. [Matoušek and Nešetřil, 2019] A graph G is an ordered tuple
(V, E), where V is an non empty set, its elements are called vertices, and E is
a set of subsets of V , where every of these subsets contains exactly two elements.
Elements of E are called edges.

Now we can define a hypercube.

Definition 30. A k-dimensional hypercube is a graph (V, E), where V are all
k-bit numbers, k ∈ N. E is a set of all edges, each edge comprises of two vertices
such that their difference is exactly one bit.

Let us make the following observation. Let P, Q and F, G be slid pairs. Plain-
texts G̃ and Q̃ are computed using (3.1). If P and F differ in arbitrary i-th s-bit
block, G̃ and Q̃ must only differ in the i-th s-bit block as well. This property
follows from Eq.(3.1) and Byte by byte property. It means this i-th s-bit block
is the only place where P and F differ and G̃ and Q̃ differ.

Assume we have a slid pair P , Q. Then we create new slid pair F , G, where
we change i-th s-bit block in F and G̃. Such a new pair definitely satisfies the
equation of a slid pair in all s-bit block but the i-th. The i-th block satisfies th
Eq.(3.1) with probability 2−s. Then new pair is a slid pair with probability 2−s.

This property gives us a friend pair defined below.

Definition 31. A friend pair F ,G is a pair obtained from a slid pair P , Q such
that F and P differ in only i-th s-bit block and G̃ and Q̃ differ in only i-th s-bit
block.

G̃ and Q̃ are computed from G and Q using Eq.(3.1). The transformation
in (3.1) is done by s-bit blocks separately, because the Eq.(3.1) has Byte by
byte property. A friend pair is a slid pair with probability 2−s, because of the
observation above the definition.

Main idea and general information

The main idea of the attack is to use a structure called a hypercube of plaintexts
to detect a hypercube of slid pairs. A hypercube of slid pairs is created using one
pair of plaintexts and its friend pairs as we will see.
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Hypercube of plaintexts

Definition 32. Let us have t ∈ N, 1 ≤ t ≤ n/s. Let Pi ∈ TP be plaintext, TP is a
set of plaintexts. Let ak, 1 ≤ k ≤ t, be arbitrary fixed vectors whose only non-zero
s-bit block is k-th. A t-dimensional hypercube of plaintexts is a hypercube whose
every vertex is one α = (α1, α2, . . . , αt) ∈ Ft

2 and corresponding plaintext

Pi,α = Pi ⊕ α1a1 ⊕ α2a2 ⊕ . . . ⊕ αtat.

Therefore, a hypercube plaintexts contains 2t plaintexts.

Hypercube of pairs of plaintexts

Definition 33. Let Pi, Qj be plaintexts. Let ak, bk, 1 ≤ k ≤ t, be arbitrary fixed
vectors whose only non-zero s-bit block is k-th. Let α = (α1, α2, . . . , αt) ∈ Ft

2. A
t-dimensional hypercube of pairs of plaintexts is a hypercube whose every vertex
is α and corresponding pair (Pi,α, Qj,α), where

Pi,α = Pi ⊕ α1a1 ⊕ α2a2 ⊕ . . . ⊕ αtat

and
Qj,α = MC(SR(Q̃j ⊕ α1b1 ⊕ α2b2 ⊕ . . . ⊕ αtbt)).

Q̃j is obtained from Qj using Eq.(3.1).

Hypercube of slid pairs

The following lemma gives us an idea, what is meant by a t-dimensional hypercube
of slid pairs.

Lemma 3. Let t ∈ N, 1 ≤ t ≤ n/s. Let ak, bk, 1 ≤ k ≤ t, be fixed randomly
chosen vectors whose only non-zero s-bit block is k-th. Assume that Pi, Qj form
a slid pair and t friend pairs Pi ⊕ ak and MC(SR(Qj

˜ ⊕ a′
k)) are also slid pairs.

Then for any α = (α1, α2, . . . , αt) ∈ Ft
2 plaintexts

Pi,α = Pi ⊕ α1a1 ⊕ α2a2 ⊕ . . . ⊕ αtat

and
Qj,α = MC(SR(Qj

˜ ⊕ α1a
′
1 ⊕ α2a

′
2 ⊕ . . . ⊕ αta

′
t))

are also slid pairs.

Proof. The proof follows from the Byte by byte property of Eq. (3.1). The equa-
tion represents transformation by s-bit blocks. A slid pair Pi, Qj and t friend
pairs Pi ⊕ ak, MC(SR(Qj

˜ ⊕ a′
k)) which are by assumption slid pairs satisfy the

Eq. (3.1). It mneans they satidfy the equation by s-bit blocks separately. Hence
our new pairs must be slid pairs as well, because s-bit block by s-bit block they
also satisfy the Eq. (3.1).
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Definition 34. Let Pi, Qj be plaintexts. Let ak, bk, 1 ≤ k ≤ t, be arbitrary fixed
vectors whose only non-zero s-bit block is k-th. Let α = (α1, α2, . . . , αt) ∈ Ft

2. A
hypercube of slid pairs is a hypercube of pairs of plaintexts (Pi,α, Qj,α)

Pi,α = Pi ⊕ α1a1 ⊕ α2a2 ⊕ . . . ⊕ αtat

and
Qj,α = MC(SR(Qj

˜ ⊕ α1a
′
1 ⊕ α2a

′
2 ⊕ . . . ⊕ αta

′
t))

such that (Pi,α, Qj,α) are slid pairs.

We construct a hypercube of slid pairs by using all possible α. It contains all
pairs Pi,α, Qj,α. Each α is one vertex of a hypercube of slid pairs and every created
pair of plaintexts correspond to one α. Thus we have one pair of plaintexts in
every vertex. Therefore, a hypercube of slid pairs contains 2t slid pairs.

We note that there is a little typo in the section 4 in Dunkelman et al. [2020].
Authors use wrong slid pairs many times. For example the pair Pi ⊕a and Qj

˜ ⊕a′

instead of Pi ⊕ a and MC(SR(Qj
˜ ⊕ a′)). However, these typos do not affect the

result.
By the Lemma 3 for construction of hypercube of slid pairs we need a slid pair

Pi, Qj. A randomly chosen pair is a slid pair with probability 2−n, because all n
bits must satisfy the Eq.(3.1). Then we construct t friend pairs, each of them is
a slid pair with probability 2−s. We need all t vectors (non-zero bytes) to satisfy
the Eq. (3.1) to create a hypercube of slid pairs by Lemma3. Thus all created
pairs are slid pairs with probability 2−st.

We will summarize what we know:

• The probability that a random pair is a slid pair is equal to 2−n.

• The probability that a friend pair of a slid pair is also a slid pair is equal
to 2−s.

• The probability that all t friend pairs of a slid pair are also slid pairs is
2−ts.

• The probability that a hypercube of plaintexts constructed using a ran-
dom pair of plaintexts is a hypercube of slid pairs is 2−n · 2−ts.

Definition 35. Let Pi be a plaintext. Let us have a corresponding hypercube of
plaintexts Pi,α. Let Ci,α be corresponding ciphertexts. Let us have a list of all
collisions (α, β, l), (Ci,α)l = (Ci,β)l which denotes that the l-th s-bit block of Ci,α

is equal to the l-th s-bit block of Ci,β. This list is lexicographically ordered and we
denote it by CollPi

.

Lemma 4. Assume Pi, Qj are a slid pair, Ci, Dj are corresponding ciphertexts,
respectively. Assume we have a t-dimensional hypercube of slid pairs (Pi,α, Qj,α).
Ci,α, Dj,α are ciphertexts of Pi,α, Qj,α, respectively. The ciphertext D̃j,α is com-
puted using (3.2). If (Ci,γ)l = (Ci,β)l, for some γ, β ∈ Ft

2, then (D̃j,γ)l = (D̃j,β)l.
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Proof. Let us have l, γ and β such that l-th s-bit of Ci,γ is equal to the l-th
s-bit block of Ci,β. (Pi,α, Qj,α) are slid pairs for every α. It follows that for a pair
of their ciphertexts hold the equations (using Eq.(3.2))

D̃j,γ = K∗ ⊕ SB(Ci,γ)
and

D̃j,β = K∗ ⊕ SB(Ci,β).
We apply the same function on the same value of s-bit block. The function has
Byte by byte property. It follows that the value of the funcion will be the same
for the same s-bit blocks.

3.3.1 The algorithm
Let TP , TQ be two structures of plaintexts, where we want to find a slid pairs
Pi ∈ TP , Qj ∈ TQ. Let |TP | = |TQ| = D. If we would take all possible pairs Pi, Qj

and we would check if they form a slid pair the time complexity would be equal
to D2. We note because of secret S-box, the check can not be done easily.

Authors of the paper Dunkelman et al. [2020] have better solution and they
introduce the algorithm with the time complexity equal to 2D.

3.3.2 Construction of hypercubes
Let us have two sets of plaintexts TP and TQ̃. We start with plaintexts Pi ∈ TP ,
we fix t s-bit blocks ak, 1 ≤ k ≤ t and we compute their t-dimensional hypercubes
using α ∈ Ft

2 and ak. We create hypercubes of plaintexts Pi,α described in 3.3.
Then we compute ciphertexts Ci of all plaintexts in all created hypercubes. For
every Pi,α in a hypercube we have corresponding Ci,α. We take plaintexts Qj ∈ TQ̃

and compute Qj using (3.1). We fix s-bit blocks bk, 1 ≤ k ≤ t and we compute
t-dimensional hypercubes of Qj,α using Qj

˜ and bk. Again we use the construction
of hypercube described in 3.3. Then we compute ciphertexts Dj,α corresponding
to Qj,α and D̃j,α using (3.2). Finally, we have hypercubes of plaintexts Pi,α and
corresponding ciphertexts Ci,α. We also have hypercubes of plaintexts Qj,α (based
on Q̃j,α) and their corresponding ciphertexts Dj,α and D̃j,α.

3.3.3 Detection of hypercubes of slid pairs
We will try to match created hypercubes to obtain a hypercube of slid pairs.

The Lemma4 implies that the equality CollPi
= CollQj

holds.
We will now describe, how to use the Lemma 4 to match hypercubes.
We search for match of lists corresponding to some Pi and Qj. For every

Qj separately we try to a match of lists in a hash table. Match occurs when
CollPi

= CollQj
. If we find a match, then we have a hypercube of slid pairs with

high probability.
It means we have a slid pair Pi and Qj and 2t − 1 pairs in the hypercube,

where all of them are slid pairs with high probability. We store all found pairs in
list L. However, the dimension t of hypercubes must be chosen correctly to have
enough matches and high probability.
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Input: arbitrary vectors ak, bk whose k-th s-bit block is the only
non-zero and 1 ≤ k ≤ t., dimension t and structures of plaintexts
TP , TQ̃ such that |TP | = |TQ̃| = D

Output: list L of pairs of plaintexts witch are with high probabiliy slid
pairs

Compute TQ from TQ̃.;
Ask for the encryption of two structures TP , TQ.;
Initialize an empty list L.;
Construction of hypercubes:
for each plaintext Pi ∈ TP do

Compute the 2t − 1 plaintexts in the hypercube of plaintexts Pi,α

using vectors ak and find corresponding ciphertexts Ci,α.;
Find all collisions of the form (Ci,α)l = (Ci,β)l,;
Store them in a list CollPi

of triples (α, β, l) arranged in lexicographic
order, along with the value Pi used to create them.

end
for each plaintext Q̃j ∈ TQ do

Compute Qj, the 2t − 1 plaintexts Q̃j,α and all corresponding Qj,α in
the hypercube of plaintexts using vectors bk. Then find
corresponding ciphertext Dj,α), and compute values D̃j,α,;

Find all collisions of the form (D̃j,α)l = (D̃j,β)l,;
Store them in a list CollQj

of triples (α, β, l) and check for a match
CollPi

= CollQj
in the hash table.

end
Detection of hypercubes of slid pairs:
for each match in the table do

Add the corresponding pair (Pi, Qj) and corresponding 2t − 1 pairs in
the hypercube of pairs of plaintexts to L.;

end
Recovering secret material:
for each slid pair (Pi, Qj) ∈ L do

Use the relation between Pi and Qj
˜ to detect an input/output pair of

SB ◦ K for each byte, until the entire function is detected.
end
Key recovery:
Once SB ◦ K in all s-bit blocks is detected, find the final key whitening
operation K using a single trial encryption.

Algorithm 1: A slide attack using hypercubes of slid pairs
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3.3.4 Recovering secret material and key recovery
The algorithm of recovery is similar to the algorithm in the section 3.2.5 for slid
sets attack.

3.3.5 The data complexity
Let us have to structures of plaintexts TP , TQ same as in the algorithm. Let
|TP | = |TQ| = D. We consider all possible pairs Pi ∈ TP , Qj ∈ TQ. For every
pair we can construct a t-dimensional hypercube of pairs of plaintexts. Then the
expected number of t-dimensional hypercubes of slid pairs which can be found in
our data is equal to D2 · 2−n · 2−ts. The value D2 is the number of all possible
hypercubes of plaintexts created using some fixed vectors ak (see the definition
of the hypercube 3.3). The value 2−ts · 2−n is the probability that the hypercube
of pairs of plaintexts is a hypercube of slid pairs. Every hypercube of slid pairs
contains 2t slid pairs. Then D2 · 2−ts · 2−n · 2t is the expected number of slid pairs
which can be found in our data.

By coupon collector’s problem we need at least 2s ln(2s) slid pairs for the key
recovery. It means our data must contain enough slid pairs and we will show that
if we choose correct t, the algorithm will find them with the high probability.
Firstly, we will determine D.

By the coupon collector’s problem the equality

D2 · 2−n · 2−ts · 2t = D2 · 2−n+t(1−s) ≥ 2s ln(2s)

must hold. Then
D2 ≥ ln(2) · s · 2n+s+t(s−1).

We have some fixed n and s. We want D be as small as possible, because of the
data complexity. Thus

D =
√︂

ln(2) · s · 2(n+s+t(s−1))/2.

For simplicity we round
√︂

ln(2) up to 1. Then D =
√

s · 2(n+s+t(s−1))/2.
To reduce the data complexity, we want t to be as smallest as possible. Thus

we have to find the smallest t for which the algorithm works.
Authors of Dunkelman et al. [2020] proved and heuristically verified that t =

s/2 + 1 is the optimal choice of t. The probability of a random match of two
plaintexts Pi ∈ TP and Qj ∈ TQ is equal to 2−2n. Authors explained that if
t > s/2 + 1 then the probability of a match of CollPi

and CollQj
is smaller than

2−2n. Which means that the algorithm detects only hypercubes of slid pairs.
While we construct hypercubes from plaintexts in TP and TQ we need to create

new plaintexts. However, we can construct TP and TQ̃ such that they contain all
friend pairs already. It is useful, because we do not have to create new plaintexts
and thus the amount of data will remain the same.

We take smaller structures, in general case we take general λ-set with s-bit
blocks, where t of them are active. Let P and Q̃ be such structures. If we
construct a hypercube and we use pair Pi ∈ P , Qj

˜ ∈ Q̃, then created friend pairs
(and other created pairs) are elements of P and Q̃. One such structure contains
2ts plaintexts. Consequently, we need

√
s·2(n+s−t(s+1))/2 such structures in SP and
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in SQ̃. Hence SP and SQ̃ are unions of such λ-sets with t s-bit blocks active. We
can get SQ from SQ̃. Here we have some general Q and Q̃, substitution depends
on the cipher.

In conclusion, we will need 2 ·
√

s ·2(n+s+t(s−1))/2 =
√

s ·2(n+s+t(s−1))/2+1 chosen
plaintexts. Thus the data complexity is

√
s ·2(n+s+t(s−1))/2+1, the time complexity

is
√

s · 2(n+s+t(s−1))/2+1 encryptions and the same is the memory complexity, it is
equal to

√
s · 2(n+s+t(s−1))/2+1.
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Conclusion
Let us summarize this thesis. The aim of this thesis was to explain main idea of
original slide attack [Biryukov and Wagner, 1999] as well as the main idea of two
selected new slide attacks [Dunkelman et al., 2020].

The first chapter presents some preliminaries which are needed to understand
the thesis, notation and terminology. The second chapter provides an explanation
of the main idea of the original slide attack[Biryukov and Wagner, 1999]. The
third chapter introduces two new slide attacks on SPN [Dunkelman et al., 2020]
– a slid sets attack and a slide attack using a hypercube of slid pairs. A slid sets
attack uses special structures to get more slid pairs which are called slid sets. In
such slid sets are in general slid pairs which are not determined exactly. A slide
attack using hypercube of slid pairs uses hypercubes to detect more slid pairs. It
creates such hypercube using one slid pair and his friend pairs.

We describe two parts of the algorithm of attack on 1K-AESfs. The variant of
the slid sets attack on 1K-AESts is also explained. In addition we provide some
computations for general case of the attack.
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