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This thesis discusses a stochastic programming asset-liability management model
that deals with decision-dependent randomness and a subsequent contamination
analysis. The main model focuses on a pricing problem and the connected asset-
liability management problem describing the typical life of a consumer loan. The
endogeneity stems from the possibility of their customer rejecting the loan, the
possibility of the customer defaulting on the loan and the possibility of prepay-
ment which are all affected by the company’s decision on interest rate of the loan.
Another important factor, which plays a major role for liabilities, is the price of
money in the market. There, we focus on the scenario generation procedure and
develop a new calibration method for estimating the Hull-White model [Hull and
White, 1990a] under the real-world measure. We define the method for the gen-
eral class of one-factor short-rate models and perform an extensive analysis to
assess the estimation performance and properties. Further, we extend the con-
tamination approach of Dupačová [1986, 1996] to models with decision-dependent
randomness. This gives us a tool for investigating stability of stochastic programs
with decision-dependent randomness with respect to changes in the underlying
probability distributions. That represents an important step before deploying
any model to production. In this thesis, we first extend the current results by de-
veloping a tighter lower bound applicable to wider range of problems. Thereafter,
we define contamination for decision-dependent randomness stochastic programs
and prove various lower and upper bounds. We split the cases into two separate
sub-classes based on whether the feasibility set is fixed or probability-distribution-
dependent and discuss several tractable formulations. The method is illustrated
on the aforementioned example of the consumer loan stochastic program as well
as on its extended version with implemented risk constraint.
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Introduction
Stochastic programming is a well established area of mathematical optimization,
whose main results have been published in multiple manuscripts. Between the
most important, we should include Birge and Louveaux [1997], Ruszczyński and
Shapiro [2003] and Kall and Mayer [2005], and further Shapiro et al. [2014] and
Pflug and Pichler [2016]. Its main objective is to provide a framework to solve
optimization problems under uncertainty. Such problems are tackled in various
fields, among these, we should mention transportation and logistics, medicine,
biology and also finance, especially the area of financial planning and control.
The first application of stochastic programming in finance occurred in 1986 when
Kusy and Ziemba published their famous paper dealing with a bank asset-liability
model [Kusy and Ziemba, 1986]. Two years later, Dempster and Ireland [1988]
introduced a different model that focused on the immunisation of liabilities and
for the first time took into account the risks that are associated with financial
problems. Carino et al. [1994] presented the very first asset-liability model for an
insurance company, which was later followed by many others. There have also
been several applications focused on insurance companies [Hoyland, 1998, Pliska
and Ye, 2007, Broeders et al., 2009] and pension funds [Dert, 1995, Consigli and
Dempster, 1998, Geyer and Ziemba, 2008, Dupačová and Poĺıvka, 2009]; these
are the two types of financial institutions where stochastic programming was used
most often.

These works, however, do not exhaust the potential of applications for stochas-
tic programming in finance, and especially in asset–liability management. For
example, Consigli [2008] investigated the problem of an individual investor who
needed to undertake investment decisions and manage his consumption. Kopa
et al. [2018] analysed the effect of new, modern risk constraints on the optimal
solution as they applied a second-order stochastic dominance constraint. An im-
portant aspect of the modelling exercise is to focus on the accuracy of model
formulation. Vitali et al. [2017] and Moriggia et al. [2019] paid a lot of attention
to this aspect, considering a variety of investment possibilities. Recently, Con-
sigli et al. [2020] studied optimal decisions from the household point of view and
Zapletal et al. [2020] investigated optimal policies in emission management of a
steel company.

So far, in all the stochastic programming models of asset-liability management
that we have seen, authors look for optimal decisions of a single agent (insurance
company, pension fund, etc) in the market. Such market is always considered
large enough to justify assuming independence of evolving market prices from
agent’s strategies, and thus risk sources are treated as exogenous. In our work, we
focus on a stochastic programming formulation of an asset-liability management
problem which includes a pricing decision. Such a decision is a natural part of
the business of every company, as companies need to price their products. Yet,
given that it brings significant complications to the model solution, it has not,
according to our best knowledge, been tackled in other academic works.

In financial problems, this decision-dependent uncertainty is typically ob-
served within a bilateral relationship. One party acts as a price setter and its
pricing decision affects the demand for some good of the second party. In math-
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ematical terms, this can be translated to observing a change in the underlying
probability distribution of the demand (endogenous randomness). Apart from
demand distribution, probabilities of some subsequent events such as default and
prepayment can also be affected. Other decisions, such as marketing decisions
or branding investments, also indirectly affect the company’s books and lead to
decision-dependent uncertainty.

The issue of endogenous uncertainty was first addressed by Pflug [1990] who
investigated a general Markovian process in which states depended on the deci-
sion parameter of the model. In the following years, more models with decision-
dependent randomness have emerged; these can be generally divided into two
types. In the first type, decisions taken in the program help to determine un-
certainty in the model. This case was tackled, for example, by Jonsbraten et al.
[1998], Goel and Grossmann [2004] and Tarhan et al. [2009] who all described
models for finding the optimal strategy in an offshore oil field development plan.
The general idea was that companies could decide to run exploratory analyses
on potential oil fields, obtain a better estimate of how much oil is available and
determine where it is more profitable to set up a plant. In the second type, as is
the case of our problem, decisions affect scenario probabilities. This type of en-
dogenous uncertainty was thoroughly investigated, for example, in network flows
problems [Ahmed, 2000, Held and Woodruff, 2005, Vishwanath et al., 2004]. Un-
der this setting, the probabilities of scenarios depend directly on decisions taken
and they can be also considered as variables in the program.

In one part of the thesis, we formulate a stochastic programming model de-
scribing a consumer loan that a company gives to its customer. This acknowledges
a relationship between the two parties. In this situation, the customer’s behaviour
is affected by the company’s actions which induces the decision-dependent rela-
tionship. Studying such an financial application of stochastic programming is one
of the contributions of this thesis.

Stochastic programming models aim to find solutions of optimization problems
which involve uncertainty. For this purpose, one usually uses the “best estimate”
of the stochastic distribution depicting the uncertainty. However, people, for ex-
ample from the financial industry, quickly started to ask what would happen if
the underlying distribution was different. These questions were mainly driven
by observed crises regularly challenging the financial industry. For this reason,
investigating the stability and robustness of the stochastic programs became an
important part of the modelling exercise. Consequently, various methods were
proposed in this direction, for example, the min-max approach of Žáčková [1966]
and methods based on the local stability results for non-linear parametric pro-
gramming nicely summarized in works of Robinson [1987], Bonnans and Shapiro
[1998], Römisch [2003] or more recently in Shapiro et al. [2014].

The min-max approach relies on a definition of the ambiguity set. This set
defines the stochastic distributions considered in the distributionally robust pro-
gram. It can be constructed via either moment matching [Wagner, 2008, Zymler
et al., 2013, Zhang et al., 2018] or some statistical distance such as ϕ−divergence
[Jiang and Guan, 2016], Wasserstein metric [Esfahani and Kuhn, 2018, Blanchet
and Murthy, 2019] or norm-based distances [Jiang and Guan, 2018]. Robustness
of decision-dependent randomness stochastic programs via the min-max approach
has been recently discussed in several papers. Theoretical foundations via vari-
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ational theory were presented by Royset and Wets [2017], while Zhang et al.
[2016] show Holder continuity properties for a specific class of distributionally ro-
bust problems. Furthermore, Noyan et al. [2018] developed a single-stage problem
where the ambiguity set is determined by Wasserstein metric. Yu and Shen [2020]
studied a multi-stage problem, where they opted to use first and second moment
matching method to define the ambiguity set. A similar approach was also used
by Basciftci et al. [2021] in their study of a distributionally robust facility loca-
tion problem. Other possibilities on how to construct the ambiguity set under
the decision-dependent setting are investigated by Luo and Mehrotra [2020] who
formulated five types of ambiguity sets defined by simple measure and moment
inequalities, bounds on moment constraints, Wasserstein metric, ϕ−divergence
and based on Kolmogorov-Smirnov test.

In the final part of the thesis, we focus on the contamination approach of
Dupačová [1986, 1996], which combines stochastic and parametric programming.
It investigates the behaviour of the optimal value function of a stochastic program,
when we move from the initial distribution P to a contaminating, or stress-testing
distribution Q. Roughly speaking, we define a contamination parameter t ∈ [0, 1]
and then distribution Pt = (1 − t)P + tQ. For each t, we also define a stochastic
program by substituting for the distribution P the distribution Pt in the original
program. Then, we investigate how the optimal value changes with t. We aim to
construct lower and upper bounds for the optimal value function (as a function
of t). This gives us an approximation of the optimal objective value for any level
of contamination without a need to solve it for each t. Such bounds have been
constructed for a variety of stochastic programs. Dupačová [1996] developed them
in the case of a stochastic program with a fixed set of feasible decisions. These
were applied for example in Dupačová and Poĺıvka [2007] and Dupačová and
Kozmı́k [2015a,b]. In the latter work, there was also an extension to multi-stage
and risk-averse stochastic programs. Dupačová and Kopa [2012] further derived
bounds for the case of probability-dependent set of feasible decisions and applied
them to test the robustness of mean-CVaR optimization model and stochastic
programs with second-order stochastic dominance constraints. Dupačová and
Kopa [2014] then extended the work to application on programs with first-order
stochastic dominance constraints.

Another recent work discussing contamination or stress-testing is that of
Moriggia et al. [2019], who invented nodal contamination. In their numerical
study, they modify values in scenarios (merge two same-size scenario trees). The
advantage of their approach is that it neither increases computational complexity
of the original problem nor breaks equiprobability of scenarios, which might be
required in some applications. Another technique, designed especially for stress-
testing, was described in Rusý and Kopa [2018]. They investigate the robustness
of the solution in their multi-stage program by fixing the here-and-now decisions,
obtained as a solution of the stochastic program with probability distribution P,
and then, modify scenario values in the subsequent stages. With such an ap-
proach, they investigate what would happen if the here-and-now solution was
applied while the realization of the random elements in the first stage was not
considered in the original scenario tree characterized by the distribution P.

In this thesis, we first extend results for contamination in exogenous random-
ness stochastic programs by proving tighter lower bound applicable to a wider
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range of problems. Then, we define contamination also for the endogenous un-
certainty or decision-dependent randomness stochastic programs. To our best
knowledge, this was previously only shortly mentioned by Dupačová [2006], where
a concise definition and discussion is provided. Yet, situations where decisions
affect random elements are frequently seen in the financial industry, but due to
their complicated nature, not much is known about their properties. In general,
any pricing, marketing or advertising decision has a direct effect on the demand
for some good of a company and hence it needs to be considered in problems
of welfare maximization. Decision-dependent randomness problems represent an
important class of problems tackled by most financial companies.

However, before we move to the formulation of a decision-dependent asset-
liability management stochastic program and contamination of stochastic pro-
grams, we first develop a new calibration method for estimating one-factor short-
rate models. This is a prerequisite for applications of stochastic programming in
finance, as we work with money and interest rate represents the cost of capital
so it needs to be taken into account. These costs are not deterministic and hence
forecasting models need to be used to create scenarios. The class of one-factor
short-rate models is then frequently used for such tasks.

The main idea of our approach lies in introducing postcalibration errors and
maximising the likelihood of model implied yields in periods subsequent to the cal-
ibration time. The short rate, which we consider as the sole yield curve factor, is
modelled as a latent process. We infer the short rate, jointly with postcalibration
errors, by inverting the so-called postcalibration equation. By assuming normal-
ity for the postcalibration errors we are able to formulate a profile log-likelihood
function, which is easy to maximise by using standard numerical algorithms.

Classical time-homogeneous one-factor short-rate models, such as Vaš́ıček mo-
del [Vasicek, 1977] or Cox–Ingersoll–Ross (CIR) model [Cox et al., 1985b] proved
to be useful for capturing yield curve dynamics, but their use in pricing is limited.
The reason is that time-homogeneous models do not match market yield curve
data perfectly. This drawback has been overcome by time-inhomogeneous models
pioneered by Ho and Lee [1986] and Hull and White [1990b]. Time-homogeneity
is implied by assuming constant model parameters and means that the transition
probability of the short rate and thus the whole yield curve is independent of time.
A time-inhomogeneous short-rate model is a relaxation of a time-homogeneous
model from constant to time-varying parameters.1

Hull and White [1990b] suggest to replace a constant unconditional mean of
the one-factor Vaš́ıček model by a function of time and market forward rates.
This modification is known as the Hull-White model. Thanks to its tractability
and ability to fit yield curve data exactly, the model has become popular among
practitioners. This is the reason why we select this model for numerical inves-
tigation and compare the performance of our method to other calibration and

1[Brigo and Mercurio, 2001, Chapter 3] call time-inhomogeneous models “exogenous” as the
market yield curve enters the model in the form of time-varying parameter. Time-homogeneous
models are then called “endogenous” as the model yield curve may differ from the market yield
curve. [Hull, 2008, Chapter 30] denotes time-homogeneous models as “equilibrium”, whereas
time-inhomogeneous models as “no-arbitrage”. The rationale for this classification is that the
CIR model is a byproduct of a general equilibrium complete economy model developed in Cox
et al. [1985a], and “no-arbitrage” reflects the perfect fit of any market yield curve by a time-
inhomogeneous model.
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estimation approaches.
We use a time series of yield curves and estimate model parameters under

both risk-neutral and real-world probability measures. Our estimation approach
thus overcomes drawbacks that may arise when calibration methods are used.
The standard practice in identification of no-arbitrage models is to calibrate the
model to market prices of vanilla interest rate derivatives, such as swaptions (see
Section 1.4.7). However, calibration methods are unsuitable in the following two
cases.

First, for many currencies, market prices of interest rate derivatives are not
available, and straightforward use of calibration methods is therefore not possible
[Vojtek, 2004, Witzany, 2010]. Second, calibration methods are based on a snap-
shot of market prices prevailing at a particular point in time, and thus provide
parameter values under the risk-neutral measure only. Since the market price
of interest rate risk is absent in the risk-neutral measure, the real-world interest
rate trajectory can be substantially different from its risk-neutral path, see Hull
et al. [2014] for a detailed discussion. Therefore, risk assessment and portfolio
management requires that the model is identified under both risk-neutral and
real-world probability measures. See Vedani et al. [2017] for pitfalls in life insur-
ance, Jain et al. [2019] for issues in credit risk, or Hull and White [2018] for a
general discussion.2 Fergusson [2017] studies the use of the Hull-White model for
actuarial valuation under the real-world measure, and derives the model implied
long-term yield.

Our likelihood approach builds upon estimation methods developed for time-
homogeneous short-rate models. These methods have received a fair amount of
attention. A strand of literature focuses on maximum likelihood estimation of
diffusion processes that serve as an observable proxy of the short rate. Fergusson
and Platen [2015] provide a thorough theoretical and empirical investigation of
maximum likelihood estimation to the short-rate process used in the Vaš́ıček,
CIR and 3/2 model. Fergusson [2020] considers maximum likelihood estimation
of square root (CIR) and Bessel processes, while Aı̈t-Sahalia [2002] develops a
maximum likelihood approximation, based on Hermite polynomials, to a general
diffusion process.

The maximum likelihood method is related to a strand of literature that
considers estimation of arbitrage free yield curve models. In this case, the model
parameters are estimated from a time series of yield curves, and the short rate is
typically extracted as a latent process. Chen and Scott [1993] propose a maximum
likelihood estimator for the CIR class of models, whereas Ang and Piazzesi [2003]
use a maximum likelihood approach to estimate a Gaussian macro-finance model.
As an alternative to the likelihood methods Hamilton and Wu [2012] suggest a
minimum-chi-square estimator. However, the existing papers focus dominantly
on time-homogeneous models. In fact, we are only aware of Harms et al. [2016,
2018], who develop a recursive recalibration technique for time-inhomogeneous
models. Their consistent re-calibration approach (CRC) introduces a new class of
Heath-Jarrow-Morton models called CRC models. The distinguishing feature of a
CRC model is that all of the model parameters are time-dependent or stochastic.

2To address risk-management applications, Hull and White [2018] incorporate a real-world
measure scenario analysis into their tree procedures. However, an estimate of the market price
of risk still needs to be provided externally.
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Harms et al. [2018], who mainly focus on the CRC theory, implement a CRC
version of the extended Vaš́ıček model by using realised covariance estimators,
and 3-month yield as the short-rate proxy. Harms et al. [2016] considers a three-
factor discrete-time CRC extended Vaš́ıček model, and uses a combination of
Kalman filtering, CRC recursion and realised covariance estimator to infer the
model dynamics.

In academic literature, a method for calibrating the popular Hull-White model
under both measures, so it can be used for derivatives pricing and yield curve
forecasting, has been missing. We develop such a method which can be moreover
applied to a large class of one-factor short-rate models. We see this as another
contribution of this thesis.

This thesis is organised as follows. In the first chapter, we describe the new
calibration method for the one-factor short-rate models. First, in Section 1.2, we
present the methodological core of the method and define the maximum likelihood
estimation approach. Further, in Section 1.3 the Hull-White model is formulated
under both measures. In Section 1.4 empirical performance of our estimation
approach is investigated on EUR interest rate data, including in-sample and out-
of-sample performance of the estimated model, and comparison with calibration
methods. Results mentioned in this chapter have been submitted for publication
in Klad́ıvko and Rusý [2021].

Further, in Chapter 2, we develop a program describing the life-cycle of
a loan which a company provides to an individual customer, which we believe
is the first application of stochastic programming with endogenous randomness
in finance. We present the model formulation in detail in Section 2.1. Among
other things, we also discuss what decisions can be taken and how they affect the
uncertainties the company faces. We describe scenarios, their implementation
into the program and all constraints which are part of the model formulation.
Thereafter, in Section 2.2, we show the results of this program for one parameter’s
setting to illustrate the optimal decisions and how the loan value would evolve
depending on the company’s decisions. Furthermore, we discuss the effect of the
customer’s properties on the model solution. We also mention the losses which
are incurred by the company if it does not behave in the optimal way. The model
has been published in Kopa and Rusý [2021b].

Finally, in the last Chapter 3 we discuss the contamination approach for
analysing robustness of stochastic programs. In Section 3.1, we review current
works on contamination for the programs with exogenous randomness. There,
we also show that the lower bound developed by Dupačová and Kopa [2012] for
contamination in cases with probability-dependent set of feasible decisions can
be improved. Next in Section 3.2, we define the meaning of contamination for
decision-dependent randomness stochastic programs. We develop lower and up-
per bounds and show that these can be applied in certain cases with endogenous
randomness. Thereafter, in Section 3.3, we apply the developed bounds on the
asset-liability management stochastic program introduced in Chapter 2. More-
over, we extend the program for a CVaR constraint to show an application when
the feasibility set is probability-distribution-dependent as well. This part uses
results submitted for publication in Kopa and Rusý [2021a].
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1. Interest Rate Modelling
In the first part of this thesis, we present a new calibration method for the one-
factor short-rate models, a class of models which is frequently used in the financial
industry for modelling interest rates. In stochastic optimization problems, it
can be applied for generation of interest rate scenarios. The method has been
submitted for publication in Klad́ıvko and Rusý [2021].

We begin this chapter with establishing the notation in Section 1.1. Next,
in Section 1.2, we continue with introduction of the new calibration method for
the one-factor short-rate models. First, in Section 1.2.1, we introduce the one-
factor short-rate models. Thereafter, in Section 1.2.2, we formulate the short rate
density and then in Section 1.2.3 we add the post-calibration errors. From there,
we can develop the likelihood function for market data, which is formulated in
Section 1.2.4. Further, in Section 1.3 the Hull-White model is formulated under
both risk-neutral and real-world measures. In Section 1.4 empirical performance
of our estimation approach is investigated on EUR interest rate data, including
in-sample and out-of-sample performance of the estimated model, stability of the
method, and comparison with calibration methods. We stress the Section 1.4.5,
where the formulae relevant for scenario generation are shown.

1.1 Interest Rate Basics
Let P (t, T ) denote the price at time t of a zero-coupon bond with a unit notional
principal paid out at the maturity date T . The continuously compounded yield
of a zero-coupon bond maturing in T − t periods ahead is related to the bond
price by

y(t, T ) = − ln P (t, T )
T − t

, t ≤ T. (1.1)

The set of yields {y(t, T ), t ≤ T} is known as a yield curve at time t.
The yield curve can be unambiguously expressed in terms of forward rates.

The forward rate

f(c, t, T ) = − 1
T − t

ln P (c, T )
P (c, t) , c ≤ t ≤ T, (1.2)

is an interest rate fixed, by a no-arbitrage argument, at time c between the expiry
time t and maturity time T .

For the modelling purposes a theoretical concept of limiting rates is useful.
The instantaneous forward rate is obtained by collapsing the maturity time to
the expiry time:

f(c, t) := lim
T →t+

f(c, t, T ) = −∂ ln P (c, t)
∂t

. (1.3)

We will call the set f(c, ·) := {f(c, T ), c ≤ T} the instantaneous forward curve
at time c. The yield of an instantaneous maturity bond defined by

r(t) := f(t, t), (1.4)

or equivalently by r(t) := limT →t+ y(t, T ), is known as the short rate.
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1.2 Maximum Likelihood Estimation of One-Fac-
tor Short-Rate Models

In the following section, we will present the idea of the construction of the like-
lihood function of one-factor short-rate models. We will introduce the postcal-
ibartion errors and specify, how they enter the relationship between the model
implied yield curve and the observed rates. Subsequently, we will show how one
can derive the density of the yield curve for such parametrisations. From there,
the likelihood function can be formulated.

1.2.1 One-Factor Short-Rate Models
First, we would like to shortly mention the difference between the real world
measure and the risk neutral measure, which are generally used for specifying the
short rate dynamics. The latter includes the market price of risk — a quantity
derived by Vasicek [1977], which summarizes how much investors charge for hold-
ing risky positions. Their relationship was exploited in number of places, e.g. in a
book of Brigo and Mercurio [2001]. In our aim to express the density of historical
rates, we have to work with the model specified under the less frequently used
real world measure. In general, we consider the short rate to have dynamics

drc(t) = µc(t, r(t))dt + σ(t, r(t))dW P(t), c ≤ t, (1.5)

rc(c) = fM(c, c), WQ(c) = 0, where µ(·, ·) and σ(·, ·) are some sufficiently smooth
deterministic functions and W P is a standard Brownian motion under the real-
world measure P. We denote c the calibration time of the model. The interpre-
tation of such an equation is that the change of the short rate is driven by one
deterministic factor and one random factor. Numerous short-rate models have
already been described and analysed. We should mention the Vasicek [Vasicek,
1977], the Hull - White [Hull and White, 1990a] and the Cox - Ingersoll - Ross
[Cox et al., 1985a] models which are frequently used in practice. We restrict our-
selves to the models which imply so called affine term structure of zero-coupon
bond prices. Formally, it means that the time t model implied value of a zero-
coupon bond paying 1 unit at time T and calibrated at time c can be written
as

Pc(t, T ) = exp{Ac(t, T ) − B(T − t)rc(t)}, (1.6)

for some arbitrary functions Ac(t, T ) and B(T − t). Functions A and B can
also depend on the short rate model parameters, but for simplicity these will
be omitted in the notation. Annualized and continuously compounded time t
yield-to-maturity t + τ, τ > 0, which we denote zc,t(τ) can be expressed as

zc,t(τ) = −1
τ

log Pc(t, t + τ) = ac(t, τ) + b(τ)rc(t), (1.7)

where ac(t, τ) = −A(t, t + τ)/τ and b(τ) = B(τ)/τ. The model definition implies
that the short rate rc(t) is given information at time s a random variable. Hence
conditioned on the knowledge of information at time s, zc,t(τ) is also a random
variable, as zc,t(τ) is a function of rc(t).
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We assume a data set of n zero-coupon yields with time-invariant tenors τ ∈
{τ1, . . . , τn}.1 The yields observed on the market at time t are collected into the
vector

yM(t) =
(︂
yM(t, t + τ1), . . . , yM(t, t + τn)

)︂⊤
,

where ⊤ denotes matrix transposition. The model implied yields as well as func-
tions ac(t, ·) and b(·) are collected into n-dimensional vectors

yc(t) =
(︂
yc(t, t + τ1), . . . , yc(t, t + τn)

)︂⊤
,

b =
(︂
b(τ1), . . . , b(τn)

)︂⊤
,

ac(t) =
(︂
ac(t, τ1), . . . , ac(t, τn)

)︂⊤
,

to write the model implied yields at time t in the vector form

yc(t) = ac(t) + brc(t). (1.8)

1.2.2 Postcalibration Equation and Yield Curve Density
The main idea of our method is to maximise the likelihood of yields in peri-
ods subsequent to the calibration time. In order to do that we formulate the
postcalibration equation

yM(t) = yc(t) + Wε(t)
= ac(t) + brc(t) + Wε(t), c < t, (1.9)

where ε(t) is an (n − 1)–dimensional vector of postcalibration errors, and W is
an n × (n − 1) error weighting matrix. The postcalibration errors realised at time
t measure the discrepancy between the market and model implied yields relative
to the calibration time c.

We model the short rate as a latent factor and recover it jointly with the
postcalibration errors from the vector of market yields by inverting (1.9). This
system of equations can be written in the matrix multiplication form

yM(t) = ac(t) + H
(︄

rc(t)
ε(t)

)︄
, c < t, (1.10)

where H :=
(︂
b W

)︂
is an n × n transformation matrix. Assuming invertibility

of H, we obtain that(︄
rc(t)
ε(t)

)︄
= H−1(yM(t) − ac(t)), c < t. (1.11)

We call rc(t) the inferred short rate.
We next use the well-known change of variable technique for monotone trans-

formations of continuous random vectors to obtain the conditional density of
1The estimation approach we develop can be modified in a straightforward way to time-

varying tenors. We opted against such a generalisation because this would complicate the
notation.
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market yields, gyM

(︂
yM(t)| yM(s)

)︂
, as the product of the model-implied short-

rate density gP
r (rc(t)| rc(s)) and postcalibration errors density gε

(︂
ε(t)

)︂
:

gyM

(︂
yM(t)| yM(s)

)︂
= 1

| det H|
gP

r

(︂
rc(t)| rc(s)

)︂
gε

(︂
ε(t)

)︂
, c ≤ s < t, (1.12)

where | det H| denotes the absolute value of the determinant of the transformation
matrix H.

Before we formulate the likelihood function based on the conditional density of
market yields, we first specify the error weighting matrix W, and the distribution
of the postcalibration error vector ε(t).

1.2.3 Postcalibration Errors Density and Transformation
Matrix

We assume that the postcalibration errors are multivariate normal with zero mean
vector and regular (n − 1) × (n − 1) variance-covariance matrix Σ. Hence, the
density function of ε(t) is

gε(ε(t)) = 1
(2π)n−1

2 (det Σ) 1
2

exp
{︃

−1
2ε(t)⊤Σ−1ε(t)

}︃
. (1.13)

We further suggest the following specification of the error weighting matrix
W, and thus the transformation matrix H:

H :=
(︂
b W

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b(τ1) 1 0 · · · 0
b(τ2) 0 1 · · · 0

... ... . . . ...
b(τn−1) 0 0 · · · 1
b(τn) 1√

n−1
1√

n−1 · · · 1√
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (1.14)

This specification of W has some convenient properties.
It follows from the last row of W that the postcalibration error of the τn–yield

is given as a weighted sum of the ε(t) elements, with equal weights of 1/
√

n − 1.
These weights provide a plausible variance of the τn-yield postcalibration error.
For example, if Σ were diagonal with all elements equal to σ2

ε , then the variance
of τn-yield error would be equal to σ2

ε as well, and the covariance between the
τn-yield error and any other error would be of order O(1/

√
n − 1), and thus

converging to zero with increasing number of yields.
The transformation matrix is sparse enough to allow for the inverse and deter-

minant of H in a closed-form, which in turn improves the speed and convergence
of the likelihood maximisation algorithm. After a sequence of linear algebra ma-
nipulations we obtain the inverse of H:

H−1 = 1˜︁b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
n−1 − 1√

n−1 · · · − 1√
n−1 1˜︁b + b(τ1)√

n−1
b(τ1)√

n−1 · · · b(τ1)√
n−1 −b(τ1)

b(τ2)√
n−1

˜︁b + b(τ2)√
n−1 · · · b(τ2)√

n−1 −b(τ2)
... . . . ...

b(τn−1)√
n−1

b(τn−1)√
n−1 · · · ˜︁b + b(τn−1)√

n−1 −b(τn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.15)
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where

˜︁b := b(τn) − 1√
n − 1

n−1∑︂
i=1

b(τi). (1.16)

By applying the Laplace expansion along the first column and the last row of H
we obtain the absolute value of the determinant of H:

|det H| =
⃓⃓⃓⃓
⃓

n−1∑︂
i=1

(−1)i+1b(τi) · 1√
n − 1

(−1)n−1+i · 1 + (−1)n+1b(τn) · 1
⃓⃓⃓⃓
⃓

=
⃓⃓⃓⃓
⃓b(τn) − 1√

n − 1

n−1∑︂
i=1

b(τi)
⃓⃓⃓⃓
⃓ = |˜︁b|. (1.17)

The necessary and sufficient condition for regularity of H is ˜︁b ̸= 0, which does
not appear to be a limiting restriction.

One could prefer to choose a yield with a different tenor than τn to have the
postcalibration error set as the linear combination of the other errors. This is
straightforward to do by multiplying the error weighting matrix W by a permuta-
tion matrix P that swaps the rows of W as desired. The inverse and determinant
of the permuted transformation matrix HP :=

(︂
b PW

)︂
are given by

H−1
P =

(︂
b PW

)︂−1
=
(︂
P
(︂
P−1b W

)︂)︂−1
=
(︂
P−1b W

)︂−1
P−1,

|det HP| = |det
(︂
b PW

)︂
| = |det P| · |det

(︂
P−1b W

)︂
| = |det

(︂
P−1b W

)︂
|.

The matrix
(︂
P−1b W

)︂
is obtained by swapping elements of the b vector ac-

cording to P−1, whereas P−1 = P⊤. The inverse and determinant of HP then
follow from (1.15) and (1.17), respectively.

1.2.4 Data Set and Likelihood Function
The time series of yield curves

{yM(tk) = (yM(tk, tk + τ1), . . . , yM(tk, tk + τn))⊤}K
k=1 (1.18)

consists of K yield curve observations at times t1, . . . , tK , whereas each yield
curve has n yields with tenors τ1, . . . , τn.

The conditional likelihood function of the parameter vector θ which includes
all parameters of the short-rate model and the variance-covariance matrix Σ is
given by

L(θ, Σ) =
K−1∏︂
k=1

gyM

(︂
yM(tk+1)|yM(tk)

)︂

=
K−1∏︂
k=1

1
| det H|

gP
r

(︂
rck

(tk+1)|rck
(tk)

)︂
gε

(︂
ε(tk+1)

)︂
, ck ∈ {t1, . . . , tk}.

(1.19)

Note that the likelihood function is conditioned on the first observation yM(t1),
and that the density factorisation (1.12) has been used.
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It is computationally convenient to work with the log-likelihood function given
by

lnL(θ, Σ)

=
K−1∑︂
k=1

(︂
− ln | det H| + ln gP

r

(︂
rck

(tk+1)|rck
(tk)

)︂
+ ln gε

(︂
ε(tk+1)

)︂)︂

∝ −(K − 1) ln |˜︁b| +
K−1∑︂
k=1

⎛⎝−1
2 ln v2

tk+1|tk
− 1

2v2
tk+1|tk

(︂
rck

(tk+1) − mP
tk+1|tk,ck

)︂2
⎞⎠

− K − 1
2 ln | det Σ| −

K−1∑︂
k=1

ε(tk+1)⊤Σ−1ε(tk+1). (1.20)

We further simplify the log-likelihood function by using the maximum likelihood
estimator of Σ. This results in the profile log-likelihood function of the parameter
vector θ given by

ℓ(θ) = max
Σ

ln L(θ, Σ)

∝
K−1∑︂
k=1

⎛⎝−1
2 ln v2

tk+1|tk
− 1

2v2
tk+1|tk

(︂
rck

(tk+1) − mP
tk+1|tk,ck

)︂2
⎞⎠

− (K − 1) ln |˜︁b| − K − 1
2 ln

⃓⃓⃓
det Σ̂

⃓⃓⃓
, (1.21)

where
Σ̂ = 1

K − 1

K−1∑︂
k=1

ε(tk+1)ε(tk+1)⊤. (1.22)

The idea of maximising the likelihood of the observed market yields and re-
trieving the short rate as a latent variable comes from Chen and Scott [1993].
While our estimation method is based on the same idea it differs in several im-
portant aspects. Chen and Scott’s method is developed for time-homogeneous
models which do not fit the yield curve perfectly, and thus lead to measurement
errors rather than postcalibration errors. Chen and Scott formulate the likelihood
for just four tenors, and assume that the yield with the shortest tenor is mea-
sured perfectly. This assumption implies one-to-one map between this yield and
the short rate, and hence restricts the short rate’s flexibility, and also its latent
variable interpretation. Lastly, the likelihood maximisation of Chen and Scott’s
model is numerically more involved as the profile log-likelihood is not available.

1.2.5 Confidence Intervals
In this section we suggest two types of confidence intervals for the model pa-
rameters θ. For the concepts and proofs associated with the confidence intervals
construction we refer to Hamilton [1994, Chapters 5 nad 14].

The true parameter values are collected in the vector θ0, and we consider the
null hypothesis,

H0 : θ = θ0,
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against the alternative
HA : θ ̸= θ0.

First, we consider confidence intervals based on the likelihood ratio test. It
follows from standard results on the likelihood ratio test that the log-likelihood
ratio 2

(︂
ℓ(θ̂)−ℓ(θ0

)︂
has under the null hypothesis asymptotically χ2(m) distribu-

tion, where m is the number of short-rate model parameters. The 1−p confidence
region of the parameter vector θ under the H0 is given by the set{︃

θ : 2
(︂
ℓ(θ̂) − ℓ(θ

)︂
≤ χ2

1−p(m)
}︃

, (1.23)

where p ∈ (0, 1) is the significance level, and χ2
1−p(m) is the 1 − p percentile of

χ2-distribution with m degrees of freedom. The confidence intervals can then
be calculated from an outer approximation of the confidence region by a multi-
dimensional rectangle.

Second, we construct confidence intervals based on the Wald test. These
are calculated from a quadratic approximation of the likelihood function. The
standard results state that under the null hypothesis

√
K
(︂
θ̂ − θ0

)︂
−→ N (0, I

(︂
θ0)−1

)︂
. (1.24)

The distribution of the parameter estimates vector is approximated by normal
distribution with expected value θ0 and variance-covariance matrix K−1I(θ0)−1.
The matrix I(θ0) is known as the Fisher information matrix, which is consistently
estimated by the observed Fisher information matrix JK(θ̂). This matrix is ob-
tained by calculating the negative Hessian of the likelihood function evaluated at
the achieved maximum, that is

JK(θ̂) = 1
K

[︄
− ∂2

∂θi∂θj

ℓ(θ)
]︄

θ=θ̂

. (1.25)

The 1 − p confidence region of the parameter vector θ under the H0 is given by
the set {︃

θ : (θ̂ − θ)⊤
[︄
− ∂2

∂θi∂θj

ℓ(θ)
]︄

θ=θ̂

(θ̂ − θ) ≤ χ2
1−p(m)

}︃
, (1.26)

where p ∈ (0, 1) is the significance level, and χ2
1−p(m) is the 1 − p percentile of

χ2-distribution with m degrees of freedom. For the maximum likelihood problem
we resort to numerical evaluation of the Hessian as an analytical expression is not
known. Consequently, we obtain the standard errors of individual parameter es-
timates as the square root of the corresponding diagonal elements in the negative
Hessian matrix.

1.3 The Hull-White Model

1.3.1 The Hull-White Model under the Risk-Neutral Mea-
sure Q

Hull and White [1990b] suggest several extensions of one-factor time-homogeneous
interest rates models with constant parameters to time-inhomogeneous models
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with time-varying parameters. We will focus on their most popular extension
known as the Hull-White model (Hull and White [1994]).

In the Hull-White model the constant unconditional mean of the Vaš́ıček
model [Vasicek, 1977, Section 5] is replaced by a function of time and market
forward rate curve. The model nests on the short-rate process

drc(t) = (µc(t) − αrc(t)) dt + σdWQ(t), c ≤ t, (1.27)

rc(c) = fM(c, c), WQ(c) = 0, where σ is the volatility parameter and WQ is a
standard Brownian motion under the risk-neutral measure Q. The short rate
is attracted to the µc(t)/α path, where α controls the force of attraction. The
time-varying parameter µc(t) is given by

µc(t) = ∂fM(c, t)
∂t

+ αfM(c, t) + σ2

2α

(︂
1 − e−2α(t−c)

)︂
, c ≤ t, (1.28)

where fM(c, t) is the instantaneous forward rate prevailing on the market at time
c ≤ t. Note that we use the superscript M to distinguish a market observable
quantity from its model implied counterpart.

We say that the model is calibrated at time c when the market instantaneous
forward rate curve f(c, ·) is used to set the time-varying parameter µc(·). In-
stantaneous forward rates are not quoted directly, but they can be inferred from
market data by yield curve fitting methods.

The short rate is normally distributed with conditional expected value given
as mQ

t|s,c := E Q [rc(t)| rc(s)], and variance, v2
t|s := var [rc(t)| rc(s)], given by

mQ
t|s,c = rc(s)e−α(t−s) + fM(c, t) − fM(c, s)e−α(t−s)

+ σ2

2α2

(︂
1 − e−α(t−s) + e−2α(t−c) − e−α(t−2c+s)

)︂
, (1.29)

v2
t|s = σ2

2α

(︂
1 − e−2α(t−s)

)︂
, c ≤ s < t. (1.30)

The expected value (1.29) is adapted to the natural filtration of the short-rate
process, but since it is also a function of the calibration time, we include c in the
notation.

The Hull-White zero-coupon bond pricing function is given by

Pc(t, T ) = exp{Ac(t, T ) − B(t, T )rc(t)}, (1.31)

where

B(t, T ) = 1 − e−α(T −t)

α
, (1.32)

Ac(t, T ) = −fM(c, t, T )(T − t) + B(t, T )fM(c, t)

− B(t, T )2 σ2

4α

(︂
1 − e−2α(t−c)

)︂
, (1.33)

and where −fM(c, t, T )(T − t) = ln P M(c, T ) − ln P M(c, t).
It is important to note that at the calibration time c the Hull-White model

fits the market yield curve perfectly for any value of α and σ. The equality
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Pc(c, T ) = P M(c, T ) for all T can be readily seen by using f(c, c) = rc(c) and
P (c, c) = 1 when evaluating the bond price (1.31) at time t = c. However, at
some later time t > c, the Hull-White bond price Pc(t, T ) can be different from
the market price P M(t, T ). Recalibrating the model at time t to fM(t, ·) can be
viewed as marking the model to market.

1.3.2 The Hull-White Model under the Real-World Mea-
sure P

As we have discussed in the previous paragraph the Hull-White model fits the
market yield curve perfectly at the calibration time for any value of α and σ,
and therefore it is not possible to identify these two parameters from a single
observation of the yield curve. Our estimation method uses a time series of yield
curves. Time series data are, however, generated under the real-world measure P,
and thus we need to bring the Hull-White model under the real-world measure.
The transformation of measures follows from the Girsanov theorem and it is
carried out by introducing

dWQ(t) = dW P(t) + λ(t)dt, (1.34)

where W P is a standard Brownian motion under the real-world measure, and λ
is an Itô process that is called the market price of interest rate risk (λ is subject
to the Novikov condition, see [Øksendal, 2007, Section 8.6] for details).

In this thesis we assume that the market price of risk is governed by the
constant, that is, λ(t) := λ. Then it follows that the short-rate dynamics under
the real-world measure are

drc(t) = (µc(t) + λσ − αrc(t)) dt + σdW P(t). (1.35)

We can immediately see that the change of measure introduces a parallel shift of
the time-varying parameter µc(t), and thus introduces an additional term to the
conditional expected value, which is given by

mP
t|s,c = mQ

t|s,c + λσ

α

(︂
1 − e−α(t−s)

)︂
(1.36)

under the real-world measure. The real-world transition density of rc(t) condi-
tional on rc(s) is

gP
r (rc(t)| rc(s)) = 1√︂

2πv2
t|s

exp

⎧⎪⎨⎪⎩−

(︂
rc(t) − mP

t|s,c

)︂2

2v2
t|s

⎫⎪⎬⎪⎭ , c ≤ s < t. (1.37)

A more flexible specification of the market price of risk has been suggested
in the literature; Ang and Piazzesi [2003], Hamilton and Wu [2012], Joslin et al.
[2011] and Nyholm and Vidova-Koleva [2012] among many others postulate a lin-
ear relationship between the price of risk and the level of the short rate. Specifi-
cally, the affine form λ(t) := λ+λrrc(t), where λ and λr are constants, is assumed.
The short rate remains normally distributed under the affine market price of risk,
and therefore our maximum likelihood method can accommodate this price of
risk specification by a straightforward generalisation. We note that the λrrc(t)
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term will be absorbed by the parameter α, which thus, for λr ̸= 0, takes different
values under the two measures. Nonlinear, time-dependent, or exogenous (de-
pendent on other sources of uncertainty) forms of the market price of risk would
require a separate analysis.

1.3.3 Calibration Time
For yield curve data sampled at times t1, t2, . . . , tK various strategies to the cal-
ibration time ck can be considered. In the next section we calibrate to each
available yield curve, that is for the yield curve observed at time tk+1, we set
ck = tk and consider the postcalibration equation

yM(tk+1) = atk
(tk+1) + brtk

(tk+1) + Wε(tk+1). (1.38)

The short-rate conditional moments (1.36) and (1.30) are then modified to

mP
tk+1|tk,tk

= fM(tk, tk+1) + σ2

2α2

(︃
1 − e−α(tk+1−tk)

)︃2

+ λσ

α

(︃
1 − e−α(tk+1−tk)

)︃
, (1.39)

v2
tk+1|tk

= σ2

2α

(︃
1 − e−2α(tk+1−tk)

)︃
. (1.40)

The conditional mean is simplified due to the instantaneous rate identity rtk
(tk) =

fM(tk, tk).

1.4 Empirical Study
In this section we use the suggested maximum likelihood method to estimate
the Hull-White model from time series of EUR yields. We analyse the model
performance from both in-sample and out-of-sample perspective, discuss estima-
tion challenges, and also compare our estimation approach with calibration to
swaption prices.

1.4.1 Data
We use Euribor and swap benchmark rates calculated by IBA2 and downloaded
from Bloomberg. Euribor rates with tenors one week (1W), one, two, three and
six months (1M, 2M, 3M, 6M), and swap par rates with tenors one to ten years
and 15 years (1Y–10Y, 15Y) are bootstrapped by cubic splines [Hagan and West,
2006] to obtain continuously compounded zero-coupon yields under the Act/Act
day-count convention.3 The cubic splines are also used to estimate forward rate
curves. We check that the spline method in use, which fits the market rates
perfectly, provides stable and smooth forward curves.

First, in Section 1.4.2 and 1.4.3 we illustrate estimation results based on daily
data over a two-year period from 1 September 2017 to 30 August 2019. Second,

2The ICE Benchmark Administration, see https://www.theice.com/iba/ice-swap-rate.
3Euribor rates are zero-coupon rates under the Act/360 convention. The swap rates in use

are annual coupon par rates under the 30/360 convention.
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in Section 1.4.4 we expand the data set until 21 January 2021 and assess the
stability of parameter estimates by running the estimation on a rolling window
with a weekly frequency. Third, in Section 1.4.6 we conduct an out-of-sample
forecasting exercise by using monthly data over 20 years from January 2001 until
January 2021. Fourth, in Section 1.4.7 we use daily data from the beginning
of 2009 until the end of 2016 to compare parameter estimates obtained by our
maximum likelihood method with parameter values obtained by calibrating the
Hull-White model to market prices of swaptions.

1.4.2 Estimating the Model Parameters
In this section we estimate the Hull-White model on daily data spanning a two-
year period from 1 September 2017 to 30 August 2019.4 The data set of zero-
coupon yields is captured in Figure 1.1, where the vertical dashed line on 30
August 2019 denotes the end of the sample and thus the date to which the
parameters are estimated.

The yields are persistently trending downwards to the negative territory (all
of the yields are negative in the last 12 days of our data set). The yield curve is
upward sloping during the considered period with the yield curve slope decreasing
over time. However, the shorter end of the yield curve becomes inverted, as the
slope, measured by y(1Y) − y(1W), takes a negative value on 2 July 2019. The
correlation between the swap-based yields is very strong (a pairwise correlation
is at least 0.98 for yields with tenors from four to 15 years), while the correlation
is moderate between the Euribor- and swap-based yields (a pairwise correlations
ranges from 0.47 to 0.96).

We select the 13 most liquid tenors (1M, 2M, 3M, 6M, 1Y–7Y, 10Y, 15Y)
to form the likelihood function, and use the transformation matrix specifica-
tion (1.14). We use the derivative-free Nelder-Mead algorithm implemented in
the R package nmkb5 to maximise the profile log-likelihood function (1.21)–(1.22)
subject to the postcalibration equation (1.38). We assume ∆t := tk+1 − tk con-
stant for all k, that is, we work with sampling of yields as if it was equidistant.
For daily data we set ∆t = 1/252, for monthly data in Section 1.4.6 we set
∆t = 1/12. The numerical maximisation converges to an optimum and returns
parameter estimates reported in Table 1.1. Note that the reported values, in
particular the volatility parameter σ, are for interest rates measured in percent.

The point estimates of the Hull-White model parameters are given in the
second column (Point Est). The 95% confidence intervals based on the likelihood
ratio test, LR intervals hereafter, are reported in the third column (LR 95% CI).
The LR intervals are based on the smallest three-dimensional rectangles that cover
the confidence set (1.23). Finally, the 95% confidence intervals based on the Wald
test, the Wald intervals hereafter, are presented in the fourth column (Wald 95%
CI). The Hessian in (1.26) is calculated by using the R package numDeriv6. The
Wald intervals are by construction symmetric, whereas the LR intervals are not.
Also note that the LR intervals are wider, for all parameters, than the Wald

4According to our discussions with risk management practitioners, using daily interest rate
data from past two years is believed to reflect the prevailing interest rate regime.

5See https://rdrr.io/cran/dfoptim/man/nmkb.html.
6See https://cran.r-project.org/web/packages/numDeriv/index.html.
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Figure 1.1: Euribor-based yields (1W, 1M, 2M, 3M, 6M) and swap-based yields
(1Y, 2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y, 12Y, 15Y) used in the Hull-White
model estimation. The vertical dashed line denotes 30 August 2019. The time
series of yields until this date is used to estimate the Hull-White model in Sec-
tion 1.4.2. Parameter estimates based on a rolling window that covers the whole
sample period are presented in Section 1.4.4

Param. Point Est. LR 95% CI Wald 95% CI
α 0.050 (0.015, 0.093) (0.024, 0.076)
σ 0.107 (0.098, 0.117) (0.100, 0.113)
λ −0.283 (−2.143, 1.531) (−1.649, 1.083)

Table 1.1: The maximum likelihood estimates of the Hull-White model parame-
ters for interest rates measured in percent. Point Est. denotes the point estimate.
LR denotes the 95% confidence intervals based on the likelihood ratio, Wald de-
notes the 95% confidence intervals based on the Wald test.

intervals. Recall that the LR intervals are calculated as an outer approximation
of the confidence region. We note that the estimate of the market price of interest
rate risk is fairly uncertain, and λ = 0 can not be rejected on the 5% significance
level.

The maximum likelihood estimate of the variance-covariance matrix of post-
calibration errors is reported in the form of correlations and standard deviations
in Table 1.2. More precisely, what is reported are results of WΣ̂W⊤, where Σ̂ is
given by (1.22), and W is the error weighting matrix given in (1.14). In order to
save space, we report values for roughly every other tenor; the unreported values
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τ 1M 3M 1Y 3Y 5Y 7Y 10Y 15Y
1M 0.70 1.00 0.82 −0.24 −0.35 −0.24 −0.10 0.05
3M 1.00 0.66 0.87 −0.17 −0.29 −0.19 −0.04 0.11
1Y 0.82 0.87 0.54 0.25 0.07 0.16 0.31 0.45
3Y −0.24 −0.17 0.25 0.90 0.96 0.95 0.95 0.94
5Y −0.35 −0.29 0.07 0.96 1.66 0.99 0.96 0.91
7Y −0.24 −0.19 0.16 0.95 0.99 2.17 0.99 0.95

10Y −0.10 −0.04 0.31 0.95 0.96 0.99 2.69 0.98
15Y 0.05 0.11 0.45 0.94 0.91 0.95 0.98 3.21

Table 1.2: The maximum likelihood estimate of the variance-covariance matrix
of the postcalibration errors in the form of correlations and standard deviations,
which are reported on the diagonal of the matrix.

are approximately equal to the average of two neighbouring values. The Euribor-
related errors (1M, 2M, 3M, 6M) are negatively correlated with the swap-related
errors (3Y, 4Y, 5Y, 6Y, 7Y, 10Y) as the Hull-White model attempts to capture
the correlation structure between Euribor- and swap-based yields. However, the
correlation between the Euribor-related errors and 15-year yield related error has
positive sign. The reason is that the postcalibration error of the 15-year yield is
given as the weighted sum of all remaining postcalibration errors. The standard
deviation of postcalibration errors follows the volatility pattern in the yields as
it increases with the tenor. The average standard deviation of the errors is just
1.1 basis point, which is about one order smaller than the average volatility of
yields.

We next assess how well the imposed modelling assumptions hold in the esti-
mated model. First, we discuss the inferred short rate, the instantaneous forward
rate, and assess whether the difference between the inferred short-rate process
and its conditional mean (1.39) is normally distributed and serially uncorrelated.
Second, we examine the cross-correlation and normality of the postcalibration
errors.

The inferred short rate and the instantaneous forward rate is recorded in the
top-left panel of Figure 1.2. These two rates move within the range of the one-
week and six-month Euribor-based yields. The top-left panel also records Eonia,
which is the EUR overnight lending reference rate. The overnight tenor suggests
Eonia to be used as an empirical proxy for the short rate. However, we argue
that Eonia is rather disconnected from the yield curve we aim to model. First,
Eonia is only weakly correlated with the other yields; the average of the pairwise
correlation coefficients is 0.11, whereas it is at least 0.55 for the other yields (with
Eonia excluded from the average). Second, Eonia values exhibit spikes which are
not observed in the other yields. The dynamics of the inferred short rate and
instantaneous forward rate are rather aligned with the dynamics of Euribor- and
swap-based yields. Indeed, the average of the pairwise correlation coefficients
between these yields and the inferred short rate or instantaneous forward rate is
0.65.7 This is not surprising since the short rate is the only factor that drives the
evolution of the whole yield curve.

7The correlation between Eonia and the inferred short rate is −0.03, and −0.06 between
Eonia and the instantaneous forward rate (the correlation coefficients are not significant).
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Figure 1.2: The inferred short rate, the instantaneous forward rate, Eonia index,
and one-week rate in the top-left panel. The Normal Q–Q plot of the difference
between the inferred short rate and its conditional mean in the top-right panel.
The autocorrelation function (ACF) of difference between the short rate and
its conditional mean in the bottom-left panel, and the partial autocorrelation
function (PACF) for the same difference in the bottom-right panel.

The differences between the inferred short rate and its conditional mean are
assumed to be realisations of the Brownian motion increments, and thus inde-
pendently and identically normally distributed. The Normal Q–Q plot in the
top-right panel shows that this difference is symmetric, but exhibits heavier tails
than those of normal distribution. Indeed, as it is often the case in asset pricing
models, normality is rejected by Jarque-Bera and Shapiro-Wilk tests at the 1%
level. Serial correlation of the increments is examined in the bottom panels of
Figure 1.2 by plotting the autocorrelation function (ACF) and partial autocor-
relation function (PACF). We can reject serial correlation structure at the 5%
level.

Regarding the postcalibration errors we note that their lagged cross-correlati-
ons are relatively small with the highest value of 0.20 for lag 1 cross-correlation
(significant at the 5% level). Furthermore, the normality of the postcalibration
errors is rejected at the 1% level. These two empirical inconsistencies with our
modelling assumptions could be possibly nullified by introducing an autocorre-
lation structure and a heavy-tailed distribution (a natural candidate would be
the t-distribution) for the postcalibration errors. We do not consider these two
modifications here.
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1.4.3 The Likelihood Function Maximisation
We conclude our numerical investigation with an examination of the likelihood
function. We always fix one of the Hull-White model parameters at its maximum
likelihood point estimate and vary the remaining two parameters to see their
effect on the value of the profile log-likelihood function (1.21)–(1.22). The results
are presented in Figure 1.3 in the form of heat maps. In the top pair of panels
λ = −0.283, while σ and α are varied. In the middle pair of panels σ = 0.107
while α and λ are varied. Finally, in the lower pair of panels α = 0.050 while λ
and σ are varied. The heat maps suggest that the profile log-likelihood function
has a well localised global maximum. We can clearly pin down the maximum
value of 84 014 for all three pairs of varied parameters in the right-hand side
panels (values smaller than 84 004 are in the same brownish colour).

The heat maps in the left-hand side panels cover a larger interval of likelihood
values in order to illustrate monotonicity of the gradient of the likelihood function.
Thus, an optimisation algorithm should be able to find its way to the optimal
value from a wide range of initial values. The ease of the likelihood maximisation
is an appealing property. It has been well documented that likelihood maximi-
sation of time-homogeneous short-rate models is challenging (for example, Ang
and Piazzesi [2003], Joslin et al. [2011], or Kim [2009]). The principle obstacles
being the flatness of the likelihood surface in the parameters which determine the
unconditional mean of yields. There is a large empirical evidence that interest
rates are strongly persistent and thus close to nonstationarity.8 The inability to
reject the nonstationarity indicates that the unconditional mean of the interest
rate process is not well defined, and thus challenging to estimate, see Hamilton
and Wu [2012] for an interesting discussion of this topic. This issue is non-existent
in no-arbitrage models as the mean of yields is time varying and calibrated to
market yield curve data. This may explain why our likelihood maximisation of
the Hull-White model is straightforward, but more investigation is needed.

1.4.4 Stability of Parameter Estimates over Time
In this section we expand the data set until 29 January 2021, and reestimate the
model parameters on a weekly basis by using the same approach as described in
Section 1.4.2. In particular, for each reestimation we use two years of data and
the same 13 tenors in the likelihood. The evolution of the parameter estimates is
presented in Figure 1.4; the red curve provides the points estimates, whereas the
area shaded in grey marks the 95% confidence intervals based on the Wald test
(see Section 1.2.5).

In total, 74 parameter sets were estimated. Note that the left-most estimates
are those reported in Table 1.1. We can observe that the parameter estimates
do not exhibit any abrupt changes that would signal instability of our estimation
method. We can also note that the width of confidence intervals is relatively stable
over time. The α estimates are markedly stable around 0.05 with a relatively wide
confidence interval. We can observe a small increase of α̂ with the beginning of
the Covid-19 pandemics in March 2020. The impact of the pandemics is clearly

8Indeed, Dickey-Fuller tests do not reject nonstationarity of yields in our data set at the 5%
significance level.
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Figure 1.3: Heat maps of profile log-likelihood function values. In the top pair
of panels λ = −0.283 while σ and α are varied. In the middle pair of panels
σ = 0.107 while α and λ are varied. In the lower pair of panels α = 0.050 while
λ and σ are varied. The heat maps in the left-hand side panels cover a larger
interval of likelihood values compared to the heat maps in the right-hand side
panels.
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manifested in the σ and λ estimates. The estimate of the volatility parameter σ
has increased about almost 50% during the late spring of 2020 and remained on
this level until the end of our sample. The estimate of the market price of risk
parameter λ also quickly increased to positive values during the first month of
the pandemics and has declined since then. We also note that λ = 0 cannot be
rejected during the considered period. However, as we illustrate in Section 1.4.6,
the point estimate of λ is crucial for the real-world performance of the model.

1.4.5 Model Forecasts, Scenario Generation
We now elaborate on yields forecasting from the Hull-White model. A point fore-
cast is based on the conditional expected value as this type of forecast minimizes
the mean squared error [Hamilton, 1994, Chapter 4]. The out-of-sample forecast
from the Hull-White model of a τ -year yield at the h-year horizon is then given
by

ŷP
t (t + h, t + h + τ)

: = E P
[︃
at(t + h, τ) + b(τ)rt(t + h)

⃓⃓⃓
rt(t), fM(t, ·)

]︃
= fM(t, t + h, t + h + τ) + b(τ)2 τσ2

4α

(︂
1 − e−2αh

)︂
+ b(τ) σ2

2α2

(︂
1 − e−αh

)︂2
+ b(τ)λσ

α

(︂
1 − e−αh

)︂
. (1.41)

The forecast is generated under the real-world measure at time t when the model
was recalibrated to fM(t, ·). The formula follows directly from the Hull-White
yield function (1.31)–(1.33) and the conditional expected value of the short-rate
process (1.36). As we estimate the model under both measures, we can also
generate forecasts under the risk-neutral measure Q. It follows from the Girsanov
transformation of measures that the risk-neutral forecast is given by

ˆ︁yQ
t (t + h, t + h + τ) = ˆ︁yP

t (t + h, t + h + τ) − b(τ)λσ

α

(︂
1 − e−αh

)︂
. (1.42)

The sign of the difference between the real-world and risk-neutral forecast is thus
decided by the sign of the market price of risk parameter λ.

We set 30 August 2019 as the forecast origin date, that is the date to which
we have estimated the model parameter in Section 1.4.2, and present yield curve
forecasts at horizons from one to five years in Figure 1.5. The left-hand side panel
presents forecasts under the real-world measure P, whereas the right-hand side
panel presents forecasts under the risk-neutral measure Q. Observe that the yield
curve shape at the one-year forecast horizon is similar to the initial yield curve
shape, but with less pronounced short-end inversion and convexity. The expected
yield curves are increasing and concave beyond the two-year forecast horizon.
Since we have estimated ˆ︁λ = −0.283, the difference between the real-world and
risk-neutral forecast is negative, and the risk-neutral expectations are higher (for
any tenor and at any horizon) than real-world expectations. For example, the
forecast of one-year yield at the five-year horizon is −0.43% under the P measure,
whereas it is −0.30% under the Q measure. We note that the real-world forecasts
should be used if future values of yields per se are of interest, for example, in
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Figure 1.5: The Hull-White model yield curve expectations at forecast horizons
from one to five years. The forecast origin date is 30 August 2019. The left-hand
side panel captures the real-world expectations, while the risk-neutral expecta-
tions are in the right-hand side panel.

macroeconomic policy decisions, trading strategies, or risk-management. In these
forecasting applications the interest often lies in forecasting the whole distribution
of future yields, in particular, quantiles of the future yields. Therefore, we next
focus on these distributional or density forecasts.

An appealing feature of the Hull-White model is that thanks to its conditional
normality the density forecasts are available in closed form. Specifically, the real-
world measure q-quantile of the forecasted yield is given by

ŷP
t (t + h, t + h + τ) +

√︃
var

[︂
yt(t + h, t + τ + h)

]︂
× uq, (1.43)

where uq is the q-quantile of the standard normal distribution, and var
[︂
yt(t+h, t+

τ + h)
]︂

is the variance of the out-of-sample forecast. It follows from the Girsanov
transformations of measures that the forecast variance remains the same under
the measure change, and therefore the risk-neutral density forecast is obtained
by replacing ŷP

t with ŷQ
t in (1.43). The variance of the out-of-sample forecast is

based on the postcalibration equation (1.9). Specifically, the variance is given by

var
[︂
yt(t + h, t + h + τ)

]︂
= b(τ)2 σ2

2α

(︂
1 − e−2αh

)︂
+ h

∆t
(WΣ̂W⊤)i,i,

where the first term on the right-hand side comes from the variance of the short-
rate process, the second term is the variance of the postcalibration error, which is
based on our assumption of a serially uncorrelated postcalibration process. The
variance of the postcalibration error that corresponds to the τ -period yield is
selected by the index i, i in WΣ̂W⊤. The factor h/∆t scales the the postcalibra-
tion error variance to adjust the possibly different length of the forecast horizon,
h, and sampling frequency, ∆t, used in estimation.
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Figure 1.6: Density forecast on 30 August 2019 of one-year yield. The real-world
density is provided at the left-hand side panel, while the risk-neutral density is
given at the right-hand side panel.

Density forecasts of the one-year yield for the next five years are provided in
Figure 1.6. As in Figure 1.5, we can observe that the real-world density forecasts
in the left-hand side panel are lower than the risk-neutral forecasts in the right-
hand side panel. The density forecasts are fundamental in risk management [Hull
et al., 2014]. In Section 1.4.8, we illustrate the impact of the measure choice and
the use of quantile forecasts for credit risk exposure calculation.

1.4.6 Out-of-Sample Forecasting Analysis
In this section we examine the out-of-sample forecasting performance of the Hull-
White model. We use monthly observations of Euribor- and swap-based yields
(the first business day of a month), and our sample spans over twenty years from
January 2001 until January 2021. We use six years of data (72 time periods) to
estimate the Hull-White model and generate one-month ahead forecasts. Thus,
the first yield curve forecast is generated in January 2007 for February 2007. We
then recursively reestimate the model by using six years of monthly data and
generate one-month ahead forecasts until December 2020. In total, we obtain
168 (14 years) of one-month ahead yield curve forecasts.

We consider out-of-sample forecasts generated by the Hull-White model un-
der the real-world measure (HWP), the Hull-White model under the risk-neutral
measure (HWQ), and for a comparison also the random walk model (RW). The
forecasting performance is evaluated by considering forecast errors. The forecast
error is defined as the difference between the actual and forecasted value. For in-
stance, for the HWP model the time t+h forecast error of a τ -period yield is given
by y(t+h, t+h+ τ)− ŷP

t (t+h, t+h+ τ), where the model out-of-sample forecast
generated at time t is given by (1.41) and where we set h = 1/12 as the forecast
horizon is one month. The random walk forecast is ŷRW

t (t+h, t+h+τ) = y(t, t+τ),
that is, the forecast is naive as it always predicts no change of the yield.
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RMSE Mean Error
τ HWP HWQ RW HWP HWQ RW

1M 0.154 0.163 0.159 0.017 0.064 0.026
2M 0.151 0.159 0.155 0.017 0.063 0.026
3M 0.148 0.156 0.152 0.017 0.063 0.026
6M 0.141 0.149 0.145 0.015 0.060 0.026
1Y 0.140 0.147 0.143 0.011 0.056 0.027
2Y 0.156 0.161 0.155 0.009 0.052 0.027
3Y 0.163 0.168 0.162 0.009 0.050 0.027
4Y 0.163 0.169 0.162 0.010 0.050 0.027
5Y 0.162 0.168 0.161 0.011 0.050 0.027
6Y 0.162 0.168 0.161 0.011 0.049 0.027
7Y 0.162 0.168 0.162 0.011 0.048 0.027
10Y 0.168 0.173 0.168 0.011 0.045 0.026
15Y 0.179 0.182 0.180 0.010 0.038 0.026

Table 1.3: Out-of-sample one-month ahead forecasting results. In total forecasts
for 168 months have been generated. The forecast precision is measured by the
root mean squared error (RMSE), the forecast bias is summarised by the mean
error (ME). Both metrics are measured in percent. Three models have been
considered, the Hull-White model under the real-world measure (HWP), Hull-
White model under the risk-neutral measure (HWQ), and the random walk model
(RW).

The forecasting performance of the three models is summarised in Table 1.3.
We report the root mean squared error (RMSE), and the mean error (ME) of the
forecast errors for the 13 tenors that were used to form the likelihood function.
The most favourable outcomes are in bold, the least favourable in italics. First
note that the Hull-White model under the risk-neutral measure performs the
worst for all tenors in terms of both the RMSE and ME. This is not surprising
since the risk-neutral measure does not involve the market price of risk, and it
is developed for arbitrage free pricing. The absence of the market price of risk
is clearly manifested in the forecast ME which magnitude is 4.5 times higher for
the HWQ model compared to the HWP model. This means that in average the
yield curve expectations from the HWQ understate the actual yields more than
expectations from the HWP model. This stresses the importance of estimating
the model under the real-world measure for forecasting and risk management
applications.

We next turn to the comparison of the HWP model with the random walk
model. The HWP model dominates the RW model in terms of the forecast mean
error, which magnitude is in average 2.3 times smaller for the HWP model. In
terms of the RMSE the two models perform comparably, the largest difference is
0.004% in favor of the HWP model for tenors 1M, 2M, 3M, and 6M. We consider
the forecasting results encouraging as it has been recognised that beating the
RW yield curve forecasts is difficult, in particular on one-month ahead forecast
horizon (Diebold and Li [2006], Nyholm and Vidova-Koleva [2012]). To the best
of our knowledge forecasting performance of no-arbitrage models have not been
studied in the literature, which may be attributed to the fact that these models

29



have not been really considered under the real-world measure. It would be of
interest to see how no-arbitrage models perform in this respect.

1.4.7 Comparison with Calibration to Swaptions
In this section we compare maximum likelihood parameter estimates to parameter
values obtained by calibration methods. Calibration is the traditional way of
bringing the Hull-White model to market data. Calibration methods are not
based on historical time-series data, but rather consider yields and prices of vanilla
interest rate derivatives that are quoted on the market at the calibration time t.
Since calibration methods only use cross-sectional data from a single point of
time, they only allows for identification of α and σ. In other words, the Hull-
White model is only identified under the risk-neutral measure Q as the market
price of risk λ cannot be retrieved. Thus, the typical use of a calibrated model is
pricing and hedging of non-vanilla derivatives.

The current market practice is to calibrate the Hull-White model to prices of
swaptions [Brigo and Mercurio, 2001, Section 3.14]. Swaption prices are available
in the form of an implied volatility matrix with one dimension being the maturity
of the swaption and the other dimension being the tenor of the underlying swap.
A calibration method is based on numerical minimisation of relative differences
between the market and model swaption prices. We use the typical objective

arg min
α,σ

N∑︂
i=1

(︄
Swpti − SwptM

i

SwptM
i

)︄2

, (1.44)

where SwptM
i is the swaption price on the market, Swpti is the Hull-White model

swaption price, and N is the number of calibrated swaptions (we use N = 10,
N = 24, and N = 170 in what follows).

In contrast to a zero-coupon bond, the swaption pricing function is not known
in a closed form for the Hull-White model. A popular approach to calculate
a swaption price is based on Jamshidian’s decomposition [Jamshidian, 1989],
which requires numerical root finding. This can be particularly time consuming
when the model is calibrated to market data and the model prices need to be
recalculated many times in order to achieve the objective (1.44). Russo and
Fabozzi [2016] suggest an alternative swaption pricing approach based on the
concept of stochastic duration. They derive an approximative swaption pricing
function in a semi-closed form (up to a straightforward numerical integration).
Their pricing method is thus faster than using Jamshidian’s decomposition.

Russo and Torri [2019] study calibration of the Hull-White model on the EUR
interest rate market. They use both Russo and Fabozzi’s and Jamshidian’s ap-
proaches to swaption pricing. They calibrate the Hull-White model by using EUR
swaption prices and Euribor- and swap-based yields from the last business day of
2011, 2012, 2013, 2014, 2015 and 2016 (they use data provided by Bloomberg).
The calibrated parameter values are reported in Table 1.4 with α in the top panel
and σ in the bottom panel. The second column (JA) reports calibration results
based on the Jamshidian’s approach, whereas the third column (RF) reports re-
sults based on the swaption pricing approach of Russo and Fabozzi [2016]. These
results have been taken from Table 19 in Russo and Torri [2019], and are based

9Parameter values have been rounded to three decimal digits and σ values were multiplied
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alpha
JA RF RF170 RF24 ML I ML II

2011 0.141 0.130 0.023 0.017 0.058 0.045
2012 0.080 0.117 0.001 0.012 0.040 0.038
2013 0.105 0.198 0.005 0.000 0.056 0.032
2014 0.032 0.004 0.000 0.000 0.051 0.036
2015 0.022 0.001 0.000 0.000 0.059 0.039
2016 0.030 0.001 0.000 0.004 0.056 0.027

sigma
JA RF RF170 RF24 ML I ML II

2011 1.810 1.550 0.873 0.862 0.475 0.606
2012 1.150 1.200 0.577 0.655 0.389 0.627
2013 1.420 1.850 0.654 0.605 0.367 0.585
2014 0.760 0.570 0.419 0.481 0.338 0.428
2015 0.800 0.650 0.467 0.453 0.304 0.394
2016 0.850 0.650 0.371 0.318 0.221 0.255

Table 1.4: Calibration and estimation results of the Hull-White model for the
last business days of years 2011–2016. The calibration results are reported in
columns two to five. The second (JA) and third column (RF) report calibration
results based on 10-year co-maturity swaptions, the fourth column (RF170) re-
ports results based on the whole swaption volatility matrix, and the fifth column
(RF24) is based on a sparse version of the volatility matrix. The sixth (ML I) and
seventh (ML II) column report our maximum likelihood estimation results. ML
I provides estimates based on using both Euribor- and swap-based yields in the
likelihood function, whereas ML II reports estimates based on using swap-based
yields only.

on at-the-money swaptions with co-terminal maturity of 10 years. A co-terminal
maturity is the sum of the swaption maturity and swap tenor. In the literature,
it is common to study swaptions of a certain co-terminal maturity as they are
related to pricing and hedging of Bermudan swaptions, which is a frequent use of
no-arbitrage models. As noted by Russo and Torri [2019] using “co-terminal ma-
turity may lead to sub-optimal calibration results due to inefficient use of data”
(their choice of co-terminal maturity of 10 years amounts to use 10 out of 170
available swaption price quotes). We therefore calibrate the Hull-White model
by using the Russo and Fabozzi [2016] pricing method to all 170 elements of the
swaption volatility matrix. In addition, for robustness considerations, we cali-
brate to 24 swaption prices, which were selected by applying a sparse but evenly
spaced grid on the volatility matrix. The calibrated parameter values based on
all 170 swaption price quotes are reported in the fourth column (RF170) of Ta-
ble 1.4, whereas the results obtained by using the sparse grid are given in the
fifth column (RF24).

In order to compare our maximum likelihood approach to calibration, we esti-

by 100 to align with reporting used in this chapter, that is, parameter values rounded to three
decimal digits and interest rates measured in percent.
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mate the Hull-White model by using two years of daily data until the calibration
time, that is, we follow the same procedure as in Section 1.4.2.10 We report two
sets of results. First, in the sixth column (ML I) of Table 1.4, we report α and
σ estimates based on using both Euribor- and swap-based yields (1M, 2M, 3M,
6M, 1Y-7Y, 10Y, 15Y) in the likelihood function (as we did in Section 1.4.2).
Second, in the seventh column (ML II), we report estimates based on using only
the swap-based yields (1Y-7Y, 10Y, 15Y) in the likelihood function. The reason
for using only swap-based yields is that a swaption is an option written on a
swap, and hence its the swaption price is governed by the risk-neutral dynamics
of the swap during the swaption maturity.

We can observe that calibrated values of α vary quite substantially across
years, with respect to the swaption pricing method used in calibration (for in-
stance, the ratio of JA to RF α values varies from 0.53 in 2013 to 60.80 in 2016),
and also with respect to the selection of swaptions used for calibration (RF170
and RR24 α values are always smaller than α values based on co-terminal swap-
tions). The parameter α determines the speed of mean reversion to the forward
curve, and thus can be problematic to estimate from cross-sectional data. Indeed,
Russo and Torri [2019] point out that some authors propose to estimate α from
historical data rather than calibrate it. The maximum likelihood estimates of
α do not exhibit any abrupt changes across years. The ML II α estimates are
always smaller than ML I α estimates.

The calibration of σ appears more stable than calibration of α (for example,
the ratio of JA to RF σ values varies from 0.77 in 2013 to 1.33 in 2014). The
stability is comforting as volatility is the key input to derivatives pricing. We
can observe that the RF170 and RF24 σ values, which are based on the whole
space of swaption prices are always smaller than the JA or RF σ values, which
are based on swaption prices with co-terminal maturity of 10 years only. The ML
II σ estimates are larger than ML I σ estimates for every date considered, and
they match the calibrated RF170 or RF24 σ values reasonably well. Specifically,
ML II σ estimates are in average just about 13% smaller than RF170 calibrated
σ values (the ratio of ML II to RF170 σ values varies from 1.09 in 2012 to 0.69 in
2011 and 2016). These results suggest that our maximum likelihood estimation
is a viable method for using the Hull-White model for interest rate derivatives
pricing on markets where swaption price quotes are lacking.11

1.4.8 Application in Risk Management
In this section we use the estimated Hull-White model in the probability of default
calculation, and illustrate the importance of the measure choice. We use the
one-year yield density forecasts from Section 1.4.5 to calculate the probability
of default of a loan. The creditor uses a proprietary logistic regression model
and data to estimate at time t the one-year probability of default PDt. For our
illustrative purposes we consider the following simplified version of the creditor’s

10We have compared our EUR yield curve data to yield curve data provided of Russo and
Torri [2019]. The date sets are almost identical for all six trading dates considered. The largest
total absolute difference between the yield curves is 0.53 basis points in 2013.

11Expert knowledge may be requested to tweak the estimated parameters, in particular σ, to
reflect specifics of the priced derivative contract.
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Figure 1.7: Distribution of the probability od default PDt under both measures.

model:

PDt = exp{β̂0 + β̂1∆y}
1 + exp{β̂0 + β̂1∆y}

, β̂0 = −3, β̂1 = 1, (1.45)

where ∆y := y(t + 1, t + 2) − y(t, t + 1) is the change of one-year market yield
over the one-year horizon and β̂0, β̂1 are regression coefficient estimates. Note
that PDt is a random variable as it is a function of ∆y. The sensitivity of the
probability of default to interest rates has been well established in credit risk
modelling (Lando [2009]). The sensitivity of PDt to other risk factors is in our
simplified model averaged out by the β0 coefficient. The β0 estimate implies that
PDt = 4.7% if the market yield did not change (∆y = 0).

We use the Hull-White model density forecasts presented in Figure 1.6 to
evaluate the PDt on 30 August 2019. The distribution of PDt is captured in
Figure 1.7. Since the probability of default is dependent on the real-world interest
rate trajectory, risk calculations should be done under the real-world measure. We
can observe that the risk-neutral distribution of PDt overstates the default risk.
Indeed, the real-world expected PDP

t = 4.39%, whereas the risk-neutral expected
PDQ

t = 4.52%. The probability of default is given by a nonlinear transformation
of the yield change, and therefore the difference between PDP

t and PDQ
t values is

not constant. For instance, credit risk managers often consider the 99% percentile
of the default probability; at this percentile we obtain that PDP

t = 5.87% and
PDQ

t = 6.03%. In our toy model the credit risk is overstated under the risk-
neutral measure. However, in many risk-management applications the opposite
applies, i.e., the risk is understated under the Q measure. For example, consider
a portfolio with long position in bonds. As bond prices move in the opposite
direction to yields, the Value at Risk of such a portfolio would be understated
under the risk-neutral measure.
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2. An Asset - Liability
Management Stochastic Program
with a Pricing Decision
The second part of this thesis discusses a decision-dependent randomness asset-
liability management model. There, we formulate a model for a life-cycle of
a loan which is provided by a company to an individual customer. Moreover, one
of the decisions which the company has to make is to offer an interest rate to the
customer. The customer’s decision whether to accept or reject the loan directly
depends on the offer from the company and hence it induces decision-dependent
randomness to the program. The model formulation as well as the results and
sensitivity analysis have been published in paper Kopa and Rusý [2021b].

First, we present the model formulation in detail in Section 2.1. We describe
the general settings and the objective function in Section 2.1.1. Next, we continue
in describing the individual stochastic components of the model in Section 2.1.2.
In Section 2.1.3, we introduce the constraints and present the entire formulation of
the model. Thereafter, in Section 2.2, we show the results of the model. We start
in Section 2.2.1 where we show the results of the program for single parameters’
setting to illustrate the optimal decisions and how the loan value would evolve
depending on the company decisions. Furthermore, in Section 2.2.2 we discuss
the effect of the customer’s properties on the model solution, especially on the
offered interest rate and the expected value of the loan. There, we also mention
the losses which are incurred by the company if it does not behave in the optimal
way.

2.1 Model Formulation

2.1.1 Model Environment and Objective
First, let us describe the situation and the time-frame on which the optimization
model is built. We consider three economic agents:

• A credit institution operating in the interbank market,

• A company, or lending entity within this problem framework, that will
borrow money in the interbank market and give loans to consumers

• Customers, or borrowing agents, who through the loan will be in condition
to finalize the purchase of a good.

We illustrate the relationship of these three agents in Figure 2.1. The individ-
ual customer approaches the company and asks for a loan. On the other hand,
the company borrows money from the financial market to obtain sufficient funds.

The primary objective of this chapter is to construct and analyse an optimiza-
tion model (often called a program) which a company can use to determine its
decisions. These decisions shall be taken so the company maximises the expected
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Interbank Market Company Customer

Figure 2.1: Economic agents which enter the optimization model.

value of the loan (the expected profit) at the agreed loan maturity. More specif-
ically, at every point in time, we define the term value of the loan as the sum of
cash and present value of assets and liabilities resulting from the loan contract
with the customer (see, later, equation (2.14)). Consequently, all the loans from
the market which are used to finance the consumer loan are also included. The
value of the loan changes over time. This depends on the market interest rate
evolution and the customer’s behaviour (possible loan default or prepayment).
These factors are, however, not known a-priori, so they are treated as random.

Next, let us highlight where the main difficulty in the asset-liability stochastic
programming model arises. Usually, random effects are assumed to be exogenous.
In other words, no decisions taken by the decision maker in the optimization
model affect the uncertain elements entering the model. However, this is not
the case in this situation. Here, the company’s initial decision is to offer the
customer a loan with a fixed interest rate. This decision directly affects the
probability of the customer accepting the loan offer. This is a random event
(from the company’s point of view), and it is endogenous — dependent on the
initial decision. The probability of the customer prepaying or defaulting also
depends on the offered interest rate. The strength of this relationship and how
this endogenous uncertainty is dealt with is discussed in detail in Section 2.1.2.

In such loan operations, a common practice is for the lending agencies to bor-
row in the market so that they can match asset and liability cash flows from the
start of the loan. However, Rusý and Kopa [2018] showed that such a strategy
is not optimal as there are alternative strategies which have better risk proper-
ties and higher profitability. For this reason, we give numerous options to the
company on how to form and optimize its liability side. The fact that we jointly
optimize the initial interest rate decision and the company’s borrowings allows us
to consider the different probabilities of cash flows that stem from the decision-
dependent randomness and adjust the company’s borrowing strategy accordingly.
This joint optimization of the pricing problem and the consequent asset-liability
problem is a key feature of the model and the main contribution of this chapter.
It provides us with the optimal decisions corresponding to the genuine nature of
the problem.

In this work, we restrict ourselves to the simplest loan type — a non-collatera-
lized consumer loan with fixed maturity and fixed interest rate. However, this
framework can easily be extended to a variety of other problems which combine
pricing decision of some good together with subsequent action depending on the
demand for the good. There, we have a decision-dependent randomness between
the price and the demand. The framework of stochastic programming is then
flexible enough to take into account numerous features which are connected to
special properties of the good. From the financial perspective, other products
which could be modelled are, for example, mortgages or pension/building savings.
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There, the structure of the resulting actions and cash flows is more complex, but
the general idea is the same.

We assume that a customer comes to the company and wants to borrow N0
amount of money for a period of T months.1 Afterwards, the company offers the
customer an interest rate r for such a loan. We assume this is the only cost the
company charges the customer. Next, the customer decides whether to accept or
reject the offer. If the loan is agreed upon, we proceed further to model the life of
the consumer loan, which is repaid regularly each month t, t = 1, . . . , T by equal
instalments.

The multi-stage stochastic optimization program will, however, consist only
from K + 1 ≤ T + 1, K ∈ N stages, 0 = t0 < . . . < tK = T. At these times,
scenarios of other random quantities (interest rate evolution, customer’s loan
default or prepayment) will be observed and the company will be able to make
decisions. In other times, no decisions are made; only instalments are paid.
The decisions will define cash flows between the company and the market and
form the liability side of the company. We use time index t, t ∈ {0, . . . , T} to
denote months within the duration of the loan; index k, k ∈ {0, . . . , K} and
times tk denote decision stages of the optimization program. We have {tk, k =
0, . . . , K} ⊂ {0, . . . , T}. In some cases, indices i, j are also used to iterate over
the set of decision times.

2.1.2 Random Elements, Scenarios and Decision-Depen-
dent Randomness

In this section, we will describe four random elements which are part of the life
of the loan in the model. They are represented by the following questions:

• Will the customer accept the loan?

• If yes, will he afterwards prepay the loan?

• Will he default on the loan?

• What will be the evolution of market interest rates?

The first three elements describe uncertain customer behaviour. They are all
considered endogenous as they depend on the interest rate decision. The fourth
element, which is considered exogenous, captures the evolution of prices in the
financial market.

Probability of Accepting the Loan

Once the customer is offered a loan with a specific interest rate, there is the pos-
sibility that he will either accept or reject it. The probability that the customer
accepts the loan offer and enters into a contract with interest rate r is denoted by
p(r). This function is customer-specific. Here, multiple customer-dependent fac-
tors can play a role, for example the customer’s knowledge of market conditions

1Note that usually the principal N0 is set by the company. However, as it enters the model
only as a scale parameter (multiplier of the objective function), we treat it as fixed — for
example, determined by a risk management unit of the company.
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or alternative offers from other market participants. We assume that the rela-
tionship p(r) is estimated by logistic regression, where one of the regressors is the
interest rate offered to the customer. However, in general, any functional form
which describes the desired relationship could be used. We employ a function:

p(r) = exp{b1(b0 − r)}
1 + exp{b1(b0 − r)} = 1

1 + exp{−b1(b0 − r)} , (2.1)

where b0 and b1 are [customer-dependent] parameters. Parameter b0 represents
the rate at which the customer is indifferent to accepting or rejecting the loan.
We will call this midrate and it holds that p(b0) = 0.5. The second parameter, b1,
expresses the customer’s sensitivity to interest rates as it captures the effect on
the probability of accepting the loan when we deviate from midrate by a certain
amount. This can be quantified exactly by the usual interpretation of logistic
regression models. When b1 = 100, an increase of 1% in the offered rate r implies
a decrease in the odds ratio (accept/reject) by a factor of e−b1/100 = e−1.

For a given client, one can estimate the value of midrate and sensitivity by a
simple logistic regression. Consider a dataset where the response is a successful
or unsuccessful offer while regressors are the offered interest rate and customer’s
properties. Then, a model can be formulated, such that the first order terms
of customer’s properties define the midrate and covariate interactions with the
interest rate specify the sensitivity relationship. The fitted model together with
covariates of new customer would generate estimates of parameters b0 and b1.

This random event (accepting/rejecting the loan) is realized before issuing
the loan. If the customer’s decision is to reject, no cash-flows take place and the
value of the loan is 0. On the other hand, if the decision is to accept, then the
loan is issued, the company makes an initial decision on how to borrow at the
market and cash-flows are exchanged.

The quantity p(r) captures the essence of endogeneity of this random event.
It links the company’s decision to the random variable’s distribution.

Interest Rate Evolution

Next, we introduce market interest rates which express the cost of money at the
market. We denote yτ

t to be the annualized, risk-free interest rate with time-
to-maturity τ at time t. For t > 0, this quantity is random. It is considered
exogenous because the company is not thought to be able to affect its evolution.
We also denote mτ

t to be the rates for which the company can borrow from a
market participant — a bank. We define: mτ

t = yτ
t + m(τ).

Quantity m(τ) represents the spread between the risk-free rates and the rates
which the bank charges the company. This is fixed over time and can be in-
terpreted as the mark-up of the bank. In other words, we assume that the
company has a contract with the bank regarding floating rate borrowing. In
the numerical part, the values of mark-up m(τ) were set as follows. We defined
m(0) = 0.0048, m(2) = 0.0096 and m(5) = 0.0132, where τ is in years. Values in
between were obtained by linear interpolation.

The risk-free rates yτ
t are modelled by the Hull-White model formulated by

Hull and White [1990a], which belongs to the class of one-factor short-rate models
introduced by Vasicek [1977]. It is defined by the following stochastic partial
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differential equation:

drt = (θ(t) − αrt)dt + σdWt,

where rt stands for short-rate and Wt is the standard Brownian motion. Param-
eter α stands for the mean reversion factor and σ summarizes the volatility of
the short-rate. Finally, θ(t) is set such that the observed market prices are fitted
perfectly, i.e:

θ(t) = ∂fM(0, u)
∂u

⃓⃓⃓⃓
u=t

+ αfM(0, t) + σ2

2α

(︂
1 − e−2αt

)︂
,

where fM(0, t) is the market instantaneous forward rate at time 0 for time t. We
employ the usual starting condition r0 = fM(0, 0) and calculate the yields yτ

t via
the formulas for zero-coupon bond prices [Brigo and Mercurio, 2001]. Thanks
to the fact that the Hull-White model uses exogenous information in the form
of the observed market yield curve, predictions of yields based on this model
are close to market expectations. The calibration of the model’s parameters
was inspired by Chen and Scott [1993] who estimated the Cox–Ingersoll–Ross
model of Cox et al. [1985a] by the maximum likelihood method on observed
yields. It is in detail described in Klad́ıvko and Rusý [2021] or in Section 1.2 of
this thesis. For this estimation, we used the daily PRIBOR rates observed on
the Czech market from 28th June 2015 to 1st March 2018. The estimated values
of the parameters were α̂ = 0.1346, σ̂ = 0.006427. Such an estimation procedure
is built on numerous model assumptions. The normality of short-rate movements
and their autocorrelation require particular attention. From acf and pacf plots,
we concluded that no autocorrelation is present, which is a consequence of the fact
that the Hull-White model uses the observed market curve for future predictions.
For testing normality, we used the Shapiro-Wilk test, which gave us a p-value of
0.00545. At the usual significance level, we would reject the normality hypothesis.
This is mainly due to 4 outliers, which correspond to jumps that are a little larger
than one would expect in normal distributions. However, because prediction
based on this model looked reasonable, we decided to accept and use it in the
scenario generation procedure.

In our model, we capture the interest rate evolution in the form of a regular
scenario tree, often seen in multi-stage stochastic programming, such that in each
stage every node has the same number of successors. Moreover, in such a tree, all
scenarios are equiprobable. We will denote Sk, k ∈ {0, . . . , K} as the set of nodes
of the interest-rate tree in a decision stage tk and ai(sk) as the time ti ancestor
of a node sk ∈ Sk, 0 ≤ i < k. We will also denote yτ

tk
(sk) as the risk-free interest

rate and mτ
tk

(sk) = yτ
tk

(sk) + m(τ) as the rates for the company at time tk with
time to maturity τ in the scenario node sk ∈ Sk.

The scenarios of the short-rate were chosen to be the quantiles of the model-
implied distribution (conditioned on the observed value of the short-rate in the
ancestor node). We derived the term structure yτ

tk
(sk) and discount factors

P (tk, tk + τ ; sk), τ > 0 from the short-rate based on well-known formulas for zero-
coupon bond prices implied by the Hull-White model (see, for example, Brigo
and Mercurio [2001] for more details).
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Probability of Default and Prepayment

The final two types of randomness which enter the model are loan prepayments
and customer defaults. We treat these effects as endogenous, as they are closely
connected to the offered rate of the loan. This, however, introduces another
decision-dependent randomness into the model, which is present in all stages of
the multi-stage program. First, let us describe why we need to take these effects
into account in the model.

Customer defaults are generally considered to be the biggest risk factor af-
fecting the profitability of a loan. This is simply because it can happen that the
customer becomes unable to fulfil his commitments. Under such an event, the
company loses not only the interest rate charged to the customer but also a part
of its principal. Such a proportion is called loss given default and we include it
in the model as a fixed parameter, denoted as lgd and set to a value of 0.5. If the
customer defaults at time tk, the company is modelled to receive (1 − lgd) times
the remaining principal as the recovered part of the loan. Scenarios of customer
defaults will be added to the model. Thereafter, we assign them probabilities so
they match our initial assumption about hazard rates h(tk, r) — the probabil-
ity of default at time tk given that the loan with interest rate r survived up to
time tk−1.

Prepayment means that the customer repays more money than it was sched-
uled in the original contract. Usually, such a prepayment comes from one of the
two following reasons:

• The customer has spare money which he can afford to use for loan prepay-
ment.

• The customer finds a cheaper loan and he refinances it.
The first reason is unconnected to the decision variables or random quantities

in the problem. On the other hand, the second reason is closely related to the in-
terest rate of the loan. Naturally, if the price of the loan is too high, the customer
is more likely to look for cheaper options at the market and, thus, more likely to
repay the loan earlier. Therefore, this random effect is also endogenous. Similar
to customer defaults, we add scenarios of loan prepayments into the model and
assign them probabilities to match our assumptions about the hazard rate g(tk, r)
of prepayment at time tk of the loan with interest rate r. By loan prepayment, we
mean only full prepayment of the loan, so when it occurs, the remaining principal
is repaid to the company.

Next, let us describe how we determine the hazard rates for default h(tk, r) and
prepayment g(tk, r). We formulate both the default and the prepayment model
on the following ideas:

• The probability depends on the interest rate, time to maturity of the loan
and the initial rating of the customer.

• There might be an interaction between the interest rate and the rating of
the customer.

From there, we formulate a logistic regression model:

prob(tk, r, ρ) = exp(η)
1 + exp(η) , η = β0 + β1r + β2ρ + β3tk + β4ρ · r, (2.2)
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where ρ = {1, 2, 3, 4} denotes rating of the customer2 and β0, β1, β2, β3, β4
are parameters. Symbol prob(tk, r, ρ) stands for the probability that a loan with
interest rate r of a customer with rating ρ will be defaulted/prepaid by the time
tk, given that it survived till time tk−1.

We fitted the model to real market data of a Czech company operating in
the industry and tested whether models in (2.2) could be used to capture the
relationship. The data consisted of all [17 554] consumer loans of the company
with maturity between 5 and 6 years active at one point in time. We had the
initial rating of the customer (which was valid when the loan was agreed) and
we observed whether the loans were repaid or defaulted in the following year.
The observed and fitted default and prepayment probabilities are summarized
graphically in Figure 2.2, while the estimated parameters are shown in Table 2.1.
For better readability and interpretation, values of interest rate r are thought to
be in percent. To obtain values of g(tk, r) and h(tk, r), one needs to use a given
value of rating ρ. The corresponding intercept and coefficients for interest rate
and time will be denoted βg

0 , βg
1 , βg

3 and βh
0 , βh

1 , βh
3 respectively.

2We should note that we considered four different ratings of a customer, from the best rating
(1) up to the worst rating (4). A few customers with a rating worse than 4 on the usual scale
1 − 8 were assigned rating 4 for this analysis.
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Figure 2.2: Prepayment and default rates and fitted probabilities in analysed
dataset. Dashed lines show the fitted logistic model.
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Let us briefly comment on the interpretation of this model. The coefficient
estimates are very much in-line with our expectations. The parameter estimates
show that defaults occur in early stages of the loan duration and that there is
a strong relationship between interest rate and default for customers with bad
rating. On the other hand, for prepayment, we can see that customers with good
rating have high prepayment rate for high interest rate loans. This interaction
also has reasonable interpretation. In some of the plots, the fitted values seem to
be far from the observed quantities. This is partly due to few observations in these
areas (for example, low- and high-interest rate). Finally, we would like to stress
that this analysis was performed in order to get a reasonable (real) estimate of
the relationship between interest rates and default/prepayment probabilities. We
could have described the econometric relationship in more detail. However, this
will increase model complexity and we might lose its computational tractability.

Now, let us discuss how we implement the scenarios of loan prepayments and
customer defaults into the program. First, we already have |SK | interest rate
scenarios from the initial decision period to the maturity of the loan. Take one
scenario as fixed and on every node/stage, loan prepayment or customer default
can occur. Note that during the life of the loan, only one customer default or
loan prepayment can take place. Hence, each program scenario can be defined
as a pairing of the interest rate scenario and the event specification. Events are
formulated to be loan prepayments or customer defaults at any stage tk ̸= t0. For
example, default at stage t2 is considered to be one event. This implies, that we
have in total 2 · K events. We should also mention that loan prepayment at time
tK = T corresponds to the loan being repaid at the initially agreed time.

Mathematically speaking, we define set E as a set of all possible events. For
event e ∈ E, we define t(e) to be the time when the event occurs, d(e) an indicator
function which is 1 when the event is customer default and 0 when the event is full
prepayment. So, for example, for the event that the customer defaults at stage t2,
we have t(e) = t2, d(e) = 1. These functions are important for determining sce-
nario probabilities as in (2.3) (calculated from conditional probabilities of default
and prepayment) and for the specification of the budget equation given in (2.11).
The scenario of a program is then uniquely defined by a pair (s, e), s ∈ SK , e ∈ E.

What is important to realize under this parametrisation is that at time tk, we
cannot distinguish between two program scenarios (s, e1), (s, e2), s ∈ SK , e1, e2 ∈
E such that tk < min{t(e1), t(e2)}. This is simply because by time tk, we do
not observe the nature of event e. Such a property will lead to the inclusion of
non-anticipativity constraints into the program.

Model symbol R2 β0 β1 β2 β3 β4

Prepayment g(tk, r) 0.053 -1.93*** 0.18*** -0.17* -0.21*** -0.028***

Default h(tk, r) 0.106 -2.93*** -0.033 0.20. -0.22 *** 0.031***

Table 2.1: Estimated parameters of models for probability of default and prepay-
ment together with McFadden R2. Asterisks denote a statistical significance of
the coefficient: *** denotes a p-value smaller than 0.001, * smaller than 0.05, and
. smaller than 0.1.
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The Probabilities of Scenarios

In the final part of this section, we will comment on how we calculate probabilities
of scenarios p(s, e, r), s ∈ SK , e ∈ E where r is the initial interest rate decision.
These are obtained iteratively by the multiplication of hazard rates in each node
— a probability that one reached this node multiplied by the probability that
from this node, one moves to its child. For event e ∈ E and time tk ≤ t(e),
we use hazard rate h(tk, r) if default occurs: I[t(e)=tk] = 1, d(e) = 1, hazard rate
g(tk, r) if prepayment occurs: I[t(e)=tk] = 1, d(e) = 0 and finally hazard rate
1 − h(tk, r) − g(tk, r) if the event is not yet observed: I[t(e)>tk] = 1. Otherwise,
when I[t(e)<tk] = 1, probabilities are distributed equally depending only on the
branching of the interest rate tree given by |Sk−1|/|Sk|. The formula is as follows:

p(s, e, r) =
K∏︂

k=1

(︃
I[t(e)=tk]d(e)h(tk, r) + I[t(e)=tk]

(︂
1 − d(e)

)︂
g
(︂
tk, r

)︂
(2.3)

+ I[tk<t(e)]
(︂
1 − h(tk, r) − g(tk, r)

)︂
+ I[tk>t(e)]

)︃(︂
|Sk−1|/|Sk|

)︂
,

s ∈ SK , e ∈ E.

We require that ∀k ∈ 1, . . . , K it holds that h(tk, r) ≥ 0, g(tk, r) ≥ 0 and also
that

(︂
1 − h(tk, r) − g(tk, r)

)︂
≥ 0. Moreover, in the last stage, we must have

g(tK , r) = 1−h(tK , r), ∀s ∈ SK . Under such conditions, the probabilities p(s, e, r)
of scenarios are non-negative and sum up to one for all values of interest rate
decision r.

The equation (2.3) provides another link between the decision variable r and
scenario probability. First, we have a model measuring the effect of the interest
rate decision on the probability of moving from each node to its successor as
in (2.2). Then, we calculate the probability of each scenario by multiplication
of the hazard rates. Here we use Bayesian conditional probabilities and the
Bayes’ theorem. This captures the effect of the decision-dependent randomness
in defaults and prepayments into the multi-stage program.

2.1.3 Stochastic Programming Model Formulation
In this section, we will complete the formulation of the asset-liability stochastic
programming model. We have already introduced the interest rate decision r and
the probability of accepting the loan p(r). We described the time structure of the
model — we have months t, t ∈ {0, . . . , T}, where T is the maturity of the loan,
and decision times tk, k ∈ {0, . . . , K}. See Section 2.1.1 for more details.

Scenarios are defined as a pair (s, e), s ∈ SK , e ∈ E, where s captures the
interest rate evolution and e the event which realizes on the side of the customer.
For a scenario (s, e) and offered interest rate r we have the scenario’s probability
p(s, e, r), see Section 2.1.2.

In the next part, we will describe the evolution of the principal of the loan
(Section 2.1.3) and define how the company can borrow and lend money in the
financial market (Section 2.1.3) at the prevailing interest rates. Apart from defin-
ing which decisions can be made by the company, we will also derive quantities
(such as income at given time and scenario) corresponding to the cash-flows be-
tween the company and the market.
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In Section 2.1.3, we introduce the current account equation (2.11), which
links the company’s cash-flows with both the customer and the market. Other
constraints, such as the non-anticipativity constraints, are also introduced. All
the decisions, quantities and equations are then summarized in Section 2.1.3,
where the entire model is presented in the compact form.

Loan Instalment and Principal

First, we calculate the value of a single instalment π. This is constant for the
duration of the loan. It depends on the interest rate decision r and it is calculated
as in equation (2.4). Next, we denote Nt, t = 1, . . . , T , the principal which stays
on the account after payment of the instalment in month t. The interest credited
from month t − 1 to t is equal to Nt−1 · (r/12), while the amortization is π −
Nt−1 · (r/12). We can also determine the value of N1 and other principal amounts
Nt, t = 1, . . . , T.

N0 =
T∑︂

t=1

π

(1 + r/12)t
⇒ π = N0(r/12)

(︃
1 − (1 + r/12)−T

)︃−1
, (2.4)

Nt = N0

(︄
1 − (1 + r/12)t − 1

(1 + r/12)T − 1

)︄
, t = 1, . . . , T. (2.5)

The principal behaves as we calculated only in the case when the loan is
repaid in the way as agreed at the beginning of the contract. In case of a default
of the customer or a full prepayment of the loan, the evolution is different. If
default occurs at time tk, the company is thought to receive lgd · Ntk−1 at time
tk, while no cash-flows are exchanged between the consumer and the company
in months between decision stages tk−1 and tk. When prepayment occurs, the
company receives the remaining principal Ntk

.

Cost of Financing the Loan

Another aspect which needs to be considered is the cost of financing such a loan.
To obtain sufficient funds, the company could enter exactly the same contract
with the market, a practice often seen in the industry. Rusý and Kopa [2018]
showed that such a simple approach is not efficient. Hence, we go beyond it and
give the company many possibilities to form its liability side, so the company
can find the optimal financing strategy. Consider now two time instances ti and
tj, ti < tj ≤ TK of the program. At time ti, in each node of every scenario
(si, e), si ∈ Si, e ∈ E, i = 0, . . . , K − 1, the company will have two possibili-
ties of borrowing money from the market. It could borrow from ti to tj and
repay the money monthly with regular instalments (typically funded by the loan
with matched dates) or reimburse all costs at the expiry. We will denote such
amounts as uti,tj

(si, e) and vti,tj
(si, e) respectively. We can calculate the amount

uti,tj
(t; si, e) repaid at time t, ti < t ≤ tj from a loan uti,tj

(si, e) as

uti,tj
(t; si, e) =

uti,tj
(si, e)∑︁tj−ti

τ=1 (1 + mτ
ti

(si)/12)−τ
, t = ti + 1, . . . , tj. (2.6)

On the contrary, at time tj, the company pays back vti,tj
(tj; si, e) such that

vti,tj
(tj; si, e) = vti,tj

(si, e)
(︂
1 + m

tj−ti

ti
(si)/12

)︂tj−ti

. (2.7)

43



We also make it possible for the company to invest spare money and gain interest.
Such an opportunity may arise, for example, when the client unexpectedly prepays
the loan. We denote wti,tj

(si, e) as the amount of money lent to others for the
market risk-free yield y

tj−ti

ti
(si). This money will be repaid at time tj, as the

company would receive amount wti,tj
(tj; si, e) :

wti,tj
(tj; si, e) = wti,tj

(︂
1 + y

tj−ti

ti
(si)/12

)︂tj−ti

. (2.8)

These decisions allow the company to freely initiate numerous contracts. How-
ever, we still require the company to meet all obligations from all previous de-
cisions — i.e. there is no option for prepayment on the company’s side. This is
summarized in the following equations, which express both the amount of the
company’s income (I) and expenditure (J) at time instance tk, k = 0, . . . , K and
node (sk, e), sk ∈ Sk, e ∈ E from the financial market. These are:

Itk
(sk, e) =

∑︂
ti:ti<tk

wti,tk
(tk; ai(sk), e) +

∑︂
tj :tk<tj

utk,tj
(sk, e) +

∑︂
tj :tk<tj

vtk,tj
(sk, e), (2.9)

Jtk
(sk, e) =

∑︂
tj :tk<tj

wtk,tj
(sk, e) +

∑︂
t,ti,tj :

ti≤tk−1<t≤tk≤tj

uti,tj
(t; ai(sk), e) +

∑︂
ti:ti<tk

vti,tk
(tk; ai(sk), e). (2.10)

In the income equation (2.9), we sum the money returned from loans provided
to other institutions operating in the interbank market maturing at time tk with
the inflows from loans provided to the company by the market in that scenario.
In the expenditures equation (2.10), the company needs to pay instalments from
loans provided by the market in previous times and also pay the money lent to
the market in the given scenario.

The mismatch between the assets and liabilities could cause duration gaps in
the optimal solution. Such a portfolio composition may be considered risky and
volatile. This property can be controlled by introducing various risk constraints
restricting the space of the decision vector in the model. This is, however, a
well-studied area of stochastic programming and it goes beyond the aims and
objectives of this thesis.

Constraints and Objective Function

We continue with the specification of the remaining constraints implemented in
the model. Let us denote Btk

(sk, e) as the amount of money the company has in
its account immediately after time tk in scenario (sk, e) and Ctk

as the company’s
operating costs of the loan from time tk to tk+1. We have:

Btk
(sk, e) = Btk−1(ak−1(sk), e) − Ctk

+ Itk
(sk, e) − Jtk

(sk, e) − I[k=0]N0 (2.11)
+ I[tk<t(e)](tk − tk−1)π + I[tk=t(e)]d(e) · lgd · Ntk−1

+ I[tk=t(e)](1 − d(e)) ((tk − tk−1)π + Ntk
) ,

for k = 0, . . . , K, where Bt−1 = 0, and also CtK
= 0. The relationship on the first

line of (2.11) expresses the initial exchange of the principal and the cash-flows
between the bank and the company. On the second and the third line, the amount
of funds the company receives from the customer in different stages under the
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scenario e ∈ E is described. The indicator functions mean the same as described
in Section 2.1.2.

The definition of the company’s cash account brings us to a very natural
survival condition such that the company’s cash account must not be lower than
0. We require this only in stages from 0, . . . , K − 1 as, in the last stage, the loan
is concluded and we look at the final balance, its performance through its life and
asses its profitability. We require:

Btk
(sk, e) ≥ 0, e ∈ E, sk ∈ Sk, k = 0, . . . , K − 1. (2.12)

Next, we move to the cash-flows which take place between decision stages.
The company has to make sure it has enough money to cover its expenditures up
to the next decision stage. Such a liquidity constraint can be implemented only
by checking whether the company has enough funds in the month before the next
decision stage as all the cash-flows in between the decision stages are the same
every month. The constraint is as follows:

0 ≤ Btk
(sk, e) −

∑︂
t,ti,tj :

ti≤tk<t<tk+1≤tj

uti,tj
(t; ai(sk), e) + I[tk<t(e)](tk+1 − tk − 1)π, (2.13)

k = 0, . . . , K − 1.

The next step is to express the value of the loan in each node. Such a value
is calculated as the sum of discounted cash-flows from loans running at the given
time. Let us denote P (tk, tl; sk) as the discount factor from time tk to time tl

at a node sk ∈ Sk. For easier formulation, we divide payments between assets
Atk

(sk, e) and liabilities Ltk
(sk, e). These can be calculated as follows:

Atk
(sk, e) =

∑︂
ti,tj :

ti≤tk<tj

P (tk, tj; sk)wti,tj
(tj; ai(sk), e) + I[tk<t(e)]

∑︂
t:tk<t≤T

P (tk, t; sk)π,

Ltk
(sk, e) =

∑︂
t,ti,tj :

ti≤tk<t≤tj

P (tk, t; sk)uti,tj
(t; ai(sk), e) +

∑︂
ti,tj :

ti≤tk<tj

P (tk, tj; sk)vti,tj
(tj; ai(sk), e).

Assets are calculated as the sum of discounted cash-flows stemming from loans
provided to the market and payments the customer is yet to make — before the
event e is observed. For liabilities, we total all instalments which the company
is yet to make. The difference between values of assets and liabilities (the asset-
liability gap) together with the amount of money in the current account Btk

(sk, e)
gives us the value of the portfolio Vtk

(sk, e) at node (sk, e). This reads as:

Vtk
(sk, e) = Btk

(sk, e) + Atk
(sk, e) − Ltk

(sk, e). (2.14)

In the final stage, when we have no running contracts, this turns into the net
income — the total loan profit. This leads us to the formulation of the objective
function f(r, u, v, w), which expresses the value of the loan at the final time
horizon. We have:

f(r, u, v, w) = p(r) ·
∑︂

sK∈SK ,e∈E

p(sK , e, r)VtK
(sK , e), (2.15)

where variables u, v, w symbolically stand for the sets of decision variables as
defined above. In (2.15), we weigh each scenario according to its probability
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p(sK , e, r) and we multiply the entire sum by the probability p(r) that the loan
is agreed to.

To complete the model formulation, we need to specify the final set of con-
straints. This will consist of the already-mentioned non-anticipativity constraints,
as we need to make sure that the decisions of the company in times and scenarios
where the event has not yet been observed are the same. We impose:

uti,tj
(si, e1) = uti,tj

(si, e2), vti,tj
(si, e1) = vti,tj

(si, e2),
wti,tj

(si, e1) = wti,tj
(si, e2), (2.16)

∀si ∈ Si, e1, e2 ∈ E : ti < min{t(e1), t(e2)}, tj > ti, i = 0, . . . , K.

Finally, we would like to comment on model limitations. The model is specif-
ically designed to capture the relationship between an individual person and the
lending company. For other borrower-lender relationships, the model would need
to be slightly adjusted. For example, for peer-to-peer lending, the liability side
would need to be formulated differently, as individual people usually do not have
the borrowing options that are specified in the model. On the other hand, the
borrowing of small companies also has its specifics. Furthermore, individual ap-
proaches and a more detailed analysis of the relevant data are necessary, especially
for larger loans.

Stochastic Programming Model Formulation

Let us now summarize the decision variables and present the complete program.
We have months t, t ∈ {0, . . . , T} and decision times tk, k ∈ {0, . . . , K}. In the
first decision stage t0, the company offers a loan to the customer. If it is accepted,
the company borrows money at the market at observed (known) interest rates.
In the next decision stages (t1, . . . tK−1), we model the evolution of interest rates
by the interest rate tree, where at decision time tk we have a set of nodes Sk.
Finally, in the last stage tK , no decisions are made as we only evaluate the final
position at the end of the loan contract. Time ti ancestor of a node sk, i < k, is
denoted as ai(sk). Set SK denotes all final-stage nodes and, hence, also denotes
interest rate scenarios. In these future stages (tk, k > 0), the rate of the consumer
loan does not change. We only evaluate all contracts of the company, which can
also initiate new contracts at a price determined by the interest rates in the given
scenario. Set E describes all events which can happen to the customer. We have
functions d(e) identifying whether it is default or prepayment and t(e) specifying
at which decision stage it is observed. These are important mainly for calculation
of scenario probabilities and specification of cash flows between the company and
the customer in different stages. Finally, the pair (sK , e), sK ∈ SK , e ∈ E denotes
the program scenario. We have introduced four types of decisions over which we
optimize:

• r — the interest rate decision

For times ti, tj, i < j ∈ 0, . . . , K and each node (si, e), si ∈ Si, e ∈ E :

• uti,tj
(si, e) — amount borrowed at ti, repaid monthly with maturity tj

• vti,tj
(si, e) — amount borrowed at ti, repaid in total at time tj
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• wti,tj
(si, e) — amount lent at ti, repaid in total at time tj

We also defined the following quantities:

• b0, b1 — midrate and interest rate sensitivity of the customer

• p(r) — probability of accepting the loan by the customer

• h(tk, r) — hazard rate for default of the customer at tk with rate r

• βh
0 , βh

1 , βh
3 — coefficients for logistic regression model for h(tk, r)

• g(tk, r) — hazard rate for loan prepayment at tk with rate r

• βg
0 , βg

1 , βg
3 — coefficients for logistic regression model for g(tk, r)

• p(sK , e, r) — probability of scenario (sK , e), if loan with interest r is agreed

• π — instalment of the consumer loan

• Nt — the principal remaining at time t from the consumer loan

• yτ
t , mτ

t — risk-free rates and rates the company pays for loans at the market
at time t with time-to-maturity τ

• uti,tj
(t; si, e) — amount repaid at time t from loan uti,tj

(si, e)

• vti,tj
(tj; si, e) — amount repaid at tj from loan vti,tj

(si, e)

• wti,tj
(tj; si, e) — amount repaid at tj from loan wti,tj

(si, e)

• Itk
(sk, e) — income on the market side at tk, node (sk, e)

• Jtk
(sk, e) — expenditures on the market side at tk, node (sk, e)

• Ctk
— operating costs of the loan from time tk to time tk+1

• Btk
(sk, e) — amount on current account at tk, node (sk, e)

• Atk
(sk, e) — value of assets at tk, node (sk, e)

• Ltk
(sk, e) — value of liabilities at tk, node (sk, e)

• Vtk
(sk, e) — value of the loan at tk, node (sk, e)

From here, we formulate the asset-liability multi-stage stochastic program as:

min
r,u,v,w

− p(r) ·
∑︂

sK∈SK ,e∈E

p(sK , e, r)VtK
(sK , e), (2.17)

s.t. p(r) = 1
1 + exp{−b1(b0 − r)} ,

h(tk, r) = 1
1 + exp{−(βh

0 + βh
1 r + βh

3 tk)} ,

g(tk, r) = 1
1 + exp{−(βg

0 + βg
1r + βg

3tk)} , k = 1, . . . , K,
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p(sK , e, r) =
K∏︂

k=1

(︃
I[t(e)=tk]d(e)h(tk, r) + I[t(e)=tk]

(︂
1 − d(e)

)︂
g
(︂
tk, r

)︂
+ I[tk<t(e)]

(︂
1 − h(tk, r) − g(tk, r)

)︂
+ I[tk>t(e)]

)︃(︂
|Sk−1|/|Sk|

)︂
,

sK ∈ SK , e ∈ E,

π = N0(r/12)
(︃

1 − (1 + r/12)−T
)︃−1

,

Nt = N0

(︄
1 − (1 + r/12)t − 1

(1 + r/12)T − 1

)︄
, t = 1, . . . , T,

uti,tj
(t; si, e) =

uti,tj
(si, e)∑︁tj−ti

τ=1 (1 + mτ
ti

(si)/12)−τ
, t = ti + 1, . . . , tj,

vti,tj
(tj; si, e) = vti,tj

(si, e)
(︂
1 + m

tj−ti

ti
(si)/12

)︂tj−ti

,

wti,tj
(tj; si, e) = wti,tj

(︂
1 + y

tj−ti

ti
(si)/12

)︂tj−ti

, i, j = 0, . . . , K, i < j,

Itk
(sk, e) =

∑︂
ti:ti<tk

wti,tk
(tk; ai(sk), e) +

∑︂
tj :tk<tj

utk,tj
(sk, e) +

∑︂
tj :tk<tj

vtk,tj
(sk, e),

Jtk
(sk, e) =

∑︂
tj :tk<tj

wtk,tj
(sk, e) +

∑︂
t,ti,tj :

ti≤tk−1<t≤tk≤tj

uti,tj
(t; ai(sk), e) +

∑︂
ti:ti<tk

vti,tk
(tk; ai(sk), e),

Btk
(sk, e) = Btk−1(ak−1(sk), e) − Ctk

+ Itk
(sk, e) − Jtk

(sk, e) − I[k=0]N0

+ I[tk<t(e)](tk − tk−1)π + I[tk=t(e)]d(e) · lgd · Ntk−1

+ I[tk=t(e)](1 − d(e)) ((tk − tk−1)π + Ntk
) ,

Atk
(sk, e) =

∑︂
ti,tj :

ti≤tk<tj

P (tk, tj; sk)wti,tj
(tj; ai(sk), e) + I[tk<t(e)]

∑︂
t:tk<t≤T

P (tk, t; sk)π,

Ltk
(sk, e) =

∑︂
t,ti,tj :

ti≤tk<t≤tj

P (tk, t; sk)uti,tj
(t; ai(sk), e) +

∑︂
ti,tj :

ti≤tk<tj

P (tk, tj; sk)vti,tj
(tj; ai(sk), e),

Vtk
(sk, e) = Btk

(sk, e) + Atk
(sk, e) − Ltk

(sk, e), k = 0, . . . , K, sk ∈ Sk, e ∈ E,

Btk
(sk, e) ≥

∑︂
t,ti,tj :

ti≤tk<t<tk+1≤tj

uti,tj
(t; ai(sk), e) − I[tk<t(e)](tk+1 − tk − 1)π,

Btk
(sk, e) ≥ 0, k = 0, . . . , K − 1, sk ∈ Sk, e ∈ E,

uti,tj
(si, e1) = uti,tj

(si, e2), vti,tj
(si, e1) = vti,tj

(si, e2),
wti,tj

(si, e1) = wti,tj
(si, e2),

i, j = 0, . . . , K, i < j, si ∈ Si, e1, e2 ∈ E : ti < min{t(e1), t(e2)}

Note especially the first four equations in the model definition, which cap-
ture the endogeneity in the random variables induced by the initial interest rate
decision r. There is another non-linearity in the program in the equations for π
and Nt. The other equations form a usual asset-liability multi-stage stochastic
program.
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2.2 Numerical Results
In this section, we present the results of the model. We focus on how decision-
dependent uncertainty and the parameters associated with it affect the model
solution, especially the interest rate decision. We also discuss the losses connected
to offering a non-optimal interest rate for the loan.

For this model, we set the notional to be N0 = 50000 CZK with maturity
T = 5 years. We set decision stages to be at the end of each year (K = 5). The
branching of the interest rate tree was chosen to be 5 − 4 − 3 − 2 − 1, leading to
|SK | = 120 interest rate scenarios. There is no branching to the final stage, as
no decision is made there and we only evaluate the final value of a loan. Given
that we have 5 “future” decision stages and that, in each stage, we can have
default or prepayment, we have a total of |E| = 2 · K = 10 events leading up to
|SK | · |E| = 120 · 10 = 1200 scenarios.

The program was written in GAMS and solved by CONOPT3 on a standard
laptop (Intel Core i5 2.60 GHz, 8GB RAM). Scenario generation and results’
analysis were performed in R. The model itself had 58690 variables and 45619
constraints with 322783 Jacobian elements, 4989 of which were non-linear. The
Hessian of the Lagrangian had 1 element on the diagonal, 4250 elements below
the diagonal and 3052 non-linear variables.

2.2.1 Model Solution
Here, we will give a detailed description of the solution and its properties for
a single model. For this purpose, we chose parameter values as midrate b0 = 0.14,
interest rate sensitivity b1 = 100 and rating ρ = 2. The optimal solution of the
program was to offer the customer a rate r = 12.24%, with the probability of
accepting the loan as p(r) = 0.853. The optimal borrowing and lending strategy
of the company was to close only one-year loans. If spare money is available, then
the company should lend to the market for the longest period possible (until the
final time horizon). That is due to interest rate tree having relatively constant
expected future rates and also because the shorter the loan, the cheaper. If
the rates were, for example, increasing, the company would tend to close longer
loans with the market. The optimal value of the program showed that expected
profit from the loan was 7392 CZK on the considered 50000 CZK loan. This
approximates to an annual gain of 0.028 CZK per 1 CZK borrowed. However,
note that this depends greatly on the characteristics of the customer.

To analyse the results, we investigated loan performance in different interest
rate scenarios for different events. First, we divided interest rate scenarios into
five groups — purple, blue, green, yellow and red — depending on their first-
stage node (see top-left figure in Figure 2.3). This will help us to illustrate the
dependency of the optimal loan value on interest rate evolution. We looked into
performance when the customer complied with the original terms of the loan.
Because of the one-year borrowing strategy, the company profits on an interest
rate decrease and it loses money when the interest rate increases. However, it
is also able to use a high (purple) interest rate environment to compensate for
the initial loss by lending money earned from the loan in order to earn high
interest in latter stages of the loan. The bottom figures in Figure 2.3 show the
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performance of a loan when it is fully repaid/defaulted at the end of the first
year. One can see that a high interest rate environment is preferred for loan
prepayment because the company can then reinvest money for higher interest. It
is the complete opposite for the case of customer defaults. Then, the company is
required to borrow additional money to finance its liabilities and this costs more
in an environment with higher interest rates.

We also shortly investigated sensitivity on the mark-up m(τ), which the mar-
ket charges the company. Our hypothesis was that increasing the mark-up in-
creases the costs of the loan for the company and hence, “not accepting” the
loan is relatively less expensive. This should lead to higher interest rate decision.
However, the company would not increase the interest rate by the same margin
as the client would be discouraged from entering the loan. This was confirmed by
the program, as when we set the mark-up twice the analysed value, the objective
value of the program decreased to 6725 CZK and the optimal offered interest rate
was 12.34% with p(r) = 0.840.

A question arises about what the added value of the inclusion of decision-
dependent randomness is. First, note that it is not possible to formulate the model
without decision-dependent randomness in the probability of accepting the loan,
as this would not really make sense. Therefore, we have solved a model without
decision-dependent randomness in default and prepayment. There, the results
depend heavily on the strength of the relationship between the offered interest
rate and the default by the customer. For our particular case, the objective value
of the non-decision-dependent randomness model was 7348 CZK, which means a
difference of 44 CZK. However, for ratings 3 and 4, the difference was 2209 and
5635 CZK respectively. From this, we can conclude that it is advantageous to
reflect the relationship, especially in cases where the initial decision has a greater
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Figure 2.3: Interest rate and the optimal loan value evolution in time.
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impact on the random variable.
The framework we have introduced allows us to take into account all the el-

ements of the life of a consumer loan (customer properties, event probabilities,
interest rate evolution, etc.), assess their costs depending on the company’s de-
cisions and then select the optimal ones. Division of this joint optimization into
sub-problems is a simplification which does not produce accurate results. For
example, if the company would be forced to replicate the customer’s loan at the
market, then, it would pay more interest than it would be required for the case of
customer’s prepayment. This higher cost of prepayment would make the company
conservative and cause them to offer rate lower than the optimal one.

2.2.2 Sensitivity Analysis
In this section, we will investigate the behaviour of the optimal decisions and op-
timal value of the model when we modify the characteristics of the customer. Pa-
rameters ρ and b1 are of the main interest, as they capture the decision-dependent
randomness in the model. We will look into how the offered interest rate depends
on the probability distribution of accepting the loan. Moreover, we will anal-
yse how much the company loses when it makes a wrong decision regarding the
offered interest rate. This will be studied for all possible values of the rating.

We consider rating ρ = {1, 2, 3, 4}, which defines the probability of default
and prepayment as given in (2.2) and (2.3). Then, we specify the probability
of accepting the loan by parameters midrate b0 and interest rate sensitivity b1,
as described in Section 2.1.2. Interest rate sensitivity is the parameter which
captures the strength of decision-dependent randomness in the probability of
accepting the loan. We see that a higher value of b1 implies that the customer is
more sensitive — he has good information about current market conditions and
any deviation from the midrate means either a large increase or a large decrease
in the probability of accepting the loan. Midrates are considered to be from
a sequence {0.1, 0.12, 0.14, 0.16, 0.18}, while sensitivities will take on values of
{25, 35, 50, 75, 100, 125, 150, 175, 200}.

In Figure 2.4 and Figures 2.7, 2.9, 2.11 and 2.13 in Section ??, we show
the results of the model for each midrate, each interest rate sensitivity and each
rating listed above. The figures report the results of runs of the program with
a common midrate and consist of four plots. First, in the top-left one, we show
logistic curves which are generated by the pair b0 and b1. There, one can note that
all the curves intersect at one point — the common midrate with 50% probability.
Second, in the top-right plot, we show how the optimal interest rate varies for
different ratings across all sensitivity values. Finally, in the bottom two figures,
the loan probability (probability that the customer accepts the offered interest
rate) and the objective value of the program as given by the optimal solution are
shown.

From there, we can observe several properties of the optimization problem:

• It is always more profitable to have a consumer with a better rating.

• A consumer with a better rating gets better rates from the company.

• The higher the interest rate sensitivity b1, the higher the loan probability.
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This is simply because it is less costly to ensure the customer has a greater
probability of accepting the loan.

• The objective function is not monotone in b1. For some settings (see Fig-
ure 2.4 for midrate 0.1), the company makes money on the fact that the
customer is willing to accept higher rates.

We can see that all these findings have real application which is required for
any practical use of the model. It is clear that the shape of the “probability of
accepting the loan” curve is absolutely crucial for the model to produce the most
realistic results. We believe that the set of curves we chose approximate most of
the options which can practically happen. In the end, only local properties of the
curve around the “almost optimal rate” are what matters most.

We also investigated how important it is for the company to set the interest
rate correctly. In other words, how much the company loses when it offers a
non-optimal interest rate to the customer. To answer this question, we present
Figure 2.5, which depicts the dependence of the objective value of the program
when fixing the interest rate r and also the interest rate sensitivity b1 on certain
values. The figure is given for a customer with midrate b0 = 0.1 and rating 2.
Figures for other midrates are presented in Figures 2.8, 2.10, 2.12, 2.14 and they
can be also viewed in the interactive mode available at https://plot.ly/∼rusy/.

The conclusion which we obtain from Figure 2.5 is that the difference between
objective values of the optimal solution and a solution with fixed r depends greatly
on the interest rate sensitivity of the customer. It is apparent that when the
customer is sensitive (large b1) it is extremely important to “hit” the optimal rate
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Figure 2.4: Sensitivity analysis results for midrate 0.1.
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with the offer, otherwise the company loses a significant amount of money. What
can also be seen from Figure 2.5 is that it is more costly to offer a higher interest
rate than a lower interest rate compared to the optimal rate. The potentially
missed opportunity on a loan has greater impact on the objective than smaller
revenue from a loan with a lower interest rate.

In order to quantify the loss which is incurred by offering a non-optimal inter-
est rate, we present Table 2.2 (and Tables 2.3, 2.4, 2.5 and 2.6). Here, we show
for each considered customer, the loss incurred by missing the optimal interest
rate by ±1% - i.e. by ±100bps. From an initial glance, we can learn that the
losses increase with the value of interest rate sensitivity. This means the more
sensitive a customer is, the more careful the company should be with its offer.
We can also see the effect of the rating. Here, absolute costs are greater with a
better rating. On the contrary, relative costs increase with lower ratings. This is
due to the smaller objective value of a loan for worse customers. The tables also
confirm that it is generally better to offer lower rates than higher rates, which is
something we explored in the previous paragraph. We also compare losses across
midrates. Here, we see that they become larger with increasing midrate in abso-
lute values, but the opposite is true in relative terms. This imbalance is due to
the absolute change of 1% which is applied. This has a stronger relative effect
for lower midrates. However, the fact that we “play” for more money for higher
midrates implies a greater absolute effect there.

The relationship between the loss incurred to the company and the distance of
the offered interest rate from the optimal value can be exploited in more detail in
Figure 2.6. Here, one can see the effect of rating, interest rate sensitivity, midrate
and the distance of the offered rate from the optimal decision. We can draw a
similar conclusion as that from the numbers in Table 2.2; it is more costly to offer

Figure 2.5: Contour plot constructed from objective values of the program when
fixing offered interest rate r for different values of b1.
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a higher interest rate than a lower one and the loss depends largely on the interest
rate sensitivity of the customer. Moreover, we can see that the loss appears to
be concave in distance from the optimal interest rate decision, meaning the loss
increases with increasing rate when moving away from the optimal decision.

In summary, we investigated the effect of customer’s properties such as the
expected offered rate, interest rate sensitivity and credit quality on a loan pro-
vided by a company. These properties are essential as they capture the decision-
dependent uncertainty which is present in the optimization model. We focused on
calculation of losses caused by not offering optimal interest rate. We saw that es-
pecially for the more interest rate-sensitive customers, the losses can be very high
and any kind of simplification of the joint optimization model can lead to wrong
decisions. That implies that it is important to consider the decision-dependent
nature of the model in its entirety and ignoring it, even only in parts, can lead
to a significant reduction of profits for the company.

b1 ↓ Absolute [CZK] Relative [%]
Rating → 1 2 3 4 1 2 3 4

-1%

25 66 62 57 52 1.9 2 2 2.2
35 107 102 95 86 3.2 3.4 3.7 4.1
50 177 169 158 142 5.3 5.8 6.4 7.3
75 296 286 272 250 8.2 9.1 10.5 12.8
100 401 391 377 353 10.3 11.6 13.7 17.3
125 489 481 467 445 11.8 13.4 16 20.7
150 564 557 544 522 13 14.8 17.7 23.2
175 628 621 608 588 13.9 15.8 19 25
200 683 676 663 643 14.6 16.6 20 26.4

+1%

25 57 54 50 44 1.7 1.7 1.8 1.8
35 95 89 81 70 2.9 3 3.2 3.3
50 163 151 136 117 4.9 5.1 5.5 6
75 304 282 252 211 8.4 9 9.8 10.8
100 472 439 392 327 12.1 13 14.3 16.1
125 666 619 552 460 16.1 17.3 19 21.4
150 881 819 730 605 20.2 21.7 23.8 26.9
175 1117 1037 923 761 24.6 26.4 28.9 32.4
200 1372 1270 1128 927 29.3 31.2 34 38

Table 2.2: Differences in objective function for ±1% change in offered rate against
the optimal value for midrate 10%.

54



−1.0 −0.5 0.0 0.5 1.0

−
15

00
−

10
00

−
50

0
0

Midrate 0.1 Rating 1

Difference from Optimal Rate [%]

Lo
ss

 in
 E

xp
ec

te
d 

Lo
an

 V
al

ue
 [C

Z
K

]

b1 = 25
b1 = 35
b1 = 50
b1 = 75
b1 = 100
b1 = 125
b1 = 150
b1 = 175
b1 = 200

−1.0 −0.5 0.0 0.5 1.0

−
15

00
−

10
00

−
50

0
0

Midrate 0.1 Rating 4

Difference from Optimal Rate [%]

Lo
ss

 in
 E

xp
ec

te
d 

Lo
an

 V
al

ue
 [C

Z
K

]

b1 = 25
b1 = 35
b1 = 50
b1 = 75
b1 = 100
b1 = 125
b1 = 150
b1 = 175
b1 = 200

−1.0 −0.5 0.0 0.5 1.0

−
15

00
−

10
00

−
50

0
0

Midrate 0.14 Rating 1

Difference from Optimal Rate [%]

Lo
ss

 in
 E

xp
ec

te
d 

Lo
an

 V
al

ue
 [C

Z
K

]

b1 = 25
b1 = 35
b1 = 50
b1 = 75
b1 = 100
b1 = 125
b1 = 150
b1 = 175
b1 = 200

−1.0 −0.5 0.0 0.5 1.0

−
15

00
−

10
00

−
50

0
0

Midrate 0.14 Rating 4

Difference from Optimal Rate [%]

Lo
ss

 in
 E

xp
ec

te
d 

Lo
an

 V
al

ue
 [C

Z
K

]

b1 = 25
b1 = 35
b1 = 50
b1 = 75
b1 = 100
b1 = 125
b1 = 150
b1 = 175
b1 = 200

−1.0 −0.5 0.0 0.5 1.0

−
15

00
−

10
00

−
50

0
0

Midrate 0.18 Rating 1

Difference from Optimal Rate [%]

Lo
ss

 in
 E

xp
ec

te
d 

Lo
an

 V
al

ue
 [C

Z
K

]

b1 = 25
b1 = 35
b1 = 50
b1 = 75
b1 = 100
b1 = 125
b1 = 150
b1 = 175
b1 = 200

−1.0 −0.5 0.0 0.5 1.0

−
15

00
−

10
00

−
50

0
0

Midrate 0.18 Rating 4

Difference from Optimal Rate [%]

Lo
ss

 in
 E

xp
ec

te
d 

Lo
an

 V
al

ue
 [C

Z
K

]

b1 = 25
b1 = 35
b1 = 50
b1 = 75
b1 = 100
b1 = 125
b1 = 150
b1 = 175
b1 = 200

Figure 2.6: Comparison of losses to the company caused by not offering optimal
interest rate to the customer.
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Figure 2.7: Sensitivity analysis results for midrate 0.12.

Figure 2.8: Contour plot constructed from objective values of the program when
fixing offered interest rate r for different values of interest rate sensitivity b1.
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Figure 2.9: Sensitivity analysis results for midrate 0.14.

Figure 2.10: Contour plot constructed from objective values of the program when
fixing offered interest rate r for different values of interest rate sensitivity b1.
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b1 ↓ Absolute [CZK] Relative [%]
Rating → 1 2 3 4 1 2 3 4

-1%

25 75 72 68 63 1.6 1.7 1.8 1.9
35 125 120 112 103 2.7 2.8 3 3.3
50 200 195 186 173 4.1 4.4 4.8 5.4
75 319 314 304 289 5.9 6.4 7.2 8.4
100 423 417 406 391 7.2 7.9 8.9 10.5
125 511 504 494 478 8.2 9 10.2 12.1
150 586 580 568 552 9 9.8 11.1 13.3
175 649 642 631 614 9.6 10.5 11.9 14.2
200 703 697 685 668 10.1 11.1 12.6 14.9

+1%

25 69 65 61 55 1.5 1.5 1.6 1.7
35 115 109 101 91 2.5 2.6 2.7 2.9
50 200 190 176 157 4.1 4.3 4.6 4.9
75 370 353 328 294 6.8 7.2 7.8 8.5
100 569 544 509 458 9.7 10.3 11.1 12.3
125 797 764 713 643 12.8 13.6 14.7 16.3
150 1053 1008 943 849 16.2 17.1 18.5 20.4
175 1341 1282 1196 1076 19.9 21 22.6 24.9
200 1655 1581 1472 1321 23.9 25.2 27 29.6

Table 2.3: Differences in objective function for ±1% change in offered rate against
the optimal value for midrate 12%.
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b1 ↓ Absolute [CZK] Relative [%]
Rating → 1 2 3 4 1 2 3 4

-1%

25 84 82 78 73 1.4 1.5 1.6 1.7
35 136 132 127 119 2.2 2.3 2.5 2.7
50 215 210 203 193 3.2 3.4 3.7 4.1
75 336 331 322 310 4.5 4.8 5.3 5.9
100 439 433 424 410 5.5 5.9 6.4 7.3
125 525 519 510 495 6.2 6.6 7.3 8.3
150 599 594 583 568 6.8 7.3 8 9.1
175 663 657 646 629 7.3 7.8 8.6 9.7
200 718 711 699 682 7.7 8.3 9 10.2

+1%

25 79 76 72 66 1.4 1.4 1.4 1.5
35 133 128 121 111 2.2 2.3 2.4 2.5
50 228 220 208 192 3.4 3.6 3.8 4.1
75 416 403 383 356 5.6 5.9 6.3 6.8
100 636 617 589 548 7.9 8.4 8.9 9.7
125 889 864 824 769 10.5 11.1 11.8 12.9
150 1179 1142 1092 1017 13.4 14 15 16.3
175 1503 1457 1388 1293 16.6 17.3 18.4 20
200 1866 1808 1721 1600 20.1 21 22.3 24

Table 2.4: Differences in objective function for ±1% change in offered rate against
the optimal value for midrate 14%.
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Figure 2.11: Sensitivity analysis results for midrate 0.16.

Figure 2.12: Contour plot constructed from objective values of the program when
fixing offered interest rate r for different values of interest rate sensitivity b1.
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Sensitivity Results for Midrate 0.18

Figure 2.13: Sensitivity analysis results for midrate 0.18.

Figure 2.14: Contour plot constructed from objective values of the program when
fixing offered interest rate r for different values of interest rate sensitivity b1.
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b1 ↓ Absolute [CZK] Relative [%]
Rating → 1 2 3 4 1 2 3 4

-1%

25 93 90 87 82 1.3 1.3 1.4 1.4
35 147 144 139 132 1.9 2 2.1 2.2
50 228 224 218 209 2.7 2.8 3 3.3
75 349 345 337 327 3.6 3.9 4.1 4.6
100 452 447 440 427 4.4 4.6 5 5.5
125 540 535 526 512 5 5.3 5.7 6.3
150 615 609 599 583 5.5 5.8 6.2 6.9
175 679 673 662 645 5.9 6.2 6.7 7.4
200 734 728 716 699 6.2 6.6 7.1 7.8

+1%

25 89 87 82 77 1.2 1.3 1.3 1.4
35 149 145 138 129 1.9 2 2.1 2.2
50 253 246 236 221 3 3.1 3.2 3.5
75 456 444 428 404 4.8 5 5.3 5.6
100 693 677 652 618 6.7 7 7.4 8
125 967 944 911 863 8.9 9.3 9.9 10.6
150 1281 1251 1205 1144 11.4 11.9 12.6 13.5
175 1637 1599 1541 1459 14.2 14.8 15.6 16.7
200 2040 1992 1916 1811 17.3 18 19 20.2

Table 2.5: Differences in objective function for ±1% change in offered rate against
the optimal value for midrate 16%.
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b1 ↓ Absolute [CZK] Relative [%]
Rating → 1 2 3 4 1 2 3 4

-1%

25 100 98 95 90 1.1 1.2 1.2 1.3
35 157 154 149 143 1.6 1.7 1.8 1.9
50 239 236 230 222 2.2 2.4 2.5 2.7
75 361 357 351 340 3.1 3.2 3.4 3.7
100 465 461 453 441 3.7 3.9 4.1 4.4
125 554 549 539 526 4.2 4.4 4.7 5
150 630 624 614 598 4.6 4.8 5.1 5.5
175 695 690 678 661 5 5.2 5.5 6
200 751 745 733 715 5.3 5.5 5.8 6.3

+1%

25 99 96 92 87 1.1 1.1 1.2 1.2
35 164 159 153 145 1.7 1.8 1.8 1.9
50 274 268 259 246 2.6 2.7 2.8 3
75 489 479 464 443 4.1 4.3 4.5 4.8
100 740 725 704 672 5.8 6.1 6.4 6.8
125 1029 1011 982 938 7.8 8.1 8.5 9
150 1364 1340 1298 1243 10 10.4 10.8 11.5
175 1748 1713 1664 1589 12.5 12.9 13.5 14.3
200 2186 2143 2073 1979 15.3 15.8 16.5 17.4

Table 2.6: Differences in objective function for ±1% change in offered rate against
the optimal value for midrate 18%.
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3. Stress Testing via
Contamination
The final chapter of this thesis discusses an extension of a contamination ap-
proach of Dupačová [1986, 1996] for decision-dependent randomness stochastic
programs. We believe that this methodology can have great applications in fi-
nancial industry, as it is suitable for stress-testing. That is something which is
frequently required by market regulators as it helps to assess the ability of com-
panies to cope with extreme events. The results which we present in this chapter
have been submitted for publication in Kopa and Rusý [2021a].

This chapter is structured as follows. In Section 3.1, we review current work
on contamination, which is focused on the stochastic programs with exogenous
randomness. Specifically, in Section 3.1.1, we look at the results for the case
when the set of feasible decisions is not dependent on the probability distribution
and in Section 3.1.2 for cases with probability-dependent set of feasible decisions.
There, we also show that the lower bound developed by Dupačová and Kopa
[2012] can be improved. The Section 3.2 is devoted to the programs with decision-
dependent randomness, where we define the meaning of contamination for this
class of models. Further in Section 3.2.1 and Section 3.2.2 we formulate lower
and upper bounds for models without and with decision-dependent randomness
feasibility set, respectively. There, we specify all the assumptions under which the
bounds can be applied. Thereafter, in Section 3.3, we apply the developed bounds
on the asset-liability management stochastic program introduced in the second
chapter of the thesis. In Section 3.3.1, We contaminate a “good” customer with a
“bad” customer and show that contamination can significantly help with assessing
the effect of a quality of the customer on the profit of the company. Finally, in
Section 3.3.2, we extend the initial model for a CVaR constraint to show the
functionality of the bounds for the decision-dependent randomness feasibility set
as well.

3.1 Stochastic Programs with Exogenous Ran-
domness

In this section, we briefly recall the main results developed in the field of con-
tamination of stochastic programs. We consider a model

min
x∈X

F0(x, P ) (3.1)

s.t. Fj(x, P ) ≤ 0, j = 1, . . . , J,

where X ⊂ Rn is a closed non-empty convex set, P is a probability distribution
of a random vector ω and Fj

(︂
·, ·
)︂

: X × P → R, j = 0, . . . , J, are functions. The
set P is some convex set of probability measures, P ∈ P . We also assume that
a solution of (3.1) exists. Note that we consider all the constraints which do not
depend on P to be included in the definition of X

When considering contamination, we perturb the original distribution P of
a random vector ω by some contamination distribution Q ∈ P . This technique,

64



introduced by Dupačová [1986, 1996], became largely popular for its interpreta-
tion. Usually, the distribution of random vector ω is approximated. Hence it is
important to study the stability of the solution and optimal objective value with
respect to changes in P. Contamination can be also viewed as a stress-testing
technique, where Q plays the role of the stress-testing distribution.

We introduce parameter t, t ∈ [0, 1] and define Pt = (1− t)P + tQ, FQ,j(x, t) =
Fj(x, Pt), j = 0, . . . , J and the contaminated stochastic program as

min
x∈X

FQ,0(x, t) (3.2)

s.t. FQ,j(x, t) ≤ 0, j = 1, . . . , J.

We denote XQ(t), X ∗
Q(t) and φQ(t) the set of feasible and optimal solutions and

the optimal value function of a stochastic program (3.2) with a contamination
parameter t, respectively. The main question we aim to answer is if we can
bound the value function φQ(t), so we can make conclusions on the values of the
contaminated stochastic programs without solving them for all t.

3.1.1 Fixed Set of Feasible Decisions
First, let us consider the simplest case of (3.1), when no constraints depend on P
and consider t1, t2, λ ∈ [0, 1]. Provided that F0 is concave in P (so FQ,0 is concave
in t), we obtain

φQ(λt1 + (1 − λ)t2) ≥ min
x∈X

λFQ,0(x, t1) + (1 − λ)FQ,0(x, t2)

≥ λφQ(t1) + (1 − λ)φQ(t2),

which means that the optimal value function φQ(t) of (3.2) is concave in t. This
provides the main argument under which Dupačová [1996] constructs global lower
and upper bounds for the optimal value function φQ(t) :

(1 − t)φQ(0) + tφQ(1) ≤ φQ(t) (3.3)

φQ(t) ≤ min
{︃

φQ(0) + tφ′
Q(0+), φQ(1) − (1 − t)φ′

Q(1−)
}︃

. (3.4)

The inequality (3.3) follows directly from the concavity of φQ(t); on the con-
trary (3.4) relies on the fact that directional derivatives of concave functions
bound the function from above. Under additional assumptions (most notably the
convexity of FQ,0(x, t) in x for all t), the directional derivatives can be calculated
using the formula from Theorem 17 of Gol’shtein [1970] as

φ′
Q(0+) = min

x∈X ∗
Q(0)

d

dt
FQ,0(x, 0+).

A useful simplification of the above formula can be obtained in a case when FQ,0
is linear in t. Then it holds

d

dt
FQ,0(x, 0+) = FQ,0(x, 1) − FQ,0(x, 0). (3.5)
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Even though the restriction on the set of feasible solutions is rather strict,
these results have been applied in number of cases. For example, in investigat-
ing the resistance of scenario-based stochastic programs to changes in scenarios
[Dupačová, 1996] or for stress-testing of [multi-stage] risk-averse stochastic pro-
grams [Dupačová and Poĺıvka, 2007, Dupačová and Kozmı́k, 2015a,b].

3.1.2 Probability Distribution Dependent Set of Feasible
Decisions

Next, let us consider the model (3.1) where the constraints depend on the proba-
bility distribution P. Results for this particular case were developed in Dupačová
and Kopa [2012].

Let us denote
FQ(x, t) = max

j=1,...,J

{︂
FQ,j(x, t)

}︂
.

If FQ(x, t) is concave in t and FQ,0(x, t) does not depend on t (e.g. objective
function is independent of the probability distribution), then it can be shown
[Dupačová and Kopa, 2012] that φQ(t) is quasi-concave on [0, 1]. From there,
Dupačová and Kopa [2012] develop a lower bound

φQ(t) ≥ min{φQ(0), φQ(1)}.

The above bound is valid also when we substitute the condition that FQ(x, t) is
concave in t by showing that the inclusion XQ(t) ⊂ XQ(0) ∪ XQ(1) holds for each
t. In case when FQ,0(x, t) depends on t and it is concave in t, the above formula
can be extended. Dupačová and Kopa [2012] show

φQ(t) ≥ min
XQ(t)

(1 − t)FQ,0(x, 0) + tFQ,0(x, 1)

≥ (1 − t) min
{︃

φQ(0), min
XQ(1)

FQ,0(x, 0)
}︃

+ t min
{︃

φQ(1), min
XQ(0)

FQ,0(x, 1)
}︃

. (3.6)

Such a bound is linear, and to compute it, one needs to evaluate four stochastic
programs. However, the assumptions on concavity of FQ(x, t) seems very difficult
to fulfil, especially when considering cases where J > 1.

Next, we show that this result can be improved in two different ways. First,
let us formulate and prove the following lemma.

Lemma 1. Let FQ(x, t) be a quasi-concave function in t, then it holds XQ(t) ⊂
XQ(0) ∪ XQ(1).

Proof. Using that FQ(x, t) ≥ min{FQ(x, 0), FQ(x, 1)}, we directly obtain

XQ(t) = {x : FQ(x, t) ≤ 0}
⊂ {x : min{FQ(x, 0), FQ(x, 1)} ≤ 0}
= XQ(0) ∪ XQ(1).

66



As all concave functions are quasi-concave, we can relax the concavity as-
sumption to requiring FQ(x, t) to be quasi-concave in t only. Moreover, due to
the definition of FQ(x, t), this relaxation can be crucial in being able to show
this assumption and use the bound. We note that each monotone function is
quasi-concave, and the max function of monotone functions of the same direction
(either all non-increasing or non-decreasing) is quasi-concave.

Apart from relaxing one of the main assumptions of Dupačová and Kopa
[2012], Theorem 1, we can also improve the lower bound. First, let us formulate
the following lemma.

Lemma 2. Let a, b, c, d ∈ R and t ∈ [0, 1]. Then it holds

min
{︃

(1 − t)a + tb, (1 − t)c + td
}︃

≥ (1 − t) min(a, c) + t min(b, d).

Proof. Using inequalities of type a ≥ min(a, c) we obtain

min
{︃

(1 − t)a + tb, (1 − t)c + td
}︃

≥
{︃

(1 − t) min(a, c) + t min(b, d),

(1 − t) min(a, c) + t min(b, d)
}︃

= (1 − t) min(a, c) + t min(b, d).

In the following theorem, we prove a tighter lower bound.

Theorem 3. For model (3.2), let the max function FQ(x, t) be quasi-concave in
t and let FQ,0(x, t) be concave in t. Then it holds that

φQ(t) ≥ min
{︃

(1 − t)φQ(0) + t min
XQ(0)

FQ,0(x, 1),

(1 − t) min
XQ(1)

FQ,0(x, 0) + tφQ(1)
}︃

(3.7)

and hence (3.7) is a lower bound for the optimal value function φQ(t). Moreover,
this lower bound (3.7) is tighter than lower bound (3.6).

Proof. We proceed as follows

φQ(t) ≥ min
XQ(0)∪XQ(1)

FQ,0(x, t)

= min
{︃

min
XQ(0)

FQ,0(x, t), min
XQ(1)

FQ,0(x, t)
}︃

≥ min
{︃

(1 − t)φQ(0) + t min
XQ(0)

FQ,0(x, 1),

(1 − t) min
XQ(1)

FQ,0(x, 0) + tφQ(1)
}︃

.

The first inequality stems from the fact that XQ(t) ⊂ XQ(0) ∪ XQ(1), which
is shown in Lemma 1. The second one is a basic operation with mathematical
programs and finally, the third one is a consequence of applying lower bound (3.3)
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to contaminated stochastic programs with fixed decision set. Hence, we conclude
that (3.7) is a lower bound.

Moreover, denoting a = φQ(0), b = minXQ(0) FQ,0(x, 1), c = minXQ(1) FQ,0(x, 0)
and d = φQ(1) and using Lemma 2, we get that lower bound (3.7) is never lower
than the lower bound (3.6).

The computational complexity of the new lower bound (3.7) is the same as
(3.6), as it also requires calculation of four stochastic programs. The resulting
bound is then piece-wise linear and is equal to (3.6) when a ≤ c and b ≤ d or
when both a ≥ c and b ≥ d (here we use notation from the proof of Theorem 3).

An alternative lower bound can be developed in case of FQ,0(x, t) being quasi-
concave in t instead of concave in t. Under this setting, we can show the following
corollaries.
Corollary. For model (3.2), let J = 0 (feasibility set is independent of P ) and let
FQ,0(x, t) be quasi-concave in t. Then φQ(t) is quasi-concave in t, so it holds that

φQ(t) ≥ min
{︃

φQ(0), φQ(1)
}︃

. (3.8)

Proof. Consider t1, t2, λ ∈ [0, 1], provided that F0 is quasi-concave in P, we obtain

φQ(λt1 + (1 − λ)t2) ≥ min
x∈X

{︂
min

{︂
FQ,0(x, t1), FQ,0(x, t2)

}︂}︂
= min{φQ(t1), φQ(t2)},

hence φQ(t) is quasi-concave and (3.8) follows.

Corollary. For model (3.2), let the max function FQ(x, t) be quasi-concave in t
and let FQ,0(x, t) be quasi-concave in t. Then it holds that

φQ(t) ≥ min
{︃

φQ(0), min
XQ(0)

FQ,0(x, 1), min
XQ(1)

FQ,0(x, 0), φQ(1)
}︃

. (3.9)

Proof. By applying similar steps as in Theorem 3 and using the consequence of
quasi-concavity of FQ,0(x, t) in t given in (3.8), we prove (3.9).

Such bounds are obviously less strict then the ones developed with the as-
sumption of concavity of FQ,0(x, t), however, they are applicable to a wider class
of stochastic programs.

The case of upper bound is more complicated because the function φQ(t) is
no longer concave. This allows to get a global upper bound only under special
assumptions such as linearity of FQ,j(x, t) in t for all j, and convexity FQ,j(x, t) in
x. See Dupačová and Kopa [2012] for more details. On the other hand, Dupačová
and Kopa [2012] show that under some second order differentiability conditions,
it is possible to prove the existence of a local upper bound.
Theorem 4. Let the model (3.2) be a twice differentiable program, x∗

0 ∈ X ∗
Q(0)

its optimal solution and φQ(0) its optimal value. Assume that at x∗
0 linear in-

dependence, the strict complementary conditions and the second-order sufficient
conditions are satisfied. Then, there exists t0 > 0, such that ∀t ∈ [0, t0], the opti-
mal value function φQ(t) is concave and the local upper contamination bound is
given by

φQ(t) ≤ φQ(0) + tφ′
Q(0+), ∀t ∈ [0, t0]. (3.10)
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In cases with convex problems, directional derivative φ′
Q(0+) can be again

calculated from the Theorem 17 of Gol’shtein [1970].

3.2 Stochastic Programs with Endogenous Ran-
domness

Next, we move from the stochastic programs with exogenous uncertainty to the
class of stochastic programs with decision-dependent randomness. That is defined
by the fact that the underlying probability distribution depends on the decision
vector. In general, we formulate a model

min
x∈X

F0
(︂
x, P (x)

)︂
(3.11)

s.t. Fj

(︂
x, P (x)

)︂
≤ 0, j = 1, . . . , J,

where X ⊂ Rn is a closed non-empty convex set and P (x) is a probability dis-
tribution of a random vector ω(x). We assume that ω(x) and P (x) are uniquely
assigned to each x ∈ X . The set P is a set of probability measures, {P (x), x ∈
X } ⊂ P and Fj

(︂
·, ·
)︂

: X × P → R, j = 0, . . . , J, are functions. We assume that
a solution of (3.11) exists.

Let us compare the formulations in (3.1) and (3.11). The main difference
is in the probability distribution; in (3.1), we have the same distribution for all
decisions. On the contrary, in (3.11), the underlying distribution of the stochastic
program can be different for each decision vector x. This is important to realize
when we define contamination for this class of problems. Most notably, we will
not have a contamination distribution Q, but a contamination mapping Q(x),
which assigns the contamination distribution for each x. The set {Q(x), x ∈ X}
then forms a contamination family of distributions.

We consider the contamination mapping

Q(x) : X → P ,

and define
Pt(x) = (1 − t) · P (x) + t · Q(x),

which leads to a contaminated stochastic program

min
x∈X

F0
(︂
x, Pt(x)

)︂
(3.12)

s.t. Fj

(︂
x, Pt(x)

)︂
≤ 0, j = 1, . . . , J.

We again denote XQ(t), X ∗
Q(t) and φQ(t) as the set of feasible and optimal

solutions and the optimal value function of a program (3.12) with a parameter
t. We implicitly assume that Pt(x) is a probability distribution ∀t ∈ [0, 1] and
∀x ∈ X .

The motivation behind the formulation of (3.12) stems from stress-testing
routines frequently used in financial management. Practitioners often formulate
their “base case” and their “stress-testing” case, and they optimize for best base
case result subject to the stress-test result meeting some criteria. Our approach
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provides them which much more detailed description (sensitivity) of their problem
to the stress-testing case, as we deal with continuous contamination of the base
case, yet, it preserves the desired simplicity of a “single bad guy”.

The problem of constructing the lower and upper bounds for the objective
value φQ(t) has now increased in complexity. For this reason, we will focus only
on some tractable cases, for which these bounds can be proved. We split the
problem into two separate sub-classes based on whether the feasibility set is fixed
or with decision-dependent randomness.

3.2.1 Fixed Set of Feasible Decisions
Let us first consider the simplest case of (3.11), when no constraints depend on
P (x).

Theorem 5. Let X be a fixed, non-empty, convex set and P be a set of probability
measures. Let F0(x, P ) : X × P → R be a concave function in P for all x ∈ X .
Let P (x) : X → P and Q(x) : X → P be mappings and Pt(x) = (1 − t)P (x) +
Q(x), t ∈ [0, 1]. Then the optimal value function

φQ(t) = min
x∈X

F0
(︂
x, Pt(x)

)︂
, t ∈ [0, 1]

is concave with respect to t and hence lower bound (3.3) and upper bound (3.4)
apply.

Proof. Let us consider t1, t2, λ ∈ [0, 1]. We have

φQ(λt1 + (1 − λ)t2) = min
x∈X

F0(x, λPt1(x) + (1 − λ)Pt2(x))

≥ min
x∈X

λF0(x, Pt1(x)) + (1 − λ)F0(x, Pt2(x))

≥ λφQ(t1) + (1 − λ)φQ(t2).

The first inequality is a consequence of F0 being concave in the second argument.
Hence, we have that φQ(t) is concave and lower bound (3.3) and upper bound
(3.4) can be constructed.

The complication in this case is that parameters x and t in F0 are no longer
separable and in order to be able to use the formulas of Gol’shtein [1970] for the
directional derivative, we need to show the convexity of F0(x, Pt(x)) in x for all
t.

An alternative approach, which does not require convexity of F0 in x is to
approximate the derivative from below numerically, which would also result into
lower bound. It holds that

φ′
Q(0+) ≥ φQ(t0) − φQ(0)

t0
. (3.13)

Choosing an arbitraryt0, one can obtain an estimate of the directional derivative,
which will ensure a valid upper bound for all t ≥ t0. An upper bound valid for
t ∈ [0, t0] can be obtained for example as

φQ(t) ≤ φQ(t0) − (t0 − t)φQ(t1) − φQ(t0)
t1 − t0

, t ∈ [0, t0], t1 > t0.
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The classes of problems which meet requirements of Theorem 5 are mainly
expectation-type objective functions and some other probability functionals, such
as CVaR or mean absolute deviation from the median. Some of such functionals
are introduced and discussed in Postek et al. [2016]. Consider for example

F0(x, P (x)) = EP (x)f0(x, ω),

for some value function f0. Such a function F0 is then linear in P and hence
concave. Assume that the distribution P (x) is defined by a density p(x, ω) with
respect to some common probability measure µ(ω). Then, we write

F0(x, P (x)) = EP (x)f0(x, ω) =
∫︂

f0(x, ω) · p(x, ω)µ(dω).

We see again that F0 is linear in P. Contamination mapping Q(x) is then de-
fined by densities q(x, ω), and density of Pt(x) with respect to µ(ω) is given by
pt(x, ω) = (1 − t)p(x, ω) + tq(x, ω) and as a consequence φQ(t) is concave in t.

Another important case occurs when considering only finite discrete distribu-
tions, or in other words, when µ(ω) has finite support. In that case, we consider
scenarios Ω = {ω1, . . . , ωK}; the distribution P (x) is defined by probabilities
p(x, ωk) ≥ 0, k = 1, . . . , K, x ∈ X of taking scenario ωk and the objective func-
tion is given as

F0(x, P (x)) =
K∑︂

k=1
p(x, ωk)f0(x, ωk).

As with the contamination mapping, we consider Q(x) to be defined by q(x, ωk) ≥
0, k = 1, . . . , K, x ∈ X . Note here, that we require Q(x) to also be defined on
the set Ω. However, we allow the probabilities to be zero and hence the distribu-
tions P (x) and Q(x) can have completely different (but finite) support. This is
important especially for stress-testing. Consequently Pt(x) has probabilities

pt(x, ωk) = (1 − t)p(x, ωk) + tq(x, ωk), t ∈ [0, 1].

Hence, we face a contaminated stochastic program

min
x∈X

K∑︂
k=1

pt(x, ωk)f0(x, ωk), (3.14)

where again the objective function is linear in t and hence the optimal value
function is concave in t. We also see that even when f0(x, ωk) is convex with
respect to x for all ωk, the product pt(x, ωk)f0(x, ωk) does not have this prop-
erty. Consequently, the Gol’shtein formulas for directional derivatives are not
applicable.

However, in the case of F0(x, P ) being linear in P, as in the both above-
mentioned examples, an alternative upper bound can be constructed.
Theorem 6. Let all the assumptions from Theorem 5 hold and let F0(x, P ) be
linear in P. The following upper bound for the optimal value function then applies:

φQ(t) ≤ min
{︃

φQ(0) + t
(︃

F0
(︂
x∗

0, Q(x∗
0)
)︂

− φQ(0)
)︃

,

φQ(1) − (1 − t)
(︃

F0
(︂
x∗

1, P (x∗
1)
)︂

− φQ(1)
)︃}︃

, (3.15)

where x∗
0 ∈ X ∗

Q(0), x∗
1 ∈ X ∗

Q(1) are arbitrary optimal solutions of the original and
the fully contaminated problems.
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Proof. Let us choose an arbitrary x∗
0 ∈ X ∗

Q(0). Then we have

φQ(t) = min
x∈X

F0(x, Pt(x))

≤ F0(x∗
0, Pt(x∗

0)) = F0
(︂
x∗

0, (1 − t)P (x∗
0) + tQ(x∗

0)
)︂

= (1 − t)F0
(︂
x∗

0, P (x∗
0)
)︂

+ tF0
(︂
x∗

0, Q(x∗
0)
)︂

= (1 − t)φQ(0) + tF0
(︂
x∗

0, Q(x∗
0)
)︂

= φQ(0) + t
(︃

F0
(︂
x∗

0, Q(x∗
0)
)︂

− φQ(0)
)︃

.

Comparing this to (3.5), one can see that the term F0
(︂
x∗

0, Q(x∗
0)
)︂

− φQ(0) is an
upper approximation of the directional derivative, which meets the true value in
the case of no decision-dependent randomness. We can also perform analogical
manipulations from the fully contaminated problem, then we have that

φQ(t) ≤ φQ(1) − (1 − t)
(︃

F0
(︂
x∗

1, P (x∗
1)
)︂

− φQ(1)
)︃

, x∗
1 ∈ X ∗

Q(1).

Combining the two results, we obtain bound for the optimal value function φQ(t)
as in (3.15). To obtain such a bound, one needs to solve two programs and twice
evaluate the program in the selected solutions.

In the final part of this section, we will shortly describe the case when the
cardinality of the set P is finite.
Corollary. Consider model (3.11) with J = 0, F0(x, P ) be concave in P and
P = {P1, . . . , Pn}, n ∈ N and let there be a partition of X : X1, . . . , Xn such that

1. Xi ∩ Xk = ∅, ∀i ̸= k

2. ⋃︁n
i=1 Xi = X

3. P (x) = Pi, ∀x ∈ Xi

4. F0(x, Pi) is continuous in x on closure (clo) of Xi, ∀i.

Let us also assume that the contamination distribution has the same structure
as P, i.e. most notably that Q(x) = Qi, ∀x ∈ Xi and that the optimal solution
of (3.12) exists for each t. Then we can partition the contaminated stochastic
program into n sub-programs and obtain

φQ(t) = min
x∈X

F0
(︂
x, Pt(x)

)︂
= min

i=1,...,n
min

x∈clo(Xi)
F0
(︂
x, Pt,i

)︂
,

where Pt,i = (1 − t)Pi + tQi. For all i, there is a lower bound Li(t) and an upper
bound Ui(t) such that

Li(t) ≤ min
x∈clo(Xi)

F0
(︂
x, Pt,i

)︂
≤ Ui(t)

and it holds that
min

i=1,...,n
Li(t) ≤ φQ(t) ≤ min

i=1,...,n
Ui(t).
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Proof. The fact that we can partition the program into n sub-programs stems
from the assumption (iv) and from the fact that the optimal solution of the
original problem exists. Since F0(x, P ) is concave in P, then for each of the n
sub-programs, we can obtain the lower bound Li(t) and upper bound Ui(t) as in
(3.3) and (3.4). Taking minimum over all sub-programs on both sides, we obtain
the final statement of the corollary.

3.2.2 Decision Dependent Randomness Feasibility Set
We continue to allow the feasibility set depend on the probability distribution.

Theorem 7. Let X be a fixed, non-empty, convex set and P be a set of probability
measures. Let P (x) : X → P and Q(x) : X → P be mappings and Pt(x) =
(1 − t)P (x) + tQ(x), t ∈ [0, 1]. Moreover, let Fj(x, P ) : X × P → R, j = 0, . . . , J

be functions and F (x, P ) = maxj=1,...,J

{︂
Fj(x, P )

}︂
. If F (x, P ) is quasi-concave in

P for each x ∈ X , then for the feasibility set XQ(t) = {x ∈ X : F (x, Pt(x)) ≤ 0}
of the contaminated problem (3.12) holds that

XQ(t) ⊂ XQ(0) ∪ XQ(1). (3.16)

Proof. Let us choose arbitrary t ∈ [0, 1]. Then we obtain

XQ(t) = {x ∈ X : F (x, Pt(x)) ≤ 0}
= {x ∈ X : F (x, (1 − t)P (x) + tQ(x)) ≤ 0}
⊂ {x ∈ X : min{F (x, P (x)), F (x, Q(x))} ≤ 0}
= {x ∈ X : F (x, P (x)) ≤ 0} ∪ {x ∈ X : F (x, Q(x)) ≤ 0}
= XQ(0) ∪ XQ(1).

Theorem 8. Let all the assumptions from Theorem 7 hold and, moreover, let
F0(x, P ) : X × P → R be a concave function of P for all x ∈ X . Then the lower
bound (3.7) for the objective value function φQ(t), t ∈ [0, 1] of the contaminated
problem

φQ(t) = min
x∈X

F0
(︂
x, Pt(x)

)︂
s.t. Fj

(︂
x, Pt(x)

)︂
≤ 0, j = 1, . . . , J.

applies.

Proof. The proof is identical to proof of Theorem 3 with the use of Theorem
7.

Similar to the case with exogenous randomness, we rely on the fact that
F (x, P ) is quasi-concave in P . We recall the discussion below Lemma 1, where
cases when this happens are discussed. The condition is fulfilled, for example,
when we have only one risk-averse type or expectation-type constraint in the
model.

If we assume a model where the constraints are of type

Fj(x, P (x)) = EP (x)fj(x, ω),

73



i.e. expectation-type constraints, and Q(x) such that it holds for all x ∈ X that

Fj(x, P (x)) ≤ Fj(x, Q(x)) ∀j or Fj(x, P (x)) ≥ Fj(x, Q(x)) ∀j,

then FQ,j(x, t) are all linear in t and also for each x functions FQ,j(x, t) are all
either non-increasing or non-decreasing. Hence the max function

FQ(x, t) = max
j=1,...,J

FQ,j(x, t),

is quasi-concave in t. Consequently, we can apply Theorem 7 as well as the lower
bound (3.7).

Finally, we also comment on how the bounds would look for the decision-
dependent randomness where the set P has finite cardinality. There, we would
be able to break the model into n smaller sub-problems, solve them individually,
obtain global lower and upper bounds as from the case of contamination with
exogenous randomness, and get global lower and upper bound for the master
problem the same way as we did for fixed feasibility set for decision-dependent
randomness stochastic programs.

The upper bound is again more complicated, as φQ(t) is not concave. There-
fore, we are left with two possibilities:

• construct local or global upper bound based on feasibility of some solution,

• or construct local bound based on directional derivative, similar to one
discussed in Theorem 4.

For the first case, we need to add an additional assumption that F (x, P ) is
quasi-convex in P and F0(x, P ) is linear in P. We choose an arbitrary x∗

0 ∈ X ∗
Q(0)

such that, x∗
0 ∈ XQ(t0), t0 > 0. Then ∀t ∈ [0, t0], we have

F (x∗
0, Pt(x∗

0)) ≤ max
{︃

F (x∗
0, P (x∗

0)), F (x∗
0, Pt0(x∗

0))
}︃

≤ 0

and hence x∗
0 is feasible ∀t ∈ [0, t0]. We can further continue similar to calculations

of (3.15) to obtain

φQ(t) ≤ (1 − t)φQ(0) + tF0
(︂
x∗

0, Pt0(x∗
0)
)︂

= φQ(0) + t
(︃

F0
(︂
x∗

0, Pt0(x∗
0)
)︂

− φQ(0)
)︃

, t ∈ [0, t0]. (3.17)

This bound becomes global if t0 = 1. It is also possible to use some feasible solu-
tion x0 ∈ XQ(0) instead of the optimal solution x∗

0 ∈ X ∗
Q(0). The only difference

would be that such a bound would be possibly less tight for small t. On the
contrary, it could perform better for larger values of t.

For the local bound based on the directional derivative, we need to switch to
stability results for non-linear parametric programming. There, we would proceed
in the same manner as Dupačová and Kopa [2012]. Under various assumptions
on differentiability, strict complementarity conditions and uniqueness of optimal
solution, we could conclude that the optimal value function φQ(t) is concave on
the interval [0, t0] for some t0 > 0. Hence, a local upper bound (3.10) is valid.
However, the verifiability of these assumptions is questionable in the complexity
of our problem; moreover, for calculation of the directional derivatives, we would
require Fj(x, P (x)) to be convex in x. Therefore, such a result appears difficult
to use.
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3.3 Application on the Asset-Liability Manage-
ment Model

Next, we move to a numerical example where we illustrate the use of contami-
nation. This will be performed on a multi-stage decision-dependent randomness
stochastic program, where a company is asked to provide a loan to a customer.
That program consists of the following:

• a company offering to a customer a loan with interest rate r,

• a customer accepting the loan with probability p(r).

• In case of the acceptance, the company enters the financial market and
optimize its liability side of the loan, while observing

– possible default or prepayment of the client,
– evolution of market interest rates.

The relationship between the interest rate decision and the probability of
accepting the loan is given by the equation

p(r) = exp{b1(b0 − r)}
1 + exp{b1(b0 − r)} ,

where we call parameter b0 midrate and b1 interest rate sensitivity. For midrate, it
holds that p(b0) = 0.5, so it describes the rate at which the customer is indifferent
to accepting or rejecting the loan.

Furthermore, we have that customer’s rating affects the probability of default
and prepayment. This event can happen at any year of the loan duration. A
customer with the best rating one is estimated to have low default probabilities,
almost independent of r, and high prepayment probabilities. These become even
higher when he is given higher interest rate r, as the customer becomes more
likely to refinance such a loan in future. On the other hand, a customer with bad
rating has higher default probabilities, which increase with increasing r, but low
prepayment probabilities, which only slightly depend on r.

More details on the stochastic program and relationship between the decisions
and random quantities are described in 2. There, the model is introduced step by
step as well as in its concise formulation together with all quantities which enter
the model. The only modification in this part is, that we consider the model
formulation as it is a minimization problem, to be consistent with the results
which were derived in this chapter.

There, note especially the first four equations in the model definition (2.17),
which capture the endogeneity in the random variables induced by the initial
interest rate decision r. The other equations form a usual asset-liability multi-
stage stochastic program. With 6 stages (K = 6) and 100 interest rate scenarios,
the non-linear program had 45 619 equations and 58 690 variables. It was written
in GAMS and solved by CONOPT. Solution of one model took approximately
minutes (5-10) on a standard laptop (Intel core i5 2.60 GHz, 8GB RAM).
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3.3.1 Contamination
In the multi-stage model, we considered b0 to be from a range of values b0 =
{0.1, 0.12, 0.14, 0.16, 0.18}. The interest rate sensitivity parameter then measures
how much this probability changes when the offer deviates from midrate. There
we tested values b1 = {25, 35, 50, 75, 100, 150, 200}. Rating ρ was set to take on
values ρ = {1, 2, 3, 4}, where 4 is the worst. The loan was set to take 5 years,
with monthly repayments and decision stages once a year. Moreover, we denote
P (r; b0, b1, ρ) the probability distribution of the underlying multi-stage model for
a client with parameters b0, b1, ρ and the interest-rate decision r.

The general idea of contamination is to approximate how the customer’s char-
acteristics influence the optimal value of the loan without really solving the pro-
gram for all considered types of customers. We saw that there are three char-
acteristics customers possess which affect the uncertainty in the program. We
investigate these characteristics both one by one and jointly. We will denote the
parameters of the base case customer as (b0, b1, ρ) and the parameters of the “con-
taminating” customer as (b̄0, b̄1, ρ̄). The settings employed in our contamination
study is summarized in Table 3.1. The dot in the corresponding row means that
all analysed values of this parameter have been tested. For example, in the first
case, when we contaminated sensitivity, we had a customer with midrate 0.16 and
a certain rating ρ (one of 1, 2, 3, 4). Then as the base case we selected interest
rate sensitivity 150 and as the contaminating case we chose sensitivity 50. Hence,
we had (b0, b1, ρ) = (0.16, 150, ρ) and (b̄0, b̄1, ρ̄) = (0.16, 50, ρ), ρ ∈ {1, 2, 3, 4}. The
values are set so they represent “realistically good” and “realistically bad” client.

As we face a decision-dependent randomness stochastic program, where the
feasibility set is independent of the probability distribution, the lower bound (3.3)
and the upper bound (3.15) were employed.

To describe the results which we achieved, we enclose seven figures. In the first
three pairs (Figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6), we show the bounds computed
for contamination in interest rate sensitivity (b1 = 150, b̄1 = 50), midrate (b0 =
0.16, b̄0 = 0.12) and rating (ρ = 1, ρ̄ = 4). In case of contamination in sensitivity
and rating, from Figures 3.1 and 3.5, we can note that the optimal value function
φQ(t) is almost linear and that the bounds are able to capture such behaviour
and create a tight space in which the optimal value function lies. From Figure
3.2, one can learn that the maximum difference between lower and upper bound
is around 80, which is pretty good approximation given that the true value of
the program is in thousands. A similar conclusion can be drawn from Figure 3.6,

Table 3.1: Parameters of original and contaminated distribution employed in the
empirical study.

P (r; b0, b1, ρ) Q(r; b̄0, b̄1, ρ̄)

case/param b0 b1 ρ b̄0 b̄1 ρ̄

Sensitivity 0.16 150 · 0.16 50 ·
Midrate 0.16 · 2 0.12 · 2
Rating 0.16 · 1 0.16 · 4

All 0.16 150 1 0.12 50 4
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where the maximum difference is about 40. The surprising thing in this figure
is that we have the highest uncertainty for the stochastic program with b1 = 25
and b1 = 35, which are also the stochastic programs with the lowest optimal
values and the lowest difference between the original problem (t = 0) and the
fully contaminated problem (t = 1).

We see a completely different story for the optimal value function when we
contaminate midrate, as depicted in Figures 3.3 and 3.4. There, the function is
concave, but highly non-linear. This is again captured by the bounds quite effec-
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Figure 3.1: Lower and upper bounds for contamination of interest rate sensitivity
at midrate 0.16.

0.0 0.2 0.4 0.6 0.8 1.0

−
40

−
20

0
20

Contamination in Interest Rate Sensitivity

Contamination Factor

D
iff

er
en

ce
 fr

om
 T

ru
e 

V
al

ue

midrate = 0.16

P: b1 = 150, Q: b1 = 50

upper bounds

lower bounds

rating = 1
rating = 2
rating = 3
rating = 4

Figure 3.2: Differences of lower and upper bounds from true value for contami-
nation of interest rate sensitivity at midrate 0.16.

77



tively, as the upper bounds are very tight and close to the optimal value function.
What underlines the usefulness of this methodology is that if we needed tighter
bounds, we could calculate the optimal solution at a point with highest difference
between lower and upper bound and construct bounds from that solution too.
It is quite obvious that if we had adopted this approach, we would obtain much
tighter bounds in this case as well.

Finally, we looked at how the true values and lower and upper bounds differ
when we modify all three characteristics of the customer jointly. This study is
summarized in Figure 3.7. There, one can see a mixture of what we saw in
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previous figures and fairly tight approximation of the optimal value function,
especially on the edges of the definition set [0, 1] of the contamination parameter
t.

3.3.2 Decision-Dependent Randomness Feasibility Set
Further, we can extend the model (2.17) to illustrate the functionality of the
contamination technique in the case with decision-dependent randomness feasi-
bility set. To the initial model, we add a CVaR constraint, such that for given
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Figure 3.5: Lower and upper bounds for contamination of rating at midrate 0.16.
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confidence level 0 < α < 1, we require

CVaRα

(︂
− VtK

)︂
≤ 0, (3.18)

where VtK
denotes the value of the loan at the final stage of the program (see

formulation in the appendix for the exact definition). The constraint means that
the average loss in the (1 − α)% worst cases is lower than or equal to 0. Note
that CVaR is concave with respect to the probability distribution [Dupačová and
Poĺıvka, 2007] and hence it meets the assumptions imposed in Theorem 7. The
constraint is implemented into the model via Rockafellar and Uryasev [2000] as

z(sK , e) ≥ −VtK
(sK , e) − a, z(sK , e) ≥ 0, sK ∈ SK , e ∈ E,

a + 1
1 − α

∑︂
sK∈SK ,e∈E

p(r) · p(sK , e, r)z(sK , e) ≤ 0, a ∈ R.

For the analysis, we set the parameter α = 0.9, so we limit the average return
of the 10% worst scenarios. We apply the same contamination distribution as
described in Table 3.1 in the All case, i.e. we contaminate all parameters at once.
First, we show in Figure 3.8 the objective value function constructed from the
solution of the contaminated models on a dense grid in t ∈ [0, 1]. There, with the
help of the dashed line, which connects the first and the last point on the curve,
one can notice that the optimal value function is not concave.

Next, we solve the models required to calculate the bound (3.7). We obtain
the following values as the solution of the models:

φQ(0) = −4774.84,
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min
XQ(0)

FQ,0(x, 1) = −1007.01,

0.0 0.2 0.4 0.6 0.8 1.0

−
45

00
−

40
00

−
35

00
−

30
00

−
25

00
−

20
00

 Contamination in Midrate, Sensitivity and Rating with CVaR

Contamination Factor

O
pt

im
al

 V
al

ue

midrate

sensitivity

rating

Original

0.16

150

1

Contaminated

0.12

50

4

Figure 3.8: Optimal values of the program with CVaR for different levels of
contamination. Dashed line is a segment connecting the first and the last point
of the curve.
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min
XQ(1)

FQ,0(x, 0) = −11201.66,

φQ(1) = −1948.34,

which, given that φQ(0) ≥ minXQ(1) FQ,0(x, 0) and minXQ(0) FQ,0(x, 1) ≥ φQ(1)
gives us that

φQ(t) ≥ −11201.66(1 − t) − 1948.34t.

Finally, we also calculate the trivial upper bound (3.17), where the optimal solu-
tion of the non-contaminated problem was used as an estimate for the solution
of the fully contaminated problem. However, note that we cannot theoretically
prove the quasi-convexity property of the constraint in our example so the upper
bound is only informative. Yet, numerical calculations show that the bound is a
valid upper bound.

The results are showed graphically in Figure 3.9. We see that the lower
bound is very loose, especially in the area around t = 0. That is down to the
CVaR constraint for t = 1 not being active when optimizing the model with
objective function for t = 0. Hence the optimal solution is the same as in the
previous section when the CVaR constraint was not employed for the case of no
contamination.
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Conclusion
The main objective of this thesis was to extend the scientific knowledge in the area
of stochastic optimization problems in finance. We have focused on three different
aspects in the area. First, we developed a new method for scenario generation of
interest rates. Second, we formulated, solved and analysed a decision-dependent
asset-liability management stochastic program and third, we derived new results
for contamination in decision-dependent randomness stochastic programs.

In this thesis we have suggested the maximum likelihood method for calibra-
tion of the one-factor short-rate models, arguably one of the most popular classes
of yield curve models. In order to estimate the parameters we have introduced
postcalibration errors and proposed to maximise the likelihood of yields in pe-
riods subsequent to the calibration time. Our estimation method uses a time
series of yields to identify the model under both the real-world and risk-neutral
measure. The identification of both measures facilitates the use of the model
for risk and portfolio management as well as for derivatives pricing on illiquid
markets. To demonstrate the method we have performed an extensive empirical
analysis on the Hull-White model and EUR interest rate data. We have analysed
the estimation results both in-sample and out-of-sample. We have compared the
suggested estimation method to calibration methods, and illustrated the impact
of the measure choice on the probability of default.

Certainly, there are natural next steps which further improve this method.
These may include extensions of the suggested estimation method to multi-factor
models, time-varying market prices of risk, or a heavy-tailed distribution of the
postcalibration errors.

In the second part, we have considered an asset-liability management problem
of a consumer loan, where, due to the possibility of the customer not accepting the
loan and, upon acceptance, prepaying or defaulting on the loan, we formulate the
problem as a non-linear multistage stochastic program with endogenous source
of uncertainty. There, two groups of decisions appear: first, the initial fixed rate
decision and second, the decisions associated with the asset-liability management
policy. The fixed rate decision on the loan affects the future (uncertain) loan
evolution and hence its value. The presented optimization problem allows the
determination of such interest rate and optimal loan management taking all the
contingencies into account through a set of conditional, decision-dependent sce-
nario probabilities. We focused on the formulation of the problem in the theoreti-
cal part, where all the features of this problem, especially the decision-dependent
randomness and its implementation into the program, were described.

The practical part was then devoted to the solutions of the program. First,
we have investigated the performance of a unique optimal solution within the
stochastic program’s scenarios. The optimal strategy was to borrow only for the
shortest time period as these loans are, in general, the cheapest. Such a strategy
also allows great flexibility, which is beneficial, for example, when the loan is
prepaid. As a drawback, it increases interest rate risk. The exposure to interest
rate risk could possibly be addressed by the implementation of various risk con-
straints (e.g. a chance constraint [Telser, 1955], a Value-at-Risk constraint [J.P.
Morgan Risk Metrics, 1995], a conditional Value-at-Risk constraint [Rockafellar
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and Uryasev, 2000, 2002] a second-order stochastic dominance constraint [Hadar
and Russell, 1969, Dentcheva and Ruszczynski, 2003]) or application of robustness
or contamination approaches [Dupačová and Kopa, 2012, 2014].

Moreover, we have implemented and solved the stochastic program under sev-
eral parameter settings, capturing different customer’s properties to determine
what the implications of such a model would be on decisions made by the com-
pany. There, we noticed different actions on customers with different strengths in
decision-dependent uncertainty. This was the case for both the changes in inter-
est rate sensitivity and the changes in rating. This demonstrates that decision-
dependent randomness needs to be considered in this problem and that the model
which takes it into account produces strong results.

We were interested in the incurred losses which are caused by the company
not offering the optimal interest rate. We found that such costs depend greatly on
interest rate sensitivity. Moreover, we saw that it is more costly to offer a higher
rate than a lower rate compared to the optimal rate. This is due to two reasons
– a lower probability of accepting the loan hurts more than lower interest rate
revenues and the default rate increases with the higher interest rate. Both effects
are a consequence of decision-dependent uncertainty. This, again, underlines the
need to capture the dependence between the offered interest rate and default
probability correctly and not neglect the relationship.

In the final part of the thesis, we investigated the robustness of decision-
dependent randomness stochastic programs via contamination. We extended the
work of Noyan et al. [2018] and Luo and Mehrotra [2020], who defined some
robustness techniques into the class of decision-dependent randomness stochas-
tic programs, as they formulated the ambiguity sets for the min-max approach
of Žáčková [1966]. Noyan et al. [2018] also constructed a distributionlly robust
application of a practical problem of a single-machine scheduling. In our work,
we focused on the contamination method, which employs a parametric program-
ming approach. We extended results of Dupačová [1986, 1996] and Dupačová
and Kopa [2012], who studied contamination in a class of stochastic programs
with exogenous randomness. We also presented and proved various lower and
upper bounds applicable for different types of decision-dependent stochastic pro-
grams and specifically commented on how they translate in the special case of a
stochastic program with expectation-type objective function and constraints.

To illustrate the usefulness of contamination in financial practice, we ap-
plied the methodology to a real problem from financial industry. In a decision-
dependent welfare maximization problem of a company issuing loans to customers
formulated in the second part of the thesis, we saw that the company’s profit from
a loan is greatly affected by the customer’s quality. We demonstrated that with
the use of contamination, the company can very well estimate the effect of facing
a “bad” customer compared to a “good” customer. This could be consequently
of use when making a decision on their investment into credit-risk department.
We believe that the developed theoretical results possess practical applicability,
interpretation and solvability, which makes them preferable for stability and sen-
sitivity analysis in decision-dependent randomness stochastic programs.
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editors, Proceedings from 37th International Conference on Mathematical
Methods in Economics (MME): 374-379, 2019.

96


	Introduction
	Interest Rate Modelling
	Interest Rate Basics
	Maximum Likelihood Estimation of One-Factor Short-Rate Models
	One-Factor Short-Rate Models
	Postcalibration Equation and Yield Curve Density
	Postcalibration Errors Density and Transformation Matrix
	Data Set and Likelihood Function
	Confidence Intervals

	The Hull-White Model
	The Hull-White Model under the Risk-Neutral Measure Q 
	The Hull-White Model under the Real-World Measure P 
	Calibration Time

	Empirical Study 
	Data
	Estimating the Model Parameters
	The Likelihood Function Maximisation
	Stability of Parameter Estimates over Time
	Model Forecasts, Scenario Generation
	Out-of-Sample Forecasting Analysis 
	Comparison with Calibration to Swaptions 
	Application in Risk Management


	An Asset - Liability Management Stochastic Program with a Pricing Decision
	Model Formulation
	Model Environment and Objective
	Random Elements, Scenarios and Decision-Dependent Randomness
	Stochastic Programming Model Formulation

	Numerical Results
	Model Solution
	Sensitivity Analysis


	Stress Testing via Contamination
	Stochastic Programs with Exogenous Randomness
	Fixed Set of Feasible Decisions
	Probability Distribution Dependent Set of Feasible Decisions

	Stochastic Programs with Endogenous Randomness
	Fixed Set of Feasible Decisions
	Decision Dependent Randomness Feasibility Set

	Application on the Asset-Liability Management Model
	Contamination
	Decision-Dependent Randomness Feasibility Set


	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Publications

