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Introduction
In a world where humanity will be running out of oil, gas, and coal in 35, 37, and
107 years respectively (predictions from [2]), the reduction of energy consumption
and more effective energy management is needed. However, the limited amount
of fossil fuels is not the only primary issue. By the time humanity runs out of
fossil fuels, our environment will be irreversibly damaged if the greenhouse gas
emissions will not be dramatically reduced ([3]). As renewable energy sources like
solar or wind energy are not even able to produce a steady amount of electric-
ity, not to mention producing the electricity as much as needed at the moment.
Therefore, an effective way of storing energy must be found ([4]).

Together with batteries, the fuel cells can play an essential role in future
energy storage. Whereas batteries are costly to store huge amounts of energy (for
example, from solar power plants in summer for usage during winter), they can
release huge amounts of energy quickly, which is needed sometimes to cover the
peaks in the energy supply system. On the other hand, fuel cells are much cheaper
for storing large portions of energy, but their output power is more limited. To
make use of the advantages of both systems and eliminate their disadvantages,
the system which combines batteries and fuel cells can be used as proposed in
the article [5].

Another usage of fuel cells, which is already in use nowadays, are fuel cells as
a source of power for cars (instead of diesel or petrol engines). It is important
to point out that besides the fuel cell, each such car also has a small battery,
which is used when the car needs more power than the fuel cell can deliver for a
short period of time (for instance, while accelerating rapidly). That is the same
principle as the one for storing energy presented in the previous paragraph. The
current models of electric cars use the PEM fuel cell with carbon electrodes with
platinum particles, where the platinum particles are reaction sites as platinum is
an excellent catalyst for HOR reaction [6]. Much effort is nowadays concentrated
on reducing the amount of platinum needed for a fuel cell with specific output
power, as platinum is costly.

Although the effort to reduce the amount of platinum is crucial from a com-
mercial point of view ([7]), understanding another process inside the PEM fuel
cell also needs to be studied. So far, the mechanism of transport of H+ ions and
water through the proton exchange membrane is not fully understood. As the
transport equations are complex, numerical simulations are used to solve them.
Moreover, while the fuel cell is operating, the flow of the fuel, air, and water are
tough to predict and make the models very complex and full of unknown pa-
rameters. This makes verifying the theories very complicated. If our intention is
only to study the processes inside the membrane, the fuel cell is an unnecessarily
complicated experimental setup.

Therefore, for investigating the transport processes inside the membrane with
better accuracy, the simple experimental setup, which consists of a PEM mem-
brane sandwiched between two electrodes with hydrogen on both sides, was con-
structed by the team of J. Benziger [8]. The setup can operate in a stationary
state (where species concentrations and partial pressures on both electrodes sur-
faces can be considered constant spatially and in time), making the whole analysis
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much easier. The goal of this thesis is to explain the data measured on the setup
and published in [1] using a more sophisticated theoretical model than in the
mentioned article. Thanks to the construction of the experiment, the system
is big enough (with respect to the membrane width) that it can be considered
to be homogeneous in all the directions in the plane, parallel to the membrane.
Therefore, it is sufficient to consider a one-dimensional model (the only relevant
dimension is the one perpendicular to the surface of the membrane) with a con-
stant temperature.

The goal of the thesis is to make a one-dimensional model of a hydrogen pump.
After that, we will aim to find the unknown parameters of the model to explain
the measurements from [1]. Than, we will try to use the model to explain why
are there problems with the measurements of drag coefficient - which expres how
the proton flux affects the water flux and vice versa. We will also provide a better
way how to determine the drag coefficient experimentally.
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1. Theory

1.1 Classical Irreversible Thermodynamics
In contrast to equilibrium thermodynamics, Classical Irreversible Thermodynam-
ics (CIT) is its extension to more realistic situations, where inhomogeneities and
respective flows have to be taken into account. The typical examples described
earlier as separate theories by Fourier (1822), and Fick (1855) are heat conduc-
tion (where inhomogeneity in temperature occurs and results in respective heat
flux) and diffusion (where inhomogeneity of concentration occurs and results in
respective diffusion flux). CIT theory aims to formulate a theory of thermody-
namics near the equilibrium and derive a procedure for compiling thermodynamic
equations in the field of its validity [9].

1.1.1 Local equilibrium
In CIT, we consider the studied body not to be in thermodynamical equilibrium.
However, in equilibrium thermodynamics, we have defined all the thermodynam-
ical quantities, such as temperature, entropy, chemical potential, etc., only in the
thermodynamical equilibrium. To make it possible to define them properly for
some body, which is not in equilibrium, we have to introduce the concept of local
equilibrium.

To do so, we need to divide the body into a system of cells. Each cell is small
enough to be in equilibrium, but on the other hand, big enough that fluctuations
caused by the kinetics of molecules inside the cell are negligible within the ther-
modynamic limit. The size of such cells is subject to further discussion and can
be found in [10]. A local equilibrium hypothesis states that once equilibrium is
achieved in all cells at a given instant of time. However, they are not equilibrated
with each other. This leads to mass and energy exchange between neighboring
cells. The speed of exchange with respect to the time scale of equilibration inside
a cell is expressed with a quantity called Deborah number.

Suppose we denote by the τm equilibration time inside one cell and by the τM

macroscopic equilibration time, which magnitude corresponds to the time scale
on which the studied process takes place. In that case we define the Deborah
number as De = τm/τM . For De << 1 local equilibrium hypothesis is fulfilled
with reasonable accuracy, as the time scale on which studied processes take place
is much longer than τm, which means that studied variables stay unchanged over
the time τm. The main consequence of the local equilibrium theorem is that
thermodynamic state variables, well-defined locally, can be defined outside of
equilibrium as continuous functions of time.

Now we can write Gibbs equation for entropy density s (in this chapter, we de-
fine density not per unit of volume as usual but per unit of mass) of N -component
fluid as ([10])

ds = 1
T

du + p

T
dv − 1

T

N∑︂
i=1

µidci (1.1)

where u is a density of internal energy, v is the density of volume, which is
v = V/M = 1/ρ where ρ is standard density in kg/m−3, ci is the mass fraction
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of i-th component of the mixture, µi is the chemical potential of the respective
component and T and p are absolute temperature and pressure respectively.

Analogically, we can derive a more general equation for an arbitrary set of
N extensive state variables Ai (and respective densities ai) and corresponding
conjugate intensive state variables αi as

ds =
N∑︂

i=1
αidai. (1.2)

From [10] we can assume that after taking the lagrangian time derivative 1 of
expression 1.2, it will remain in shape

ds

dt
=

N∑︂
i=1

αi
dai

dt
. (1.3)

1.1.2 Balance of the entropy
Let’s consider some body, which is not equilibrated (neither with the environment
nor by itself) and has o volume V , surface Σ and at some tome t has entropy S.
Then we can distinguish two ways of entropy change ([10])

dS

dt
= diS

dt
+ deS

dt
. (1.4)

First, is entropy produced inside the body diS/dt and second is entropy exchanged
with its surroundings deS/dt. At this point, it is important to note that the first
term in 1.4 always has to be non-negative (this can be viewed as the second
law of thermodynamics generalized for non-equilibrium thermodynamics). The
second can be both positive and negative (for example, when the air conditioner
is turned on in a closed room, its entropy decreases due to the negativity of the
second term).

Next we introduce new quantities called entropy flux Js and entropy produc-
tion σs. Which can be defined implicitly as

diS

dt
= −

∫︂
Σ

Js · n dΣ (1.5)
deS

dt
=
∫︂

V
σs dV. (1.6)

Equation 1.6 provides us an interpretation of entropy flux as the amount of en-
tropy flowing through the surface of the body per unit area and unit time, and by
1.5 entropy production can be interpreted as an amount of entropy produced in
unit volume per unit time. Further, we have the relation between entropy density
from 1.1 and entropy S

S =
∫︂

V
ρs dV. (1.7)

After substituting 1.7, 1.5 and 1.6 into 1.4 we get
d

dt

∫︂
V

ρs dV =
∫︂

V
σs dV −

∫︂
Σ

Js · n dΣ, (1.8)

1Lagrangian time derivative describes how a quantity of some continuum element changes
with taking into account also that the motion of the element can change the quantity. It is
defined as d/dt = ∂/∂t + v · ∇.
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which can be reformulated using the Gauss theorem, and the fact that Lagrange
time derivative of matter density ρ is zero as∫︂

V
ρ

ds

dt
dV =

∫︂
V

σs dV −
∫︂

V
∇ · Js dV. (1.9)

As this has to be satisfied for arbitrarily chosen volume V, as integrands are
continuous functions, the equation 1.9 must also be satisfied pointwise, therefore
it holds

ρ
ds

dt
= σs −∇ · Js. (1.10)

Equation 1.10 tells us that the change of entropy is pointwise given as production
of entropy in the respective point and a change of entropy flux in the point. A
similar equation can be derived analogically for arbitrary extensive state variable.
The equation 1.10 and its analogies also play a fundamental role in deriving the
equations for systems, which can be described by CIT. The following section will
show how to derive such equations in general.

1.1.3 General structure
Our goal in this section is to determine evolution equations for all the variables
describing the system. For an arbitrary system, which can be well described by
CIT, we can find a system of equations by following the steps below.

1. Find a state variables Write down the list of the parameters of the system
that can change. There must always be an even number of parameters (one
intensive variable for every extensive variable and vice versa).

2. Evolution equations For each extensive state variable A, we can write
down analogical derivation as we did in the previous section for entropy S
and get the evolution equation for its density a. As a result, the equation
will take the form

ρ
da

dt
= σa −∇ · Ja, (1.11)

where σa and Ja are the production of quantity A (source term) and flux
of quantity A, respectively.

3. Identification of entropy production and entropy flux In this step,
we take evolution equations 1.11 and use them to express the time deriva-
tives in the equation for the lagrangian time derivative of entropy 1.3. After
that, we compare the result with 1.10 and identify the entropy flux and en-
tropy production. The entropy production is found in a way that it can be
written as

σs =
N∑︂

i=1
JiXi, (1.12)

where Ji are thermodynamic fluxes of ai and Xi are thermodynamic forces,
typically associated with the gradient of some functions of intensive vari-
ables. Forces and fluxes can generally be scalar, vector, or tensor quanti-
ties. As the entropy production is always scalar quantity, JiXi stands for
product, scalar product or double scalar product between two tensors (for
tensors T and S defined as T : S = ∑︁

a,b TabSab).
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4. Force-flux relations Empirically, we know that thermodynamical forces
and fluxes are dependent on each other. In fact, they are moreover linearly
dependent on each other if we are close enough to the equilibrium. Moreover,
taking fluxes as linear functions of thermodynamical forces

Ji =
N∑︂

j=1
LijXj (1.13)

will ensure that the entropy production will be positive (provided that the
matrix L will be positively definite).

5. Restrictions on Lij Coefficients Lij can not be arbitrary, but subject to
certain restrictions, which are discussed in detail in [10]. The first is that
material symmetry reduces the number of coefficients (Curie’s law). Second
is a restriction on the sign of coefficients, given by the positivity of entropy
production, which imply that matrix L is positive definite. The restriction is
caused by time-reversal symmetry and is called Onsager-Casimir’s relations.
O-C relations state that

Lij = Lji (1.14)
which means, that L has to be symmetric matrix.

1.1.4 Simple example: Fourier heat conduction
In this section, we will demonstrate the approach from the previous section on
a simple example of deriving equations for heat conduction in a rigid body. We
will follow the steps above.

1. Find a state variables As the studied object is rigid, V is not a state
variable, so the only state variable is U (we will use its density u) and its
conjugate T .

2. Evolution equations As we have only one extensive variable, we get just
one evolution equation for u in shape

ρ
du

dt
= σu −∇ · Ju. (1.15)

due to the energy conservation law, no energy can be produced inside the
body. Therefore, σu = 0, then as the only way of the internal energy
transport is heat conduction, the flux of energy is just heat flux q moreover,
as there is no mass transport inside the body, the lagrangian time derivative
simplifies to partial time derivative, which results to

ρ
∂u

∂t
= −∇ · q. (1.16)

3. Identification of entropy production and entropy flux We take the
evolution equation 1.16 and express the time derivative of u

∂u

∂t
= −1

ρ
∇ · q. (1.17)
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Then we take Gibbs equation, which has a shape

∂s

∂t
= 1

T

∂u

∂t
, (1.18)

where lagrangian derivatives d/dt were replaced with partial derivatives
∂/∂t, for the same reason as in step 2. By plugging 1.17 into 1.18 we get

∂s

∂t
= − 1

Tρ
∇ · q. (1.19)

Now we compare time derivative of entropy from 1.10 with 1.19

σs −∇ · Js = − 1
T
∇ · q. (1.20)

if we want to identify entropy flux and entropy production (left-hand side),
it is hard, as the right-hand side has just one term. Therefore, we try to
reformulate the right-hand side using

∇ ·
(︃q

T

)︃
= 1

T
∇ · q + q · ∇

(︃ 1
T

)︃
(1.21)

we get
σs −∇ · Js = q · ∇

(︃ 1
T

)︃
−∇ ·

(︃q
T

)︃
(1.22)

now we see that the first term on the right-hand side corresponds to flux –
q times some gradient of intensive quantity – T , which can be interpreted
as a thermodynamic force. That is why we can say that

σs = q · ∇
(︃ 1

T

)︃
(1.23)

and terms which remained give us

Js = q
T

(1.24)

4. Force-flux relations Now we prescribe linear relationship between flux of
energy (heat flux) and the respective thermodynamical force.

q = Lqq∇
(︃ 1

T

)︃
= −Lqq

1
T 2∇T (1.25)

where Lqq can be without loss of generality function of T . Defining heat
conductivity λ(T ) = Lqq/T 2 we can write

q = −λ∇T, (1.26)

which is well-known formulation of Fourier’s law. By plugging 1.26 into
1.16 we get

ρ
∂u

∂t
= ∇ · (λ∇T ) . (1.27)
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which, using chain rule and definition of heat capacity for constant volume,
results in

∂u

∂t
= ∂u

∂T

∂T

∂t
= cV

∂T

∂t
(1.28)

and assuming constant heat conductivity (which is good approximation of
experimental results for not extreme conditions), it can be rewritten as

∂T

∂t
= κ∆T, (1.29)

where we defined heat diffusivity κ = λ/ρcV .

5. Restrictions on Lij As entropy production given in 1.23 needs to be non-
negative, substituting 1.25 for q in 1.23 we get

σs = Lqq
1

T 4 (∇T )2 . (1.30)

From which, we see that Lqq has to be positive. This implies that heat
conductivity λ(T ) = Lqq/T 2 is also positive. Positive heat conductivity
means that due to 1.26 the heat flux has the opposite direction than the
temperature gradient, which results in heat flowing from places with higher
temperature to places with lower temperature.

In this section, we have shown the derivation of the heat equation from non-
equilibrium thermodynamics. We also derived that heat conductivity has to be
positive as a consequence of the positivity of entropy production, which is just a
generalization of the 2nd law of thermodynamics.

1.2 Transport through the membrane
This section aims to derive water and proton transport equations in a one-
dimensional Proton Exchange Membrane (PEM) inside an external electric field.
To do so, we will use the theory introduced in the previous section. We will follow
the same steps while deriving the heat equation from the principles of CIT.

At first, we must identify the state variables. As the system is isothermal and
isobaric, our state variables are Internal energy density u, concentrations of water
and protons cw and cp and potential energy density upot, which is non zero due
to applied external electric potential and is given by

upot = ρcφe (1.31)

where ρc is charge density caused by protons inside the membrane and φe is the
electric potential of the external electric field. If we now denote ũ = u + upot to
be the total energy density, we can write down the differential of total energy
density

dũ = Tds + µwdcw + µpdcp + ρcdφe + φedρc. (1.32)
This is just specific form of 1.2, so after taking the time derivative it will be it
shape 1.3 which reads

dũ

dt
= T

ds

dt
+ µw

dcw

dt
+ µp

dcp

dt
+ ρc

dφe

dt
+ φe

dρc

dt
. (1.33)
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As we want to describe a stationary state with electric potential, which does not
change in time, the term with the time derivative of electric potential will be
zero. After additional rearrangement 1.33 will have a form

ds

dt
= 1

T

dũ

dt
− µw

T

dcw

dt
− µp

T

dcp

dt
− φe

T

dρc

dt
. (1.34)

The second step is to formulate evolution equations for densities of extensive
variables ũ, cw, cp and ρc. As there is no production of protons, water, energy, or
charge inside the membrane, equations read

ρ
dũ

dt
= −∇ · Jũ (1.35)

ρ
dcw

dt
= −∇ · Jw (1.36)

ρ
dcp

dt
= −∇ · Jp (1.37)

ρ
dρc

dt
= −∇ · j, (1.38)

where Jũ, Jw and Jp are fluxes of total energy, water and protons respectively
and j is current density. As electric current inside the membrane is caused only
by the motion of protons, we can write a relationship between Jp and j

Jp = j
F

, (1.39)

where F is Faraday constant.
The third step is to find entropy production and entropy flux. To do this, we

have to substitute time derivatives from equations 1.35 – 1.38 in to 1.34 where
we get

ds

dt
= − 1

Tρ
(∇ · Jũ + µw∇ · Jw + µp∇ · Jp + φeF ∇ · JP) . (1.40)

You may notice that in the last term, we used 1.39 to get rid of the current
density to reduce the number of unknown variables. We also want to get rid of
the time derivative of entropy density, which we can do by substituting the time
derivative from 1.10 instead of the left-hand side. That results in

σs −∇ · Js = − 1
T

(∇ · Jũ + µw∇ · Jw + µp∇ · Jp + φeF ∇ · JP) . (1.41)

Now we will use the same trick as while deriving the heat equation in the previous
chapter. To be more precise, if we have two space-dependent variables A and B
where first is scalar and second is a vector, we can write

A∇ ·B = ∇ · (AB)−∇A ·B (1.42)

as the left-hand side has the same shape as all terms with a divergence of flux
in 1.41, we can use it to express all divergence terms in the same way as in 1.42.
That leads to the equation

σs −∇ · Js = ∇ ·
(︃
−Jũ

T
+ Jwµw

T
+ Jpµp

T
+ JpφeF

T

)︃
+ Jũ · ∇

(︃ 1
T

)︃
− Jw · ∇

(︃
µw

T

)︃
− Jp · ∇

(︃
µp

T

)︃
− Jp · ∇

(︃
φeF

T

)︃
.

(1.43)
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In 1.43 we can easily identify entropy production as

σs = Jũ · ∇
(︃ 1

T

)︃
− Jw · ∇

(︃
µw

T

)︃
− Jp · ∇

(︃
µp

T

)︃
− Jp · ∇

(︃
φeF

T

)︃
. (1.44)

A whole system is isothermal, the first term on the right-hand side vanishes, and
after some rearrangement, we get

σs = − 1
T

(︂
Jw · ∇µw + Jp · ∇µ̃p

)︂
, (1.45)

where we introduced µ̃p to be the electrochemical potential generally defined as

µ̃p = µp + zφeF (1.46)

where z is a charge of the described particle in units of the elementary charge.
As we are talking about the electrochemical potential of protons, we have z = 1.

The fourth step is to write down the force-flux relations, which are the equa-
tions we want to solve in this work. Using the assumption that the fluxes are
linear functions of forces, we can write down the following equations

Jp = −Lpp

T
∇µ̃p −

Lpw

T
∇µw (1.47)

Jw = −Lwp

T
∇µ̃p −

Lww

T
∇µw, (1.48)

where minuses have to be added to make the entropy production positive.
As in this masters thesis, we are solving only one dimensional model of PEM

fuel cell, 2 we will change the notation for simplicity. The one-dimensional fluxes
Jw and Jp can be replaced with scalars jw and jp respectively. Also, the vector
operator ∇ can be replaced with one-dimensional form ∂/∂x. However, we will
keep it in its current form for simplicity of notation.

Now we will take a look at the electrochemical potential µ̃p for a while. The
usual way we can measure the electrochemical potential of protons is using a volt-
meter [11]. That leads to the more natural choice of units for the electrochemical
potential of protons, which are Volts. Also, we will introduce a new notation for
the electrochemical potential of protons µ̃p := ϕ as it has the same units and
is measured in the same way as the electrostatic potential. These two changes
together will change the equations to the form

jp = −LppF

T
∇ϕ− Lpw

T
∇µw (1.49)

jw = −LwpF

T
∇ϕ− Lww

T
∇µw, (1.50)

where Faraday constant F has to be added to compensate for the change of units,
in the same way as in 1.46.

Our goal is to formulate the equations in a form that uses the most natural
variables. The chemical potential of water can not be measured directly, but

2Which is sufficient to describe the experiment, which was on purpose constructed in a way
that its description should be fully covered by one-dimensional theory – will be discussed more
in-depth in the later chapter.
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on the other hand, we can associate the chemical potential of water with water
activity aw by using ([12])

µw = µ0
w + RT log(aw). (1.51)

Water activity is a quantity equivalent to relative humidity for various materials.
It is defined as the ratio of water vapor pressure and saturated vapor pressure
at the same temperature. If the material is some gas, water activity and relative
humidity are the same. Using the definition for 1.51 we can rewrite the force Xw

as
Xw = − 1

T
∇µw = −R∇ (log(aw)) = −R

∇aw

aw

. (1.52)

By using this new formulation for Xw after plugging it into 1.49 and 1.50 we get

jp = −LppF

T
∇ϕ−RLpw

∇aw

aw

(1.53)

jw = −LwpF

T
∇ϕ−RLww

∇aw

aw

, (1.54)

which is the system of equations for transport inside the PEM membrane in
its most natural variables. However, the real difficulty lies in determining the
coefficients Lij. The following section will focus on determining the coefficients
from experimentally measurable quantities.

1.3 Coefficients Lij

1.3.1 Determining the coefficients
Phenomenological coefficients are determined from indirect measurements ex-
perimentally. In this case, they can be determined from measurements proton
conductivity, water diffusivity water concentration and drag coefficient. In this
section, we will derive how coefficients can be connected with mentioned measur-
able quantities.

Before we will do this, we will rewrite the force-flux relations 1.49 1.50 in a
different shape. Denoting thermodynamical forces Xp = F

T
∇ϕ and Xw = 1

T
∇µw,

the equations will take the form

jp = LppXp + LpwXw (1.55)
jw = LwpXp + LwwXw, . (1.56)

when we express Xp from 1.55 and substitute it into 1.56 and also Xw from 1.56
and substitute it into 1.55, we get

jp = LwwLpp − LwpLpw

Lww

Xp + Lwp

Lww

jw (1.57)

jw = LwwLpp − LwpLpw

Lpp

Xw + Lwp

Lpp

jp. (1.58)

Proton conductivity σp is defined as

σp = F 2

T

(︄
jp

Xp

)︄
Xw=0

, (1.59)
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where the flux jp is expressed in mol · s−1 ·m−2, Xp is expressed in V ·m−1 · s ·
A ·mol−1 ·K−1 and σp in Sm−1. Using the equation 1.55 for jp, after setting the
Xw = 0 it gives us

σp = F 2

T
Lpp. (1.60)

Which is direct relationship between Lpp and experimentally measurable proton
conductivity.

Water Diffusivity Dw and water concentration cw are defined as
Dwcw

R
=
(︃

jw

Xw

)︃
jp=0

(1.61)

where the water flux jw is expressed in mol · s−1 · m−2, Xw is expressed in J ·
mol−1 ·m−1 ·K−1 and Dw, cw in m2 · s−1 and mol ·m3 respectively. When we use
the expression of jw from 1.58 and substitute it into 1.61 we get

Dwcw

R
= LwwLpp − LwpLpw

Lpp

= Lww −
LwpLpw

Lpp

. (1.62)

Drag coefficient is a quantity that expresses how the proton flux affects the
water flux. This coefficient is defined as a ratio of the fluxes under the condition
of zero thermodynamical force acting on the water Xw. It reads

ξ =
(︄

jw

jp

)︄
Xw=0

, (1.63)

which can be using the equation 1.58 for jw rewritten as

ξ = Lwp

Lpp

(1.64)

as the first term in 1.58 vanishes due to Xw = 0.
After we obtain experimentally measured values of σp, Dw, cw and ξ we still

have just three equations (1.64, 1.62, 1.60) to express four coefficients Lij. How-
ever, no other measurements are needed, as we can make use of Onsager-Casimir
reciprocal relations (OCRR) mentioned in 1.14. Thanks to that, we have another
equation Lpw = Lwp and therefore, we can use just one cross coefficient Lcross

instead of them. Using this new notation, we can express Lpp, Lww and Lcross in
terms of measurable quantities as

Lpp = T

F 2 σp (1.65)

Lcross = Tξ

F 2 σp (1.66)

Lww = Dwcw

R
+ Tξ2

F 2 σp. (1.67)

In general, all measurable quantities σp, Dw, cw, and ξ can be a function
of pressure, temperature, and water activity in the membrane. During the ex-
periments, pressure and temperature were kept constant. In our model, we can
assume that they are just functions of water activity. It is, however, possible to
derive one another restriction on the shape of the Lij coefficients. This will be
shown in the next section.
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1.3.2 Functional Constraints
In this section, we will reproduce the derivation of functional constraints on phe-
nomenological coefficients from the article [13]. Consider a system described by
the one-dimensional CIT theory. Consider additionally that the system is relaxed
to the stationary state, where all the fluxes are spatially constant. Additionally,
we will assume a system with two state variables x1 and x2, two respective fluxes
j1, j2 and two respective thermodynamical forces X1, X2. The flux-force relations
will have the same shape as 1.55 and 1.56, which reads

j1 = L11X1 + L12X2 (1.68)
j2 = L21X1 + L22X2, . (1.69)

Another assumption we need is that when one thermodynamical force, (without
loss of generality let it be X2) vanishes everywhere due to setting appropriate
boundary conditions for x2, the other will not vanish. Last assumption needed is
that the coefficients are not functions of x2. 3

Under this circumstances, let us assume we can set boundary conditions for
x2 as x2|x=0 = x2|x = L = c1, such that X2 = 0. As X2 is proportional to the
gradient of x2, x2 must be constant for all x. Now we express the ratio of j1 and
j2

j1

j2
= L11

L21
. (1.70)

Due to j1 and j2 are both constant, the ratio of L11 and L21 is constant. This
means, that both L11 and L21 must have the same functional dependence on the
state variable x1. By OCRR 1.14 we see that also L12 has the same functional
dependence on x1.

Next, we want to show that also L22 has the same functional dependence as
the other coefficients, and we can write the equations 1.68 and 1.69 as(︄

j1
j2

)︄
= f(x1)

(︄
L̃11 L̃12
L̃21 L̃22

)︄(︄
X1
X2

)︄
, (1.71)

where L̃11, L̃12, L̃21 and L̃22 can be only functions of x2 and f(x1) denotes the
functional dependence of coefficients on x1.

Let us denote f1 the functional dependence of L22 on x1. Assuming that the
f1 is monotonous function, we can write x1 = f−1

1 (L22). Further, we introduce
the notation

f(x1) = f(f−1
1 (L22)) = f2(L22) (1.72)

and all the coefficients can be written as a function of L22. Due to the second law
of thermodynamics, we have that the matrix Lij must be positive definite. This
is satisfied for L11 > 0 L22 > 0 and L11L22−L12L21 > 0. The latter equation can
be rewritten in terms of 1.72 as

f2(L22)
(︂
L̃11L22 − L̃

2
12f2(L22)

)︂
> 0. (1.73)

3This assumption may be unnecessary, as It is possible, that it follows from the previous one.
However, if there is an implication between the penultimate assumption and last assumption,
it is not straightforward. Therefore, we said it as a separate assumption.
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L̃11 and L̃12 can have for different thermodynamic systems different values, which
does not depend on L22. Without loss of generality, we can further choose f2(L22)
to be positive for all L22 > 0. This will uniquely determine the signs of L̃11 and
L̃12. If we assume f2 is an analytic function and can be written as

f2(L22) =
∞∑︂

n=0
anLn

22. (1.74)

For sufficiently small values of L22 the 1.73 reads

f2(L22)
(︂
L̃11L22 − L̃

2
12f2(L22)

)︂
≈ −L̃

2
12a

2
0 > 0, (1.75)

which holds just for a0 = 0. Using the fact that f2(L22) > 0 we can rewrite 1.73
as (︂

L̃11L22 − L̃
2
12f2(L22)

)︂
> 0. (1.76)

L̃11L22 > L̃
2
12f2(L22). (1.77)

This can be true for all L22 just if an = 0 for all n > 1. Therefore, we have
f2(L22) = a1L22. Using 1.72 we get

f(x1) = f2(L22) = a1L22 (1.78)

which means, that L22 has same functional dependence on x1 as the other coeffi-
cients.

We will use the functional constraints for the system of equations describing
proton and water flux inside the PEM membrane. Let aw and ϕ be the x1 and
x2 respectively. As the electric potential is given uniquely up to a constant, the
coefficients can not depend on its value (satisfying the last assumption). There-
fore, all the coefficients will be the same function of aw and measured quantities
Dw, cw and σp will be just functions of water activity aw. Moreover, functional
constraints tell us that the drag coefficient ξ, which is defined as a ratio of Lcross

and Lpp must be constant for all water activities. Above mentioned allows us
then to write flux-force relations 1.49 and 1.50 in a form(︄

jp

jw

)︄
= f(aw)

T

(︄
L̃pp L̃cross

L̃cross L̃ww

)︄(︄
−F∇ϕ
−RT ∇aw

aw
,

)︄
(1.79)

which will after plugging in the 1.65, 1.66 and 1.67 gives us(︄
jp

jw

)︄
= f(aw)

F 2

(︄
σ0

p σ0
pξ

σ0
pξ

Ldif F 2

RT
+ σ0

pξ2

)︄(︄
−F∇ϕ
−RT ∇aw

aw
,

)︄
(1.80)

where Ldif and σ0
p are constants such that

σp = σ0
pf(aw) (1.81)

Dwcw = Ldiff(aw). (1.82)
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1.3.3 Stationary states
In this thesis, we will describe the membrane in the stationary state. We call
some state of the system to be stationary if all the state variables, velocities, and
fluxes do not change in the course time. A good example can be an electric heater,
to which a constant electrical power is supplied, and its temperature remains
unchanged. (The temperature does not change due to heat losses by radiation
and heat conduction. The losses are the same as the gain from its heating.)
The stationary state differs from the equilibrium state (which can be the same
heater, but after the electricity supply is turned off and the heater equilibrates
with the surroundings). Although in both cases, the state variables (in this case,
the temperature is the only state variable) are constant, in the first case, there
are non-zero heat fluxes and heat productions (which are both constant in time).

It can be shown (precise derivation can be found in [10]) that entropy produc-
tion decreases over time and that it reaches its minimum in a state which has to
be stationary. In the case of water and proton transport through the membrane,
after changing the boundary conditions, the system always relaxes to some sta-
tionary state, where state variables (water activity and electrochemical potential
of protons) will be time-independent functions, and the fluxes will be constant.
Constant fluxes can also be viewed as s consequence of balance equations 1.36
and 1.37 where when the concentration of species in the membrane does not
evolve in time, then the left-hand side is zero, which implies that fluxes have to
be constant. Therefore, we will be solving the equations inside the membrane

∇jp = 0 (1.83)
∇jw = 0, (1.84)

for jp and jw defined by 1.80

1.4 Equations on the electrodes
In this section we are going to derive expressions for the fluxes through the
boundary. To derive the expression for proton flux, we need to introduce the
basics of the theory of the electrochemical reactions first. In this section, we will
derive expressions for the fluxes through the boundary. To derive the expression
for proton flux, we need to introduce the basics of the theory of the electrochemical
reactions first.

1.4.1 Electrochemical reactions
In contrast to chemical reactions, electrochemical reactions involve the transport
of the ions subjected to the electric field. Let us assume a typical electrochemical
reaction where species A2B2 are reduced to two charged species A+ and two
charged species B− and vice versa

A2B2 ←−→ 2 A+ + 2 B− (1.85)

The number standing before some reactant or product is called a stoichiomet-
ric coefficient. In this case, stoichiometric coefficients of A+ and B+ are 2 and
stoichiometric coefficient of A2B2 is 1.
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So far, we know that the flux of species (we derived it for protons and water) is
proportional to the gradient of its electrochemical potential (which reduces to the
chemical potential for species without electric charge). Analogically, the difference
in electrochemical potential between reactants and products is the quantity that
determines the speed and direction of electrochemical reaction [12]. To be more
precise, we introduce a new quantity, called overpotential η, defined as

η =
µ̃prod − µ̃react

FNq

= ∆µ̃

FNq

(1.86)

where µ̃prod and µ̃react are the electrochemical potential of all products and electro-
chemical potential of all reactants, respectively, and Nq is the number of negative
or positive elementary charges (the number must be the same) involved in the
reaction. As can be seen from 1.86 overpotential is the amount of Gibbs energy
of reaction normalized to the transition of one ion with elementary charge.

If the overpotential is positive the reaction proceeds forward A2B2 −−→ 2 A+ +
2 B– and if it is negative, it proceeds backwards A2B2 ←−− 2 A+ + 2 B– . Note
that this notation is invariant with respect to the initial choice of reactants and
products. After switching reactants with products, the sign of overpotential will
change, and the reaction will proceed in the direction as before.

Now we know what drives the reaction to one side or another, but we do
not understand how exactly overpotential affects the reaction speed. That is
very hard to derive rigorously. However, for this purpose, the Buttler-Volmer
equation is used [11] as it is in good agreement with experimental data. The
Buttler-Volmer equation for the production rate of species A reads

jA = j0
(︂
e(1−α)NAηF/RT − e−αNAηF/RT

)︂
(1.87)

where j0 is a constant called exchange current specific for every reaction and
depends on given conditions (temperature and pressure), NA is a stoichiometric
coefficient of A and α is the transfer coefficient, which lies in the interval (0, 1)
and is typically a fitted parameter of the described system.

1.4.2 HOR and HRR reactions
In our experiment, the hydrogen oxidation reaction HOR proceeds on one side
of the membrane, and on the other, the hydrogen reduction reaction HRR takes
place. They are the same reactions in which gaseous hydrogen on the electrode
(placed on the surface of the membrane) dissociates to protons and electrons on
one side, and electrons and protons reduce to gaseous hydrogen on the other.

H2 ←−→ 2 H+ + 2 e− (1.88)

Using the equation 1.86 we can write down the overpotential for HOR reaction

ηHOR = 1
2F

(︂
µ̃H2 − 2µ̃H+ − 2µ̃e−

)︂
(1.89)

= 1
2F

(︄
µ̃o

H2 + RT log
(︄

pH2

po

)︄
− 2Fϕ + 2Fϕe−

)︄
(1.90)

= RT

2F
log

(︄
pH2

po

)︄
− ϕ + ϕe− , (1.91)
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where we again denoted the electrochemical potential of protons as ϕ and for
consistency of notation, we also denoted the electrochemical potential of electrons
ϕe− . As the experimental setup was isobaric at pressure p = po, we can assume
that hydrogen and water are ideal gases and that they are the only compounds
of gas in the setup. Therefore, we can write po = pH2 + pH2O, which gives us

ηHOR = RT

2F
log

(︄
pH2

po

)︄
− ϕ + ϕe− (1.92)

= RT

2F
log

(︄
po − pH2O

po

)︄
− ϕ + ϕe− (1.93)

= RT

2F
log

(︄
1− pH2O

po

)︄
− ϕ + ϕe− (1.94)

= RT

2F
log

(︄
1− pH2O

po

psat

psat

)︄
− ϕ + ϕe− (1.95)

= RT

2F
log

(︄
1−RH

psat

po

)︄
− ϕ + ϕe− (1.96)

where RH stands for Relative Humidity, which is defined as a ratio of water vapor
pressure pH2O and saturated vapor pressure psat and is interchangeable with water
activity aw under standard atmospheric pressure ([14]).

The overpotential for HRR reaction has to be the same. The only difference
is its sign

ηHOR = −ηHRR (1.97)
In the experiments, we were not deciding which reaction took place on the elec-
trode directly. We could adjust the applied electric potential 4 U . As the electric
potential is defined up to a constant, we can, without loss of generality, set it
to be 0 on the right electrode and U on the left electrode (U can be positive or
negative during the experiments). 5. In the model, the left electrode lies at the
point x = 0 and the right electrode at x = L. With this notation, we get the
final expression for overpotential on both electrodes as

η|x=0 = RT

2F
log (1−RH|x=0− · psat)− ϕ|x=0+ + U (1.98)

η|x=L = RT

2F
log (1−RH|x=L+ · psat)− ϕ|x=L− , (1.99)

where psat is expressed in the units of standard atmospheric pressure po and |x=0−

means the value on the left side of the electrode (In case of x = 0, it is outside
the membrane) and |x=0+ means the value on the right side of the electrode (In
case of x = 0 it is inside the membrane).

4Naturally, the ϕ and ϕe− are zero; therefore, the overpotential is very small, as it is only
given by different pressures of hydrogen on the opposite sites of the membrane. If we want to
study the transport through the membrane under different conditions, we have to moderate
the proton flux artificially. That is made by applying some external electric potential to the
electrodes. The applied electric potential is then associated with the electrochemical potential
of electrons.

5The role of the electrodes as the anode and the cathode changes while changing applied
potential U . Therefore in this thesis, we use the notation of electrodes as ”left” and ”right.”
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As all protons produced on the anode immediately start to move through the
boundary, the proton flux prescribed on the boundary is equal to the production
rate of the reaction given by the Butler-Volmer equation 1.87. The final expression
for proton fluxes on the electrode is then using α = 1/2

jH+|x=0 = −j0 sinh
(︃

η|x=0
F

RT

)︃
(1.100)

jH+|x=L = j0 sinh
(︃

η|x=L
F

RT

)︃
. (1.101)

Where minus sign in equation 1.100 is since the normal vector of the boundary
for x = 0 points to the −x direction. It can be seen that the sign is correct
because the flux of protons from on one side must have the same direction as on
the other side (as protons are not produced or destroyed inside the membrane).
And only additional difference between 1.100 and 1.101 is that the overpotential
inside 1.100 has opposite sign as the overpotential in 1.101. This means that,
either η|x=0 is negative and then jH+ |x=0 = jH+ |x=L and both are positive, or
η|x=L is negative and then jH+|x=0 = jH+|x=L and both are negative.

1.4.3 Equations for water flux through the boundary
For water flux, the boundary conditions are prescribed as ([15])

jw|x=0 = kw(aw|mem. − aw|out.) (1.102)
jw|x=L = kw(aw|out. − aw|mem.), (1.103)

where kw is a phenomenological constant, which is determined experimentally
and differs for different experimental setups, and aw|mem. and aw|out. are water
activities on the electrode inside the membrane and outside the membrane, re-
spectively. The equations 1.102 and 1.103 are given empirically, as water flux is
a linear function of the water activity drop over the interface. The water activity
aw|out. is equal to the relative humidity RH of the hydrogen on the electrode from
the outer side. Therefore, we can rewrite 1.102 and 1.103 as

jw|x=0 = kw(aw|mem. −RH|x=0−) (1.104)
jw|x=L = kw(RH|x=L+ − aw|mem.), . (1.105)

1.5 Analytical solution
We found out that if we focus only on the system of equations inside the mem-
brane (not considering any boundary conditions for a while), it can be solved
analytically. Although we will be then unable to find the right integration con-
stants due to no boundary equations, the character of the solution can tell us
whether there could be problems with the numerical implementation (for exam-
ple, if the solution heavily oscillates or if it has singularities, it could be the
problem to solve the system numerically). We will take the equations in the form
1.80. As we are looking for the stationary state solution, we want the divergence
of both fluxes to be zero, as follows from 1.83 and 1.84. As the problem is one
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dimensional, after taking the derivative with respect to x of 1.80 and setting it
equal to zero, we get(︄

σ0
p σ0

pξ

σ0
pξ

Ldif F 2

RT
+ σ0

pξ2

)︄(︄
f(eν)
F 2

(︄
−F∂x2ϕ
−RT∂x2ν

)︄
+ eν ∂xν

f
′(eν)
F 2

(︄
−F∂xϕ
−RT∂xν

)︄)︄
= 0,

(1.106)
where we instead of the function aw(x) use the function ν(x) defined as aw = eν(x).

Because the matrix in 1.106 is constant, we can multiply the equation by its
inverse (inverse matrix must exist as the matrix L is positively definite) and get

f(eν)
F 2

(︄
−F∂x2ϕ
−RT∂x2ν

)︄
+ eν ∂xν

f
′(eν)
F 2

(︄
−F∂xϕ
−RT∂xν

)︄
= 0. (1.107)

the second equation in the system 1.107 is ODE with one unknown function, so we
can try to solve it. The equation is analytically solvable only for some functions
f . However, it can be shown that the measured functions f can be for a chosen
interval of aw approximated with satisfying precision by a f(aw) ≈ k · aα

w, where
α and k depends on the chosen interval. In terms of the function ν(x), we have

f(eν(x)) ≈ k · eαν(x). (1.108)

After plugging 1.108 into 1.107 and dividing by the constant k we get

eαν

F 2

(︄
−F∂x2ϕ
−RT∂x2ν

)︄
+ αeν ∂xν

e(α−1)ν)

F 2

(︄
−F∂xϕ
−RT∂xν

)︄
= 0. (1.109)

Taking the second equation from 1.109 and multiplying by −F 2/RT e−αν we get

∂x2ν(x) + α(∂xν(x))2 = 0 (1.110)

We will now introduce a new function µ = (∂xν which leads to

∂xµ(x) + αµ(x)2 = 0, (1.111)

which can be solved by the separation of variables then after integrating µ(x) we
get the result for ν(x), which reads

µ(x) = 1
αx + c1

(1.112)

ν(x) = log(αx + c1)
α

+ c2. (1.113)

Now we will solve the first equation. Again we multiply by −F e−αν and get

∂x2ϕ + α∂xν∂xϕ = 0. (1.114)

Again we will use the substitution in a form ∂xϕ = φ and plug in the µ for the
∂xν

∂xφ + α

αx + c1
φ = 0. (1.115)
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The 1.115 can be again solved by separation of variables which gives us results for
φ and by integrating the expression for φ also the expression for ϕ, which reads

φ(x) = c3

αx + c1
(1.116)

ϕ(x) = c3
log(αx + c1)

α
+ c4. (1.117)

.
So the resulting equations for ϕ and aw (which will be obtained after taking

the exponential of 1.113) are

aw(x) = C2(αx + C1)1/α (1.118)

ϕ(x) = C3
log(αx + C1)

α
+ C4, (1.119)

where C1 = c1, C3 = c3, C4 = c4 and C2 = exp(c2). As α is strictly greater
than 1 (as can be seen from figure 1.1), the numerical calculations of the water
activity profile 1.118 can be problematic as its derivative approaches infinity for
αx ≈ −C1. For the same value of x, the electrochemical potential of protons will
diverge, as can be seen from 1.119. Although we do not know the water activity
profile and electrochemical potential profile in the membrane, we know that there
possibly can be a problem numerically. We also know that it will be in the same
place in the membrane for both functions.
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Figure 1.1: The figure shows how the measured dependence of phenomenological
coefficients on aw can be fitted with a function in a shape k · aα

w. The red curve
shows the best fit for f(aw) in range 0 – 0.3, the green curve shows the best fit
for range 0 – 0.5 and the blue curve shows the best fit for range 0 – 0.7. The
fitted values of coefficients are k = 156.3 ± 0.1, α = 2.357 ± 2 · 10−6 for red
curve, k = 205.7 ± 0.6, α = 2.581 ± 2 · 10−5 for green curve and k = 293 ± 2,
α = 3.027 ± 8 · 10−5 for blue curve. More comments on the measurement of
f(aw) will be discussed in the following chapter. As can be seen the red curve
approximates data in the best way for small values of aw (smaller figure inside)
but fails to approximate the function for aw > 0.4 (as the fit was done just for
range (0,0.3)). The blue curve behaves in the opposite way.
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2. Description of experiments

2.1 PEM fuel cells
The first usable fuel cell was developed by Thomas Francis Bacon in 1932 ([16]),
with an output power of 5 kW. However, it was an alkaline fuel cell where an
aqueous solution of KOH was used as the electrolyte. PEM fuel cell was invented
in the early 1960s by Willard Thomas Grubb and Leonard Niedrach ([16]), but the
Nafion membrane was used as an electrolyte in 1966 for the first time. Nowadays,
PEM fuel cells are the best candidate for vehicles and other mobile applications
due to their compactness compared to other types of fuel cells.

In this section, we will explain how the PEM fuel cell works. The scheme
of the PEM fuel cell is shown in picture 2.1. The anode is fed with hydrogen,

H2 N2 + O2 +H2O

N2 + H2O H2 + H2O

Anode:   
 H2        2H+ + 2e-   

Cathode: 
4H+ + 4e- + O2

            2H2O  

 H2O

 H+

Figure 2.1: The picture shows the scheme for the PEM fuel cell. The hydrogen is
fed to the anode, which is made from platinum. On the anode (left), the hydrogen
oxidation reaction (HOR) proceeds due to the presence of platinum, which is the
best-known catalyst for the HOR reaction. After splitting the hydrogen, the H+

ions (protons) move through to membrane to the cathode. The cathode is fed with
air, consisting mainly of nitrogen, oxygen, and water vapor. Protons, electrons,
and oxygen react together and form water on the cathode. Water is firstly carried
away by the flow of nitrogen and some residual not used oxygen, and secondly
transported through the membrane by diffusion (as there is no water on the other
side of the membrane, the water concentration gradient pushes water through the
membrane.)

and the cathode is fed with air. On the anode, the HOR reaction proceeds, and
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protons are transported through the membrane to the cathode, and electrons are
transported through the external electric circuit to the cathode. The chemical
reactions and transport of both charged species (protons and electrons) is driven
by the overpotential of the chemical reaction. Using the equation 1.86, we can
write down the overpotential for fuel cell as described on the picture 2.1. It holds
that

ηHOR = 1
2F

(︂
µ̃H2 − 2µ̃H+ − 2µ̃e−

)︂
(2.1)

ηORR = 1
4F

(︂
2µ̃H2O − 4µ̃H+ − 4µ̃e− − µ̃O2

)︂
. (2.2)

If we assume that we are at standard atmospheric pressure and room temperature
and use the fact that chemical potentials of formation of pure species such as
hydrogen and oxygen are set to be zero, we can rewrite 2.1 and 2.2 as

ηHOR = − 1
F

(µ̃H+ + µ̃e−) (2.3)

ηORR = 1
F

(︃1
2 µ̃H2O − µ̃H+ − µ̃e−

)︃
. (2.4)

The production of protons (which is given by Butler-Volmer equations 1.87) must
be the same on both sides. However, the production on the right must have the
opposite (negative) sign, as protons are consumed (not produced) by HRR on
the right electrode. Therefore, if we assume both overpotentials to be that small,
then we can approximate sinh(x) ≈ x, and get

jHOR
0 ηHOR = −jORR

0 ηORR, (2.5)

where equality holds if both electrodes are identical (In the case where different
electrodes were used on both sides, the characteristics of the electrodes would
change the equation ). Now let us assume that the fuel cell has an open external
circuit. Therefore, the production of protons and consequently water production
is zero. As the reactions are not in progress, both overpotentials 2.3 and 2.4 are
zero. By comparing both expressions, we get

1
2 µ̃H2O − µ̃H+|right − µ̃e−|right = −µ̃H+|left − µ̃e−|left (2.6)

µ̃H2O = 2 (∆µ̃H+ + ∆µ̃e−) , (2.7)

where ∆µ̃ denotes the difference between electrochemical potential on the right-
hand side and the left-hand side. The value of µ̃H2O is −237.18 kJ/mol for for-
mation of liquid water ([14]). As protons are not moving through the membrane.
The electrochemical potential of protons inside the membrane must be constant,
which means ∆µ̃H+ = 0. The difference in electrochemical potentials of electrons
between the right and left electrode is UF . In the case of an open circuit, we
have U = UOCV , where OCV stands for Open Circuit Voltage. From 2.7 we have

UOCV = − µ̃H2O

2F
≈ 1.23V. (2.8)

As ηHOR = 0 we have µ̃H+|left = −µ̃e−|left. Without loss of generality, we can set
the electrochemical potential of electrons on the left to be zero. This immediately
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gives us µ̃H+|left = 0 That is shown in picture 2.2 with a blue line. Inside the
membrane, the blue line shows the electrochemical potential of protons, and
outside the membrane, it shows the electrochemical potential of electrons. The
difference between the electrochemical potential of electrons on electrodes is the
voltage (in this case, U = UOCV ).

After closing the electrical circuit, the protons start to move from the left to
the right through the membrane. That means that µ̃H+ must decrease from left
to right in the membrane. Moreover, as the proton flux is now positive (from
left to right), the overpotential ηHOR > 0. As µ̃e− |left = 0, µ̃H+|left must be
negative. Now we want to show how the voltage will change after closing the
circuit. Plugging 2.3 and 2.4 into 2.5 we get

jHOR
0

jORR
0

ηHOR = −ηORR (2.9)

−jHOR
0

jORR
0

1
F

µ̃H+|left = − 1
F

(︃1
2 µ̃H2O − µ̃H+|right − µ̃e−|right

)︃
(2.10)

−jHOR
0

jORR
0

1
F

µ̃H+|left = µ̃H+|right

F
+ UOCV − U (2.11)

U = UOCV + jHOR
0

jORR
0

1
F

µ̃H+ |left + µ̃H+|right

F
. (2.12)

The second and the third term on the right-hand side of 2.12 are both negative.
(Second term is negative, as explained before, and the third term must be smaller
than the second, as µ̃H+ decreases in the membrane.) Therefore, we see that the
measured voltage is always smaller than the UOCV . The function of potential
for a closed circuit is shown on picture 2.2 with red lines. Inside the membrane,
the electrochemical potential of protons is shown, and on the electrodes, the
electrochemical potential of electrons is shown.

2.2 Experimental setup of hydrogen pump
The goal of this thesis is to describe experimental results measured by J. Benziger
et al. in 2015, published in [1]. In the article, proton and water flux through the
Nafion membrane were measured; however, no theoretical explanation for the
data was given. This chapter will describe the experimental setup and comment
on the measured data.

As mentioned earlier, to do experiments as simple as possible (to avoid having
a lot of unknown parameters), the water and proton transport inside the PEM
membrane was studied not on fuel cell but the so-called ”hydrogen pump.” The
scheme of the setup in co-current operation is shown in Figure 2.3

U was set to negative on the left electrode for counter-current operation. That
causes the change of sign of the overpotentials 1.98 and 1.99 on the left and right
electrode. Because of that, the role of anode and cathode was switched (see 2.4)

2.3 Experimental results for Hydrogen pump
The water and proton flux through the hydrogen pump were measured for Differ-
ent applied voltages. The relative humidity of the left electrode feed was set to

25



U < UOCV

U = UOCV

Open 
circuit

Closed 
circuit

x = 0 x = L

E
le

ct
ro

ch
em

ic
al

 p
ot

en
ti

al
 (

V
)

Figure 2.2: The figure shows the profile of electrochemical potential in the hy-
drogen pump. At the open circuit, the difference in electrochemical potential of
electrons is equal to the open-circuit voltage. At a closed circuit, the protons
start to move, which is caused by the decrease of the electrochemical potential of
protons inside the membrane (note that the although in the figure the profile of
electrochemical potential inside the membrane is linear, this is not true in general
and the picture is just for illustration). However, the electrochemical potential
of electrons on the right electrode is lower than at the open circuit, which means
that the voltage of FC is always lower than the OCV.

30% 50% and 70 % in the experiments. The temperature was set to a constant
value and did not change during each measurement. After setting an electric
potential value, it took some time to equilibrate the system. After equilibration
of the system (the proton flux and water flux started to be constant), the mea-
surements were made. After that, a new value of the voltage was set. The voltage
was altered from −1.0V to 1.0V with a step of size 0.03V for smaller Voltages
(in absolute value) and with step size 0.1V for higher Voltages. The measured
data can be seen in 2.5

For lower applied voltages, the proton flux increases linearly with increasing
voltage. However, for voltages U > 0.2V and U < −0.2V, the flux cease to be
linear and saturates at specific values. The more humidified the left electrode
feed is, the higher the saturation current is (in absolute value). In [1] the author
tried to explain the measured data using a simple model, where the membrane
was approximated by a single point (0D model). They use the same CIT model
equations in the shape 1.68 and 1.69, but due to the 0D model, all Lij coefficients
are constants, and the gradients of µw (or water activity aw) and ϕ are approxi-
mated as∇µw ≈ (µw|x=L − µw|x=0) /tmem and∇ϕ ≈ (ϕ|x=L − ϕ|x=0) /tmem where
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Left Right

Feed = H2 + H2O Feed = H2

Effluent = H2 + H2OEffluent = H2 + H2O

U
Co-current operation

U > 0 U = 0

Anode: H2        2H+ + 2e-  
 

Cathode: 2H+ + 2e-            H2  

 H2O

 H+

Figure 2.3: The picture shows the co-current operation of the hydrogen pump
(Nafion membrane – colorful, sandwiched between two platinum electrodes-grey).
Co-current means that water and protons are transported through the membrane
in the same direction. That is achieved for U > 0 on the left electrode. (Without
loss of generality, U is always set to be 0 on the right electrode) Voltage decreases
in the membrane from left to right. Lorentz’s electric force makes protons move
to the lower electric potential. That causes the flux of protons from left to right.
Water firstly moves to the right due to diffusion (as on the left side we have
non-zero diffusivity and on the right side we do not) and secondly due to electro-
osmotic drag.

tmem is the thickness of the membrane. However, this model can not explain the
current saturation.

2.4 Measurements of phenomenological coeffi-
cients

The water diffusivity and concentration as a function of water activity in Nafion
115 were measured experimentally in [17] and [15] respectively. In [17] the mea-
surement of proton conductivity is also presented. However, the technique used to
recover the conductivity dependence on water activity was based on incorrect as-
sumptions, which will be discussed later. The goal of this section is to introduce
the measurements techniques shortly and, using the measurements, determine
the value of the coefficient Ldif and the functional dependence f(aw) which is the
same for the product of Dw and cw and also for proton conductivity σp as follows
from arguments presented in 1.3.2.
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Left Right

Feed = H2 + H2O Feed = H2

Effluent = H2 + H2OEffluent = H2 + H2O

U
Counter-current operation

U < 0 U = 0

Anode: H2        2H+ + 2e-  
 

Cathode: 2H+ + 2e-            H2  

 H2O

 H+

Figure 2.4: The picture shows the hydrogen pump (Nafion membrane – col-
orful, is sandwiched between two platinum electrodes-grey) in counter-current
operation. Counter-current means, that protons are transported through the
membrane in the opposite direction as water. That is achieved for U < 0 on
the left electrode. (Without loss of generality, U is always set to be 0 on the
right electrode) Voltage decreases in the membrane from right to left. Lorentz’s
electric force makes protons move to the lower electric potential. That causes the
flux of protons from right to left. Water moves to the right due to diffusion, but
the proton flux in the opposite direction slows down the water flux.

The measurements of water self-diffusivity were made using the pulsed gradient
spin echo NMR method for different water activities and temperatures. The
effective diffusion coefficient as a function of water activity and the temperature
was fitted as ([17])

Dw = 0.265e−3343
T a2

wcm2/s (2.13)
The water concentration measurements were made as an absorption experi-

ment, where the membrane was immersed in an environment with constant rela-
tive humidity, and the water content in the membrane was measured as a function
of time. A classical irreversible thermodynamic model was used to express the
water flux through the membrane interface as a function of cw and Dw

jw = −Dwcw
1

aw

∇aw (2.14)

with the same boundary conditions for water flux as presented in 1.4.3. For
Dw the expression 2.13 was used. A handful of expressions for concentration
as a function of water activity were derived. In general, all of them had good
agreement with experimentally measured data. However, they chose the GAB
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Figure 2.5: The figure taken from [1] shows the measured data for proton and
water flux as a function of applied potential. The crosses × and + correspond to
the water flux, and squares correspond to the proton flux (solid squared for the
co-current operation and hollow squares for counter-current operation). All data
corresponds to the measurement for 50 °C. Green, blue and red data correspond
to left electrode feed humidity of 30%, 50%, and 70% respectively.

isotherm model given as

cw(aw) = ρN

EW

λGcGkGaw

(1− kGaw)(1 + (cG − 1)kGaw) , (2.15)

and the reason is described in Section 4 of [15]. The parameters λG, cG and kG

were fitted to be λG ≈ 1.93, cG ≈ 44.3 and kG ≈ 0.9. EW and ρN stands for
equivalent weight (weight of Nafion polymer per 1 mol of SO3 groups) and ρN is
the density of the membrane in a dry state. From [18] we have ρN = 2120kg m−3

and from [19] we have EW = 1.11kg mol−1.
Combining the equations 2.15 and 2.13 we get

Ldiff(aw) = ρN

EW

0.265e−3343
T λGcGkGa3

w

(a− kGaw)(1 + (cG − 1)kGaw) . (2.16)

Now we can choose the constant Ldif arbitrarily. We decided to put

Ldif = 0.265e−3343
T (2.17)

f(aw) = ρN

EW

λGcGkGa3
w

(1− kGaw)(1 + (cG − 1)kGaw) , (2.18)

as it is advantageous for the code to choose it in that way. The other coefficients
(ξ and σ0

p) will be determined from the simulations. It will also be shown that
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the measurement of σp(aw) can not be done as a resistance measurement of the
Nafion membrane for various humidities of the membrane surroundings (as in
[17]). It will also be shown why the drag coefficient measurements, as a ratio of
jw and jp for zero Xw, can not give correct results.

The last couple of coefficients, that can be measured experimentally are j0
and kw from boundary conditions 1.100, 1.101 and 1.104, 1.105 respectively. The
value of j0 is not constant for given reaction, because it also depends on the
surface properties of the electrode. According to [20], j0 can be written as

j0 = jHOR
0 aCLC , (2.19)

where aC = 1000cm2/mgPt, LC = 0.5mgPt/cm2 and jHOR
0 = 7.21 · 10−3A/cm2

are again taken from [20]. The value of kw can be taken from [15] and is kw =
3.2 · 10−6mol cm−2s−1. However, its value for temperature T = 50◦C was only
estimated, and it is strongly temperature dependent (for comparison, at T = 70◦C
the measured value of kw is 3.5 · 10−7mol cm−2s−1). Due to this fact, this value
was considered to be a parameter of our model, and as we will see, different value
(although of the same order) fits better for the model and the data.

In this chapter, we presented the measurements of Jay Benziger’s group [8]
introduced in [1]. The measured data could not be explained using the sim-
ple zero-dimensional model, and therefore, we will use a one-dimensional model.
Later we explained the measurements of phenomenological coefficients and their
dependence on the water activity and the other coefficients from our model.
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3. Numerical implementation
The numerical implementation of the equation 1.83 with boundary terms 1.100,
1.101 and the equation 1.84 with boundary terms 1.104 and 1.104 is done by using
Finite Volume method (FVM). The method is explained in appendix A and was
implemented in Julia library VoronoiFVM. For implementation, we must specify
the grid, the flux, and boundary conditions, represented by the boundary reaction
term. Detailed documentation is available on VoronoiFVM website [21].

The grid was chosen in such a way that the domain was divided into 500
control volumes, and the first and the last were then again divided into 500
smaller control volumes. That led to the domain being divided into 1498 control
volumes, where the first 500 and the last 500 were 500-times smaller than the
rest. This construction was done because both searched functions aw and ϕ were
changing dramatically near the electrodes, and the numerical solution depended
on the grid. For a number of control volumes in the order of hundreds or few
thousands before the grid refinement on the boundaries was made. Although the
same results could be achieved for slightly smaller refinement of first and last
control volume, higher refinement (the mentioned 500) was kept, as it did not
have a significant impact on computation speed (as one solution of the system
for given boundary conditions lasted less than one second).

The numerical approximation of flux was given by simple approximation of the
derivatives as the difference of the function value in the neighboring volumes. In
VoronoiFVM the flux function is a function that computes the flux between the
neighboring volumes for a given pair of control volumes A and B (see the notation
of control volumes, grid points, and faces introduced in A.1). The numerical
approximation of 1.83 and 1.84 between two control volumes A and B is then

jp(fAB) ≈ −σ0
p F(aw(fAB))

(︄
∇ϕ(fAB)

F
+ RTξ

F 2
∇aw(fAB)
aw(fAB)

)︄
(3.1)

jw(fAB) ≈ jp(fAB)ξ − Ldif F(aw(fAB))∇aw(fAB)
aw(fAB) (3.2)

where fAB is the face between the control volumes A and B. The function F(aw)
is the functional dependence of phenomenological coefficients on aw from 2.18,
where F was used instead of f just to avoid the similarity of notation with faces.
The derivatives were approximated as

∇ϕ ≈ ϕ(b)− ϕ(a)
h

(3.3)

∇aw ≈
aw(b)− aw(a)

h
(3.4)

where a and b are the nodes inside the volumes A and B, and h is the distance
between a and b. The VoronoiFVM always computes h for the specific pair of
nodes, and therefore, in the code h is omitted from equations 3.3 and 3.4. As
water activity has its values well defined just inside the control volumes, we had
to define them on the face, which was done as an average of the values inside the
volumes, that share the respective face.

aw(fAB) ≈ aw(b) + aw(a)
2 (3.5)
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Flux on the boundary was prescribed by using the breaction function. This
function is used when there is some chemical reaction on the boundary, and the
flux is given by the reaction rate, which depends on the values of the solution in
the edge nodes of the network. Therefore, equations 1.104 and 1.105 were used
explicitly as breaction terms for water flux, and equations 1.100 and 1.101 were
used explicitly as breaction terms for proton flux. As the experiment was mea-
sured under constant temperature and atmospheric pressure, the only parameters
that were changing were relative humidities of the hydrogen on both sides of the
hydrogen pump (RH|x=0− , RH|x=L+) and the applied voltage (U).

As the numerically achieved solutions for water activity aw(x) has a very
steep derivative near the electrode for some values of U , it could happen that
the water activity computed on the face between the first and second control
volume (or between last and last but one) using 3.5 was just slightly bigger than
zero. However, the slope of aw(x) causes, that aw(0) (water activity in the first
node) happened to be negative. To avoid this numerical artifact, we rewrite the
equations by using new function ν(x) instead of aw(x) where

aw(x) = eν(x). (3.6)

Thanks to that, for an arbitrary value of ν, the water activity must remain greater
than zero1. It also changed the term with the ∇aw as the original term with ∇µw

can be rewritten as

∇µw = ∇
(︂
µ0

w + RTν
)︂

= RT∇ν, (3.7)

where we used the definition of the chemical potential of water 1.51. That can
be numerically approximated simply as the difference of the values of ν in neigh-
boring control volumes.

Besides that, for some values of U , very small values of aw occurred. Then,
the function f(aw) ∝ a2

w was numerically a zero. That caused the resulting
fluxes to be also zero. To avoid that, we added a small constant 10−2 to F(aw).
Although this addition of a constant was only made to solve a numerical problem,
it also has physical meaning. Before the constant was added, for a dry membrane
(aw = 0), the electric conductivity was zero (electric resistance was infinite), and
diffusivity was also zero (this means that after inserting one water molecule inside
the membrane, the molecule would not move). The addition of a constant is a
simple way to deal with these paradoxes.

After these two changes, the numerical implementation of equations inside
the membrane is

jp(fAB) ≈ −σ0
p

(︂
F(eν(fAB)) + 10−2

)︂(︄∇ϕ(fAB)
F

+ RTξ

F 2 ∇ν(fAB)
)︄

(3.8)

jw(fAB) ≈ jp(fAB)ξ − Ldif

(︂
F(eν(fAB)) + 10−2

)︂
∇ν(fAB) (3.9)

and the equations for water flux on the boundary change to

jw|x=0 = kw(eν(0) −RH|x=0−) (3.10)
jw|x=L = kw(RH|x=L+ − eν(L)), (3.11)

1If the water activity will exceed the value 1, which means that the water could condensate
and form a liquid water drops. In such a case, our model can not be used.
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where 0 and L are the coordinates of the first and the last node.
VoronoiFVM solves equations iteratively. We were using the newton method

in our program. Such a method needs some initial guess from which the iterations
will start. For a simple problem (for instance, our problem for U = 0), some rea-
sonable vector of the same constant is sufficient to achieve convergence. However,
for some higher U , our problem had problem to converge with a constant initial
guess of solution. What we did to help the convergence was that initially, we
solved the problem for U = 0, and then we used the solution as the initial guess
for computing the solution for slightly bigger U . The new solution was then again
used as an initial guess for the following problem with higher U . If we wanted to
do calculations in the interval from -1V to 1V, two separate cycles were needed,
one from 0 to 1 and another from 0 to -1. The voltage difference between two
subsequent computations was 0.005V.

In this chapter, we introduced the numerical implementation of our hydrogen
pump model in Julia programming language using the library VoronoiFVM. We
also introduced how we dealt with convergence problems numerically. Note that
convergence problems appear because the solution itself can have an arbitrarily
large derivative (as we have shown in Section 1.5) and not due to a wrongly
chosen method or some other numerical problem.
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4. Results

4.1 Explanation of hydrogen pump data
This chapter will present the results of simulations of water and proton flux inside
the hydrogen pump. At first, we will try to find the parameters σ0

p, kw, and ξ
such that the results of the model will approximate the experimental data from
[1] shown in Figure 2.5. It was not convenient to use any fitting method, as for
some values of parameters, the computations would not converge. Therefore, we
were setting the parameters by hand until the model fitted the data in the best
possible way. The model, in comparison with measured data for the 50 % relative
humidity of the left electrode feed, can be seen in Figure 4.1.

Figure 4.1: The water flux is blue (line for the model, circles for experimental
data), and the proton flux is red (line for the model, circles for experimental
data). As can be seen, the constant was fitted, so that proton flux is relatively
well approximated. In the region where the approximation is the worst (where
the growth passes to the plateau), the experimental data has the most significant
errors (as can be seen on very similar measurement from [17] page 108). However,
the approximation of water flux is wrong. The reasons why the model behaves
that way and how can be changed will be discussed later.

The value of fitted drag coefficient, kw and σp
0 are ξ = (0.20 ± 0.01), kw =

(2.0 ± 0.05) · 10−2mol m−2s−1 and σp
0 = (2.15 ± 0.15) · 10−2 S/m. However, the

value of sigma itself does not give us much information, as it has to be multiplied
with the f(aw). We will compare fitted dependence for σp with the AC measured
dependence from [17] from page 107. The comparison can be seen in figure 4.2.
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Figure 4.2: The figure shows how our model of the membrane conductivity differs
from the fitted experimental data. The experimentally measured data shows that
the conductivity is approximately ten times lower than according to our model.
It is because the protons moving through the membrane interact with the water
molecules, creating the dry spot near the electrode. A more detailed explanation
will be given later.

To understand the behavior of the membrane, we must shortly explain how the
transport processes inside the membrane works. The transport of water is realized
in two ways. The first is the diffusion, where water moves in the opposite direction
as the concentration gradient, and the second is via electro-osmotic drag. Electro-
osmotic drag causes protons to move through the membrane, interact with water,
and pull the water molecules in the same direction as protons’ movement. That
also works in the opposite way, which causes non-zero proton flux, even if the
applied voltage is zero, as the protons are pulled through the membrane with the
water in the direction opposite to the concentration gradient. Besides, protons
are transported due to an electric potential gradient (as they have an electric
charge). More detailed mechanisms of transport of protons due to electric field
gradient inside the PEM membrane can be found in [22]. In the Figure 4.3, we
can see what is the influence of individual mechanisms on water flux. For zero
applied potential U = 0, we see that as the humidity on the left electrode is 50%,
and on the right electrode it is 0%, the water activity continuously decreases
inside the membrane, which is the expected behavior. Note that the reason why
the water activity on the left is slightly under 0.4 and not 0.5 is that we have non-
zero water flux, which is proportional to the difference between water activity on
the boundary and relative humidity of the electrode feed. However, for slightly
higher voltage, the profile of water activity starts to have an opposite gradient,
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which means that (together with the fact that water flux is positive, which can
be seen in figure 4.1) water flux due to electro-osmotic drag is higher than due
to diffusion, which has the opposite direction now. As with the rising U , the

Figure 4.3: This figure shows the profiles of water activity inside the membrane.
It can be seen that as the voltage increases, moving protons begin to entrain the
water molecules, which causes the water activity drops.

proton flux water flux rises. It must respect the boundary conditions, and the
difference between RH on the electrode and water activity on the boundary on
the membrane must increase. That can be seen in Figure 4.3 as the voltage is
increasing. For voltages 0.3 V and higher, the water activity at the boundary
drops nearly to zero. That results in a massive decrease of proton conductivity
(as can be seen in figure 4.2), and consequently to the saturation of water flux
and proton flux.

The fact that rising the voltage does not increase the proton flux can also
be seen from the point of view of how the course of electrochemical potential in
the membrane changes. In Figure 4.4, the course of the electrochemical potential
of protons in the membrane can be seen. We see that for values greater than
0.2V, the course of electrochemical potential in most of the membrane remains
unchanged. Consequently, the dominant driving force of the proton and water
movement – gradient of the electrochemical potential protons remains unchanged.
That also explains that both fluxes are constant for higher applied voltages.
However, the higher voltage causes a much steeper gradient near the left electrode,
which is needed to compensate the rapid conductivity drop due to a dry spot near
the membrane. We can say that increasing the voltage only makes the gradient
near the electrode steeper and simultaneously dries a membrane a little more.

The main goal of Figure 4.4 is to demonstrate that the profile of electrochem-

36



Figure 4.4: The figure shows the course of the electrochemical potential of protons
inside the membrane. For zero voltage, the electrochemical potential is identically
zero, and water transport is caused only by diffusion. The transport of protons
is only due to electro-osmotic drag, as protons are pulled by water molecules.
For higher voltages, the potential decreases from left to right. However, for
U > 0.2V, the curves look basically the same up to the region very close to the left
electrode (boundary). The higher the voltage is, the greater is the gradient near
the boundary in order to compensate dry spot with very low proton conductivity.

ical potential looks the same for higher voltages (U > 0.2V). However, we can
not see what is happening near the left electrode. For this purpose we plotted the
same data as in 4.4 to another figure 4.5 as a log-log plot. In 4.5 the behavior in
the first µm on the membrane can be seen very well. It is obvious that the value
of electrochemical potential near the boundary is different for every value of U .

However, the voltages U = 0.5 V and U = 1.0 V and respective curves shows
unnatural behaviour. Together with the fact that although we could find the
values of σ0

p, kw and ξ such that the proton flux was approximated well, we
could not approximate the water flux well enough and some other facts that
will be presented in the following section, this gives us reason to believe that
the presented CIT model is not enough to explain the measured data in its full
complexity.

4.2 Model inconsistency with experiments
In the previous section, we summarised the results of the CIT model for boundary
conditions for water. We also presented the problem with the water flux, which
saturates at the same time as the proton flux, and the reason for both is the same
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Figure 4.5: The figure shows the same data as in 4.4. In this figure, both axes
are logarithmic, which allows us better insight into what is happening near the
boundary of the membrane.

– the dry spot near the left boundary on the membrane. Therefore, according
to the model, the water flux must saturate at the same time as the proton flux,
which contradicts the experimental results.

The second inconsistency is that although fitted values for phenomenological
coefficients must hold for different boundary conditions, they do not. If we set the
humidities to be RH|left = 30% and RH|right = 0% and for another simulation
RH|left = 70% and RH|right = 0%, we did not get the agreement with the exper-
imental data as can be seen from figures 4.6 and 4.7. The possible explanation
for the inconsistencies is that our model of the hydrogen pump is not complete.
It consists of three parts. The first part are equations for the membrane, the
second part are equations for the water flux on the boundary, and the third part
are the equations for proton flux on the boundary. We will further assume that
the problem that causes water transport saturation is the same that causes, that
model proton fluxes do not match with experimental data. We will formulate the
issue as follows: Experimental data show us that after proton flux saturates, water
flux still rises. The observation of our model tells us that water flux saturation
and proton flux saturation are both the consequence of dry spots in the membrane.
Assuming only the equations in the membrane, is it possible that for constant jp,
the jw will grow with increasing the voltage? Or, more formally, can(︄

∂jw

∂Xp

)︄
jp=const.

> 0 ? (4.1)

To calculate whether 4.1 can be positive, we need to have jw as a function of
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Figure 4.6: The results of the CIT model for boundary conditions RH|left = 30%
and RH|right = 0% in comparison with the measured data for the same humidity
of electrode feeds. Although the proton flux in co-current operation seems to be
approximated well, the model values of proton flux are smaller (in absolute value)
for counter-current operation.

Figure 4.7: The results of the CIT model for boundary conditions RH|left = 70%
and RH|right = 0% in comparison with the measured data for the same humidity
of electrode feeds. The model proton flux for both co-current and counter-current
operations is much bigger (in absolute value) than the measured flux.

Xp and jp. This can be done by expressing Xw from 1.55 as a function of jp and
Xp and plugging it into 1.56. We get

jw = Lww

Lpw

jp −
LwwLpp

Lpw

Xp + LwpXp. (4.2)
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Taking the derivative with respect to Xp, while keeping jp constant we get(︄
∂jw

∂Xp

)︄
jp=const.

= −LwwLpp

Lpw

+ Lwp (4.3)

= − 1
Lpw

(LwwLpp − LwpLpw) (4.4)

= −det L
Lpw

. (4.5)

As the determinant of matrix L is strictly positive as a consequence of positive
entropy production, we get that water flux can grow with increasing the voltage
while jp is kept constant only for Lpw < 0. That would mean ξ < 0, which does
not make sense from a physical point of view. Therefore, we can assume that
the addition to our model should be made for the equations on the boundary. A
more detailed analysis of how the equations could be changed will be provided in
the discussion.

4.3 Why drag coefficient can not be directly
measured?

The measurements of drag coefficient (defined as 1.63) can be done in multiple
ways [23]. One of them is measurement on the hydrogen pump, which proceeds
as follows. The relative humidity is set to be the same on both sides. This is
done to assure that the thermodynamical force acting on water Xw is zero. Then
an electric potential is applied to the membrane, and the water flux and proton
flux are measured. The drag coefficient is then given as a water flux and proton
flux ratio [24].

However, as we have seen in figure 4.3 the profile of water activity inside the
membrane depended strongly on applied potential and was not trivial. Therefore,
it is not possible to assume that after setting RH|left = RH|right the water activity
will be constant inside the membrane for the non-zero applied voltage. Due
to just presented arguments, it is impossible to determine the drag coefficient
simply as a ratio of experimentally measured jw and jp. To prove that, we
ran multiple simulations of hydrogen pump for multiple values of RH, whereas
RH|left = RH|right in every simulation. We calculated the ratio of jw and jp,
which were the simulation results, and plotted them as a function of applied
voltage. The simulation results for humidities in the range from 5% to 45% are
shown in figure 4.8. As can be seen from the figure, the drag coefficient values
decrease linearly as a function of RH on the boundaries (if we neglect the peaks
for small voltages). The reason is that the water activity profiles have the same
shape for every value of RH (we can denote the shape as kRH · g(x), where kRH is
a constant for a specific value of RH), and they differ just by the multiplication
constant kRH . Therefore, the Xw, which is proportional to the gradient of water
activity, must grow linearly by increasing the value of RH. This observation gives
us a simple way how drag coefficient can be extracted from experimental data
— it can be taken as an interpolated value of experimentally measured function
ξmeas.(RH|boundary) for RH = 0%.
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Figure 4.8: The figure shows the simulation results for drag coefficient determined
as a ratio if jw and jp considering the Xw was set to be zero (from the point of an
observer by setting RH to be the same on both sides of the membrane). However,
as the proton flux inside the membrane interacts with the water molecules (due to
electro-osmotic drag), the water activity profile was not flat inside the membrane,
and Xw was non-zero (negative) inside the membrane.
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5. Discussion
The main goal of the discussion is to provide the explanation how our model
could be extended to have better agreement with measured data. As we have
already shown, the extension of model can not be done for equations inside the
membrane 4.2 and only boundary equations can be modified.

Therefore, we will recall equations on the boundary. Although we have 4
boundary equations (equation on each side for every species), equations for one
species on different sides on the membrane share the common structure, therefore,
we will write down only one equation for each species. For the water flux we have

jw = kw (aw|right − aw|left) (5.1)
where aw|right means the limit of water activity in the boundary point on from
the right side and aw|left means the limit from the left side (as in general the
water activity is not continuous on the boundary and water flux is given by the
size of this activity jump). For the proton flux we have

jp = j0 sinh(ηHOR) = jHOR
0 aCLC sinh(ηHOR), (5.2)

where the ηHOR is the overpotential of the HOR reaction proceeding on the elec-
trode.

What can be done to modify the equations is to change the constants kw and
j0. In general, the j0 can be rewritten as a product of jHOR

0 , aC and LC 5.2.
The first represents the reaction itself, and the latter two represent the place
where the reaction proceeds. LC represents how much platinum is there (in mg)
per cm2, which is given by the construction of the electrode. jHOR

0 is a specific
constant for the reaction, and aC stands for the active surface in cm2 per mg of
platinum where the reaction can proceed. As the hydrogen pump operates, part
of the active surface may be blocked due to water flux. That would slow down the
reaction. Such dependence could be expressed as aC = aC(jw). Such extension
would couple the proton production with the water flux on the boundary. It
could also make the proton flux saturation a consequence of lowering the jp, not
a consequence of the dry spot in the membrane.

Therefore, we tried what impact would have introduced a modification to the
theory. As we do not have any theoretical background as a base for our model,
we assumed that the active surface is decreasing linearly with the water flux.
Therefore, the model looks

aC = k1 − k2jw (5.3)
where k1 and k2 are some constants. The new model should be fitted with a
new set of parameters σ0

p, kw, and ξ. However, we will not do it, as we want
to see whether such a modification can cause the proton flux saturation without
saturation of water flux. Results of a model for the set of parameters σ0

p, kw and ξ
with values presented in previous chapter and for different values of k1 are shown
in figure 5.1. The value of k2 was fixed at k2 = 1, because we found out that the
result does not depend on both parameters k1 and k2 but just on their ratio. As
can be seen from the figure 5.1, the greater the k1, the smaller the influence of
water flux on the active surface. For such a case (k1 = 50), the fluxes are almost
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identical as in the case where the dependence of aC on jw was not assumed (see
figure 4.1)

From the figure 5.1 can be, however, seen that even if we assume dependence
of aC on jw as presented in 5.3 the water flux saturates for the same value of U as
the proton flux. That means that introduced simple modification can not resolve
our problem, and a more detailed look into how the active surface is affected by
water flux is needed. Moreover, there is no guarantee that the humidity on the

Figure 5.1: The figure shows the model fluxes for different values of parameter
k1. The parameter k2 was set to be one (as the fluxes appeared to be independent
of the values of k1 and k2, and depended only on their ratio.) instead of k1 the
legend uses the notation k. It can be seen that although the parameter k has an
impact on the shape of the curves, the proton flux saturation occurs at the same
time as the saturation of water flux, which means that such a simple modification
(5.3) is unable to solve the saturation of water flux.

electrodes is spatially constant in the experimental setup. In our model, we tried
to take into account not only the humidity of the electrode feed but also of the
effluents. Specifically, we tested the humidity on the electrode to be the weighted
averages of humidity of the feed and humidity of the effluent. That, however,
gave us results with a much worse agreement with experiments, as in the case
where we assumed that the humidity near the electrode is equal to the humidity
of the feed. Although the averaging did not work, better results could be achieved
with a more complex model. Therefore, developing the two-dimensional or even
three-dimensional model could be a promising idea for future research.

The second thing to discuss is to explain why the fitted value of the proton
conductivity of the membrane differs so much from the measurements from [17].
The difference was presented in Figure 4.2. As we have mentioned before, the
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measurement is done as a measurement of the resistivity for small voltages but
using alternating current ([17]). The constant water activity inside the membrane
was set during the experiments, and then alternating voltage was applied. How-
ever, we can not say what would happen in such a case. Such a system is very far
from reaching a stationary state, and therefore, we do not know how the water
activity profile would behave. However, we could assume that because drying of
the membrane was not considered in previous works, this fact was not taken into
account while designing the experiments for conductivity measurement. To con-
clude whether the problem is in our model or in the experiments, a consultation
with the authors of the experiment would be needed.

The last thing that should be discussed is the drag coefficient measurements.
Several approaches can be used to measure the drag coefficient, and some of them
give different results than the others ranging from 0.1 to 2.9 [23]. Moreover,
in all the works, drag is measured as a function of water activity, which is in
contradiction with the theoretical results introduced in [13] and again derived
under more restrictive but more useful (for our purpose) conditions in the section
1.3.2. As we proposed at the beginning of the section 4.3, the basic condition
for the drag measurements (setting Xw = 0) is not satisfied by setting RH|left =
RH|right as the water activity profile inside the membrane is still non-trivial. We
also proposed that the right value of the drag could be obtained by interpolating
the measured function ξmeas.(RH|boundary) to the point RH = 0%. However,
if we interpolate the data (just by the hand) from the [24], we see that their
measurements gave three to four times higher values of the drag coefficient. The
difference can be caused by the fact that they made the measurement in the
following way. On both sides, the constant humidity was set. Then the voltage
was applied. After the system reached the stationary state, the water flux was
calculated from the humidity change on both sides. However, that means that
during the measurement, water concentration was different on both sides, which
means that the condition Xw = 0 was not even macroscopically satisfied. Due
to just presented inconsistency, the comparison with the experiment can not be
made, as our model was describing different situation.
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Conclusion
The main goal of the thesis was to formulate the one-dimensional CIT model for
the experimental setup of the hydrogen pump introduced in [1]. After doing it,
we implemented the equations numerically in the VoronoiFVM library in Julia.
With such an implementation, we tried to explain the data measured in [1]. More
specifically, the flux of protons and water was measured as a function of applied
voltage. A saturation of proton flux was observed.

Our model predicted the same proton flux saturation, with some fitted set of
constants σ0

p, ξ, and kw, as were the experimental data for anode feed with 50%
humidity. However, the model failed to predict fluxes for feeds with 30% and 70%
humidity. The model also predicted the water flux to saturate at a specific value
for the same voltage, where the proton flux saturated. That was in contradiction
with the measured data, however, as we have shown, this was the necessary result
of our model, as the same mechanism caused the saturation of proton flux and
saturation of water flux – drying of the membrane near the anode as a consequence
of water molecules being dragged by moving protons. We proposed how this issue
could be fixed – if we assumed that the active surface of the electrode, which is
the surface where the reaction proceeds, was shrinking due to increasing water
flux. That could lead to saturation of proton flux earlier than the dry spot occurs.
That would lead to proton flux saturation without saturating the water flux. We
tried the model in its simple form, and this modification does not seem to work
as we thought – saturation of water flux and proton flux occurred simultaneously.
That means a better model for the dependence of active surface on water flux
should be made in the future. It also means that the current saturation occurs
because of membrane drying and not due to the shrinking of the active surface.

Because our CIT model without the dependence of active surface on water
flux gave us an excellent qualitative explanation of what causes a proton flux
saturation, we used fitted constants of the model σ0

p and ξ to compare them
with the experimentally measured values of the proton conductivity of Nafion
(as a function of water activity) and the drag coefficient. We found out that the
measured proton conductivity presented in [17] as a function of water activity
appeared to be one order smaller than the experimentally gained results. The
reason could be that the water activity inside a membrane was considered con-
stant during the measurements. In other words, conductivity was considered to
be just one number for the membrane for specific feed humidity, which we know
can lead to wrong results. On the other hand, conductivity was obtained from
AC resistance measurement, which means that the whole system was very far
from a stationary state (due to the fast changing of applied potential), and our
model can not predict how the system behaves in such a state. Therefore, we
can not answer whether the used measurements techniques were right. As the
author of the experiments did not discuss water activity profile change inside the
membrane and membrane drying, it would be needed to consult with him about
our results to say whether the measurement method is problematic or whether
the model gives bad results.

The drag coefficient ξ is experimentally measured always as a function of
water activity in the membrane. However, as we have shown in 1.3.2, the drag
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coefficient must be constant. We used our model to simulate the measurements
of the drag coefficient, and indeed we found the dependence on the water activity
of the gas surrounding the membrane. We also found out and later explained
that the real value of the drag coefficient can be obtained from interpolation of
the drag measurement as a function of aw to the point where aw = 0.
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A. Finite volume method
The finite volume method is based on discretisation of the domain into the small
volumes and then integration of equations over the volumes. The integrals are
then approximated numerically. This method takes advantage of this construction
when dealing with terms in shape of the ∇ · j, because Gauss theorem can be
used to get rid of this terms ([25]). In the next section we will demonstrate the
method on the 1D example for diffusion equation with a constant source term
and Dirichlet boundary condition on the left hand side and Neumann boundary
condition on the right hand side.

A.1 Finite volumes for 1D diffusion
The formulation of our problem is

∇ · jϕ = d2
xϕ = f(x) = 2 x ∈ (0, 1) (A.1)
ϕ = 1 x = 0 (A.2)

dxϕ = 1 x = 1, (A.3)

which has analytical solution in the form

ϕ(x) = x2 − x + 1. (A.4)

Further we will assume the discrete version of function ϕ(x), which will be a
constant on each control volume and will be denoted φ(x).

Now we have to define the grid, where A.1 will be solved numerically. The
grid consists at first of nodes (which lies inside of each piece of the domain, called
control volume. The exceptions are boundary nodes, which lies on the boundary
of the domain and therefore on the boundary of the respective control volumes).
As we have mentioned we consider every function to be constant in every control
volume. Its value inside the certain volume will be represented by the value of the
function in the respective node. Except of nodes and control volumes, the grid
contains boundaries of the volumes called faces (For one dimensional problem
faces are points, but generally faces are objects with dimension one less than the
dimension of the problem). If we have two neighbouring volumes A and B, with
respective nodes a and b, they are separated with the face fAB. 1

We will proceed by integrating the equation A.1 where the solution ϕ is re-
placed with the discrete version of the solution φ(x) over the control volume
B ∫︂

B
∇ · jφdx−

∫︂
B

f(x)dx = 0 (A.5)∫︂
B

dxjφdx− 2
∫︂

B
dx = 0 (A.6)

jφ(fBC)− jφ(fAB)− 2 |B| = 0, (A.7)
1Note that nodes do not necessary have to be placed in the centre of respective control

volume. This happens if neighbouring control volumes do do not have the same volume. See
picture A.1, specifically node d
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Figure A.1: The picture shows the sketch of one dimensional grid. Nodes (red
circles, denoted with small letters) are selected to cover the domain in the way,
that regions where the solution is expected to change more dramatically should
have higher density of nodes. The point in the middle between two nodes is the
boundary between two control volumes (denoted with capital letters), which is
called face and denoted as f with subscript which corresponds to the names of
neighbouring control volumes (for example boundary between control volume C
– which contains node c, and control volume D – which contains node d is called
fCD). This construction causes, that the node do not have to be in the centre
of control volume, as can be seen on node D, which is shifted in the direction to
face fDE as nodes are more dense from D to the right.

where in A.6 we used the fact that ∇ operator in 1D is simply spatial derivative
and therefore from A.1 flux jφ is equal to the derivative of φ (In general the flux
can be more complicated). To proceed to expression A.7 we used the notation
of faces of control volume B introduced on picture A.1 and where |B| denotes
the size of control volume B. As φ(x) is defined to be a constant inside each
control volume, we need to approximate its flux on the face somehow. The most
convenient way is simply

jφ(fBC) ≈ φ(c)− φ(b)
c− b

(A.8)

jφ(fAB) ≈ φ(b)− φ(a)
b− a

, (A.9)

where a, b and c are simply the x coordinates of respective points. After pluging
A.8 and A.9 into A.7. we get

φ(c)− φ(b)
c− b

− φ(b)− φ(a)
b− a

− 2 |B| = 0, (A.10)

which is an equation for three unknowns φ(c), φ(b) and φ(a) with some coefficients
which depends on the grid (a, b, c and |B|) and another which depends on another
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given terms (in this case there is only one additional term – source term, and
is given by the number 2). If we would write down the equation for control
volume C, we will again get similar equation, but with variables φ(b), φ(c) and
φ(d), which adds us one additional unknown. This gives us n + 2 unknowns
for the system of n equations. To have the unique solution, we need another
two equations, which are given by boundary conditions. For Dirichlet boundary
condition A.2 we can simply write φ(0) = 1. For Neumann boundary condition
we can assume for instance, that the prescribed derivative on the boundary, is
prescribed for the derivative on face between (n−1)-th and n-th control volumes.
If we denote them U and V respectively it holds

dxϕ = 1 =⇒ φ(v)− φ(u)
v − u

= 1. (A.11)

Now we have n linear equations for n nodes, so if system of equations A.1, A.2 and
A.3 was well posed, derived system on linear equations will have unique solution.
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List of Abbreviations
FVM Finite Volume Method

PEM Proton Exchange Membrane

HOR Hydrogen Oxidation Reaction

CIT Classical Irreversible Thermodynamics

O-C Onsager-Casimir’s (relations)

OCRR Onsager-Casimir Reciprocal Relations

HRR Hydrogen Reduction Reaction

RH Relative Humidity

ODE Ordinary Differential Equation

OCV Open Circuit Voltage

FC Fuel Cell

EW Equivalent Weight
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