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Introduction

Conventional semiconductor electronics and its rapid development since its origin
in the 1950s induced enormous technological progress that influenced every aspect
of human life. This rapid evolution was underpinned by the concept of Moore’s
law, a techno-economic model that has enabled the manufacturers to double the
performance of the electronic components every two years within a fixed cost,
power, and chip size [1]. However, as miniaturization approaches the atomic scale,
the technological process faces its physical limits, and no further improvement
is projected anymore [1]. There are multiple ways of addressing this issue that
could preserve the performance scaling with no need for further lithographic
minituarization. These new paths include new materials and more efficient device
designs, or even completely novel models of computational architectures, such
as neuromorphic computing [2]. One of the promising directions turned out to
be spintronics, a spin-based electronics that employs the spin-degree of freedom
of the electron in the data storage and processing [3]. The advantages promised
by spintronic devices include nonvolatility of the data storage, increased data
processing speed, and decreased electric power consumption [3].

Multiple technological achievements were already obtained since the proposal
of the concept of spintronics in the 1980s. These include the hard disk drive read
heads based on giant magnetoresistance or the magnetoresistive random access
memory using the magnetic tunnel junction effect and the effect of spin-transfer
torque [4].

Spintronic devices have been traditionally based on ferromagnetic materials.
However, recently a new field of spintronics has emerged where antiferromagnets
replace the conventional ferromagnetic layers. The antiferromagnetic materials
provide numerous advantages for spin electronics because of the interesting features
they combine: They are robust against perturbations by an external magnetic field
while being free of a stray field effect; they are expected to show ultrafast dynamics
of magnetic moments, and importantly, can generate magnetotransport effects
of similar strength as the conventional ferromagnets [5]. The proof-of-principle
antiferromagnetic memory was demonstrated in 2016 [6].

This thesis aims to contribute to antiferromagnetic spintronics research by
focusing on a specific class of materials with antiferromagnetic ordering that
shows nonrelativistic spin splitting. These materials have been introduced only
very recently, and the term altermagnetism was established to describe them
[7]. An example of such material is an intermetallic antiferromagnet Mn5Si3 that
we study in our work by two distinct approaches. Namely, we use the methods
of magnetooptics and magnetotransport to characterize the response of Mn5Si3
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epilayers to the applied external magnetic field and to study the nature of the
novel magnetic ordering in this system.

The thesis is divided into three main chapters. The first chapter serves as
a theoretical introduction to the concept of magnetic order in solids. We cover
the origins of magnetic ordering, types of magnetically ordered materials, and
we also introduce the concept of altermagnetism. Finally, we also present the
antiferromagnetic compound Mn5Si3. The following two chapters are dedicated to
the two experimental methods we used to study the magnetic properties of Mn5Si3:
the measurement of magnetotransport properties and a magnetooptical study.
In each of these chapters, we explain the theoretical basis of the experiments,
describe the experimental methods, and discuss the results.
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Chapter 1

Antiferromagnetism and Mn5Si3

In this introductory chapter, we provide a description of theoretical concepts
related to magnetic order and its origin. We also review altermagnetism, a novel
type of magnetic ordering, together with a particular member of this class, Mn5Si3.

1.1 Origins of magnetic order
The elementary quantity of the solid state magnetism is a dipole magnetic moment
m. In classical electromagnetism, we can represent it by an infinitesimally small
current loop. A generalized relationship between the magnetic moment and the
current density j is classically formulated as follows (r is radius vector):

m = 1
2

∫︂
r × j(r) d3r, (1.1)

In solids, it is useful to introduce magnetization M as a local average of the
magnetic moment in a mesoscopic volume δV :

δm = M(r) δV. (1.2)

Magnetization can represent a spontaneous moment of a ferromagnetic domain or
the uniform magnetization of a paramagnet induced by the applied magnetic field.

Magnetic moment and magnetization are both axial vectors (tensors, strictly
speaking) which means that they change sign under the time-reversal t → −t but
stay unchanged under the spatial inversion r → −r. This is a completely distinct
behaviour from the standard polar vectors, such as position or current density,
that experience a sign change also for the spatial inversion.

The magnetic field B is related to magnetization and the field intensity H
through the standard formula:

B = µ0 (H + M ) = µ0 (1 + χ̂) H = µ̂H , (1.3)

where we introduced material-dependent permeability µ̂ and magnetic suscep-
tibility χ̂. Generally speaking, both of these variables are tensors, and χ̂ plays
particularly an important role when describing magnetically ordered materials, as
shall be explained in the following section.
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The origin of magnetic moments in solids is associated with electrons and
their angular momentum. An electron gains orbital momentum from two distinct
sources: orbital motion and spin [8]. To describe the mutual interaction of these
momenta and their interaction with the magnetic field, one needs to employ
quantum mechanics and particularly, the Schrödinger equation.

The time-dependent Schrödinger equation Hψ = iℏψ̇ is not relativistically
invariant. This issue was solved by Dirac, who introduced the relativistic quantum-
mechanical theory of fermions described by the Dirac equation [9]. Dirac also
showed that the spin of an electron naturally emerges when incorporating special
relativity into quantum mechanics [9].

Assuming the presence of an electromagnetic field, the nonrelativistic limit of
the Dirac equation can be represented by the Hamiltonian for a single electron [8]:

H =
(︃ 1

2m (p̂ + eA)2 − eϕ(r)
)︃

− p4

8m3
ec

2 + e

me

(∇ × A) · ŝ −

− e

2m2
ec

2r

dϕ
dr l̂ · ŝ + e

4m2
ec

2
dϕ
dr , (1.4)

where A and ϕ are the vector and scalar potentials, p̂ is the momentum operator,
ŝ = ℏ/2 σ̂ is the spin operator for σ̂ being the vector of Pauli matrices, and
l̂ = r̂ × p̂ is the angular momentum operator.

The first term in Eq. (1.4) corresponds to the nonrelativistic Hamiltonian
of an electron in an electromagnetic field, described by potentials ϕ and A, the
second term represents a high-order relativistic correction to the kinetic energy.
The third term is the interaction of the electron spin with the electromagnetic
field. When combining the terms, including interaction of spin with the external
electromagnetic field (i.e., the first and the third terms), this gives the complete
expression for the Zeeman interaction with a Hamiltonian Hz:

HZ = e

2me

(︂
l̂ + gsŝ

)︂
· B, (1.5)

where gs ≈ 2.00 is the anomalous gyromagnetic ratio of a free electron. The fourth
term of Eq. 1.4 describes the spin-orbit interaction which for a central potential
can be written as:

HSO = λ l̂ · ŝ, (1.6)
where λ = −Ze2µ0/(8πm2

er
3) (Ze is the nuclear charge). The last term is a

correction term [8].
Apparently, the relativistic theory of an electron gives rise to new, spin-related

interactions. In terms of the microscopic theory of magnetism, the prominent
term is the spin–orbit interaction (SOI) which is the origin of interesting phe-
nomena, including magnetocrystalline anisotropy, anisotropic magnetoresistance,
and the spin Hall effect [8]. However, to describe such effects, we need to move
from a single-electron problem to the model of many electrons localized on an atom.

When considering an isolated many-electron ion, the nonrelativistic Hamilto-
nian of an electron H0 has to include the Coulomb interaction with the nucleus
and the other electrons [8]:

H0 =
∑︂

i

[︄
1

2me

(p̂ + eA)2 − eϕ(ri) − Ze2

4πε0ri

]︄
+
∑︂
i<j

e2

4πε0rij

, (1.7)
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where i, j numbers the individual electrons. The eigenfunctions of this Hamiltonian
correspond in the absence of an external magnetic field to the electronic orbitals
of an atom. The electronic states in the orbitals are characterized by a unique
set of quantum numbers, which also includes the spin number si and the angular
momentum number li. These momenta are coupled, giving the total orbital
quantum numbers S = ∑︁

i si and L = ∑︁
i li [8].

The filling of the orbitals with electrons in the ground state follows a phe-
nomenological prescription formulated by Hund in the form of three Hund’s rules.
The first rule minimizes the Coulomb interaction among electrons which is achieved
by maximizing the total spin number S. The second rule requires maximizing
L, consistently with S. The final rule expresses the total angular momentum J
depending on the filling of a shell: if the shell is less than half full, J = L− S. If
it is exactly half full J = 0 and more than a half-full shell results in J = L+ S [8].

The magnetic moment of an isolated ion is related to the total angular mo-
mentum J as:

m = − e

2me

gJ , (1.8)

where g is the Landé factor [8]. Therefore, ions with J = 0 do not have their own
magnetic moment and are nonmagnetic.

So far, we have been considering either a single electron or an isolated ion.
However, in the context of this work, a crystalline solid is a more relevant system
to describe. There is a significant difference as compared to the isolated ions, as
the interaction between the electronic charge distribution of an atom ρ0(r) and the
surrounding charges in the crystal lattice emerges. Potential of the surrounding
charges is usually described by the crystal-field potential φef (r), and the resulting
crystal-field interaction with ρ0 can be expressed by the Hamiltonian Hef [8]:

Hef =
∫︂
ρ0(r)φef (r) d3r. (1.9)

The complete Hamiltonian of an electron in a crystalline solid has then four terms:

H = H0 + HSO + HZ + Hef , (1.10)
with HSO and HZ being the known spin-orbit and Zeeman terms, respectively.
H0 is the above-defined Hamiltonian of an electron in an isolated ion.

As we have shown, atoms can have their own magnetic moment depending on
their electronic structure. Magnetic ordering of these moments depends on their
mutual interaction. Multiple mechanisms can mediate the magnetic interaction,
but the most straightforward mechanism is the exchange interaction.

Consider a simple model of two electrons. Their mutual wave function can
form either a singlet state S = 0 with the corresponding energy ES or a triplet
state S = 1 with ET . The mutual interaction of their spins represented by the
operators ŝ1 and ŝ2 can be described by the Hamiltonian:

HS = −2J ŝ1 · ŝ2, (1.11)

where J = (ES − ET )/2 is called the exchange integral [10]. If J is positive, the
triplet state is preferred and the spins are aligned parallel. When J < 0, the
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singlet state dominates and the spins align antiparallel. For a many-electron
problem, Eq. (1.11) can be rewritten as:

HS = −
∑︂
i,j

Jij ŝi · ŝj. (1.12)

The calculation of the exchange integral is rather complicated, but some general
features were observed [10]: For electrons located at the same atom, Jij is usually
positive, resulting in the preference for a parallel alignment of the spins (this is
consistent with the first Hund’s rule). Because of the Pauli exclusion principle, the
electrons are localized, and their wave functions do not overlap. In contrast, the
exchange integral tends to be negative for the electrons localized on neighbouring
atoms, and the antiparallel configuration is preferred.

If the electron on the neighbouring magnetic atoms interacts via the exchange
interaction, the mechanism of magnetic interaction is called a direct exchange.
However, this interaction is often weak due to the insufficient direct overlap of
the neighbouring magnetic orbitals [10]. In such a situation, indirect exchange
interactions often take place.

Due to an indirect exchange, the interaction between the magnetic atoms
may occur even if they are not directly neighbouring. This is enabled by the
superexchange where a nonmagnetic ion mediates the exchange interaction. The
superexchange usually results in an antiferromagnetic ordering of the spins that
allows the electrons to become delocalized over the crystal, thus lowering the
kinetic energy [10].

In some oxides, ferromagnetic exchange interaction can arise due to the mixed
valency of the magnetic ion (e.g., manganese that can exist both as Mn3+ and
Mn4+). This mechanism is called a double exchange as the atoms with different
valencies share a valence electron, which lowers the kinetic energy. However,
this sharing is possible only in the situation where the neighbouring atoms are
ferromagnetically aligned [10].

The last type of the exchange mechanisms, Dzyaloshinsky–Moriya interaction,
originates in the exchange interaction between the ground state of a magnetic
atom and the excited state of its neighbour, where the excitation is caused by the
spin–orbit interaction. When acting between two spins ŝ1 and ŝ2, it leads to the
Hamiltonian HDM [10]:

HDM = D · (ŝ1 × ŝ2) , (1.13)
where the vector D vanishes in the systems with the space inversion symmetry.
The interaction forces ŝ1 and ŝ2 to be perpendicuar to each other. It commonly
occurs in antiferromagnets where it cants the antiferromagnetically ordered spins
in such a way that a small ferromagnetic moment arises. Such materials are known
as weak ferromagnets.

Now it is evident that atoms may have their own magnetic moment originating
in their electronic structure. In a crystalline solid, these moments interact through
a multitude of exchange mechanisms, resulting in moments being aligned parallel
or antiparallel. The resulting magnetic order is the topic of the following section.
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1.2 Magnetic structure in solids
The previous section showed that a non-zero magnetic moment was a necessary
condition for atoms in a crystalline solid to mediate magnetic interaction. Zero
magnetic moment results in the material being diamagnetic, i. e. having nega-
tive magnetic susceptibility. If the material contains local permanent magnetic
moments, but the coupling among them is weak, we speak about paramagnetism.
The magnetic structure is disordered in paramagnetic materials due to the thermal
fluctuations; however, the moments align when an external magnetic field is ap-
plied, resulting in non-zero magnetization along the applied field. If the magnetic
interaction between ions is strong enough to overcome the thermal fluctuations,
the moments can align spontaneously. When this spontaneous alignment results
in moments in a parallel configuration, the ordering is ferromagnetic resulting
in finite magnetization. In antiferromagnets, the magnetic structure consists
of two or more sublattices with parallel ordering that are mutually antiparallel,
which sum together to zero net magnetization. There are also ferrimagnets with
multiple sublattices that do not fully compensate each other, which results in
finite magnetization, generally much weaker than in the case of the ferromagnets.
The susceptibility of materials with permanent magnetic moments (i. e. also
including paramagnets) is positive. Let us now have a closer look at each of these
individual types of magnetic ordering.

Diamagnetism Orbital diamagnetism is an effect that is present to some extent
in every atom and molecule [8]. A semiclassical expression for the diamagnetic
susceptibility of electrons with an orbital moment can be deduced from the Larmor
precession. When such electron is placed in an external magnetic field, precession
of the electron is induced, resulting in a magnetic moment that opposes the
applied field (a direct consequence of the well-known Lenz’s law). This generates a
negative contribution to susceptibility. Although orbital diamagnetism is a small
effect, it dominates in materials with fully filled electronic shells [8].

Paramagnetism Unpaired electrons in an atom’s shells result in a non-zero mag-
netic moment, as discussed earlier. In a paramagnet, these moments are randomly
oriented in the absence of a magnetic field. The magnetic field lines them up,
resulting in finite net magnetization that depends on the field strength.

Temperature dependence of paramagnetic susceptibility can be easily derived
for localized electrons when we suppose their Boltzmann distribution. If n↑ is the
concentration of electrons with the moment along the applied field and n↓ are
electrons with the opposite moment, the induced magnetization M is [8]:

M = (n↑ − n↓)µB = α
(︃
e

µBB

kBT − e
−µBB

kBT

)︃
= nµB tanh µBB

kBT
, (1.14)

where αe
µB

kBT is the Boltzmann distribution of electrons with the moment µ, α is a
proportionality constant, and n = (n↑ +n↓). At high temperatures, we can replace
the tanh function in Eq. (1.14) by its argument which results in the following
temperature dependence of susceptibility, called the Curie law [8]:

χ = µ0M

B
= nµ0µ

2
B

kBT
= C

T
(1.15)
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with the Curie constant C. Apparently, the susceptibility diverges for T → 0 as
illustrated in Fig. 1.1.

Note that another contribution to susceptibility exists, related to the delocalized
electrons described by Pauli. The Pauli susceptibility is temperature-independent
to the first order and is about two orders of magnitude smaller than the Currie
susceptibility at room temperature [8].

a b c

T

PM PM PMFM AF

TC TNT T

Figure 1.1: Temperature dependence of susceptibility for a a paramagnet (PM), b a
ferromagnet (FM) with the Curie temperature TC , and c an antiferromagnet (AF) with
the Néel temperature TN . Adapted from [11].

Ferromagnetism The characteristic feature of ferromagnets is their spontaneous
magnetization which is a result of the mutual interaction among the individual
magnetic moments. The interaction is strong enough to overrule thermal fluctua-
tions, which holds up to the Curie temperature when the ordering collapses and
the material becomes paramagnetic. The magnetization of a ferromagnet tends to
lie along the easy direction, determined by the crystal structure and the sample
shape.

The spontaneous alignment of the moments was first explained by Weiss, who
introduced an internal “molecular field” that is proportional to the magnetization
[8]. Later, it was revealed that this internal field, which was in the order of
magnitude of hundreds of tesla, actually does not exist [11]. Despite that, Weiss’
molecular field is a useful instrument which allows for predicting the Curie
temperature of the given ferromagnet.

As the molecular field is proportional to magnetization, the internal molecular
field H i can be expressed as:

H i = nW M + H , (1.16)

where nW is a proportionality constant and H is the external magnetic field.
Magnetization in Eq. (1.16) is determined by the Brillouin function (see e.g. Ref.
[8]) which leads to the Curie temperature TC expressed as [8]:

TC = nW
µ0ng

2µ2
B

3kB

J(J + 1), (1.17)
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where J is the total angular momentum, g is the Landé g-factor, and n is the
concentration of electrons. The paramagnetic susceptibility above TC is given by
the Curie–Weiss law:

χ = C

T − θp

, (1.18)

where θp = TC is the Curie temperature within the molecular field theory [8]. The
Curie–Weiss law is illustrated in Fig. 1.1b.

For temperatures below TC , magnetization of a ferromagnet is non-zero, and it
becomes identically zero at TC when no external field is applied. The magnetization
is a continuous function of temperature at TC , which classifies the transition
between the ferromagnetic and paramagnetic phase as the second-order phase
transition [10].

As already mentioned, the molecular-field theory, though a useful qualitative
tool, is not correct in its assumptions. The true origin of the effective field H i

is the exchange interaction along with the Pauli principle as described in the
previous section.

Antiferromagnetism If the exchange interaction is negative, i.e. the exchange
integral Jij < 0 in Eq. (1.12), the magnetic moments tends to align antiparallel.
Negative exchange interaction results in a magnetic ordering with two sublattices
with oppositely oriented spins. Net magnetization of the material is zero. This
behaviour describes the collinear antiferromagnetism. The magnetic order persists
at temperatures T < TN and disappears at the Néel temperature TN , where
the material usually becomes paramagnetic. However, materials with a direct
transition from an antiferromagnetic to a ferromagnetic state (such as FeRh),
though rare, also exist [12]. The collinear, parallel antiferromagnetism is not
the only possibility of magnetic order with zero magnetization. There are also
noncollinear antiferromagnets where the magnetic spins are not parallel to each
other but have a more complicated configuration.

Similarly to the ferromagnets, the molecular field model can be used to
describe magnetic behaviour of the collinear antiferromagnets. We suppose that
the magnetic structure contains two sublattices A and B with the corresponding
magnetizations MA = −MB. In order to describe the interaction between the
sublattices, we introduce a negative Weiss coefficient nAB = nBA for the interlattice
interaction, together with nAA = nBB that describes the intralattice interaction
[8].

The internal effective magnetic fields H i
A and H i

B can be then expressed as:

H i
A =nAA MA + nAB MB + H , (1.19)

H i
B =nBA MA + nBB MB + H , (1.20)

where H is the contribution from an external magnetic field [8]. Using the Curie
law for a paramagnet in Eq. (1.15), the Néel temperature TN and the paramagnetic
temperature θp can be expressed using the Curie coefficient C [8]:

TN = C

2 (nAA − nAB) , (1.21)

θp = C

2 (nAA + nAB) . (1.22)
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Since nAB < 0, the paramagnetic temperature is smaller than TN and is usually
negative. The Curie–Weiss law in Eq. (1.18), on the other hand, remains valid.
Supposing that there are no intralattice interactions, i. e. nAA = nBB = 0, it can
be rewritten as [8]:

χ = C

T + TN

. (1.23)

If a small magnetic field is applied to a collinear antiferromagnet that is parallel
to the magnetization of the sublattices, the corresponding susceptibility χ∥ can
be calculated by expanding the Brillouin function around zero field (for details,
see Ref. [8]). The temperature dependence of χ∥ is an increasing function until
TN is reached, as illustrated in Fig. 1.1c. If the field is applied perpendicularly
to the magnetization direction, the corresponding susceptibility is temperature-
independent, as also shown in Fig. 1.1c [8].

So far, we have described the collinear antiferromagnets where the moments
are ordered parallel to each other. However, some antiferromagnets have a more
complicated spin structure, although still satisfying that net magnetization is
zero —noncollinear antiferromagnets. This ordering stems from the fact that
in certain systems, the antiferromagnetic interactions cannot always be satisfied
(unlike the ferromagnetic interactions) [8]. A good example represents a triangular
crystal lattice with antiferromagnetically-coupled moments in the vertices, as
demonstrated in Fig. 1.2. If the moments had to be ordered antiferromagnetically
in a collinear way and, for example, moment α points down and β up, the moment
γ would be frustrated since it is antiferromagnetically coupled to both the moments
and there would be no preferred position (see Fig. 1.2a). In such a situation,
there are two possible solutions for the lowest energy of the system, in which the
moments have a noncollinear arrangement, as shown in Figs. 1.2b,c [13]. Notice
that although the moments are not mutually parallel, net magnetization of the
system is still zero. Similar frustration can also arise for other crystalline lattices
such as the kagome, cubic face-centred, or tetrahedral lattice [8].

= ?

a b c

Figure 1.2: Frustrated antiferromagnetic moments within a triangular lattice. a Collinear
configuration causes frustration of the moment γ because of the competing exchange
with α and β. b and c Two possible configurations without frustration with lowest
energy resulting in noncollinear ordering. Adapted from [13].

In noncollinear antiferromagnets, the frustration is usually removed by the
magnetocrystalline anisotropy or by the Dzyaloshinsky–Moriya interaction, result-
ing in a stable noncollinear magnetic order [14–17]. Furthermore, the frustration
may lead to an even more complex spin configuration where the magnetic mo-
ments are not ordered in one plane. Such magnetic structure would then be called
noncoplanar and represents one of the most complex systems from the theoretical
point of view.
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1.3 Altermagnetism
In the previous section, we discussed various types of magnetic order based on the
mutual arrangement of local magnetic moments. This approach covers conven-
tional collinear spin structures like ferromagnets or antiferromagnets, as well as
the more complex noncollinear systems such as magnetic skyrmions. In the past
years, a complementary strategy of describing magnetic structure in solids based
on their electronic band structure appeared [18]. This change of approach from
the real to the reciprocal space was motivated by new phenomena related to the
topological aspects of the electronic states [19] or by the momentum-dependent
spin splitting of electronic bands in collinear antiferromagnets [18, 20]. The latter
phenomenon has recently gained considerable attention since it was predicted in
materials based on the light elements [21, 22] where the most common source of the
band splitting, the spin–orbit interaction, is usually weak [18]. To distinguish such
collinear antiferromagnets with nonrelativistic spin-splitting from conventional
collinear antiferromagnets, Šmejkal et al. introduced a new name altermagnetism
[7].

Up to now, the formalism of magnetic-symmetry groups has guided the search
for novel magnetic materials and has been broadly applied in the research of
equilibrium and non-equilibrium phenomena related to the magnetic order [7].
However, these groups represent only a small subset of the spin groups [23], and
thus they omit magnetic phases induced by nonrelativistic crystal potentials [7].

The limitations of the magnetic-group formalism can be overcome using the
spin-groups formalism, as shown by Šmejkal et al. [7]. This formalism considers
pairs of transformations, with the first one acting only on the spin space and the
second one on the real space. The resulting symmetry landscape is richer since
different transformations can act on the spin and real spaces simultaneously, as
compared to the magnetic-symmetry groups where the spin and real space are
transformed by the same transformations. The major advantage of this approach
is that it offers a systematic description of phenomena and magnetic phases arising
from nonrelativistic electromagnetic crystal potentials, which can play a crucial
role in magnetism [7].

Šmejkal et al. derived three distinct spin group types to classify all the
nonrelativistic collinear magnets into three categories. These are ferromagnets,
conventional antiferromagnets with spin-degenerate bands due to the Kramers
theorem, and finally, the third distinct phase combining zero net magnetization
with spin-split electronic bands that are equally populated [7]. The last category
was newly named as altemagnets. The difference between the band structure of an
altermagnet and a conventional ferromagnet or antiferromagnet is schematically
shown in Fig. 1.3.

The altermagnetic spin-splitting originates from a local anisotropic electric
crystal field, i. e., from crystal properties of the nonmagnetic phase [7]. Such
mechanism contrasts with the conventional ferromagnetic spitting due to the
exchange interaction or the spin-orbit splitting. The spin-splitting can induce a
variety of magnetism-related phenomena, such as the spontaneous Hall effect that
we discuss in the following Chapter 2.
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Šmejkal et al. also provided a detailed list of candidate altermagnetic materials
including MnO2, RuO2, La2CuO4, and Mn5Si3 [7]. As the last one is of particular
interest to this thesis, we shall introduce it in more detail in the following section.

band structure

spin arrangement 
on crystal

ferromagnetism
Kramers 

antiferromagnetism altermagnetism

E

kx

E E

ky kx ky kx ky
k = k' k k'

Figure 1.3: Magnetic phases with collinear magnetic order, i. e. ferromagnetic, Kramers
spin-degenerate antiferromagnetic, and altermagnetic. First row: Illustrative spin
arrangements with the opposite spin directions depicted by purple and cyan color.
Ferromagnetic and Kramers antiferromagnetic crystal correspond to the structure of
FeRh, the altermagnetic crystal to La2CuO4. Second row: Schematic band structure
of ferromagnetically and altermagnetically spin-split bands and a Krammers spin
degenerate antiferromagnetic band. Adapted from [7].

1.4 Mn5Si3
Mn5Si3 is an intermetallic compound that has two distinct antiferromagnetically-
ordered magnetic phases, as demonstrated by multiple measurements in poly-
crystalline and single-crystal samples [24–31]. Recently, the compound gained
considerable scientific attention owing to its interesting thermodynamic (inverse
magnetocaloric effect [32]) and transport properties. Particularly, the topological,
as well as the spontaneous Hall effect, has been recently observed in thin films of
Mn5Si3, establishing its magnetic ordering as altermagnetic [24, 28].

Crystal symmetry of the paramagnetic state of Mn5Si3 is characterized by the
hexagonal space group P63/mcm, with two distinct crystallographic positions for
the Mn atoms (sites Mn(1) and Mn(2)) [25]. Neutron scattering in bulk crystals
showed that four out of the six Mn(2) sites (see Fig. 1.4) in the unit cell exhibit
collinear antiferromagnetic ordering in the temperature range of 70 K to 100
K, with the remaining six manganese and six silicon atoms being nonmagnetic.
When decreasing the temperature below 70 K, the crystal symmetry is reduced,
establishing a highly noncollinear and noncoplanar arrangement of magnetic spins.
In this magnetic phase, also the Mn(1) atoms carry a magnetic moment, yet
the two remaining Mn(2) atoms are still without a magnetic moment [25]. The
arrangement of magnetic moments in the collinear (cAFM) phase is as shown in

13



Fig. 1.4a [25, 33–35]. In contrast, the structure of the noncollinear (nAFM) phase
is still under debate, and at least three distinct configurations were proposed as
in Fig. 1.4b–d.

The transition temperatures to different magnetic states of the material men-
tioned above were determined on bulk samples and sputtered layers [24]. However,
Reichlová et al. observed a substantial shift of the Néel temperature to approxi-
mately 240 K for epitaxial layers of Mn5Si3 [24]. This enhancement was attributed
to the effect of an epitaxial strain that occurs during growth and modifies the
structure, as can be seen using temperature-dependent X-ray diffraction.

a cAFM nAFM nAFM nAFMb c d

Si

Mn(1)

Mn(2)

ac

b

Figure 1.4: Magnetic structure of Mn5Si3. Manganese atoms occupy two distinct
crystalographic positions Mn(1) (red) and Mn(2) (magenta). a Magnetic structure
of the collinear antiferromagnetic phase [25, 33–35]. Structure of the noncollinear
antiferromagnetic phase according to b [36], c and d [25]. Adapted from [25].
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Figure 1.5: Spin-splitting of Mn5Si3. a Spin-split band structure of Mn5Si3 in the kz = 0
plane with relativistic spin-orbit interaction switched off as calculated by Reichlová et
al. [24]. b The hexagonal Brillouin zone with the notation of high symmetry points.
Adapted from [24].

In the same work, the altermagnetic phase of this material was introduced for
the first time. Ab-initio calculations of the collinear magnetic phase demonstrated
pronounced spin splitting even without the spin–orbit interaction, as shown in Fig.
1.5a [24]. The presence of strong spin splitting in the collinear antiferromagnetic
phase suggests that Mn5Si3 can represent a prototype altermagnet, in accord with
the prediction of the theoretical work [7].
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The theoretical prediction of the spin splitting was experimentally confirmed
by Reichlová et al. [24] by measurement of the pronounced anomalous Hall
conductivity in epitaxial Mn5Si3. However, further phenomena that usually
accompany spontaneous Hall response, namely the thermotransport and magne-
tooptical effects, remain yet to be demonstrated. This work aims to explore the
thermotransport and magnetooptical response of Mn5Si3 thin layers in order to
provide a comprehensive picture of the magnetic properties stemming from the
altermagnetic ordering of the material.
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Chapter 2

Transport properties of Mn5Si3

Transport of electric charge is a crucial instrument for studying various properties
of solid-state materials. When combined with an external magnetic field, it
becomes a major approach for determining fundamental magnetic properties.

This chapter will introduce a link between the transport of electric charge,
internal magnetic structure, and symmetries of magnetically ordered materials.
Then we describe experimental methods that enable the investigation of this
connection. Finally, we present the results of our transport experiments and
provide their interpretation in terms of the magnetic structure of Mn5Si3.

2.1 Theoretical introduction

2.1.1 Electronic transport, magnetism, and symmetries
When the electric current in any conducting material is exposed to a perpendicular
external magnetic field, a transverse voltage is generated (see Fig. 2.1). This
phenomenon is the notoriously known Hall effect discovered in 1879 by Edvin Hall,
which can be explained by the Lorenz force acting on the charge carriers [37]. We
call this effect, which the semi-classical drift-diffusion model can quantitatively
describe [38], the ordinary Hall effect (OHE). Two years later — in 1881, Hall
reported that the transverse voltage is ten times larger in ferromagnetic iron
compared to the non-magnetic conductors. This phenomenon later became the
well-known anomalous Hall effect (AHE) [39].

Soon afterwards, it was discovered that the dependence of Hall voltage Vxy

or Hall resistivity ρxy on the magnitude of the applied perpendicular field Hz

Vlong ẑ x̂
ŷ

Vtrans
H

j

Figure 2.1: Schematic illustration of the ordinary
Hall effect induced by the external magnetic field
µ0H and the current j.
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qualitatively differs for magnetic and non-magnetic materials: While the OHE
shows a linear dependence on Hz, ferromagnetic materials evince a linear behaviour
of ρxy in the weak fields and saturation at higher fields (see Fig. 2.2). The
saturation field Hz is roughly proportional to the component of magnetization Mz

[17]. Later, an empirical relation for the transverse resistivity was established:

ρxy = R0 Hz +Rs Mz, (2.1)

where the first term is equivalent to the ordinary and the second to the anomalous
Hall effect, with the corresponding coefficients R0 and Rs [40].

Figure 2.2: (Anomalous) Hall
effect in nickel. Temperature is
given in ◦ C. Adapted from [41].

Despite this phenomenological relationship, a microscopic theory of AHE
turned out to be particularly difficult to formulate. The first such theory was
proposed in 1954 by Karplus and Luttinger, who showed that electrons in solids
acquire additional, transverse contributions to the group velocity under an external
electric field. The sum of these contributions (called anomalous) is non-zero for
ferromagnetic conductors [42]. Although this theory underwent severe disputes in
the following decades, the idea of anomalous velocity was eventually generalized
by the concept of Berry’s phase and the Berry curvature, which became crucial
for the microscopic understanding of the anomalous Hall effect [17].

Berry’s phase is an additional phase of an electron’s wavefunction arising in
systems with multiple time-dependent parameters in the Hamiltonian. The Berry
curvature is then a vector field in the space of the time-dependent parameters,
with Berry’s phase being its integral over a closed trajectory [43]. Although we will
not introduce these terms in more detail, we shall note two important properties
of the momentum-space Berry curvature: Firstly, it is directly proportional to
the anomalous Hall conductivity, and secondly, the Berry curvature can be only
non-zero when the combined time-reversal (T ) and mirror reflection symmetry is
broken [16].

Let us now briefly focus on the relationship between the symmetries of a
physical system and its response to an external stimulus, as such considerations
play a crucial role in explaining modern transport phenomena. An important
relation between the response Kαβ(ω, b) of a physical quantity α to a stimulus
connected with the quantity β was formulated by Onsager [44]:

Kαβ(B) = εαεβKβα(−B), (2.2)
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where εα,β = ±1 specifies the symmetry property of α and β with respect to
the operation of time-reversal. B is any T breaking field, e.g. in the case of
a ferromagnet, B can be associated with magnetization. Now, we shall apply
this theorem to a conductivity tensor σij and the current response function, i.e.
α → Ji and β → Jj, where Ji,j are components of a current density vector. The
charge current is odd under the T symmetry and thus εα,β = −1. From Eq. (2.2)
it holds that:

σij(B) = σji(−B). (2.3)
As a consequence, the conductivity tensor is symmetric when no T symmetry
breaking field is present, i.e. σij(B = 0) − σji(−B = 0) = 0. The antisymmetric
part σij(B) − σji(B) can be finite only if the T symmetry is broken [17]. This is
a valuable tool for confirming the T symmetry of solids, since the measurement
of σij properties is straightforward.

A simple example of a T -symmetry-breaking field can be an external mag-
netic field in conductive solids. The drift-diffusion model yields that σxy(B) -
σyx(B) = 2 · σxy(B) ̸= 0 when magnetic field is applied along the z-axis. This can
be observed as the ordinary Hall effect.

As already stated, the magnetic field in a solid — either external or internal —
breaks the time-reversal symmetry. However, recently, new mechanisms of the
T symmetry breaking were proposed, resulting in new types of the Hall effect
(such as the topological Hall effect) or the presence of the AHE in materials
with zero net magnetic moment (in noncollinear antiferromagnets). We shall now
introduce these phenomena as their understanding is crucial for our experimental
observations.

Anomalous Hall effect in antiferromagnets From the empirical expression (2.1), it
may be assumed that the anomalous Hall effect in a particular material is pro-
portional to its magnetization. Although no microscopically justified relationship
was established, the proportionality (though not necessarily linear) was expected
till recently [16]. However, in 2014 Chen et al. [16] pointed out that a finite
anomalous Hall response can be present even in a noncollinear antiferromagnet
with zero net magnetization when certain common symmetries are absent. This
was shown for Mn3Ir with a kagome lattice of magnetic Mn atoms. Magnitude of
the resulting AHE is comparable in size to AHE in the elemental transition metal
ferromagnets (e.g. iron). Up to now, the AHE has been experimentally identified
in several noncollinear antiferromagnets Mn3X for X being Sn [45], Ge [46], Ga
[47], and other noncollinear systems.

In contrast, breaking of the T symmetry in collinear antiferromagnets and
consequent Hall conductivity has not been reported [48]. However, a 2020 work
by Šmejkal et al. [48] suggested a new mechanism of the T symmetry breaking
even in antiferromagnets with collinear spin structure, so called altermagnets (for
the details about altermagnetism and its origin, see Sec. 1.3). The terminology
for the resulting Hall effect is not settled yet and either the term crystal Hall
effect [48], anomalous Hall effect [24], or simply spontaneous Hall effect is used.

Topological Hall effect In ferromagnets and antiferromagnets with topologically
nontrivial spin texture, another mechanism of the T symmetry breaking was
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proposed, resulting in the topological Hall effect (THE) [49]. In ordered materials
where the spins in the individual sublattices are not parallel to each other, it is
convenient to introduce the spin chirality κ = ∑︁

Si · (Sk × Sl) with Si,k,l being
three magnetic moments in the magnetic lattice. Note that for collinear ordering,
κ is identically zero. A finite spin chirality can induce a real-space Berry curvature
and, consequently, also the THE. In contrast to the anomalous Hall effect, the
THE can thus manifest even without the spin-orbit interaction [28].

So far, the THE has been observed in various systems, including double-
exchange ferromagnets [50], the noncollinear antiferromagnet Mn3Sn [51], and
also in the noncollinear phase of the antiferromagnet Mn5Si3 [28].

Magnetoresistance The effect of the Lorenz force acting on charge carriers in
a conductor can be observed as a transverse voltage, but it also leads to an
increase of longitudinal resistivity ρxx as a consequence of the charge carriers
being deflected. This effect is called ordinary magnetoresistance (OMR) and is
usually described by the ratio:

MR = ρxx(H) − ρxx(H = 0)
ρxx(H = 0) , (2.4)

which for OMR follows a quadratic dependence on H [52].
In ferromagnets, an additional mechanism links longitudinal resistivity with

magnetism. This is anisotropic magnetoresistance (AMR) which manifests as an
anisotropic change of resistivity due to the non-zero magnetization M : When M
is parallel to the electric current, longitudinal resistivity is ρ||. However, when
magnetization and current are perpendicular to each other, it becomes ρ⊥. AMR
is then described by the difference ρ|| − ρ⊥.

According to the recent observations, anisotropic magnetoresistance is not
only limited to ferromagnets, and it was already observed in antiferromagnetic
compounds such as Sr2IrO4 [53].

2.1.2 Thermoelectric transport
The Hall effect and other conventional magnetotransport phenomena are driven by
a mechanical force, i.e., an electric field, which can be described at a microscopic
level as a perturbation to the Hamiltonian. However, there is also another kind of
transport — transport that is induced by a statistical force, e.g., by a gradient
of temperature or chemical potential that is defined only through the statistical
distribution of the carriers. An example of the latter kind is thermoelectric
phenomena that connect a thermal stimulus (heat flow) and an electric response
(electric field) [54].

This kind of the charge transport can be viewed as a direct counterpart of
the electronic transport described in the previous section: the ordinary Nernst
effect (ONE), like the ordinary Hall effect, manifests as a transverse voltage in
the presence of a perpendicular magnetic field. However, in this case, the effect
is induced by a longitudinal temperature gradient rather than by longitudinal
electric current.

The ONE is characterized by the Nernst coefficient N as follows:

Ey = N Bz ∂T/∂x, (2.5)
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where Ey is the transverse electric field, ∂T/∂x is a longitudinal temperature
gradient, and Bz is the out-of-plane magnetic field (see Fig. 2.3). There are also
other thermoelectric effects in the magnetic field that manifest, for example, as
a conversion of the longitudinal electric current to the transverse temperature
gradient (the Ettingshausen effect) or as a conversion of the longitudinal heat flow
to the transverse temperature gradient (the Righi-Leduc effect) [55]. However,
these phenomena are not relevant to this thesis.

Vlong
ẑ x̂

ŷ

Vtrans
H

T

Figure 2.3: Schematic illustration of the ordinary
Nernst effect induced by the external magnetic field
µ0H and the temperature gradient ∇T .

Although fundamentally different forces drive the electric and thermoelectric
transport phenomena, there is a substantial link between the electric conductivity
tensor σ and the thermoelectric tensor α.

The charge current Je and the heat current Jq can be described by the following
set of two equations:

Je = σE − α∇T, (2.6)
Jq = T αE − κ∇T, (2.7)

where κ is the thermal conductivity tensor, E is electric field, and ∇T is a gradient
of temperature. Considering a Fermi-Dirac distribution of charge carriers and a
low-temperature limit, a connection between α and σ arises. This link is called
the Mott relation:

α = π2

3
k2

B T

e

∂ σ

∂ ϵ

⃓⃓⃓⃓
⃓
ϵ=ϵF

, (2.8)

where ϵ is energy of the carriers (ϵF is the Fermi energy) and T is temperature
[54, 56].

The Nernst coefficient N mentioned above relates to αxy in the limit of weak
magnetic fields as follows [56]:

N = Bz
αxy

σxx

, (2.9)

The Mott relation then connects the off-diagonal elements of the α and σ tensors,
which in the presence of an external magnetic field creates a link between the
ordinary Nernst and Hall effects.

Anomalous Nernst effect Besides the ordinary Nernst effect, there is also a ther-
moelectric counterpart to the anomalous Hall effect: the anomalous Nernst effect
(ANE). Applying a temperature gradient in a ferromagnet generates a voltage
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that is perpendicular to both the heat flow and the magnetization. This is the
phenomenological description of the anomalous Nernst effect that holds for ferro-
magnets with a finite net magnetization. However, the natural question is whether
the mechanism of the Berry phase, which causes the AHE, also manifests in
transport driven by a statistical force. In other words, whether the Mott relation
(2.8) also holds for the anomalous contribution to σxy and αxy. In ferromagnets,
it is already known that the relation remains unchanged [54]. However, there
are theoretical concerns about the validity of the Mott relations in materials
with a nontrivial topology of the electronic bands, and it was proposed that the
ANE could be sensitive to the electronic states invisible to the AHE [57]. This
assumption remains yet to be confirmed; however, the ANE has already been
observed in noncollinear antiferromagnetic compounds, for example, in Mn3Sn
[58].

Thermal magnetoresistance Since the conductivity tensor is connected to the
thermoelectric tensor through the Mott relations, the longitudinal components
of the thermoelectric tensor αxx can be generally dependent on the magnetic
field similarly to ρxx. This gives rise to the thermoelectric counterpart of OMR,
ordinary thermal magnetoresistance. Ferromagnets and other magnetically ordered
materials then show anisotropic thermal magnetoresistance (ATMR), which is the
thermal counterpart of AMR [59].

2.2 Samples and transport methods

2.2.1 Samples
In order to measure both electronic-transport and thermoelectric-transport prop-
erties of Mn5Si3, we used a Mn5Si3 thin-film grown at the Interdisciplinary Center
of Nanoscience of Marseille by our collaborating group. The sample consists of a
17-nm thick layer of Mn5Si3, grown on an intrinsic silicon (111) substrate using
molecular-beam epitaxy. On the interface between silicon and Mn5Si3, there was
also an additional MnSi phase of 4 % that facilitated good crystallinity of the thin
film.

The sample was lithographically patterned by our collaborating group at
Spintec in Grenoble in two steps: The first step consisted of patterning the Mn5Si3
layer using electron-beam lithography and ion-beam etching. Consequently, a
lift-off profile was patterned. A 10-nm platinum layer was deposited by magnetron
sputtering, and excessive platinum was removed by lift-off. Unfortunately, the
platinum lift-off was not entirely successful, as shown in Fig. 2.4d where the
dotted curves mark the damaged and discontinuous platinum layer.

There are three types of structures that were lithographically patterned,
as shown in Fig. 2.4a–c: The design a was intended for the thermoelectric
measurement, as it consisted of a Mn5Si3 Hall bar and multiple platinum contacts
used for heating and thermometry. The designs b and c were purely Mn5Si3-based.

21



Pta b

c

d

la

lb

Mn5Si3

wc lc

wb

wa

Figure 2.4: a, b, c Designs of devices for transport measurements. d Microscopic image
of the device a with dotted curves showing the damages of the platinum layer. The
dimensions of the devices are following: wa = 10 µm, wb = 8 µm, wc = 5 µm, la = 30 µm,
lb = 760 µm, lc = 340 µm.

2.2.2 Measurement of electronic transport in magnetic field
A magnetotransport experiment is based on measuring components of the re-
sistivity tensor while stimulating the system with an external magnetic field.
Mn5Si3 shows magnetic order only at low temperatures below 240 K (see Sec. 1.4).
The measurement was therefore performed in a continuous-flow helium cryostat
Oxford Instruments, equipped with a vector superconducting electromagnet with
a maximum field of 6 T in the z-axis and 2 T in the x- and y-axes (see Fig. 2.5
for the definition of the coordinate system).

For the electronic-transport measurement, a device from Fig. 2.4a was used as
illustrated on a measurement scheme in Fig. 2.5. Longitudinal electric current
along the x-axis was induced by a current source Keithley SourceMeter 2450 while
measuring transverse and longitudinal voltage Vxy and Vxx using nanovoltmeters
Keithley 2182A. In order to eliminate any signal independent of the current polarity
(e.g. thermal effects), the gradient reversal technique was employed (see [60]):
every data point was obtained by subtracting signals measured with opposite
polarities of the longitudinal current. During the experiment, the magnitude of
the external magnetic field of a fixed direction was changed — we shall call this
kind of experiment a field sweep.
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Figure 2.5: Measurement of electric transport
in magnetic field. Longitudinal electronic cur-
rent is induced by a current source I while
measuring transverse voltage Vxy and longi-
tudinal voltage Vxx.

2.2.3 Measurement of thermoelectric transport
Measurement of thermoelectric properties was performed using the same experi-
mental setup and the same sample as for the electronic-transport experiments.
However, in a thermoelectric experiment, it is necessary to induce a well de-
fined longitudinal temperature gradient. This is a nontrivial problem compared to
the current flow induced by a current source in the electronic-transport experiment.

We used two methods of generating the temperature gradient. The first one,
illustrated in Fig. 2.6a, uses a device with platinum contacts (see Fig. 2.4a).
The source of an in-plane temperature gradient is one pair of platinum contacts
connected to a current source IH Keithley SourceMeter 2450. The Joule heat
generated by the platinum stripe then spreads, creating a temperature gradient
along the x-axis over the Hall bar located between the heater contacts. The Hall
bar serves for the measurement of longitudinal Vxx and transverse Vxy voltage,
generated by the temperature gradient. Both voltages were measured by the
Keithley 2182A nanovoltmeters. The heating power was 83 mW. Although this
measurement technique is well established [61], we did not manage to obtain any
reasonable signal when measuring a sweep of the out-of-plane magnetic field. This
was supposedly caused by the poor quality of the platinum layer (as illustrated
in Fig. 2.4d), resulting in no temperature gradient. We, therefore, moved to the
second method, where external heaters generated the temperature gradient.

The second method is shown in Fig. 2.6b: The sample itself does not lie
directly on the chip carrier as in a standard electronic-transport measurement but
is supported by two columns. The column on the “hot” side of the sample (on
Fig. 2.6 in red) consists of a platinum resistor Pt2000 and a supporting plastic
(ASA) block. The second column on the “cold” side (yellow) contains a Pt2000
resistor and a brass block. The Pt2000 are flat-shaped platinum resistors of the
resistance of 2 kΩ. The resistor on the “hot” side is used as a heater, whereas
the second one serves only for thermometry. The power on the heater was up to
2.1 W. The ASA block is a good thermal insulator, and so the majority of the
generated heat is conducted away through the sample and then through the brass
block to the chip carrier (see white arrows in Fig. 2.6b).
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Figure 2.6: Measurement of thermoelectric transport in the magnetic field. a A method
of generating longitudinal temperature gradient using on-chip platinum heaters. b
An alternative method where an external platinum resistor (glued to a plastic block)
generates a heat flow along with the sample, which is absorbed in the chip carrier
through a brass block.

The advantages of this configuration are the following: The Pt2000 can be
loaded by a substantially higher power than the on-chip heaters, where the Pt layer
is only 10 nm thick. This results in a substantially larger temperature gradient
and better signal-to-noise ratio since the large currents densities in on-chip heaters
are an additional noise source. In addition, the heat is conducted mainly through
the sample compared to the sample glued directly on the chip carrier, which
transfers the heat directly away from the sample.

Generated thermovoltage was detected separately on two different devices: lon-
gitudinal voltage Vxx was measured on the device in Fig. 2.4c, and the transverse
voltage Vxy on the device in Fig. 2.4b, both of them using the Keithley 2182A
nanovoltmeters. These devices were chosen because their longitudinal/transverse
dimension was the largest available, allowing them to collect as much thermo-
voltage as possible. There were no platinum contacts that could be used for
thermometry in this measurement.

Being able to measure temperature TA,B in two points along the temperature
gradient is crucial for the calibration of the temperature gradient. Under the
usual assumption that the gradient is linear, its magnitude can be calculated as:

|∇T | = TA − TB

l
, (2.10)

where l is the separation distance between the points A and B.
Because no platinum thermometers were used in this experiment, we were

forced to use the Mn5Si3 contacts for the thermometry in the following way: Firstly,
we measured the temperature dependence of the resistivity (see Fig. 2.7) for two
transverse contacts separated by a distance l. Then we applied a longitudinal
temperature gradient, measured the resistivities of these contacts and correlated
them with the temperature dependence. We would also follow the same procedure
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Figure 2.7: Temperature dependence
of resistivity of Mn5Si3.

for platinum contacts; however, the resistivity of Mn5Si3 is much less dependent
on temperature than the resistivity of platinum which dramatically decreases
the precision of such calibration. Another complication is that the temperature
dependence of resistivity of Mn5Si3 is not monotone and several temperatures yield
the same resistance values (see Fig. 2.7). However, this can be partially eliminated
since we simultaneously measure the resistance on both Pt2000 resistors, which
gives us a lower and an upper limit for the temperatures at each side of the device.

Using this approach, we arrived at the estimate of the temperature gradient
magnitude, which was, depending on the measurement, between 0.1 K mm−1 and
2 K mm−1. However, we should stress that these values are only approximate and
not reliable enough to be used for precise estimation of the Nernst coefficient.

2.3 Experimental results
In our investigation of the Mn5Si3 transport properties, we build upon our previous
extensive study of multiple samples of Mn5Si3 thin films with different crystalline
quality [60]. In this work, we focus on a deeper analysis of the transport data and
mainly on their relation to the thermotransport experiments.

2.3.1 Electronic transport
In order to first understand the behaviour of the Hall signal in the studied sample,
we performed field sweeps in the z-direction. The external magnetic field was swept
between ±6 T with a ramping rate of 0.5 T/min. We applied longitudinal electric
current of I = 100 µA while measuring longitudinal and transverse voltage Vxx

and Vxy. The sweeps were done at various temperatures ranging from 5 K to 250 K.

Voltages Vxx and Vxy were used to calculate longitudinal and transverse resis-
tivities ρxx and ρxy which were a basis for our further analysis. The signals were
then subject to further processing to reveal particular features in the measured
field dependencies. In the ideal geometry of the Hall bar contacts, the longitudinal
voltage should show only effects connected with longitudinal resistance compo-
nents, and the same should hold for transverse voltage and resistivity. However,
as our contacts were not ideal due to the finite width w and imperfect align-
ment, there was always a finite projection of ρxx and ρxy to the transverse and
longitudinal voltages. This effect, which can be substantial, is usually suppressed
by symmetrization of the longitudinal resistivity and antisymmetrization of the
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transverse resistivity with respect to the external magnetic field. This is justified
by the usual assumption that transverse resistivity is an odd function of the
external magnetic field, whereas longitudinal resistivity is even in the magnetic
field [62]. This is a reasonable assumption for the dominant signals resulting from
the anomalous Hall effect or the topological Hall effect, and we use this approach
for most of our presented data. However, we also revealed that certain types of
magnetotransport signals do not obey this assumption. Therefore, we invented
a novel approach for data analysis that enables the separation of an intrinsic
symmetric contribution to the transverse signal.

Let us now focus on the analysis of the individual signals separately, i.e.,
longitudinal resistivity ρxx and transverse resistivity ρxy.

Longitudinal resistivity Longitudinal resistivity ρxx was calculated from the corre-
sponding voltage using the formula:

ρxx = Vxx

I

t w

l
, (2.11)

where t is the thickness of the Mn5Si3 layer, and w and l are dimensions of the
device as stated in Sec. 2.2.1. The field dependence of ρxx was then symmetrized
with respect to the external magnetic field µ0Hz. The resulting symmetrized
signals are shown in Fig. 2.8: In a figure a, there is the field dependence of
the longitudinal resistance for several temperatures. The corresponding signals
are offset to zero as ∆ρxx(Hz) = ρxx(Hz) − ρxx(0). The quantity ∆ρxx(Hz) is
used instead of the as-measured ρxx to stress the difference in the magnetic field
dependence of longitudinal resistivity at different temperatures. Fig. 2.8b shows
more details of the ρxx close to 150 K where the signal changes sign. Finally, in
Fig. 2.8c, the temperature dependence of magnetoresistance measured at 5 T is
depicted, which was calculated from the longitudinal resistance as follows:

MR = ρxx(5 T) − ρxx(0 T)
ρxx(0 T) . (2.12)

As apparent from Fig. 2.8a, the magnetoresistance is negative under 150 K,
then it crosses zero and becomes positive. This complies with our previous
observations in Mn5Si3 [60]. However, in the current experiment, the transition is
revealed with better resolution in temperature. There is also a clear change in the
signal shape between 110 K and 130 K, not correlated with the phase transition
temperature — see Fig. 2.8. We interpret this particular change in shape as a
competition of at least two components with different temperature dependence:
the negative contribution dominates below 150 K while the positive is stronger
at higher temperatures, and at around 150 K, the contributions equalize. One
possible explanation of these two signals is that (negative) magnetoresistance
originating in the antiferromagnetic ordering becomes weak when approaching
the transition to the paramagnetic regime, where ordinary magnetoresistance
(which is always positive) starts to dominate. However, a deeper understanding of
the underlying physics is needed to attribute these signals to particular physical
phenomena.
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Figure 2.8: Longitudinal resistivity ∆ρxx. a ∆ρxx as a function of the applied out-of-
plane external magnetic field Hz measured at multiple temperatures. b Detail of the field
sweeps for temperatures around 150 K. c Temperature dependence of magnetoresistance
ratio at 5 T.
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Transverse resistivity For our further analysis, the transverse signal will play
the main role. The expression for calculating the transverse resistivity from the
measured voltage Vxy is analogous to the recalculation of the longitudinal signal
in Eq. (2.11):

ρxy = Vxy

I

t w

w
= Vxy

I
t, (2.13)

where t is the thickness of the Mn5Si3 layer, and w and l are dimensions of the
device as stated in Sec. 2.2.1.

An example of the raw ρxy(Hz) field-sweep data measured at 30 K is shown
in Fig. 2.9a. Obviously, the dependence is not a square-shaped hysteresis loop,
typical for simple ferromagnets. Therefore, it was necessary to modify the stan-
dard approach to analyzing the data. As the Hall effect is an odd function of the
magnetic field, we were primarily interested in studying the purely antisymmetric
component of ρxy with respect to Hz. The first natural step was the antisym-
metrization of the data, as shown in Fig. 2.9b. In addition, there is a substantial
linear contribution corresponding to the ordinary Hall effect (see Sec. 2.1.1) that
had to be removed. The corrected loops, after the OHE subtraction, are shown in
Fig. 2.9c.
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Figure 2.9: Analysis of the ρxy data, as shown on an example of field sweeps measured
at 30 K. a Raw ρxy data. b Antisymmetrized ρxy. c Antisymmetrized ρxy with a
linear background removed. d Processed ρxy (dashed line) can be decomposed into a
rectangular hysteresis loop (blue) corresponding to AHE and into the THE contribution
(orange).

However, even after the standard data processing, the curves do not resemble
a typical square-shaped hysteresis loop. There is a substantial contribution of the
topological Hall effect, which manifests as a “bump” in the vicinity of zero field
[24]. In order to decompose the curve into a component corresponding to the THE
and a rectangular hysteresis loop which arises due to the anomalous (spontaneous)
Hall effect, we fitted the data in Fig. 2.9c by a pair hyperbolic tangent functions
[24]. This procedure is illustrated in Fig. 2.9d where both the original data and
the particular components are shown. Note that this approach is only a phe-
nomenological description, with no particular physical model of the system in mind.

As already mentioned, the antisymmetrization of the transverse signal is a
usual procedure [24]. It is motivated by the assumption that there may be an
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additional contribution due to the contact misalignment, typical for any transport
measurement on lithographic structures. This artefact is symmetric with respect
to the applied magnetic field, as it is a projection of the (symmetric) longitudinal
signal. By the antisymmetrization, we remove this contribution. However, any
nontrivial symmetric components that do not originate in the contact misalignment
are inherently removed by this procedure. Here, we introduce a method of
extracting such intrinsic symmetric component ρ⊥. The formula which introduces
ρ⊥ can be written as follows:

ρ⊥ = ρsym
xy −

mean
(︂
ρsym

xy

)︂
mean (ρsym

xx ) · ρsym
xx , (2.14)

where ρsym
xx and ρsym

xy are symmetrized components of longitudinal and transverse
resistivities. By Eq. (2.14), we scale the (symmetric) longitudinal signal to the
magnitude of the symmetric transverse signal, and then subtract this projection
from symmetrized transverse resistance. The resulting ρ⊥ can be attributed to an
intrinsic symmetric contribution to the off-diagonal component of the conductivity
tensor.

The extraction of ρ⊥ is illustrated in Fig. 2.10: The raw data (panel a) is
decomposed into its symmetric component in b. Fig. 2.10c then shows ρ⊥.
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Figure 2.10: Symmetric component of ρxy. a Raw transverse resistivity as measured
during a field sweep at 20 K. b Symmetric component of ρxy (Hz). c ρ⊥ (Hz) determined
using Eq. (2.14).

The above-described analysis enables us to decompose the transverse signal
into multiple components: the contributions of the anomalous Hall effect, the
topological Hall effect, and the intrinsic symmetric component ρ⊥. These contribu-
tions are depicted in Fig. 2.11: Figure a shows the processed ρxy (Hz) dependence
(linear background removed and antisymmetrized) for multiple temperatures. In
Fig. 2.11b, the temperature dependence of the magnitude of the topological
contribution to ρxy is displayed, while in Fig. 2.11c, we show the temperature
dependence of the ρ⊥ magnitude. Please note that the measurement at 30 K does
not follow the overall trend of ρ⊥, and the ρ⊥ magnitude drops to zero.

From the signals in Fig. 2.11, it is apparent that the transverse resistivity
evinces a clear hysteretic behaviour in the entire studied temperature region. The
coercive field has a non-monotone dependence on temperature, with a minimum
value close to 100 K and a substantial increase above 200 K (for a detailed analysis
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of the coercive field temperature dependence, see [60]). This demonstrates that the
hysteresis is present both in the collinear and in the noncollinear antiferromagnetic
phases of Mn5Si3. Note that the magnitude of the loops remains approximately
unchanged in the whole studied temperature region (≈ 0.2µΩcm), even when
approaching the Néel temperature.

The Néel temperature, where the phase transition from the collinear phase to
paramagnetic occurs, is supposed to lie above 210 K. This transition seems to be
gradual [60]. At 250 K, we cannot reach the saturation field and thus we detect
only a minor loop. The hysteresis completely disappears at higher temperatures
above 250 K [60].

In the collinear antiferromagnetic phase below 210 K, the presence of a hystere-
sis loop implies that Mn5Si3 evinces an unusual time-reversal symmetry breaking
mechanism. Untill recently, such breaking was reported only for noncollinear
antiferromagnets [48] (see Sec. 2.1.1). This T -symmetry-breaking phenomenon
can be identified with the predicted anomalous (spontaneous) Hall effect, which
we already confirmed in Mn5Si3 [24, 60]. The collinear ordering should persist up
to approx. 80 K, and in this region (80–210 K), the hysteresis loop has a standard
rectangular shape with no THE contribution. This is quantitatively illustrated in
Fig. 2.11b. In this temperature region, the magnitude of ρTHE

xy is virtually zero.
Zero THE contribution indicates vanishing spin chirality and probable collinear

ordering of the material. This observation is of particular importance, because
the collinearity of the Mn5Si3 high-temperature AFM phase has not been directly
confirmed so far. The existence of cAFM phase in a thin-film Mn5Si3 is only based
on theoretical models and neutron scattering experiments on bulk Mn5Si3.

When the temperature is decreased below 80 K to the noncollinear magnetic
phase, the shape of the hysteresis loops starts to change (see Fig. 2.11a), and
a “bump” in the vicinity of the zero field starts to form. This is presumably a
manifestation of the topological Hall effect [24]. The THE contribution is present
only in the low-temperature phase, as visible from its temperature dependence
in Fig. 2.11b. Interestingly, it peaks around 30 K and then drops to zero if the
temperature is further decreased to 5 K. The finite topological Hall contribution
confirms that the magnetic moments have nontrivial spatial configuration and
Mn5Si3 entered its noncollinear antiferromagnetic phase.

Another possible manifestation of the topological Hall effect may be observed
in the hysteresis loops measured at 70 K and 50 K. The loop does not close at
high fields, and the signal is not entirely saturated. However, this observation
remains to be fully understood.

We illustrated that the THE contribution can be used to indicate the chang-
ing magnetic order. Interestingly, the overall trend of the |ρTHE

xy | temperature
dependence is also followed by |ρ⊥| as illustrated in Fig. 2.11c: The |ρ⊥| signal
is substantial below 60 K and drops to zero above 90 K. This correlation may
indicate that the origin of the ρ⊥ signal is also connected to the noncollinear spin
structure of the noncollinear phase. However, the origin of ρ⊥ has yet to be fully
comprehended.
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2.3.2 Thermoelectric transport
The thermoelectric study of the Mn5Si3 magnetic properties was conducted ana-
logically to the electronic transport by sweeping the external magnetic field along
the z-axis. The magnitude of the external field was again changed between ±6 T
with a ramping rate of 0.5 T/min. The in-plane thermal gradient was created by
using the external macroscopic heaters.

The field-sweep signals were measured using various values of power applied to
the resistive heater: they ranged from 0.25 W to 2.1 W. The base temperature of
the chip carrier was set and maintained below 70 K. The substantial heating power
not only generated an in-plane temperature gradient but was also significantly
warming up the whole sample: the temperature of the sample was substantially
different compared to the chip carrier. The actual temperature on the sample
was determined from the measurement of resistivity on Mn5Si3 contacts and
by comparing it against the known temperature dependence of ρxx (see Sec.
2.2.3). Using this method, we managed to determine the sample temperature
with the precision of ±2 K. However, such precision is not enough to evaluate the
temperature gradient, which is in the order of units of K/mm. The temperature
calibration was more precise at higher temperatures, from which we estimate that
the temperature gradient ranged from 0.1 to 2 K/mm.

If we were able to determine the temperature gradient with sufficient precision,
we could then calculate longitudinal and transverse Nernst signal Sxx and Sxy

using the following definition (compare it with Eq. (2.5)):

Sxx = Vxx/lxx

|∇T |
, Sxy = Vxy/lxy

|∇T |
, (2.15)

where lxx and lxy is length of the longitudinal and transverse contact, |∇T | is
the magnitude of the temperature gradient [63]. However, we shall present the
measured data only in arbitrary (normalized) units due to the lack of precise
measurement of |∇T |.

In Fig. 2.12 we show an example of the transverse thermovoltage signal
as measured. Since the direction of the temperature gradient was not as well
defined as the current direction in a conventional magnetotransport experiment,
we measured a mix of longitudinal and transverse resistance contributions to the
Vxx and Vxy signals. Therefore, symmetrization and antisymmetrization with
respect to Hz was used as an essential tool for the separation of the longitudinal
and transverse contributions to the particular Vxx and Vxy signals. Also, in order
to remove the contribution of the ordinary Nernst effect from the measured data,
we subtracted a linear slope from the Sxy signal.
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Figure 2.12: An example of raw Vxy

thermoelectric data as measured at 25 K
using 1.29 W of heating power, resulting
in the sample temperature of 128 K and
a rough estimate of the temperature
gradient 0.5 K/mm.
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The dependence of the Sxx and Sxy signals on the applied field Hz is shown
in Fig. 2.13 for different sample temperatures, which were determined by the
above-described calibration procedure. Let us now analyze the longitudinal
(symmetrized) and transverse (antisymmetrized) signals separately.

Longitudinal signal The longitudinal signal presented in Fig. 2.13a displays a pro-
nounced thermal magnetoresistance with its characteristic behaviour. Due to the
uncertainty in the temperature gradient, we cannot compare the magnitude of the
signals for different temperatures. However, there is also an apparent qualitative
change in the shape of the curves with temperature: At low temperatures, the
magnetoresistance curve is convex, while above 170 K, the dependence starts to
show concave behaviour. This feature can be explained as a consequence of mixing
of two (or more) contributions to Sxx with different temperature dependencies.
Possible candidates for these two components would be thermal OMR and thermal
AMR, in analogy with the similar signals observed in the electronic transport.
Note that unlike in ρxx in Fig. 2.8, there is no sign change in Sxx around 160
K; however, the change of the Sxx character (convex/concave) occurs at a very
similar temperature as the sign change of ρxx.

Transverse signal The transverse signal in Fig. 2.13b shows a clear saturation
for temperatures up to 190 K. Above 200 K, the noise level is too high to extract
reliable curves. In addition, we observe an artefact in the form of an effective loop
opening related to temperature drift removal. Although there is a pronounced
saturation in the Sxy signal, we did not see any hysteretical behaviour. This is in
striking contrast with the ρxy signal, where a strong hysteretic loop opening was
observed.

For clarity, a comparison between ρxy and Sxy is shown in Fig. 2.14 for three
selected temperatures (note that all the signals are normalized to saturated values).
Except for the lack of hysteresis, there is also a difference in the saturation field:
The saturation occurs at higher fields in the thermoelectric experiment, with the
shift of approximately 1.5 T. This feature holds mainly in the collinear phase at
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Figure 2.14: Comparison of transverse signal in an electric and thermoelectric field
sweep ρxy and Sxy for three different temperatures (we chose ρxy curves measured at
similar temperatures, i.e. 60 K for 59 K, 130 K for 128 K, and 170 K for 167 K).
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128 K and 167 K. Note also that at 59 K a broadening appears at high fields. A
similar broadening is also present in the ρxy curve at high fields, which suggests a
magnetic origin of this feature.

The seeming mutual inconsistency between the hysteresis loop measured in
thermoelectric and electronic transport could be understood in terms of breaking
in small domains. Indeed, the transverse contact on which we collect Sxy is
substantially longer than a width of a Hall bar for the ρxy measurement (compare
wa and lb in Fig. 2.4 — lb is 76× larger). However, this explanation is not in
agreement with our test experiment, where we measured ρxy on devices with a
substantially different width of the Hall bar (by the factor of 40×). The hysteresis
did not disappear, and the coercive field was exactly the same. Therefore, we
may conclude that domain formation is not a valid mechanism of the change in
the hysteresis loop shape. The second possible explanation is that the hysteresis
may disappear because of the large heating powers and the not very well defined
temperature gradient direction. This mechanism could be confirmed by a simul-
taneous measurement of Sxy and ρxy on the same device. Such experiment is
currently planned by our collaborating group at the University of Konstanz.
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Chapter 3

Magnetooptical study of Mn5Si3

Magnetooptical measurements are a standard probe of materials with magnetic
order. Magnetooptical effects (such as the magnetooptical Kerr or Faraday effects)
are widely used in characterization and technical applications, and advanced
techniques such as the time-resolved magnetooptical spectroscopy are valuable
tools for investigating processes related to spin dynamics.

Though widely used on ferromagnets and even antiferromagnetic systems [64,
65], no magnetooptical study has been performed in any altermagnetic material
so far. Mn5Si3 is a promising candidate for such a study as it shows a strong
spontaneous Hall effect, a transport counterpart of the magnetooptical Kerr effect.

This chapter introduces magnetooptical phenomena and their relation to
the magnetotransport effects. Then we describe optical and magnetooptical
methods. Finally, we present the results of our experiments which probe the static
magnetooptical response of Mn5Si3.

3.1 Theoretical introduction
In 1845, Michael Faraday observed that the polarization plane of linearly polarized
light rotates when the beam passes through glass with an external magnetic field
applied parallel to the direction of propagation [64]. This phenomenon — the
Faraday effect — is a notorious example of a magnetooptical effect. Magnetooptics
(MO) deals with the interaction of light and matter when an external or, in a
more general view, also internal magnetic field is present. In the following, we
shall focus on the phenomenological description of magnetooptical phenomena
relevant to this thesis. Then we discuss the relationship between magnetooptical
and magnetotransport phenomena. Finally, we will give a brief overview of
antiferromagnets known to show a magnetooptical response.

3.1.1 Phenomenological description of magnetooptical effects
From the theoretical point of view, it is convenient to study magnetooptical
phenomena in two distinct geometrical configurations depending on the relative
orientation of a light wave vector k and a magnetic field H: When the light
travels along the magnetic field (k ∥ H), we talk about the Faraday geometry,
whereas for k ⊥ H , the term Voigt geometry is used [64].
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The magnetooptical response can be observed either when the light is trans-
mitted through a MO active medium, or when it is reflected. Although the latter
situation is more relevant for this thesis, we will first describe the magnetooptical
response in the simpler transmission geometry.

When light passes through a magnetic medium, there exist two light eigenmodes
which are conserved [11]. In the Faraday geometry, these modes correspond to
the left- and right-handed circular-polarized modes σ+ and σ−. In contrast, the
eigenmodes in the Voigt geometry are two linearly polarized waves σ∥ and σ⊥

that are parallel and perpendicular to the magnetic field [11]. Magnetooptical
phenomena then arise because the complex index of refraction differs for the two
eigenmodes in each of the geometries.

In general, birefringence can be explained as a consequence of the difference in
a real part of the refraction indices for the two orthogonal polarization eigenmodes.
Similarly, dichroism (polarization-dependent absorption) stems from the difference
in imaginary part of refractive indices. Combining these phenomena with the
different complex refractive indices for the eigenmodes in both the Faraday
geometry (complex refractive indices ñ+ and ñ−) and the Voigt geometry (complex
refractive indices ñ∥ and ñ⊥), we arrive at four magnetooptical effects that act on
the incident linearly polarized beam as follows:

• the magnetic circular birefringence in the Faraday geometry caused by
ℜ (ñ+) ̸= ℜ (ñ−) induces rotation of the polarization plane,

• the magnetic circular dichroism in the Faraday geometry caused by ℑ (ñ+) ≠
ℑ (ñ−) induces polarization ellipticity,

• the magnetic linear birefringence in the Voigt geometry caused by ℜ
(︂
ñ∥
)︂

≠
ℜ
(︂
ñ⊥
)︂

induces polarization ellipticity,

• the magnetic linear dichroism in the Voigt geometry caused by ℑ
(︂
ñ∥
)︂

̸=
ℑ
(︂
ñ⊥
)︂

induces rotation of the polarization plane [64].

Analogical effects can occur when linearly polarized light reflects from a
magnetic medium. However, rotation and ellipticity cannot be directly linked to
dichroism or birefringence of the eigenmodes, as the relevant quantity is now the
Fresnel coefficients of reflection r̃ for the eigenmodes.

If we consider the normal incidence geometry, the Fresnel reflection coefficient
is r̃ = (1 − ñ)/(1 + ñ), assuming the material is placed in vacuum with ñ = 1. In
the Faraday geometry (k ∥ H), the linearly polarized light then gains ellipticity if
the absolute values |r̃+| and |r̃−| differ. The plane of polarization is rotated, if
arg (r̃+) ≠ arg (r̃−). Similarly for the Voigt geometry, the rotation is induced by
|r̃∥| ≠ |r̃⊥| and the ellipticity arises when arg

(︂
r̃∥
)︂

̸= arg
(︂
r̃⊥
)︂

[11].
The above-described relations are general. Now, we will focus on a specific case

of materials with an internal magnetic field characterized by magnetization M .
The first magnetooptical effect, in which magnetization points out of the sample
plane and the light incidence is normal (M ∥ k ∥ n with the sample surface
normal n), is known as the polar magnetooptical Kerr effect (PMOKE). The
second configuration with M ⊥ k ∥ n is known as the Voigt effect in reflection
(VER). These effects are illustrated in Fig. 3.1. Since both PMOKE and VER
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Figure 3.1: Magnetooptical effects in reflection in the near-normal incidence geometry.
a Rotation of the polarization plane due to the polar Kerr effect arises from a phase
shift between left- and right-handed circular-polarized light. b Different absolute values
of reflective coefficients for linearly polarized light along the magnetization vector and
perpendicular to it induce rotation of the polarization plane in the Voigt effect in
reflection. Adapted from [11].

are crucial for the further analysis of our experimental results, we shall introduce
them in more detail.

The magnetooptical response can be quantified by solving the electromagnetic
wave equation for electric intensity E:

∇ (∇ · E) − ∇2E = −µε̂Ë + µσ̂Ė, (3.1)

where ε̂ = ε̂(ω) and σ̂ = σ̂(ω) are the permittivity and conductivity tensors,
respectively [66]. Assuming the solution is a plane wave E(r, t) = E0e

−i(ωt−k·r),
the equation can be rewritten as:

k2E0 − k (k · E0) − ω2µ0ε̂effE0 = 0 (3.2)

where we introduced ε̂eff = ε̂0 + iσ̂eff/ω. The structure of the effective permittivity
tensor ε̂eff is governed by the tensor σ̂eff that characterizes the response of the
whole system (both the electrons and the lattice) to the perturbing electric field
[66]. The magnetooptical response of PMOKE and VER can be derived by
inserting a problem-specific form of ε̂eff to Eq. (3.2), which gives the refractive
indices of the corresponding eigenmodes.

Polar Kerr effect When a cubic crystal shows magnetization, the originally
isotropic permittivity tensor gains non-diagonal elements. For magnetization
M pointing along the z-axis and the polar Kerr effect configuration M ∥ k ∥ n
(see Fig. 3.1a), the effective permittivity tensor is following [66]:

ε̂eff = ε0

⎛⎜⎜⎜⎜⎝
ϵxx ϵxy 0

−ϵxy ϵxx 0
0 0 ϵzz

⎞⎟⎟⎟⎟⎠ , (3.3)
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with dimensionless components ϵij. Solving Eq. (3.2) leads to the eigenmodes of
the left- and right-handed circular-polarized waves and to an expression for their
complex refractive indices [66]:

ñ2
± = ϵxx ± iϵxy. (3.4)

From ñ± and the corresponding reflective coefficients r̃±, one can obtain an
expression for the reflected electric intensity and thus calculate [11] the angle of
polarization plane rotation βK for a linearly-polarized incident wave as follows:

βK = ℜ
(︄

ϵxy√
ϵxx (1 − ϵxx)

)︄
. (3.5)

Note that in Eq. (3.5), we suppose that the polarization changes are small, i.e.
|ϵxy| ≪ |ϵxx| [11].

Voigt effect in reflection In contrast to PKE, in the Voigt effect we assume the
magnetization to lie in the sample plane. We shall suppose that it points along
the x-axis. In this configuration and again assuming a cubic symmetry of the
crystal, the effective permittivity tensor becomes [11]:

εeff = ε0

⎛⎜⎜⎜⎜⎝
ϵxx 0 0
0 ϵyy ϵyz 0
0 −ϵyz ϵzz 0

⎞⎟⎟⎟⎟⎠ . (3.6)

Similarly to PMOKE, solving Eq. (3.2) leads to linearly-polarized eigenmodes with
the polarization plane parallel or perpendicular to the magnetization direction,
and with the corresponding refractive indices ñ∥ and ñ⊥ [11]:

ñ2
⊥ = ϵxx, (3.7)

ñ2
∥ = ϵyy

(︄
1 +

ϵ2
yz

ϵ2
yy

)︄
. (3.8)

Under the assumption of small polarization changes, the angle of polarization
plane rotation βV can be expressed as [11]:

βV ≈ n0 sin 2θi

2(n2
0 − 1)

(︄
ϵxx − ϵyy −

ϵ2
yz

ϵyy

)︄
, (3.9)

where θi is the angle between the polarization plane of the incident beam and
magnetization; n0 is the isotropic refractive index (in the absence of magnetization).

In general, phenomenological description of the electromagnetic interaction
in crystals with magnetic order is based on the knowledge of the appropriate
material tensors. For the above-described response of PMOKE and VER, we chose
the permittivity tensor; however, one could also use conductivity or permeability
tensors since the symmetry of these tensors is the same for given crystal class [67].
If we now focus only on the ferromagnetic ordering defined by the magnetization
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vector M , and we further suppose that the permittivity dependence on M is
weak, the cartesian components of the permittivity tensor can be expanded as
follows [67]:

εij = ε
(0)
ij +KijkMk +GijklMkMl + . . . , (3.10)

where ε(0)
ij = ε

(0)
ji are the components of the permittivity tensor for M = 0. Kijk

are components of the linear magnetooptic tensor, while Gijkl represents the
quadratic magnetooptic tensor [67].

From the Onsager relations (see Eq. (2.3) for comparison), it follows that [67]:

εij(M ) = εji(−M). (3.11)
The diagonal components of the effective permittivity tensor obey the relation
ϵii(M) = ϵii(−M) and are thus an even function of the magnetization. Further-
more for the off-diagonal elements, it can be proved [67] that ϵij(−M ) = −ϵij(M )
in cubic crystals, and so they are an odd function of magnetization. Surprisingly,
the same holds also for hexagonal crystals with the D6h point group (e.g. Mn5Si3
[68]). These observations have interesting consequence for the Kerr and Voigt
rotation angles βK and βV in Eqs. (3.5) and (3.9): As ϵxy is an odd function of
magnetization and ϵxx, ϵyy, and ϵ2

yz are even, the angle βK is odd in magnetization,
while βV is even.

It is important to note that we demonstrated the parity of the Kerr and Voigt
angles with respect to the magnetization vector explicitly for a cubic crystal.
However, it is generally assumed that the polarization rotation induced by the
PMOKE is an odd function of magnetization while the VER rotation is even [66].

3.1.2 Relationship between magnetooptical and transport phenomena
As stated above, electromagnetic processes in a crystalline solid can be described
by different tensors: either by permittivity, conductivity, or permeability. From
the phenomenological point of view, the relationship between conductivity σ̂ and
permittivity ε̂ tensors is established by the standard formula [69]:

ε̂(ω) = ε̂0 + iσ̂(ω)
ω

, (3.12)

where ω is a frequency of the electromagnetic radiation. The tensor σ̂ = σ̂(ω) is
understood as the optical conductivity tensor as it is usually used in the context
of optical frequencies.

The natural question is how the optical conductivity relates to the electronic
transport conductivity σ̃ ̸= σ̃(ω), defined by Ohm’s law j = σ̃E. In the context
of the magnetooptical phenomena, σ̃ is usually considered to correspond to the
zero-frequency limit of σ̂ as σ̃ = σ̂(ω → 0) [66, 69–73].

The connection between ε̂(ω) and σ̂(ω) (σ̃ respectively), provides a method
to link directly the magnetooptical and magnetotransport effects. For example,
the expression for the Kerr rotation angle (see Eq.(3.5)) can be written using the
carthesian components of the optical conductivity tensor as follows [73]:

βK = ℜ

⎛⎝ −σxy

σxx

√︂
1 + iσxx/ω

⎞⎠ , (3.13)
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which is directly proportional to the off-diagonal component σxy of the σ̂ tensor.
This links the PMOKE to the anomalous Hall effect which arises from the non-
zero σ̃xy. The AHE is thus often considered as a zero-frequency limit of the Kerr
effect, with which it shares also the same symmetry with respect to magnetization
[66, 70–72, 74, 75]. Similarly, the Voigt effect in reflection can be viewed as a
finite-frequency counterpart of transverse anisotropic magnetoresistance [66].

In recent years, there have been attempts to go beyond the phenomenological
description and try to link the magnetooptical and magnetotransport effects by
their microscopic origin, i.e., band exchange-splitting and spin-orbit coupling [73,
75]. Multiple works investigated the zero-frequency limit of PMOKE together
with the anomalous Hall effect both from experimental and theoretical points
of view [69, 71–74]. For example, Kim et al. compared [72] the low-frequency
limit of PMOKE with AHE for the ferromagnetic SrRuO2, and concluded that
the corresponding conductivities agree for the energy above 200 meV. In a low
energy regime below 200 meV the difference is a result of intraband transitions
and also a significant contribution of the extrinsic anomalous Hall effect to the
magnetotransport signals. The relation between PMOKE and AHE was also
studied by the first-principles Berry curvature calculations for ferromagnetic
SrRuO2 [72], or antiferromagnetic Mn3Sn [71].

From the purely experimental point of view, Balk et al. demonstrated [74]
differences in the PMOKE and AHE signal in the noncollinear antiferromagnet
Mn3Sn. They observed pronounced hysteresis loops when measuring both the
PMOKE and AHE responses as a function of the external magnetic field [74].
However, the coercive field of both signals was substantially different, and a drop
in the observed signals due to a magnetic-phase transition occurred at a lower
temperature for the AHE (by 10 K). This indicates that the relationship between
PMOKE and AHE is not entirely straightforward. Magnetooptics probes rather
the magnetic properties of the sample surface compared to the electronic transport
that is entirely driven by the bulk properties of the material[74].

In this section, we extensively used magnetization as the magnetic-ordering
vector, which is zero for antiferromagnets. In the following, we shall discuss that
the Kerr and Voigt magnetooptical response may also be present in magnetically
ordered materials with zero net magnetization, as shown recently in several works,
including Balk et al. [74].

3.1.3 Magnetooptics and antiferromagnets
A spontaneous magnetooptical response can be present also in ordered materials
with zero net magnetization — antiferromagnets. The Voigt effect and other
magnetooptical phenomena with an even dependence on effective magnetization
can be, in principle, present in any antiferromagnet [65]. The Voigt effect was
confirmed in multiple collinear antiferromagnets such as CuMnAs [65], or GdVO4
[76], and for most of the AFM systems, it provides the only optical tool for
studying their magnetic ordering.

Until recently, it was supposed that fully compensated antiferromagnets could
not show any magnetooptical signal that would be odd in effective magnetization
as the contributions from the oppositely oriented magnetic sublattices would
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cancel out [65]. This certainly holds for most of the well-known collinear AFM
systems where the MOKE or any other type of linear MO effect is absent. However,
several theoretical and experimental studies show the Kerr response is possible in
antiferromagnets with a noncollinear spin structure: In 2015, Feng et al. predicted
[70] the presence of MOKE response in a class of noncollinear antiferromagnets
Mn3X with X being Rh, Ir, and Pt as a consequence of the strong spin–orbit
coupling and the breaking of double band degeneracy. The predicted signals were
comparable to transition-metal magnets (e.g. bcc iron). A strong PMOKE signal
was measured later in another manganese-based noncollinear antiferromagnet
Mn3Sn at room temperature [71, 74].

On the other hand, altermagnets — such as Mn5Si3 — display large spontaneous
Hall response as well as anisotropic magnetoresistance (see Chapter 2). Based on
the analogy of the magnetooptical and transport effects described in the previous
section, it is reasonable to assume that in Mn5Si3, also PMOKE and VER may be
present. In the following, we focus on the experimental detection of these effects.

3.2 Samples and magnetooptical methods
In this section, we shall briefly describe two different samples of Mn5Si3 we used for
the optical measurements, and then we introduce the experimental methods. These
include the measurement of spectral reflectance and a variety of the magnetooptical
experiments.

3.2.1 Samples
We chose the same thin layers of Mn5Si3 that revealed strong AHE in our previous
studies [60]. Two different samples were studied, both grown using molecular-
beam epitaxy on an intrinsic Si (111) substrate. The first sample, denoted
as MnSi80 consisted of 25 nm of Mn5Si3, whereas the second one labelled as
MnSi82 had a Mn5Si3 layer of 23 nm. Similarly to the sample MnSi163 used for
the transport experiments in this thesis, these samples also contained a small
MnSi contribution which is ferromagnetic below 30 K [77]: MnSi80 contained
9 % of MnSi, while in the second sample MnSi82 it was only 4 %. Both of
these samples were already thoroughly studied using magnetotransport [60], and
they show strong spontaneous Hall conductivity. The sample growth and the
structural and magnetic characterization were done by our collaborating group at
the Interdisciplinary Center of Nanoscience of Marseille. The samples remained
unpatterned for the optical experiments.

As a reference for the MO measurements, we used intrinsic silicon (100) wafer.

3.2.2 Measurement of spectral reflectance
Essential information about the band structure can be obtained by the spectrum
of reflected light. For this purpose, we measure the spectral dependence of the
sample reflectance. Reflectance is defined as the ratio of the radiant flux reflected
by the surface and the radiant flux received by the surface. A schematic of
the experimental setup is shown in Fig. 3.2: The light source was a xenon
wide-spectral-range lamp, and the light was focused on a sample in an optical,
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Figure 3.2: Schematic of a spectral reflectance measurement. The light source was a
xenon lamp.

closed-cycle, and low-vibration cryostat (Montana Instruments). The cryostat
enabled measurements in the temperature region of 4–350 K, and an in-plane
magnetic field of up to 900 mT was generated using an integrated electromagnet.
The beam was in near-normal incidence, with an incidence angle ϑi ≈ 2◦. The
reflected light was then collected by an optical fibre and spectrally analyzed by a
grating spectrometer (Andor Solis) with a spectral range of 250–1000 nm.
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Figure 3.3: Spectral reflectance for a GaAs
wafer as calculated from refractive indices
[78] and measured using calibration on Si
(100).

In order to calculate reflectance, a
calibration of the setup was required.
The light emitted by the Xe lamp is
spectrally inhomogeneous, also optical
components in the setup have differ-
ent transmittance for different wave-
lengths. Therefore we cannot directly
use the raw signal from the spectrom-
eter (counts per wavelength). For the
calibration, we measured a raw re-
flected light spectrum from an intrin-
sic Si (100) wafer. The spectrum was
compared with reflectance R calculated
from the known values of real and imag-
inary refractive index n and κ of silicon
[79] using a standard formula:

R = (n− 1)2 + κ2

(n+ 1)2 + κ2 . (3.14)

By dividing the measured and the cal-
culated spectral dependence of R, we
got a calibration factor for each wave-
length by which the measured data have to be multiplied to obtain real reflectance
(in relative units). In order to verify the accuracy of this calibration, we did
a control measurement on a GaAs wafer which also has a well-known spectral
dependence of reflectance [78]. Both the measured and the calculated reflectance
of GaAs are shown in Fig. 3.3. Though there is a good correspondence both in
shape and in magnitude of the spectrum, the measured dependence is spectrally
shifted to shorter wavelengths. Furthermore, the dependence below 400 nm is
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also qualitatively different. This procedure reveals a limitation of the calibration
process, which must be considered when analyzing the data.

3.2.3 Magnetooptical measurements
The main part of the optical experiments was dedicated to magnetooptics. We used
three different experimental setups for the magnetooptical study of Mn5Si3. The
first experimental setup was optimized to measure the temperature dependence of
the magnetooptical response during a temperature sweep. In this experiment, the
temperature was continuously varied at a constant rate. The other two setups
were designed for the measurement of field sweeps, i.e. the experiment where the
magnetooptical response is measured as a function of the external magnetic field
magnitude: The field was applied either perpendicularly to the sample surface,
which we shall call polar field geometry or in the sample plane in the longitudinal
field geometry.

The temperature sweep experiments were performed in the Magnetooptical
laboratory of the Department of Chemical Physics and Optics at Charles University,
while the magnetooptical field sweeps were carried out in the laboratory of Magneto-
optics Research Prague (MORP) at the Institute of Physics of Charles University.
Let us now describe the particular experiments in more detail.

Temperature sweeps A schematic of our experimental setup for temperature
sweeps is in Fig. 3.4a: The light source was a supercontinuum pulse laser (SuperK
Extreme) with a tunable filter (SuperK Varia) which has a spectral range from
480 nm to 840 nm with a tunable bandwidth. The laser power was always set to
1 mW with a spot size of roughly 100 µm. The sample was placed in a chamber of a
closed-cycle cryostat (ARS cryogenics) with a temperature range of 20–300 K. The
chamber was inserted between the poles of a two-dimensional vector electromagnet
with the field orientation in the plane xy, generating a maximum field of 207 mT.

The linearly-polarized laser beam was focused on the sample under a small
angle of incidence of 1◦. We detected a change in the plane of polarization of the
reflected beam by an optical bridge. The bridge consists of a polarizer (P in Fig.
3.4a) that splits the incident beam into its s-polarized and p-polarized components.
The intensity of these two components were detected using semiconductor pho-
todetectors A and B, as in Fig. 3.4a. Both signals were processed by differential
pre-amplifiers that generated their sum V+ and difference V−. These two signals
were then measured by the lock-in detection method for which the light intensity
was modulated by a mechanical chopper (Ch in Fig. 3.4a) and analyzed by two
lock-in amplifiers Stanford Research Systems SR830 [80].

The rotation of the plane of linearly polarized light by the angle βMO can be
calculated from the sum and the difference signals V+ and V− as:

βMO = V−

2 · AV+
, (3.15)

where A as the ratio of V− and V+ amplification [81]. This expression holds for
small angular deviations where βMO ≈ sin (βMO). Also, the resulting βMO is only
a relative change with respect to the initial stage (defined i.e. by temperature or
magnetic field magnitude).
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Figure 3.4: Schematic of a temperature-sweep experiment. a Schematic of the experi-
mental setup where P is a polarizer, λ/2 is a half-wave plate, and A, B are photodetectors.
b A “strained” configuration where the sample is strained due to the different coefficients
of thermal expansion of silicon and copper. c. A “strainless” configuration where the
thermally induced strain is relaxed through the multiple layers of a silicon substrate.

The measurement was done for multiple orientations of linear polarization of
the incident light to identify the particular magnetooptical effect responsible for
the signal. The polarization plane of the incident laser beam is determined by the
angle θ, which is zero for the linear polarization along the x-axis and 90◦ for the
polarization along the z-axis. See Fig. 3.4a for the coordinate system.

During the experiments, we encountered several issues related to strain effects
induced by temperature. Therefore, we employed two different approaches to
attach the sample to a copper holder (coldfinger) in the cryostat. In the first
method (see Fig. 3.4b), the sample is simply glued directly to the coldfinger using
a silver paste. Here, however, the different coefficients of thermal expansion of
copper (15.2 · 10−6 K−1 at 300 K [82]) and the silicon substrate (1.4 · 10−6 K−1 at
200 K [82]) lead to a substantial mechanical strain during a temperature sweep
where the temperature can change by more than 200 K. Therefore we introduced
a different, strain-free configuration illustrated in Fig. 3.4c where the thermally-
induced strain is suppressed. The sample is supported by two 0.5 mm Si layers
through which the strain relaxes. To improve the heat transfer between the sample
and the cold finger, a copper foil was glued to the top side of the silicon block
and connected with the coldfinger (see Fig 3.4c).
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Field sweeps in polar field geometry An analogical experimental setup to the
previous section was used for the polar field sweeps. Here, the magnetic field
is applied perpendicular to the sample plane as shown in Fig. 3.5: To obtain a
spectral resolution, we used two different laser-diode systems for 405 nm (Matchbox
SLM ) and 785 nm (Newport LDM ) with 1 mW of laser power. The sample was
placed in a closed-cycle cryostat with an incorporated electromagnet (Montana
Instruments). The available temperature range was 4 K to 350 K, and the
maximum magnetic field was 900 mT. In this configuration, the laser beam was
directed through a hole in one of the pole pieces. As for the temperature sweeps,
we used an optical bridge for the measurement of a change of the linear polarization
angle together with a lock-in detection method and SR830 lock-in amplifiers. The
polarization angle θ of the incident beam has the same convention, i.e. θ is zero
for the linear polarization along the x-axis and 90◦ for the polarization along the
z-axis.
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Figure 3.5: Schematic of the experimental setup, designed for measurement of the field
sweep in the perpendicular magnetic field. Here P is a polarizer, λ/2 is a half-wave
plate, A, B are photodetectors, and A+B, A-B are differential preamplifiers.

In order to test the response of the setup itself to the applied magnetic field
(i.e. Faraday effect in windows and lenses, mechanical motion), we measured
the rotation of the polarization plane as a function of Hz on a nonmagnetic
silicon substrate and in our Mn5Si3 sample at room temperature. As the Néel
temperature for Mn5Si3 is below 250 K, the sample should be paramagnetic
at room temperature and show no magnetooptical response. However, even in
the paramagnetic phase of Mn5Si3 and in pure silicon, we measured nontrivial
field-dependent signals as shown in Fig. 3.6. Fig. 3.6a shows a polarization
dependence of the measured field-sweep signal at 785 nm. In contrast, Fig. 3.6b
captures field sweeps for two different wavelengths and for a fixed polarization of
θ = 45◦. Clearly, the signal is substantially stronger at 405 nm and is polarization-
dependent. We measured virtually identical dependencies also for the silicon
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substrate. This leads us to a conclusion that a substantial signal artefact (the
signals are up to 1 mrad for 405 nm) originates in the experimental setup itself.
As the magnetic field outside the cryostat was negligible (as confirmed also by a
Gauss-meter), we suspected the cryostat windows had a nontrivial magnetooptical
response. This assumption was confirmed when we removed the windows for
a room-temperature experiment, which resulted in suppression of the artefact
signal. A measurement at low temperatures required the windows to be installed,
and thus we could not remove the artefact entirely. However, we managed to
suppress it using the optimal configuration, i.e., the wavelength of 785 nm and
45◦ polarization, which is apparent from Fig. 3.6. For the polar geometry, this
posed no limitation for our experiment since the polar Kerr effect, observed in
this experiment, is polarization independent.
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Figure 3.6: A field sweep of a magnetooptical artefact originating in the cryostat
windows as measured on a Mn5Si3 sample at 296 K. a The dependence for multiple
orientations of linear polarization at 785 nm. b A field-sweep for different wavelengths
and θ = 45◦.

Field sweeps in longitudinal field geometry The experimental setup for field sweeps
in longitudinal geometry was analogous to the previous magnetooptical methods
and is shown in Fig. 3.7. Here, the light source was again a laser diode system with
either 405 nm or 785 nm wavelength and power set to 1 mW. Since this geometry is
suitable for observation of the quadratic MO effects that are strongly polarization-
dependent, a polarizer and a half-wave plate defined the polarization orientation.
The sample was placed in a closed-cycle cryostat (Montana Instruments) so that
the magnetic field vector was lying both in the sample plane and in the plane of
incidence. The measurement was done in the reflection geometry with the angle of
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incidence of approximately 2◦. We measured the change in the linear polarization
by an optical bridge and a lock-in method as described above.
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Figure 3.7: Experimental setup for detection of the magnetooptical signals with a
longitudinal geometry of the magnetic field. Here P is a polarizer, λ/2 is a half-wave
plate, A, B are photodetectors, and A+B, A-B are differential preamplifiers. The angle of
incidence was approximately 2◦.

Similarly to the polar field sweeps, there was an artefact originating in the
cryostat window, however substantially weaker. It was not strongly polarization- or
wavelength-dependent, and we managed to suppress it within the data processing.

3.3 Experimental results
In this chapter, we present results of the magnetooptical study of a band-split
collinear antiferromagnet (altermagnet) Mn5Si3. Therefore, this survey aims to
highlight the perspective magnetooptical experiments that could complement the
already successful transport methods described above. A magnetooptical study of
the altermagnets is particularly important because of the perspective of studying
their domain structure by magnetooptical microscopy or the in-situ measurement
of their magnetic properties on spintronic devices.

We show the results of both the different magnetooptical methods as well
the basic optical characterization of Mn5Si3 by optical spectroscopy. The aim is
to understand the optical behaviour of the material, as well as to identify the
dominant MO effect that could be used for potential MO magnetometry.

3.3.1 Spectral reflectance
Measurement of spectral reflectance was done in order to identify particular
transitions in the band structure that could be related to the magnetic ordering
of the material. For this purpose, we measured a temperature dependence of
the reflectance spectrum in the sample MnSi80 as shown in Fig. 3.8a. The
spectra were processed using the Si (100) calibration as described above. As an
additional reference experiment, we performed an ellipsometric measurement using
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Figure 3.8: Reflectance spectra of MnSi80. a Spectral reflectance measured at four
different temperatures. The inset shows raw calculated curves. The data in the main
panel were normalized with respect to the signal at room temperature. The normalization
is based on the reflectance at 785 nm. Both graphs include a spectrum measured by
an ellipsometer. b The temperature dependence of reflectance measured for a fixed
wavelength of 785 nm. c Spectral reflectance measured at 180 K for three magnitudes
of an magnetic field applied in the sample plane.
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a spectroscopic ellipsometer (Woollam RC2 ). The data are included in Fig. 3.8a
for comparison.

The agreement between the measurement using an ellipsometer and our con-
figuration with a spectrometer is both quantitatively and qualitatively good. The
only discrepancy occurs for longer wavelengths above roughly 800 nm where the
spectra start to differ by approximately 10 %. As the agreement for the short
wavelengths is relatively good, we suppose that the calibration discussed above
performs well for the Mn5Si3 sample at room temperature.

The same experiment was performed at low temperatures, where we observed
a substantial decrease in reflectance as visible in the raw data in the inset of
Fig. 3.8a. From our measurement of reflectance temperature dependence (see Fig.
3.8b), we know that the reflectance at 785 nm is weakly temperature-dependent
and varies by less than 4 % between 293 K and 30 K. Therefore, we suppose that
the change of the absolute reflectance in the inset of Fig. 3.8a is an experimental
artefact, supposedly caused by mechanical movement of the sample in the cryostat
during the cooldown process. It is most likely not an intrinsic property of Mn5Si3.
We thus scaled the low-temperature data to the room temperature dependence
using the reflectance at 785 nm, which is shown in the main graph of Fig. 3.8a
(ellipsometry measurement is unchanged). The same scaling was also done in Figs.
3.8b,c.

To investigate the response of the band structure to an external magnetic
field, we also measured the reflectance spectra with an in-plane magnetic field of
±900 mT as shown in Fig. 3.8c.

The reflectance spectrum in Fig. 3.8a does not show any specific feature
which would systematically change with temperature. Apart from the general
trend of increasing reflectance with wavelength, we find one characteristic feature
in the spectrum — the reflectance step around 360 nm. Another Mn-based
noncollinear antiferromagnet Mn3NiN evinces a peak in reflectance around 400 nm
[83] supposedly connected with an optical transition to the 3d states of the
magnetic manganese atoms [84]. This opens up the possibility that the observed
step in Mn5Si3 may also be connected with these transitions. Furthermore, it
motivates us to focus on the near UV region within our magnetooptical experiments.
However, to make any definite conclusions about the observed spectrum, it would
be necessary to compare it with an ab initio calculation.

For our further magnetooptical measurements, it was particularly interesting
to study the influence of an external magnetic field on the band structure. If
there was any change with the magnetic field present, it would enable us to select
interesting spectral regions for further measurements. However, as apparent from
Fig. 3.8c, the external magnetic field does not influence the spectrum at all. We
suppose that the field of 900 mT is not strong enough to manipulate the magnetic
moments of Mn5Si3.

3.3.2 Magnetooptical measurements
The magnetooptical measurements were performed as an optical analogy to our
transport experiments in Chapter 2. We conducted two types of magnetooptical
experiments: The aim of temperature sweeps was to pinpoint the phase transition
temperatures where magnetooptical signals are expected to change. The second
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method — field sweeps, served as a direct counterpart to the transport measure-
ments of the anomalous Hall effect and anisotropic magnetoresistance, with the
perspective of evaluating the magnitude of the corresponding magnetooptical
phenomena, i.e. the polar Kerr effect and the Voigt effect.

Temperature sweeps During a temperature sweep, we measured the magnetoopti-
cal response βMO as a function of the sample base temperature set in the cryostat.
The temperature was gradually changed between 305 K and 30 K with a constant
rate of 8 K min−1. The measurement was done for different wavelengths, linear
polarizations of the incident light, and magnitudes of the applied out-of-plane
magnetic field (with the magnitude of 207 mT). Results of the temperature
sweeps, measured in the sample MnSi80 are shown in Fig. 3.9 for the wavelength
of 600 nm, 0◦ polarization, and no external magnetic field applied. Besides the
magnetooptical signal βMO in Fig. 3.9a, we also present the normalized reflectance
signal (corresponds to normalized V+) in Fig. 3.9b.
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Figure 3.9: Temperature sweep measured on MnSi80 using the wavelength of 600 nm
and no magnetic field. The “strained” curve was measured using a configuration in Fig.
3.4b, whereas the strain-free experiment is based on a technique described in Fig. 3.4c.
A control measurement on Si(100) is also included. a Temperature dependence of the
magnetooptical signal. b Temperature dependence of normalized reflectance.

Firstly, we performed the measurement with the sample MnSi80 directly glued
on the coldfinger, as drawn in Fig. 3.4b. This temperature sweep is shown in Fig.
3.9 and is labelled as “strained”. Then we attached the sample on additional Si
substrates, in a configuration drawn in Fig. 3.4c. The corresponding measurement
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is labelled as “strain-free” in Fig. 3.9. Finally, the same experiment was repeated
on a silicon substrate used as a nonmagnetic reference (silicon was directly glued
to the coldfinger). We measured both the temperature sweeps down (from room
temperature to 30 K) and then up. The signal always regained its initial value (i.e.
0 mrad since the optical bridge was balanced at the beginning of the measurement).
This means that the curves in Fig. 3.9 are not a result of a (e.g., mechanical) drift
in time, but they correspond to a real optical signal.

By comparing the data in Fig. 3.9a, it is apparent that the “strained” con-
figuration shows a strong MO response below 120 K. At higher temperatures,
the signal drops rapidly to zero. The largest change occurs between 100 K and
50 K. In contrast, the “strain-free” measurement yields a signal comparable with
the nonmagnetic silicon response. This leads us to the conclusion that the large
magnetooptical signal in the “strained” configuration is induced by the mechanical
stress of the sample, caused by the different coefficients of thermal expansion for
silicon and copper. This strain should be relaxed in the “strain-free” configura-
tion through multiple silicon layers. This conclusion is supported by observing
structural changes on the sample surface when removing the sample from the
coldfinger after the first measurement. A microscopic image (taken using an
optical microscope with magnification 20×) of the damaged sample is shown in
Fig. 3.10. Note that a plain, undamaged layer has no structure. This could result
from the Mn5Si3 layer being torn by the quickly relaxed strain after removing the
sample.

Figure 3.10: A optical microscope image
of a damaged sample MnSi80 after multiple
temperature cycles. Magnified 20×.

Furthermore, there might be an ad-
ditional explanation for the large βMO

signal related to the structural changes
of the sample. The reflectance of the
strained sample changes by approx. 9 %
(see Fig. 3.9b) in the whole tempera-
ture region, which indicates that the
strain induces changes in the crystal
structure in Mn5Si3. The structural
changes may result in the changed op-
tical properties, i.e. reflectance and op-
tical anisotropy, which can be observed
both in reflectance and in βMO (Fig.
3.9a,b).

During the measurement in the
“strain-free” configuration, we experi-
enced issues with the reproducibility
of the data. Therefore in Fig. 3.9, we
present only those dependencies which
we were able to replicate. For example, we do not present the temperature sweeps
with an external magnetic field applied, which was unreproducible. The βMO

signal observed in Mn5Si3 during a “strain-free” measurement could be a sign of
an intrinsic magnetooptical response of Mn5Si3, or it may be connected with the
thermally induced strain in the cryostat windows. The latter explanation could
also hold for the measurement of the nonmagnetic silicon substrate. However, the
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signal on silicon can also be connected with strain-induced optical anisotropy as
the silicon layer was directly glued to the coldfinger.

Finally, we shall discuss a possible effect of the strain on the spin structure of
Mn5Si3. The substantial magnetooptical signal in the “strained” measurement
is present only at low temperatures (see Fig. 3.9a), which could indicate that
only the low-temperature noncollinear phase of Mn5Si3 is sensitive to strain. The
phase transition from collinear to noncollinear phase occurs below 100 K (the
precise phase-transition temperature is sample-dependent), matching the observed
increase of the signal. However, an alternative explanation can be given that
the strain generates purely optical anisotropy in the sample. This effect may
not be linear and appears only when a particular strain threshold is exceeded.
The nature of our results prevents us from making any definitive conclusions
about the origin of the effect, and further studies are required. Particularly, we
suggest measuring the effect of strain by using piezo stressors rather than the not
well-defined thermal strain.

Despite all the debatable points, we are positive to claim that Mn5Si3 shows a
robust optical response when exposed to mechanical strain. The signals may be
connected with nonmagnetic optical anisotropy, or they result from strain-induced
magnetooptics. The latter possibility justifies our further study of Mn5Si3 by
magnetooptical magnetometry, i.e. field sweeps.

Sweeps in polar field geometry Transport measurements of Mn5Si3 show a strong
spontaneous Hall response [60]. Here, we aim to explore the magnetooptical
analogy of the AHE — the polar Kerr effect.

For the polar field sweeps, we applied an external magnetic field perpendicular
to the sample surface and measured the magnetooptical response βMO in reflection
with the near-normal incidence of the light. The magnetic field was swept between
±900 mT, and the rotation of polarization plane βMO was detected at various
temperatures, covering both antiferromagnetic phases of Mn5Si3. We used different
orientations of linear polarization and two wavelengths of incident light — 405 nm
and 785 nm, to suppress the experimental artefacts (see Sec. 3.2.3) and to
maximize the magnetooptical response.

An example of the measured data is shown in Fig. 3.11 for the sample MnSi82.
Here, we present the field sweeps at four temperatures: 60 K in the noncollinear
phase, 180 K in the collinear phase, and the transition temperature between
these antiferromagnetic phases (90 K). The last temperature, 210 K, is at the
transition to the paramagnetic state. The curves were measured using the laser
wavelength of 785 nm with two different orientations of polarization. As there was
also a nontrivial field-dependent signal at room temperature (see Fig. 3.6), which
supposedly originated in the cryostat windows — and thus does not significantly
change with temperature — we subtracted this data from the curves measured at
lower temperatures.

The geometry of our setup for polar field sweeps corresponds to the measure-
ment scheme of the polar Kerr effect. When measuring the field dependence of the
magnetooptical signal, the PMOKE would manifest as a saturating hysteresis loop
[74]. However, we do not observe any systematic field-dependent signal in these
data. The reason might be a relatively high noise level, with a peak-to-peak noise
amplitude of approximately 0.2 mrad. The dominant noise source was presumably
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Figure 3.11: Dependence of magnetooptical response βMO on the applied magnetic
field during a polar field sweep for the sample MnSi80. The measurement was done for
multiple temperatures and two orientations of polarization: θ = 0◦ is shown in dark
and θ = 45◦ in light color.

a cone-shaped pole piece of the electromagnet, through which the light entered
the cryostat chamber. The aperture in the piece was of comparable size to the
beam width resulting in the beam being partially cut.

We can thus conclude that any Kerr response, if present, is beyond the
resolution of our experimental setup, which is about 200 µrad. This is not
surprising, as the Kerr response of an example noncollinear bulk antiferromagnet
Mn3Sn is only about 350 µrad for the fully saturated hysteresis loop [71]. With
the field of 900 mT, we are not even close to saturation [60] and the possible
formation of domains would diminish the magnetooptical signal even more.

We also cannot exclude that Mn5Si3 does not show any spontaneous Kerr
response at all. Magnetooptical phenomena in Mn5Si3 have not yet been the-
oretically predicted, and we entirely rely on the analogy between the MO and
transport effects (see Sec. 3.1.2).

Sweeps in longitudinal field geometry Since we did not observe any apparent
signal related to the polar Kerr effect, we moved to the geometry suitable for an
observation of the Voigt effect. The Voigt effect is an even function of effective
magnetization (an analogue of transverse AMR) and therefore is also present in
conventional, fully compensated antiferromagnets [66].

The measurement of the field sweeps in longitudinal geometry was analogous
to the polar configuration: the magnetic field was swept between ±900 mT, and
we experimented with various temperatures and polarization orientations. Here,
the polarization dependence was particularly important since the Voigt effect is
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strongly polarization-dependent [11]. The field orientation was parallel to the
sample surface. This enabled us to do the measurement with a lower noise level
since the incident beam did not pass the aperture in the pole piece (see Fig. 3.7).

The measurement was done at several temperatures between 30 K and 296 K.
To suppress any parasitic signal originating in the cryostat windows, we subtracted
a curve measured at room temperature from all the presented measurements. Note
also that each curve is an average of multiple sweeps, usually twenty.

Fig. 3.12a shows a field dependence of βMO measured in the MnSi82 sample
at four different temperatures. The data are shown for two different polarization
orientations of θ = 0◦ and θ = 45◦. The signal significantly depends on the applied
magnetic field at 30 K and 120 K, which becomes negligible around 200 K. The
detected signals at lower temperatures are an even (quadratic) function of the
external magnetic field. This, in principle, agrees with the dependence we would
expect, since the longitudinal field configuration should be sensitive to the magne-
tooptical Voigt effect in reflection. The VER is quadratic in the magnetic field,
which is analogical to AMR (see Fig. 2.8). However, the observed magnetooptical
signal seems to be polarization independent while the magnetooptical Voigt effect
depends on the angle between the polarization and magnetization [11, 64, 66].

In order to unveil the origin of the observed signals, we further focused on its
dependence on the wavelength, which was investigated in the sample MnSi80. The
signals were again detected at different temperatures to distinguish between the
individual magnetic states of the material, as shown in Fig. 3.12b. We measured
the field sweeps using two wavelengths of the incident light: 405 nm in the UV
region and 785 nm in the near IR. Note that in this measurement, we managed
to decrease the noise level to the peak-to-peak amplitude of 10µrad. We again
observed a quadratic-like dependence of βMO on the external magnetic field that
decreases with increasing temperature. The same feature is present for both the
wavelengths (see Fig. 3.12b). The only exception is the measurement at 210 K
where a substantial signal appears for the wavelength of 785 nm, which is even
more pronounced than those at lower temperatures of 180 K and 120 K. The
origin of this effect remains yet to be resolved, but it may have happened that
the removal of the room-temperature artefact failed in this specific measurement.
Otherwise, the magnetooptical signal measured using 785 nm has a similar or
higher magnitude compared to those for the wavelength of 405 nm.

To further confirm the magnetic origin of our signals, we also did a control
measurement on a plain Si(100) substrate at the same temperatures as in the
case of Mn5Si3. These are shown for comparison both in Fig. 3.12a and in Fig.
3.12b for the wavelength of 785 nm and θ = 0◦. Within our noise level, there
is no magnetic-field dependent signal. This leads us to the conclusion that the
magnetooptical signal we observe in MnSi80 and MnSi82 is related to the Mn5Si3
layers, and it cannot be explained in terms of a measurement-system artefact. The
temperature dependence of the signal supports this claim, as it vanishes around
200 K, close to the Néel phase transition (around 210 K).

In conclusion, we observe signals quadratic in a magnetic field that are corre-
lated with temperature similarly to the magnetic ordering in Mn5Si3. However, to
attribute them unambiguously to the Voigt effect, further experiments, such as
a detailed spectral dependence or more extensive studies on various samples are
needed.
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Figure 3.12: Dependence of the rotation of polarization plane βMO on the applied in-
plane magnetic field during a longitudinal field sweep for a the sample MnSi82 and b the
sample MnSi80. Both panels include a control measurement on a Si(100) substrate, with
the laser wavelength of 785 nm and θ = 0◦. a The data are shown for two polarization
orientations θ = 0◦ and θ = 45◦ and were measured using 785-nm laser light. b Sweeps
were measured using 405 nm and 785 nm with θ = 0◦.
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Conclusion

This work aimed to study thin epilayers of antiferromagnetic Mn5Si3 by means of
magnetooptical and magnetotransport measurements. Mn5Si3 is an example of
the recently proposed class of collinear antiferromagnets that show nonrelativistic
spin-splitting — altermagnets. Since the idea of altermagnetism was first formu-
lated in 2020 [48] and formalized only very recently [7], there is a limited number
of experimental studies available on these materials.

The measurement of magnetotransport properties of Mn5Si3 was performed
on a patterned sample of Mn5Si3 thin epilayer. Firstly, we complemented our
previous measurements of electronic transport [24, 60] with a more detailed analysis
of the measured transverse resistance. Namely, we extracted the topological
contribution from the field dependence of the transverse signal. We observed
that this component is significant in the low-temperature noncollinear phase,
and vanishes in the collinear antiferromagnetic phase. In addition, we observed
a component of the transverse signal that is even with respect to the applied
magnetic field and analyzed it using our novel approach for data processing. This
component also scales with temperature and is strongly suppressed in the collinear
phase. Although the origin of the latter contribution is not entirely explained, both
the described signals serve as useful indicators of the phase transition between
the two antiferromagnetic phases of Mn5Si3.

The magnetotransport was complemented by the thermoelectric measurements
which, however, turned out to be more challenging to perform. The on-chip plat-
inum heater did not provide enough heat gradient to detect any Nernst signal. We
were thus forced to use a configuration with external heaters creating a global heat
gradient over the entire sample. In this configuration, we measured a nontrivial
field-dependent transverse signal that shows a clear saturation at the magnetic
fields of approximately 3 T. We attribute this signal to the spontaneous Nernst
response of Mn5Si3. Surprisingly, the signal does not show any hysteresis as
compared to the spontaneous Hall signals, where a clear hysteresis loop developes
below the Néel temperature. This lack of loop broadening is still under debate,
and we intend to investigate it in more detail. Particularly, we plan to perform an
experiment with the simultaneous detection of the Hall and Nernst signals within
one measurement.

The presence of both the spontaneous Nernst and Hall effects triggered our
search for the complementary magnetooptical signals related to the altermagnetic
order. During the magnetooptical study, we probed the magnetooptical response
of two epitaxial Mn5Si3 samples, very similar to those utilized in transport
experiments. We detected large spontaneous Hall conductivity in Mn5Si3 and we
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thus expected a substantial signal from the polar Kerr effect since both the Hall
and the Kerr response depend on the same components of the conductivity tensor
(though in a different frequency limits). However, we did not observe any reliable
Kerr signal even though we probed the samples by a light of different wavelengths
and polarization orientations. This may have been caused by the high noise level
due to the constraints of our experimental setup.

In contrast, in the Voigt geometry, where we detected the magnetooptical
signal as a function of the magnetic field applied in the sample plane, we observed
a signal that could be possibly attributed to the magnetooptical Voigt effect.
We suppose that this signal arises from the Mn5Si3 layer. However, its origin is
still under discussion since the polarization dependence (or a lack of it) does not
correspond to that expected for the Voigt effect.

The magnetooptical experiments were concluded by measuring the temperature
dependence of the polarization signals in two configurations: In the first one, the
sample was directly glued on a copper sample holder, which induced substantial
mechanical strain. In the second configuration, the strain was relaxed through
multiple silicon layers. The signal measured in the strain-free configuration was
of a comparable magnitude to the control measurement on a silicon substrate.
However, the first, “strained” configuration resulted in a significant rotation of the
polarization plane of approximately 10 mrad, with the most substantial increase
of the signal below 100 K. This leads us to the conclusion that mechanical strain
can induce a large optical response in Mn5Si3, though it is unclear whether it is
connected with its magnetic structure.

To the best of our knowledge, there is no magnetooptical study on an alter-
magnetic material so far, and thus we present the first report of such experiments.
The first pioneering measurements of the spontaneous Hall effect has been recently
reported in altermagnetic RuO2 [85] and Mn5Si3 [24]. However, any record of a
thermoelectric study of an altermagnetic material is missing. In this thesis, we
presented results of the first experiments of this type.

To conclude, this thesis covers the primary characterization of the altermagnetic
compound Mn5Si3 in terms of its transport and magnetooptical properties. Some of
these experiments were the first attempts in this novel class of magnetic materials.
A natural consequence is that we raised more questions than we were able to
answer and that much more experiments have to be done to provide definite
conclusions.
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[66] Tesařová, N. et al. Systematic study of magnetic linear dichroism and

birefringence in (Ga,Mn)As. Physical Review B 89, 085203 (2014).
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