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Abstract
This thesis uses up-to-date meta-analysis methods to produce a systematic
summary of the literature on marginal abatement costs (MAC) of greenhouse
gas emissions. It collects 242 MAC estimates for 2030 and 2050 from 59 studies.
Besides the usual tests for publication bias, the study employs several modern
non-linear tests, such as the TOP 10, the Kink method, the Stem method,
and others. Subsequently, Bayesian model averaging is performed for the first
time in MAC literature to reveal a mild negative publication bias for the MAC
in 2050. The thesis reveals that newer studies provide higher estimates of
MAC. Other factors influencing MAC estimation are the size of stabilisation
targets, emissions baseline, utilising the LEAP model, the inclusion of other
greenhouse gases besides carbon dioxide, and considering the long-run decision
making. Several robustness checks are conducted along the way to confirm the
selection of the dataset and the robustness of the BMA analysis (using weighted
BMA, FMA, OLS). The true value of MAC in 2030 corrected for publication
bias is around 32 EUR/tCO2-eq, while for 2050, it is 59 EUR/tCO2-eq.
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Abstrakt
Tématem této diplomové práce jsou mezní náklady snižování emisí skleníkových
plynů. Studie sestavuje systematický přehled literatury, k čemuž využívá mod-
erní metody metaanalýzy. Práce shromáždila 242 pozorování pro roky 2030
a 2050 z celkem 59 odborných studií. Kromě tradičně využívaných testů pro
odhalení publikační selektivity pracuje s moderními nelineárními testy (napřík-
lad metody TOP 10, Kink, Stem a další). Následné bayesiánské průměrování
modelů odhaduje vlastnosti modelování, které ovlivňují výslednou hodnotu
mezních nákladů. Nejsilnější efekt se našel pro modely, které zpracovávají
data v LEAP modelu. Další vlastnosti modelů, které ovlivňují výslednou
hodnotu mezních nákladů, jsou zahrnutí jiných skleníkových plynů než CO2

a předpoklad rozhodování v dlouhodobém horizontu. Pro potvrzení výběru
správného datasetu a určení stability výsledků provádíme několik testů robust-
nosti. Diplomová práce našla důkaz pro mírnou negativní publikační selektivitu
pro rok 2050. Hodnota mezních nákladů po opravení publikační selektivity je
32 eur/tCO2-eq pro rok 2030 a 59 eur/tCO2-eq pro rok 2050.
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Motivation Climate change crisis is an urgent matter that has to be dealt with
as soon as possible. Even though, some information found in the public spheres do
not seem to be supported by scientific research, thanks to civic engagement, various
policies are now being proposed and often implemented. Nevertheless, it is crucial to
continue researching the climate change topics in order to present up to date results
obtained with credible scientific methods to the policy makers.

The usual rhetoric aims at mitigating the climate change by reducing the emis-
sions of greenhouse gases. It has been a thoroughly discussed topic in the academic
as well as political spheres. The topics of such political discussions are usually sur-
rounding the costs of such mitigation. However, it can be difficult for politicians to
make sense of the countless studies which seek to estimate various abatement costs.
Available research papers work with a wide range of units and substances and often
lead to unreliable conclusion. This study will aim to clarify such variation through
the means of meta-analysis. More specifically, it will focus on marginal abatement
costs (MAC) of greenhouse gas (GHG) emissions. Marginal abatement cost refers to
the cost of eliminating a single unit of emissions.

Kuik, Brander & Tol (2009) already conducted a meta-analysis of marginal abate-
ment costs of greenhouse gas emissions. In their study, they collected data from 26
studies published in 2006 and found the cost estimates to be sensitive to the strin-
gency of the stabilisation target, the assumed emissions baseline, and other factors.
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Hypotheses

Hypothesis #1: The MAC estimates are positively influenced by emissions
baseline.

Hypothesis #2: The stabilisation target has a negative effect on MAC.

Hypothesis #3: The literature estimating marginal costs of greenhouse gas
emissions is affected by publication bias.

Methodology The aim of my research is to examine the sensitivity of MAC esti-
mates to the specifications and assumptions underlying these models. Specifically, I
will be focusing on MAC of stabilisation targets, baseline emissions, the inclusion of
other greenhouse gases in the emission target and other factors. Additionally, I will
calculate MAC ranges for alternative stabilisation targets for GHG concentrations.

The first step in conducting a meta-analysis is the collection of primary research.
I am going to be using all the studies examined by Kuik, Brander & Tol (2009)
(I have already politely asked the authors for their dataset) and I will thoroughly
research all relevant economic journals, as well as Google Scholar, to find the most
appropriate studies. In each paper I need to carefully examine that standard errors
(or other statistics from which standard errors can be computed) are included. In
case of an absence of standard errors, I will follow the technique of Havranek, Irsova,
Janda & Zilberman (2015).

After collecting all relevant studies, I am going to create my dataset. I will
convert all the reported values to a common unit, clear the dataset from outliers and
winsorise, subsequently. Regarding the publication bias, I am going to be utilizing
the Ordinary Least Squares (OLS) technique, Fixed Effects, Between Effects and
other suitable methods. I am going to be using cluster standard errors when possible
and presenting confidence intervals. For dealing with heterogeneity, I am going to
utilize Bayesian (baseline) and Frequentist model averaging.

Expected Contribution Using the methods of meta-analysis, I am going to con-
duct a quantitative survey of research papers estimating marginal abatement costs of
greenhouse gas emissions. I am going to follow previously conducted meta-analysis
by Kuik, Brander & Tol (2009). In addition to their model and methodology I am
going to focus on publication bias using mixed-effects multilevel meta-regression. I
am expecting to obtain different results after correcting for the bias. I am aware that
the climate change research is developing at a rather fast pace. Therefore, I expect
to obtain different values of costs than Kuik, Brander & Tol (2009) since their data
collection is from 2006 and earlier. My findings can be directly used for climate
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change policy implications, because the results obtained will take into account all
the factors that research papers in this field work with.

Outline

1. Introduction (Motivation) – There is already one meta-analysis on marginal
abatement costs of greenhouse gas emission from 2009 (working with data from
2006), I am going to revisit this paper and bring the analysis up to date.

2. Literature Review – I will describe already existing literature on marginal
abatement costs that I will be working with.

3. Methodology – I will present the technique of meta-analysis research method-
ology, including the necessary tests.

4. Data – I will describe the data and their sources.

5. Empirical results – I will discuss my findings, my baseline regressions and
robustness checks.

6. Conclusion – I will summarize results of the research, their implications for
policy and propose a course for future research.
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Chapter 1

Introduction

Greenhouse gas emissions play a fundamental role in climate change. One of the
most profound global agreements aiming to reduce global warming, the Kyoto
Protocol, established reducing greenhouse gas emissions as the key action to
slowing down climate change. Public discussion is usually linked with the costs
associated with emissions mitigation. However, scientific literature supplies
different values, and each study works with different assumptions. How should
we decide from the amount of scientific results, which ones to follow? This
research seeks to explain the true effect of Marginal Abatement Cost (MAC) -
the price of reducing one additional unit of emission. To find this true outcome,
the thesis employs the method of meta-analysis and sorts through literature to
find one true cost of mitigating greenhouse gas emissions. A meta-analysis is
a methodical review and quantitative literature synthesis summarising (and
explaining) the variation found among empirical results.

The study can be put alongside several meta-analyses estimating the true
effect of the MAC. It directly extends the previous study conducted by Kuik
et al. (2009) because it connects their dataset from 2006 with empirical results
published since then. Other meta-analyses, for example Barker et al. (2006),
Fischer et al. (2003) or Repetto & Austin (1997) focus on a relationship between
the MAC and a specific aspect. By contrast, this study employs a wide range
of characteristics collected from literature to reveal which one affects the MAC
the most. On top of that, this study is the first to examine both publication
bias and heterogeneity.

The analysis therefore consists of two main building blocks: publication bias
analysis and heterogeneity analysis. Publication bias arises when the paper’s
publication depends on the significance of its results. In the heterogeneity
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analysis, we examine which model specifications influence the MAC estimate.
We collect 242 observations of MAC for the years 2030 and 2050 from 59
primary studies. Due to a lack of uncertainty measures in primary studies,
standard errors are approximated, following the method by Havranek et al.
(2015). After a thorough examination, cleaning and adjusting of the data, the
final variables are presented, together with their characteristics. Then, the
meta-analysis can begin. First, the funnel plot is visually observed to reveal
publication bias. The plot is relatively symmetrical, which does not signify
publication bias in the literature. Meta-analysis regression should empirically
validate this conclusion. We find a small publication bias after several linear
and non-linear tests were employed. The true effect corrected for publication
bias is relatively close to the sample mean, confirming this conclusion. The
resulting MAC corrected for publication bias is 32 EUR/tCO2-eq for 2030,
while it almost doubles (59 EUR) for 2050.

In the BMA analysis examining model uncertainty, we find evidence of mild
negative publication bias for the MAC in 2050. We reveal the size of the sta-
bilisation target and emissions baseline to affect the MAC estimate negatively.
The estimate of the MAC for 2030 is lower when a model employing the LEAP
model works with overall GHG emissions or emissions from agriculture. On
the other hand, the MAC 2050 is negatively affected by the number of regions,
including intertemporal optimisation or multigas.

The thesis is structured as follows. Chapter 2 explains crucial concepts
from climate change literature. Next, Chapter 3 presents key concepts for the
MAC analysis and summarises previously conducted meta-analyses and their
findings. Data collection, adjustments, and summary statistics are outlined in
Chapter 4. The next chapter introduces the reader to meta-analysis and serves
as an opening for the following two chapters. The inspection of publication
bias is conducted in Chapter 6, and the heterogeneity analysis is in Chapter 7.
Finally, we conclude the research in Chapter 8, together with limitations to our
research and possible suggestions for future extension. Supporting materials
are attached in Appendix A and Appendix B.



Chapter 2

Abatement of Greenhouse Gas
Emissions

Greenhouse gas (GHG) emissions have been the centre of attention of public
debate for a relatively long time now. Despite the apparent importance of the
issue, previous research has not reached a consensus regarding the actual cost
of reducing GHG emissions. Using the means of meta-analysis, we will seek to
answer the following questions: What is the true effect of marginal abatement
cost in empirical research? Are the reported effects subject to publication bias?
To what extent does the research design (data, estimation methods, variables)
systematically influence the reported results? We use both linear and non-
linear methods to correct publication bias and deal with model uncertainty in
the study using Bayesian model averaging (Steel, 2020).

The abatement of greenhouse gases is a broad topic requiring a certain level
of understanding. Before starting with the meta-analysis, we first explain the
crucial related concepts to understand the research better.

The theoretical background on climate change mitigation has been drawn
mainly from the IPCC report AR5 Climate Change 2014: Mitigation of Climate
Change, prepared by the Working Group III. The IPCC, or the Intergovern-
mental Panel for Climate Change, is a body of the United Nations responsible
for aggregating knowledge on climate change. The report focuses on the litera-
ture discussing various aspects of climate change mitigation published between
2007 and 2014 (IPCC, 2014). An updated version of this report is scheduled
for September 2022. It will focus on the literature published from 2014 to the
present day and will most likely bring new evidence to the discussion. Working
with a new version of the report (AR 6) could lead to more accurate conclusions
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and would make a suitable extension to the research presented here.

2.1 Climate Change
"It is unequivocal that human influence has warmed the atmosphere,
ocean and land." (IPCC, 2021)

2.1.1 Current Climate Change

The Intergovernmental Panel on Climate Change (IPCC) publishes reports
on climate change which are backed by a synthesis of scientific data and ac-
companied by the likelihoods of certain statements (IPCC, 2022). The fifth
assessment report (AR5) talks about observed changes in the climate system
and the influence of greenhouse gas emissions on global warming.

In the last decades, the Earth’s surface has been successively warmer than
in any decade since 1850. The period 1983-2012 has likely been the warmest
period in the last 1400 years for the Northern Hemisphere. Since the pre-
industrial era, anthropogenic greenhouse gas emissions have increased, which
has led to unprecedented atmospheric concentrations of carbon dioxide, meth-
ane, and nitrous oxide. The consequences of economic and population growth,
together with other human activities on the Earth, were, according to the
IPCC, detected in the climate system and are extremely likely "the dominant
cause of the observed warming since the mid-20th century".

The evidence that human actions influence the climate system grows with
each IPCC report published. The IPCC Fifth Assessment Report (AR5) states
that "it is extremely likely that more than half of the observed increase in global
average surface temperature from 1951 to 2010 was caused by the anthropogenic
increase in GHG concentrations and other anthropogenic forcings together"
(IPCC, 2014). Evidence of observed climate change can be shown in many
regions on changing precipitation and melting ice and snow. On top of that, it
can also affect the quantity and quality of water resources.

The risks of climate-related impacts are distributed unevenly and are more
significant for disadvantaged people and communities in developing countries.
Furthermore, even if emissions were mitigated, the impacts of climate change
would continue for centuries. A detailed overview of potential future changes
in the climate system can be found in the IPCC’s report AR5 Synthesis Report:
Climate Change 2014.
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2.1.2 Future Climate Changes

The amount of anthropogenic CO2 emissions is mainly influenced by popula-
tion, namely its size, economic activity, energy use, land use pattern, technol-
ogy, lifestyle, and climate policy. Scientific discourse presented in the IPCC’s
reports utilises the Representative Concentration Pathways (RCPs) to make
projections of future scenarios based on the factors described above (IPCC,
2014). The RCPs describe four different pathways of the 21st century, depen-
dent on GHG emissions and their atmospheric concentrations, air pollutant
emissions, and land use. The pathways are consistent with the wide range of
scenarios used in the literature.

Future climate change and its scale depend on current and future emis-
sions as well as natural climate variability. The RCPs include one stringent
mitigation scenario - RCP2.6, which aims to keep the global temperature rise
below 2 ◦C above pre-industrial levels. There are two intermediate scenarios
called RCP4.5 and RCP6.0, and one scenario with very high GHG emissions -
RCP8.5. Additionally, there is a scenario for no further efforts in constraining
emissions, the so-called ’baseline scenario’. The RCPs reflect consistent and
robust evidence from the literature indicating that there is a linear relationship
between cumulative CO2 emissions and projected global temperature change
up to the year 2100. The Figure 2.1 shows a graphical representation of the
RCPs and the associated scenario categories.

Figure 2.1: The Representative Concentration Pathways (RCPs), source:
IPCC (2014, p. 21)
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2.2 Stabilisation Targets
In order to accurately work with the different future scenarios of GHG emissions
used in literature, we first need to understand their significance. Using stabili-
sation targets and RCPs is one way to consider the projected climate changes
and impacts the GHG emissions stabilisation would bring. The targets analyse
and employ information drawn from the scientific literature.

The climate stabilisation goals are often presented together with the global
mean temperature change (in ◦C) and stabilised concentrations of carbon diox-
ide (in ppmv) (Council, 2011). When studying other GHG gases, the concen-
tration of radiative forcing is usually expressed in terms of CO2-equivalent. The
pathways that would limit the warming below 2 ◦C relative to pre-industrial
levels require substantial reductions of emissions over the following decades and
near-zero emissions of CO2 and other long-lived greenhouse gases by the end of
the century (IPCC, 2014). With no additional effort to reduce the GHG emis-
sions except for those in place today, emissions are expected to grow further.
With the baseline scenario (with no additional interventions), the global mean
surface temperature increase in 2100 is expected to range from 3.7 to 4.8 ◦C.

The studies included in the meta-analysis work with different stabilisation
targets. To reasonably compare the results, the stabilisation targets were con-
verted to a unified metric: concentration of greenhouse gases in the atmosphere
- expressed in CO2 equivalents (ppm/CO2-eq). The other often used metrics
include radiative forcing (W.m-2), the concentration of the greenhouse gas CO2

(ppm/CO2), and global mean temperature (◦C). Table 2.1 presents the classifi-
cation by IPCC (2014) of various stabilisation targets divided into six categories
(I-VI). The overview also serves as a conversion table between the metrics.

Category Radiative
forcing
(W.m−2)

CO2
concentration
(ppm)

CO2-eq
concentration
(ppm)

Global mean
temperature
increase (◦C)

I 2.5 - 3.0 350 - 400 445 - 490 2.0 - 2.4
II 3.0 - 3.5 400 - 440 490 - 535 2.4 - 2.8
III 3.5 - 4.0 440 - 485 535 - 590 2.8 - 3.2
IV 4.0 - 5.0 485 - 570 590 - 710 3.2 - 4.0
V 5.0 - 6.0 570 - 660 710 - 855 4.0 - 4.9
VI 6.0 - 7.5 660 - 790 855 - 1130 4.9 - 6.1

Table 2.1: Stabilisation targets and corresponding metrics, source: IPCC
(2014)
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2.3 Marginal Abatement Cost
To reduce the climate change risk, we need both adaptation and mitigation as
complementary strategies. Each country has had a different past contribution
to GHG emissions and has differing means and financial resources to address
its adaptation and mitigation. Climate policy’s design needs to reflect both
individuals’ and organisations’ perceptions of risk and uncertainty. One of
the methods to evaluate the risks from an economic point of view is marginal
abatement cost (MAC) - how much would have to be paid to diminish one more
unit of emission. In this way, we can use the MAC to describe the potential
and cost of different abatement options (den Elzen et al., 2007). For better
understanding, the literature usually works with several mitigation options and
constructs a marginal abatement costs curve - MACC.

Figure 2.2: Global GHG abatement cost curve beyond BAU – 2030,
source: Enkvist et al. (2010, p. 7)

One of the most referenced works on abatement costs of greenhouse gases
was developed in McKinsey. It was first published in 2007 and then revis-
ited and updated in 2010. In the original report, the authors collected and
highlighted the most beneficial way to abate GHG emissions. Rather than
evaluating the science of climate change, the findings are aimed at policymak-
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ers to get oriented on the problem and offer a relatively simple assessment of
the situation (Enkvist et al., 2007).

The authors used data from the International Energy Agency (IEA) to
establish a "business-as-usual" (BAU) projection for their comparison in 2010,
2020 and 2030. They focused on abatement costs below 40 euros per ton of
CO2, and their primary outcome was the global cost curve for GHG abatement.
Three years later, the report was updated, motivated by the financial crisis in
2008 and its impact on previous estimates. In Figure 2.2, we can see the
updated GHG abatement cost curve - Version 2.1 (Enkvist et al., 2010).

The abatement cost curve plots possible ways to mitigate GHG emissions
from the least expensive (on the left side) to the most expensive. For each
abatement measure, there is an exact cost per ton of CO2 emission reduced (y-
axis) and a quantity of emissions available for reduction at that cost (x-axis).
In most abatement curves, some measures show the negative abatement cost -
meaning that money would be saved when choosing particular measures. How-
ever, this gap is usually explained as unaccounted-for costs in most literature.
The curves, such as the McKinsey one, are based on engineering estimates
and typically do not include behavioural considerations (Gillingham & Stock,
2018). These kinds of imperfections in the construction of abatement curves
should be considered when concluding policy implications based on them.



Chapter 3

Key Concepts & Literature Review

The objective of this chapter is twofold: to present crucial literature and its
empirical findings and introduce key concepts that have the potential to affect
the MAC and will therefore be included in the analysis. Together with these
concepts, we present previous empirical findings regarding particular aspects.
The most recent paper directly followed is Kuik et al. (2009). Other crucial
studies of the MAC include Barker et al. (2006), Fischer et al. (2003), Barker
et al. (2002), and Repetto & Austin (1997).

The first meta-analysis that focused on the costs of mitigating climate
change was conducted by Repetto & Austin (1997). Their paper The costs
of climate protection: A Guide for the perplexed, undertaken at the World Re-
sources Institute (WRI), works with 16 widely used models and explains "how
key assumptions affect the predicted economic impacts of reaching CO2 abate-
ment targets". Their study was the first to reveal that only a few assumptions
are important to affect the resulting estimate. The results show two main ar-
eas with the highest impact on climate-change mitigation. The CO2 emission
control should be instrumented by revenue-raising policies (carbon taxes, trad-
able permits), and these revenues should be used to reduce other burdensome
taxes. This approach results in more expensive carbon-based fuels, implying
higher costs throughout the economy. The authors suggest using the revenues
to offset some of these higher costs and thus improve the economic impact. The
final recommendation highlights the role of media in contributing to public un-
derstanding. It also includes advice on softening the impacts on the regions,
industries, and communities that would be affected adversely as well as on
negotiating international agreements to coordinate actions.
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Target

The variable Target denotes the stabilisation targets introduced in the previous
chapter. All the collected targets from studies were converted to ppm/CO2-eq
based on the conversion table 2.1. Fischer et al. (2003) claims that the more
strict the stabilisation targets are, the less flexibility there is for alternative
emission scenarios.

In response to the IPCC introducing the emissions scenarios, Barker et al.
(2002) analysed the extent to which the mitigation costs in each scenario can
be explained by the characteristics and the assumptions of the model. They
combine the means of meta-analysis with scatter plots of the data to classify
ranges of estimates rather than single values. They found a strong correlation
between CO2 reduction and GDP reduction as well as highly significant model
characteristics which, when chosen correctly, can explain up to 70% of the
variance.

Emissions Baseline

The variable Baseline demonstrates how technology development, economic
growth, and industry structure influence the predictions in the model. The
variable is expressed as a percentage of emissions in the future (2030 or 2050),
where 1 (or 100%) denotes emissions in the baseline year. It essentially outlines
how much the emissions are expected to grow in the future without any effort
expended to mitigate them. Together with the stabilisation target, this variable
shows the emissions mitigation effort.

Top-Down and Bottom-Up Models

The impact of climate change policies is modelled using two kinds of economic
analyses - ’top-down’ and ’bottom-up’ models. The top-down model is an
aggregate model of the economy as a whole "that represents the sale of goods
and services by producers to households and the reciprocal flow of labour and
investment funds from households to industries" (Repetto & Austin, 1997).
The scope for technological substitution is deduced from the past. On the
contrary, the bottom-up model considers the actual "technological options for
energy savings and fuel-switching that are available in individual sectors of the
economy, such as housing, transportation, and industry. Information on the
costs . . . is then aggregated to calculate the overall cost" (Repetto & Austin,
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1997). These models are usually more optimistic about the magnitude of cost-
effective energy savings.

In order to capture which model was utilised in the research, we created a
dummy variable called Top-down. When the employed model was top-down,
the variable is equal to 1, while for the bottom-up, the variable is 0.

LEAP Model

There are several methodological approaches for estimating the MAC. In pri-
mary studies, we usually come across GAINS, AIM, MARKAL, TIMES or
IMAGE simulation models. Here, we present the integrated model LEAP be-
cause it is used the most in our dataset, and we include it as a dummy variable.
LEAP is a Windows-based tool for comprehensive analysis of GHG mitigation
assessment, developed by the Stockholm Environment Institute with funding
from the World Bank and the UNEP (UN Environment Programme). Countries
worldwide utilise it to develop their Intended Nationally Determined Contribu-
tions (INDCs) - outlined steps they will take to tackle climate change. LEAP
focuses on energy sector GHG emissions (but can be used across all sectors)
and, apart from GHGs, examines local air pollutant emissions, energy security,
economic costs, land-use change, and forestry (Hong et al., 2016; Heaps, 2018).
The variable LEAP equals 1 when the model employs the LEAP model for the
estimation.

Induced Technological Change

Another significant concept when discussing climate change and possible path-
ways for policymakers is Induced technological change (ITC). Clarke et al.
(2008) describe the term as "the alteration to the rate or direction of tech-
nological change in response to a particular policy or set of policies. . . ; the
concern is whether the sorts of policies that are considered in the climate con-
text. . . might induce additional or different technological changes". In other
words, the overall GHG mitigation policy and subsequent carbon price are di-
rectly connected with the direction and magnitude of progress in abatement
technologies. For researchers and policymakers, a fundamental concern should
be how much technological change would occur even without the climate pol-
icy and how much of it is a direct consequence of their policy. Kuik et al.
(2009) therefore claim that "dynamic economic models should not take tech-
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nical progress over time as given, but should explicitly model the interactions
between policy and technical change."

The dummy variable Induced Technological Change reflects precisely that
- when the model contains a specification induced technological change, the
variable is equal to 1, and 0 when it does not.

Barker et al. (2006) in their meta-analysis focused on mitigation costs for
global GHG with respect to induced technological change. They analysed the
effect of technological change on the cost estimates, "measured as changes in
welfare or gross world product, and of the required CO2 tax rates and emission
permit prices." The study acknowledged that induced technological change was
a rather new topic in economic modelling literature in 2006, and the results
they relied on were often controversial and experimental. Nevertheless, they
concluded that even strict stabilisation targets can be achieved in 2030 without
significantly affecting world GDP growth. The marginal abatement prices they
found were $15/tCO2 for 550ppmv and $50/tCO2 for 450ppmv.

Intertemporal Dynamic Optimisation

Another dummy variable called Intertemporal Dynamic Optimisation reflects
the time horizon of GHG emissions within the model. While some models
assume long-living decision-makers who optimally decide on consumption, in-
vestments and abatement over an extended time period (variable equal to 1),
other models consider only optimisation period by period (variable is 0). These
different time profiles can affect the MAC in a particular year.

Fischer et al. (2003) looked into a wide range of estimates for marginal
abatement costs, which led to undercutting the support for policies to reduce
greenhouse gas emissions. They used four kinds of factors that could explain the
differences in estimations of the MAC: emissions baseline, degree of flexibility
allowed for emissions constraints, structural characteristics of the model, and
characterisation of the benefits from pollution reduction (Fischer et al., 2003).

They recommend that subsequent researchers of the MAC should carry
these factors in mind when designing an analysis. The authors described two
approaches to address the range of estimates. The first one is to match all
the assumed policy systems and other relevant assumptions and, together with
a mix of quantitative and qualitative techniques, reveal the differences in the
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models. The second approach is to define specific variables that are expected
to explain the different factors described above.

Some variables they included in the model are similar to ours. They work
with emissions baseline, number of regions, number of energy sources, CCS
and technical change, a number of non-energy sectors, and dummy variables
for perfect substitutes and international capital mobility.

Their analysis showed that "certain modelling choices have important ef-
fects on the estimated costs of reducing greenhouse gas emissions" (Fischer
et al., 2003). Lower MACs are reported in models that assume freer trade and
more perfect substitution of goods across regions. On the other hand, MAC
estimations are higher when assuming greater disaggregation in energy goods.
Baseline scenarios only have a small influence on MAC.

Multigas

While carbon dioxide emissions are at the centre of climate change discussion,
other greenhouse gases should also be considered when talking about miti-
gation. These GHGs are methane, nitrous oxide, ozone, water vapour, and
fluoridated gases. There are several reasons why the main attention is directed
at CO2. Its emissions from fossil sources can be easily estimated from market
data on fuel use, while for other GHGs, the estimation is more complicated.
Also, the extensive research on energy markets, energy efficiency, and possible
alternative energy supply technologies were motivated by the attempt to secure
the supply and prices of fossil fuels (Reilly et al., 2003). Finally, carbon dioxide
accounts for more than half of the effect GHG emissions have on climate change
(Stern, 2008). For an effective environmental and economic policy, one should
address CO2 as well as the other greenhouse gases.

If the research works with a multigas approach, the value of the variable
Multigas is 1. When the research deals with single greenhouse gas, the variable
equals 0.

Carbon Capture and Storage

The idea behind backstop technology is a belief that during the years of abating
GHG emissions, there will be a "transition from one energy source to another"
(Seo, 2021). This transition will lead to lower (or no) dependency on fossil
fuels and other GHG emission sources and provide society with an almost
inexhaustible energy source for a constant price (Seo, 2021).



3. Key Concepts & Literature Review 14

Methods for capturing and storing carbon (such as "Direct Capture and
Storage") are considered the first step towards a backstop technology. The
process lies in capturing carbon dioxide directly from any air, as opposed to
focused capture from a point source where a higher amount of CO2 is present
(e.g. biomass power plant, cement factory). This technology has already been
implemented, and the world’s largest plant for direct air capture opened in Ice-
land in September 2021. The DCAS technology has been called quasi-backstop
because the economic model still determines the price but at least limits the
price from the top.

Another dummy variable included in the meta-analysis is called Carbon
Capture and Storage (CCS). It is equal to 1 when the model acknowledges a
possibility of carbon capture and storage technology as a partial solution to
GHG emissions mitigation and 0 if there is no mention of this technology.

The remaining variables used in the meta-analysis are Regions and Energy
Sources. Variable Regions indicates a number of regions the primary study
works with and ranges between 1 and 162. Energy Sources stands for the
number of primary energy sources in the model. The summary statistics of all
variables can be found in Chapter 4.

Kuik et al. (2009) focused on the sensitivity of MAC estimates to the as-
sumptions and specifications based on the models. On top of that, their goal
was to predict the ranges of MAC for different stabilisation targets. The au-
thors examined 26 models and collected 62 observations of MAC for the years
2025 and 2050. The variables included in their meta-analysis are similar to
ours: stabilisation target, baseline emissions, number of regions, number of en-
ergy sources, and dummy variables for multigas, induced technological change,
top-down approach, intertemporal optimisation, carbon capture and storage.

In addition to these variables, the authors focused on the scientific forum
where the model was first presented. "A modelling forum is a meeting or a series
of meetings of modelling groups that address a common research question and
use a commonly agreed set of assumptions and a common reporting format."
There were three modelling fora: EMF-21, IMCP and USCCSP. The authors
found a difference in reporting for each forum: "Compared to the EMF-21
modelling forum, the models in the IMCP forum tend to report lower MAC,
and the models in USCCSP forum tend to report higher values" (Kuik et al.,
2009).

In conclusion, they found that the MAC estimations were dependent on
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variables of stabilisation target, the emissions baseline, the intertemporal dy-
namic optimisation, multigas, the number of regions and energy sources, and
(to a lesser degree) the modelling forum. When comparing their results to the
policy currently in place in the UK and the EU, they "found that these policy-
specific estimates are still on the low side if the ultimate aim of the policies is to
meet very stringent long-term stabilisation targets" (Kuik et al., 2009). Addi-
tionally, they recommended that economic models should focus on estimating
the MAC for stabilisation scenarios below 500 ppm CO2-eq.

Because we extended the dataset by Kuik et al. (2009), the last variable
(Kuik) assigns 1 to studies that originated in their study. The variable equals
0 when the observation comes from the search query described in the next
chapter. Because Kuik works with studies from 2006 while the new data comes
from 2007 onward, the variable also serves as a time differentiation. Value 1
depicts a study from 2006, while 0 stands for newer data.



Chapter 4

Data

This chapter describes the requirements primary studies had to satisfy to be in-
cluded in the dataset. We also outline the data collection process and obstacles
we overcame to compile the data to a comparable set. Finally, the variables
included in the dataset are presented along with their summary statistics and
a list of studies used in the dataset.

The dependent variable we seek to explain is Marginal Abatement Cost
(MAC). The literature offers estimations of the MAC for different points in
time. After thorough consideration, we decided to collect the estimates for 2030
and 2050 because current literature works with these data points the most. The
MAC is expressed as a price per ton of carbon dioxide (or equivalent) abated.
We also had to standardise the various units used across the papers. We used
2020 Euros per tone of CO2-equivalent as a unifying unit (EUR2020/tCO2−eq).
The selection of independent variables was made mainly on the previous meta-
analysis by Kuik et al. (2009) but also reports from the IPCC and availability
in examined papers.

4.1 Data Collection
We employed Google Scholar to find relevant primary studies. It is a well-known
database with a powerful full-text search and unmatched scope of literature.
After identifying a couple of relevant, heavily cited studies we wanted to include
in the analysis, we built a search query in a way these studies appeared among
the first search results. The final search query is as follows:

marginal abatement cost "curve" OR "curves" greenhouse "gas" OR "gases
emissions long-term.
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In addition, the query was restricted to the years 2007-2022. Kuik et al. (2009)
collected their data in 2006; thus, we expected the final dataset to stretch
over the last 17 years. Our data ended up spanning over 31 years as the
oldest data included in the analysis were from 1990 and the newest from 2020.
Within the search query, we went through the first 100 results and selected
72 studies to examine further - read their abstracts and see if they fit the
requirements to be included in the analysis. We then repeated the search with
studies no older than three years and added a few more studies to the list.
Lastly, we used the snowballing method - inspecting references of the studies
selected from the query. The search was terminated on 31 December 2021. The
PRISMA diagram in Appendix A indicates specific numbers of papers added
to the inventory in each step (Page et al., 2021).

Subsequently, we examined the abstracts of the 76 selected papers and de-
termined whether they could be included in our analysis. Some of the papers
summarised findings of other papers and did not carry any new empirical re-
sults or worked with different assumptions. A substantial number of papers
calculated the MAC for the current period, not the future. Some papers did
not explicitly work with the marginal abatement costs, and some calculated the
MAC for years other than 2030 or 2050. These types of studies were excluded
from further examination. The dataset from Kuik et al. (2009) served as a
template of variables we should be able to retrieve from the studies. Never-
theless, further adjustments had to be made to both datasets before merging
them (these edits are described further in the text).

The papers considered for the meta-analysis were restricted to English-
written to secure correct understanding. Due to the lack of uncertainty mea-
sures reported in papers, we considered limiting the selection to published pa-
pers. Studies published in peer-reviewed journals guarantee quality and avoid
multiple inclusion of the same result. After carefully examining their method-
ology and assumptions, we decided to include papers published elsewhere to
expand our dataset.

Finally, the dataset was compared and combined with the dataset by Kuik
et al. (2009). We chose this paper for two main reasons: it is, to our best
knowledge, the most current one in the field, and it combines several explana-
tory variables that have appeared in previous analyses. The paper is described
in more detail in Chapter 2. After merging the two datasets, we had 135 es-
timates of MAC 2030 and 107 observations of MAC 2050. The Table 4.1 lists
the 59 studies included in the analysis.
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Aaheim et al. (2006) Kesicki (2012)
Ahn & Jeon (2019) Kesicki (2013)
Akimoto et al. (2012) Kurosawa (2006)
Barker et al. (2006) Löffler & Hecking (2017)
Beach et al. (2015) Manne & Richels (2006)
Bernard et al. (2006) de Oliveira Silva et al. (2015)
Böhringer et al. (2006) Pellerin et al. (2017)
Bosetti et al. (2006) Popp (2006)
Chen et al. (2020) Purohit & Höglund-Isaksson (2017)
Chung et al. (2015) Rao & Riahi (2006a)
Clarke et al. (2006) Rao & Riahi (2006b)
Crassous et al. (2006) Reilly et al. (2006)
Eide et al. (2011) Sano et al. (2006)
Escobar Carbonari et al. (2019) Sapkota et al. (2019)
Fawcett & Sands (2006) Sapkota et al. (2021)
Fujino et al. (2006) Smith & Wigley (2006)
Gerlagh (2006) Sotiriou et al. (2019)
Gopal et al. (2018) de Souza et al. (2018)
Hanson & Laitner (2006) Subramanyam et al. (2017a)
Harmsen et al. (2019) Subramanyam et al. (2017b)
Havlík et al. (2013) Teng et al. (2019)
Hedenus et al. (2006) Timilsina et al. (2017)
Jakeman & Fisher (2006) Tol (2006)
Janzen et al. (2020a) van Vuuren et al. (2006a)
Janzen et al. (2020b) van Vuuren et al. (2006b)
Janzen et al. (2020c) Vogt-Schilb et al. (2015)
Jiang et al. (2006) Wagner et al. (2012)
Katta et al. (2019) Xiao et al. (2014)
Katta et al. (2020) Yue et al. (2020)
Kemfert et al. (2006)

Table 4.1: Studies included in the meta-analysis

4.2 Data Adjustments
Before conducting the actual analysis, our data needed to be adjusted to be
comparable. The first data alteration concerned the variable Stabilization Tar-
get. When investigating the primary studies, we could not uncover any estimate
that could be used as a stabilisation target (the estimate was in three studies).
The variable, however, appears in the dataset by Kuik et al. (2009). We de-
cided to apply the best guess estimate based on the relative size of the Baseline
variable and other characteristics stated in each paper to complete the observa-
tions. That way, we could at least approximately analyse its relationship with
MAC estimates.
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Next, we converted the data for Stabilization Target to one metric - CO2-eq
concentration, measured in ppm. Finally, the estimates of MAC needed to be
normalised to one currency and one year - 2020 Euro (specifically, EUR2020/

tCO2 − eq). For this transformation, we utilised market exchange rates from
various currencies to EUR, consumer price index (CPI) from the OECD, and
molecular weights to convert units to a common dimension CO2-eq (Yahoo,
2022; OECD, 2022; Brander, 2021).

To accurately conduct a meta-analysis, we need to include some indicator
of uncertainty (usually standard error) for the estimates we collect. Unfortu-
nately, none of the primary studies included standard errors when presenting
their results. There were no indicators of uncertainty in the dataset by Kuik
et al. (2009); thus, we assume it is not a common practice in this area of study.
To resolve the issue, we followed Havranek et al. (2015) and constructed a stan-
dard error approximation. Their technique works only for papers with more
than one estimate, meaning we added a measure of uncertainty to 50 out of
59 studies. Furthermore, the technique works better the more estimates the
study contains. Therefore, the resulting standard errors should be handled
with caution since most of the studies in the dataset contained only two ob-
servations. To utilise this method, we assume that the estimates in each study
are normally distributed. Then, we calculate the median of the estimates, and
the difference between the 50th and the 16th percentile serves as an estimate
for standard error. Even though this technique is initially meant to complete
just a few missing observations rather than filling each value, this was the best
option the literature offered. Weir et al. (2018) confirmed the validity of this
technique when they concluded that approximating the missing standard de-
viations minimises loss of precision and overall performs better than omitting
trials.

The need for another adjustment appeared when we merged the two datasets.
While the new dataset worked with the years 2030 and 2050, as these were the
years that appeared most in the search, Kuik et al. worked with the years 2025
and 2050. Intending to have a robust dataset, we decided to join the years
2025 and 2030 to one variable (MAC2030). We believe this alteration does not
significantly affect the results. Later in the analysis, we conduct robustness
checks to confirm this assumption.
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Variable Description
Response variables

MAC 2030 Marginal Abatement Costs of Greenhouse
Gases emissions in 2030

MAC 2050 Marginal Abatement Costs of Greenhouse
Gases emissions in 2050

Study specific variables
Publication Year The year the paper was published
Google Citation Number of citations in Google Scholar
No. of estimates Number of estimates in a particular study
Kuik Data from Kuik et al. (2009); time differen-

tiation of studies (dummy)
Empirical setting

GHG Emissions Study analyses overall GHG emissions
(dummy)

Agriculture Study analyses emissions from agriculture
(dummy)

Energy sources Number of energy sources
Regions Number of regions

Methodology
LEAP model Study utilises the LEAP model (dummy)
Top-down Study utilises the top-down approach

(dummy)
Technological Specific

Intertemporal Optimisation Study includes a specification of intertempo-
ral optimisation (dummy)

Carbon Capture and Storage Study includes a specification of carbon cap-
ture and storage (dummy)

Multigas Study examines a multigas policy (dummy)
Induced Technological Change Study includes a specification of induced

technological change (dummy)
Target Stabilisation target
Baseline 2030 Projected Baseline in 2030
Baseline 2050 Projected Baseline in 2050

Table 4.2: Description of the regression variables

The last adjustment included taking natural logarithms of the MAC 2030
and MAC 2050 variables. The advantage of this log-level transformation is that
the coefficient resulting from regression can be interpreted as semi-elasticities;
a one-unit change in the independent variable indicates the corresponding per-
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centage change in the MAC. Before taking logarithms of MAC, we added 850
to each observation to correct for negative values. Further in this chapter,
when plotting selected data characteristics, the MAC variables appear in both
absolute values and logarithms. The choice was made to best illustrate the par-
ticular characteristic. Starting the next chapter, we will use the terms MAC,
MAC elasticity, and log(MAC) interchangeably to address the logarithm of
MAC. Nonetheless, the conclusions apply to MAC in absolute values, too. To
obtain the true effect of MAC, we reverse the logarithm procedure and deduct
850.

Before we could start investigating the data, we had to clean and scrutinise
the whole dataset. We had to make sure all variables qualified to be included
in the dataset, there were no typos, and we carried out winsorising. All the
dummy variables have a decent variability (none of their means were close to
0 or 1). It should be noted that the variability of the dummy variable CGE
comes mainly from Kuik’s dataset since there were only a few papers from the
last 17 years in the search query. The mean of the CGE variables from the
dataset alone was 0.1, but after adding Kuik’s data, the mean shifted to 0.47,
so we decided to keep the variable in the dataset. Even after clearing the data,
some outliers still remained, for which we utilised winsorisation - 2.5% from
each side.

4.3 Summary Statistics
We obtained the estimates for MAC in 2030 and 2050 from each selected study
and additional characteristics that serve as regression variables. As expected,
most of the collected variables are dummy - gaining the value 1 if the char-
acteristic is present, 0 otherwise. The final collection of variables used in the
analysis can be found in Table 4.2.

MAC 2030 2050
No. of observations 135 107
Minimum -266.20 -627.55
Median 16.16 25.64
Mean 41.21 26.42
Maximum 556.92 528.74
Standard Deviation 155.96 155.85

Table 4.3: Summary statistics of the MAC variables
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(a) MAC2030 All estimates
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(b) MAC2050 All estimates
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(c) MAC2030 Study level
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(d) MAC2050 Study level
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Figure 4.1: Kernel density plots and histograms for MACs

Note: The solid and dashed lines depict median and mean, respectively.
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The Table 4.3 displays summary statistics for the MAC variables (in abso-
lute values). The simple mean larger than the median, together with the kernel
density plot in Figure 4.1, suggests skewness to the right for both MACs. For
the regression, they will be transformed to logarithms to closer resemble a
normal distribution. The histogram in Figure 4.1 proves that the skewness
is reduced when working with logarithms. Also, the mean and median came
closer together in both years.

Due to the lack of uncertainty measures reported in primary studies, this
study distinguishes between two data groups. The first (all estimates) dataset
includes all estimates collected from primary studies with the approximated
standard error that is identical for all estimates from one study. The second
dataset (study-level group) includes study-level medians and standard errors
approximated using the method of Havranek et al. (2015). There are 43 study-
level medians (and standard errors) for MAC 2030 and 34 medians for MAC
2050. We can see kernel density plots side-by-side for both MAC estimates
(absolute values, no logarithm yet) versus study-level medians in the panels
(a)-(d) in Figure 4.1. We can see that the study-level estimates are more
centred around the mean for both years, and extremes are less distinctive.
The reason for this redistribution closer to the mean is easily explicable. We
need to remember that there were no uncertainty measures in primary studies.
Therefore, this shift occurs because the standard errors (and median) could
be obtained only from papers presenting more than one estimate. The more
estimates in a paper, the closer the median gets to a ’middle’ value. Even when
a paper with more estimates contains an extreme value, others balance this one
out and together appear moderate. Papers that only present one estimate have
no way of balancing any deviations. Furthermore, since they do not fall in the
study-level group, the all estimates dataset shows more extremes. Further in
the analysis, we conduct a robustness check to confront these two data groups
to reveal which dataset should be used for the analysis.

The Table 4.4 gives an overview of summary statistics for all explanatory
variables. We collected 153 observations for most of the variables (especially
the dummies). The variable agriculture shows the smallest variability from
the dummies. We decided to keep it in the dataset since the mean of 0.1 still
carries specific information and can lead to an insightful conclusion. Regarding
the variables in an empirical setting, most studies focused on certain areas
producing GHG emissions in one country (usually divided into a couple of
regions). Only one study, Purohit & Höglund-Isaksson (2017) works with global
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emissions.
The diversity in the dummy variables indicates a great variety in the focus

of primary studies. The pattern in papers providing two estimates (which is the
majority of the papers) is the following: the authors first present the estimate
for MAC unaffected by any of the specific factors, the second estimate is then
influenced by one or more of these specific factors, such as CCS, Multigas, ITC,
and others.

Variable Observations Mean Standard
Deviation

Publication Year 153 2013 5.90
Google Citation 153 65.42 85.10
No. estimates 153 4.85 3.85
Kuik 153 0.41 0.49
GHG Emissions 153 0.52 0.50
Agriculture 153 0.10 0.31
Energy sources 147 6.92 6.12
Regions 149 15.98 31.38
LEAP 153 0.21 0.41
Top-down 153 0.47 0.47
Intertemporal
Optimisation

153 0.39 0.49

CCS 147 0.41 0.49
Multigas 153 0.52 0.50
ITC 153 0.24 0.43
Target 153 565.30 82.67
Baseline 2030 126 1.86 0.92
Baseline 2050 98 2.15 1.05

Table 4.4: Summary statistics of the explanatory variables

Forest plots in Figure 4.2 and 4.3 serve as a visual representation of collected
estimates. The figures show how heterogeneous and different are the MAC
estimates both within and across the studies. We can see that the older data
from Kuik et al. (2009) are more compact and narrow than the newer data.
Studies published after 2006 show noticeably more heterogeneity—the reason
could be twofold. Primary studies from Kuik et al. (2009) worked with common
research questions and assumptions. Additionally, all the papers were published
in a single year, while the newly collected data covers 17 years of research and
broader areas of GHG emissions.
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Figure 4.2: Forest plot of log(MAC2030)
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Figure 4.3: Forest plot of log(MAC2050)



Chapter 5

Meta-Analysis

Meta-analysis consists of rigorous quantitative methods to review, clarify un-
derlying associations, evaluate, and draw valid statistical inferences from em-
pirical research. For this purpose, we collected the estimates from selected
primary studies and utilised a computing software R. We analysed various
modelled estimates of the MAC and examined their dependence on the mod-
els’ key assumptions and structural characteristics. To test this dependency, we
constructed a meta-regression model with the MAC as a dependent variable.
The MAC variable is assumed to be a linear function of a set of explanatory
variables and a random error.

Generally speaking, meta-analysis should reveal an effect size which could
be summarised across all primary studies. The effect size stands for a metric
quantifying the relationship between two subjects. It captures both magni-
tude (absolute value) and direction (positive or negative) (Harrer, 2022). This
chapter describes the general methodology when conducting meta-analysis and
searching for the effect size. The following two chapters are dedicated to the
meta-analysis methods.

5.1 Methodology
Conducting a meta-analysis essentially translates to evaluating policy from a
more general perspective. The method systematically evaluates and compares
additional information from previous research, experience, and quantitative re-
sults. Bergh et al. (1997) explain that in evaluating environmental costs, we are
interested in "estimates of the monetary valuations of particular environmental
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costs". In such cases, the meta-analysis can be a valuable tool for identifying
"indicators of central tendency in previous studies".

Havránek et al. (2020) provide us with guidelines for conducting meta-
analysis. Aside from presenting us with a selection of studies employing modern
techniques, they list all the necessary components that economic meta-analysis
should contain. Generally, the meta-analysis regression analysis takes on the
following form:

MACi = β0 +
n∑︂

j=1
βjXij + ϵi (5.1)

In our case, i = 2 for two MAC estimates, β0 is constant, βj represents a
vector of coefficients, Xij stands for a subset of all explanatory variables from
n collected studies, and ϵi denotes a disturbance term.

The following two chapters present the empirical part of the meta-analysis.
First, we examine publication bias using the Funnel Plot, the Meta-Analysis
Regression, and the Caliper Test. Publication bias appears when the prob-
ability of a paper being published depends on the statistical significance of
its results. Second, we focus on heterogeneity in the dataset, or other words,
variation in outcomes between studies. We employ the Bayesian Model Aver-
aging and the Frequentist Model Averaging for this analysis. Along the way,
we present robustness checks that determine which data should be used for the
meta-analysis and the strength of the results.

Compared to the thesis proposal, we decided to thoroughly examine which
specifications affect the MAC estimate and find evidence for publication bias in
the literature. Estimating the MAC ranges for alternative stabilisation targets
as proposed did not align with the actual direction of the analysis. Nonethe-
less, with respect to how similar the results of our meta-analysis are to those
conducted by Kuik et al. (2009), we expect the ranges to be approximately
similar.



Chapter 6

Publication Bias Analysis

Publication bias occurs when the chance of getting the study published (or even
submitted) is affected by its results. In his "file drawer problem", Rosenthal
(1979) introduces the idea that we cannot tell how many studies were conducted
but never reported. The accepted view is that a study is more likely to be
published when its results are statistically significant or confirm its hypothesis.
However, even statistically insignificant studies contribute to the real outcome.
It simply means that some conducted studies are inevitably missing in the
dataset, and they are usually the ones with unfavourable findings. Even when
there are meta-analysis techniques that help us find an unbiased estimate of
the average effect size, if the dataset itself is distorted, we might not be able
to find the ’true’ effect reflecting reality.

We use several procedures to reduce (or at least reveal) the effect of pub-
lication bias (and other reporting biases). Unfortunately, the search for the
so-called grey literature (studies not published in prominent journals, unpub-
lished papers, dissertations, and others) goes beyond the scope of this diploma
thesis. Nevertheless, this chapter presents statistical methods to examine the
presence of publication bias. These procedures can not reveal the bias directly
but may indicate it by specific properties in the data (Harrer, 2022).

6.1 Funnel Plot
A funnel plot provides a visual tool to inspect publication bias and heterogene-
ity. The assumption is that studies with large standard errors have larger effect
sizes than those with lower standard errors (which have smaller effect sizes and
might never be published). The funnel plot shows the observed effect sizes
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(usually elasticities) on the x-axis and their standard errors (or other precision
measures) on the y-axis. If there is no publication bias in the sample, the data
points should form an upside-down funnel (Anzures-Cabrera & Higgins, 2010).
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Figure 6.1: Funnel plots

Since there were no precision measures in the primary studies and we had to
approximate them, the dataset for the funnel plot contains only 126 elasticities
for MAC2030 and 103 elasticities for MAC 2050. The plot for 2030 resembles
an upside-down funnel; the points at the top are close to the sample mean,
while at the bottom, the points are more spread out to both sides of the plot.
Even though the plot is not strictly symmetrical, there are only a few outliers.
The outliers come from two studies that report estimates that are close to each
other. This causes the approximated standard errors to be relatively small, and
the elasticities, therefore, do not fall within the funnel structure. Overall, the
plot shows quite symmetrical patterns that do not indicate strong publication
bias. Further investigation is needed to obtain more specific information about
the bias.

The situation for MAC 2050 is quite similar - most points are at the bottom
of the plot, and there are fewer points at the top. The points are mainly in the
first third of the plot, well within the indicated borders. At the bottom, the
data appear more on the right side than the left, which could signal publication
selection. The pattern is symmetrical, which is not indicative of publication
bias. Most estimates lie very close to the sample mean, and there are only a
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few points further on the sides of the plot. These few studies that deviate from
the middle of the plot could later strongly affect our results, and we should
be aware of them. Shapes of both funnel plots reveal that the approximated
standard errors carry information about a study’s precision.

6.2 Meta-Regression Analysis - FAT-PET test
Meta-regression analysis (MRA) represents a more quantitative and objective
method of detecting publication bias than the previously presented funnel plot.
Its primary aim is to "model, estimate, and understand the excess variation
among reported empirical results" (Stanley, 2005). MRA reveals the sensitivity
of reported estimates, estimation techniques, econometric models, and other
issues. On top of that, it can be used to identify publication bias and its
potential effects.

Stanley (2005) encapsulates the initial equation of MRA linear tests as an
analysis of a relationship between the reported effect and its standard error:

MACi,j = β0 + β1 ∗ SE(MAC)i,j + ϵi,j, (6.1)

where i and j stand for the ith observation in the jth study. When publication
bias is absent in the sample, the observed effects are expected to vary around
the ’true’ effect (β0), independently of standard error. We assume the observed
effects to be heteroskedastic, hence the error term ϵi. The coefficient β1 provides
information about the potential magnitude of a publication bias in the sample.

Two tests to quantitatively examine the publication bias are employed: the
Funnel Asymmetry Test (FAT) and the Precision Effect Test (PET). The FAT
tests whether the sample is affected by publication bias (the null hypothesis
H0 : β1 = 0, meaning there is no publication bias), whereas the PET assesses
whether there is a non-zero true effect once the publication bias is corrected
(H0 : β0 = 0, the mean value after correcting for publication bias is zero).
The tests use standard error as a proxy for the amount of selection needed
to achieve statistical significance. Studies that report higher standard error
need to find proportionally larger effect sizes to be significant. If this statistical
significance cannot be achieved by re-estimation, different model specifications,
or data adjustment, we assume the study is not published. Therefore, we expect
greater publication bias for studies with larger standard errors (Doucouliagos
& Stanley, 2013).
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To address potential within-study correlation, we cluster the standard errors
at the study level wherever possible. Inspired mainly by Alinaghi & Reed
(2018) and Stanley (2005), we use the estimators presented in the following
subsections. We divide the tests (and corresponding estimators) into three
categories by their design - linear, study variation, and non-linear. Estimators
introduced by authors other than the two previously mentioned are stated
alongside the corresponding method.

6.2.1 Linear Tests

OLS Estimator

The OLS estimator given by Equation 6.1 calculates the arithmetic mean of
MAC across studies. It serves as a benchmark to compare with other meta-
analysis estimators. The OLS assumptions are violated in our case because the
error term is not constant and varies among individual studies. This leads to
heteroskedastic results, and we have to use clustering of the standard errors at
the study level.

Weighted Least Squares Estimators

The following estimators work with the Weighted Least Squares (WLS) esti-
mation. It allows for correcting heteroskedasticity in the baseline regression
and puts more weight on results with smaller standard errors. To remove any
remaining heteroskedasticity, we cluster standard errors by study level.

The WLS estimations work with Equation 6.1, where the weight (ω) is
applied to each component. The list below presents all WLS estimations used
to reveal publication bias:

1. The Estimator weighted by the inverse standard error (Preci-
sion) uses standard error as the weight. This is a baseline framework of
WLS for tackling heteroskedasticity in the sample.

2. Another estimator uses the inverse of the number of estimates re-
ported per study (n) as the weight. The weight is selected to give each
study the same possibility to affect the result and does not handicap those
with one or few estimates. The estimator is called Study in the text.
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Study Variations

Second group of estimates allows for between- and within-study variation. Here,
the error term breaks down into study-level random effects (ζ) and estimate-
level disturbances (ν):

MACi,j = β0 + β1 ∗ SE(MAC)i,j + ζj + νi,j, (6.2)

1. The Fixed effects (FE) estimator allows for variation across studies
and captures the similarities the observations have within a study. It
assumes one true effect size (weighted average) across all studies. Never-
theless, the standard error of FE can be too large for estimates within the
study with a little variability, and the estimate is then based on studies
with many observations (which could be our case).

2. The Between-effects (BE) estimator allows for variation between
studies and thus should have balanced weights across studies.

3. The Random effects (RE) estimator recognises that the effect can
differ between studies due to heterogeneity. It assumes the unobserved
variables to be uncorrelated with the observed ones and uses a weighting
matrix of both within- and between-study variance.

IV Estimator

Lastly, the IV Estimator takes the inverse of the square root of the number of
observations 1√

ni,j
as an instrument for the standard error SEi. Using Instru-

mental Variables (IV) offers another way to remove heteroskedasticity. This
specific setting introduces the instrument correlated with the standard error
but uncorrelated with the error terms. Another advantage of this method is
that it tackles endogeneity, while the previous methods only assume no corre-
lation between estimates and standard errors.

There are two conditions an IV needs to satisfy to be considered a strong
instrument: validity and exogeneity. The instrument should exhibit a high
correlation with standard error and a low correlation with the error term. Un-
fortunately, this is not the case with this instrument since we cannot reject the
null hypothesis that the instrument is weak. Additionally, the F-statistic from
the first stage equals 1.2, which further confirms that the instrument is weak.
The following section, therefore, proposes another method - p-uniform* esti-
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mate. Unfortunately, this method is not suitable for our dataset. The following
section presents other non-linear tests to reveal the publication bias.

6.2.2 Non-Linear Tests

Non-linear tests serve to check the validity of the previously presented tests.
Unlike linear tests, these do not expect the publication bias to be a linear
function of the standard error. We can observe if the linear relationship holds
on the funnel plot. The points at the top of the funnel are less likely to be
affected by publication bias because they have a very small standard error and
high significance (Stanley, 2005). Again, the standard errors are clustered at
the study level.

1. The P-Uniform* method was first introduced by van Aert & van Assen
(2018) as an improvement of the original p-uniform method for detect-
ing publication bias. The method assumes that p-values are uniformly
distributed at the mean effect size. Therefore, the estimated coefficient
should equal the ’true’ effect when testing the hypothesis. Unfortunately,
the collected data are not suitable for this technique since it works with
variance among standard errors. Because we approximated standard er-
rors, there is always one value per the study, no matter how many esti-
mates the study provides.

2. The Stem-Based method is a non-parametric technique introduced
by Furukawa (2019): "The estimate uses the studies with the highest
precision, which correspond to the "stem" of the funnel plot, to estimate a
bias-corrected average effect". The method selects only the most precise
estimates that minimise the overall standard error. It is a relatively
conservative procedure for detecting publication bias. The model was
estimated using the R-code from the GitHub repository by Furukawa
(2021).

3. The TOP 10 method, as the name suggests, takes only the top 10%
of the most precise estimates. Then, this 10% is averaged and is consid-
ered the true effect, disregarding the rest of the dataset. The method is
introduced in Stanley et al. (2010).

4. The Weighted Average of Adequately Powered (WAAP) by Ioan-
nidis et al. (2017) selects estimates with suitable statistical power. It uses
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a weighted average of these powerful estimates and returns an empirical
lower bound for the bias.

5. The Endogeneous Kink introduced by Bom & Rachinger (2019) as-
sumes that the most precise estimates have no bias. Then, it fits a linear
regression of the primary estimates on their standard errors and adds a
kink at the precision level where the studies are not likely to be reported.

6. The Selection model assumes that authors are less likely to publish
their findings when the t-statistics are too high. Andrews & Kasy (2019)
propose to divide the sample into several subsets bounded by the t-
statistics thresholds. Subsequently, the selection model calculates how
many studies in each subset are over- or under-represented in the pri-
mary literature and re-weights them.

6.3 Interpreting Results
Before we begin evaluating the FAT-PET tests, we present guidance on re-
vealing publication bias from Doucouliagos & Stanley (2013). First, the FAT
reveals whether the estimates are influenced by publication bias. The null
hypothesis is that there is no publication bias. In other words, when β1 is sta-
tistically significant, the publication bias is present. The extent of publication
bias is as follows :

1. "If FAT is statistically insignificant or if |β0̂| < 1, then selectivity is ’little
to modest’.

2. If FAT is statistically significant and if 1 ≤ |β0̂| ≤ 2, then there is ’sub-
stantial’ selectivity.

3. If FAT is statistically significant and if |β0̂| > 2, then there is ’severe’
selectivity" (Doucouliagos & Stanley, 2013).

Consequently, the PET exposes the non-zero true effect of estimates when
the publication bias is corrected. It tests whether β0 = 0 and whether it is
statistically significant. When β0 is not significant, we can assume there is
insufficient evidence to expect any empirical effect (Alinaghi & Reed, 2018).
We can rely on Precision Effect Estimate with Standard Error (PEESE) when
this situation arises. We can see from the test results that this further procedure
will not be necessary.
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6.3.1 Results for MAC 2030

The Table 6.1 shows that only one test detected publication bias at a 1%
significance level - the estimator weighted by precision. The resulting estimate
would imply that the publication bias is ’severe’ in this case. All the other
tests show non-significant FAT estimates, which indicates ’little to modest’
selectivity. In addition, four of these are very close to zero in absolute value,
so we assume no or mild publication bias to be present.

MAC 2030
A: OLS, WLS

OLS Precision Study
Standard Error
(Publication bias)

-0.32
(1.58)

2.19**
(0.81)

0.40
(1.80)

Constant
(Effect beyond bias)

6.78***
(0.03)

6.78***
(0.004)

6.79***
(0.01)

Observations 126 126 126
Studies 43 43 43

B: Study Variations, IV
FE RE BE IV

Standard Error
(Publication bias)

-10.12
(35.6)

-0.37
(1.71)

-10.11
(35.58)

12.56
(32.13)

Constant
(Effect beyond bias)

6.78***
(0.03)

6.78***
(0.02)

6.78***
(0.03)

6.54***
(0.60)

Observations 126 124 126 126
Studies 43 41 43 43

C: Non-Linear Estimates
Stem TOP10 WAAP

Mean beyond bias 6.75***
(0.006)

6.83***
(0.03)

6.78***
(0.003)

Observations 80 9 126
Kink Selection

Mean beyond bias 6.78***
(0.003)

6.78***
(0.02)

Observations 126 125
Significance codes: p<0.001 ’***’, p<0.01 ’**’, p<0.05 ’*’, p<0.1 ’.’
Clustered standard error in parenthesis

Table 6.1: FAT-PET tests - results for log(MAC2030)

Looking further at constants from PET, we see very similar results for all
estimators. The linear tests reveal a statistically significant estimate with a
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mean value of 6.75, revealing the true effect of the log(MAC2030). The value
closely corresponds to the sample mean, 6.78.

The non-linear tests reveal similar outcomes. Even when inputting only a
certain group of data sharing similar characteristics or statistical strength, the
true effect of the log(MAC2030) lies between 6.75 and 6.83. These values are
very close to the sample mean. Putting together all ’true’ effect estimates from
the tests, we arrive at the mean of 6.78. Thus, we conclude that publication
bias is very small in the sample.

MAC 2050
A: OLS, WLS

OLS Precision Study
Standard Error
(Publication bias)

-1.16
(0.83)

0.27
(3.84)

-0.44
(0.69)

Constant
(Effect beyond bias)

6.81***
(0.02)

6.78***
(0.04)

6.79***
(0.02)

Observations 103 103 103
Studies 34 34 34

B: Study Variations, IV
FE RE BE IV

Standard Error
(Publication bias)

2.97
(2.46)

-0.31
(1.01)

4.19
(2.87)

-3.85
(4.65)

Constant
(Effect beyond bias)

6.77***
(0.02)

6.79***
(0.02)

6.77***
(0.02)

6.91***
(0.14)

Observations 103 101 103 103
Studies 34 32 34 34

C: Non-Linear Estimates
Stem TOP10 WAAP

Mean beyond bias 6.76***
(0.03)

6.40***
(0.08)

6.77***
(0.004)

Observations 86 8 103
Kink Selection

Mean beyond bias 6.76***
(0.002)

6.79***
(0.04)

Observations 86 102
Significance codes: p<0.001 ’***’, p<0.01 ’**’, p<0.05 ’*’, p<0.1 ’.’
Clustered standard error in parenthesis

Table 6.2: FAT-PET tests - results for log(MAC2050)



6. Publication Bias Analysis 38

6.3.2 Results for MAC 2050

Results for MAC 2050 in the Table 6.2 show a similar outcome. This is not
a surprise since most of the observations come from the same papers, and we
expect consistent behaviour from the authors. The FAT returned all estimates
as non-significant, suggesting a ’little to modest’ extent of publication bias in
the sample. On the other hand, the true effect is statistically significant for
all linear tests. This reveals an empirically backed effect of MAC 2050, the
mean of all resulting estimates is 6.8, very similar to MAC 2030. Again, the
non-linear tests further prove the true effect and its magnitude - the mean of
all test results is 6.76. The sample mean for MAC 2050 is 6.77, which concludes
that the publication bias in the sample is very small.

6.4 Wild Bootstrapping
We can use confidence intervals obtained via wild bootstrapping as a robust-
ness check for OLS. This method is beneficial when conventional methods are
unreliable due to violation of large-sample assumptions (in our case, a weak in-
strument) and does not assume identical and independent distribution of error
terms. To obtain the results, we use the R package fwildclusterboot by
Joshi et al. (2022) instead of Stata’s boottest. Besides this practical change,
the method stays the same as introduced by Roodman et al. (2019): we use
a model estimated by OLS with a study-level cluster. The technique groups
observations into several clusters, takes residuals from a null model (model fit-
ted without any additional covariates), and randomly assigns weights constant
within each cluster. These re-weighted residuals are then used to calculate new
outcome variables, which then help to calculate test statistics for each cluster.
The result of this procedure is a confidence interval for both standard error
and a constant in the regression.

MAC 2030

The procedure returned the confidence interval [6.75,6.82] for the constant.
Based on the results from other methods in the meta-regression, we can assume
that similar intervals would apply to other estimators, too. On the other hand,
the interval for standard error [-3.27,2.58] does not appear to be statistically
significant since it passes over zero. This supports the results from the meta-
regression analysis. When we reverse the logarithm and subtract 850 to reveal
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the interval for absolute value of the MAC resulting from wild bootstrapping,
we obtain [3.21,61.42].

MAC 2050

Wild bootstrapping also confirms our findings for MAC 2050. The constant’s
confidence interval is [6.80,6.83], in line with the previous results. The inter-
val for standard error is negative, [-2.17,-1.08]. Unlike MAC 2030, the whole
interval lies below 0. Together, these intervals bring no further evidence of pub-
lication bias. The interval for the constant in absolute values is [44.00,74.17].

6.5 Caliper Test
In addition to the previously presented tests, we performed Caliper test by
Gerber (2008). This test reveals the so-called "type II" publication selection -
choosing statistically significant results, regardless of their direction. This leads
to excess variation, resulting in large t-values being over-reported. Bruns et al.
(2019) explain the logic of the test: "...the probability of a t-value being just
above a given threshold or just below this threshold is 0.5 if the interval around
the threshold is chosen sufficiently small." This approach relaxes the exogeneity
assumption and eliminates the need for assumptions about the distribution of
the t-values. The test reveals whether differences between statistical signifi-
cance and insignificance affect the probability of reporting the study. Because
the t-statistics for our data are distributed wider than is common in literature,
we decided for caliper values -3.96 and 3.96 instead of the conventional -1.96
and 1.96. Similar modification can be found in Gechert et al. (2021). The
modification allows more observations to enter the model, and the results are
then more robust (at the cost of losing precision).

MAC 2030

For MAC 2030, the test starts revealing significant results from caliper of 0.4.
The resulting ratios are consistent through narrowing the caliper sizes. The
test reveals that less than half of the estimates are significant above the 5%
threshold for the negative and positive estimates. The estimates around zero
are not statistically significant until size 0.8 but show around 45% of estimates
being significant. From the caliper test, we cannot confirm any preference of
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researchers for the direction of estimates, and there is a slight preference for
non-significant results over the significant ones.
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Figure 6.2: Distribution of t-statistics for log(MAC2030) estimates
(only a section is displayed for better illustration, the test was

performed on the whole sample)

Caliper size 0.2 0.4 0.6 0.8

Threshold: -3.96
0.33.
(0.17)

0.31*
(0.13)

0.37**
(0.11)

0.40***
(0.10)

Observations 9 13 19 25

Threshold: 0
0.25
(0.25)

0.43
(0.20)

0.38.
(0.18)

0.44*
(0.18)

Observations 4 7 8 9

Threshold: 3.96
0.56*
(0.18)

0.44**
(0.13)

0.40**
(0.11)

0.38**
(0.10)

Observations 9 16 20 24
The table shows the share of estimates that are above the critical value of t-stat-
istic in 0.2, 0.4, 0.6, and 0.8 caliper; for example, the coefficient 0.40 means that
40% of the negative estimates are significant and 60% of negative estimates are
non-significant. Standard error in parenthesis.
Significance codes: p<0.001 ’***’, p<0.01 ’**’, p<0.05 ’*’, p<0.1 ’.’

Table 6.3: Caliper test - results for log(MAC2030)
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MAC 2050

The caliper test confirms that non-significant values are preferred over the sig-
nificant ones for the negative estimates. This result is statistically significant at
a 5% level, even for the narrowest caliper size. Positive values repeat the same
pattern, but the findings are slightly less significant. Again, non-significant val-
ues are preferred, which is visible on the jump after the 3.96 threshold on the
histogram in figure 6.3. In contrast, for the values around 0, no conclusion can
be made. There are not enough observations to provide statistically significant
results.
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Figure 6.3: Distribution of t-statistics for log(MAC2050) estimates
(only a section is displayed for better illustration, the test was

performed on the whole sample)

Caliper size 0.2 0.4 0.6 0.8

Threshold: 3.96
0.56*
(0.18)

0.44**
(0.13)

0.40**
(0.11)

0.38**
(0.10)

Observations 9 16 20 24

Threshold: 0
1
(NA)

0.5
(0.5)

0.25
(0.39)

0.2
(0.37)

Observations 1 2 4 5

Threshold: -3.96
0.39**
(0.12)

0.48***
(0.10)

0.32***
(0.08)

0.33***
(0.07)

Observations 18 25 37 46
The table shows the share of estimates that are above the critical value of t-stat-
istic in 0.2, 0.4, 0.6, and 0.8 caliper; for example, the coefficient 0.40 means that
40% of the negative estimates are significant and 60% of negative estimates are
non-significant. Standard error in parenthesis.
Significance codes: p<0.001 ’***’, p<0.01 ’**’, p<0.05 ’*’, p<0.1 ’.’

Table 6.4: Caliper test - results for log(MAC2050)
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Overall, we did not find strong evidence of publication bias in the sample
for MAC 2030 or MAC 2050. The results show the true effects to be very close
to the sample means for both years. The resulting MAC for 2030 in absolute
value equals 32.32 EUR/tCO2-eq, and for 2050 the cost almost doubles to
59.09 EUR/tCO2-eq. Although the costs are similar to those that Kuik et al.
(2009) worked with, we expected the newer studies to raise the value since
they work with higher costs. Nevertheless, as we show later in the robustness
check, the new studies suffer from higher publication bias than those from 2006.
Another argument for expecting higher costs is CPI. The results are backed by
the funnel plot, a selection of linear and non-linear FAT-PET tests, the wild
bootstrapping, as well as the caliper test.

6.6 Robustness Check
The final part of this chapter is dedicated to robustness checks to validate the
datasets used for the analysis. Robustness checks are based on various sub-
samples that yield different results, and we should be aware of this difference
and examine it.

6.6.1 Study-Level Medians Dataset

The robustness check in this chapter concerns the MAC estimate, its median,
and its standard error. As described in Chapter 4, the standard errors were
approximated for studies which reported more than one observation. These
constructed standard errors then lead to two ways to input the MAC into the
meta-analysis. The first one is study-level, where we take the median from
each study and the corresponding standard error. This dataset is significantly
smaller than the original, but the values do not repeat, and each study is
represented just once. The second approach is to put the constructed standard
error next to each study’s observation. Even though this results in a more
extensive dataset, the standard errors are identical within a study. To assess
the consistency between these two datasets, we rerun the FAT-PET tests (and
baseline BMA in the following chapter) with the study-level dataset.

Tables B.1 and B.2 (in the Appendix B) reveal the FAT-PET test results
for the study-level median estimates. The first thing worth emphasising is
the size of this sample - for MAC 2030, there are 43 medians, compared to
126 observations in the default dataset. That is almost a three times smaller
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sample which probably results in less robust results. The situation is similar for
MAC 2050 - there are 34 studies (compared to 103 in the default dataset). The
number of observations is sufficient for linear tests. Nevertheless, for non-linear
tests that work with a sub-sample of data (Stem, TOP 10), only a handful of
observations pass the requirements to be included in the calculation. Besides
the sample size, the results in the robustness check appear to be similar to the
previously conducted tests. For MAC 2030, only the estimator weighted by
precision reveals publication bias which would be deemed as ’severe’. All the
other tests show insignificant estimates pointing at ’little to modest’ selectivity
in the sample. The true effect is highly significant for all tests, and the mean
is slightly higher - 6.79, which is closer to the sample mean. Results for the
study-level median of MAC 2050 show a similar outcome. The standard error
estimates are not significant, providing little proof of publication bias in the
sample. The effect beyond publication bias returns significant estimates with
an average value of 6.75, which is again closer to the sample mean than the
previous result. In conclusion, both datasets provide similar results - evidence
for small publication bias for either year, and the true effect is very close to the
sample mean. Each of them could serve as a primary dataset for our analysis.
We chose the log(MAC) dataset for the size sample to get robust results from
non-linear tests.

6.6.2 MAC 2025 vs. MAC 2030

As previously described, we came across a complication when joining the dataset
of new data with the dataset from Kuik et al. (2009). While we collected data
for 2030, Kuik et al. work with 2025. We decided to join them together be-
cause we do not expect a significant difference between the two. To prove this
assumption, we conduct a meta-regression analysis and baseline BMA (in the
next chapter). The results from the robustness check are attached in Appendix
B. The meta-analysis regression returns similar outcomes. The non-significance
of the coefficient for publication error remains, and the true effect stays sig-
nificant. The mean of all true effects corrected for publication bias is slightly
lower - 6.77.



Chapter 7

Heterogeneity Analysis

The last chapter investigates possible sources of heterogeneity among estimates.
Using the explanatory variables collected from primary studies, we show how
the true effect of MAC would change if the studies employed different study
designs. In other words, we reveal which of the collected variables could be
the source of heterogeneity and if they have a significant effect on the MAC
estimate. From the widespread MAC estimates in both positive and negative
values, we can assume that the assumption the primary studies impose reflects
the size of the final estimate. First, we list the explanatory variables that
could capture systematic differences. Second, we describe the techniques of
Bayesian Model Averaging (BMA) since it helps us reveal the possible sources of
heterogeneity. Next, we include a robustness check utilising BMA with weights
and BMA without standard error, Frequentist model averaging (FMA), and
OLS. Finally, we present our results and comment on the findings.

7.1 Explanatory Variables
All sixteen control variables collected from primary studies are listed in Ta-
ble 7.1, accompanied by their means, standard deviations (SD), and variance
inflation factors (VIF). For a detailed description, please refer to Chapter 4.
The variables are divided into four categories: study-specific, empirical setting,
methodology, and technology-specific.

The first step before the model computation is to treat collinearity. We
assume it is likely present since we have a relatively small dataset and many
variables. The VIF can serve as an indicator of collinearity between variables.
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The convention in meta-analyses is to remove variables, to have the VIF under
10 (Viechtbauer, 2010).

Variable Mean SD VIF
2030

VIF
2050

Study-Specific
Publication Year 2013 5.90 17.23 91.32
Google Citation 65.42 85.10 1.89 2.86
Kuik 0.41 0.49 18.27 92.74
Empirical Setting
GHG Emissions 0.52 0.50 4.00 12.15
Agriculture 0.10 0.31 2.21 5.37
Energy sources 6.92 6.12 3.21 1.94
Regions 15.98 31.38 2.32 2.32
Methodology
LEAP 0.21 0.41 3.15 10.48
Top-down 0.33 0.47 3.72 4.30
Technology-Specific
Intertemporal Optimisation 0.39 0.49 1.71 2.26
Carbon Capture and Storage 0.41 0.49 1.67 1.57
Multigas 0.52 0.50 1.72 1.61
Induced Technological Change 0.24 0.43 1.40 1.37
Target 565.30 82.67 1.67 1.61
Baseline 2030 1.86 0.92 1.77 NA
Baseline 2050 2.15 1.05 NA 2.45

Table 7.1: Summary statistics of the explanatory variables

When calculating the VIF for our dataset, we revealed that the variable Pub-
lication Year is highly correlated with other variables. After its removal, the
maximal VIF of the data was 10.2 for the GHG Emissions variable in the MAC
2050 regression. Therefore, the number of explanatory variables decreased to
15 in each regression. Luckily, the variable Kuik still serves us as a time differ-
entiation of studies (which was causing the collinearity).

7.2 Bayesian Model Averaging
The method of Bayesian model averaging (BMA) helps us indicate the best
model to estimate which variables have a significant effect on the MAC out-
come. The intuitive approach to regress the computed partial correlation co-
efficients on all the explanatory variables would be, in this case, very time
consuming, and its results would be affected by inflated standard errors and
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missing true specifications of the model. The BMA helps us analyse hetero-
geneity even with the model uncertainty because it considers all possible models
with different choices of covariates (Raftery, 1995).

First, we present the key equations of the BMA estimation. The term p(Mk)
stands for the prior probability that Mk is the true model. D represents the
data, N the number of explanatory variables, and K the number of models,
where K = 2N . After observing the data, the posterior probability is derived
from the extended Bayes’ theorem:

p(Mk|D) = p(D|Mk)p(Mk)
p(D) = p(D|Mk)p(Mk)∑︁K

m=1 p(D|Mm)p(Mm)
, (7.1)

where the integrated likelihood of model Mk is as follows:

p(D|Mk) =
∫︂

p(D|βk, Mk)p(βk|Mk)dβk. (7.2)

The posterior model probability (PMP) indicates goodness-of-fit for model Mk,
while the prior probability pr(Mk) illustrates the author’s prior beliefs regarding
the probability of model Mk before observing the data (Zeugner & Feldkircher,
2015). Next, the BMA uses the posterior model probabilities to calculate the
weighted posterior mean:

E(βi|D) =
K∑︂

k=1
β̂ikpr(Mk|D), (7.3)

and the weighted posterior variance (or standard deviation) for each explana-
tory variable:

V ar(βi|D) =
K∑︂

k=1
(V ar(βi|D, Mk) + β̂

2
ikpr(Mk|D) − E(βi|D)2. (7.4)

Here, β̂ik stands for the estimated regression coefficient for ith variable in kth

model. Finally, Posterior Inclusion Probability (PIP) is calculated as the sum
of the posterior model probabilities only of the models that include variable i:

PIP =
K∑︂

k=1
pr(Mk|βi ̸= 0, D). (7.5)

The reader can find a detailed technical description of the BMA procedure in
the documentation for the BMS package, which we utilised to work with BMA
- Zeugner & Feldkircher (2015)
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The PIP can be viewed as the probability that a given variable significantly
affects the MAC variable. For example, the variable’s PIP equal to 1 illustrates
that all models utilise this variable. For the interpretation of PIP, we follow the
structure by Kass & Raftery (1995). A variable has a significant effect when
its PIP is above 0.5. Values of PIP above 0.5 are divided as follows:

• 0.5 < PIP < 0.75 indicates a weak evidence of an effect,

• 0.75 < PIP < 0.95 indicates a positive effect,

• 0.95 < PIP < 0.99 indicates a strong effect,

• PIP < 0.99 indicates a decisive effect (Kass & Raftery, 1995).

The BMA method presented above is implemented in the following meta-
regression equation:

MACi,j = β0 + β1 ∗ Xi + β2 ∗ SE(MAC)i,j + ϵi,j, (7.6)

where MACi,j stands for the partial correlation coefficient, Xi represented ma-
trix of explanatory variables, i and j stand for the ith observation in the jth

study. The constant β0 deems no interpretative power because it reflects the
mean effect corrected for publication bias conditional on covariates X, while β2

measures the magnitude and direction of publication bias.
Before the computation can begin, two computational issues need to be ad-

dressed. First is the challenge of computing integrals in the likelihood functions
within the BMA process. Second is the excessively large model space that could
be difficult to process for a personal computer. These obstacles can be solved
by applying the Metropolis-Hastings algorithm of the Markov chain Monte
Carlo method, which estimates only models with the highest PMP (Zeugner
& Feldkircher, 2015). The BMA also requires the meta-analyst to specify the
distribution priors over the parameter space (g) and the model space (pr(Mk)).
The higher the parameter value prior, the more weight is put on data compared
to prior beliefs. Since prior knowledge about the models is relatively small, we
choose the so-called unit information prior (UIP), which sets g = N, as recom-
mended by Hasan et al. (2016). We opted for a ’uniform model prior’ (UMP)
for the prior distribution, assigning an equal prior probability to each model.
We do not use any weights for the baseline BMA, inclusion of weights in the
BMA is in the robustness check.
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7.3 Interpreting Results
The outputs of BMA analysis come in two forms - graphical and tabular. The
figure illustrates the inclusion of variables in models. Different potential com-
binations of explanatory variables in columns are scaled by their PMP. The
higher PIP for each variable, the higher the variables lies on the y-axis. The
red-coloured cell (lighter in greyscale) indicates a negative coefficient direction
in the regression, while the blue-coloured cell (darker in greyscale) illustrates
a positive direction. The white cell means that the variable would be excluded
from the particular model. The table provides precise results from the BMA
analysis. It displays PIP for each variable that can be interpreted using the
above boundaries.

Results for MAC 2030
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Figure 7.1: Model inclusion in Bayesian model averaging for MAC 2030
The response variable is the estimate of log(MAC) for 2030. The hor-
izontal axis denotes cumulative PMPs and only shows the best 5000
models. We employ 1 million interactions and 3 million burn-ins to
ensure convergence.

The baseline BMA output for log(MAC2030) reveals five variables that cross
the threshold of PIP > 0.5: GHG Emissions, Agriculture, LEAP model, Target,
and Baseline. A possible explanation and estimated effect are described in the
section 7.5 that considers robustness checks.
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Variable PIP Post.
Mean

Post.
SD

Standard Error 0.16 0.12 0.39
Study-Specific
Google Citation 0.24 0.00 0.00
Kuik 0.18 -0.01 0.03
Empirical Setting
GHG Emissions 0.78 -0.09 0.06
Agriculture 0.59 -0.07 0.07
Energy sources 0.18 0.00 0.00
Regions 0.17 0.00 0.00
Methodology
LEAP model 1.00 -0.74 0.09
Top-down model 0.12 0.00 0.02
Technology-Specific
Intertemporal Optimisation 0.29 0.02 0.03
Carbon Capture and Storage (CCS) 0.09 0.00 0.01
Multigas 0.11 0.00 0.01
Induced Technological Change (ITC) 0.23 -0.01 0.03
Target 0.54 0.00 0.00
Baseline 2030 0.99 -0.07 0.02
Variables with PIP > 0.5 in bold print.

Table 7.2: Coefficient estimates for log(MAC2030)

Results for MAC 2050
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Energy.Sources

CGE

Target

GHG.Emissions

Agriculture

Google.Citation

Induced.Technological.Change

CCS

Baseline.2050

Multigas

Intertemporal.Optimization

Regions

LEAP.model

Kuik

Standard.Error

Figure 7.2: Model inclusion in Bayesian model averaging for MAC 2050
The response variable is the estimate of log(MAC) for 2050. The hor-
izontal axis denotes cumulative PMPs, and only the best 5000 models
are shown. We employ 1 million interactions and 3 million burn-ins to
ensure convergence.
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The BMA analysis for MAC 2050 produces seven variables explaining hetero-
geneity: Standard Error, Kuik, LEAP, Intertemporal Optimisation, Regions,
Multigas, and Baseline 2050. It is worth noting that an analysis of MACs in
two different years yields different variables that should explain the heterogene-
ity. We will further use a robustness check to verify whether these results hold.
Further discussion on results is held after conducting robustness checks in part
7.6.

Variable PIP Post.
Mean

Post.
SD

Standard Error 1.00 -1.29 0.14
Study-Specific
Google Citation 0.26 0.00 0.00
Kuik 1.00 -0.30 0.03
Empirical Setting
GHG Emissions 0.11 0.00 0.01
Agriculture 0.15 -0.01 0.02
Energy sources 0.10 0.00 0.00
Regions 1.00 0.00 0.00
Methodology
LEAP model 1.00 -0.43 0.05
Top-down model 0.10 0.00 0.01
Technology-Specific
Intertemporal Optimisation 1.00 0.00 0.00
Carbon Capture and Storage (CCS) 0.39 0.01 0.02
Multigas 0.67 -0.03 0.02
Induced Technological Change (ITC) 0.30 -0.01 0.02
Target 0.11 -0.0002 0.00
Baseline 2050 0.63 0.01 0.01
Variables with PIP > 0.5 in bold print.

Table 7.3: Coefficient estimates for log(MAC2050)

7.4 Robustness Check
The last section in this chapter is dedicated to robustness checks. We employ
several methods to confront our results and assess their stability - BMA with
different priors, BMA with weights, BMA with no Standard Errors, Frequentist
Model Averaging, and OLS. The results are discussed in the next section.
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BMA Variations

First, we run the BMA using the number of observations as weights. This
approach gives each study equal importance in the analysis. The results from
this modification are displayed in Table 7.4.

Next, we conclude a robustness check of running the BMA without stan-
dard errors. The construction of standard errors in our dataset poses a certain
limitation for this study. We want to check how the results hold when the arti-
ficially created values are removed from the dataset. The results are displayed
in Table 7.4.

Third, we change priors when running the BMA to ’BRIC’ and ’random
model prior’, as recommended in Hasan et al. (2016). Results from this modi-
fication are displayed in the table B.5 in Appendix B.

Finally, we utilize R package dilutBMS2 from Moser (2016) which contains
a new prior for BMS which addresses collinearity. Concretely, it assigns more
weights to models with no collinearity and vice versa. The results of the BMA
using different priors are in Appendix B.

Frequentist Model Averaging

Frequentist Model Averaging (FMA) presents an alternative to baseline BMA
since it addresses model uncertainty. The FMA analysis weights the variables
with respect to their goodness-of-fit and parsimony and puts them in different
combinations with each other. We follow the technique of model weighting by
minimising Mallow’s criterion presented in Gechert et al. (2021). The smaller
this criterion, the higher weight assigned to the model. We utilise the ortho-
gonalisation of covariate space as presented by Amini & Parmeter (2012). The
drawback of this method lies in need to order the regressors before estimation
- Hansen (2007) recommends ordering them by groups.

OLS

The last method is simple OLS weighted by the number of estimates but only
includes variables with PIP higher than 0.5 (Matousek et al., 2022). After a
thorough analysis, we decided to include variables with significant effects from
the weighted BMA instead of the baseline model.
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Dataset Variations

The previous chapter introduced two robustness checks regarding the right data
selection for the analysis. The different datasets are described in the section
6.6. We decided to analyse these different datasets with baseline BMA, too.

7.5 Results for MAC 2030
This section discusses the results from the baseline BMA analysis and robust-
ness checks. Where applicable, our findings are contrasted with results from
the literature, and the differences are explained.

Standard Error. The variable Standard Error and its (non)significance should
reveal whether our conclusion about publication bias from the previous chapter
holds even when we control for the context in which the model is estimated.
From all model specifications, only weighted BMA marked standard error as
significant. Again, this does not provide solid evidence of a strong publication
bias. On the other hand, results for the new data indicate a strong nega-
tive publication bias. This suggests that the new data suffer more substantial
publication bias than data from Kuik et al. (2009). For the whole dataset,
however, we can confirm our findings from the previous chapter and assume
mild publication bias for the MAC 2030.

GHG Emissions. The dummy variable GHG Emissions assigns value 1 for
a study which works with overall GHG emissions rather than just one area
(for example, traffic, agriculture, energy sector). The PIP of 0.78 indicates a
positive effect, and the BMA results imply that models which work with overall
GHG emissions report a lower MAC. This effect is confirmed by the BMA with
different priors and the BMA addressing correlations. It could be because the
studies working with overall GHG emissions do not scrutinise every
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possibility of abatement. On the other hand, studies that focus on just
one area have more space to dig deeper into the specific field and reveal every
possible way of abatement. Therefore, papers studying GHG emissions report
lower costs because they do not report all the possible ways of reduction.

Agriculture. The same logic holds for the dummy variable Agriculture, which
applies when a primary study analyses GHG emissions originating from agri-
culture. The results imply that these studies report lower MAC elasticities by
7%. The results indicate that mitigating emissions from agriculture is not as
costly as from other sectors. The reasons for that could be relative advance-
ment of agriculture in mitigating emissions and subsidies that can help farmers
transition faster to modern technology.

LEAP Model. Another dummy variable with significant PIP is the LEAP
model. The baseline BMA analysis revealed that studies that work with the
LEAP model report a MAC lower by 74%, and results from other model spec-
ifications suggest a similar value. Overall, the MAC estimates from the LEAP
model are undervalued compared to estimates from other models. We should
remember this when working with the LEAP model and its results in the future.

Target. This variable represents the stabilisation target for GHG emissions
(the reader can find a detailed description of this variable in Chapter 2). The
BMA suggests that studies with higher stabilisation targets tend to report a
slightly lower MAC, but the magnitude of this relationship is almost negligible
- an 0.02% higher MAC for an additional one unit in target, ceteris paribus.
The direction of the effect of Target on the MAC is what we assumed in the
hypothesis, but the value itself is smaller than we expected. Studies that expect
the stabilisation targets to be higher do not have to lower the emissions as much,
which logically corresponds to findings by Barker et al. (2006). Therefore, the
costs to achieve a higher stabilisation target should be considerably lower than
for lower targets. Nevertheless, the BMA addressing correlation confirmed both
the direction and magnitude of the effect. Vogt-Schilb & Hallegatte (2014)
found similar insufficient relationship between abatement costs and reduction
targets.

Baseline 2030. The last variable that matters for heterogeneity is the Base-
line describing time projections of emissions. Robustness checks confirm that
models with a higher emissions baseline tend to report lower MACs. This result
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has the opposite direction of what we expected in our hypothesis. A higher
emissions baseline means we expect the emissions to grow fast, and our mit-
igation efforts must be extensive (IPCC, 2014). The results suggest that the
MAC does not have to be high, not even with a high emissions baseline. This
is probably due to other factors prevailing.

Other variables were not deemed significant when explaining heterogeneity in
the model. To our surprise, we found little evidence that the technology-specific
variables are responsible for systematic differences in observed MAC elasticities.

7.6 Results for MAC 2050
The baseline BMA revealed seven variables that significantly explain hetero-
geneity in the model. We compare findings from baseline BMA with those from
the robustness check and try to explain the resulting direction and magnitude
of the effects found. Our results for the MAC 2050 closely resemble those from
Kuik et al. (2009) - they also found emissions baseline, multigas, and the num-
ber of regions to be significant for model heterogeneity. In the dataset, there
are more estimates from Kuik et al. (2009) for the year 2050 than 2030, which
is probably why results for MAC 2050 follow theirs, while MAC 2030 does not.

Standard Error. Unlike MAC 2030, we found strong evidence for standard
error explaining heterogeneity in the model. The baseline BMA suggests that
studies with higher standard error report a lower MAC elasticity. Recalling the
funnel plot, this can be caused by a handful of studies deviating from the mean
(most of the studies lie very close to the sample mean). This demonstrates
that negative publication bias is present in the literature even after controlling
for estimation characteristics. The findings stay significant with all robustness
checks. This result suggests that authors are more likely to report larger neg-
ative estimates than smaller ones and negates the findings for publication bias
from the previous chapter.

Kuik. Following significant variable marks primary studies collected by Kuik
et al. (2009). The findings hold for most robustness checks, which suggests that
studies collected by these authors tend to report smaller MAC estimates.
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We could explain this trend by the age of the studies. While studies from
our dataset cover the last 15 years, all of their studies were published in 2006.
Because the emissions mitigation efforts were not as successful as they seemed
at the beginning of the millennium, these studies could have predicted lower
baseline emissions and lower abatement costs (ECCP, 2003).

Region. The variable representing the number of regions was significant in
three model specifications. The posterior mean suggests a slightly lower MAC
for analyses with more regions. The value of the effect is almost negligible (-
0.2% for an additional region), and its direction is expected. We suppose that
the smaller the area the study focuses on, the more precise results it brings.
Repetto & Austin (1997) reveal the same significant relationship between re-
gions and MAC estimates.

LEAP model. The significance of the variable representing the LEAP model
remains even for MAC 2050, and the direction stays negative, the same as
for MAC 2030. The magnitude is smaller by almost a half. The studies that
predict GHG emissions using the LEAP model overall estimate the MAC lower
by 40%.

Intertemporal Optimisation. Finally, we found evidence that technologi-
cal specification plays a significant part in model heterogeneity. Concretely,
the variable represents models that employ intertemporal optimisation. The
variable captures models that assume long-living decision-makers who establish
consumption and investment by looking at the long term. The results suggest a
negative direction of the relationship, which was expected. Models that employ
this idea of forward-looking decision-makers present a lower abatement cost (by
about 10%). The relationship holds with all robustness checks and aligns with
findings of Vogt-Schilb et al. (2015).

Multigas. Another technological variable identifies studies that predict GHG
emissions for other greenhouse gases besides CO2. The BMA analyses suggest
that models that work with multigas lead to lower MAC estimates. The effect
holds only for two robustness checks, and the magnitude of the effect is rela-
tively small. The results suggest that mitigating emissions of other greenhouse
gases is less costly than CO2 emissions.

Baseline 2050. The second variable which explains heterogeneity for both
MAC 2030 and 2050 is Baseline. In this case, the direction is the opposite.
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The analysis reveals that studies with higher emissions baselines tend to report
a slightly higher abatement cost. This is the direction we expected for the MAC
2030, too. Studies with a higher baseline predict that the emissions would grow
tremendously without any reduction. Therefore, we would expect that the costs
to abate them would be bigger with higher emissions. Nevertheless, the effect it
has on MAC is minimal, which corresponds to findings of Fischer et al. (2003)
who found that emissions baseline explains only a small portion of differences
in MAC estimates across studies.

Overall, the BMA analysis and its robustness checks found four variables
explaining heterogeneity for MAC 2030 and seven for MAC 2050. The explana-
tions and comparisons with findings from the literature are discussed above. We
found evidence for negative publication bias for MAC 2050 but little evidence
for publication bias in literature for MAC 2030. Besides mild publication bias,
at least one variable from each category plays a role in explaining heterogeneity
in the model. We expected the technological variables to play a more important
role in explaining MAC estimates, just like Barker et al. (2006) found. On the
other hand, Repetto & Austin (1997) also found technological specifications
less significant.



Chapter 8

Conclusion

The presented master’s thesis conducts a meta-analysis for marginal abatement
costs (MAC) of greenhouse gas (GHG) emissions. The study collected 242
observations for MAC in the years 2030 and 2050 from 59 primary studies. The
Funnel plot, the Meta-regression analysis, and the Caliper test were utilised to
reveal publication bias in the literature. The Bayesian model averaging (BMA)
analysis revealed what model specifications affect MAC estimates.

Publication bias analysis reveals little evidence of publication bias for MAC
2030 and MAC 2050. The funnel plots are mostly symmetrical, and FAT-PET
tests reveal no significant selectivity. Additionally, estimates for true effect are
statistically significant and close to the sample mean. For MAC 2030, the true
effect corresponds to approximately 32 EUR/tCO2-eq, while for MAC 2050, it
is around 59 euro. The results are lower than we expected from the literature
and show the abatement costs do not necessarily have to be high, especially
when policymakers begin with low-cost abatement ways.

An analysis of heterogeneity reveals several factors that affect MAC esti-
mates. For MAC 2030, all variables explaining heterogeneity lead to lower
estimates. MAC is lower when the model employs the LEAP model and when
the observation comes from older data, respectively, from studies published in
2006. Adding one unit in emissions baseline or stabilisation targets lowers MAC
2030 by around 6% or 0.02%, respectively. There were no significant findings
for standard error regarding publication bias in the BMA.

For MAC 2050, the BMA revealed negative publication bias with a signifi-
cant marginal effect. Other factors affect MAC 2050 negatively, except for the
emissions baseline. Other characteristics lead to lower MAC estimates. Inclu-
sion of the LEAP model, other GHGs, and observations from studies published
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in 2006 (as opposed to newer publications) would lower the MAC by around
80%, ceteris paribus. In the same way, the more regions a study examines, the
lower the MAC is found. On the other hand, an increase in emissions baseline
by a unit results in a 1% increase in the MAC estimate. The findings are sup-
ported by several robustness checks and correspond to the literature. We were
able to confirm the hypotheses presented in the proposal.

The study can be considered a follow-up to the study by Kuik et al. (2009).
Their results correspond more to mine for MAC 2050. This is likely because
their studies mostly pursued the MAC in 2050. They found that the MAC is
dependent on the stringency of the stabilisation target, the emissions baseline,
the inclusion of intertemporal optimisation, the consideration of other green-
house gases, and the number of regions and energy sources. This meta-analysis
brings their dataset up-to-date and applies modern techniques to reveal further
dependencies. This thesis is the first meta-analysis to examine both publica-
tion bias and model uncertainty for the MAC. The drawback of the presented
study includes the construction of standard errors and data modifications. The
absence of uncertainty measures in the primary literature results in construct-
ing standard errors for studies with more than one estimate. However, there
was no way to check the robustness of this process. Therefore, the analysis
of publication bias stands on these constructed values. This could be why we
found almost no evidence for publication bias, even though its presence was
later revealed through BMA. Another inaccuracy could emerge when we used
the best-guess estimate for the observations of the stabilisation target. We
wanted to keep the information in the dataset but did not find any observation
in primary studies. The resulting influence of the variable should therefore be
taken indicatively. We believe that other data adjustments do not introduce
more inaccuracy to the results since we conducted several robustness checks to
confirm the selection of appropriate methods and datasets.

An interesting extension of this study would be comparing the results with
projected policies in selected countries. After all, a meta-analysis should serve
the general public and politicians to understand better the abundance of scien-
tific works available on the subject. An update of this work could build on the
IPCC report that is expected to be published in September 2022. We believe
that the meta-analysis based on newer literature could bring new variables and
uncover further relationships.
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Appendix A

PRISMA Diagram
PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and 

registers only 
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Figure A.1: PRISMA 2020 Diagram, template by Page et al. (2021)



Appendix B

Robustness Check

MAC 2030 - median
A: OLS, WLS

OLS Precision Study
Standard Error
(Publication bias)

-0.43
(1.22)

2.13*
(0.93)

0.39
(1.31)

Constant
(Effect beyond bias)

6.79***
(0.02)

6.75***
(0.004)

6.78***
(0.01)

Observations (Studies) 43 43 43
B: Study Variations, IV

FE RE BE IV
Standard Error
(Publication bias)

-23.48
(48.06)

-0.41
(1.37)

-23.48
(48.06)

5.21
(70.63)

Constant
(Effect beyond bias)

6.79***
(0.03)

6.79***
(0.02)

6.79***
(0.03)

6.68***
(1.36)

Observations (Studies) 43 41 43
C: Non-Linear Estimates

Stem TOP10 WAAP

Mean beyond bias 6.96***
(0.12)

6.77***
(0.05)

6.79***
(0.006)

Observations 3 4 43
Kink Selection

Mean beyond bias 6.79***
(0.006)

6.78***
(0.02)

Observations 43 42
Significance codes: p<0.001 ’***’, p< 0.01 ’**’, p< 0.05 ’*’, p< 0.1 ’.’,
clustered standard error in parenthesis

Table B.1: FAT-PET tests - results for median(MAC2030)



B. Robustness Check III

MAC 2050 - median
A: OLS, WLS

OLS Precision Study
Standard Error
(Publication bias)

-1.43
(1.04)

3.97
(7.13)

-1.26
(1.30)

Constant
(Effect beyond bias)

6.82***
(0.02)

6.78***
(0.05)

6.82***
(0.02)

Observations (Studies) 34 34 34
B: Study Variations, IV

FE RE BE IV
Standard Error
(Publication bias)

4.19
(2.87)

0.55
(1.02)

4.19
(2.87)

-0.12
(0.77)

Constant
(Effect beyond bias)

6.77***
(0.02)

6.79***
(0.01)

6.77***
(0.02)

6.78***
(0.02)

Observations (Studies) 34 32 34 34
C: Non-Linear Estimates

Stem TOP10 WAAP

Mean beyond bias 6.78***
(0.01)

6.27***
(0.16)

6.77***
(0.007)

Observations 17 2 34
Kink Selection

Mean beyond bias 6.77***
(0.008)

6.79***
(0.06)

Observations 34 34
Significance codes: p<0.001 ’***’, p<0.01 ’**’, p<0.05 ’*’, p<0.1 ’.’
Clustered standard error in parenthesis

Table B.2: FAT-PET tests - results for median(MAC2050)



B. Robustness Check IV

MAC 2030
A: OLS, WLS

OLS Precision Study
Standard Error
(Publication bias)

-0.83
(2.31)

0.20
(1.91)

-1.36
(1.82)

Constant
(Effect beyond bias)

6.81***
(0.03)

6.78***
(0.02)

6.85***
(0.06)

Observations 65 65 65
Studies 26 26 26
B: Study Variations, IV

FE RE BE IV
Standard Error
(Publication bias)

-0.25
(5.42)

-0.82
(2.23)

-0.26
(5.41)

3.21
(3.79)

Constant
(Effect beyond bias)

6.78***
(0.02)

6.81***
(0.07)

6.78***
(0.02)

6.68***
(0.14)

Observations 65 63 65 65
Studies 26 24 26 26
C: Non-Linear Estimates

Stem TOP10 WAAP

Mean beyond bias
6.75***
(0.06)

6.60***
(0.04)

6.78***
(0.006)

Observations 18 6 64
Kink Selection

Mean beyond bias
6.78***
(0.008)

6.78***
(0.04)

Observations 64 64
Significance codes: p<0.001 ’***’, p<0.01 ’**’, p<0.05 ’*’, p<0.1 ’.’
Clustered standard error in parenthesis

Table B.3: FAT-PET tests - results for log(MAC2030), without data
from Kuik et al. (2009)
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