
DOCTORAL THESIS

Karel Král

Complexity of dynamic data structures

Computer Science Institute of Charles University

Supervisor of the doctoral thesis: prof. Mgr. Michal Koucký, Ph.D.
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Abstract: Sorting is one of the fundamental problems in computer science. In
this thesis we present three individual results.

Asymptotically optimal sorting networks have been created by Ajtai et al. [1983].
But Asharov et al. [2021] have observed that boolean circuits based on sorting
networks are not optimal for sorting short integers. We present a construction of
even smaller boolean circuits for sorting short integers.

Lower bounds for offline Oblivious RAM have been connected to lower bounds
for sorting circuits by Boyle and Naor [2016]. Larsen and Nielsen [2018] have
shown a lower bound for online Oblivious RAM. We provide a lower bound for
online Oblivious RAM in a more general model.

Finally we provide an algorithm with expected running time O(n log log(n)) for
sorting integers on random access machine with word length between log(n) and
log(n) cubed. This algorithm does not match the expected running time of the al-
gorithm of Han and Thorup [2002], but our algorithm is much easier to implement
and analyse.
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Introduction
Sorting undoubtedly plays a central role in computer science. Many problems can
be solved using sorting as a subcomponent. There are many practical variants of
sorting based either on what we sort (integers, rational numbers, strings, etc.) or
how we sort (in parallel, in distributed fashion, in external memory, etc.). Despite
the fact that sorting has been and still is studied extensively there are still many
basic questions about sorting unanswered. This thesis contributes three drops
into the wast sea of results about sorting.

This thesis is based on the papers Hubáček et al. [2019] presented in Chap-
ter 3 and Koucký and Král [2021] presented in Chapter 2. This chapter contains
abstracts of those papers and Chapter 1 extends the previous work chapters by
other sorting directions, namely those connected to our O(n log log(n)) expected
time sorting algorithm presented in Chapter 4.

Chapter 1 is without a doubt an incomplete overview of research connected to
sorting. If the author has omitted a result it is not because it was not interesting,
but because of the sheer volume of literature. Notation is provided on per chapter
basis as the intersection of notations consists just of the set of natural numbers.

Circuits
Sorting networks have been extensively studied. The celebrated result of Ajtai
et al. [1983] shows a construction of asymptotically optimal sorting network.
However the famous Ω(n log(n)) lower bound for comparator based sorting applies
to sorting networks. A natural question is if we can build smaller boolean circuits
than what we would get from implementing the Ajtai et al. [1983] sorting network.

We build boolean circuits of size O(nm2) and depth O(log(n) + m log(m)) for
sorting m-bit integers. We build also circuits that sort m-bit integers according
to their first k bits that are of size O(nmk(1 + log∗(n) − log∗(m))) and depth
O(log3(n)). This improves on the results of Asharov et al. [2021] and resolves
some of their open questions. See Chapter 2 for more details.

Oblivious RAM
Oblivious RAM (ORAM), introduced in the context of software protection by
Goldreich and Ostrovsky [1996], aims at obfuscating the memory access pattern
induced by a RAM computation. Ideally, the memory access pattern of an ORAM
should be independent of the data being processed. Since the work of Goldre-
ich and Ostrovsky [1996], it was believed that there is an inherent Ω(log(n))
bandwidth overhead in any ORAM working with memory of size n. Boyle and
Naor [2016] proved that any super-constant lower bound for offline ORAM, i.e.,
an ORAM that can process its inputs simultaneously, implies super-linear lower
bounds on size of sorting circuits – which would constitute a major breakthrough
in computational complexity. Larsen and Nielsen [2018] were the first to give a
general Ω(log(n)) lower bound for any online ORAM, i.e., an ORAM that must
process its inputs in an online manner.
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In Chapter 3, we revisit the lower bound of Larsen and Nielsen [2018], which
was proved under the assumption that the adversarial server knows exactly which
server accesses correspond to which input operation. We give an Ω(log(n)) lower
bound for the bandwidth overhead of any online ORAM even when the adversary
has no access to this information. For many known constructions of ORAM
this information is provided implicitly as each input operation induces an access
sequence of roughly the same length. Thus, they are subject to the lower bound
of Larsen and Nielsen [2018]. Our results rule out a broader class of constructions
and specifically, they imply that obfuscating the boundaries between the input
operations does not help in building a more efficient ORAM.

As our main technical contribution and to handle the lack of structure, we
study the properties of access graphs induced naturally by the memory access
pattern of an ORAM computation. We identify a particular graph property that
can be efficiently tested and that all access graphs of ORAM computation must
satisfy with high probability. This property is reminiscent of the Larsen and
Nielsen [2018] property but it is substantially less structured; that is, it is more
generic.

Simple O(n log log(n)) Expected Time Algorithm
In Chapter 4 we present an O(n log log(n)) expected time sorting algorithm. This
construction does not match the expected O(n

√︂
log log(n)) algorithm of Han

and Thorup [2002]. On the other hand our algorithm is simple to analyse and
implement. The algorithm uses rather simple techniques requiring knowledge of
only basic data structures and algorithms and an easy result about the coupon
collector model. One needs to know just hash maps, binary search, resizeable
arrays (their amortized analysis), and any O(n log(n)) sorting algorithm.
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1. History and Previous Results
The research mentioned here is recalled in order to put our results in perspective
and to mention connections to previous work. We are certain that we will omit
some results due to the sheer volume of interest in sorting both from the practical
and theoretical point of view. A reader who is interested in history may wish to
consult the classical book Knuth [1997] for more historical notes.

The classical comparison based sorting takes time O(n log(n)) when sorting n
integers. Well known lower bound postulates that this is optimal for comparison
based sorting. However, this is a great over-simplification and the picture is
much more nuanced: sorting integers from a domain of size M can be done
using binary search trees or bucket sort in time O(n log(|M |)), thus sorting for
example m-bit integers only needs O(nm) comparisons. Such an algorithm can be
implemented for instance on a pointer machine. We discuss even faster algorithms
in Section 1.2.

1.1 Classical Sorting Algorithms
One could argue that sorting was amongst the first problems that appeared in
data processing systems. Knuth [1997] mentions that the sorting box of Herman
Hollerith was used in the 1890 USA census. The machine had both electrical and
mechanical components and was fed punched cards. The company founded by
Hollerith was later merged with other companies and after few years renamed
to IBM. The book of Campbell-Kelly and Aspray provides more details of this
history.

The mergesort algorithm is attributed to John von Neumann as early as 1945
or with detailed analysis in 1948 in a report by Goldstine and Neumann (see
for instance Knuth [1997] and Katajainen and Träff [1997]). We cite the result
of mergesort as Knuth [1997] even though it was analysed by von Neumann
much earlier and its variants have been analysed by many others in the following
decades. Our reasoning is that the readers are probably already familiar with
mergesort analysis and if not they are better with a textbook of their choice than
with the original source. A reader interested in history can consult the references
given in Knuth [1997] and Katajainen and Träff [1997] to find references to the
original work.

The quicksort algorithm invented by Hoare [1961] became perhaps one of
the most studied and used sorting algorithms. Quicksort became a part of the
C standard library (qsort, see Bentley and McIlroy [1993]) a variant of it is
used in Java 7 library Wild et al. [2013] to name just two popular programming
languages. Theoretical properties of quicksort and its variants have been also
extensively studied. Sedgewick [1975] resolved many problems that were open
until then. There are copious other classical algorithms that could be mentioned.
But we try to keep the list limited to the algorithms directly used in this thesis.
In Chapter 4 we directly use any algorithm with running time O(n log(n)) where
both quicksort and mergesort are natural candidates.
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1.2 RAM
The random access machine model (see Hopcroft et al. [2001] for a formal defini-
tion) allows much more than just to compare two inputs. For instance radixsort
can be traced back to machines of Hollerith (mentioned in the previous section).

One of the first advances was van Emde Boas tree van Emde Boas [1975] which
if used with a hash-table can sort n numbers from the range 0, . . . , K − 1 in time
O(n log log(K)). A beautiful series of results followed with the works of Willard
[1983], Kirkpatrick and Reisch [1983], culminating with the O

(︃
n

√︃
log

(︂
m

log(n)

)︂)︃
expected time algorithm of Han and Thorup [2002], where m is the length of the
words we are sorting. When m = Ω(log2(n) log log(n)) one can sort in expected
linear time using the algorithm of Belazzougui et al. [2014].

1.3 Sorting Networks
Batcher [1968] proposed sorting networks, an oblivious comparison based parallel
model of computation intended for sorting. Numbers in a sorting network are
thought of as signals which can only be compared. Sorting networks have became
an important part of graphics processing units (Owens et al. [2008]).

The seminal paper by Ajtai et al. [1983] gives an asymptotically optimal
sorting network of logarithmic depth and thus having O(n log(n)) comparators
matching the comparison based lower bound. The AKS network has immense
applications in theoretical computer science, and we use it in Chapter 2. Since
the multiplicative constant in the construction of Ajtai et al. [1983] is extremely
large there have been subsequent work attempting constructions with smaller
asymptotic constants. Paterson [1990] improves the constant significantly but
the multiplicative constant of the depth still prevents practical use. Goodrich
[2014] presents a sorting network with O(n log(n)) comparators which is much
smaller than previous constructions, however the networks depth is O(n log(n)).

1.4 Sorting Boolean Circuits
Another oblivious model of computation heavily used throughout theoretical
computer science are boolean circuits. One can turn the AKS sorting network
into a circuit sorting n integers each of m-bits of size O(nm log(n)) and depth
O(log(m) log(n)) (see Section 2.4). However, when building boolean circuits for
sorting it is not clear whether one can take any advantage of some of the faster
algorithms for RAM or Turing machines as simulating random access memory or
Turing machine tapes by circuits requires substantial overhead. Asharov et al.
[2021] asked the question whether one can sort m-bit integers in time o(nm log(n))
when m = o(log(n)). They provide an answer to this question by construct-
ing circuits for sorting m-bit integers of size O(nm2(1 + log∗(n) − log∗(m))2+ε)
and super-poly-logarithmic depth, for any ε > 0. We improve their results:
We build boolean circuits for sorting m-bit integers of size O(nm2) and depth
O(log(n) + m log(m)). As proven by Asharov et al. [2021] pending some un-
expected breakthrough this size seems optimal. The depth is provably optimal
whenever m = O(log(n)/ log log(n)).
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Asharov et al. [2021] solve even a more general problem as their circuits par-
tially sort n numbers each of m bits by their first k bits using a circuit of size
O(nmk(1 + log∗(n) − log∗(m))2+ε). We improve on this result as well by pre-
senting circuits that sort m-bit integers according to their first k bits of size
O(nmk(1+log∗(n)− log∗(m))) and depth O(log3(n)). Our small circuits of poly-
logarithmic depth answer some of the open questions of Asharov et al. [2021]. In a
work subsequent to ours, Lin and Shi [2021] get circuits of depthO(log(n)+log(k))
and size O(nkm · poly(log∗(n) − log∗(m))) whenever n > 24k+7. They use sub-
stantially different approach. We state our results formally in Chapter 2.

1.5 Turing Machines
We do not show any new results about sorting on Turing machines in this thesis.
On the other hand we discuss balls and bins lower bounds in Section 3.4 of
this thesis with connection to lower bounds of Oblivious RAM. The beauty of
Turing machines is that we have both unconditional lower bounds for one tape
Turing machines and a measure of balls and bins permutation complexity of
permutations for Turing machines with more tapes. In the classical lower bound
for comparison based sorting we observe that the binary logarithm of the number
of permutations on n elements is Θ(n log(n)) and thus most permutations need
a lot of comparisons to sort. But that is a result of the type “most objects are
hard” which seems to be more common than the type of result we discuss below
which is given by Stoß [1973] and Paul [1979]. We assume that the reader is
familiar with a definition of Turing machine as in the textbook Hopcroft et al.
[2001].

1.5.1 Upper Bounds on Turing Machines
It is an easy exercise to design Turing machines that sort n integers of m-bits each
in timeO(nm2). One may just implement radixsort on a Turing machine with two
tapes. Another possible approach is to implement mergesort on a Turing machine
with three tapes. This gives us an algorithm running in time O(nm log(n)).
To get a mergesort on two tapes, one can of course use the theorem of Hennie
and Stearns [1966] to turn the three tape Turing machine halting in time T (|x|)
into a two tape Turing machine halting in time cT (|x|) log(T (|x|)) where c is a
constant depending only on the description of the three tape Turing machine. The
above gives us a two tape Turing machine running in time O(nm log(n)(log(n) +
log(m))). Both of these algorithms are described in more detail in the book
Reischuk [1999].

1.5.2 One Tape Turing Machines
Hennie [1965] shows a general framework of crossing sequences for deriving lower
bounds for problems on one head Turing machines. The intuition is that if we have
just a single head then at most finitely many bits of information may be carried
during single crossing from one side of a boundary to the other. In particular
the crossing sequence is the sequence of states of the machine when crossing
the boundary between two fixed neighbouring squares of its tape (for a formal
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definition see Hennie [1965]). This approach naturally fails when there are two
or more heads as a lot of information may be transferred without crossing a
boundary many times.

The technique of crossing sequences has been applied successfully many times
since. Let us mention that Petersen [2008] uses crossing sequences to show a
lower bound of Ω(n2m) if m ≥ 2 log(n) for nondeterministic Turing machines
with one work-tape and one-way input tape. Petersen [2008] also presents a
nondeterministic Turing machine which sorts in time O(n2m) where m = O(n)
implying that this bound is asymptotically tight.

1.5.3 Balls and Bins Model Lower Bounds
Turing machines with two or more working tapes allow more efficient algorithms
as discussed in Section 1.5.1. Proving lower bounds also seems to be much harder.
However there are lower bounds for the problem of performing a concrete permu-
tation of inputs when we are allowed to only copy and compare the inputs but
not to make computations with them. We call this model balls and bins as the
numbers being sorted behave as atomic balls which can be only moved or copied.

Floyd [1972] is among the first who show a result of the kind that performing
a permutation is hard. However the model is more reminiscent of the model con-
sidered in cache oblivious analysis (Frigo et al. [1999]) than of Turing machines.
A lower bound on the number of the operations is derived assuming that there are
pages each holding at most p records and each operation consists of loading two
pages into memory and storing a subset of at most p records from their union in a
third page. Floyd [1972] presents a concrete permutation that is hard to perform
in this model.

Stoß [1973] shows a lower bound for performing a particular permutation
on a Turing machine with k heads when the inputs can be just copied but
no computation may be done with them. The result states a complexity mea-
sure for permutations and shows that when a Turing machine may not do any-
thing with the inputs but to copy those then the complexity measure lower
bounds the number of steps of the Turing machine. In particular the com-
plexity measure is Ω(n2 log(n)) for the matrix transposition permutation where
we are given n2 inputs w1,1w1,2w1,3 . . . w1,nw2,1 . . . wn,n and we should output
w1,1w2,1 . . . wn,1w1,2 . . . wn,n. This permutation corresponds to transposition of
a matrix stored in row-major order.

Paul [1979] partially lifts the assumption of atomicity of the balls and bins
model and is still able to show a lower bound of Ω(n log(n)) steps for sorting (in
fact the lower bound also holds for the matrix transposition problem). Still the
model is somewhat limited as the Turing machine M cannot “perform magic”
which is defined in terms of Kolmogorov complexity (see Kolmogorov [1998] or Li
et al. [2008] for the definition of Kolmogorov complexity). The intuition behind
the “performing magic” is that when we divide the time of computation into
time intervals and the tapes into blocks, then if the machine “performs magic”
then there is much more information in visited blocks than in the previous time
interval. Paul [1979] states that performing exclusive OR does not fit the “no
magic” assumption. For a formal definition and proof see the paper Paul [1979].
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1.6 ORAM
In many cryptographic applications there is an interest in oblivious algorithms,
algorithms in which the sequence of the operations is independent of the processed
data. Oblivious simulation of RAM machines, initially studied in the context of
software protection by Goldreich and Ostrovsky [1996], aims at protecting the
memory access pattern induced by computation of a RAM from an eavesdropper.
In the present day, such oblivious simulation might be needed when performing a
computation in the memory of an untrusted server.1 Despite using encryption for
protecting the content of each memory cell, the memory access pattern might still
leak sensitive information. Thus, the memory access pattern should be oblivious
of the data being processed and, ideally, depend only on the size of the input.

1.6.1 Constructions
The strong guarantee of obliviousness of the memory access pattern comes at the
cost of additional overhead. A trivial solution which scans the whole memory
for each memory access induces linear bandwidth overhead, i.e., the multiplicative
factor by which the length of a memory access pattern increases in the oblivious
simulation of a RAM with n memory cells. Given its many practical applications,
an important research direction is to construct an ORAM with as low overhead
as possible. The foundational work of Goldreich and Ostrovsky [1996] already
gave a construction with bandwidth overhead O(log3(n)). Subsequent results
introduced various improved approaches for building ORAMs (see Ajtai [2010],
Damgård et al. [2011], Goodrich and Mitzenmacher [2011], Goodrich et al. [2011],
Kushilevitz et al. [2012], Chung and Pass [2013], Gentry et al. [2013], Chung et al.
[2014], Ren et al. [2014], Wang et al. [2014, 2015], Patel et al. [2018], Stefanov
et al. [2018] and the references therein) leading to the recent construction of
Asharov et al. [2018] with bandwidth overhead O(log(n)) for the most natural
setting of parameters.

1.6.2 Lower-bounds
It was a folklore belief that an Ω(log(n)) bandwidth overhead is inherent based on
a lower bound presented already in the initial work of Goldreich and Ostrovsky
[1996]. However, the Goldreich and Ostrovsky [1996] result was revisited in the
work of Boyle and Naor [2016], who pointed out that the lower bound actually
holds only in the rather restricted “balls and bins” model where the ORAM is
not allowed to read the content of the data cells it processes (it can only copy and
compare). In fact, Boyle and Naor [2016] showed that any general lower bound
for offline ORAM (i.e., where each memory access of the ORAM can depend on
the whole sequence of operations it needs to obliviously simulate) implies non-
trivial lower bounds on sizes of sorting circuits which seem to be out of reach
of the known techniques in computational complexity. The connection between
offline ORAM lower bounds and circuit lower bounds was extended to read-only
online ORAMs (i.e., where only the read operations are processed in an online

1Protecting the memory access of a computation is particularly relevant in the light of the
Spectre Kocher et al. [2018] and Meltdown Lipp et al. [2018] attacks.
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manner) by Weiss and Wichs [2018] who showed that lower bounds on bandwidth
overhead for read-only online ORAMs would imply non-trivial lower bounds for
sorting circuits or locally decodable codes.

The first general Ω(log(n)) lower bound for bandwidth overhead in online
ORAM (i.e., where the ORAM must process sequentially the operations it has
to obliviously simulate) was given by Larsen and Nielsen [2018]. The core of
their lower bound comprised of adapting the information transfer technique of
Patrascu and Demaine [2006], originally used for proving lower bounds for data
structures in the cell probe model, to the ORAM setting. In fact, the lower
bound of Larsen and Nielsen [2018] for ORAM can be cast as a lower bound for
the oblivious Array Maintenance problem and it was recently extended to other
oblivious data structures by Jacob et al. [2019].

Since our paper Hubáček et al. [2019] there have been papers showing lower
bounds for different ranges of parameters Komargodski and Lin [2020], for multi-
server Larsen et al. [2020] setting, and many more. Lin et al. [2019] revisit the
question of sorting on oblivious RAM, they show that sorting short numbers can
be done faster and further investigate sorting in the balls and bins model.

1.7 Connections
In this section we investigate some of the attempts and conditional results con-
nected to proving lower bounds for sorting circuits and similar problems. The
ideas mentioned in this section are graph-theoretic in nature but are linked with
the study of computational complexity.

1.7.1 Super-concentrators
Super-concentrators are graphs that were introduced by Valiant [1975] in hopes
of proving lower bounds in computational complexity. Valiant disproved this
conjecture later. For more results and history see the survey of Hoory et al. [2006].
In Chapter 2 we give more overview of super-concentrators and in our construction
of sorting circuits we use the result of Pippenger [1996] who constructs super-
concentrators where it is possible to compute the actual routing.

1.7.2 Non-adaptive Hellman Attack
Corrigan-Gibbs and Kogan [2019] prove that lower bounds for function inver-
sion would imply circuit lower bounds. This result is using the common bits
model introduced by Valiant [1977, 1983, 1992]. Similar connection has also been
described by Viola [2019].

1.7.3 Network Coding Conjecture
In network coding model (see the paper of Ahlswede et al. [2000]) we are inter-
ested in how much information can be sent through a given network where the
nodes can perform computations (each node sends messages based on a predefined
function of its incoming messages). The network coding conjecture introduced
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by Li and Li [2004] postulates that in undirected graphs network coding pro-
vides no benefit over multicommodity flows. Afshani et al. [2019] and Farhadi
et al. [2019] use the network coding conjecture to prove conditional lower bounds.
Dvořák et al. [2021] use the network coding conjecture to prove conditional lower
bounds for polynomial evaluation and link the techniques of Corrigan-Gibbs and
Kogan [2019] to problems that are more general than finding an inverse of a given
function.

11



2. Boolean Circuits for Sorting
and Counting Short Integers
The result presented in this chapter is based on the paper Koucký and Král [2021].

2.1 Our Results
We provide a family of boolean circuits that sort m-bit strings. Our circuits
are smaller than the circuits directly derived from the AKS sorting network and
they improve on the result of Asharov et al. [2021]. Our circuits achieve optimal
logarithmic depth whenever m log(m) ≤ O(log(n)). Pending some unexpected
breakthrough, their size seems also optimal.

Theorem 2.1.1. For any integers n, m ≥ 1 there is a size O(nm2) and depth
O(log(n) + m log(m)) circuit that sorts n integers of m bits each.

For m ≥ Ω(log(n)), the existence of such a circuit directly follows from AKS
sorting networks. Our contribution is the construction of such circuits for m ≤
o(log(n)). Our construction also uses a sorting network as a building block. We
use the AKS sorting network as one of our primitives but in principle, we could
use any sorting network or sorting circuit. In particular, we could use any circuit
sorting n numbers of Θ(log(n)) bits each in our construction. Any improvement
of asymptotic complexity of sorting of log(n)-bit numbers would give us improved
complexity of sorting short numbers.

The main idea behind our construction is to compress the input by computing
the number of occurrences of each m-bit integer. This gives a vector of 2m integers,
each of size O(log(n)). Decompressing this vector back gives the sorted input.
Combining the counting and decompressing circuit gives us a circuit that sorts.
The main technical lemma is our counting circuit which is of independent interest.

Lemma 2.1.2. For any integers n, m ≥ 1 where m ≤ log(n)/10 there is a circuit

FAST COUNTn,m : {0, 1}nm → {0, 1}2m⌈1+log(n)⌉

which given a sequence of n strings of m bits each outputs the number of occur-
rences of each possible m-bit string among the inputs, that is for input

x1, x2, . . . , xn ∈ {0, 1}m

it outputs n0m , n0m−11, . . . , n1m where for each string y ∈ {0, 1}m, the output string
ny ∈ {0, 1}⌈1+log(n)⌉ represents |{j ∈ [n] | xj = y}| in binary. The size of the
circuit FAST COUNTn,m is O(nm2) and depth O(log(n) + m log(m)).

We also provide a family of boolean circuits which sort the input integers by
their first k bits only. One can view this as sorting (key, value) pairs, where
keys have k bits and values have m − k bits. For the special case of k = 1
(that is partially sorting the numbers by a single bit) the problem is equivalent to
routing in super-concentrators (see Section 2.1.1), and we use super-concentrators
of Pippenger [1996] as our building block. We get size improvement over the result
of Asharov et al. [2021] while achieving poly-logarithmic depth.
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Theorem 2.1.3. For any integers n, m, k ≥ 1 where k ≤ m and k ≤ log(n)/11
there is a circuit

SORTn,m,k : {0, 1}nm → {0, 1}nm

which partially sorts n numbers each of m bits by their first k bits. The circuit
SORTn,m,k has size O(knm(1 + log∗(n)− log∗(m))) and depth O(log3(n)).

2.1.1 Our Techniques
One can take AKS sorting networks and turn them into a family of boolean
circuits of size O(nm log(n)) and depth O(log(m) log(n)). For m = o(log(n))
this is sub-optimal as shown by Asharov et al. [2021] who provide circuits of size
O(nm2(1 + log∗(n)− log∗(m))2+ε) for sorting n integers each of m-bits. Asharov
et al. [2021] show how to reduce the problem of sorting m-bit integers according
to the first k bits to the problem of sorting m-bit integers according to just a
single bit. Sorting according to single bit is essentially equivalent to routing in
super-concentrators.

Super-concentrators have been studied originally by Valiant [1975] with the
aim of proving circuit lower bounds. A super-concentrator is a graph with two
disjoint subsets of vertices A, B ⊆ V (G), called inputs and outputs, with the
property that for any set S ⊆ A and T ⊆ B of the same size there is a set of
vertex disjoint paths from each vertex of S to some vertex of T . Pippenger [1996]
constructs super-concentrators with a linear number of edges and an algorithm
that on input describing S and T outputs the list of edges forming the disjoint
paths between S and T . This can be turned into a circuit of size O(n log(n)) and
depth O(log2(n)).

The result of Pippenger [1996] can be used to build a circuit sorting by one
bit, but the resulting circuit is of size Θ(nm + n log(n)) (see Corollary 2.6.2)
which is much more than what we wish for. Thus, Asharov et al. [2021] used the
technique of Pippenger [1996] rather than his result to design a circuit sorting by
one bit, and iterate it to sort by k bits. Our technique differs substantially from
that of Asharov et al. [2021], as we use the circuits from AKS networks and from
Pippenger’s super-concentrators as black box.

To sort m-bit integers for 2m ≪ n our approach is to count the number of
occurrences of each number in the input. This compresses the input from nm bits
into 2m log(n) bits. We can then decompress the vector back to get the desired
output. So the main challenge is to construct counting (compressing) circuits of
sizeO(nm2). Interestingly, we use the sorting circuits derived from AKS networks
to do that. But to avoid the size blow-up we don’t use them on all of the integers
at once but on blocks of integers of size 28m. Then the O(log(n)) overhead
of the circuits turns into the acceptable O(m) overhead. Each sorted block is
then subdivided into parts of size 22m. Clearly, most parts in each block will be
monochromatic, they will contain copies of the same integer. There will be at
most 2m non-monochromatic parts. We move the parts within a block to one side
using another application of the AKS sorting circuit. Then we can afford to build
a fairly expensive counting circuit for the small fraction of non-monochromatic
parts, while cheaply counting the monochromatic parts. Summing the results by
linear size circuit gives us the desired compression. Our decompression essentially
mirrors the compression.
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We also design a circuit to sort according to a single bit improving the pa-
rameters of Asharov et al. [2021]. We take the circuit of Pippenger [1996] as
basis and apply it iteratively to larger and larger blocks of inputs. Again we start
from blocks of size 2O(m), and increase the size of the blocks exponentially at each
iteration. We use Pippenger’s circuit to sort each block by the bit. When we split
the block into parts, only one will be monochromatic. Merging multiple blocks
into one gives a mega-block with only a small fraction of non-monochromatic
parts. These non-monochromatic parts can be separated from monochromatic
ones, re-sorted, and re-partitioned to give only one non-monochromatic part in
the mega-block. Each part takes on the role of an “m”-bit integer in the next
iteration. Iterating this process leads to the desired result.

To sort according to the first k bits we use the one-bit sorting similarly to
Asharov et al. [2021]. Thanks to our efficient sorting circuits for m-bit integers
to sort the k-bit keys, we can avoid the use of median finding circuits.

Organization. In the next section we review our notation. We provide basic
construction tools including naı̈ve constructions of counting and decompression
circuits in Section 2.3. In Section 2.4 we recall basic facts on AKS sorting net-
works and related sorting circuits. In Section 2.5 we prove our main result by
constructing efficient counting and decompression circuits. Finally, we provide a
construction of partial sorting circuits for Theorem 2.1.3 in Section 2.6.

2.2 Notation
In this thesis N denotes the set of natural numbers (without zero), and for 1 ≤
a ≤ b ∈ N, [a, b] = {a, a + 1, . . . , b} and [a] = {1, . . . , a}. All logarithms are
base two unless stated otherwise. For m ∈ N, {0, 1}m is the set of all binary
strings of length m. A string x ∈ {0, 1}m, x = x1x2 · · ·xm, represents the number∑︁

j∈[m] xj2m−j in binary, and we often identify the string with that number. As an
integer has multiple binary representations differing only in the number of leading
zeroes, the number of leading zeroes should be clear from the context. The most
significant bit of x = x1x2 · · ·xm is x1 and the least significant bit of x is xm.
Symbol ◦ denotes the concatenation of two strings. For strings x, y ∈ {0, 1}m,
x⊕ y denotes the bit-wise XOR of x and y, x∧ y denotes the bit-wise AND, and
x ∨ y the bit-wise OR.

We assume the reader is familiar with boolean circuits (see for instance the
book of Jukna [2012]). We assume boolean circuits consist of gates computing bi-
nary AND and OR, and unary gates computing negation. For us, boolean circuits
might have multiple outputs so a circuit can compute a function f : {0, 1}n →
{0, 1}m has n inputs and m outputs. We usually index a circuit family by multiple
integral parameters (the number of input and output bits and potentially other
integer parameters). Inputs and outputs of boolean circuits are often interpreted
as sequences of substrings, e.g., a circuit Cn,m : {0, 1}nm → {0, 1}nm is viewed
as taking n binary strings of length m as its input, and similarly for its output.
We say that a circuit family (Cn)n∈N is uniform, if there is an algorithm that on
input 1n outputs the description of the circuit Cn in time polynomial in n (and
similarly if there are more parameters the algorithm gets as an input the unary
representation of each parameter of the circuit it should return).
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2.3 Preliminaries
Here we review some of the circuits for basic primitives that we will use in our
later constructions. Most of them are well known facts.

Lemma 2.3.1 (Addition). There is a uniform family of boolean circuits

ADDm : {0, 1}2m → {0, 1}m+1

that given x, y ∈ {0, 1}m representing two numbers in binary outputs their sum
x + y ∈ {0, 1}m+1. The circuit ADDm has size Θ (m) and depth Θ(log(m)).

Lemma 2.3.2 (Subtraction). There is a uniform family of boolean circuits

SUBm : {0, 1}2m → {0, 1}m

that given x, y ∈ {0, 1}m representing two numbers in binary outputs the absolute
value of their difference |x− y| ∈ {0, 1}m. The circuit SUBm has size Θ (m) and
depth Θ (log (m)).

Lemma 2.3.3 (Summation). There is a uniform family of boolean circuits

SUMn,m : {0, 1}nm → {0, 1}⌈log(n)⌉+m

that given x1, x2, . . . , xn ∈ {0, 1}m interpreted as n numbers, each of m bits,
outputs their sum ∑︁n

j=1 xj. The circuit SUMn,m has size Θ(nm) and depth
Θ (log(n) + log(m)).

Proof. We sketch the construction following the technique of Wallace [1964].
Given three numbers x, y, z ∈ {0, 1}k in constant depth and using Θ(k) gates
we can compute p, q ∈ {0, 1}k+1 such that x + y + z = p + q. Here, p is the
coordinate-wise addition without carry, i.e., 0◦ (x⊕y⊕z), and q is the carry, i.e.,
((x∧y)∨ (x∧ z)∨ (y∧ z))◦0. Thus as long as there are at least three numbers to
sum we can use this to transform x, y, z which are represented by 3k bits into p, q
which are represented by 2k + 2 bits and continue summing those. Doing this in
parallel for disjoint triples of summands after O(log3/2(n)) = O(log(n)) rounds
we are left with just two numbers and we sum those using Lemma 2.3.1.

Lemma 2.3.4 (Comparator). There is a uniform family of boolean circuits

SWITCHm : {0, 1}2m → {0, 1}2m

that given two numbers x, y ∈ {0, 1}m outputs these two numbers sorted as inte-
gers, i.e., min(x, y) ◦max(x, y). The size of the circuit SWITCHm is Θ(m) and
depth is Θ(log(m)).

Technique similar to the proof of the next lemma will be used also later in
the proofs of Lemma 2.1.2 and Lemma 2.5.1 in order to achieve smaller circuit
size. The main idea is to split inputs into smaller blocks and process the blocks
independently by smaller circuits.
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Lemma 2.3.5 (Binary to unary). There is a uniform family of boolean circuits
ONESb : {0, 1}b+1 → {0, 1}2b

such that for any number x ∈ {0, 1}b+1 represented
in binary the output consists of x ones followed by 2b−x zeroes, provided x ≤ 2b.1
The circuit ONESb has size Θ(2b) and depth Θ(log(b)).

Proof. We first show how to construct (ONES’b) a uniform family of boolean
circuits which computes the same function, has the same size but depth O(b).
Then we use ONES’log(b) to construct the desired circuit ONESb.

The main idea of the construction of ONES’b is to recursively split the number
x into two numbers xL, xR which describe how many bits set to one there should
be in the first and the second half of the output.

Each of the two numbers xL, xR will be represented by b bits with the conven-
tion that if the most significant bit is equal to one then the number is a power
of two (corresponding to all output bits in this part of the output set to one).
We recursively split the numbers xL, xR in the same fashion until the numbers
are represented by a single bit each at which point they will represent the output
bits. We set

xL = min(2b−1, x)
xR = min(2b−1, max(0, x− 2b−1)) (Using Lemma 2.3.2)

note that if the number x is represented by (b + 1) bits (x ∈ {0, 1}b+1) then the
numbers xL, xR can be represented by b bits (xL, xR ∈ {0, 1}b) by their definition.
Given x ∈ {0, 1}b+1 we can compute the maximum and minimum defining xL, xR

by inspecting the two most significant bits of x:

• If the most significant bit of x is set to one (thus x = 2b) we set xL =
xR = x/2 each a power of two with the most significant bit set to one (and
represented by a binary string 1 ◦ 0b−1).

• If the most significant bit of x is set to zero and the second most significant
bit is set to one, then xL will be set to the binary number 1 ◦ 0b−1 and xR

will be x− xL (a copy of x without the second most significant bit of x).

• If the two most significant bits of x are equal to zero then xL = x (repre-
sented by one less bit than x) and xR = 0.

See Figure 2.1 for an example of splitting of x into xL, xR.
Thus we can compute the transformation x ↦→ (xL, xR) where x ∈ {0, 1}b+1

and xL, xR ∈ {0, 1}b using a circuit of size Θ(b) and depth Θ(1). Then each of
the numbers xL, xR is again split into two, etc. until we get single bit numbers
which represent the final output. The depth of the circuit ONES’b is Θ(b) as
each splitting can be done in constant depth. If the circuit splitting b + 1 bits
into two b-bit numbers has size s(b) ≤ cb + d, for some universal constants c and

1We allow x to have b + 1 bits but upper bound it from above by 2b as we need to represent
exactly 2b + 1 numbers from

{︁
0, 1, . . . 2b

}︁
.
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Figure 2.1: An example of splitting numbers where b = 3. The input number
x = 5 is represented as 0101 and is split into xL = 100, xR = 001 which are
themselves split recursively. The bottom nodes form the output.

d, then the circuit ONES’b has size:

s(b + 1) + 2s(b) + 4s(b− 2) + . . . + 2bs(1) =
b∑︂

j=0
2js(b− j)

≤
b∑︂

j=0
2jc(b− j) + 2jd

≤ c
(︂
2b+1 − b− 2

)︂
+ 2b+1d

= O(2b)

To build the circuit ONESb of depth O(log(b)) we proceed as follows. For
any y ≥ 2 we denote the largest power of two that is at most y by ℓ(y) =
max {2j | j ∈ N, 2j ≤ y}. We divide the output bits into blocks of ℓ(b) bits and for
each block j ∈

[︂
2b

ℓ(b)

]︂
of output bits with positions [(j−1)ℓ(b)+1, jℓ(b)] (counting

positions from one) we compute if it should be constant (that is either constant
zero when x ≤ (j−1)ℓ(b) or constantly equal to one when x > jℓ(b)). This check
for constant values can be done in each block by a circuit of size Θ(b) and depth
Θ(log(b)). We compute ONES’log(ℓ(b)) with the input being the log(ℓ(b)) least
significant bits of x. This circuit is of size O(b) and depth O(log(b)). In each
block if the block should not be monochromatic then we use the output of that
circuit as the output of the block, otherwise we use the appropriate constant one
or zero copied ℓ(b)-times as the output of the block.

We need a primitive that counts the number of occurrences of each string in
the input. A counting similar to Lemma 2.3.6 appears in Appendix A of the
paper of Asharov et al. [2021]. The construction of the counting circuit is rather
straightforward, we just compare each input string xj with a given string y getting
an indicator bit set to one for equality and to zero for inequality and then sum
the indicator bits.

Lemma 2.3.6 (Count). There is a uniform family of boolean circuits

COUNTn,m : {0, 1}nm → {0, 1}2m⌈1+log(n)⌉

that given x1, x2, . . . , xn ∈ {0, 1}m counts the number of occurrences of each y ∈
{0, 1}m among the inputs, i.e., the circuit outputs n0m , n0m−11, . . . , n1m where for
each y ∈ {0, 1}m, ny represents in binary |{j ∈ [n] | y = xj}| using ⌈1 + log(n)⌉
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bits. The size of the circuit COUNTn,m is O(nm2m) and depth O(log(n) +
log(m)).

Proof. For each y ∈ {0, 1}m we build a sub-circuit computing the number of times
y occurs among the inputs x1, . . . , xn. This is done by comparing y to each xi

in parallel, i ∈ [n], to get an indicator bit whether they are equal. We obtain
ny by summing up the indicator bits using the circuit SUMn,1 of size Θ(n) and
depth Θ(log(n)) from Lemma 2.3.3. Comparing y to xi can be done by a circuit
of size Θ(m) and depth Θ(log(m)) and we use n such subcircuits per each y. So
we get ny using a circuit of size Θ(nm) and depth Θ(log(n) + log(m)). Doing
this for each y ∈ {0, 1}m in parallel we get a circuit of size Θ(nm2m) and depth
Θ(log(n) + log(m)).

We need also an inverse operation for the counting. To construct a circuit
that decompresses the counts we would like to first compute the interval where a
given string x should appear (that is the indexes of the first and last appearance
of x) and then get indicator bits for this interval (zeroes for the indexes where
x should not appear and ones for the indexes where x should appear). We can
compute the interval using prefix sums of the counts. To get the indicator bits
for the interval we utilize the circuit from Lemma 2.3.5 which outputs a given
number of bits set to one followed by bits set to zero.

Lemma 2.3.7 (Decompress). There is a uniform family of boolean circuits

DECOMPRESSn,m : {0, 1}⌈1+log(n)⌉2m

→ {0, 1}nm

that decompresses its input that is on input numbers n0m , n0m−11, . . . , n1m, each
represented in binary by ⌈1 + log(n)⌉ bits, where ∑︁

x∈{0,1}m nx = s ≤ n, outputs
the string

(00 · · · 0⏞ ⏟⏟ ⏞
m

)n00···0 ◦ (00 · · · 0⏞ ⏟⏟ ⏞
m−1

1)n00···01 ◦ · · · ◦ (11 · · · 1⏞ ⏟⏟ ⏞
m

)n11···1 ◦ (0m)n−s.

When s > n the output might be arbitrary. The size of DECOMPRESSn,m is
O(nm2m + 22m log(n)) and depth O(m + log log(n)).

Proof. Given n0m , n0m−11, . . . , n1m we can compute the total sum s = ∑︁
x∈{0,1}m nx

and for each y ∈ {0, 1}m, the number py of binary strings2 before the first oc-
currence of y, i.e., py = ∑︁

x∈{0,1}m : x<y nx. Each of the numbers py can be com-
puted using the circuit SUMy,⌈1+log(n)⌉ from Lemma 2.3.3 of size O(2m log(n))
and depth O(m + log log(n)). Similarly for s. Thus we can get all numbers py in
parallel by a circuit of size O(22m log(n)). A given string y ∈ {0, 1}m, y ̸= 1m,
should appear at each position j ∈ [py + 1, py+1]. Let Iy ∈ {0, 1}n be the in-
dicator vector of positions where y should appear in the output. We can use
ONES⌈1+log(n)⌉(py) ⊕ONES⌈1+log(n)⌉(py+1) to calculate Iy for each y ̸= 1m. For
y = 1m, Iy = ONES⌈1+log(n)⌉(py)⊕ONES⌈1+log(n)⌉(s). The size of ONES⌈1+log(n)⌉
is Θ(n). As there are 2m different y’s, we need a circuit of size Θ(n2m) and depth
Θ(log log(n)) to calculate all Iy’s.

2There are no binary strings lexicographically smaller than 0m so p0m = 0, in other words
an empty sum is equal to zero.
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If x1, x2, . . . , xn are the output integers, for each output position j ∈ [n], we
calculate the k-th bit of xj as ⋁︂

y∈{0,1}m

((Iy)j ∧ yk)

To compute all of these ORs we need a circuit of total size Θ(nm2m) and
depth Θ(m).

2.4 Sorting Circuits Based on AKS Network
In this section we recall the construction of circuits for sorting from the Ajtai
et al. [1983] sorting networks. They will serve as the basic primitive for our later
constructions.

Sorting networks. Sorting networks model parallel algorithms that sort values
using only comparisons. A sorting network consists of n wires and s comparators.
The wires extend from left to right in parallel. Each wire carries an integer from
left to right. Any two wires can be connected by a comparator at any point
along their length. The comparator swaps the values carried along the two wires
if the higher wire carries a higher value at that point otherwise it has no effect.
The sorting network should be such that when we input arbitrary integers to the
wires on the left, the integers always exit in sorted order from top to bottom
on the right side. The depth of a sorting network is the maximum number of
comparators a value can encounter on its way. For a formal definition see, e.g.,
Ajtai et al. [1983]. Observe that if the depth of a sorting network is d and the
number of inputs is n then there are at most s ≤ nd comparators. Ajtai et al.
[1983] established the existence of sorting networks of logarithmic depth. An
example of a small sorting network is given in Figure 2.2.

x
y

z

min(x, y)
max(x, y)

max(min(x, y), z)

min(x, y, z)
median(x, y, z)

max(x, y, z)

Figure 2.2: An example of a sorting network with three inputs (the
horizontal lines), three comparators (the vertical lines), and depth three.
The inputs on the left are numbers x, y, z and after each comparator we
noted what is on the horizontal line. Note that the bottom most output
is max(max(x, y), max(min(x, y), z)) = max(x, y, z) and the middle one is
min(max(x, y), max(min(x, y), z)) which is the median.

Theorem 2.4.1 (Ajtai et al. [1983]). For any integer n ≥ 1, there is a sorting
network for n integers of depth O(log(n)).

Sorting circuits. Here we give a precise definition of sorting by a circuit. First
we consider a circuit sorting n integers, each of them m bits long.
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Definition 2.4.2 (Sort). Let n, m ∈ N, and (Cn,m) be a family of boolean circuits.
We say that the circuit Cn,m : {0, 1}nm → {0, 1}nm sorts its input interpreted as
n integers x1, x2, . . . , xn each represented by m bits if it outputs y1, y2, . . . , yn ∈
{0, 1}m such that:

1. The outputs are sorted: For any i < j ∈ [n], yi ≤ yj.

2. The inputs and outputs form the same multiset:

For each z ∈ {0, 1}m we have |{i ∈ [n] | yi = z}| = |{i ∈ [n] | xi = z}| .

An immediate consequence of the existence of AKS sorting networks is the
existence of shallow sorting circuits, since by Lemma 2.3.4, each comparator can
be replaced by a small circuit:

Corollary 2.4.3. There is a family of boolean circuits

AKSn,m : {0, 1}nm → {0, 1}nm

that on an input x1, x2, . . . , xn ∈ {0, 1}m sorts these numbers. The size of the
circuit AKSn,m is O(nm log(n)) and depth O(log(n) log(m)).

We also need circuits that sort the n input integers, each of m bits, by the
k most significant bits where k < m. Such sorting can be thought of as sorting
(key, value) pairs, where keys are k-bit long and values (m−k)-bit long. Formally
it can be defined as follows:

Definition 2.4.4 (Partial Sort). Let n, m, k ∈ N, be such that k < m, and let
(Cn,m,k) be a family of boolean circuits. We say that the circuit Cn,m,k : {0, 1}nm →
{0, 1}nm partially sorts by the first k bits its input interpreted as n integers
x1, x2, . . . , xn each represented by m bits if it outputs y1, y2, . . . , yn ∈ {0, 1}m such
that:

1. The outputs are partially sorted: For any i < j ∈ [n], (yi)1(yi)2 · · · (yi)k ≤
(yj)1(yj)2 · · · (yj)k. That is if yi, yj are two output numbers where i < j then
we have ⌊yi/2m−k⌋ ≤ ⌊yj/2m−k⌋.

2. The inputs and outputs form the same multiset:

For each z ∈ {0, 1}m we have |{i ∈ [n] | yi = z}| = |{i ∈ [n] | xi = z}| .

Using a circuit of size O(m) and depth O(log(k)) implementing a comparator
which swaps two m-bit integers based only on the first k bits we get the following
variant of the previous corollary.

Corollary 2.4.5. There is a family of boolean circuits

PARTIAL AKSn,m,k : {0, 1}nm → {0, 1}nm ,

for k ≤ m and k ≤ log(n), that on input x1, x2, . . . , xn ∈ {0, 1}m partially sorts
these numbers according to their k most significant bits. The size of the circuit
PARTIAL AKSn,m,k is O(nm log(n)) and depth O(log(n) log(k)).
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2.5 Sorting n Binary Strings of Length m

Here we present a sorting circuit for short numbers. The construction consists of
two circuits. The first circuit counts the number of occurrences of various strings
(as stated in Lemma 2.1.2) and the second circuit decompresses these counts.
Both of these constructions use heavily the following technique: we divide the
problem into blocks which can be efficiently sorted using the AKS-based circuit.
These blocks will be of size between 2O(m) and n/2O(m) where m is the binary
length of the input integers.

We sort the numbers inside each block and subdivide the block into parts, in
such a way that by the pigeon-hole principle most of the parts will be monochro-
matic (containing copies of a single string only). We can then separately count
the strings in monochromatic parts (count the first string and then multiply that
by the length of the part) and in the non-monochromatic parts (there are not that
many strings in total in non-monochromatic parts). However a priori we do not
know which parts turns out to be monochromatic and which does not. To save on
circuitry we use sorting (on whole parts) to move the non-monochromatic parts
aside. We build the (expensive) counting circuits only for non-monochromatic
parts.

Lemma 2.1.2. (Restated) For any integers n, m ≥ 1 where m ≤ log(n)/10
there is a circuit

FAST COUNTn,m : {0, 1}nm → {0, 1}2m⌈1+log(n)⌉

which given a sequence of n strings of m bits each outputs the number of occur-
rences of each possible m-bit string among the inputs, that is for input

x1, x2, . . . , xn ∈ {0, 1}m

it outputs n0m , n0m−11, . . . , n1m where for each string y ∈ {0, 1}m, the output string
ny ∈ {0, 1}⌈1+log(n)⌉ represents |{j ∈ [n] | xj = y}| in binary. The size of the
circuit FAST COUNTn,m is O(nm2) and depth O(log(n) + m log(m)).

Proof. For the sake of simplicity let us assume that n is a power of two, so it
is divisible by 28m. (By our assumption n ≥ 210m, thus if n is not a power of
two take the circuit for the closest power of two larger than n and feed ones for
the extra input bits.) We partition the input into n/28m blocks each consist-
ing of 28m numbers. We sort each block in parallel by the circuit AKS28m,m of
size O(28mm log(28m)) = O(28mm2) and depth O(m log(m)) as given in Corol-
lary 2.4.3. Thus for this phase we need a circuit of total size O(nm2) and depth
O(m log(m)).

Then we subdivide each block into 26m parts each consisting of 22m numbers.
Observe that most of these parts are monochromatic: a part is monochromatic if
it contains 22m copies of a single m-bit number. We can upper bound the number
of non-monochromatic parts by 2m. We can add a single indicator bit to each
part indicating whether this part is monochromatic. As the parts are sorted it
is enough to compare the first and last number in each part and set the bit to 1
if the numbers are equal and to 0 otherwise. Inside each block we sort the parts
prefixed by their indicator bit using the circuit PARTIAL AKS26m,1+m22m,1 from
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Corollary 2.4.5 to move all non-monochromatic parts to the front of each block.
Thus the total size of the circuit sorting parts inside each block is

O
(︃

n

28m
(26m)(1 + m22m)6m

)︃
= O(nm2)

and depth O(m). We call the first 2m parts of each block potentially non-
monochromatic. The other parts are definitely monochromatic.

From each definitely monochromatic part we take the first m-bit number
and we count them. This can be done by the circuit COUNT n

28m (26m−2m),m

from Lemma 2.3.6 of size O
(︂(︂

n
22m − n

27m

)︂
m2m

)︂
≤ O(nm) and depth O(log(n) +

log(m)). By multiplying each count by 22m (that is by appending 2m zeroes) we
get the number of occurrences of each number in the definitely monochromatic
parts.

As there are relatively few (exactly n
28m 2m22m) numbers overall in poten-

tially non-monochromatic parts we can use the circuit COUNTn/25m,m from
Lemma 2.3.6 to count those numbers by a circuit of size O

(︂
n

25m m2m
)︂
≤ O(nm)

and depth O(log(n) + log(m)).
We got two vectors of counts for numbers in potentially non-monochromatic

and definitely monochromatic blocks. Finally, we add the two vectors of 2m

numbers each consisting of at most ⌈1 + log(n)⌉ bits to get the resulting counts.
This uses a circuit of size O(m2m) = O(n) and depth O(log log(n)). Thus, the
overall size of the circuit is O(nm2) and depth O(log(n) + m log(m)).

Lemma 2.5.1. For integers n, m ≥ 1 such that m ≤ log(n)/11, there is a family
of boolean circuits

FAST DECOMPRESSn,m : {0, 1}2m⌈1+log(n)⌉ → {0, 1}nm

that decompresses its input as in Lemma 2.3.7.
The size of the circuit FAST DECOMPRESSn,m is O(nm2) and its depth

is O(m log(m) + log log(n)).

The construction of the decompression circuit mirrors the counting circuit
albeit it is somewhat simpler with a different choice of parameters. We separately
decompress monochromatic blocks (by decompressing just a single string from
each block and then creating the right number of copies) and the strings from
non-monochromatic blocks (as there are not many of those). We then use partial
sorting to rearrange the blocks in the proper order to construct a sorted sequence.

Proof. For the sake of simplicity let us assume that n is a power of two and let
us set k = n/28m. (Thus k is an integer.) We think of the output as partitioned
into 28m blocks of size k. As in the proof of Lemma 2.3.7 we compute the prefix
sums

px =
∑︂

y∈{0,1}m : y<x

ny for each x ∈ {0, 1}m

and we set p2m = n. (Here, we identify m-bit strings x and y with integers they
represent.) We can compute each px using the circuit SUM2m,1+log(n), thus com-
puting all of them using a circuit of size O(log(n)22m) ≤ O(n) (by the assumption
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m ≤ log(n)/11) and depth O(m+log log(n)). Thus the string x ∈ {0, 1}m should
appear at output positions [px + 1, px+1]. For any x ∈ {0, 1}m we set:

rx = ((k − (px mod k)) mod k) + (px+1 mod k)

qx = nx − rx

k

The meaning is that if we partition the output into blocks of k consecutive num-
bers, then for any x ∈ {0, 1}m the number rx tells the number of times the
string x appears in non-monochromatic blocks. (These occurrences are located
in at most two non-monochromatic blocks.) The number qx tells us in how many
monochromatic blocks the string x ∈ {0, 1}m appears. Observe that qx is an
integer. Since n is a power of two, so is k, furthermore, k is fixed for given n
and m, and thus computing mod k and division by k corresponds to selecting
appropriate bits from the binary representation of numbers. All numbers px, qx

and rx are integers represented by 1 + log(n) bits. Hence, each qx and rx can be
computed from nx and px by one circuit ADD1+log(n) and two SUB1+log(n). The
circuit computing values qx and rx for all x has total size O(2m log(n)) and depth
O(log log(n)).

The following holds:

nx = kqx + rx∑︂
x∈{0,1}m

qx =
∑︂

x∈{0,1}m

nx − rx

k
≤ n/k = 28m

∑︂
x∈{0,1}m

rx ≤ 2k2m = 2n/27m

We use circuit DECOMPRESS28m,m(q0m , q0m−11, . . . , q1m) from Lemma 2.3.7
of size O (m29m) and depth O (m) to decompress monochromatic blocks. We then
just copy each resulting number k times to create sorted monochromatic blocks.
Last 28m−∑︁

x∈{0,1}m qx blocks contain zero padding corresponding to the numbers
in non-monochromatic blocks. They will be merged with the non-monochromatic
blocks obtained next.

In order to properly match the non-monochromatic blocks to the padded
zeroes we adjust the count r0m :

r′
0m =

(︂
2n/27m

)︂
−

∑︂
x∈{0,1}m : x ̸=0m

rx

using circuit SUM2m,1+log(n) and SUB1+log(n) of size O(n) and depth O(m +
log log(n)). We use the circuit DECOMPRESS2n/27m,m(r′

0m , r0m−11, . . . , r1m)
from Lemma 2.3.7 to decompress the non-monochromatic blocks. The circuit is
of size O ((2n/27m) m2m + 22m log (2n/27m)) ≤ O (nm/26m) and of depth O(m +
log log(n)). (Here, we used our assumption m ≤ log(n)/11, to bound n ≥ 211m

and 22m ≤ n3/4/26m.)
Finally, we compute the bit-wise OR of the last 2m+1 blocks of the output

from the previous step (monochromatic decompression) with the current output
(non-monochromatic decompression). This way we get a sequence of n numbers
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partitioned into blocks where each block corresponds to one of the blocks in the
desired output. However, we still need to rearrange the blocks in the proper
order. We will use partial sorting of the whole blocks to do that.

For a given block let x be the first number in that block. We prefix the block by
a number 2x (represented by m+1 bits) if the block is monochromatic or the num-
ber 2x + 1 if the block is non-monochromatic. To determine whether the block is
monochromatic we compare for equality the first and last number inside the block.
We do this for each block. Thus each block of k numbers is prefixed by an m + 1
bit number. Computing these prefixes requires a circuit of total size O(28mm) ≤
O(n) and depth O(log(m)). We then use the PARTIAL AKS28m,(m+1)+km,m+1
circuit of size O(28m((m + 1) + km)8m) ≤ O(nm2) and depth O(m log(m)) to
sort the blocks (see Corollary 2.4.5). Finally, we ignore the m + 1 bit prefixes of
each block to get the desired output.

Proof of Theorem 2.1.1. It is enough to combine Lemma 2.1.2 and Lemma 2.5.1.

Observe that the proofs of Lemma 2.1.2 and Lemma 2.5.1 do not depend on
using specifically the AKS sorting. In particular for the case of Lemma 2.1.2 if
there is a circuit that sorts input numbers that is linear in the number of input
bits then there is a linear size circuit that counts these numbers.

2.6 Partial Sorting by the First k Bits in Poly-
logarithmic Depth

Here we design a family of boolean circuits that partially sorts by the first k
bits out of m bits which is asymptotically smaller than PARTIAL AKSn,m,k.
Another natural way how to think about partial sorting by the first k bits is as
sorting keys with payload data (w − k bits) for each k-bit key. We will need
super-concentrators for our construction.

A directed acyclic graph G = (V, E, A, B), where V is the set of vertices, E is
the set of directed edges, and A and B are disjoint subsets of vertices of the same
size, is a super-concentrator if the following hold: The vertices in A (inputs) have
in-degree zero, vertices in B (outputs) have out-degree zero, and for any S ⊆ A
and for any T ⊆ B : |S| = |T | there is a set of pairwise vertex disjoint paths
connecting each vertex from S to some vertex in T .

We parametrize the super-concentrator by the number of input vertices n, and
we measure its size by the number of edges. We want the graph to have as few
edges as possible. The depth of the super-concentrator is the number of edges on
the longest directed path.

Pippenger [1996] shows a construction of super-concentrators of linear size
and logarithmic depth. More specifically, Pippenger [1996] constructs a family of
super-concentrators Sn for n being the number of inputs, where the in-degree and
out-degree of each vertex is bounded by some universal constant, the number of
edges is linear in n, and the depth is O(log(n)). Moreover he shows that there
are finite automatons which for any S ⊂ A, T ⊂ B : |S| = |T | when put on the
vertices of the super-concentrator find the set of vertex disjoint paths from S to
T in O(log(n)) iterations, each taking O(log(n)) steps, for the total number of
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O(n) steps of the automatons. We describe this construction using the language
of circuits. The circuit on input of characteristic vectors of S and T computes
the set of |T | vertex disjoint paths connecting S and T . The circuit outputs the
characteristic vector of the set of edges participating in the paths.

Theorem 2.6.1 (Pippenger [1996]). There is a family of super-concentrators Sn

as described above and boolean circuits

ROUTEn : {0, 1}2n → {0, 1}|Sn|

of size O(n log(n)) and depth O(log2(n)) that on input characteristic vector of
any set T ⊆ [n] and characteristic vector of any S ⊆ [n] where |T | = |S|, outputs
the characteristic vector of edges that form |T | vertex disjoint paths between S
and T .

By routing m bits along each path in the super-concentrator we can use the
above circuit to build a circuit that partially sorts m-bit integers by their most
significant bit.

Corollary 2.6.2. There is a family of boolean circuits

PIPPENGER SORTn,m,1 : {0, 1}nm → {0, 1}nm

that on input x1, x2, . . . , xn ∈ {0, 1}m partially sort these numbers according to
their first most significant bit. The size of the circuit PIPPENGER SORTn,m,1
is O(nm + n log(n)) and depth O(log2(n)).

Proof. We give a sketch of the proof. First, we will use the graph Sn to get all
inputs starting with one to the proper place. Then, using the same construction
we will move all inputs starting by 0 to the proper place. We transform the
graph Sn into a circuit by replacing each vertex of in-degree d by a routing gadget
(circuit) which takes d m-bit inputs together with d control bits, one bit for each
of the m-bit inputs, and outputs the bit-wise OR of inputs for which their control
bit is set to 1. Such a routing gadget of size O(dm) and depth O(log(d)) can
be easily constructed. If (u, v) is the j-th incoming edge of v in Sn, we connect
the j-th block of m input bits of the routing gadget corresponding to v to the
output of the routing gadget of u. The routing gadgets of input vertices of Sn are
connected directly to the appropriate inputs of the sorting circuit. The routing
gadget will be used with at most single control bit set to one, thus it will route
the corresponding input.

It remains to calculate paths that will route the integers starting with 1 in
the above circuit in the desired way. For that, we calculate the sum s of the most
significant bits by which we are sorting using SUMn,1 from Lemma 2.3.3, we
expand it back using ONES⌈log(n)⌉+1(s), and reverse it to get the characteristic
vector of a set T , where we want to route to. Together with the most significant
bits of each input integer (which form the characteristic vector of S from which
we route) we feed this as an input to ROUTEn. The output bits of ROUTEn

are connected to the appropriate control bits of our routing gadgets. The sorted
output is obtained as the output of the n routing gadgets corresponding to the
output vertices of Sn.
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The size of the ROUTEn is O(n log(n)) and the total size of the circuits
implementing the routing gadgets is O(mn). These two terms dominate the
overall size of the circuit. The depth of the circuit is dominated by the depth of
the ROUTEn which is O(log2(n)).

We can use the above circuit in an iterative fashion to build a smaller circuit
for the same primitive. Again we use blocks and parts where most parts are
monochromatic. But in the following lemma we use larger and larger blocks
(and parts) and monochromatic parts are sorted as one entity (the sorting works
with whole monochromatic parts instead of individual inputs). Thus the route-
counting part from Corollary 2.6.2 is relatively small as it is computing routing
for a limited number of strings (inputs and later monochromatic parts) at a time.

Lemma 2.6.3. There is a family of boolean circuits

ITERATIVE SORTn,m,1 : {0, 1}nm → {0, 1}nm

that on input x1, x2, . . . , xn ∈ {0, 1}m partially sort these numbers according to
their first most significant bit. The size of the circuit ITERATIVE SORTn,m,1
is O(nm(1 + log∗(n)− log∗(m))) and its depth is O(log2(n)).

Proof. Assume m ≤ log(n)/11 otherwise use Corollary 2.6.2. We will build the
circuit iteratively using the circuit from Corollary 2.6.2 for blocks of various sizes.
We will start with small blocks of items and we will iteratively sort larger and
larger number of items organized into mostly monochromatic blocks. Without
loss of generality we assume that m is a power of two, and we will ignore the
rounding issues. We will have two parameters mi and ni = 23mi , where m0 = m
and mi+1 = 2mi for i ≥ 0. At iteration i, all the items will be partitioned into
parts of consecutive numbers, each part will be either monochromatic containing
all zeros, all ones, or it will be mixed. (Here we refer to the most significant bits of
the numbers in the part.) For each part we will maintain two indicator bits which
of the three possibilities occurs: an indicator which is one if the block is mixed,
and another color indicator which specifies the highest order bit of the integers
if the block is monochromatic. (For the latter we could use the first bit of the
first integer in the part.) At each iteration i > 0, mi will denote the number of
items in each part. ni/mi consecutive parts form a block, so each block contains
ni items. The blocks partition the input. We will maintain an invariant that the
fraction of mixed parts in each block is at most 2/m3

i at the beginning of i-th
iteration.

At iteration 0 we apply PIPPENGER SORTn0,m,1 to consecutive blocks of
n0 input integers. Afterwards, the block is partitioned into parts of size m1 and
for each part we determine its status by comparing the most significant bits of
the first and last integer in the part. It is clear that each block of size n0 contains
at most one mixed part. As the number of parts in the block is m3

1, the fraction
of mixed parts in each block is at most 2/m3

1, and this is also true for blocks of
size n1.

At iteration i > 0, we divide the current sequence of parts of size mi into
blocks containing ni/mi parts, and we proceed in three steps:

Step 1. Sort the parts in each block using PIPPENGER SORTni/mi,2+mi·m,1
according to the mixed indicator. Hence, all the mixed parts will move to
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the end of the block. There are at most 2ni/m3
i mixed parts in each block,

the remaining parts must be monochromatic.

Step 2. In each block, sort all the m-bit integers in the last 2ni/m3
i parts ac-

cording to their most significant bit using PIPPENGER SORT2ni/m2
i ,m,1.

This sorts together all the integers in the mixed parts (and perhaps few
other parts). Repartition them into parts of mi consecutive numbers and
determine their indicator bits. Only one of the parts should be mixed at
this point. Swap it with the last part in the block. (We provide details of
the swap later.)

Step 3. In each block, sort all the parts except for the last one according to their
color indicator using PIPPENGER SORT(ni/mi)−1,2+mi·m,1. This moves
all the parts of color 0 to the front. Repartition all the numbers in the
block into parts of mi+1 consecutive integers and determine their indicator
bits, where the last part is marked as mixed. At most two of the new parts
should be mixed at this point. Notice, that out of m3

i+1 parts in each block,
at most two are marked as mixed so the invariant applies. We can move to
the next iteration.

We iterate the algorithm until mi ≥ log(n)/4. Once mi ≥ log(n)/4, the
number of integers in mixed parts is at most 2n/m2

i ≤ O(n/ log2(n)), remaining
items are in monochromatic parts. At this point we cannot form a block of size
ni, but we can still perform the same type of actions as in Steps 1-3: We can bring
the monochromatic parts forward as in Step 1, sort the last 32n/ log2(n) integers
belonging to the mixed parts, move the remaining mixed part to the end, sort
the monochromatic parts and swap the mixed part with the first monochromatic
part of color 1.

To swap a single mixed part with the last part we can copy the mixed part
into a buffer by AND-ing every part bit-wise with the indicator whether that is
the mixed part, and OR-ing all the results together. This copies the mixed part
into a buffer. In a similar fashion we can copy the last part into the now unused
part by letting each part bit-wise copy to its place either its original content or
the content of the last part, again conditioning on an appropriate indicator bit.
Hence, the swap can be implemented by a circuit of size proportional to the total
size of the parts and depth logarithmic in the number of parts.

Now we will bound the total size of the circuit we constructed. Step 1 requires
n/ni circuits of size O(nim + ni/mi log(ni/mi)) = O(nim), as log(ni) = O(mi),
and of depth at most O(log2(ni)). Step 2 requires n/ni sorting circuits of size
O(mni/m2

i + 2ni/m2
i log(2ni/m2

i )) = O(ni) and of depth at most O(log2(ni)),
together with a circuit of total linear size O(n) to recalculate the parts and do
the swaps. The last step requires the same amount of circuitry as the first step.

Hence, each step requires circuits of total size O(nm). The same goes for the
initial sort at iteration 0, and the final sorts at the end. As there are at most
log∗(n)− log∗(m) iterations, the resulting size is O(nm(log∗(n)− log∗(m))). Each
step requires a circuit of depth O(log2(ni)), recall that by our choice ni = 23mi ,
thus log(ni) = 3mi. Since mi+1 = 2mi and for each i we have mi ≤ log(n)/4, thus
the total depth is dominated by the last iteration where we use a circuit of depth
O(log2(n)).

27



Theorem 2.1.3. (Restated) For any integers n, m, k ≥ 1 where k ≤ m and
k ≤ log(n)/11 there is a circuit

SORTn,m,k : {0, 1}nm → {0, 1}nm

which partially sorts n numbers each of m bits by their first k bits. The circuit
SORTn,m,k has size O(knm(1 + log∗(n)− log∗(m))) and depth O(log3(n)).

As we have shown in Lemma 2.6.3 we can sort the integers by one bit. Un-
fortunately this sort is not stable thus we cannot simply use it to sort by k bits.
The main idea is to sort only the keys (i.e., take only first k bits of each integer
and sort them) and use this information for splitting the array into two halves –
less than or equal and larger or equal to the median key. We observe that in one
of the halves all elements have the same first bit (same as the most significant bit
of the median) and thus need to be sorted by k − 1 bits only. Thus we get two
subproblems: sorting n/2 elements by k bits and sorting n/2 integers by k − 1
bits. The recursion gives us a circuit of the desired size and depth.

Proof of Theorem 2.1.3. We assume that k ≤ log(n)/11 otherwise we can use
Corollary 2.4.5 to sort the elements. Without loss of generality we assume n is a
power of two. We think of the input as organized into an array. We extract the
first k bits (key) from each input element and we sort the keys using the circuit
from Theorem 2.1.1 of size O(nk2) and depth O(log(n) + k log(k)).

We build recursively a circuit that sorts the input array of n elements accord-
ing to the first k bits when the input is augmented with the array of sorted keys.
Now our goal is to split the input array into two equal sized parts L and R where
all elements in L are less or equal to elements in R when comparing only the
keys.

To do that we take the median, the (n/2)-th element among the keys, and
we partition the array according to it. We split the input array into three arrays
L, M , and R of length n with elements less than, equal to, and greater than
the median, resp., and we mark the unused elements as dummy using an extra
bit associated to each element (see Figure 2.3 for an illustration of the following
process). In the case of the L array the dummy elements are there for each
element with a key at least as large as the median key. In the case of the M
array the dummy elements are there for each element with a key not equal to
the median key. In the case of the R array the dummy elements are there for
each element with a key at most as large as the median key. We sort L and M
so that all non-dummy elements are to the left and R so that all non-dummy
elements are to the right. We use three circuits ITERATIVE SORTn,m+1,1 to
do that. Now, we flip the first half of elements in M , i.e., swap the i-th element
with the element in position (n/2) − i + 1, and we replace the dummy elements
in the first half of L by the corresponding elements in M . By one application
of ITERATIVE SORTn,m+1,1 we move all the remaining non-dummy elements
in M to the left, and we merge those elements with the second half of R. We
discard the second and first half of L and R, respectively. (They contain only
dummy elements.)

If the highest order bit of the median is set to 0 then all the elements in
L have the highest order bit set to 0, otherwise all the elements in R have the
highest order bit set to 1. In either case we reduced the problem to one problem
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Sort less than (rest are dummy) Sort greater (rest are dummy)

Swap the first half

Replace dummies in the first half

Merge the remaining with R

Merge halves

Sort the remaining

L M R

(using swap with a control bit)

Figure 2.3: Sorting by the median key using unstable sorting by a single bit.
Inputs are at the bottom and outputs are at the top. The symbol < means an
element with a key less than the median key, = stands for an element with a key
equal to the median key, and > stands for an element with a key greater than the
median key. Blanks are “dummy” elements and arrows are either use of sorting
by a single bit or fixed permutations.

of sorting half of the elements according to k−1 bits and the other half according
to k-bits. We recursively build a circuit to sort SORTn/2,m,k−1 and SORTn/2,m,k

when the input is augmented with the sorted array of keys. We pass to each of
the sorting sub-circuits the appropriate sub-problem and we re-route the results
from them to form the final output.

Not counting the two sub-circuits SORTn/2,m,k−1 and SORTn/2,m,k, this step
requires four copies of the circuit ITERATIVE SORTn,m+1,1 and additional
O(nm) gates to do the moves and element comparison with the median. Denote
the size of this part of the circuit by

Lm(n) = O(nm(1 + log∗(n)− log∗(m))).

The depth of the resulting circuit to perform all those operations is O(log2(n))
as the move operations are done in parallel (again, not counting the depth of
SORTn/2,m,k−1 and SORTn/2,m,k). If we denote by Sm,k(n) the size of the circuit
SORTn,m,k we get the following recurrence:

Sm,k(1) = O(m)
Sm,1(n) = O(nm(1 + log∗(n)− log∗(m)))

Sm,k(n) ≤ Lm(n) + Sm,k−1

(︃
n

2

)︃
+ Sm,k

(︃
n

2

)︃
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when we iterate the recurrence:

Sm,k(n) = Lm(n) + Sm,k−1(n/2) + Sm,k(n/2)
= Lm(n) + Sm,k−1(n/2) + Lm(n/2) + Sm,k−1(n/4) + Sm,k(n/4)
= Lm(n) + Sm,k−1(n/2) + Lm(n/2)

+ Sm,k−1(n/4) + Lm(n/4) + Sm,k−1(n/8) + Sm,k(n/8)
= . . .

= (Lm(n) + Lm(n/2) + . . . + Lm(1))
+ (Sm,k−1(n/2) + Sm,k−1(n/4) + . . . + Sm,k−1(1)) + Sm,k(1)

≤ Lm(2n) + Sm,k−1(n) + Sm,k(1)

which gives us

Sm,k(n) = kLm(2n) + Sm,1(n) + (k − 1)Sm,k(1)
≤ O(knm(1 + log∗(n)− log∗(m)))

To bound the depth Dm,k(n) we use the following recurrence:

Dm,k(1) = O(1)
Dm,k(n) ≥ Dm,k−1(n)
Dm,1(n) = O(log2(n))
Dm,k(n) = O(log2(n)) + max (Dm,k(n/2) + Dm,k−1(n/2))

≤ O(log2(n)) + Dm,k(n/2)
≤ O(log3(n))

2.7 Conclusion
We have provided improved sorting circuits. Our technique used in the proof
of Theorem 2.1.1 can be viewed as information compression and decompression.
This technique might prove useful for other related problems. We list some open
problems:

• Most of our circuits are uniform. The non-uniform part is due to the use
of the AKS circuits and Pippenger’s super-concentrators. Can one make
uniform circuits of the same size?

• Kospanov [1994] shows that there is a family of sorting circuits with depth
O(log(n)+log(m)) and size O(mn2) that sorts n numbers each of m bits. Is
there a circuit family for sorting with circuits of depth O(log(n) + log(m))
and size O(nm2)? In other words can we get rid of the m log(m) factor in
the circuit depth from Theorem 2.1.1 while keeping the O(nm2) size?

• Is it possible to partially sort n numbers of m bits each by their first bit
using a circuit of size O(nm) and depth O(log(n))?
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3. Oblivious RAM
The results presented in this chapter are based on the paper Hubáček et al. [2019].

3.1 Our Results
In this work, we further develop the information transfer technique of Patrascu
and Demaine [2006] when applied in the context of online ORAMs. We revisit the
lower bound of Larsen and Nielsen [2018] which was proved under the assumption
that the adversarial server knows exactly which server accesses correspond to
each input operation. Specifically, we prove a stronger matching lower bound in
a relaxed model without any restriction on the format of the access sequence to
server memory.

Note that the Larsen and Nielsen [2018] lower bound does apply to the known
constructions of ORAMs where it is possible to implicitly separate the accesses
corresponding to individual input operations – since each input operation gen-
erates an access sequence of roughly the same length. However, the Larsen and
Nielsen [2018] result does not rule out the possibility of achieving sub-logarithmic
overhead in an ORAM which obfuscates the boundaries in the access pattern (e.g.,
by translating input operations into variable-length memory accesses). We show
that obfuscating the boundaries between the input operations does not help in
building a more efficient ORAM. In other words, our lower bound justifies the
design choice of constructing ORAMs where each input operation is translated
to roughly the same number of probes to server memory (common to the known
constructions of ORAMs).

Besides online ORAM (i.e., the oblivious Array Maintenance problem), our
techniques naturally extend to other oblivious data structures and allow to gen-
eralize also the recent lower bounds of Jacob et al. [2019] for oblivious stacks,
queues, deques, priority queues and search trees.

For online ORAMs with statistical security, our results are stated in the fol-
lowing informal theorem.

Theorem 3.1.1 (Informal). Any statistically secure online ORAM with internal
memory of size m has expected bandwidth overhead Ω(log(n)), where n ≥ m2

is the length of the sequence of input operations. This result holds even when
the adversarial server has no information about boundaries between probes corre-
sponding to different input operations.

In the computational setting, we consider two definitions of computational
security. Our notion of weak computational security requires that no polyno-
mial time algorithm can distinguish access sequences corresponding to any two
input sequences of the same length – this is closer in spirit to computational se-
curity for ORAMs previously considered in the literature. The notion of strong
computational security requires computational indistinguishability even when the
distinguisher is given the two input sequences together with an access sequence
corresponding to one of them. The distinguisher should not be able to tell which
one of the two input sequences produced the access sequence. Interestingly, our
technique (as well as the proof technique of Larsen and Nielsen [2018] in the
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model with structured access pattern) yields different lower bounds with respect
to the two definitions stated in the following informal theorem.

Theorem 3.1.2 (Informal). Any weakly computationally secure online ORAM
with internal memory of size m must have expected bandwidth overhead ω(1). Any
strongly computationally secure online ORAM with internal memory of size m
must have expected bandwidth overhead Ω(log(n)), where n ≥ m2 is the length
of the sequence of input operations. This result holds even when the adversar-
ial server has no information about boundaries between probes corresponding to
different input operations.

Note that even the ω(1) lower bound for online ORAMs satisfying weak com-
putational security is an interesting result in the light of the work of Boyle and
Naor [2016]. It follows from Boyle and Naor [2016] that any super-constant lower
bound for offline ORAM would imply super-linear lower bounds on size of sorting
circuits – which would constitute a major breakthrough in computational com-
plexity (for additional discussion, see Section 3.5). Our techniques clearly do not
provide lower bounds for offline ORAMs. On the other hand, we believe that
proving the ω(1) lower bound in any meaningful weaker model would amount to
proving lower bounds for offline ORAM or read-only online ORAM (see Weiss
and Wichs [2018]) which would have important implications in computational
complexity.

Alternative Definitions of ORAM. Previous works considered various alter-
native definitions of ORAM. We clarify the ORAM model in which our techniques
yield a lower bound in Section 3.2.1 and discuss its relation to other models in
Section 3.5. As an additional contribution, we demonstrate an issue with the
definition of ORAM appearing in Goldreich and Ostrovsky [1996]. Specifically,
we show that the definition can be satisfied by a RAM with constant overhead
and no meaningful security. The definition of ORAM in Goldreich and Ostrovsky
[1996] differs from the original definition in Goldreich [1987] and Ostrovsky [1990],
which do not share the issue we observed in the definition from Goldreich and
Ostrovsky [1996]. Given that the work of Goldreich and Ostrovsky [1996] might
serve as a primary reference for our community, we explain the issue in Section 3.5
to help preventing the use of the problematic definition in future works.

Persiano and Yeo [2019] adapted the chronogram technique Fredman and
Saks [1989] from the literature on data structure lower bounds to prove a lower
bound for differentially private RAMs (a relaxation of ORAMs in the spirit of
differential privacy Dwork et al. [2006] which ensures indistinguishability only for
input sequences that differ in a single operation). Similarly to the work of Larsen
and Nielsen [2018], the proof in Persiano and Yeo [2019] exploits the fact that
the distinguisher knows exactly which server accesses correspond to each input
operation. However, as the chronogram technique significantly differs from the
information transfer approach, we do not think that our techniques would directly
allow to strengthen the Persiano and Yeo [2019] lower bound for differentially
private RAMs and prove it in the model with an unstructured access pattern.
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3.1.1 Our Techniques
The structure of our proof follows a similar blueprint as the work of Larsen and
Nielsen [2018]. However, we must handle new issues introduced by the more
general adversarial model. Most significantly, our proof cannot rely on any for-
matting of the access pattern, whereas Larsen and Nielsen leveraged the fact that
the access pattern is split into blocks corresponding to each read/write operation.
To handle the lack of structure in the access pattern, we study the properties of
the access graph induced naturally by the access pattern of an ORAM computa-
tion. We identify a particular graph property that can be efficiently tested and
that all access graphs of ORAM computation must satisfy with high probability.
This property is reminiscent of the Larsen-Nielsen property but it is substantially
less structured; that is, it is more generic.

The access graph is defined as follows: the vertices are timestamps of server
probes and there is an edge connecting two vertices if and only if they correspond
to two subsequent accesses to the same memory cell. We define a graph property
called ℓ-dense k-partition. Roughly speaking, graphs with ℓ-dense k-partitions
are graphs which may be partitioned into k disjoint subgraphs, each subgraph
having at least ℓ edges. We show that this property has to be satisfied (with high
probability) by access graphs induced by an ORAM for any k and an appropri-
ate ℓ. To leverage this inherent structure of access graph towards a lower bound
on bandwidth overhead, we prove that if a graph has ℓ

k
-dense k-partition for

some ℓ and K different values of k then the graph must have at least Ω(ℓ log(K))
edges. In Section 3.3, we provide the formal definition of access graph and ℓ-
dense k-partitions and prove a lower bound on the expected number of edges for
a graph that has many ℓ-dense k-partitions.

In Section 3.4, we prove that access graphs of ORAMs have many dense parti-
tions. Specifically, using a communication-type argument we show that for Ω(n)
values of k, there exist input sequences for which the corresponding graph has
Ω(n

k
)-dense k-partition with high probability. Applying the indistinguishability

of sequences of probes made by ORAM, we get one sequence for which its access
graph satisfies n

k
-dense k-partition for Ω(n) values of k with high probability.

Combining the above results from Section 3.4 with the results from Section 3.3,
we get that the graph of such a sequence has Ω(n log(n)) edges, and thus by defini-
tion, Ω(n log(n)) vertices in expectation. This implies that the expected number
of probes made by the ORAM on any input sequence of length n is Ω(n log(n)).

3.2 Preliminaries
In this section, we introduce some basic notation and recall some standard defini-
tions and results. Throughout the rest of the thesis, we let [n] for n ∈ N to denote
the set {1, 2, . . . , n}. A function negl(n) : N→ R is negligible if it approaches zero
faster than any inverse polynomial, formally:

Definition 3.2.1 (Negligible function). A function µ : N→ R is negligible if for
every c ∈ N there is Nc ∈ N such that for all x ≥ Nc we have

|µ(x)| ≤ 1/xc.
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Definition 3.2.2 (Statistical Distance). For two probability distributions X and
Y on a finite set S, we define statistical distance of X and Y as

SD (X, Y ) = 1
2

∑︂
s∈S

|Pr[X = s]− Pr[Y = s]| .

We use the following observation, which characterizes statistical distance as
the difference of areas under the curve (see Fact 3.1.9 in Vadhan [1999]).

Proposition 3.2.3. Let X and Y be probability distributions on a finite set S,
let SX = {s ∈ S : Pr[X = s] > Pr[Y = s]}, and define SY analogously. Then

SD (X, Y ) = Pr[X ∈ SX ]− Pr[Y ∈ SX ] = Pr[Y ∈ SY ]− Pr[X ∈ SY ] .

We also use the following data-processing-type inequality.

Proposition 3.2.4. Let X and Y be probability distributions on a finite set S.
Then for any function f : S → {0, 1}, it holds that

|Pr[f(X) = 1]− Pr[f(Y ) = 1]| ≤ SD (X, Y ) .

A probability ensemble is a family of distributions of random variables. We say
that two probability ensembles {Xn}n∈N and {Yn}n∈N are computationally indis-
tinguishable if no polynomial distinguishing algorithm D is able to tell whether
it is running on 1n, Xn or on 1n, Yn, formally:

Definition 3.2.5 (Computational indistinguishability). Two probability ensem-
bles, {Xn}n∈N and {Yn}n∈N, are computationally indistinguishable if for every
polynomial-time algorithm D there exists a negligible function negl(·) such that

|Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1]| ≤ negl(n) .

The security parameters 1n are redundant in the case of strong computational
security (see Definition 3.2.7) and thus not written down explicitly in the rest
of the chapter as we consider only ensembles with |Xn| ≥ n. In the case of
weak computational security (see Definition 3.2.7) we explicitly write them in
the ensambles.

3.2.1 Online ORAM
In this section, we present the formal definition for online oblivious RAM model
(ORAM) we consider in our work – we build on the oblivious cell-probe model of
Larsen and Nielsen [2018].

Definition 3.2.6 (Array Maintenance Problem Larsen and Nielsen [2018]). The
Array Maintenance problem with parameters (ℓ, w) is to maintain an array B of
ℓ w-bit entries under the following two operations:

Write operation (W, a, d): Set the content of B[a] to d, where the address a is
from [ℓ] and data d ∈ {0, 1}w.

Read operation (R, a, d): Return the content of B[a], where the address a ∈ [ℓ]
and data d ∈ {0, 1}w (note that d is ignored).
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We say that a machine M implements the Array Maintenance problem with
parameters (ℓ, w) and probability p, if for every n ∈ N and every input sequence
of n operations

y = (o1, a1, d1), . . . , (on, an, dn), where each oi ∈ {R, W} , ai ∈ [ℓ], di ∈ {0, 1}w ,

and for every read operation in the sequence y,M returns the correct answer (that
is the data d which were last written in the address location a) with probability at
least p.

Definition 3.2.7 (Online Oblivious RAM). For m, w ∈ N, let RAM*(m, w) de-
note a probabilistic random access machine M with m cells of internal memory,
each of size w bits, which has access to a data structure, called server, implement-
ing the Array Maintenance problem with parameters (2w, w) and probability 1. In
other words, in each step of computation M may probe the server on a triple
(o, a, d) ∈ {R, W} × [2w] × {0, 1}w and on every input (R, a, d) the server re-
turns to M the data last written in B[a]. We say that RAM∗ probes the server
whenever it makes an Array Maintenance operation to the server.

Let m, M, w be any natural numbers such that M ≤ 2w. An online Oblivious
RAM M with address range M , cell size w bits and m cells of internal memory
is a RAM∗(m, w) satisfying online access sequence, correctness, and statistical
(resp. computational) security as defined below.

Online Access Sequence: For any input sequence y = y1, . . . , yn the RAM*
machine M gets yi one by one, where each yi ∈ {R, W} × [M ] × {0, 1}w.
Upon the receipt of each operation yi, the machine M generates a possibly
empty sequence of server probes (o1, a1, d1), . . . , (oℓi

, aℓi
, dℓi

), where each
(oi, ai, di) ∈ {R, W}× [2w]×{0, 1}w, and updates its internal memory state
in order to correctly implement the request yi. We define the access sequence
corresponding to yi as A(M, yi) = a1, a2, . . . , aℓi

. For the input sequence y,
the access sequence A(M, y) is defined as

A(M, y) = A(M, y1), A(M, y2), A(M, y3), . . . , A(M, yn).

Note that the definition of the machineM is online, and thus for each input
sequence y = y1, . . . , yn and each i ∈ [n− 1], the access sequence A(M, yi)
does not depend on yi+1, . . . , yn.

Correctness: M implements the Array Maintenance problem with parameters
(M, w) with probability at least 1−pfail (for some fixed number pfail ∈ [0, 1)).

Statistical Security: For any two input sequences y, y′ of the same length, the
statistical distance of the distributions of access sequences A(M, y) and
A(M, y′) is at most 1

4 .

Computational Security: We consider infinite families of ORAM where we
allow m, M, w to be functions of the length n of the input sequence. We
distinguish between the following two notions:
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∈ [
M
]

∈ {
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1}
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(R/W, address, data)
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∈ [
2
w ]

∈ {
0,
1}
w

(R/W, address, data)

“probes”

RAM∗(m,w)

probabilistic machine

internal memory

Cell size: w bits
Memory size: m cells

Server

deterministic machine

server memory

Cell size: w bits
Memory size: 2w cells

implements Array Maintenance problem (2w, w)
with probability 1

implements Array Maintenance problem (M,w)
with probability 1− pfail

Figure 3.1: Schema of online ORAM from Definition 3.2.7.

Weak Computational Security: For any infinite families of input se-
quences {yn}n∈N and {y′

n}n∈N such that |yn| = |y′
n| ≥ n for all n ∈ N,

the probability ensembles (together with 1n as security parameters)
{(1n, A(M, yn))}n∈N and {(1n, A(M, y′

n))}n∈N are computationally in-
distinguishable.

Strong Computational Security: For any infinite families of input se-
quences {yn}n∈N and {y′

n}n∈N such that |yn| = |y′
n| ≥ n for all n ∈ N,

the probability ensembles

{(yn, y′
n, A(M, yn))}n∈N

and
{(yn, y′

n, A(M, y′
n))}n∈N

are computationally indistinguishable.

The parameters of our ORAM model from Definition 3.2.7 are depicted in
Figure 3.1. We use different sizes of arrows on server and RAM side to denote
the asymmetry of the communication (the RAM sends type of operation, address,
and data and the server returns requested data in case of a read operation and
a dummy value in case of a write operation). Note that the input sequence y
of ORAM consists of a sequence of all operations, whereas the access sequence
A(M, y) consists of a sequence of addresses of all probes.

Arguably, a user of an ORAM might want the stronger notion of compu-
tational security whereas the weaker notion is closer to the past considerations.
Note that in the case of weak computational security, the adversarial distinguisher
does not have access to the input sequences. Thus, it is restricted to contain only
constant amount of information about the whole families of input sequences {yn}n

and {y′
n}n. In contrast, in the case of strong computational security, the adver-

sarial distinguisher is given also the input sequences. Thus, it is able to compute
any polynomial time computable information about the input sequences. This
distinction is crucial for our results, as we are able to prove only an ω(1) lower
bound for the weak security as opposed to the Ω(log(n)) lower bound for strong
security (see Theorem 3.4.10 and Theorem 3.4.9). Nevertheless, we believe that
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the known constructions of ORAM satisfy the notion of strong computational
security.

For ease of exposition, in the rest of the chapter we assume perfect correctness
of the ORAM (i.e., pfail = 0). However, our lower bounds can be extended also to
ORAMs with imperfect correctness (see Remark 3.4.3). Finally, our lower bounds
hold also for semi-offline ORAMs where the ORAM machineM receives the type
and address of each operation in advance and it has to process in online manner
only the data to be written during each write operation (see Remark 3.4.4).

3.3 Dense Graphs
In this section, we define an efficiently testable property of graphs that we show
to be satisfied by graphs induced by the access pattern of any statistically secure
ORAM. This property implies that the expected overhead of such ORAM must
be logarithmic.

We say that a directed graph G = (V, E) is ordered if V is a subset of integers
and for each edge (u, v) ∈ E: u < v. For a graph G = (V, E) and S, T ⊆ V , we
let E(S, T ) ⊆ E be the set of edges that start in S and end in T , and for integers
a < m < b ∈ V we let E(a, m, b) = E({a, a+1, . . . , m−1}, {m, m+1, . . . , b−1}).

Definition 3.3.1. A k-partition of an ordered graph G = (V = {0, 1, 2, . . . , N −
1}, E) is a sequence 0 = b0 < m0 < b1 < m1 < · · · < bk = N . We say that the
k-partition is ℓ-dense if for each i ∈ {0, . . . , k − 1}, E(bi, mi, bi+1) is of size at
least ℓ.

There is a simple greedy algorithm running in time O(|V |2 · |E|) which tests
for given integers k, ℓ whether a given ordered graph G = (V, E) has an ℓ-dense
k-partition. (The algorithm looks for the k parts one by one greedily from left to
right.)

Lemma 3.3.2. Let K ⊆ N be a subset of powers of 4. Let ℓ ∈ N be given.
Let G = ({0, . . . , N − 1}, E) be an ordered graph which for each k ∈ K has an
(ℓ/k)-dense k-partition. Then G has at least ℓ

2 · |K| edges.

Proof. We use the following claim to bound the number of edges.
Claim 3.3.3. Let k > k′ > 0 be integers. Let 0 = b0 < m0 < b1 < m1 < · · · <
bk = N be a k-partition of G, and 0 = b′

0 < m′
0 < b′

1 < m′
1 < · · · < b′

k′ = N be a
k′-partition of G. Then for at least k − k′ distinct i ∈ {0, . . . , k − 1}

E(bi, mi, bi+1) ∩
⋃︂

j∈{0,...,k′−1}
E(b′

j, m′
j, b′

j+1) = ∅. (3.3.1)

Proof. For any j ∈ {0, . . . , k′ − 1} and (u, v) ∈ E(b′
j, m′

j, b′
j+1), if (u, v) ∈

E(bi, mi, bi+1) for some i then bi < m′
j < bi+1 (as bi ≤ u < m′

j ≤ v ≤
bi+1.) Thus, i is uniquely determined by j. Hence, E(bi, mi, bi+1) may intersect⋃︁

j∈{0,...,k′−1} E(b′
j, m′

j, b′
j+1) only if bi ≤ m′

j < bi+1, for some j ∈ {0, . . . , k′ − 1}.
Thus, such an intersection occurs only for at most k′ different i. The claim
follows.
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Now we are ready to prove Lemma 3.3.2. For each k ∈ K, pick an (ℓ/k)-dense
k-partition 0 = b0 < m0 < b1 < m1 < · · · < bk = N of G and define the set of
edges Ek:

Ek =
⋃︂

i∈{0,...,k−1}
E(bi, mi, bi+1).

For each k ∈ K, we lower-bound
⃓⃓⃓
Ek \

⋃︁
k′∈K,k′<k Ek′

⃓⃓⃓
by ℓ/2. Since K con-

tains powers of 4, ∑︁
k′∈K,k′<k k′ ≤ k/2. By the above claim, for at least k −∑︁

k′∈K,k′<k k′ ≥ k/2 different i ∈ {0, . . . , k−1}, E(bi, mi, bi+1)∩
⋃︁

k′∈K,k′<k Ek′ = ∅.
By density, |E(bi, mi, bi+1)| ≥ ℓ/k, so

⃓⃓⃓
Ek \

⋃︁
k′∈K,k′<k Ek′

⃓⃓⃓
≥ ℓ

k
· k

2 = ℓ/2. Hence,
|⋃︁k∈K Ek| =

∑︁
k∈K

⃓⃓⃓
Ek \

⋃︁
k′∈K,k′<k Ek′

⃓⃓⃓
≥ |K| · ℓ

2 .

In the following corollary, we show that the property of having many dense
partitions with some probability implies proportionally many edges. (Note that
the ⌊log4(t)⌋ − ⌈log4(s)⌉ term corresponds exactly to the number of powers of
four between s and t.)

Corollary 3.3.4. Let ℓ, s, t be natural numbers, where s ≤ t. Let p ∈ [0, 1] be
a real number. Let G be an ordered graph picked at random from a distribution
such that for each integer k, s ≤ k ≤ t, the randomly chosen ordered graph G has
(ℓ/k)-dense k-partition with probability at least p. Then the expected number of
edges in G is at least pℓ

2 · (⌊log4(t)⌋ − ⌈log4(s)⌉).

Proof. Let K be the set of integers such that k ∈ K if and only if k is a power of 4
and G has an (ℓ/k)-dense k-partition. K is a random variable. The expected size
of K is at least p(⌊log4(t)⌋ − ⌈log4(s)⌉). By Lemma 3.3.2, the expected number
of edges in G is at least ℓ

2 · p · (⌊log4(t)⌋ − ⌈log4(s)⌉).

3.4 ORAM Lower Bound
In this section, we fix integers n, m, M, w ≥ 1 such that m ≤

√
n, n ≤ M ≤ 2w,

and an ORAM M with address range M , cell size w and m cells of internal
memory (see Definition 3.2.7). We argue that any statistically secure ORAM
M must make Ω(n log(n)) server probes in expectation in order to implement a
sequence of n input operations. We prove the same result for ORAMM satisfying
Strong Computational Security. We also show that any ORAM M satisfying
Weak Computational Security must make ω(n) server probes in expectation on
any input sequence of length n.

Definition 3.4.1. Let A(M, y) = a0, . . . , aN−1 be an access sequence of M for
some input sequence y. We define a directed graph G(A(M, y)) = (V, E) called
access graph as follows: V = {0, . . . , N − 1} and (i, j) ∈ E iff i < j, ai = aj, and
for each k ∈ {i + 1, . . . , j − 1}: ak ̸= ai.

Notice that every vertex of an access graph has outdegree as well as indegree
at most one.

In the following, we consider input sequences of even length n ∈ N. First,
we define a sequence of alternating writes and reads at address a = 1 with data
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d = 0w as Yn,0 = [(W, 1, 0w), (R, 1, 0w)]n/2. Second, for each k ∈
{︂
1, 2, . . . , n

2

}︂
, let

ℓ =
⌊︂

n
2k

⌋︂
, we define a distribution Yn,k of input sequences as

Yn,k =(W, 1, b1,1), (W, 2, b1,2), . . . , (W, ℓ, b1,ℓ), (R, 1, 0w), (R, 2, 0w), . . . , (R, ℓ, 0w),
(W, 1, b2,1), (W, 2, b2,2), . . . , (W, ℓ, b2,ℓ), (R, 1, 0w), (R, 2, 0w), . . . , (R, ℓ, 0w),
. . . ,

(W, 1, bk,1), (W, 2, bk,2), . . . , (W, ℓ, bk,ℓ), (R, 1, 0w), (R, 2, 0w), . . . , (R, ℓ, 0w),
(W, 1, 0w), (R, 1, 0w), (W, 1, 0w), . . . , (R, 1, 0w) ,

where each bi,j ∈ {0, 1}w is an independently uniformly chosen bit string. We
define the i-th block of writes

Wi = (W, 1, bi,1), (W, 2, bi,2), . . . , (W, ℓ, bi,ℓ)

and the i-th block of reads Ri to be the sequence of operations

Ri = (R, 1, 0w), (R, 2, 0w), . . . , (R, ℓ, 0w)

following right after Wi. Note that after the k-th block of reads the sequence is
padded to length n by a sequence of alternating writes and reads. For an ORAM
M, we use the notation Gn,k = G(A(M, Yn,k)) and Gn,0 = G(A(M, Yn,0)) when
M is clear from the context.

The following lemma uses only correctness of ORAM and does not depend
on its security. The proof of the lemma uses the information transfer technique
similarly to Lemma 2 in Larsen and Nielsen [2018].

Lemma 3.4.2. Let n, m, M, w,M be as in the beginning of this section, moreover
suppose n ≥ 10 is an even integer. Let k ≥ 1 be an integer such that k ≤

n
10(m+2 log(n)+11) . Let A(M, Yn,k) be the access sequence of M and Gn,k be the
corresponding access graph. (Gn,k is a random variable that depends on Yn,k and
the internal randomness ofM.) With probability at least 1− 1

n
, Gn,k has (n/5k)-

dense k-partition.

Proof. By our assumption from the beginning of this section, n ≤ M , and thus
for any k ∈ {1, 2, . . . , n

2} all sequences Yn,k have all addresses in the correct
range. Fix any k satisfying the assumptions of this lemma and set ℓ =

⌊︂
n
2k

⌋︂
.

As defined before let Wi and Ri be the i-th block of writes and reads in Yn,k,
respectively. Let Ui be the vertices of Gn,k corresponding to Wi, and Vi be the
vertices corresponding to Ri. It suffices to prove that for each i ∈ {1, . . . , k}, the
probability that there are fewer than n/5k edges between Ui and Vi is less than
1/n2. If this holds then by the union bound the lemma follows.

For contradiction, assume there exists i ∈ {1, . . . , k} such that the probability
that there are fewer than n/5k edges between Ui and Vi is at least 1/n2. Here, the
randomness is taken over the choice of an input sequence y ← Yn,k and the internal
randomness of M. Fix such an i. Fix all the randomness except for the choice
of bi,1, . . . , bi,ℓ in Yn,k so that Gn,k obtained from this restricted distribution has
fewer than n/5k edges between Ui and Vi with probability ≥ 1/n2 over the choice
of bi,1, . . . , bi,ℓ. (This is possible by an averaging argument.) Let B ⊆ {0, 1}w×ℓ
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be the set of choices for bi,1, . . . , bi,ℓ which give fewer than n/5k edges between Ui

and Vi in Gn,k. Clearly, |B| ≥ 2wℓ/n2.
We useM to construct a deterministic protocol that transmits any string from

B from Alice to Bob, two communicating parties, using at most log(|B|) − 10
bits. That gives a contradiction as such an efficient transmission violates the
pigeon-hole principle.

On input b ∈ B to Alice, Alice sends a single message to Bob who can deter-
mine b from the message. They proceed as follows. Both Alice and Bob simulate
M on Yn,k up until reaching Wi. All the randomness used before the i-th block
of writes Wi is fixed and known both to Alice and Bob. Then Alice continues
with the simulation of M on Wi with data bi,1, bi,2, . . . , bi,ℓ set to b. Once she
finishes it, she sends the content of the internal memory of M to Bob using wm
bits. Then Alice continues with the simulation of M on Ri and whenever M
makes a server probe to read from a location that was written last time during
the simulation of Wi, Alice sends over the address and the content of that cell to
Bob. Overall, Alice sends to Bob at most mw + 2wn/5k bits of communication
that can be concatenated into a single message of this size.

On receiving side, Bob uses the internal state of M communicated by Alice
to continue with the computation on Ri, while he uses the state of the server he
obtained initially before reaching Wi. He simulates all server probes by himself,
except for read operations that match the list sent by Alice, where he initially uses
the content provided by Alice. Clearly, Bob can determine b from the simulation.

As k ≤ n
10(m+2 log(n)+11) hence the number of communicated bits is at most

mw + 2wn/5k ≤
5mw n

10(m+2 log(n)+11) + 2wn

5k

= mwn + 4wn(m + 2 log(n) + 11)
10k(m + 2 log(n) + 11)

= wn

2k
− w(2 log(n) + 11) n

10k(m + 2 log(n) + 11)

≤ w
(︃

n

2k
− (2 log(n) + 11)

)︃
≤ w (ℓ− 2 log(n)− 10)
≤ log(|B|)− (2w − 2) log(n)− 10w (by |B| ≥ 2wℓ/n2)

which is a contradiction.

Remark 3.4.3. Using good error-correcting codes (see for instance MacWilliams
and Sloane [1977]), this lemma could be generalized to the case when M imple-
ments Array Maintenance problem with probability 1−pfail < 1, i.e.,M is allowed
to return a wrong value for each of its input read operations with a small con-
stant probability pfail. The graph Gn,k would still have (ϵn/k)-dense k-partition
with 1− 1/n probability for some ϵ > 0 which depends only on the allowed failure
probability pfail.

Remark 3.4.4. Note that the randomness of input sequence Yn,k is used only for
the data to be written. Moreover, the proof relies only on incompressibility of a
random string stored during the write block and it does not rely on the addresses
used to store this data. Thus, the same proof goes through even for semi-offline
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ORAMs, i.e., if we allow the ORAM to know the type and address of each input
operation in y in advance. On the other hand, as our proof uses interleaved
sequences of write blocks and read blocks, it is unlikely that it would be possible
to extend it to the read-only online ORAM model of Weiss and Wichs [2018].

Note that using an averaging argument we can assume that the probability
in Lemma 3.4.2 is only over the randomness of M. Thus we get the follow-
ing corollary proving for every k the existence of a single input sequence whose
corresponding access graph has n

5k
-dense k-partition with high probability.

Corollary 3.4.5. For any even integer n ≥ 10 and an integer k ≥ 1 such that k ≤
n

10(m+2 log(n)+11) there is an input sequence yn,k of length n such that G(A(M, yn,k))
has a (n/5k)-dense k-partition with probability at least 1− 1

n
.

We show that by statistical security of M, this property holds for a single
input sequence and many different values of k.

Lemma 3.4.6. Let n, m, M, w,M be as in the beginning of this section, and as-
sume n is even and n ≥ 10. Let y be an input sequence toM of length n. IfM is a
statistically secure online ORAM then for every k ∈

{︂
1, 2, . . . ,

⌊︂
n

10(m+2 log(n)+11)

⌋︂}︂
Pr [G(A(M, y)) has an (n/5k)-dense k-partition] ≥ 3

5 .

Proof. For contradiction, suppose that for some k the probability is less than
3/5. From the statistical security of M we know that the statistical distance
SD (A(M, y), A(M, yn,k)) ≤ 1

4 where yn,k is given by Corollary 3.4.5. By Corol-
lary 3.4.5 the sequence yn,k gives us a graph G(A(M, yn,k)) which has an (n/5k)-
dense k-partition with probability at least 1− 1/n ≥ 9/10. Define a function fℓ,k

on ordered graphs that is an indicator of having an ℓ-dense k-partition. Applying
Proposition 3.2.4 with X ← G(A(M, y)), Y ← G(A(M, yn,k)), and f = fn/5k,k,
we can conclude that G(A(M, y)) has an (n/5k)-dense k-partition with proba-
bility at least 3/4− 1/10 ≥ 3/5.

We are ready to prove our main theorem for statistically secure ORAM.

Theorem 3.4.7. There are constants c0, c1 > 0 such that for any integers m, w ≥
1 and M ≥ n ≥ c0 where m ≤

√
n and M ≤ 2w, any statistically secure online

ORAMM with address range M , cell size w bits and m cells of internal memory
must perform at least c1n log(n) server probes in expectation (the expectation is
over the randomness of M) on any input sequence of length n.

Proof. Fix an ORAM machine M. Consider any input sequence y to M of
length n. By Lemma 3.4.6 for every k, such that 1 ≤ k ≤

⌊︂
n

10(m+2 log(n)+11)

⌋︂
, we

get that
Pr [G(A(M, y)) has an (n/5k)-dense k-partition] ≥ 3

5 .

Applying Corollary 3.3.4 with s = 1, t =
⌊︂

n
10(m+2 log(n)+11)

⌋︂
, ℓ =

⌊︂
n
5

⌋︂
, and

p = 3/5, we can lower bound the expected number of edges in G(A(M, y)) by

3n

50

⌊︄
log4

⌊︄
n

10(m + 2 log(n) + 11)

⌋︄⌋︄
.
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For n ≥ 1000,
⌊︂

n
10(m+2 log(n)+11)

⌋︂
≥

√
n

40 . Hence, the expected number of edges in
G(A(M, y)) is at least 3

100 ·n log
(︂√

n
40

)︂
≥ 1

100 ·n log(n), provided c0 is large enough.
Since the indegree of each vertex of an access graph is at most one, the expected
number of vertices in G(A(M, y)), which is the same as the expected number of
probes in A(M, y), is at least 1

100 · n log(n).

Next, we prove Ω(log(n)) lower bound for ORAMs satisfying strong compu-
tational security from Definition 3.2.7.

Lemma 3.4.8. Let m, M, w : N→ N be non-decreasing functions such that for all
n large enough: m(n) ≤

√
n and n ≤M(n) ≤ 2w(n). Let {Mn}n∈N be a sequence

of online ORAMs with address range M(n), cell size w(n) bits and m(n) cells of
internal memory which satisfy strong computational security. Let {yn}n∈N be an
infinite family of input sequences where |yn| = n, for each n ∈ N.

Then there exists n0 such that for every n ≥ n0 and for every

k ∈
{︄

1, 2, . . . ,

⌊︄
n

10(m(n) + 2 log(n) + 11)

⌋︄}︄

it holds that

Pr [G(A(Mn, yn)) has an (n/5k)-dense k-partition] ≥ 3
5 .

Proof. For contradiction, assume there are infinitely many pairs of integers (n, k),
s.t. k ≤

⌊︂
n

10(m(n)+2 log(n)+11)

⌋︂
and that the probability that yn has an (n/5k)-dense

k-partition is less than 3/5.
Let D be an algorithm which given two input sequences y and y′ of length n

and an access sequence A(Mn, z), where z ∈ {y, y′}, does the following:

1. Compute n.

2. Compute k′ to be the number of blocks of consecutive reads of length ⌊n/k′⌋
in the input sequence y′.

3. If A(Mn, z) does not have (n/5k′)-dense k′-partition D returns “1” (i.e. D
guesses that z = y).

4. Otherwise D returns “1” with probability 1/2 and “2” with probability 1/2
(i.e. D guesses at random).

There is a polynomial time greedy algorithm determining whether the graph
G(A(Mn, z)) contains an ℓ-dense k-partition. Thus algorithm D runs in time
polynomial in the length of the access sequence A(Mn, z).

Let yn,k be a sequence from Corollary 3.4.5. So, G(A(Mn, yn,k)) has an (n/5k)-
dense k-partition with probability at least 1−1/n ≥ 9/10. Observe that if y = yn

and y′ = yn,k then:

|Pr[D(yn, yn,k, A(Mn, yn)) = 1]− Pr[D(yn, yn,k, A(Mn, yn,k)) = 1]|

≥
(︃2

5 + 3
5 ·

1
2

)︃
−

(︃ 1
10 + 9

10 ·
1
2

)︃
= 3

20 .
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By the assumption D returns “1” in step 3 on A(Mn, yn) with probability at
least 2/5. By Corollary 3.4.5 D answers “1” on A(Mn, yn,k) with probability at
most 1/10.

This contradicts the strong computational security of Mn as D should not
distinguish between y and y′ with non-negligible probability.

Theorem 3.4.9. Let m, M, w : N → N be non-decreasing functions such that
for all n large enough: m(n) ≤

√
n and n ≤ M(n) ≤ 2w(n). Let {Mn}n∈N be

a sequence of online ORAMs with address range M(n), cell size w(n) bits and
m(n) cells of internal memory which satisfy strong computational security. Let
{yn}n∈N be an infinite family of input sequences where |yn| = n, for each n ∈ N.

There are constants c0, c1 > 0, such that for any n ≥ c0, Mn must perform
in expectation at least c1n log(n) server probes on the input sequence yn.

Proof. The proof of this theorem is identical to the proof of Theorem 3.4.7 but
we use Lemma 3.4.8 instead of Lemma 3.4.6. Note that the different order of
quantifiers is caused by different order of quantifiers in Lemma 3.4.6 and in
Lemma 3.4.8.

In the rest of this section, we prove an ω(1) lower bound for ORAMs satisfying
weak computational security from Definition 3.2.7. Note that in the case of
weak computational security it is unclear which k should the adversary use to
distinguish y and y′. Thus, we cannot directly conclude that y has n

5k
-dense k-

partition for every n and k ≤
⌊︂

n
10(m(n)+2 log(n)+11)

⌋︂
. On the other hand, for every

k there could be only finitely many values n such that there is an input sequence
of length n which has no n

5k
-dense k-partition. This fact allows us to prove the

ω(1) lower bound for weak computational security.

Theorem 3.4.10. Let m, M, w : N → N be non-decreasing functions such that
for all n large enough: m(n) ≤

√
n and n ≤ M(n) ≤ 2w(n). Let {Mn}n∈N be a

sequence of online ORAMs with address range M(n), cell size w(n) bits and m(n)
cells of internal memory which satisfy weak computational security. Let {yn}n∈N
be a sequence of input sequences where |yn| = n, for each n ∈ N.

For any constant c1 > 0 there is a constant c0 > 0, such that for any
n ≥ c0, Mn must perform in expectation at least c1n server probes on the in-
put sequence yn.

In particular there is no computationally secure online ORAM with constant
bandwidth overhead.

Proof. For each n ∈ N, define k(n) to be the smallest k such that

Pr[G(A(Mn, yn)) has (n/5k)-dense k-partition] < 1/2.

Using Corollary 3.3.4 we get for each n large enough that the expected number
of edges in G(A(Mn, yn)) is at least c · n log(k(n)), for some absolute constant
c > 0. It suffices to show that k(n) → ∞ as n → ∞. There cannot exist a
constant k such that Yn has (n/5k)-dense k-partition with probability less than 1

2
for infinitely many n. Otherwise {yn}n would be computationally distinguishable
from {Yn,k}n (by the greedy algorithm which has k hard-wired). So, k(n) → ∞
as n→∞.
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3.5 Alternative Definitions for Oblivious RAM
In this section, we recall some alternative definitions for ORAM which appeared
in the literature and explain the relation of our lower bound to those models.

The definition of Larsen and Nielsen. Larsen and Nielsen (see Definition 4
in Larsen and Nielsen [2018]) required that for any two input sequences of equal
length, the corresponding distributions of access sequences cannot be distin-
guished with probability greater than 1/4 by any algorithm running in polynomial
time in the sum of the following terms: the length of the input sequence, log-
arithm of the number of memory cells (i.e., log(n)), and the size of a memory
cell (i.e., log(n) for the most natural parameters). We show that their definition
implies statistical closeness as considered in our work (see the statistical security
property in Definition 3.2.7). Therefore, any lower bound on the bandwidth over-
head of ORAM satisfying our definition implies a matching lower bound w.r.t.
the definition of Larsen and Nielsen [2018].

To this end, let us show that if two distributions of access sequences are
not statistically close, then they are distinguishable in the sense of Larsen and
Nielsen. Assume there exist two input sequences y and y′ of equal lengths, for
which the access sequences A(M, y) and A(M, y′) have statistical distance greater
than 1/4. We define a distinguisher algorithm D that on access sequence x
outputs 1 whenever Pr[A(M, y) = x] > Pr[A(M, y′) = x], outputs 0 whenever
Pr[A(M, y) = x] < Pr[A(M, y′) = x], and outputs a uniformly random bit
whenever Pr[A(M, y) = x] = Pr[A(M, y′) = x]. It follows from definition of D,
basic properties of statistical distance (see Proposition 3.2.3), and our assumption
about the statistical distance of A(M, y) and A(M, y′) that

|Pr[D(A(M, y)) = 1]− Pr[D(A(M, y′)) = 1]| = SD (A(M, y), A(M, y′)) >
1
4 .

Note that D can be specific for the pair of the two input sequences y and y′ and
it can have all the significant information about the distributions A(M, y) and
A(M, y′) hardwired. For example, it is sufficient to store a string describing for
each access sequence x whether it is more, less, or equally likely under A(M, y)
or A(M, y′). Even though such string is of exponential size w.r.t. the length of
the access pattern, D needs to simply access the position corresponding to the
observed access pattern to output its decision as described above. Thus, D can
run in linear time in the length of the access sequence (which is polynomial in
the length of the input sequence) and distinguishes the two access sequences with
probability greater than 1/4.

The definition of Goldreich and Ostrovsky. Unlike the original definition
of ORAM from Goldreich [1987] and Ostrovsky [1990], the definition of ORAM
presented in Goldreich and Ostrovsky [1996] contains an alternative security re-
quirement. However, the alternative definition suffers from an issue which is not
present in the original definition and which, to the best of our knowledge, was
not pointed out in the literature. In particular, the definition in Goldreich and
Ostrovsky [1996] can be satisfied by a dummy ORAM construction with only a
constant overhead and without achieving any indistinguishability of the access
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sequences. Given that Goldreich and Ostrovsky [1996] might serve as a primary
reference for our community, we explain the issue in the following paragraph to
help preventing the use of the problematic definition in future works.

Recall the definition of ORAM with perfect security from Goldreich and Os-
trovsky (Definition 2.3.1.3 in Goldreich and Ostrovsky [1996]):
Goldreich-Ostrovsky security: For any two input sequences y and y′, if the
length distributions |A(M, y)| and |A(M, y′)| are identical, then A(M, y) and
A(M, y′) are identical.

As we show, this requirement can be satisfied by creating an ORAM that
makes sure that on any two distinct sequences y, y′, the length distributions
|A(M, y)| and |A(M, y′)| differ. Note that no indistinguishability is required in
that case and the ORAM can then reveal the access pattern of the input sequence.

To this end, we describe an ORAM with a constant overhead so that

|A(M, y)| ∈ {2|y|, 2|y|+ 1}

and the distribution |A(M, y)| encodes the sequence y. The ORAM proceeds by
performing every operation yi directly on the server followed by a read operation
from address 1. After the last instruction in y, the ORAM selects a random
sequence of operations r of length |y| and if r is lexicographically smaller than
y then the ORAM performs an extra read from address 1 before terminating.
Note that this ORAM can be efficiently implemented using constant amount of
internal memory by comparing the input sequence to the randomly selected one
online. Also, the machine does not need to know the length of the sequence in
advance. Finally, the length distribution |A(M, y)| is clearly different for each
input sequence y. Given that the above definition of ORAM of Goldreich and
Ostrovsky allows the dummy construction with a constant overhead, we do not
hope to extend our lower bound towards this definition.

One could object that the above dummy ORAM exploits the fact that in-
distinguishability of access sequences must hold only if the length distributions
are identical. However, it is possible to construct a similar dummy ORAM with
low overhead satisfying even the following relaxation of the definition requiring
indistinguishability of access sequences corresponding to any pair of y and y′ for
which |A(M, y)| and |A(M, y′)| are statistically close (i.e., the indistinguishability
is required for a potentially larger set of access patterns):

Relaxation of Goldreich-Ostrovsky security: For any two input sequences y
and y′, if the length distributions |A(M, y)| and |A(M, y′)| are statistically close,
then A(M, y) and A(M, y′) are statistically close.

We show there is a dummy ORAMM with a constant overhead such that for
any two input sequences y and y′ which differ in their accessed memory locations,
the statistical distance SD (|A(M, y)|, |A(M, y′)|) is at least 1

nM
(where n = |y| =

|y′| and M is the size of address range).
The ORAM M works as follows. At the beginning, the ORAM picks i ∈ [n]

and r ∈ [M ] uniformly at random. Then for j = 1, . . . n, it executes each of the
input operations (oj, aj, dj) directly on the server. For each j < i, it performs
two additional reads from address 1 after executing the j-th input operation. For
j = i, after the i-th input operation it performs two additional reads from address
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1 if r ≤ ai, and it performs one additional read from address 1 if r > ai. For
j > i, it performs each of the input operations without any additional read.

It is straightforward to verify that the distribution of |A(M, y)| satisfies: for
each i ∈ [n], Pr[|A(M, y)| = n + 2i] = ai

nM
. Hence, for any pair y and y′ of

two input sequences of length n, if the sequences of addresses accessed by them
differ then the statistical distance between the distributions of |A(M, y)| and
|A(M, y′)| is at least 1/nM . If M is polynomial in n this means that their
distance is at least 1

poly(n) . Thus, M satisfies even the stronger variant of the
definition from Goldreich and Ostrovsky [1996] even though its access sequence
leaks the addresses from the input sequence.

It was previously shown by Haider et al. [2017] that there exists an ORAM
construction which reveals all memory accesses from the input sequence while
satisfying the definition of Goldreich and Ostrovsky from Goldreich and Ostrovsky
[1996]. However, their construction has an exponential bandwidth overhead which
makes it insufficient to demonstrate any issue with the definition of Goldreich and
Ostrovsky. Clearly, any definition of ORAM can disregard constructions with
super-linear overhead as a perfectly secure ORAM (with linear overhead) can
be constructed by simply passing over the whole server memory for each input
operation. Unlike the construction of Haider et al. [2017], our constructions of the
dummy ORAMs with constant bandwidth overhead exemplify that the definition
of Goldreich and Ostrovsky [1996] is problematic in the interesting regime of
parameters.

Simulation-based definitions. The recent work of Asharov et al. [2018] em-
ploys a simulation-based definition parameterized by a functionality which im-
plements an oblivious data structure. Our lower bounds directly extend to their
stronger definition when the functionality implements Array Maintenance prob-
lem. Moreover, our techniques can be adapted to give lower bounds for function-
alities implementing stacks, queues and others considered in Jacob et al. [2019].

Weak vs. strong computational security. In this work, we distinguish be-
tween weak and strong computational security (see Definition 3.2.7). Our tech-
niques do not allow to prove matching bounds for ORAMs satisfying the two
notions and we show Ω(log(n)) lower bound only w.r.t. strong computational
security. Though, as we noted in Section 3.1, even the ω(1) lower bound for
online ORAMs satisfying weak computational security is an interesting result
in the light of the work of Boyle and Naor [2016]. It follows from Boyle and
Naor [2016] that any super-constant lower bound for offline ORAM would imply
super-linear lower bounds on size of sorting circuits – which would constitute a
major breakthrough in computational complexity. The main result from Boyle
and Naor [2016] can be rephrased using our notation as follows.

Theorem 3.5.1 (Theorem 3.1 Boyle and Naor [2016]). Suppose there exists a
Boolean circuit ensemble C = {C(n, w)}n,w of size s(n, w), such that each C(n, w)
takes as input n words each of size w bits, and outputs the words in sorted order.
Then for word size w ∈ Ω(log(n))∩no(1) and constant internal memory m ∈ O(1),
there exists a secure offline ORAM (as per Definition 2.8 Boyle and Naor [2016])
with total bandwidth and computation O(n log(w) + s(2n/w, w)).
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Moreover, the additive factor of O(n log(w)) follows from the transpose part
of the algorithm of Boyle and Naor [2016] (see Figures 1 and 2 in Boyle and Naor
[2016]). As Boyle and Naor showed in their appendix (Remark B.3 Boyle and
Naor [2016]) this additive factor in total bandwidth may be reduced to O(n) if
the size of internal memory is m ≥ w. Thus, sorting circuit of size O(nw) implies
offline ORAM with total bandwidth O(n + 2 n

w
w) = O(n). Or the other way

around, lower bound ω(n) for total bandwidth of offline ORAM implies ω(nw)
lower bound for circuits sorting n words of size w bits, each.

We leave it as an intriguing open problem whether it is possible to prove an
Ω(log(n)) lower bound for online ORAMs satisfying weak computational security.
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4. Sorting on RAM
The work presented in this chapter is based on unpublished joint work with Michal
Koucký, Michael Saks, and Veronika Slı́vová. We present an algorithm which
works in expected time O(n log log(n)) and additional linear space and is simple
to analyse. To analyse the running time we need to know the coupon collector
problem and basic algorithms and data-structures techniques such as hash-maps,
binary search, amortized analysis of resizeable array1, and anyO(n log(n)) sorting
algorithm. Our algorithm has larger expected running time than the expected
O(n

√︂
log log(n)) algorithm of Han and Thorup [2002]. The main advantage of

our algorithm is that it is both easy to implement and easy to analyse.

4.1 Overview of Our O(n log log(n)) Algorithm
We first present an overview of our algorithm (formally described in Algorithm 4).
Then we provide more details and analysis in following sections.

• Pick uniformly at random a set S of samples from the inputs and sort
the samples using any standard O(n log(n)) algorithm, e.g., mergesort or
quicksort, (see Procedure 1).

• For each sample store all prefixes of its binary representation in a hash-map
together with the index of the smallest and the index of the largest sample
containing this prefix (see Procedure 2 which stores single prefix length).

• Place a bucket between every two consecutive samples, before the smallest
and after the largest sample and fill them with numbers which belong be-
tween the samples as follows: For each input number, which is not equal
to any sample, use binary search to find the length of the largest prefix
such that there is a sample with the same prefix. Use constant number of
comparisons to put this number into the corresponding bucket.

• With a good probability each block of poly-logarithmically many outputs
contains at least one sample (by a coupon collector analysis). Thus with
large probability each bucket contains at most poly-logarithmically many
inputs.

• Sort each bucket using any standard O(n log(n)) algorithm, concatenate the
results, and merge those with all occurrences of samples (see Procedure 3
for the code that extracts all samples).

4.2 Coupon Collector
In the coupon collector problem we are interested in how many independent uni-
formly random samples from a finite universe we need before seeing all elements
of the universe. Another possible view of the problem in the balls and bins setting

1Such as std::vector in C++ (see Stroustrup [2013]).
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is to consider throwing balls into n bins, each ball uniformly independently at
random, and waiting until all bins have at least one ball. In the following text we
call the finite universe the coupon types and the random samples bought coupons
as bin could be mistaken for a bucket which is a term used in Algorithm 4. These
problems are very well studied and have many important applications. We need
just a simple folklore observation present for instance in the textbook of Motwani
and Raghavan [1995].

Formally, for a given N ∈ N we sample from the set of coupon types [N ] =
{1, 2, 3, . . . , N}. Each random sample is taken uniformly and independently on
other samples from the set [N ] with repetition. The problem asks what is the
probability of seeing each coupon type at least once among R samples.

Lemma 4.2.1 (Motwani and Raghavan [1995] (Coupon collector)). Let there be
N types of coupons. For any β > 1 the probability of not receiving all coupon
types when buying R = βN ln(N) coupons uniformly independently at random
can be bounded as:

Pr[missing a coupon type in βN ln(N) coupons] ≤ N−(β−1)

We assume that most courses on data structures and algorithms contain the
used techniques (an O(n log(n)) sorting algorithm, hashing, binary search, and
amortized analysis of resizeable array). But the coupon collector model is perhaps
less known among undergraduates. Since our claim is that the algorithm is easy
to analyse we also provide the proof of this lemma for the sake of completeness.

Proof as in Motwani and Raghavan [1995]. Let XR
i be the indicator variable for

the event that the i-th coupon type does not appear in the chosen R coupons.
We may bound

Pr[XR
i ] =

(︃
1− 1

N

)︃R

≤ e−R/N (by the inequality 1− x ≤ e−x)

Using union bound we get

Pr[missing a coupon type] ≤
N∑︂

i=1
Pr[XR

i ]

≤ Ne−R/N

≤ Ne−(βN ln N)/N (for R = βN ln N)
≤ N−(β−1)

4.3 The Algorithm
We state our algorithm as taking n inputs x0, x1, . . . , xn−1 ∈ {0, 1}w where
log(n) ≤ w ≤ log3(n). This range of parameters works great since log(w) ≤
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log(log3(n)) = O(log log(n)). At the same time it is wide enough range of param-
eters, since when w ≤ log(n) one may sort in linear time using bucket sort (see
Cormen et al. [2009]) provided additional linear sized memory. On the other end
of the range of parameters considered here one may sort in expected linear time
when w ≥ Ω(log2(n) log log(n)) using the result of Belazzougui et al. [2014].

We present the algorithm with parts written as procedures (see Procedures 1,
2, and 3). These roughly correspond to the algorithm overview and are quite
simple. The word-length w which is the number of bits in an integer is considered
to be implicitly known in all procedures as well as in the main algorithm (this is
often the case in modern programming languages).

There is a single division which could be substituted with a bit-shift to roughly
approximate division by w without changing the asymptotic behaviour of the al-
gorithm. The algorithm otherwise does not make expensive arithmetic operations
(such as multiplication or division) explicitly. However many parts of the algo-
rithm use hash-maps which may or may not use multiplication internally. The
hash-maps also use randomness which again may or may not use multiplication
during generation of (pseudo-)random bits. Another explicit use of randomness
is in Procedure 1.

Arrays are numbered starting with zero. We use the notation x0...b to denote
the b + 1 most significant bits of an integer x. One could either use bit-shift or
bit-wise AND with a bit-mask, both of these are present in many programming
languages and are efficiently implementable in boolean circuits. We consider x0...b

as being represented by an integer even if it is not the whole word (i.e., b+1 < w).
This causes no problem since we do not mix prefixes of different lengths (each
prefix length is kept in a separate hash-map). We measure size in the number of
w-bit words unless stated otherwise.

Procedure 1: RandomSamples
Data: Array of integers X = [x0, x1, . . . , xn−1], xj ∈ {0, 1}w,

Integer k – the number of samples to take
Result: Sorted array of k samples from X (taken independently

uniformly at random with repetition)
1 Let S be an empty array of size k
2 for i ∈ {0, 1, . . . , k − 1} do
3 Let 0 ≤ r ≤ n− 1 be a uniformly random integer
4 S[i] = X[r]
5 end
6 Sort S using mergesort
7 return S

50



Procedure 2: PreparePrefixes
Data: Sorted array of integers S = [s0, s1, . . . , sk−1], sj ∈ {0, 1}w,

Integer b – the prefix length to hash (where 1 ≤ b ≤ w)
Result: Hash-map mapping the prefix of length b (of each element of S)

to the index of the largest and smallest element of S containing
this prefix

1 Let sampled prefixes be an empty hash-map
2 for i ∈ {0, 1, . . . , |S| − 1} do
3 Let p = S[i]0...b−1 be the prefix of length b of the i-th sample
4 if p is in sampled prefixes then
5 sampled prefixes[p].min = min(i, sampled prefixes[p].min)
6 sampled prefixes[p].max = max(i, sampled prefixes[p].max)
7 end
8 else
9 sampled prefixes[p].min = i

10 sampled prefixes[p].max = i

11 end
12 end
13 return sampled prefixes
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Procedure 3: ExtractSamples
Data: Array of integers X = [x0, x1, . . . , xn−1], xj ∈ {0, 1}w,

Sorted array of integers S = [s0, s1, . . . , sk−1], sj ∈ {0, 1}w

Result: Sorted array of all elements from X (with all repetitions) which
are equal to some element of S

/* Count all samples: */
1 Let count be an empty hash-map (integer to integer)
2 for s ∈ S do
3 count[s] = 0
4 end
5 for x ∈ X do
6 if x is present in count then
7 count[x] = count[x] + 1
8 end
9 end

/* Concatenate the right number of samples: */
10 Let extracted samples be an empty resizeable array of integers
11 for i ∈ {0, 1, . . . , |S| − 1} do
12 if i > 0 and S[i] = S[i-1] then

/* We have already extracted these samples. */
13 Continue
14 end
15 for j ∈ {0, 1, . . . , count[S[i]]− 1} do
16 Append S[i] to extracted samples
17 end
18 end
19 return extracted samples
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Algorithm 4: Sort pseudo-code
Data: Array of integers X = [x0, x1, . . . , xn−1], xj ∈ {0, 1}w where

log(n) ≤ w ≤ log3(n)
Result: Array Y of sorted inputs (that is Y = [y0, y1, . . . , yn−1] where Y

is a permutation of X and yj−1 ≤ yj for each j ∈ [n− 1])
/* Take ⌈n/w⌉ sorted random samples using Procedure 1: */

1 S = RandomSamples(X, ⌈n/w⌉)
/* Prepare a hash-map for each prefix length b using

Procedure 2: */
2 Let sampled prefixes be an array of w empty hash-maps
3 for b ∈ [w] do
4 sampled prefixes[b] = PreparePrefixes(S, b)
5 end

/* For each input x determine the corresponding bucket based
on the longest prefix shared with a sample */

6 Let buckets be an array of |S|+ 1 empty resizeable arrays
7 for x ∈ [x0, x1, . . . , xn−1] do
8 Use binary search to find the length b of the longest prefix of x that is

in sampled prefixes
9 if b ̸= w then

10 Let ℓ = sampled prefixes[b][x0...b−1].min
11 Let u = sampled prefixes[b][x0...b−1].max
12 if x < S[ℓ] then
13 Append x to buckets[ℓ]
14 end
15 else
16 Append x to buckets[u + 1]
17 end
18 end
19 end

/* Sort and concatenate the buckets */
20 for bucket ∈ buckets do
21 Sort bucket using mergesort
22 end
23 Concatenate buckets into not sampled
24 sampled = ExtractSamples(X, S) // Procedure 3
25 Set result to merged arrays not sampled and sampled
26 return result

Theorem 4.3.1. Given n inputs x0, x1, . . . , xn−1 ∈ {0, 1}w where log(n) ≤ w ≤
log3(n) Algorithm 4 sorts its inputs using O(n) additional memory (measured
in the number of w-bit words). The expected running time of Algorithm 4 is
Θ(n log log(n)) where the expectation is taken over random bits of the algorithm
(namely the choice of samples and random bits of the internal hash-map).

Proof. First we argue that the algorithm sorts its inputs. The algorithm puts
each input number into a single bucket. Since b is the length of the longest prefix
of our input x such that there is a sample with the same prefix (see Algorithm 4,
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Lines 4 and 8) in the hash-map

sampled prefixes[b][x0...b−1].min, resp. sampled prefixes[b][x0...b−1].max,

we have the index of the smallest, resp. largest, sample which starts with this pre-
fix (see Procedure 2). If x is equal to one of the samples we know that b = w and
that x gets counted (see Procedure 3 called in Algorithm 4, Line 24). Otherwise
b < w and moreover x0...b is not present in the hash-map sampled prefixes[b + 1]
and thus all samples that agree with x on the b most significant bits but differ
from x on the (b + 1)-th bit:

ℓ = sampled prefixes[b][x0...b−1].min

u = sampled prefixes[b][x0...b−1].max

S[ℓ]0...b−1 = x0...b−1 (first b bits of x are present in the hash-map)
S[ℓ]0...b ̸= x0...b (first b + 1 bits of x are not present in the hash-map)
S[ℓ]0...b = S[u]0...b

thus either
x < S[sampled prefixes[b][x0...b−1].min]

or
x > S[sampled prefixes[b][x0...b−1].max]

in either case x gets into the corresponding bucket (see Algorithm 4, Line 12).
Since each bucket is sorted (see Algorithm 4, Line 21) and the buckets are also
sorted their concatenation merged with all occurrences of samples contains exactly
all the inputs sorted.

We bound the expected runtime of each part of Algorithm 4:

Procedure 1: We call the procedure with k = ⌈n/w⌉. Sampling is triviallyO(k) ≤
O(n). Mergesort takes time O(n log(n)) (see for instance the textbook of
Knuth [1997]). We use it on an array of length k = ⌈n/w⌉ thus it takes
time

O(k log(k)) = O
(︃⌈︃

n

w

⌉︃
log

(︃⌈︃
n

w

⌉︃)︃)︃
= O

(︃
n

w
log

(︃
n

w

)︃)︃
≤ O

(︃
n

w
log (n)

)︃
≤ O(n). (as w ≥ log(n))

Procedure 2: The procedure is called once for each prefix length. There are w
prefixes in each sample and k = ⌈n/w⌉ samples, thus in total there are
Θ(n) prefixes to be inserted. To add into or to retrieve a key-value pair
from a hash-map it takes expected time O(1) (see for instance the textbook
of Cormen et al. [2009]).

Line 8: For any b ∈ [w] we may query the corresponding hash-map to find out
if the prefix x0...b−1 is present (in expected time O(1)). If the prefix is not
present for some b ∈ [w − 1] then it is not present for any b′ > b. Similarly
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if the prefix is present for some b ∈ [w] then it is present for all b′ ≤ b.
Thus we may use binary search (see for instance the textbook of Cormen
et al. [2009]) which does log(w) ≤ log(log3(n)) = 3 log log(n) queries to the
hash-map to determine the maximum common prefix with some sample.
This can be done in expected time O(log log(n)) for each of our inputs.

Line 13: If the algorithm remembers the size and number of elements in each
array, it may double the size whenever the array is full. Thus getting
amortized time O(1) to add a single input x (see for instance the textbook
of Cormen et al. [2009], Chapter on Amortized Analysis).

Line 21: The size of a bucket is the number of non-sampled inputs between the
samples delimiting the bucket. To analyse the size of each bucket let us con-
sider the samples as being sampled uniformly at random from the already
sorted sequence. The idea that is formalized in the following paragraph
is to think of the samples as coupons bought and of blocks of sorted out-
puts as of coupon types. Thus when we sample a number that should be
present inside a block of outputs we say that we have bought the corre-
sponding coupon. The process of the algorithm is identical to the coupon
collector model only when the inputs are distinct. If there is an input that
appears in more output blocks then by sampling this input we collect many
coupons. But we may think of sampling output indices j ∈ [n] rather than
the outputs yj.
Without loss of generality we may assume that n is divisible by k/⌈10 ln(n)⌉
(otherwise we could add several copies of the minimal element where we
would count the logarithm just once during the algorithm). We divide the
sorted outputs into k/⌈10 ln(n)⌉ blocks2 each consisting of

n

k/⌈10 ln(n)⌉ = n

⌈n/w⌉/⌈10 ln(n)⌉
= Θ(w log(n))
≤ O(log4(n))

consecutive outputs. Then we invoke Lemma 4.2.1 with:

R = k = ⌈n/w⌉ (coupons bought)
N = k/⌈10 ln(n)⌉ (the number of coupon types)
β = 10

Thus

R ≥ 10 ln(n)N
≥ 10N ln(N) (as N = Θ(n/(w ln(n))) ≤ n)

Observe that N−9 ≤ n−8 for large enough n. Thus by Lemma 4.2.1 with
probability at least 1−N−9 ≥ 1−n−8 each block of outputs will contain at
least one sample therefore no bucket will be of size larger than O(log4(n))
(no bucket spans over more than two blocks). With probability at most

2Buckets appear in the algorithm, blocks are used only in the analysis.
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n−8 there will be a large bucket and we may upper bound the time to sort
all buckets by O(n log(n)) – the time of mergesorting all inputs. We may
upper bound E[T ], the expected time of mergesorting all buckets, by

E[T ] ≤
(︂
1− n−8

)︂
Θ

⎛⎝ ∑︂
bucket∈buckets

|bucket| log(|bucket|)
⎞⎠ + n−8Θ(n log(n))

≤
(︂
1− n−8

)︂
Θ

⎛⎝log log(n)
∑︂

bucket∈buckets

|bucket|

⎞⎠ + n−8Θ(n log(n))

= Θ(n log log(n)) (w ≤ log3(n))

Line 23: We allocate an array of size n and copy the sorted buckets. Since each
bucket itself is sorted and all buckets are also sorted this can be done in
time O(n). Merging two arrays of size O(n) can also be done in time O(n).

Now we argue that the additional space used is linear in n (we count the
number of words, so both the input and output consist of n words or nw bits).
The number of samples is sub-linear in n and the number of their prefixes is
O(n). All together the hash-maps inside sampled prefixes have size linear in
the number of prefixes of samples, with our choice of parameters there are O(n)
entries in the hash-map thus it has size linear in n (see for instance the textbook
of Cormen et al. [2009]). Each of the buckets has size at most twice the number of
elements present in it (when we just add elements this is sufficient for amortized
analysis) and each input is placed in a single bucket, thus all the buckets together
have size O(n).

4.4 Practical Implementation
A naive version of Algorithm 4 can be implemented rather easily using the con-
structs present in the programming language of the readers choice. We note that
for instance one may use data-structures and algorithms present in the C++
standard library (see Stroustrup [2013]):

std::unordered map<T, size t>, which implements a hash table

std::vector<T>, which implements a resizeable array

std::sort

We have not determined the constants hidden in the O notation, but we
claim that these are not astronomical. However just the use of a hash-map
means that our algorithm is not competitive when compared with a well tuned
implementation of sorting present in many programming languages. Another
practical disadvantage is that our algorithm allocates additional memory. The
additional memory is linear in the input size but the multiplicative constant is
not small.
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4.5 Short Word Lengths
We can modify our algorithm to get expected running time O(n log(w/ log(n))).
When the word length w is small, for instance w = log(n) log log(n), this results
in a faster algorithm. The price of this modification is that the algorithm is more
complex and uses a non-trivial sorting algorithm of Belazzougui et al. [2014].
Similar modifications have been also made to the algorithms Han and Thorup
[2002] and Andersson et al. [1998]. Thus we just briefly outline the modification
in the following paragraph.

When we say that we radixsort elements according to some key we mean that
we create a resizeable array for each possible value of the key, add our elements
there, and concatenate the arrays in the correct order. Specially elements with the
same key retain their order (the sort is stable). The main idea of the modification
is to limit the precision of the binary search to find the length b of the longest
prefix of an input x that is shared with some sample. We rather determine an
interval of length log(n) in which b lies and use radixsort to subdivide the inputs
into small buckets. That is, we find an integer k ∈ N such that b ∈ [k log(n), (k +
1) log(n)− 1]. We augment each input number with its k (instead of x we store
a pair (x, k)) and radixsort all inputs by their k. For each input (x, k) we know
that x shares at least k log(n) most significant bits with some sample. For each
value of k we further sort all inputs with this k (that is all (x, k)) by their k log(n)
most significant bits (this is done similarly to our original algorithm by dividing
the inputs by their prefix in common with some sample). We radixsort all inputs
where for the key we use the respective [k log(n), (k + 1) log(n) − 1] bits of the
individual input number. Thus we have grouped inputs with equal (k + 1) log(n)
most significant bits together into buckets (note that each bucket here is a subset
of some bucket in our original algorithm). We sort each bucket using the algorithm
of Belazzougui et al. [2014]. For each k we concatenate all buckets containing
inputs (x, k) into a sorted array. We then merge the ⌈w/ log(n)⌉ arrays, always
merging the shortest two arrays together.

4.6 Open Questions
The main question is what modifications to this algorithm can be made?
• Can this algorithm be made parallel? Two places that seem to be not trivial

to do in parallel are using hash-maps and later placing the numbers into
correct buckets. The last merge step is rather easy as the buckets interleave
with copies of samples (first the first bucket, then all copies of the smallest
sample, second bucket, etc.).

• If we substitute sorting of the samples and buckets with a faster algorithm
the main bottleneck is the binary search. Single hash-map query could be
sufficient if inputs are assumed to be distributed uniformly independently
at random. But in this case one could use radixsort on O(log(n)) most
significant bits of each number and with a good probability get small buck-
ets. Are there any distributions of inputs which are not trivial to sort by
themselves but we can significantly reduce expected complexity of prefix
search (binary search part of Algorithm 4)?
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Conclusion
Sorting has been one of the central themes of computer science for more than a
century (as discussed in Chapter 1). Still many problems remain wide open. We
provide conclusions and reflection connected to each of our results at the end of
the respective chapters.
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6. Michal Koucký and Karel Král. Sorting Short Integers. arXiv:2102.10027,
Accepted to ICALP 2021

67

https://www.sciencedirect.com/science/article/pii/S1571065315001055
https://www.sciencedirect.com/science/article/pii/S1571065315001055

	Introduction
	History and Previous Results
	Classical Sorting Algorithms
	RAM
	Sorting Networks
	Sorting Boolean Circuits
	Turing Machines
	Upper Bounds on Turing Machines
	One Tape Turing Machines
	Balls and Bins Model Lower Bounds

	ORAM
	Constructions
	Lower-bounds

	Connections
	Super-concentrators
	Non-adaptive Hellman Attack
	Network Coding Conjecture


	Boolean Circuits for Sorting and Counting Short Integers
	Our Results
	Our Techniques

	Notation
	Preliminaries
	Sorting Circuits Based on AKS Network
	Sorting n Binary Strings of Length m
	Partial Sorting by the First k Bits in Poly-logarithmic Depth
	Conclusion

	Oblivious RAM
	Our Results
	Our Techniques

	Preliminaries
	Online ORAM

	Dense Graphs
	ORAM Lower Bound
	Alternative Definitions for Oblivious RAM

	Sorting on RAM
	Overview of Our O(n loglog(n)) Algorithm
	Coupon Collector
	The Algorithm
	Practical Implementation
	Short Word Lengths
	Open Questions

	Conclusion
	Acknowledgements

	Bibliography
	List of Figures
	List of Publications

