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his ideas and insights, as well as his long-lasting, patient support. His incredibly
thorough and rigorous approach to research not only elevated the quality of this
thesis, but also hopefully impacted my future work-style. Further thanks to
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Notation Index

N The set of all natural numbers (excluding 0)
R The set of all non-negative real numbers
d A fixed natural number larger than 1

B(x, ε) The d-dimensional open ball centred at x ∈ Rd with radius ε > 0
⟨a,x⟩ The standard scalar product of vectors a and x
A The closure of a set A
1A The indicator function of a set A
K A fixed compact subset of Rd

C(K) The space of continuous functions from K to R
∥·∥ The Euclidean norm (on Rd)

∥·∥∞ The sup norm (on a space of functions)
ρ The rectifier function, ρ : R → R, ρ(x) = x+ = max(0, x)

Sd−1 The d-dimensional unit sphere, Sd−1 = {x ∈ Rd | ∥x∥ = 1}
f |A The restriction of a function f to a set A
M⊤ The transpose of a matrix M

P(A) The set of all subsets of a set A
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Introduction
Even though neural networks have been a dominant area of research for years
now, we still lack systematic theoretical understanding and many fundamental
questions remain unanswered. One of the more studied theoretical topics is ex-
pressive power of shallow (one-hidden-layer) networks, where several versions of
approximational universality have been proved. However, no bounds found in the
literature are general and explicit enough to allow us in practice, given a contin-
uous function, to estimate the sufficient and necessary size of a shallow network
required to approximate the function with given accuracy. The main goal of the
thesis is to provide such a bound.

Given a compact set K ⊆ Rd, a continuous function f : K → R and ε > 0,
we construct an upper bound on the least number h such that there exists a
neural network g that has a single hidden layer consisting of h neurons and that
satisfies ∥f − g∥∞ < ε. Our bound depends on the input dimension d ≥ 2, on
the diameter of the set K denoted diam K, on the sup norm of f , ∥f∥∞, and
of course on ε. Furthermore, complexity of the target function f is expressed by
the inverse modulus of continuity,

ω−1(f, ε) = sup {δ′ > 0 | ∀y1,y2 ∈ K : ∥y1 − y2∥ < δ′ ⇒ |f(y1) − f(y2)| ≤ ε} .

Denoting δ = ω−1
(︂
f, ε

2

)︂
, one of the bounds we obtained is

h ≤
(︄

6
√
d+ 1diam(K) ∥f∥∞

δε2

)︄10(d+1)4 diam(K)
δ

.

This holds for any K, f and ε.
Previous bounds of this nature are formulated for f contained in Sobolev

spaces. The Sobolev space W k,p(K) is the set of functions that have bounded
weak derivatives of all orders up to k in the Lp norm (see Subsection 1.2 for more
details).

For f : [0, 1]d → R lying in the unit ball of the space W k,p
(︂
[0, 1]d

)︂
, Maiorov

[1] and Mhaskar [2] provide bounds of

C1

(︃1
ε

)︃ d−1
k

≤ h ≤ C2

(︃1
ε

)︃ d
k

.

Note that here dependence on the norm of f is hidden in the assumption that f
lies in the unit ball.

In order for any of these bounds to be applicable, the function f needs to
be at least Lipschitz (or satisfy a Hölder condition) — They cannot be used for
general continuous functions. Also, Sobolev spaces require a very nice underlying
set. The bounds cannot be applied for example for K not full-dimensional, or
even for many reasonable choices of K. However, in situations where both are
applicable, these bounds surpass our result.

Most previous bounds are formulated for networks with a sigmoidal activation
function and others have been stated for ReLU networks. Our bound uses the
exponential activation, exp(t) = et. This is because we use the property that the
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Figure 1: (a) We are given a function f continuous on a compact set K. (b)
We divide the graph of f into horizontal slices. (c) Sum of indicator functions
of the slices approximates f . (d) We approximate the indicator function of each
slice by a neural network. (e) Then, we sum these approximants. (f) The sum
approximates the original function f .

product of two functions representing such a neural network is again a function
representing a neural network. Even though it is possible to transfer the bound
to sigmoidal or ReLU activations, it was beyond the scope of the thesis to provide
an efficient transition — In Subsection 2.2 we provide a simple method of transfer
that results in a significant increase of the bound.

Our construction is inspired by a proof of the Stone-Weierstrass Theorem,
in particular by Brosowski and Deutsch [3]. As illustrated in Figure 1, we di-
vide the graph of the target function f into horizontal slices of height ε

2 . We
approximate the indicator function of each of these slices and sum them to get
an approximation of f .

The non-trivial step here is approximating the indicator functions of the slice
sets, as these can be complex. Our solution, shown in Figure 2, is to divide K
into congruent polytopes, approximate the indicator function of each of them and
take the product of those approximants that correspond to polytopes intersecting
the set.

The indicator function of a single polytope is then approximated by taking
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Figure 2: (a) We want to approximate the indicator function of a set A ⊆ K.
(b) We divide K into regular polytopes and approximate the indicator of each of
them. (c) We take the product of all approximants that correspond to polytopes
intersecting A. (d) The result approximates the indicator of the set ˆ︁A defined as
the union of polytopes that intersect A, which in turn is an approximation of A.
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an exponential function for each of its facets and exponentiating their average in
a specific way.

As for the structure of the thesis, in Chapter 1 we survey some previous results
on the expressive power of shallow neural networks. First, we look at different
ways of proving shallow networks are universal approximators — Section 1.1
introduces three such methods. We illustrate each method by applying it to the
ReLU activation function. Thereafter, in Section 1.2 we survey some previous
bounds on network size found in the literature.

However, the main focus lies in Chapter 2, which presents the construction
described above. We proceed in the opposite direction from the one seen here,
starting with approximation of a polytope’s indicator function in Section 2.1.
Section 2.2 then contains the rest of the construction. More precisely, in Subsec-
tion 2.2.1 we survey some results from the theory of lattices, in order to make the
decomposition of K into polytopes as efficient as possible — This corresponds to
an open problem called the Lattice Covering Problem. Finally, Subsection 2.2.2
puts this all together to approximate a continuous function on a compact set.

To conclude Chapter 2 we explore an alternative approach in Section 2.3. If we
are content with approximating the target function everywhere on K except for a
set of small measure, we can use the Vitali Covering Theorem to get a sequence of
small enough disjoint balls that cover most of K. Then, we approximate each of
these balls by a polytope and approximate each polytope’s indicator by a neural
network as in Section 2.1 — This is why we set Section 2.1 apart from the rest of
the original construction. Subsequently, a weighted sum of these neural networks
approximates the target function. However, to fully complete this construction
we would need to bound the number of balls in the Vitali Covering Theorem (or,
more precisely, the minimal radius). Such a bound is not found in the literature
and it is beyond the scope of the thesis to construct one.

Subsection 2.3.1 studies approximations of a ball by a polytope. There are two
independent proofs stating how many facets of a polytope we need to approximate
a convex body with given accuracy, but one of them, by Dudley [4], is hidden in
terms of a complicated theory, while the other, by Bronshteyn and Ivanov [5], is
very brief. Therefore, as we have not found a clearer reformulation of either in
the literature, we created one for the special case of a ball. This also allows us
to specify the bound explicitly, without any non-specific constants. We then use
the results in 2.3.2 to finish the sketch of the construction.
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1. Expressivity of Shallow Neural
Networks
In this chapter, we survey some of the most important among the multitude of
results concerning approximation properties of shallow neural networks. First,
we review classical methods of proving approximability of classes of functions
on compact sets by shallow neural networks. Thereafter, we look at bounds on
network size in relation to approximation accuracy.

In almost all of the thesis, we focus on shallow (one-hidden-layer) networks
with a ridge activation function, that is, a function of the form φ(⟨a,x⟩ + b),
where φ : R → R. We adopt the following formalisms.
Definition 1. Let H be a set of functions from K to R, sometimes called a
dictionary. Define the affine span of H as

span H =
{︄
c0 +

n∑︂
i=1

cihi | c0 ∈ R, n ∈ N,∀i ≤ n : ci ∈ R, hi ∈ H

}︄
.

For any function φ : R → R and k ∈ N, the set of (d-dimensional) functions
represented by a k-hidden-layer neural network with activation φ is defined in-
ductively as follows:

G(0)
φ = span Π,

where Π is the set of all d projection functions, and
G(k+1)

φ = span φ ◦G(k)
φ .

Here, φ ◦G(k)
φ denotes the set of all compositions

{︂
φ ◦ g | g ∈ G(k)

φ

}︂
.

Remark. We will write simply Gφ instead of G(1)
φ and call it the set of repre-

sentables for short. In other words,

Gφ =
{︃
c0 +

m∑︂
i=1

ciφ(⟨ai,x⟩ + bi) | m ∈ N, c0 ∈ R,∀i ≤ m : ai ∈ Rd, ci, bi ∈ R
}︃
.

Example. Probably the most well-known examples of activation functions are
sigmoidal functions and the rectifier. A function σ : R → R is sigmoidal if it is
continuous and if limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1. Then, we say the set

Hσ =
{︂
σ (⟨a,x⟩ + b) | a ∈ Rd, b ∈ R

}︂
is a sigmoidal dictionary. We have Gσ = span Hσ — Gσ can be seen as a free
vector space over Hσ.

Let ρ : R → R be the rectifier function, ρ(t) = max(0, t). Then,

Hρ =
{︂
max (0, ⟨a,x⟩ + b) | a ∈ Rd, b ∈ R

}︂
is the ReLU (rectified linear unit) dictionary. Again, Gρ = span Hρ.

The central result of this chapter is the following, proved independently by
Cybenko [6], Hornik et al. [7] and Funahashi [8].
Theorem 1 (Universal Approximation Theorem). Let K ⊆ Rd be compact and
let σ : R → R be a sigmoidal function. Then, the set of functions represented
by a one-hidden-layer neural network with activation σ is dense in the space of
continuous functions on K with the supremum norm, Gσ = C(K).

7



1.1 Approximation Methods
In the following, we review several methods of showing that Gσ (or a different
Gφ) is dense in the space C(K) of real continuous functions on K. We can
restate the claim of Theorem 1 in the following way: Any function in C(K) can
be approximated with arbitrary precision by a function represented by a neural
network. Or, more formally, for all ε > 0 and all f ∈ C(K) there exists g ∈ Gφ

such that ∥f − g∥∞ < ε.

1.1.1 Stone-Weierstrass Theorem
One way to prove density of the set of representables Gφ generated by a function
φ is to show that affine combinations of φ can approximate a one-dimensional
function h (or a set of functions) for which we know that Gh is dense. A similar
method was employed by Hornik et al. [7]. We formalised this by proving the
following simple claim.
Theorem 2. Let K ⊆ Rd be compact, h : R → R such that Gh is dense in the
space of continuous functions on K, C(K), and φ : R → R. If for all δ > 0 and
all u < v ∈ R there exist n ∈ N and {aj}n

j=1, {bj}n
j=1, {cj}n

j=0 ⊆ R such that

sup
t∈[u,v]

⃓⃓⃓⃓
⃓⃓h(t) −

⎛⎝c0 +
n∑︂

j=1
cjφ (ajt+ bj)

⎞⎠⃓⃓⃓⃓⃓⃓ < δ,

then Gφ is dense in C(K).
Proof. For f ∈ C(K) and ε > 0, take m ∈ N, {αi}m

i=1 ⊆ Rd, {βi}m
i=1, {γi}m

i=0 ⊆ R
such that ⃦⃦⃦⃦

⃦f(x) −
(︄
γ0 +

m∑︂
i=1

γih(⟨αi,x⟩ + βi)
)︄⃦⃦⃦⃦
⃦

∞
< ε.

For each i ≤ m, define ui = infx∈K ⟨αi,x⟩ + βi and vi = supx∈K ⟨αi,x⟩ + βi.
Then, δi = ε

m|γi| , there exist coefficients {ai
j}

ni
j=1, {bi

j}
ni
j=1, {ci

j}
ni
j=0 such that

sup
t∈[ui,vi]

⃓⃓⃓⃓
⃓⃓h(t) −

⎛⎝ci
0 +

ni∑︂
j=1

ci
jφ
(︂
ai

jt+ bi
j

)︂⎞⎠⃓⃓⃓⃓⃓⃓ < δi.

Denoting by φi the function

φi(x) = ci
0 +

ni∑︂
j=1

ci
jφ(ai

j(⟨αi,x⟩ + βi) + bi
j),

we have

sup
x∈K

|γih (⟨αi,x⟩ + βi) − γiφi(x)| < ε

m
.

Together, this implies⃦⃦⃦⃦
⃦f(x) −

(︄
γ0 +

m∑︂
i=1

γiφi(x)
)︄⃦⃦⃦⃦
⃦

∞
≤
⃦⃦⃦⃦
⃦f(x) −

(︄
γ0 +

m∑︂
i=1

γih(⟨αi,x⟩ + βi)
)︄⃦⃦⃦⃦
⃦

∞
+

m∑︂
i=1

∥γih(⟨αi,x⟩ + βi) − γiφi(x)∥∞ < 2ε.

Since (γ0 +∑︁m
i=1 γiφi(x)) ∈ Gφ, we get f ∈ Gφ.
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This proposition is useful in case we can prove density of Gh for a function h
that is not particularly suitable as an activation function of neural nets.

The next claim, proved in this form by Chen et al. [9], shows that for sigmoidal
dictionaries we can use Theorem 2 with any continuous function h. Furthermore,
it gives a precise bound on approximation accuracy.
Definition 2. Let K ⊆ Rd. Denote the modulus of continuity of f : K → R by

ω(f, δ) = sup {|f(x) − f(y)| | x,y ∈ K & ∥x − y∥ < δ}

Theorem 3. Let σ : R → R be a continuous function such that limt→∞ σ(t) = 1,
limt→−∞ σ(t) = 0 and σ(0) = 1. Then for any h ∈ C([0, 1]):

∥h− gn∥∞ ≤ ω
(︃
h,

1
n

)︃(︄
4 + 2 sup

t∈R
|σ(t)|

)︄
,

where
gn(t) = h(0) +

n∑︂
i=1

(︃
h
(︃
i

n

)︃
− h

(︃
i− 1
n

)︃)︃
σ(ln(nt− i)),

where ln is the smallest positive integer such that for t ≤ −ln: |σ(t)| < 1
n

and for
t ≥ ln: |1 − σ(t)| ≤ 1

n
.

Remark. This implies a similar result for all C([a, b]), although with a potentially
different accuracy.

The proof of the theorem uses the fact that any sigmoidal σ approximates the
Heaviside step function σ0 = 1[0,∞] in the sense that for t ̸= 0:

lim
k→∞

σ(kt) = σ0(t).

To show that neural networks with any sigmoidal activation function are dense
in C(K) it now suffices to find a continuous h : R → R such that Gh is dense in
C(K). This can be done using the Stone–Weierstrass Theorem (see for example
[10, Theorem 7.32]).
Theorem 4 (Stone–Weierstrass). Let K ⊆ Rd be compact and let G be a vector
subspace of C(K) satisfying

(i) G is closed under multiplication,

(ii) G contains a constant, non-zero function,

(iii) for all x ̸= y ∈ K there exists h ∈ G such that h(x) ̸= h(y).
Then, G is dense in C(K).

We can easily verify that all three conditions are satisfied for the exponential
dictionary. There are also other options, such as the dictionary of all polynomial
functions (even though it is not generated by a single function, the main ideas
remain the same).
Corollary 5. Let K ⊆ Rd be compact. Then, Gexp is dense in C(K), where
exp(t) = et is the exponential function.

Combining Theorems 2 and 3 with Corollary 5, we get:
Corollary 6. Let K ⊆ Rd be compact and let σ : R → R be continuous such that
limt→∞ σ(t) = 1, limt→−∞ σ(t) = 0 and σ(0) = 1. Then, the set of representables
Gσ is dense in C(K).

9



The ReLU Dictionary

We illustrate the method by proving that neural networks with the rectified linear
unit activation, ρ(t) = max(0, t), are dense in C(K). This follows from the fact
that a one-dimensional ReLU network can represent a sigmoidal function, for
example φ(t) = ρ(t) − ρ(t− 1). Since Gφ ⊆ Gρ, density of Gφ implies density of
Gρ. However, we constructed a variation of the proof adapted directly for ρ in
order to provide an example of the method.

To that end we prove the following, which corresponds to Theorem 3 — That
the rectifier can approximate any continuous function on the one-dimensional unit
interval. Similar proofs are known, but we created our own for clarity. Notice
the approximation accuracy is better than in the sigmoidal case.

Theorem 7. For all h ∈ C ([0, 1]) and all n ∈ N,⃦⃦⃦⃦
⃦h(t) −

(︄
h(0) +

n∑︂
i=1

ciρ(t+ bi)
)︄⃦⃦⃦⃦
⃦

∞
≤ 2ω

(︃
h,

1
2n

)︃
,

where bi = − i−1
n

, c1 = n
(︂
h
(︂

1
n

)︂
− h(0)

)︂
and ci = n

(︂
h
(︂

i
n

)︂
− 2h

(︂
i−1
n

)︂
+ h

(︂
i−2
n

)︂)︂
for i ∈ {2, . . . , n}.

h

g4

0 3
4

1
4

2
4 1

Figure 1.1: The function g4 is a polygonal chain with 4 vertices approximating
h.

Proof. Denote gn(t) = h(0)+∑︁n
i=1 ciρ(t+bi). We will show that gn is a polygonal

chain as in Figure 1.1.
For j ∈ {1, . . . , n} and t ∈

[︂
j−1

n
, j

n

)︂
, ρ(t+ bi) equals 0 for i > j and t+ bi for

i ≤ j. Therefore,

gn(t) = h(0) +
j∑︂

i=1
ci(t+ bi).

We will show by induction that

h(0) +
j∑︂

i=1
ci(t+ bi) = n

(︃
h
(︃
j

n

)︃
− h

(︃
j − 1
n

)︃)︃
t− (j − 1)h

(︃
j

n

)︃
+ jh

(︃
j − 1
n

)︃
.
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For j = 1 this equals n
(︂
h
(︂

1
n

)︂
− h(0)

)︂
t+ h(0). As for the induction step,

h(0) +
j∑︂

i=1
ci (t+ bi) + cj+1 (t+ bj+1) =

= n
(︃
h
(︃
j

n

)︃
− h

(︃
j − 1
n

)︃)︃
t− (j − 1)h

(︃
j

n

)︃
+ jh

(︃
j − 1
n

)︃
+

n
(︃
h
(︃
j + 1
n

)︃
− 2h

(︃
j

n

)︃
+ h

(︃
j − 1
n

)︃)︃(︃
t− j

n

)︃
= n

(︃
h
(︃
j + 1
n

)︃
− h

(︃
j

n

)︃)︃
t− jh

(︃
j + 1
n

)︃
+ (j + 1)h

(︃
j

n

)︃
.

Hence, gn is a polygonal chain with vertices
(︂

i
n
, h
(︂

i
n

)︂)︂
, i ≤ n, as shown in Figure

1.1.
For all i, ω

(︂
h, 1

2n

)︂
≥ 1

2

⃓⃓⃓
h
(︂

i
n

)︂
− h

(︂
i−1
n

)︂⃓⃓⃓
, since

⃓⃓⃓⃓
h
(︃
i

n

)︃
− h

(︃
i− 1
n

)︃ ⃓⃓⃓⃓
≤
⃓⃓⃓⃓
h
(︃
i− 1
n

)︃
− h

(︃
i− 1
n

+ 1
2n

)︃⃓⃓⃓⃓
+
⃓⃓⃓⃓
h
(︃
i

n
− 1

2n

)︃
− h

(︃
i

n

)︃⃓⃓⃓⃓
= lim

t→ 1
2n

−

⃓⃓⃓⃓
h
(︃
i− 1
n

)︃
− h

(︃
i− 1
n

+ t
)︃⃓⃓⃓⃓

+ lim
t→ 1

2n

−

⃓⃓⃓⃓
h
(︃
i

n
− t

)︃
− h

(︃
i

n

)︃⃓⃓⃓⃓

≤ ω
(︃
h,

1
2n

)︃
+ ω

(︃
h,

1
2n

)︃
.

Therefore, for all t ∈
[︂

i−1
n
, i−1

n
+ 1

2n

)︂
:

|h(t) − gn(t)| ≤
⃓⃓⃓⃓
h(t) − h

(︃
i− 1
n

)︃⃓⃓⃓⃓
+
⃓⃓⃓⃓
h
(︃
i− 1
n

)︃
− gn(t)

⃓⃓⃓⃓
≤ ω

(︃
h,

1
2n

)︃
+ 1

2

⃓⃓⃓⃓
h
(︃
i

n

)︃
− h

(︃
i− 1
n

)︃⃓⃓⃓⃓
≤ 2ω

(︃
h,

1
2n

)︃
.

Similarly for t ∈
(︂

i−1
n

+ 1
2n
, i

n

]︂
and by continuity the inequality holds for all

t ∈ [0, 1].

Therefore, the rectifier can approximate any one-dimensional function on an
interval, including the exponential, and combining Theorem 7 with Theorem 2
and Corollary 5, we get the following.

Corollary 8. Let K ⊆ Rd be compact and let ρ : R → R denote the rectifier
function. Then, the set of representables Gρ is dense in C(K).

1.1.2 Convolution
Apart from more direct approaches, such as the one in Subsection 1.1.1, proofs
based on integral approximation are common in approximation theory. Two such
methods are presented in the following two subsections.

The convolution method uses the fact that a sequence of convolutions of the
goal function can be shown to converge to the function and we can approximate
the convolutions by the dictionary in question. The approach was first adopted
in this way by Xu et al. [11], although the proof by Funahashi [8] proceeded
similarly.
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Theorem 9. For h ∈ L1(Rd) (a function Lebesgue-absolutely integrable on Rd)
such that

∫︁
h(x) dx = 1, let hn(x) = ndh(nx). Furthermore, let f : Rd → R be

bounded and uniformly continuous. Then,

f ∗ hn
∥·∥∞−−−→
n→∞

f,

where f ∗ hn(x) =
∫︁
Rd f(x − y)hn(y) dy is the convolution of f and hn.

We will derive the function h from our activation function.

Definition 3. Let φ : R → R be continuous. Define the convolution kernel
hφ : Rd → R as

hφ(x) = 1
αd−1

∫︂
Sd−1

φ(⟨x,u⟩) dSd−1(u),

where αd−1 is the surface area of the d-dimensional unit sphere Sd−1, αd−1 =∫︁
Sd−1 dSd−1(u).

The following theorem forms the basis of this approach.

Theorem 10. Let a > 0, K = [−a, a]d and let φ : R → R be uniformly continu-
ous on R. If

(i) hφ ∈ L1(Rd) and

(ii)
∫︁
Rd hφ(x) dx ̸= 0,

then, the set of representables Gφ is dense in C(K).

Remark. The proof of Theorem 10 uses the convergence from Theorem 9, ap-
proximating the convolutions by an integral sum of hg, which in turn is approxi-
mated by a linear combination of g.

Complications arise in directly applying Theorem 10 to sigmoidal functions.
Since hφ is a radial function (depending only on the distance from the origin), to
satisfy condition (i) φ has to go to 0 towards infinity quickly enough (faster than
t−d). Sigmoidal functions, however, tend to 1 by definition. Furthermore, it is
clear that hφ ≡ 0 for φ odd, which is often the case for φ(t) = 2σ(t) − 1 with the
most popular sigmoidal functions, implying hσ ≡ 1

2 /∈ L1(R).
We will instead use the function φ(t) = σ(1 + t) + σ(1 − t) − 1, where σ

is a sigmoidal function. Then φ is even and since φ can be represented by a
one-dimensional σ-network, clearly Gφ ⊆ Gσ, so density of Gφ implies density of
Gσ.

The following technical lemma from [11] facilitates verification of the condi-
tions of Theorem 10.

Lemma 11. Let d be odd and let φ : R → R be even and uniformly continuous
for which there exists c > 0 such that for all p > d− 2: |φ(t)| ≤ c

|t|p . Then:

1. hφ ∈ L1 if and only if for all j ∈
{︂
0, . . . , d−3

2

}︂
:

∫︂ ∞

0
φ(t)t2j dt = 0.

12



2. It holds that ∫︂
Rd
hφ(x) dx = −2αd−2τd

∫︂ ∞

0
φ(t)td−1 dt,

where τd =
∫︁ 1

0 t(1 − t) d−3
2 dt.

A similar claim holds for d even. The proof of the lemma is somewhat com-
plicated, but it allows us to formulate the following result.

Theorem 12 (Xu, Light, Cheney [11]). Let a > 0, K = [−a, a]d and let φ : R →
R be even and uniformly continuous. Suppose there exists c > 0 such that for all
p > d− 2: |φ(t)| ≤ c

|t|p and that
∫︂ ∞

0
φ(t)td−1 dt ̸= 0.

Then, the set of representables Gφ is dense in C(K).

Remark. While the conditions are not satisfied for sigmoidal functions in general,
they hold for some of the most commonly used, for example taking the logistic
function

σ(t) = 1
1 + e−t

and φ(t) = σ(1 + t) + σ(1 − t) − 1.

The ReLU Dictionary

The convolution method is easy to apply to the rectified linear unit, ρ(t) =
max(0, t), using Theorem 12. Again, we cannot use ρ itself, since it does not
vanish toward infinity, so we will use instead the triangle function

φ(t) = ρ(t+ 1) − 2ρ(t) + ρ(t− 1),

which is a polygonal chain with vertices (−1, 0), (0, 1) and (1, 0). It is clearly
representable by a one-dimensional ρ-network, so proving density of Gφ in C(K)
suffices to prove density of Gρ.

The inequality |φ(t)| ≤ 1
|t|p holds for any p > d − 2, since φ(t) ≤ 1 on [−1, 1]

and φ(t) = 0 elsewhere. Furthermore, for t ∈ [0, 1], φ(t) = 1 − t, so∫︂ ∞

0
φ(t)td−1 dt =

∫︂ 1

0
φ(t)td−1 dt =

∫︂ 1

0
(1 − t)td−1 dt = 1

d
− 1
d+ 1 ̸= 0.

Therefore we can apply Theorem 12:

Corollary 13. Let a > 0, K = [−a, a]d and ρ(t) = max(0, t). The set of
representables Gρ is dense in C(K).

1.1.3 Dual Spaces
Another integral-based approach to neural network approximation uses dual space
theory. This method was employed by Cybenko [6].

First, let us review some simple notions from functional analysis.
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Definition 4. Let X be a real vector space. The dual space X∗ of X is the space
of all bounded linear mappings from X to R (bounded linear functionals on X).

Let V ⊆ X, the annihilator of V is the set V 0 ⊆ X∗ defined as

V 0 = {h ∈ X∗ | ∀v ∈ V : h(v) = 0}.

The following simple theorem forms the basis of this approach to approxima-
tion. For a proof see for example [12, Theorem 1.18].

Theorem 14. Let X be a real vector space. Then a subspace V ⊆ X is dense in
X if and only if the annihilator of V is trivial, that is, V 0 = {0}, where 0 is the
constant zero functional.

Therefore, to prove density of the set of representables it is sufficient to study
its annihilator. This is mainly useful in spaces whose dual has a manageable
representation.

The following theorem, reformulating Theorem 1 of Cybenko [6], specifies this
for the space of continuous functions on the d-dimensional unit cube, using the
fact that the dual of C([0, 1]d) is isomorphic to the space of Radon measures on
[0, 1]d with bounded variation.

Theorem 15 (Cybenko). Let φ : R → R be a continuous function such that
for all Radon measures µ on [0, 1]d with bounded variation it holds that if for all
a ∈ Rd and b ∈ R: ∫︂

[0,1]d
φ(⟨a,x⟩ + b) dµ(x) = 0,

then µ ≡ 0. Then, the set of representables Gφ is dense in C([0, 1]d).

The rather technical proof that the annihilator of a sigmoidal dictionary is
trivial can be found as Lemma 1 in [6] — See Theorem 18 for a similar proof.

While this method is less constructive than the previous two, it can be easily
generalized to other cases. For example, we can get a similar result for radial basis
activation functions, functions depending only on the distance from a certain
point.

Theorem 16. Let K ⊆ Rd be compact and φ : R → [0, 1] a continuous function
such that limt→±∞ φ(t) = 0 and φ(0) = 1. Then:

(i) The following implication holds for all Radon measures µ on K with bounded
variation: If for all b ∈ K and all a ∈ R:∫︂

K
φ (a ∥x − b∥) dµ(x) = 0,

then µ ≡ 0.

(ii) The set
span {φ (a ∥x − b∥) | b ∈ K, a ∈ R}

is dense in C(K).
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This approach is also easily transferable to other function spaces. The case of
Lp spaces — spaces of functions with Lebesgue integrable p-th power, whose dual
is known to be Lq for q such that 1

p
+ 1

q
= 1 — is a corollary of the case of C(K):

Density of Gφ in C(K) implies density of Gφ in all Lp(K), because C(K) is dense
in Lp(K) when K is compact. However, the following theorem formulates the
approach directly for Lp(K).

Theorem 17. Let K ⊆ Rd be compact, p, q ∈ [1,∞) such that 1
p

+ 1
q

= 1 and
φ : R → R. The set Gφ is dense in Lp(K) if for all h ∈ Lq(K) the following
implication holds: If for all a ∈ Rd and b ∈ R:∫︂

K
φ (⟨a,x⟩ + b)h(x) dx = 0,

then h ≡ 0 almost everywhere.

However, the proof that sigmoidal functions satisfy the required implication
is again non-trivial.

The ReLU Dictionary

Once more we illustrate the method by applying it to ReLU networks Gρ, ρ(t) =
max(0, t). We will show that ρ satisfies the condition of Theorem 15. We adapted
the proof from the one for sigmoidal functions.

Theorem 18. Let K ⊆ Rd be compact and let µ be a Radon measure on K with
bounded variation. If for all a ∈ Rd and b ∈ R∫︂

K
ρ (⟨a,x⟩ + b) dµ(x) = 0,

then µ ≡ 0.

Proof. Define µ as zero outside K. We will show that the Fourier transform of µ,

Fµ(a) =
∫︂

Rd
ei⟨a,x⟩ dµ(x),

where i is the imaginary unit, equals zero for all a ∈ Rd.
We will approximate the integral by a Riemann sum. Let b = infx∈K ⟨a,x⟩,

c = supx∈K ⟨a,x⟩ and for n ∈ N and j ∈ {0, . . . , n} define tnj = b + j c−b
n

. Then,
by the Left Hand Riemann Sum Theorem,

Fµ(a) = lim
n→∞

n∑︂
j=1

∫︂
tn
j−1≤⟨a,x⟩<tn

j

eitn
j−1dµ(x)

= lim
n→∞

n∑︂
j=1

eitn
j−1µ

(︂{︂
tnj−1 ≤ ⟨a,x⟩ < tnj

}︂)︂
.

We will show that for all j ≤ n, µ
(︂{︂
tnj−1 ≤ ⟨a,x⟩ < tnj

}︂)︂
= 0. Fixing one such

j, define for all m ∈ N

sm =
∫︂

K
mρ

(︃
⟨a,x⟩ −

(︃
tnj−1 − 1

m

)︃)︃
−mρ

(︂
⟨a,x⟩ − tnj−1

)︂
− mρ

(︃
⟨a,x⟩ −

(︃
tnj − 1

m

)︃)︃
+mρ

(︂
⟨a,x⟩ − tnj

)︂
dµ(x).
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tnj−1 tnj
1
m
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⟨a,x⟩

Figure 1.2: The sequence {sm}∞
m=1 approximates the measure of the set{︂

x ∈ Rd | ⟨a,x⟩ ∈
[︂
tnj−1, t

n
j

)︂}︂
.

The definition of sm is illustrated in Figure 1.2. By the Lebesgue Dominated
Convergence Theorem,

sm −−−→
m→∞

∫︂
K

1[tn
j−1,tn

j )(⟨a,x⟩) dµ(x) = µ
(︂{︂
tnj−1 ≤ ⟨a,x⟩ < tnj

}︂)︂
,

where 1A(u) is the indicator function. At the same time, sm = 0 for all m by the
claim’s assumption that

∫︁
K ρ (⟨a,x⟩ + b) dµ(x) = 0. Altogether, Fµ(a) = 0 for

all a ∈ Rd and, by uniqueness of the Fourier transform, µ is the constant zero
measure.

Together with Theorem 15 we get the desired result.

Corollary 19. The set of representables Gρ is dense in C
(︂
[0, 1]d

)︂
, where ρ(t) =

max(0, t).

1.1.4 Non-Polynomial Activation Functions
We have seen several methods of proving the Universal Approximation Theo-
rem, Theorem 1, focusing on sigmoidal and ReLU activation functions. However,
Leshno et al. [13] proved a stronger version of the theorem, stating that Gφ is
dense in C(K) if and only if φ is not Lebesgue-equivalent to a polynomial func-
tion. While the method at the heart of this proof is the one of Subsection 1.1.1,
showing φ can approximate any one-dimensional continuous function and using
the Stone-Weierstrass Theorem, in this general version the one-dimensional step
is more complicated.

Theorem 20 (Leshno et al. [13]). Let K ⊆ Rd be compact and let φ : R → R
be locally bounded such that the set of points of discontinuity of φ has Lebesgue
measure zero. Then, the following are equivalent:

(i) Gφ is dense in C(K),
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(ii) φ is not Lebesgue-equivalent to a polynomial.

Proof. One implication is simple: If φ is a polynomial of degree k, then any
h ∈ Gφ is a polynomial (in d variables) of degree at most k. The set of polynomials
of bounded degree is not dense in C(K).

In the other direction, denote by G1
φ the set of functions representable by a

neural network with one-dimensional input. Leshno et al. [13] divide the proof
into steps similar to the following:

1. If G1
φ is dense in C([0, 1]), then Gφ is dense in C(K).

• This follows from theorems of Subsection 1.1.1, namely Theorem 2 and
Corollary 5.

2. If φ is non-polynomial and smooth on R, φ ∈ C∞(R), then G1
φ is dense in

C([0, 1]).

• Since φ is not a polynomial, there exists t0 ∈ R such that all derivatives
of φ are non-zero at t0. Using this it can be shown that φ can approx-
imate any polynomial, so G1

φ is dense in C([0, 1]) by the Weierstrass
Approximation Theorem.

3. Denoting by C∞
c (R) the set of all smooth real functions with compact sup-

port, for all h ∈ C∞
c (R) the function φ ∗ h is an element of the closure of

G1
φ.

• Here, φ∗h is the convolution of φ and h as defined in Subsection 1.1.2,
φ ∗ h(t) =

∫︁
φ(t− s)h(s)ds. The proof of this step is non-trivial.

4. If there exists h ∈ C∞
c (R) such that φ ∗ h is non-polynomial, then G1

φ is
dense in C([0, 1]).

• By 3., φ ∗ h ∈ G1
φ, which implies G1

φ∗h ⊆ G1
φ. Since φ ∗ h ∈ C∞

non-polynomial, by 2. G1
φ∗h is also dense in C([0, 1]), so G1

φ is dense
in C([0, 1]).

5. If for all h ∈ C∞
c (R): φ ∗ h is a polynomial, then there exists k ∈ N such

that all φ ∗ h are polynomials of degree at most k.

• Again, this step is a bit technical: Denote by C∞
c ([a, b]) the set of

all functions in C∞
c (R) with support in [a, b]. Because C∞

c ([a, b]) =
φ ∗ C∞

c ([a, b]), we can write C∞
c ([a, b]) as the union over k of sets of

all φ ∗ h of degree at most k. By the Baire Category Theorem, this
sequence of sets has to stabilize, meaning all φ ∗ h are of uniformly
bounded degree.

6. If for all h ∈ C∞
c (R) the function φ ∗ h is a polynomial, then φ is a polyno-

mial.

• This follows from 5. using results from distribution theory.

Altogether, if φ is non-polynomial, then by 6. some φ ∗ h is non-polynomial,
so by 4. G1

φ is dense in C([0, 1]) and by 1. Gφ is dense in C(K).
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Remark. We changed a few details from the original proof, as it used some
potentially misleading notation: Gφ is there defined to be dense in C(Rd) if it is
dense in C(K) for all K ⊆ Rd compact. However, for example for σ sigmoidal,
Gσ is dense in C(Rd) in this sense, but it is never dense in C(Rd) in the sense
that for all f : Rd → R continuous and ε > 0 there exists g ∈ Gσ such that
supx∈Rd |f(x) − g(x)| < ε.

1.2 Bounds on Network Size
In this section we survey some previous bounds on expressive power of neural
networks. Basic expressivity results are usually stated in the form ”Networks
of complexity m can approximate some class of functions with accuracy ε”, or
(equivalently) ”In order to approximate functions with accuracy ε by a neural
network, the minimal required complexity is m”. For our purposes, complexity of
a neural network will be synonymous with the number of hidden units. However,
in more recent literature other measures of complexity are often considered, such
as the number of non-zero weights (as in [14]) or an approximation thereof by the
sum of weight sizes (see for example [15] for further motivation).

Definition 5. For φ : R → R and m ∈ N denote by Gφ,m the set of functions
represented by neural networks with activation φ having at most m neurons in
the hidden layer (including a potential constant term),

Gφ,m =
{︄

m∑︂
i=1

ciφ(⟨ai,x⟩ + bi) | ∀i ≤ m : ai ∈ Rd, ci, bi ∈ R
}︄
.

Note that this definition implies that the complexity of a function g ∈ Gφ

is the least number of neurons necessary to express g, even though g may have
several representations of different sizes.

Definition 6. Let X be a vector space and A ⊆ X. Define the error of approxi-
mation of A by B in the space X as

EX(A,B) = sup
a∈A

inf
b∈B

∥a− b∥X .

We will write EX(a,B) instead of EX({a}, B).

Remark. Consequently, EX(A,B) ≤ ε is equivalent to: For all a ∈ A there exists
b ∈ B such that ∥a− b∥X ≤ ε. That is, any member of A can be approximated
by some member of B within an error of ε. Conversely, EX(A,B) ≥ ε can be
restated as: There exists a ∈ A such that for all b ∈ B: ∥a− b∥X ≥ ε. That is,
some element of A cannot by approximated by B better than with an error of ε.

1.2.1 Sobolev Spaces
Most bounds on network complexity found in the literature are expressed in terms
of Sobolev spaces and because these are often presented in a somewhat advanced
manner, we give a quick summary of some important facts. The bounds use
Sobolev spaces to quantify complexity of the approximated function — Functions
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belonging to higher order Sobolev spaces are more regular (smoother in case of
continuous derivatives) and therefore easier to approximate.

Recall that for p ∈ [1,∞) we define Lp(K) as the space of all functions
f : K → R such that the integral

∫︁
K |f |p dλd is finite, together with the norm

∥f∥p =
(︂∫︁

K |f |p dλd
)︂ 1

p . For p = ∞, L∞(K) is the space of functions bounded
almost everywhere on K with ∥·∥∞ defined as the essential supremum. On a
compact set it holds that Lp(K) ⊇ Lq(K) for p ≤ q and that C(K) is a dense
subset of all Lp(K).

Sobolev spaces are typically defined on the whole Rd or on well-behaved open
subsets, which usually means sets with a nice boundary called Lipschitz domains.
A Lipschitz domain is a non-empty connected open set U such that the boundary
of U can be locally represented as the graph of a Lipschitz function. Previous
bounds are usually formulated on balls or cubes, which satisfy these conditions,
but there exist many natural sets that do not.

Definition 7. Let U ⊆ Rd be a Lipschitz domain. For k ∈ N∪{0} and p ∈ [1,∞],
the Sobolev space W k,p(U) is the space of all functions f : K → R such that all
weak derivatives of f of order up to k have a finite Lp norm.

Remark. A function h is an i-th weak derivative of f , i ≤ d, if for all ψ ∈ C∞(U)
with compact support:

∫︁
U f

∂
∂xi
ψ dλd = −

∫︁
U hψ dλd.

For k = 0, W 0,p(U) = Lp(U). For k1 < k2 we have W k1,p ⊋ W k2,p.
Alternatively, W k,p(U) can be defined as completion of the space of functions

that have all derivatives up to order k bounded in the Lp norm. However, it is
important to note that weak derivatives lack some properties of classical deriva-
tives. The space is equipped with a norm based on Lp norms of derivatives of
order up to k:

∥f∥W k,p =
⎛⎝ ∑︂

α:|α|≤k

∥Dαf∥p
p

⎞⎠ 1
p

,

or for p = ∞:
∥f∥W k,∞ = max

α:|α|≤k
∥Dαf∥∞ .

As we are mainly interested in continuous functions and the sup norm, we
will define a more intuitive type of spaces and relate it to Sobolev spaces.

Definition 8. Let U ⊆ Rd be open. For k ∈ N ∪ {0} the Hölder space Ck,1(U)
is the space of all f : U → R such that derivatives of f of order up to k are
continuous and derivatives of order k are Lipschitz continuous.

Denoting by Ck(U) the space of functions with continuous derivatives of order
up to k (where C0(U) = C(U)), we have

C0(U) ⊋ C0,1(U) ⊋ C1(U) ⊋ C1,1(U) ⊋ . . . .

The following are consequences of one of Sobolev Embedding Theorems.

Lemma 21. Let U ⊆ Rd be a Lipschitz domain. Then:

1. For all k ≥ 1: W k,∞(U) = Ck−1,1(U).
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2. If k1 ≥ k2 ≥ 0 and p ∈ [1,∞) such that k2 < k1 − d
p
, then W k1,p(U) ⊆

W k2,∞(U). In particular, if f ∈ W k,p(U) for p(k − 1) > d, then f is
Lipschitz continuous.

3. If f ∈ W k,p(U) for pk > d, then f is continuous.

Sobolev spaces are not usually defined on non-open sets. However, for K that
is a closed ball or a hypercube, under assumptions on k and p (in particular that
kp > d) it holds that any function in the Sobolev space defined on the interior
of K has a uniquely determined extension, along with its derivatives, onto the
boundary of K. Then, W k,p(K) can be seen as the same space as W k,p(int K).

We formulate the bounds forK = [0, 1]d, but the same bounds with potentially
different constants hold for K = B(0, 1), or other similar sets. The bounds are
usually presented normalized in the sense that f is assumed to satisfy ∥f∥W k,p ≤ 1.

Definition 9. Denote by Bk,p the closed unit ball in W k,p([0, 1]d), that is,

Bk,p =
{︂
f ∈ W k,p

(︂
[0, 1]d

)︂
| ∥f∥W k,p ≤ 1

}︂
.

Remark. Note that not only are the bounds formulated only on very nice sets
K, but they also require k ≥ 1. With respect to C

(︂
[0, 1]d

)︂
, we need the approx-

imated function to be at least Lipschitz in order for the bounds to be applicable.

1.2.2 Bounds on Error of Approximation
Now we look at some lower and upper bounds on approximation error, which
correspond to lower and upper bounds on the number of necessary neurons. For
a more detailed survey see [16] and [14].

We will begin with lower bounds. In this thesis we focus only on ridge acti-
vations, so that the resulting function is a combination of some φ(⟨ai,x⟩ + b). If
we allow φ to vary, we get a surprisingly useful lower bound. Denote by Rm the
set of all m-term combinations of continuous ridge functions,

Rm =
{︄

m∑︂
i=1

ciφi(⟨ai,x⟩) | ∀i ≤ m : ai ∈ Rd, ci ∈ R, φi ∈ C(R)
}︄
.

If φ : R → R is continuous, then clearly Gφ,m ⊆ Rm, so for any X containing Rm

and for f ∈ X:

EX (f,Gφ,m) = inf
g∈Gφ,m

∥f − g∥X ≥ inf
g∈Rm

∥f − g∥X = EX (f,Rm) .

Therefore, if we can bound EX (f,Rm) from below, we get a bound also on
EX (f,Gφ,m). Maiorov [1] provides such bounds for approximation by ridge func-
tions for X = L2. Note that the upper bound does not imply anything about
Gφ,m, it only means we can get no better lower bounds using this approach.

Theorem 22 (Maiorov [1]). Let k ≥ 1, then there exist C1, C2 > 0 such that for
all m ≥ 1

C1m
− k

d−1 ≤ EL2

(︂
Bk,2, Rm

)︂
≤ C2m

− k
d−1 .
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Remark. In other words, the lower bound implied for any φ ∈ C(R) can be
stated as: There exists f ∈ Bk,2 such that for all ε > 0 and g ∈ Gφ,h: If
∥f − g∥2 < ε, then

h ≥ ˜︁C1

(︃1
ε

)︃ d−1
k

.

It was even proved by Maiorov et al. [17] that the set of all f that force this
bound is large (in measure), so it is not just some pathological case.

It is simple to verify that the same bound holds for any p ∈ [2,∞].

This lower bound on approximation error is in general not tight — For some
σ sigmoidal it holds that the number of necessary neurons is at least C

(︂
1
ε

)︂ d
k .

However, Maiorov and Pinkus [18] define a sigmoidal function that attains this
bound.

Theorem 23 (Maiorov and Pinkus [18]). There exists σ ∈ C(R) sigmoidal and
strictly increasing such that for all k ≥ 1 and p ∈ [1,∞] there exists C > 0 such
that for all m ≥ 1

ELp

(︂
Bk,p, Gσ,m

)︂
≤ Cm− k

d−1 .

Remark. However, even though the function is C∞, it is constructed using sep-
arability of the space C([−1, 1]) and it is definitely not usable as an activation
function in practice. The conclusions that the authors draw from this result are
that (i) sigmoidality, monotonicity and smoothness are not sufficiently strong
properties to rule out pathological functions, and that (ii) these properties do
not impede approximation, as there is a function having these properties that
attains the best possible degree of approximation.

A stronger lower bound on error of approximation can be derived if the pa-
rameters of the approximating network, the coefficients, weights and thresholds,
depend continuously on the approximated function f . While this is usually not
the case in practice, results based on DeVore et al. [19] imply that for such
networks the lower bound increases to

Cm− k
d .

Next, we turn our attention to upper bounds on approximation error. Prob-
ably the most important bound in this direction was proved by Mhaskar [2].

Theorem 24 (Mhaskar [2]). Let φ : R → R be a function satisfying that there
exists an open interval U ⊆ R such that φ|U ∈ C∞(U) and φ is non-polynomial
on U . Then, for all k ≥ 1 and p ∈ [1,∞] there exists C > 0 such that for all
m ≥ 1

ELp

(︂
Bk,p, Gφ,m

)︂
≤ Cm− k

d .

Remark. In other words, for φ smooth the following holds: For all f ∈ Bk,p and
ε > 0 there exists g ∈ Gφ,h for

h ≤ ˜︁C (︃1
ε

)︃ d
k

such that ∥f − g∥p < ε.
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The proof uses the known fact that for all f ∈ W k,p and all n ∈ N, there
exists a (d-variate) polynomial pn of degree at most n such that ∥f − pn∥ ≤
Cn−k ∥f∥W k,p . The polynomial is then approximated using derivatives of φ.

Because of the assumptions on φ, the previous bound cannot be applied to
the ReLU activation or the Heaviside function 1[0,∞) that are either non-smooth
or polynomial on all intervals. Petrushev [20] proved, among other results, that
these functions satisfy the same bound for certain values of k.

Theorem 25 (Petrushev [20]). For n ∈ N ∪ {0}, define

σn(t) =

⎧⎨⎩tn, t ≥ 0;
0, t < 0.

Then, for all 1 ≤ k ≤ n+ 1 + d−1
2 there exists C > 0 such that for all m ≥ 1:

EL2

(︂
Bk,2, Gσn,m

)︂
≤ Cm− k

d .

Remark. As the Heaviside function and the rectifier equal σ0 and σ1, the bounds
hold for them for k up to d+1

2 and d+3
2 , respectively.

As for more recent results, probably the most notable in a direction similar
to the previous is the work of Yarotsky [14], who proves several lower and upper
bounds for deeper neural networks. One of these results specifies a bound on the
size of one neural network architecture that approximates all functions in Bk,∞

with some setting of weights.

Theorem 26 (Yarotsky [14]). Let k ≥ 1 and ε ∈ (0, 1). Then, there exists c > 0
and a neural network architecture N with ReLU activation of depth at most

c
(︃

log
(︃1
ε

)︃
+ 1

)︃
and with at most

c
(︃1
ε

)︃ d
n
(︃

log
(︃1
ε

)︃
+ 1

)︃
neurons and connections (non-zero weights), such that for all f ∈ Bk,∞ there ex-
ists a weight setting of N represented by a function g ∈ Gρ such that ∥f − g∥∞ <
ε.

On the other hand, if the architecture is allowed to depend on the approxi-
mated function f , he proves that a network of constant depth and the number of
neurons bounded by

c

ε log
(︂

1
ε

)︂
that approximates f . However, this result is formulated only for one-dimensional
functions f , that is, for any Lipschitz function on [0, 1].
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2. A Constructive Upper Bound
on Network Size
We construct an upper bound on the number of neurons in the hidden layer nec-
essary to approximate a continuous function on a compact set. We achieve this
using the approach from Subsection 1.1.1, working with networks with exponen-
tial activation and then approximating the exponentials by the given sigmoidal
function in one dimension.

The construction is inspired by a specific proof of the Stone-Weierstrass The-
orem by Brosowski and Deutsch [3]. We use a lattice to divide the compact set
into polytopes on each of which the target function’s range lies in a small interval.
We approximate the constant function on each polytope by a neural network with
exponential activation and combine then to get an approximation of the target
function.

At the end of this chapter we consider an alternative approach — Approxi-
mating the target function everywhere except a set of small measure. We give
an overview of the potential construction and specify what theoretical results are
required to complete it.

2.1 Approximation of the Indicator Function of
a Polytope

In this thesis, by a polytope we understand the convex hull of finitely many points
in Rd. For a detailed overview of basic definitions see [21, Section 4.2].

Definition 10. For d,m ∈ N, d ≥ 2, denote by Pd
m the set of all d-dimensional

polytopes having m facets.

Remark. Because the definition requires the polytopes to be full-dimensional,
Pd

m is non-empty only for m ≥ d+ 1.

The following theorem, stating that we can approximate the indicator function
of any polytope, is original, but it is loosely inspired by Lemma 1 from [3].

Definition 11. Let P ∈ Pd
m, x ∈ P and α ∈ R. Denote by α ∗x P the dilation of

P by α centred at x,
α ∗x P = α(P − x) + x.

Recall that Gexp,h denotes the set of functions representable by a shallow
neural network with the exponential activation function, exp(t) = et, that has h
units in the hidden layer.

Theorem 27. Let K ⊆ Rd be compact, P ∈ Pd
m such that P ∩K ̸= ∅, x0 ∈ int P ,

α > 1 and ε > 0. There exists g ∈ Gexp such that

• g|K : K → [0, 1],

• for y ∈ P ∩K: g(y) > 1 − ε,
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• for y ∈ K \ (α ∗x0 P ): g(y) < ε,

• g ∈ Gexp,h for

h =
(︃3e
m

)︃m (︃2
ε

)︃6m log2 m
diam(P )diam(K)

(α−1)q2
,

where q is the minimal distance from x0 to a facet of P .

Proof. Denote by H(a, b) the hyperplane perpendicular to a ∈ Sd−1 shifted by
ba, that is,

H(a, b) =
{︂
y ∈ Rd | ⟨a,y⟩ − b = 0

}︂
.

Let {ai}m
i=1 be outer unit normal vectors of P ’s facets and let {b1

i }m
i=1 and {b2

i }m
i=1

be real numbers such that the supporting hyperplanes of facets of P and α ∗x0 P
are of the form H(ai, b

1
i ) and H(ai, b

2
i ), respectively. That is, P = {y | ∀i ≤ m :

⟨ai,y⟩ − b1
i ≤ 0} and α ∗x0 P = {y | ∀i ≤ m : ⟨ai,y⟩ − b2

i ≤ 0}. Take bi = b1
i +b2

i

2 .
The whole situation is illustrated in Figure 2.1.

a5

a2

a1

a3

a4

H(a1, b
1
1)

H(a1, b
2
1)

H(a1, b1)

α ∗x0 P

••

P

•x0

Figure 2.1: Facets of polytopes P and α ∗x0 P lie on hyperplanes of the form
H(ai, b

1
i ) and H(ai, b

2
i ), respectively. Hyperplanes H(ai, bi) then correspond to

facets of the polytope α
2 ∗x0 P . Outer normal unit vectors of facets of all poly-

topes are a1, . . . ,am. b1
i , bi and b2

i are oriented distances from the corresponding
hyperplanes to the point 0.

For each facet of P we will define an exponential function that is larger than
mγ for some γ on the outer side of H(ai, b

2
i ) (w.r.t. ai) and smaller than γ

2 on the
inner side of H(ai, b

1
i ), also normalizing them to range inside [0, 1] on K. This

way, taking p(x) as the average of these exponentials, p is larger than γ outside
α∗x0 P and smaller than γ

2 inside P . This will allow us to exponentiate p in order
to get the required bounds.

If ⟨ai,y⟩ − b1
i = 0 for some y, then b2

i = ⟨ai, α(y − x0) + x0⟩, so

b2
i − b1

i = ⟨ai, α(y − x0) + x0⟩ − ⟨ai,y⟩ = (α− 1)(b1
i − ⟨ai,x0⟩).

b1
i − ⟨ai,x0⟩ = |b1

i − ⟨ai,x0⟩| is the distance between hyperplanes H(ai, b
1
i ) and

H(ai, ⟨ai,x0⟩), which equals the distance from x0 to the i-th facet of P . Denote
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this distance by qi and let q = mini≤m qi be the minimal distance from x0 to a
facet of P . We get

b2
i − b1

i = (α− 1)qi ≥ (α− 1)q. (2.1)

For each i ≤ m take si = log(2m)qi

(α−1)q2
1. Then, by (2.1) we have

esi(b2
i −bi) = (2m)

(α−1)q2
i

2(α−1)q2 ≥ (2m)
1
2 =

√
2m (2.2)

and
esi(b1

i −bi) = (2m)
−(α−1)q2

i
2(α−1)q2 ≤ (2m)− 1

2 = 1√
2m

. (2.3)

Taking y1 ∈ P and y2 /∈ α ∗x0 P — which means ⟨ai,y1⟩ − b1
i ≤ 0 for all i, and

⟨aj,y2⟩ − b2
j > 0 for some j ≤ m — we get from (2.2) and (2.3):

esj(⟨aj ,y2⟩−bj) > esj(b2
j −bj) ≥

√
2m = 2 m√

2m

≥ 2
m∑︂

i=1
esi(b1

i −bi) > 2
m∑︂

i=1
esi(⟨ai,y1⟩−bi).

(2.4)

Let
z = (2m)

diam(P )diam(K)
(α−1)q2

and define

p(x) = 1
mz

m∑︂
i=1

esi(⟨ai,x⟩−bi) = 1
m

m∑︂
i=1

(2m)
qi(⟨ai,x⟩−bi)−diam(P )diam(K)

(α−1)q2 .

Then, p|K ranges in [0, 1]: p is clearly non-negative. For any y ∈ K and
i ≤ m, taking y′ ∈ P ∩ K ̸= ∅ we have ⟨ai,y

′⟩ ≤ b1
i < bi, so ⟨ai,y⟩ − bi <

⟨ai,y⟩ − ⟨ai,y
′⟩ ≤ |⟨ai,y⟩ − ⟨ai,y

′⟩|. This is the distance between hyperplanes
H(ai, ⟨ai,y⟩) and H(ai, ⟨ai,y

′⟩), which is at most ∥y − y′∥. However, since both
y and y′ are elements of K, their distance is at most diam(K). Altogether, we
get ⟨ai,y⟩ − bi < diam(K). Combined with the fact that qi < diam(P ), this
implies

(2m)
qi(⟨ai,y⟩−bi)

(α−1)q2 < (2m)
diam(P )diam(K)

(α−1)q2 = z,

so p ≤ 1.
Furthermore, by (2.4) for any y1 ∈ P and y2 /∈ α ∗x0 P we have

p(y2) >
√

2√
mz

= 2 1
z
√

2m
> 2p(y1).

Next, we manipulate p to get the required bounds. Denote

γ =
√

2√
mz

=
√︄

2
m

(2m)− diam(P )diam(K)
(α−1)q2 ,

1This definition is motivated by a later result, Lemma 34, where it will be useful to have
si = cqi, where c is common for all i. We could instead take si = log(2m)

(α−1)q for all i, slightly
reducing the bound of this theorem — See the remark after this proof.
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so that p < γ
2 on P and p > γ outside α ∗x0 P . If K \ (α ∗x0 P ) is empty, the

theorem can be satisfied by a constant function, so assume K\(α∗x0P ) ̸= ∅. This
implies for some i that diam(K) ≥ b2

i − b1
i ≥ (α − 1)q. Because diam(P ) > 2q

and m ≥ 2, we have γ < 4−2 = 1
16 .

Let k =
⌊︂√

2
γ

− 1
⌋︂
, meaning kγ ∈

[︂√
2 − γ,

√
2
)︂

⊆
(︂√

2 − 1
16 ,

√
2
)︂
, and define

n =
⌈︄

−5 log(ε)
2 log(2)

⌉︄
.

Then,
n ≥ 5 log(ε)

4 log
(︂

1√
2

)︂ > log(ε)
log

(︂√
2

2

)︂ ≥ log(ε)
log

(︂
kγ
2

)︂ , (2.5)

which implies
(︂

kγ
2

)︂n
< ε, and also

n ≥ − log(ε)
4
5 log

(︂√
2
)︂ > − log(ε)

log
(︂√

2 − 1
16

)︂ ≥ − log(ε)
log(kγ) , (2.6)

meaning 1
(kγ)n < ε.

Finally, take
g = (1 − pn)kn

.

As in the proof of [3, Lemma 1], for y ∈ P ∩ K we get by Bernoulli’s inequality
and by (2.5):

g(y) ≥ 1 − (kp(y))n > 1 −
(︄
kγ

2

)︄n

> 1 − ε

and for y ∈ K \ (α ∗x0 P ), using again Bernoulli’s inequality and (2.6):

g(y) = (kp(y))n

(kp(y))n
(1 − p(y)n)kn ≤ 1

(kp(y))n
(1 − p(y)n)kn(1 + knp(y)n)

≤ 1
(kp(y))n

(1 − p(y)n)kn(1 + p(y)n)kn = 1
(kp(y))n

(1 − p(y)2n)kn

≤ 1
(kp(y))n

<
1

(kγ)n
< ε.

To summarize, we have defined the function g as

g(x) =
(︄

1 −
(︄

1
m

m∑︂
i=1

(2m)
qi(⟨ai,x⟩−bi)−diam(P )diam(K)

(α−1)q2

)︄n)︄kn

,

where n =
⌈︂

−5 log(ε)
2 log(2)

⌉︂
and k =

⌊︃√
m(2m)

diam(P )diam(K)
(α−1)q2 − 1

⌋︃
. As n and k are both

positive integers, it follows that g ∈ Gexp. We have shown that g|K ranges in
[0, 1] and that for y ∈ P ∩K: g(y) > 1 − ε and for y ∈ K \ (α ∗x0 P ): g(y) < ε.

As for the number of hidden units, we know that p ∈ Gexp,m. As a consequence
of the multinomial theorem, the n-th power of an m-term expression contains
at most

(︂
n+m−1

m−1

)︂
terms (see e.g. [22, Chapter 5]). The number of terms in

g = (1−pn)kn is at most the number of terms in (1−p)nkn . Therefore, g ∈ Gexp,h

for
h =

(︄
nkn +m

m

)︄
≤
(︄

(nkn +m)e
m

)︄m

= em

(︄
nkn

m
+ 1

)︄m

.
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Furthermore,
n ≤ −5 log ε

2 log 2 + 1 ≤ 5
2 log2

(︃2
ε

)︃
and

k ≤
√

2
γ

=
√
m(2m)

diam(P )diam(K)
(α−1)q2

= 2(1+log2 m) diam(P )diam(K)
(α−1)q2 + 1

2 log2 m

≤ 22 log2 m
diam(P )diam(K)

(α−1)q2 .

Together,

kn ≤
(︃2
ε

)︃5 log2 m
diam(P )diam(K)

(α−1)q2

and therefore

h ≤ em

⎛⎝5 log2

(︂
2
ε

)︂
2m

(︃2
ε

)︃5 log2 m
diam(P )diam(K)

(α−1)q2
+ 1

⎞⎠m

≤
(︃3e
m

)︃m (︃2
ε

)︃5m log2 m
diam(P )diam(K)

(α−1)q2 +m

≤
(︃3e
m

)︃m (︃2
ε

)︃6m log2 m
diam(P )diam(K)

(α−1)q2
.

Remark. Instead taking si = log(2m)
(α−1)q for all i in the proof produces a slightly

better bound of

h =
(︃3e
m

)︃m (︃2
ε

)︃6m log2 m
diam(K)
(α−1)q

.

However, our version is preferable for the purposes of Section 2.2.

2.2 Constructive Approximation of a Continu-
ous Function

We will use the preceding approximation of a polytope’s indicator function to
construct an approximation of a continuous function. We will do this by dividing
the underlying compact set into small enough polytopes and approximating the
value of the function on each of them. In Subsection 2.2.1 we look at ways of
efficiently dividing sets into polytopes and in Subsection 2.2.2 we put this together
with Theorem 27 to finalize the construction.

2.2.1 Lattices
In the rest of the construction we want to divide the space into polytopes such
that each fits in a sphere of a given radius. The problem of finding the most
economical way to cover the Euclidean space with balls of equal radius is known
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as the Covering Problem and in general it is open. For our purposes, regular
arrangements of ball centres, lattices, are of particular interest. We will see that
while an optimal lattice is unknown in all but a few dimensions, we are able to
define a somewhat reasonable one. In this subsection we survey some results on
lattice coverings. We will proceed to decompose the space into polytopes using
the lattice points as their centres.

We are interested in point arrangements such that balls around each of them
cover the whole Rd. On the other hand, we want to keep the covering as sparse
as possible, so we do not want points to be too close to each other. These two
dual notions are formalised in the following definition.
Definition 12. Let δ > 0. A set of points X ⊆ Rd forms

• a δ-packing if for all x1 ̸= x2 ∈ X the balls B
(︂
x1,

δ
2

)︂
and B

(︂
x2,

δ
2

)︂
are

disjoint,

• a δ-covering (of Rd) if Rd ⊆ ⋃︁
x∈X B(x, δ),

• a δ-net on Rd if it is both a δ-covering of Rd and a δ-packing.
To illustrate consequences of the definition we give some simple bounds on

the number of points in a ball of radius R. Even though we constructed our own
proof, similar bounds are known.
Theorem 28. Let R > 0, δ > 0, and let X ⊆ Rd. Then,

(i) if X is a δ-packing,

|X ∩B(0, R)| ≤
(︃2R
δ

+ 1
)︃d

;

(ii) if X is a δ-covering of Rd, define ˜︂X = {x ∈ X | B(x, δ) ∩ B(0, R) ̸= ∅}.
Then B(0, R) ⊆ ⋃︁

x∈ ˜︁X B(x, δ) and⃓⃓⃓˜︂X ⃓⃓⃓ ≥
(︃
R

δ

)︃d

.

Proof. (i) For all x ∈ X ∩B(0, R) the balls B
(︂
x, δ

2

)︂
are pairwise disjoint subsets

of B
(︂
0, R + δ

2

)︂
. Denoting by λd the d-dimensional Lebesgue measure, this means

that
λd

(︄
B

(︄
0, R + δ

2

)︄)︄
≥ |X ∩B(0, R)|λd

(︄
B

(︄
0,
δ

2

)︄)︄
and so

|X ∩B(0, R)| ≤
λd
(︂
B
(︂
0, R + δ

2

)︂)︂
λd
(︂
B
(︂
0, δ

2

)︂)︂ =
(︄
R + δ

2
δ
2

)︄d

.

(ii) Since B(0, R) ⊆ Rd ⊆ ⋃︁
x∈X B(x, δ), from the definition of ˜︂X it follows

that B(0, R) ⊆ ⋃︁
x∈ ˜︁X B(x, δ). Similarly to (i):

λd(B(0, R)) ≤
⃓⃓⃓˜︂X ⃓⃓⃓λd(B(0, δ)),

meaning ⃓⃓⃓˜︂X ⃓⃓⃓ ≥ λd(B(0, R))
λd(B(0, δ))

=
(︃
R

δ

)︃d

.
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Lattices and Voronoi Tessellations

The main goal of this section is to divide a compact set into small regular subsets.
Given a set of vertices, we can achieve this by taking sets of points closest to one
vertex.

Definition 13. Let X ⊆ Rd. The Voronoi tessellation of X is the map V : X →
P(Rd) defined for x ∈ X by

V (x) = {y ∈ Rd | ∀x′ ∈ X \ {x} : ∥y − x∥ ≤ ∥y − x′∥}.

The set V (x) is called the Voronoi cell of x.

As the Voronoi tessellation of a general X ⊆ Rd can be wild, we will focus
only on regular sets of vertex points.

Definition 14. A set X ⊆ Rd is called a (geometric) lattice if

1. X is a subgroup of the additive group (Rd,+,−,0), that is, if it is closed
under addition and subtraction, and contains 0, and

2. there exists α, β > 0 such that X is an α-packing and a β-covering.

We define the packing radius and the covering radius of X respectively as

α0 = sup {α > 0 | X is a 2α-packing} = 1
2 inf

x1 ̸=x2∈X
∥x1 − x2∥ = 1

2 inf
0 ̸=x∈X

∥x∥

and
β0 = inf {β > 0 | X is a β-covering} = sup

y∈Rd

inf
x∈X

∥y − x∥ .

The following lemma summarizes some well known facts about lattices, see
e.g. [23, Sections 1.1.2 and 2.1.2].

Lemma 29. Let X ⊆ Rd be a lattice. Then

(i) the additive group (X,+,−,0) is isomorphic to (Zd,+,−,0). In particular,
X is countable and has a basis of size d;

(ii) the Voronoi cells V (x) for x ∈ X are polytopes and they are congruent in
the sense that for x1,x2 ∈ X: V (x1) = V (x2) − x2 + x1;

(iii) the packing radius α0 of X is equal to the inradius of V (x) and the covering
radius β0 of X is the circumradius of V (x) for any x ∈ X.

Example. The simplest example of a lattice is the cubic lattice Zd. This is
clearly an additive subgroup of Rd and it is also a 1-packing and a

√
d

2 -covering,
as the length of the main diagonal of a unit d-cube is

√
d. Voronoi cells of Zd are

hypercubes of edge length 1 — For example, V (0) is the hypercube with vertices
of the form

(︂
±1

2 , . . . ,±
1
2

)︂⊤
.

Definition 15. Let X be a lattice and let u1, . . . ,ud be its basis. The matrix
M = (u1, . . . ,ud)⊤ is called a generator matrix of X.
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Example. For many lattices it is easier to specify a basis as vectors in Rd+1 that
all lie on the same hyperplane. The corresponding generating matrix is then of
the shape d× (d+ 1).

For example, the simplectic lattice Ad is typically defined via the basis ui =
ei+1 − e1, where e1, . . . , ed+1 is the standard basis of Rd+1. The vectors ei are
vertices of a regular d-simplex and the basis vectors ui corresponds to some edges
of the simplex. This is illustrated in Figure 2.2 for d = 2. The Voronoi tessellation
of A2 is the well known hexagonal tiling of the plane. Ad can also be defined as
those vectors in Zd+1 whose coordinates sum to 0.

Lattice Covering Density

For a given δ > 0, we would like to find a lattice δ-covering that is as sparse
as possible. This is known as the Lattice Covering Problem and it is an open
problem for all but a few dimensions.

Definition 16. Let M be a generator matrix for a lattice X. The determinant
of the lattice X is defined as detX = det(MM⊤).

Remark. The determinant of X corresponds to the square of the volume of
the parallelotope with vertices ∑︁i∈I ui, I ⊆ {1, . . . , d}, called the fundamental
parallelotope of X. The determinant does not depend on the choice of the basis.
Figure 2.2c illustrates how copies of the fundamental parallelotope fill the whole
space.

Definition 17. Let X be a lattice and β0 > 0 its covering radius. The covering
density of X is defined as

Θ(X) = λd(B(0, β0))√
detX

.

The Lattice Covering Problem is then formulated as finding the least dense
lattice in Rd.

Example. In two dimensions, the covering radius of Z2 is
√

2
2 and the fundamental

parallelotope is a unit square (of volume 1). The density of Z2 is therefore π
2 . It

can be shown that A2 has a density of 2π
3
√

3 and Kershner [24] showed that this is
the smallest possible covering density in R2.

The Permutohedral Lattice

We will now define a lattice that is optimal in low dimensions. We do so by
specifying a basis, again on a hyperplane in Rd+1

Definition 18. Denote 1 = (1, . . . , 1)⊤ ∈ Rd+1. The d-dimensional permutohe-
dral lattice A∗

d ⊆ Rd+1 is generated by the basis
{︂
ei − 1

d+11
}︂d

i=1
, where e1, . . . , ed+1

is the standard basis of Rd+1.
Let us fix for the rest of the thesis a linear isometry Φ from the hyperplane{︂

(y1, . . . , yd+1)⊤ ∈ Rd+1 | ∑︁d+1
i=1 yi = 0

}︂
to Rd. We will denote by A∗

d ⊆ Rd the
image of A∗

d under Φ.

30



e1

e2

e3
Φ

Φ(e1)

Φ(e2)

Φ(e3)

•
•

•
•

•

•

(a)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(b)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(c)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(d)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(e)

Figure 2.2: (a) Points e1, e2, e3 are vertices of a regular 2-simplex, an equilateral
triangle. The vectors e2−e1 and e3−e1 form a basis of A2. In R2 this corresponds
to Φ(e2) − Φ(e1) and Φ(e3) − Φ(e1), where Φ is a linear isometry from the
hyperplane

{︂
(y1, y2, y3)⊤ ∈ R3 | ∑︁3

i=1 yi = 1
}︂

to R2. (b) Points of A2 in R2. (c)
Decomposition of R2 into copies of the fundamental parallelotope of A2, shown in
grey. The parallelotope depends on the choice of basis, but its volume does not.
(d) The covering radius of A2. (e) The Voronoi tessellation of A2 is the hexagonal
tiling of the plane.
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Figure 2.3: The three-dimensional permutohedron of order 4 is known as the
truncated octahedron and it is the Voronoi cell of A∗

3. It has 8 hexagonal faces
and 6 square faces, totalling 24 − 2 = 14.

Remark. The notation A∗
d comes from the fact that the permutohedral lattice

is dual to the simplectic lattice Ad.
A∗

d can be defined as the orthogonal projection of Zd+1 onto the hyperplane{︂
(y1, . . . , yd+1)⊤ ∈ Rd+1 | ∑︁d+1

i=1 yi = 0
}︂
, the basis above corresponding to the pro-

jection of the standard basis of Rd+1. See [25] for a detailed overview of the
permutohedral lattice.

While the definition does not give much insight into the structure of A∗
d, the

lattice is well studied and the following lemma summarizes some known facts (see
[23, Section 4.6.6]).

Lemma 30. The permutohedral lattice A∗
d has covering density equal to

Θ(A∗
d) = λd (B(0, 1))

√
d+ 1

(︄
d(d+ 2)
12(d+ 1)

)︄ d
2

.

The packing and covering radii are

α0 = 1
2

√︄
d

d+ 1 , β0 =

⌜⃓⃓⎷ d(d+ 2)
12(d+ 1)

and detA∗
d = 1

d+1 . The Voronoi cells of A∗
d are permutohedra of order d + 1,

having 2d+1 − 2 facets.

Remark. A permutohedron of order d + 1 is a d-dimensional polytope having
(d+1)! vertices. Explicit definitions of permutohedra are again typically given in
Rd+1, this time on the hyperplane

{︂
(y1, . . . , yd+1)⊤ ∈ Rd+1 | ∑︁d+1

i=1 yi = n(n+1)
2

}︂
,

as the convex hull of all coordinate permutations of the vector (1, . . . , d + 1)⊤.
Permutohedra of order 3 are hexagons, Figure 2.3 shows a permutohedron of
order 4.

Example. For d = 2, A∗
2

∼= A2 is the lattice whose Voronoi tessellation is the
hexagonal tiling, shown in Figure 2.2. A∗

3 is called the body centred cubic lattice
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and it appears in crystallography. Its Voronoi tessellation, known as the bitrun-
cated cubic honeycomb, consists of truncated octahedra, shown in Figure 2.3. A
basis in R3 is given by

(︂
−1

2 ,
1
2 ,

1
2

)︂⊤
,
(︂

1
2 ,−

1
2 ,

1
2

)︂⊤
and

(︂
1
2 ,

1
2 ,−

1
2

)︂⊤
.

Remark. A∗
d is known to be optimal for the Lattice Covering Problem for d ≤ 5,

but is not optimal in general — For d = 24 there is a lattice specific for this
dimension called the Leech lattice E24 such that Θ(E24) < Θ(A∗

24). In high
dimensions, constructions based on low-dimensional lattices produce lattices that
significantly surpass A∗

d (see [26]). However, A∗
d is relatively simple to define and

to work with, so we will use it as a good approximation.
The dual problem to the Covering Problem, the Sphere Packing Problem, is

probably more well-known and studied. It asks to maximize the packing density
of a (lattice) point arrangement, defined analogously to the covering density.
In the cases of d = 2 and d = 3, the Sphere Packing Problem is known as
the Honeycomb Conjecture and the Kepler Conjecture, respectively, and in both
cases the simplectic lattice Ad has been proved optimal (even including non-lattice
arrangements) by Hales in [27] and [28]. Among lattice packings, Ad is known to
be optimal for d ≤ 7.

In dimensions 8 and 24, lattices specific for the dimensions, E8 and E24, have
been proved to be optimal by Viazovska [29] and Cohn et al. [30]. Accordingly,
the self-dual Leech lattice E24 surpasses A∗

24 in the Covering Problem. On the
other hand, E∗

8
∼= E8 is not optimal for the Covering Problem, as Θ(A∗

8) < Θ(E8).

Bounds on the Number of Lattice Points in a Ball

Finally, we proved the following theorem, which converts the results into a form
useful for our construction.

Theorem 31. Let X ⊆ Rd be a lattice with packing and covering radii α0 > 0
and β0 > 0, let u1, . . . ,ud be a basis of X and let δ > 0. Then, δX is a lattice
with packing radius δα0 and covering radius δβ0 and for all R > 0:

|δX ∩B(0, R)| ≤ λd (B (0, 1))√︂
det(X)

(︄
R

δ
+

d∑︂
i=1

∥ui∥
)︄d

.

Proof. The first half of the claim is trivial. As for the bound, copies of the
fundamental parallelotope given by δu1, . . . , δud, shifted by members of δX, fill
the whole space Rd. Boundaries of these polytopes can be redistributed so that
we get a decomposition of Rd into disjoint sets such that each contains exactly
one lattice point. One such set is called a fundamental region (see [23, Section
1.1.2]). Denote by L(x) the fundamental region containing x ∈ δX. We have

λd(L(x)) =
√︂

det(δX) =
√︂

det ((δM)(δM)⊤) = δd
√︂

det(X),

where M is the generator matrix of X with rows u⊤
1 , . . . ,u

⊤
d .

Denote ˜︂X = {x ∈ δX | L(x) ∩ B(0, R) ̸= ∅}. If x ∈ δX ∩ B(0, R), then
clearly x ∈ ˜︂X, so ˜︂X ⊇ X ∩B(0, R).

Also, for any x ∈ ˜︂X: L(x) ⊆ B(0, R + diam L(x)). Since L(x) corresponds
to a parallelotope except for boundaries, diam L(x) is the length of the longest
main diagonal, which is of the form

⃦⃦⃦∑︁d
i=1 ±δui

⃦⃦⃦
≤ δ

∑︁d
i=1 ∥ui∥.
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Then, ⋃︂
x∈ ˜︁X L(x) ⊆ B

(︄
0, R + δ

d∑︂
i=1

∥ui∥
)︄
,

which means

λd

(︄
B

(︄
0, R + δ

d∑︂
i=1

∥ui∥
)︄)︄

≥
∑︂
x∈ ˜︁X λ

d(L(x)) =
⃓⃓⃓˜︂X ⃓⃓⃓λd(L(0)).

Altogether,

|δX ∩B(0, R)| ≤
⃓⃓⃓˜︂X ⃓⃓⃓ ≤

λd
(︂
B
(︂
0, R + δ

∑︁d
i=1 ∥ui∥

)︂)︂
δd
√︂

det(X)
.

Remark. By the nature of the proof, the same bound holds for balls not centred
on 0.

The theorem also formally justifies why we are interested in the least dense
covering: Let X and Y be lattices with covering radii βX and βY , respectively,
such that Θ(X) < Θ(Y ). By definition, this means

λd(B(0, 1)) βd
X√

detX
< λd(B(0, 1)) βd

Y√
detY

⇔

λd (B (0, R))(︂
δ

βX

)︂d√︂
det(X)

<
λd (B (0, R))(︂
δ

βY

)︂d√︂
det(Y )

,

which is almost the bound from Theorem 31, except for the diameter of the
fundamental region, for δ equal to δ

βX
and δ

βY
.

Corollary 32. Let δ > 0 and define X = δ
√︃

12(d+1)
d(d+2) A∗

d. Then, the lattice X has

covering radius δ, packing radius δ
√︂

3
d+2 and for all R > 0:

|X ∩B(0, R)| ≤ λd(B(0, 1))
√
d+ 1

(︄√
d+ 1R√

12δ
+

√
d+ 1

)︄d

.

Proof. By Lemma 30, the covering radius of A∗
d is

√︃
d(d+2)
12(d+1) and det A∗

d = 1
d+1 .

By the proof of Theorem 31, we can replace the sum of basis norms in the bound
by the diameter of the fundamental parallelotope, which can be shown to be√︂

d(d+2)
d+1 <

√
d+ 1. Therefore,

|X ∩B(0, R)| ≤ λd(B(0, 1))
√
d+ 1

⎛⎝
⌜⃓⃓⎷ d(d+ 2)

12(d+ 1)
R

δ
+

√
d+ 1

⎞⎠d

≤ λd(B(0, 1))
√
d+ 1

⎛⎝√︄d+ 1
12

R

δ
+

√
d+ 1

⎞⎠d

.
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Corollary 33. Let δ > 0 and define X = δ 2√
d
Zd. Then, the lattice X has

covering radius δ, packing radius δ 1√
d

and for all R > 0:

|X ∩B(0, R)| ≤ λd(B(0, 1))
(︄√

dR

2δ +
√
d

)︄d

.

Proof. The covering radius of Zd is
√

d
2 and detZd = 1. The fundamental paral-

lelotope is the unit cube. This way we get

|X ∩B(0, R)| ≤ λd(B(0, 1))
(︄√

dR

2δ +
√
d

)︄d

.

Remark. In comparison, bounds given by Theorem 28 are

|X1 ∩B(0, R)| ≤
(︄√

d+ 2R√
3δ

+ 1
)︄d

for X1 = δ
√︃

12(d+1)
d(d+2) A∗

d and

|X2 ∩B(0, R)| ≤
(︄√

dR

δ
+ 1

)︄d

for X2 = δ 2√
d
Zd. In low dimensions these bounds may be more efficient than the

ones given by the corollaries.

Bound on the Number of Exponentiated Lattice Terms

Before finishing the construction, in the next lemma we proved a bound on the
number of exponential functions needed in our particular situation, which will
allow us to significantly decrease the final bound.

Definition 19. Let X be a lattice.. Two elements x1 ̸= x2 ∈ X are neighbouring,
if V (x1) and V (x2) share a facet.

Remark. Let a ∈ Sd−1 be an outer unit normal vector of a facet of V (x) and let
q be the distance from x to that facet. Then, x + 2qa is a neighbouring element
of x in X.

Lemma 34. Let X ⊆ Rd be a lattice and x ∈ X. Let a1, . . . ,am ∈ Sd−1 be outer
unit normal vectors of facets of V (x) ∈ Pd

m, let q1, . . . , qm > 0 be distances from
x to the corresponding facets and define for some c0, . . . , cm ∈ R:

g(y) = c0 +
m∑︂

i=1
cie

qi⟨ai,y⟩.

Then, for all n ∈ N: gn ∈ Gexp,h, where

h = (2n+ 1)d.
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Proof. For all i ≤ m, qiai are members of the lattice 1
2X that neighbour the point

0. Let u1, . . . ,ud be a basis of 1
2X. It follows that all lattice points neighbouring

0 have coordinates in {−1, 0, 1}d with respect to the basis.
Let φ : Zd → 1

2X be the coordinate function, φ(z1, . . . , zd) = ∑︁d
i=1 ziui.

Let Zd
k =

{︂
z ∈ Zd | ∥z∥∞ ≤ k

}︂
= {−k, . . . , k}d. By the previous, there exist

z1, . . . ,zm ∈ Zd
1 such that

qiai = φ(zi).

Additionally, set z0 = 0. Then,

g(y) =
m∑︂

i=0
cie

⟨φ(zi),y⟩.

Any additive term of gn is of the form

n∏︂
j=1

cij
e⟨φ(zij ),y⟩ =

⎛⎝ n∏︂
j=1

cij

⎞⎠ e
⟨︂∑︁n

j=1 φ(zij ),y

⟩︂
=
⎛⎝ n∏︂

j=1
cij

⎞⎠ e
⟨︂

φ

(︂∑︁n

j=1 zij

)︂
,y

⟩︂
,

where ij ∈ {0, . . . ,m} for each j. Since
⃦⃦⃦
zij

⃦⃦⃦
∞

≤ 1 for all j, we have
⃦⃦⃦⃦
⃦⃦ n∑︂

j=1
zij

⃦⃦⃦⃦
⃦⃦

∞

≤
n∑︂

j=1

⃦⃦⃦
zij

⃦⃦⃦
∞

≤ n,

so ∑︁n
j=1 zij

∈ Zd
n. That is, there exist z1, . . . ,zh ∈ Zd

n, zi ̸= zj, and c̃1, . . . c̃h ∈ R
such that

gn(y) =
h∑︂

i=1
c̃ie

⟨φ(zi),y⟩,

which implies an injective function the terms of gn to Zd
n. Therefore, the number

of terms in gn is at most
⃓⃓⃓
Zd

n

⃓⃓⃓
= (2n+ 1)d.

Remark. It can be easily verified that in the case of A∗
d this bound is attained.

2.2.2 Construction
In the proof of the following theorem, we took inspiration in the final proof in
[3]. Recall that the Voronoi cell of a set X at x ∈ X is the set of all points
of Rd closest to x among members of X (Definition 13). Also recall that Gexp,k

denotes the set of functions representable by a shallow neural network with the
exponential activation function, exp(t) = et, that has k units in the hidden layer
(Definition 5).

Definition 20. Let f : K → R and ε > 0. Denote by ω−1(f, ε) the inverse
modulus of continuity of f at ε, that is,

ω−1(f, ε) = sup {δ′ > 0 | ∀y1,y2 ∈ K : ∥y1 − y2∥ < δ′ ⇒ |f(y1) − f(y2)| ≤ ε} .
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Theorem 35. Let K ⊆ Rd be compact, let f : K → R be continuous and let˜︁ε ∈ (0, 1).
Define C = maxy∈K f(y) − miny∈K f(y), let n =

⌊︂
2C
ε̃

⌋︂
− 1 and define δ =

ω−1
(︂
f, ˜︁ε2)︂ as the inverse of the modulus of continuity of f at ˜︁ε2 .

Let X ⊆ Rd be a lattice with covering radius δ
3 such that the Voronoi cells of

X have m facets, V (x) ∈ Pd
m, and let q be the packing radius of X. Let

k = |{x ∈ X | V (x) ∩K ̸= ∅}| ,

Then, there exists g ∈ Gexp,h such that ∥f − g∥∞ < ˜︁ε, where

h = (6k)d

(︄
4kn˜︁ε

)︄5d log2 m
2δdiam(K)

3q2 +d

.

Proof. Take ˜︁f = f − minK f , so that the codomain of ˜︁f lies in [0, C]. Also, let
ε = ˜︁ε

2 , let ˜︂X = {x ∈ X | V (x) ∩K ̸= ∅} and for all x ∈ ˜︂X define

vx = 1
2

(︄
max

y∈V (x)
˜︁f(y) + min

y∈V (x)
˜︁f(y)

)︄
.

Then, V (x) ⊆ B
(︂
x, δ

3

)︂
, so for y1,y2 ∈ V (x): ∥y1 − y2∥ < δ, which means⃓⃓⃓ ˜︁f(y1) − ˜︁f(y2)

⃓⃓⃓
≤ ε. Therefore, for all y ∈ V (x):

⃓⃓⃓
vx − ˜︁f(y)

⃓⃓⃓
≤ ε

2 .
For all x ∈ X define gx as in Theorem 27 such that gx|K : K → [0, 1], for

y ∈ V (x) ∩K: gx(y) > 1 − ε
kn

and for y ∈ K \ (2 ∗x V (x)): gx(y) < ε
kn

.
For all i ∈ {1, . . . , n} define Xi = {x ∈ ˜︂X | vx ≥ iε}, let

pi = 1 −
∏︂

x∈Xi

(1 − gx)

and take ˜︁g = ε
n∑︂

i=1
pi.

Then, pi approximates the indicator function of ⋃︁x∈Xi
V (x) in the following sense:

pi|K : K → [0, 1]. Let x0 ∈ Xi and y ∈ V (x) ∩ K. Then, 1 − gx0(y) < ε
kn

and
for x ̸= x0 ∈ Xi: gx(y) ≤ 1, so

pi(y) > 1 − ε

kn
≥ 1 − ε

n
.

For y ∈ K \⋃︁x∈Xi
(2∗x V (x)), 1−gx(y) > 1− ε

kn
for all x ∈ Xi, so by Bernoulli’s

inequality

pi(y) < 1 −
(︃

1 − ε

kn

)︃|Xi|
≤ 1 − 1 + ε

n

|Xi|
k

≤ ε

n
.

If y1 ∈ (2 ∗x2 V (x2)) \ V (x2), then for all y2 ∈ V (x2):

∥y1 − y2∥ ≤ ∥y1 − x2∥ + ∥x2 − y2∥ ≤ 2
3δ + 1

3δ = δ.

Therefore, |f(y1) − vx2| ≤ ε
2 . However, if y1 ∈ V (x1), then also |f(y1) − vx1| ≤

ε
2 , which means that |vx1 − vx2| ≤ ε. As a consequence, for any i < j ≤ n, for all
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x1 /∈ Xi and x2 ∈ Xj we have vx1 < iε and vx2 ≥ (i + 1)ε, so by the previous
V (x1) ∩ (2 ∗x2 V (x2)) = ∅.

Altogether, for x ∈ ˜︂X and i ≤ n such that x ∈ Xi \ Xi+1 — that is, vx ∈
[iε, (i+ 1)ε) — there are i indices j such that pj is close to 1 on V (x), n− i− 1
js such that pj is close to 0 on V (x) and one index, i+ 1, such that pi+1 ∈ [0, 1]
on V (x).

Take y ∈ V (x) ∩K. On one hand, for j ≤ i+ 1: pj(y) ≤ 1 and for j > i+ 1:
pj(y) < ε

n
, so

˜︁g(y) = ε
i+1∑︂
j=1

pj(y) + ε
n∑︂

j=i+2
pj(y) < (i+ 1)ε+ ε(n− i− 1) ε

n

≤ (i+ 1)ε+ ε2

On the other hand, for j ≤ i: pj(y) > 1 − ε
n

and for j > i: pj(y) ≥ 0, so

˜︁g(y) = ε
i∑︂

j=1
pj(y) + ε

n∑︂
j=i+1

pj(y) > εi(1 − ε

n
)

≥ iε− ε2.

That is, ˜︁g(y) ∈ (iε− ε2, (i+ 1)ε+ ε2). Because vx ∈ [iε, (i + 1)ε), we get
|vx − ˜︁g(y)| < ε+ ε2. We also know that

⃓⃓⃓
vx − ˜︁f(y)

⃓⃓⃓
≤ ε

2 , hence (because ε < 1
2)

⃓⃓⃓ ˜︁f(y) − ˜︁g(y)
⃓⃓⃓
<
(︃

1 + ε+ 1
2

)︃
ε < 2ε = ˜︁ε.

Finally, take g = ˜︁g + miny∈K f(y). Then, ∥f(y) − g(y)∥∞ < ˜︁ε.
As for the number of terms, denote κ =

⌊︃√
m(2m)

diam(V (0))diam(K)
q2 − 1

⌋︃
(note

that the packing radius q of X equals the least distance from x to a facet of V (x)
for all x ∈ X) and ν =

⌈︂
5
2 log2

(︂
kn
ε

)︂⌉︂
. Let a1, . . . ,am denote outer normal unit

vectors of facets of V (0) and let q1, . . . , qm be distances from 0 to corresponding
facets of V (0). By the proof of Theorem 27, gx is for all x ∈ ˜︂X of the form(︄

1 −
(︄

m∑︂
i=1

cx
i e

s⟨qiai,y⟩
)︄ν)︄κν

.

for some constants cx
i and a common s. Then,

pj(y) = 1 −
∏︂

x∈Xj

⎛⎝1 −
(︄

1 −
(︄

m∑︂
i=1

cx
i e

s⟨qiai,y⟩
)︄ν)︄κν⎞⎠ .

In turn, 1
ε
˜︁g is a sub-expression of

1 −
∏︂

x∈ ˜︁X
⎛⎝1 −

(︄
1 −

(︄
m∑︂

i=1
cx

i e
s⟨qiai,y⟩

)︄ν)︄κν⎞⎠ ,
which contains at most as many exponential terms as

(︄
1 −

m∑︂
i=1

es⟨qiai,y⟩
)︄νκν| ˜︁X|

=
(︄

1 −
m∑︂

i=1
es⟨qiai,y⟩

)︄νκνk

. (2.7)
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By Lemma 34, the number of terms in (2.7) is at most
h = (2νκνk + 1)d

As in Theorem 27,

ν ≤ 5
2 log2

(︄
2kn
ε

)︄
and

κν ≤
(︄

2kn
ε

)︄5 log2 m
diam(V (0))diam(K)

q2

.

Since V (0) ⊆ B
(︂
0, δ

3

)︂
, diam(V (0)) ≤ 2δ

3 . Together,

h ≤

⎛⎜⎝5 log2

(︄
2kn
ε

)︄(︄
2kn
ε

)︄5 log2 m
2δdiam(K)

3q2

k + 1

⎞⎟⎠
d

≤ (6k)d

(︄
2kn
ε

)︄5d log2 m
2δdiam(K)

3q2 +d

.

Remark. If f : K → R is Lipschitz continuous with a constant L > 0, that is, if
for all x,y ∈ K

|f(x) − f(y)| ≤ L ∥x − y∥ ,
then for any ε > 0 the inverse modulus of continuity is bounded by ε

L
.

Putting together Theorem 35 with the permutohedral lattice and Lemma 30,
we get the following bound.
Corollary 36. Let d ≥ 2, let K ⊆ Rd be compact, let f : K → R be continuous
and let ε ∈ (0, 1).

Denote by δ = ω−1(f, ε
2) the inverse modulus of continuity of f at ε

2 . Then,
there exists g ∈ Gexp,h such that ∥f − g∥∞ < ε, where

h =
(︄

6
√
d+ 1diam(K) ∥f∥∞

δε2

)︄10(d+1)4 diam(K)
δ

.

Proof. Let X = δ
3

√︃
12(d+1)
d(d+2) A∗

d. By Corollary 32, X has covering radius δ
3 and

packing radius q = δ√
3(d+2)

. By Lemma 30, the number of facets of V (x) is

m = 2d+1 − 2. Let ˜︂X = {x ∈ X | V (x) ∩ K ̸= ∅}. There exists y0 ∈ Rd such
that K ⊆ B(y0, R) for R = 1

2diam K. Then, ˜︂X ⊆ B
(︂
y0, R + δ

3

)︂
and, denoting

k =
⃓⃓⃓˜︂X ⃓⃓⃓, again by Corollary 32

k ≤
⃓⃓⃓⃓
⃓X ∩B

(︄
y0, R + δ

3

)︄⃓⃓⃓⃓
⃓ ≤ λd(B(0, 1))

√
d+ 1

⎛⎝
√︂

3(d+ 1)(R + δ
3)

2δ +
√
d+ 1

⎞⎠d

= λd(B(0, 1))(d+ 1)
d+1

2

(︄√
3R
2δ +

√
3 + 6
6

)︄d

≤ 6(d+ 1)
d+1

2

(︃3R
2δ

)︃d
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Then, taking C = maxy∈K f(y) − miny∈K f(y) and n =
⌊︂

2C
ε

⌋︂
− 1 ≤ 4∥f∥∞

ε
,

Theorem 35 gives us

h ≤ (6k)d

(︄
2kn
ε

)︄5d log2(2d+1−2) 6(d+2)δdiam(K)
3δ2 +d

≤ (6k)d

(︄
2kn
ε

)︄10d(d+1)(d+2) diam(K)
δ

+d

≤
(︄

2kn
ε

)︄10(d+1)3 diam(K)
δ

≤
(︄

6
√
d+ 1diam(K) ∥f∥∞

δε2

)︄10(d+1)4 diam(K)
δ

.

We get a similar bound using Zd instead of A∗
d.

Corollary 37. Let d ≥ 2, let K ⊆ Rd be compact, let f : K → R be continuous
and let ε ∈ (0, 1).

Denote by δ = ω−1(f, ε
2) the inverse modulus of continuity of f at ε

2 . Then,
there exists g ∈ Gexp,h such that ∥f − g∥∞ < ε, where

h =
(︄

8
√
d

diam(K) ∥f∥∞
δε2

)︄60d3 log2(d) diam(K)
δ

.

Proof. Let X = δ 2
3
√

d
Zd. By Corollary 32, X has covering radius δ

3 and packing
radius q = δ

3
√

d
. The number of facets of V (x) is m = 2d. Again, let ˜︂X =

{x ∈ X | V (x) ∩ K ̸= ∅}. There exists y0 ∈ Rd such that K ⊆ B(y0, R) for
R = 1

2diam K. Then, ˜︂X ⊆ B
(︂
y0, R + δ

3

)︂
and, denoting k =

⃓⃓⃓˜︂X ⃓⃓⃓, by Corollary
33

k ≤
⃓⃓⃓⃓
⃓X ∩B

(︄
y0, R + δ

3

)︄⃓⃓⃓⃓
⃓ ≤ λd(B(0, 1))

⎛⎝3
√
d(R + δ

3)
2δ +

√
d

⎞⎠d

= λd(B(0, 1))d d
2

(︃3R
2δ + 3

2

)︃d

≤ 6d d
2

(︃2R
δ

)︃d

Then, taking C = maxy∈K f(y) − miny∈K f(y) and n =
⌊︂

2C
ε

⌋︂
− 1 ≤ 4∥f∥∞

ε
,
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Theorem 35 gives us

h ≤ (6k)d

(︄
2kn
ε

)︄5d log2(2d) 18dδdiam(K)
3δ2 +d

≤ (6k)d

(︄
2kn
ε

)︄30d2(log2(d)+1) diam(K)
δ

+d

≤
(︄

2kn
ε

)︄60d2 log2(d) diam(K)
δ

≤
(︄

8
√
d

diam(K) ∥f∥∞
δε2

)︄60d3 log2(d) diam(K)
δ

.

Transition to a Sigmoidal Activation

As the exponential function is not commonly used as an activation function in
neural networks, it would be desirable to transfer the bound to sigmoidal (or
ReLU) functions. However, the straightforward method along the lines of Subsec-
tion 1.1.1 leads to the following unsatisfactory bound. This is due to dependence
on outer weight size of the exponential neural network in addition to the number
of neurons. See the Conclusion for possible improvements.

Theorem 38. Let d ≥ 2, let K ⊆ Rd be compact, let f : K → R be continuous
and let ε ∈ (0, 1). Also let σ : R → R be a continuous function such that
limt→∞ σ(t) = 1, limt→−∞ σ(t) = 0 and σ(0) = 1.

Denote by δ = ω−1(f, ε
2) the inverse modulus of continuity of f at ε

2 . Then,
there exists g ∈ Gσ,l such that ∥f − g∥∞ < ε, where

l = (5 + τ)∥f∥∞
ε

h
1
d

h
1
d +2,

where h is the bound from Corollary 36.

Proof. By the proofs of Theorems 35 and 27, the function from Corollary 36 is
of the form

˜︁g(y) = ε
n∑︂

i=j

⎛⎝1 −
∏︂

x∈Xj

⎛⎝1 −
(︄

1 −
(︄

m∑︂
i=1

1
m
es(⟨qiai,y⟩−βx

i )
)︄ν)︄κν⎞⎠⎞⎠ ,

where s(⟨qiai,y⟩ −βx
i,j) ≤ 0 for all x, i and y ∈ K. Multiplying two exponentials

that range in (0, 1] produces another one such, so we can write

˜︁g(y) =
h∑︂

i=1
˜︁cie

⟨˜︁ai,y⟩−˜︁bi ,

where for all i: e⟨˜︁ai,·⟩−˜︁bi : K → (0, 1]. Denote Ai = {⟨˜︁ai,y⟩ | y ∈ K} = ⟨˜︁ai, K⟩ ⊆
R and gi : Ai → (0, 1], gi(t) = et−˜︁bi . That is,

˜︁g(y) =
h∑︂

i=1
˜︁cigi(⟨˜︁ai,y⟩).
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Then, for all i and δ > 0, ω(gi, δ) ≤ δ. Let ni =
⌈︃ |˜︁ci|h(4+τ)

ε

⌉︃
, where τ =

supt∈R |σ(t)|. By Theorem 3, there exists ˆ︁g ∈ Gσ,n such that

∥gi − ˆ︁gi∥∞ < ω
(︃
gi,

1
ni

)︃
(4 + τ) ≤ 1

ni

(4 + τ) ≤ ε

|˜︁ci|h(4 + τ)(4 + τ) = ε

|˜︁ci|h
.

Let ˆ︁g(y) = ∑︁h
i=1 ˜︁ciˆ︁gi(⟨˜︁ai,y⟩). Then,

∥˜︁g − ˆ︁g∥K
∞ ≤

h∑︂
i=1

|˜︁ci| ∥gi(⟨˜︁ai, ·⟩) − ˆ︁gi(⟨˜︁ai, ·⟩)∥K
∞

=
h∑︂

i=1
|˜︁ci| ∥gi − ˆ︁gi∥Ai

∞

<
h∑︂

i=1
|˜︁ci|

ε

|˜︁ci|h
= ε.

As a consequence of the multinomial theorem, for all i ≤ h:

|˜︁ci| ≤ εn

(︄
kνκν

m

)︄kνκν

.

Also, by the proof of Theorem 35, h = (2kνκν + 1)d. Together, ˆ︁g ∈ Gσ,l, where

l ≤
h∑︂

i=1
ni ≤

h∑︂
i=1

(︄
|˜︁ci|h(4 + τ)

ε
+ 1

)︄

= h+ h(4 + τ)
ε

h∑︂
i=1

|˜︁ci|

≤ h+ h2(4 + τ)
ε

εn

(︄
kνκν

m

)︄kνκν

≤ (5 + τ)∥f∥∞
ε

h
1
d

h
1
d +2.

2.3 Towards a Bound on Approximation Almost
Everywhere

An alternative approach to the construction presented in Subsection 2.2.2 would
be to create a function represented by a neural network that approximates the
target function everywhere except a set of small measure. This could lead not
only to a cheaper approximation with respect to the number of hidden units, but
also even general measurable functions could potentially be approximated in this
manner via Lusin’s Theorem (see e.g. [10, Chapter 2]).

In this section we lay the groundwork for further research in this direction.
However, some steps are beyond the scope of this thesis. The main idea is to
approximate the target function by a sum of functions constant on balls. The balls
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are then approximated by polytopes and the indicator functions of the polytopes
are approximated by a neural network as per 27.

Given a continuous function f : K → R and ε > 0, define a set of balls

Vf =
{︂
B(x, r) | x ∈ K & r ∈

(︂
0, ω−1(f, ε)

)︂}︂
,

where ω−1 is the inverse modulus of continuity defined in Definition 20. The set
Vf is a Vitali covering of K, meaning that for every y ∈ K and γ > 0 there
exists B ∈ Vf such that y ∈ B and λd(B) < γ. As such, we can apply the Vitali
Covering Theorem found in this form in [31, Lemma 3.9 and Corollary 3.10].

Theorem 39 (Vitali Covering Theorem). Let K ⊆ Rd be a set of finite measure
and let V be a Vitali covering of K by balls. Then for every δ > 0 there exists a
finite sequence B1, . . . , Bn ∈ V of disjoint balls such that

λd

(︄
K \

n⋃︂
i=1

Bi

)︄
< δ.

For a given δ > 0, let B(x1, r1), . . . , B(xn, rn) ∈ Vf be the sequence of balls
from the theorem. Then, the function ˆ︁f defined as

ˆ︁f =
n∑︂

i=1
f(xi)1B(xi,ri),

where 1B(xi,ri) is the indicator function, approximates f on ⋃︁n
i=1 Bi: If y ∈

B(xi, ri) for some i, then ∥y − xi∥ < ω−1(f, ε) and therefore ε > |f(xi) − f(y)| =⃓⃓⃓ ˆ︁f(y) − f(y)
⃓⃓⃓
.

2.3.1 Approximation of the Unit Ball by a Polytope
It was proved independently by Dudley [4] and Bronshteyn and Ivanov [5] that
any convex body can be approximated by a convex polytope having m vertices
with accuracy c

m
2

d−1
(in the Hausdorff metric). We will use the formulation by

Bronshteyn and Ivanov. However, because the proof in the original paper is very
brief, we adapted it and expounded it in the rest of the section for the special
case of approximation of the unit ball. This results in a simplified proof and also
allows us to specify the multiplicative constant. The first lemma of this section
corresponds to Lemma 1 from the paper.

Lemma 40. For all γ ∈ (0, 1) there exists m ∈ N, m ≤
√

2πd
(︃

8
γ
√

16−γ2

)︃d−1
and

y1, . . . ,ym ∈ Sd−1 such that Sd−1 ⊆ ⋃︁m
i=1 B(yi, γ). That is, there is a γ-covering

of the d-dimensional unit sphere having m points.

Proof. Let m be the largest number such that there exist points x1, . . . ,xm ∈
Sd−1 so that the balls B(xi,

γ
2 ) are pairwise disjoint (that is, x1, . . . ,xm form a

γ-packing). Such a maximal number exists because we can clearly find one such
point, but not arbitrarily many.

Then, the points form a γ-covering — Suppose by contradiction there is a
point y ∈ Sd−1 such that for all i ≤ m: ∥y − xi∥ > γ. This means the balls
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B
(︂
y, γ

2

)︂
and B

(︂
xi,

γ
2

)︂
are disjoint and {y,x1, . . . ,xm} is a γ-packing of size

m+ 1.
Next we construct a bound on the number m. Let S denote the surface area

(the (d−1)-dimensional Hausdorff measure in Rd). Since the sets Sd−1∩B
(︂
xi,

γ
2

)︂
are pairwise disjoint and their union is a subset of the sphere, the sum of their
surface areas is at most the surface of the sphere. All S

(︂
Sd−1 ∩B

(︂
xi,

γ
2

)︂)︂
being

equal, we get mS
(︂
Sd−1 ∩B

(︂
xi,

γ
2

)︂)︂
≤ S

(︂
Sd−1

)︂
, or

m ≤
S
(︂
Sd−1

)︂
S
(︂
Sd−1 ∩B

(︂
x1,

γ
2

)︂)︂ .
Let U be the orthogonal projection of Sd−1 ∩ B

(︂
x1,

γ
2

)︂
onto the tangent hyper-

plane to Sd−1 at x1. Then, S(U) ≤ S
(︂
Sd−1 ∩B

(︂
x1,

γ
2

)︂)︂
and therefore

m ≤
S
(︂
Sd−1

)︂
S(U) . (2.8)

U is a (d − 1)-dimensional ball of some radius r > 0. We will show that r =
γ
2

√︂
1 − γ2

16 .
Choose a point z ∈ Sd−1 ∩ ∂B

(︂
x1,

γ
2

)︂
on the intersection of the unit sphere

and the boundary of B
(︂
x1,

γ
2

)︂
and denote by α the angle between x1 and z —

The situation is illustrated in Figure 2.4. Since 0, x1 and z form an isosceles
triangle with sides γ

2 , 1 and 1, we can easily get that sin
(︂

α
2

)︂
= γ

4 .

α

0

x1

z

z̃ B
(︃
x1,

γ
2

)︃

Sd−1

α
2

Figure 2.4: The radius of the projection, ∥z̃ − x1∥, can be calculated by means
of elementary geometry.

α
2 is also the angle at x1 in the right triangle formed by x1, z and z̃, where

z̃ is the projection of z to the tangent hyperplane (the complement to π
2 of

this angle is equal to the pair of angles in the isosceles triangle 0, x1, z). So,
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∥z̃ − z∥ = sin
(︂

α
2

)︂
∥z − x1∥ = γ

8 . Finally, we apply the Pythagorean theorem to
the same triangle to get

∥z̃ − x1∥ =
√︂

∥z − x1∥2 − ∥z̃ − z∥2 =

⌜⃓⃓⎷(︃γ
2

)︃2
−
(︄
γ2

8

)︄2

= γ

2

√︄
1 − γ2

16 . (2.9)

Next,

S
(︂
Sd−1

)︂
= 2π d

2

Γ
(︂

d
2

)︂
and

S(U) = π
d−1

2

Γ
(︂

d+1
2

)︂rd−1,

which together with (2.8) and (2.9) means that

m ≤ 2
√
π

Γ
(︂

d+1
2

)︂
Γ
(︂

d
2

)︂
⎛⎝γ

2

√︄
1 − γ2

16

⎞⎠1−d

≤
√

2πd
(︄

8
γ

√
16 − γ2

)︄d−1

.

Definition 21. A point y ∈ Rd \B(0, 1) illuminates a point z ∈ Sd−1 if the line
segment [y, z) does not intersect Sd−1.

The following lemma corresponds to Lemma 3 of [5].

Lemma 41. Let δ > 0, x ∈ Sd−1 and let y = x + δx. The set of all points
illuminated by y is Sd−1 ∩B(x, r), where r =

√︂
2δ

1+δ
.

Proof. A point z ∈ Sd−1 is illuminated by y if and only if the tangent hyperplane
to Sd−1 at z intersects the line segment [x,y]. Let z be a point such that the
tangent hyperplane at z contains y. We will show that ∥x − z∥ =

√︂
2δ

1+δ
.

Denote by α the angle at 0 in the right triangle 0, z, y, as shown in Figure
2.5. Then,

cos(α) = ∥z∥
∥y∥

= 1
1 + δ

.

Considering the triangle 0, x, x+z
2 we get

1
2 ∥x − z∥ = sin

(︃
α

2

)︃
=
√︄

1 − cos(α)
2 =

√︄
δ

2(1 + δ) .

Therefore, ∥x − z∥ =
√︂

2δ
1+δ

.
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α

0

Sd−1

xx+z
2

δ

z
y

Figure 2.5: Calculation of the distance from x to z.

The left-to-right implication of the next lemma was inspired by Lemma 4 from
[5].

Lemma 42. Let y1, . . . ,ym ∈ Rd \ B(0, 1). Every point of Sd−1 is illuminated
by some yi if and only if Sd−1 is contained in the convex hull of {y1, . . . ,ym}.

Proof. Denote by N the convex hull of {y1, . . . ,ym} and first suppose there is a
point z ∈ Sd−1 \N . Since N is convex, there exists a hyperplane L separating z
from N . Among the points of Sd−1 that are on the same side of N as z, there
exists one, x, whose tangent hyperplane, L̃, is parallel to L. Because all the
points yi are on the same side of L̃ as Sd−1, the hyperplane does not intersect
any of the line segments [yi,

yi

∥yi∥ ] and so the point x is not illuminated by any of
them.

Conversely, suppose x ∈ Sd−1 is not illuminated by any of the vertices. Then,
the tangent hyperplane at x does not intersect any of the line segments [yi,

yi

∥yi∥ ]
and so the hyperplane does not intersect the convex hull N . Therefore, x /∈
N .

The following theorem is the main result of this subsection and the proof is
based on the main theorem of [5].

Theorem 43. Let δ ∈ (0, 1). There exists m ∈ N, m ≤
√

2πd
(︂

4(1+δ)√
7δ2+8δ

)︂d−1
, and

a polytope P having m vertices such that B(0, 1) ⊆ P ⊆ B(0, 1 + δ).

Proof. Let γ =
√︂

2δ
1+δ

. By Lemma 40 there exists a γ-covering of Sd−1 of m ≤
√

2πd
(︃

8
γ
√

16−γ2

)︃d−1
points, x1, . . . ,xm. For all i ≤ m let yi = xi + δxi. By

Lemma 41, all points in Sd−1∩⋃︁m
i=1 B(xi, γ) are illuminated by some yi. However,

since the points form a γ-covering, Sd−1 ∩ ⋃︁m
i=1 B(xi, γ) = Sd−1 and therefore by
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Lemma 42 Sd−1 is contained in the convex hull of {y1, . . . ,ym}. That in turn is
clearly contained in B(0, 1 + δ).

By definition of γ,

√
2πd

(︄
8

γ
√

16 − γ2

)︄d−1

=
√

2πd
⎛⎝ 8√︂

2δ
1+δ

√︂
16 − 2δ

1+δ

⎞⎠d−1

=
√

2πd
(︄

4(1 + δ)√
7δ2 + 8δ

)︄d−1

.

Remark. For δ ∈ (0, 1), 4(1+δ)√
7δ2+8δ

< 2.1√
δ

and therefore

m ≤
√

2πd
(︄

2.1√
δ

)︄d−1

.

Decreasing the range of allowed values for δ, we can lower the constant to any
value higher than

√
2.

While many results describe polytopes by the number of their vertices, for
our purposes the number of facets is more useful. In the proof of the following
claim we use the fact that those two characteristics are dual.

Corollary 44. For all r2 > r1 > 0, r2 < 2r1, there exists m ∈ N such that

m ≤
√

2πd
⎛⎝ 2.1√︂

r2−r1
r1

⎞⎠d−1

,

and that there is a polytope P ∈ Pd
m satisfying B(0, r1) ⊆ P ⊆ B(0, r2).

Proof. Take δ = r2−r1
r1

(then, δ ∈ (0, 1)) and apply Theorem 43 to get a polytope
P having m vertices satisfying B(0, 1) ⊆ P ⊆ B(0, 1 + δ). Then the polar of
P , P ◦ = {x ∈ Rd | ∀y ∈ P : ⟨x,y⟩ ≤ 1}, is a convex polytope having m
facets, P ◦ ∈ Pd

m, see e.g. [21, Lemma 2.4.5]. That Lemma also implies that
if B(0, 1) ⊆ P ⊆ B(0, 1 + δ), then B(0, 1

1+δ
) ⊆ P ◦ ⊆ B(0, 1). Multiplying by

r1(1 + δ) we get B(0, r1) ⊆ r1(1 + δ)P ◦ ⊆ B(0, r2).

Remark. By simple translation, Theorem 44 can be applied to any pair of con-
centric balls.

For completeness, in the following lemma we construct an upper bound on
approximation accuracy to complement Theorem 43. Even though the proof of
the lemma is original, we created it based on the concluding remark of Bronshteyn
and Ivanov in [5].

Lemma 45. Let P ∈ Pd
m and r > 0 such that B(0, r) ⊆ P ⊆ B(0, 1). Then,

r < 1 − 1
2m

2
d−1

.
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Proof. First, let P be a polytope having m vertices such that B(0, 1) ⊆ P ⊆
B(0, 1 + δ) for some δ > 0. Take a vertex y of P and denote x = y

∥y∥ . By
Lemma 41, the set of points illuminated by y is a subset of Sd−1 ∩B(x, r), where
r =

√︂
2δ

1+δ
. The surface area of Sd−1 ∩B(x, r) is less than the surface area of the

sphere ∂B(x, r). By Lemma 42, any point on Sd−1 is illuminated by some vertex.
Altogether,

S(Sd−1) < mS(∂B(x, r)),

which means

m >
S(Sd−1)

S(∂B(x, r)) = 1
rd−1 =

(︃1
2 + 1

2δ

)︃ d−1
2
,

or in other words,
δ >

1
2m

2
d−1 − 1

. (2.10)

Now let P ∈ P d
m and r > 0 such that B(0, r) ⊆ P ⊆ B(0, 1). Then, taking

the polar P ◦ = {x ∈ Rd | ∀y ∈ P : ⟨x,y⟩ ≤ 1} as in the proof of Corollary 44,
we have B(0, 1) ⊆ P ⊆ B(0, 1

r
). By (2.10), this implies that

1
r

− 1 > 1
2m

2
d−1 − 1

,

which yields
r < 1 − 1

2m
2

d−1
.

Similarly to Corollary 44, we can reformulate this in the following way:

Corollary 46. Let r2 > r1 > 0 and let P ∈ Pd
m be a polytope satisfying

B(0, r1) ⊆ P ⊆ B(0, r2). Then,

m >

⎛⎝ 1√︂
2 r2−r1

r2

⎞⎠d−1

.

Proof. Take P ′ = 1
r2
P . Then, B

(︂
0, r1

r2

)︂
⊆ P ⊆ B(0, 1) and by Lemma 45

r1

r2
< 1 − 1

2m
2

d−1
.

In other words,

m >

⎛⎝ 1√︂
2 r2−r1

r2

⎞⎠d−1

.
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K

(a)

K

(b)

K

(c)

Figure 2.6: (a) Based on the proof the Vitali Covering Theorem, we can construct
n disjoint balls (here n = 7) that cover the set K except for a set of small size. (b)
We approximate each ball by a pair of concentric polytopes and for each we use
Theorem 27 to construct a function small outside the outer polytope and close to
1 inside the inner polytope. (c) A weighted sum of these functions approximates
the target function on the union of the inner polytopes. This set, denoted Ak,
is shown in grey and we can increase its size either by increasing the number of
balls n, or by improving the approximation of the balls by polytopes, expressed
by k.

2.3.2 Sketch of a Bound on Almost-Everywhere Approx-
imation

At this point, we have almost everything we need to formulate a bound on the
number of neurons required to approximate a function everywhere except on a
small set. However, we would first need a bound on the number of balls required
in the Vitali Covering Theorem (Theorem 39).

Definition 22. Let K ⊆ Rd be compact and let R > 0 and δ > 0. Denote by
nK(R, δ) the least number of disjoint balls of radius at most R required to cover
K up to a set of measure less than δ,

nK(R, δ) = min
{︃
n ∈ N

⃓⃓⃓⃓
∃x1, . . . ,xn ∈ Rd ∃r1, . . . , rn ∈ (0, R] :

λd

(︄
K \

n⋃︂
i=1

B(xi, ri)
)︄
< δ & ∀i ̸= j ≤ n : B(xi, ri) ∩B(xj, rj) = ∅

}︃
.

While the Vitali Covering Theorem implies that nK(R, δ) is finite for all K,
R and δ, we have not found any bounds on the number in the literature and it
is beyond the scope of this thesis to create one. To be more precise, we need a
lower bound on the radius of the smallest ball, which can then be used to get a
bound on the number of balls. We proved the following theorem, into which such
a bound can be inserted. The construction is illustrated in Figure 2.6.

Theorem 47. Let K ⊆ Rd, let f : K → R be continuous, let ε > 0 and let δ > 0.
Let B(x1, r1), . . . , B(xn, rn) be disjoint balls such that ri ≤ 1

2ω
−1(f, ε) for all

i and that λd (K \ ⋃︁n
i=1 B(xi, ri)) < δ. Denote r = mini≤n ri.

Then, for every k ∈ N there exists Ak ⊆ K and gk ∈ Gexp,hk
, where

hk = n

⎛⎝4n
⃦⃦⃦ ˜︁f ⃦⃦⃦

∞
ε

⎞⎠14πd(5dk)d diam(K)
r

49



such that
λd (K \ Ak) < δ + 2

k
λd

(︄
n⋃︂

i=1
B(xi, ri)

)︄

and for all y ∈ Ak: |f(y) − gk(y)| < ε.

Proof. Assume k ≥ 2 — otherwise the claim is trivial — and take ˜︁f = f +
miny∈K f(y), so that miny∈K

˜︁f(y) = 0 and maxy∈K
˜︁f(y) =

⃦⃦⃦ ˜︁f ⃦⃦⃦
∞

≤ 2 ∥f∥∞.
Define R1 = d

√︂
1 − 2

k
and R2 = 1. Then, the balls B(0, R1) and B(0, R2)

satisfy
λd (B(0, R2) \B(0, R1)) ≤ 2

k
λd(B(0, R2)). (2.11)

Let R3 = d

√︂
1 − 1

k
. By Corollary 44, there exists a polytope P ∈ Pd

m such that
B(0, R1) ⊆ P ⊆ B(0, R3), where

m ≤
√

2πd
⎛⎝ 2.1√︂

R3−R1
R1

⎞⎠d−1

=
√

2πd
⎛⎝ 4.5

d

√︂
k−1
k−2 − 1

⎞⎠
d−1

2

.

Consequently, B(0, R1) ⊆ P ⊆ 1
R3
P ⊆ B(0, R2).

We assume that for all i ≤ n: K ∩ B(xi, ri) ̸= ∅ — otherwise, omitting
unnecessary balls will only decrease the final bound. For each i ≤ n define

Pi = riP + xi

and let Ak = K ∩ ⋃︁n
i=1 Pi. We have B(xi, R1ri) ⊆ Pi ⊆ 1

R3
∗xi

P ⊆ B(0, ri) and
by (2.11):

λd(K \ Ak) ≤ λd

(︄
K \

n⋃︂
i=1

B(xi, ri)
)︄

+ λd

(︄
n⋃︂

i=1
B(xi, ri) \ Ak

)︄

< δ +
n∑︂

i=1
λd (B(xi, ri) \ Pi)

≤ δ +
n∑︂

i=1
λd (B(xi, ri) \B(xi, R1ri))

≤ δ +
n∑︂

i=1

2
k
λd (B(xi, ri))

= δ + 2
k
λd

(︄
n⋃︂

i=1
B(xi, ri)

)︄
.

Define for each i ≤ n

vi = 1
2

(︄
max

y∈B(xi,ri)
˜︁f(y) + min

y∈B(xi,ri)
˜︁f(y)

)︄
.

Then, as ri ≤ 1
2ω

−1
(︂ ˜︁f, ε)︂, for all y1,y2 ∈ K ∩B(xi, ri): ∥y1 − y2∥ < ω−1

(︂ ˜︁f, ε)︂,
so
⃓⃓⃓ ˜︁f(y1) − ˜︁f(y2)

⃓⃓⃓
≤ ε. Therefore,

⃓⃓⃓ ˜︁f(y1) − vi

⃓⃓⃓
≤ ε

2 .
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By Theorem 27 for each i ≤ n there exists gi ∈ Gexp such that gi|K : K →
[0, 1], for y ∈ Pi ∩ K: gi(y) > 1 − ε

2n∥˜︁f∥∞

and for y ∈ K \
(︂

1
R3

∗xi
Pi

)︂
: gi(y) <

ε

2n∥˜︁f∥∞

. Define

˜︁g(y) =
n∑︂

i=1
vigi(y)

Then, for y ∈ K ∩ Pi:

˜︁g(y) > vi

⎛⎝1 − ε

2n
⃦⃦⃦ ˜︁f ⃦⃦⃦

∞

⎞⎠ ≥ vi − ε

2

and also, since y ∈ K \
(︂

1
R3

∗xj
Pj

)︂
for all j ̸= i,

˜︁g(y) < vi +
∑︂
j ̸=i

vj
ε

2n
⃦⃦⃦ ˜︁f ⃦⃦⃦

∞

≤ vi + n
ε

2n ≤ vi + ε

2 ,

which together means
⃓⃓⃓ ˜︁f(y) − ˜︁g(y)

⃓⃓⃓
≤
⃓⃓⃓ ˜︁f(y) − vi

⃓⃓⃓
+ |vi − ˜︁g(y)| < ε

2 + ε
2 = ε. So

defining g = ˜︁g − maxy∈K f(y), for all y ∈ Ak we have |f(y) − g(y)| < ε.
Lastly, we bound the number of neurons. The remark after Theorem 27 gives

us a bound for one gi of

(︃3e
m

)︃m
⎛⎝4n

⃦⃦⃦ ˜︁f ⃦⃦⃦
∞

ε

⎞⎠6m log2 m
diam(K)

( 1
R3

−1)qi

≤

⎛⎝4n
⃦⃦⃦ ˜︁f ⃦⃦⃦

∞
ε

⎞⎠7m2 diam(K)

( 1
R3

−1)qi

,

where qi is the smallest distance from xi to a facet of Pi. Define r = mini≤n ri.
Then, for all i: qi ≥ r. Using the Laurent series at ∞, it can be shown for all
t ≥ 0 and d ∈ N that

d
√
t

d
√
t+ 1 − d

√
t

= 1
d

√︂
1 + 1

t
− 1

∈
[︄
dt, dt+ d− 1

2

)︄
.

Therefore, we have

m2 ≤ 2πd
(︄

4.5 d
√
k − 2

d
√
k − 1 − d

√
k − 2

)︄d−1

≤ 2πd
(︄

4.5
(︄
d(k − 2) + d− 1

2

)︄)︄d−1

≤ 2πd (5dk)d−1 ,

and also (︃ 1
R3

− 1
)︃

=
d
√
k − d

√
k − 1

d
√
k − 1

≥ 1
d(k − 1) + d−1

2
≥ 1
dk
.

Together, g ∈ Gexp,h for

h ≤ n

⎛⎝4n
⃦⃦⃦ ˜︁f ⃦⃦⃦

∞
ε

⎞⎠14πd(5dk)d diam(K)
r

.
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Conclusion
Neural networks abound both in science and in everyday life and there has been
an unceasing, rapid increase in their use for many years now. In practical appli-
cations of neural networks, specific bounds on the necessary number of neurons
could prove invaluable for assessing resource requirements. Currently, such delib-
erations are mostly based on heuristics and trial-and-error methods, but a better
understanding of the theory could lead to a significant increase in efficiency. Ex-
isting bounds do not easily lend themselves to such uses. The aim of this thesis
was to bring theoretical results a step closer to practical applicability.

We provided a bound that applies to any function f continuous on a compact
set K. Given a desired accuracy ε, we have shown the minimal number of neurons
h required to approximate f satisfies

h ≤
(︄

6
√
d+ 1diam(K) ∥f∥∞

δε2

)︄10(d+1)4 diam(K)
δ

, (2.12)

or alternatively

h ≤
(︄

8
√
d

diam(K) ∥f∥∞
δε2

)︄60d3 log2(d) diam(K)
δ

,

where δ is the inverse modulus of continuity at ε
2 .

Previous bounds of this nature are only applicable to specific sets K such as
balls and cubes and they require the approximated function to have continuous
derivatives of order up to k and Lipschitz continuous derivatives of order k. Under
such conditions, the bound by Mhaskar [2] gives

h ≤ C
(︃1
ε

)︃ d
k+1

. (2.13)

Here, C is independent of ε, but it is allowed to depend on the dimension d, as
well as the size of K.

Focusing on continuous functions, our bound is strictly more general. The
bound (2.13) can however also be applied to some non-continuous functions.

Given a function f : B(0, 1) → R such that ∥f∥W 1,∞ ≤ 1, we have ∥f∥∞ ≤ 1
and f is Lipschitz continuous with a Lipschitz constant that is at most 1. Then,
δ ≥ ε and (2.12) reduces to

h ≤
(︃

6
√
d+ 12

ε

)︃20(d+1)4 1
ε

= ˜︁C (︃1
ε

)︃60(d+1)4 1
ε

.

In comparison, (2.13) gives

h ≤ C
(︃1
ε

)︃d

However, the results of this thesis are only the first step in this direction and
several ways of improving the bound could be considered. One is simply a more
careful numerical analysis of the number of neurons. While this would probably
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improve the multiplicative constant and the number in the exponent, some in-
gredients of the bound cannot be reduced without changing the method: In the
exponent, we can get no less than d2

√
d log d, as one d is given by exponentiation

and one comes from the number of lattice points inside a sphere, the
√
d results

from the fact the exponent contains 1 over the packing radius of the lattice —
For the lattices we have seen, this is at least

√
d

δ
. The log d corresponds to the

logarithm of the number of facets of one Voronoi cell, which is at least d+ 1.
As for our choice of lattice, we focused mainly on the number of lattice points

in a sphere. However, the number of facets is also an important factor, as is the
packing radius. From (2.12) and (2.3.2) we can see that the choice of lattice did
not have a great impact on the bound. We might be able to get a lattice that
performs better asymptotically in d, but for low dimensions A∗

d is the best lattice
known. Therefore, it would be probably better to focus on the simple cubic lattice
Zd, for which we can make some further optimizations that might help surpass
(2.12).

Another topic for further research is transfer of the bound to sigmoidal ac-
tivations. The direct approach from Theorem 38 could probably be improved
to some extent, but we would like to consider a different approach. Notice that
nowhere in the construction itself we use the fact that we are working with ex-
ponential functions — The proofs would work only with slight modifications for
any transition function, even though the result would not correspond to a neural
network, but to a linear combination of products of the function. If we started
with linear functions, the result would then be a polynomial and we could use
previous results on approximation of polynomials by sigmoidal networks.

Alternatively, the important property of the exponential functions we start
with in the proof is that each is large on some half-space and small on almost the
complement. A product of two such exponentials is then a function large on some
other half-space whose normal vector is sum of the original two. If these properties
in the final function are sufficient to guarantee approximation, we might be able
to replace each exponential in the result by one sigmoidal function that is large
on the corresponding half-space.

Also, a clear bottleneck of the method is the approximation of one polytope,
from which comes the diam(K)

δ
in the exponent. It might be worthwhile to consider

improvements of this proof, since the current bound for one polytope might be
far larger than necessary.

Many other possible alternatives could be investigated, especially when it
comes to the method of approximating the slice sets of the function. For example
for concave functions, these level sets are convex, so each could be approximated
by a single polytope.

Eventually, since our bound is constructive and the proofs are more or less ele-
mentary, the method could in theory be used to construct the actual approximat-
ing network. Should the bound be improved, this might also be worth exploring
further.
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