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Abstract
We study returns in the universe of leveraged value small-capitalization stocks,
a universe with historically significant exposure to common risk factors. We
separate future winners and losers within this universe of risky stocks by adopt-
ing machine-learning-based mispricing strategy. The strategy considers 34
stock-level characteristics to predict 1-month-ahead returns and construct a
long-short portfolio accordingly. The portfolio yields abnormal risk-adjusted
returns of 0.42% per month out-of-sample, uncovering statistically significant
mispricing. The machine-learning algorithm is trained on leveraged value small-
capitalization stocks, so it captures universe-specific nonlinearities and variable
interactions. The nonlinear effects and predictive power of individual variables
are extracted and presented as well. We found no evidence of a relationship
between the magnitude of the mispricing and credit cycles, or market volatility.

JEL Classification G11, G12, G14,
Keywords Anomalies, Predictability of returns, Asset pric-

ing tests, Leveraged equities, Value stocks
Title Mispricing in leveraged value small-

capitalization stocks

Abstrakt
Zkoumáme výnosy hodnotových akcií s vysokým zadlužením a nízkou tržní
kapitalizací, tj. akcií s historicky značnou expozicí vůči běžným rizikovým
faktorům. Za použití strojového učení vybíráme z množiny těchto rizikových
akcií ty, jež by se měly v budoucnu nadměrně zhodnotit. V rámci této strate-
gie zohledňujeme 34 akciových charakteristik a predikujeme budoucí výnosy
jednotlivých akcií, na jejichž základě pak každý měsíc sestavujeme long-short
portfolio. Nadměrná výnosnost strategie 0.42% za měsíc i přes úpravu o riziko
na testovacím vzorku dat ukazuje, že chybné ocenění je statisticky signifikantní.
Použitý algoritmus strojového učení se učil na množině hodnotových akciích s
vysokým dluhem a nízkou tržní kapitalizací, a zachycuje vztahy specifické pro
tuto množinu, včetně vztahů nelineárních a interakcí jednotlivých proměnných.
Tyto nelineární vztahy a prediktivní schopnost jednotlivých proměnných jsou
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extrahovány a následně i prezentovány. Mezi mírou chybného ocenění a kred-
itními cykly či tržní volatilitou jsme nenašli žádnou spojitost.

Klasifikace JEL G11, G12, G14,
Klíčová slova Anomálie, Prediktabilita výnosů,

Testy oceňovacích modelů, Zadlužené
společnosti, Hodnotové akcie

Název práce Chybné ocenění akcií s nízkou tržní kapi-
talizací a vysokým dluhem
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Motivation
Asset prices should equal the sum of discounted future cash flows. Discounted, so
when valuing an asset, the pitfall is not only to correctly predict the future cash flows
but to determine the exact discount rate such that investors level of risk aversion
and opportunity cost are really reflected. Capital asset pricing model (CAPM) by
Sharpe (1964) and Lintner (1965) had served for this purpose for decades. However
nowadays, there is substantial amount of evidence on various factors that capture
more variance than the single variable - market proxy of CAPM. Examples of the
most prominent factors affecting returns on top of the CAPM framework include size
effect noted by Banz (1981), leverage effect identified by Bhandari (1988) or value ef-
fect uncovered by Chan, Hamao & Lakonishok (1991) and many other anomalies. As
a result of the ability of those factors to further explain returns, multi-factor models
taking the implied premiums into account are preferred in asset pricing literature.
The mostly referred to are three-factor or five-factor models by Fama & French (1992)
and (2015) respectively. In spite of the general acceptation of these models, plenty
of anomalies is still left behind and non-zero α-returns can be observed even in these
models if the right factors and strategies are applied, e.g. reflecting intangibles along
with fundamental analysis yields positive α even in five-factor model with augmented
momentum factor (Eisfeldt et al., 2020). On the other hand, pool of academic lit-
erature focused on detecting anomalies and successful trading strategies has became
very saturated and more importantly the historically discovered patterns are getting
reflected in the asset prices (Mclean Pontiff, 2016). Example of such factor whose
premium vanished over the course of last decade is the "value effect".

I would like to take a closer look at companies exposed to some of the historically
most impactful factors mentioned above - value, size and leverage, and investigate
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whether 1) such universe still "enjoys" the premiums it used to and more importantly
2) there are at least some "unexplored betas" within the universe, e.g. if we are able
to consistently pick firms with excess risk-adjusted returns based on various factors,
there must be a variation not captured by standard asset pricing models such as
five-factor model etc. The latter is the focal point of this thesis as there is a lot of
space for potential mispricing by investors in this universe.

Since Piotroski (2000) argues that success of the value strategy, portfolio with high
book-to-market ratio in this case, originates from the high return of only a few com-
panies while majority does not even produce positive risk-adjusted returns, some of
the value companies are probably heavily mispriced. In case of leveraged firms, it
is their ability to repay their debt that separates the winners from losers (Chingono
& Rasmussen, 2016) and this ability might be subject to incorrect assessment by
investors, especially with respect to different credit cycles. In addition, firms with
smaller market capitalization are subject to scarce coverage by sell-side analysts in-
creasing the probability of mispricing by retail investors by incorrect prediction of
future cash flows.

Leveraged firms with favourable valuation multiples and small market capitalization
appear to create the pool of stocks 1) whose discount rate truly reflecting investors
preferences might by subject to yet undocumented factors and 2) where incorrect
evaluation of future cash flows by investors might occur. Therefore, I would like to
construct stock ranking system within such pool of stocks with emphasis on ability
to repay debt and fundamental analysis to show if this is the right environment to
implement mispricing strategy.

Hypotheses

Hypothesis #1: It is possible to predict firm’s ability to pay down debt in the
universe of leveraged small-capitalization firms.

Hypothesis #2: Investing strategy based on the constructed stocks ranking
mechanism yields excess risk-adjusted returns.

Hypothesis #3: Mispricing by investors regarding the leveraged small-cap high
value firms differs with credit cycles. E.g. the constructed stocks picking
system performs better during periods of high credit spread.

Methodology
Yearly or quarterly international cross-section data from the most recent decades



from selected markets will be used for the purpose of this study. Both company level
and macroeconomic data will be extracted from Thomson Reuters Datastream.

First step in the analysis is to select the criteria for the universe of leveraged value
small-caps. Even though small-capitalization firms are usually defined as those with
total equity value between USD 300 milion and USD 2 billion, the definition in this
study might slightly differ such that the resulting number of firms in the constructed
universe is appropriate for the analysis. Subsequently, the companies will be ordered
based on a debt-related ratio and a valuation multiple in order to determine those
leveraged and containing value, most likely based on a percentile boundary. As a
result of the intersection of the small, value and leveraged sets of companies, universe
of stocks for further analysis will be created.

Since debt reduction is the most important factor in the process detecting mis-
priced companies within the leveraged value small-caps (Chingono & Rasmussen,
2015), separate model for prediction of the probability of debt repayment is to be
constructed. Panel data linear regression and machine-learning techniques will be
applied to company financial data and forward-looking estimates of analysts. The
following equation will be estimated:

yi,t = f(xi,t−1,1, xi,t−1,2, .., xi,t−1,K) + ϵi,t (1)

where y is dummy variable equal to 1 if the company i reduces its long-term debt
in period t compared to previous period and 0 otherwise. xk denotes individual ex-
planatory lagged variables, e.g. gross margin, growth rate of sales, asset turnover etc.

As the intended stocks ranking mechanism aims to predict and not to explain, again
machine-learning techniques such as random forests and gradient boosting machines
will be applied to predict returns in the subsequent period. It is defined as follows:

ri,t =g(yi,t, ct−1, x′
i,t−1,1, x′

i,t−1,2, .., x′
i,t−1,K) + ui,t (2)

where ri,t is the return on stock i during period t, ct−1 is a variable capturing the
efficiency of credit market in period t-1, yi,t is the estimated probability from equa-
tion (1) and x′

k denotes individual explanatory lagged variables.

Such and estimation procedure will be applied on T periods representing the in-
sample part of dataset.



In the final stage, portfolio consisting of certain amount of stocks with the high-
est predicted returns based on equation (2) will be constructed and rebalanced each
year in the out-of-sample part of dataset.

Performance testing of the constructed ranking system will be based on CAPM and
multifactor models by Fama & French (1992,2005) using the entire out-of-sample
period.

Expected Contribution
Historically we have been flooded with factors explaining the cross-sectional variation
in returns. However, in many cases the findings can be attributed to specific datasets
or the implied premiums just vanished through the following years as investors risk
aversion and opportunity cost are functions and not constants. For example, the
near-zero interest rate environment we have observed in recent years might have
forced them to explore other investing options. Therefore, I would like to contribute
to the existing asset pricing research with machine-learning stocks ranking system
based on prediction of discount rates in such universe of stocks that have historically
been positioned to yield premiums but now only rarely are found. Especially, the
introduction of credit cycle explanatory variable in the prediction might unveil some
variation in returns of value and leveraged equities. Moreover, I would like to reflect
such relationships that might be only universe specific and identify companies that
are most suitable for mispricing strategy as investors tend to incorrectly predict their
future performance.

Analogous study focused on similar universe of stocks is Chingono & Rasmussen
(2015, 2016). However, substantial differences and extensions should be noted. Es-
pecially, our machine-learning approach for construction of the stocks ranking system
is expected to perform better out-of-sample due to the predictive power of this tech-
nique. Moreover, this study extends the geographical coverage as we are going to use
international data so differences in predictability and repayment risks between indi-
vidual markets could be observed. There will be also update and extension in terms
of data recency so more up to date relationships could be taken into account during
estimation and out-of-sample testing. Last but not least introduction of credit cycles
in the models is expected offer better insight to investors risk aversion variability in
time resulting in more accurate discount rates.

Outline
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1 Introduction

Asset prices should equal sum of discounted expected future cash flows. Deter-
mination of the rate used for the discounting has become the leading discipline
in the asset pricing literature since the introduction of Capital asset pricing
model (CAPM) by Sharpe (1964) and Lintner (1965). The assumption that
risk in the cross-section is entirely captured by beta on market risk premium
has been successfully challenged ever since, leading to emergence of factor
models that contain additional risk proxies such as value, size, or profitabil-
ity. Still, there has been a flooding of new anomalies1 that yielded abnormal
returns even after accounting for the generally recognized risk factors, exam-
ples of such anomalies include intangibles, momentum effect, past losers effect,
investment policy. Hou et al. (2020) counts up to 450 anomalies identified
by prior literature, however, majority of them cannot be replicated anymore.
This suggests that nowadays, the market is more efficient and more of the
publicly available information is getting incorporated into stock prices. Post-
publication decline in anomaly alpha returns further supports the assertion
that investors quickly trade upon new information (Mclean & Pontiff, 2016).
This suggests that nowadays, to uncover mispricing, traditional approach of
sorting stocks on a single anomaly is not enough anymore. Jacobs & Müller
(2018) points out to dimensionality of stock returns and show that aggregation
of more than 200 anomalies into a single predictive signal is superior to the
traditional one-dimensional approach. In addition to that, recent anomalies
research that combined the anomalies with machine-learning techniques fur-
ther outperformed out-of-sample substantially. (see Gu et al., 2020; Tobek &
Hronec, 2021). Vast majority of the literature is based on as wide spectrum of
stocks as possible, leaving potential subcategory-specific relationships of stocks
undiscovered. For example, deleveraging is the main driver of abnormal risk-

1In this thesis, term factor primarily denotes a risk-related determinant of expected
return while anomaly refers to a rather behavioral-based effect. Though, in many cases, the
terms factor, anomaly, signal, and stock characteristic are used interchangeably.

2



adjusted returns among leveraged value small-capitalization stocks (Rasmussen
& Chingono, 2015).

We build upon the evidence that stock returns are dimensional (Jacobs &
Müller, 2018), and that machine-learning provides additional predictive power
compared to OLS-based regression methodology (Gu et al., 2020). Using gradi-
ent boosting machines algorithm, we consider 34 lagged stock-level character-
istics to uncover mispricing among leveraged value small-capitalization stocks.
The critical element of this thesis is the focus on the universe of leveraged
value small-capitalization stocks, which is underserved by prior research on
the cross-section of expected returns, especially when combined with machine-
learning-based methods. Lower reporting quality, lack of sell-side research,
leverage, and higher probability of financial distress make this risky universe a
good candidate for a naive assessment by investors. Piotroski (2000) arguing
that only a few positive outliers drive the success of the value strategy is an
another call for further separation of the future winners and losers among such
stocks. Application of the machine-learning-based methodology allows us to
reflect more complex and conditional relationships that might be present in
this particular universe due to its exposure to the prominent risk factors and
mispricing potential. In addition to reflecting such relationships in the pre-
diction task, we extract these often non-linear effects for the most important
predictors and present them to the reader. We also further expand upon the
mispricing strategy by further investigating whether the magnitude of the mis-
pricing is influenced by prevailing credit conditions or market volatility. The
entire analysis is based on relatively recent data (i.e. since 2000) to reflect
primarily contemporary behaviour of investors.

Our strategy yields out-of-sample abnormal return of about 0.42% (0.34 %)
per month after adjusting for three (five) risk factors of Fama & French, i.e.
we uncover mispricing in the universe of leveraged value small-capitalization
stocks. Majority of the abnormal returns of the mispricing-based long-short
portfolio are driven by the short leg, so the algorithm is more successful in
detecting the overvalued stocks. We also find that behavioral variables (such
as return in the past six months) are among those with greatest predictive
power, and that the effects of individual variables are usually nonlinear. We
find no evidence of a relationship between the magnitude of the mispricing and
credit cycles, or market volatility. We also predicted the ability to deleverage



in the next twelve months with out-of-sample accuracy of 62%. As opposed to
Rasmussen & Chingono (2015), the future deleveraging did not help much to
explain future stock returns.

The remainder of this thesis is organized as follows. Section 2 reviews key
asset pricing concepts and discusses the predictability of stock returns in the
cross-section. Dataset description and construction of the universe are pro-
vided in Section 3. Section 4 summarizes the research design and defines the
methods employed within individual steps of the analysis. Section 5 presents
empirical findings and Section 6 concludes.



2 Asset Pricing Theory and Anoma-
lies Review

2.1 Fundamental Asset Pricing Concepts
Markowitz (1952) formed the crucial theory of portfolio selection that serves as
a building block for asset pricing concepts that have been widely accepted and
used for decades, especially CAPM introduced by Sharpe (1964) and Lintner
(1965). Markowitz analytically demonstrated in his seminal work that port-
folio diversification can reduce risk without any harm on expected return as
a result of imperfect correlations between assets. It shows that expected re-
turns in a portfolio are combined linearly while risk of the portfolio is not. It
is nonlinear since the asset returns do not move perfectly along each other.
Markowitz also introduced graphical illustration of this theory called "efficient
frontier", depicting all the risky portfolios yielding maximum expected return
for a given level risk or vice versa.

Under assumption of buying and borrowing of risky assets as well as lending
and borrowing at risk-free rate, there is only one optimal portfolio consisting of
solely risky assets for risk-averse rational investors - the market portfolio (To-
bin, 1958). This efficient portfolio is the one with the most favourable reward-
risk relationship, usually referred to as Sharpe ratio1 (Sharpe, 1966). Tobin
separated the problem of finding the optimal risky portfolio in two phases: 1)
finding the optimal portfolio of solely risky securities lying on efficient frontier
as developed by Markowitz (1952) and 2) determining the optimal combina-
tion of the risky portfolio constructed in step 1) and risk-free asset. In practice
positions in risk-free asset are taken either by buying government bonds (long

1Sharpe ratio = E(ri)−rf

σi

where E(ri) is the expected return on asset i, rf is risk-free rate and σi is standard deviation
of asset i.

5



case) or by buying the optimal risky portfolio on margin (short case) and they
serve to decrease or increase risk, respectively. As a result, rational investors
are supposed to hold a combination of market portfolio (as it is the one exposed
only to systematic risk due to diversification) and a position in risk-free asset
(to achieve optimal risk profile determined by degree of risk-aversion of individ-
ual investor). Expected returns and standard deviations of all these potential
combinations are captured by Capital Market Line (CML).

Building on top of the conclusions above regarding portfolio selection on the
level of individual investor, Sharpe (1964) derived capital market equilibrium.
Under the assumption of rationality of investors and homogeneity of their ex-
pectations, all investors will invest in one particular combination of risky secu-
rities. In response to the high demand for such assets and no demand for alter-
native investments, their prices will rise and fall, respectively. Such change in
asset prices will naturally affect expected returns leading to subsequent change
in the composition of optimal risky portfolio. This interplay will continue until
all assets are cleared - purchased by someone. This occurs when all asset are
priced such that they are included in at least one2 efficient portfolio. Then,
equilibrium of capital market is reached and no efficient risky portfolio will be
rebalanced any further. Therefore, there is a linear relationship between risk
and expected return for efficient risky portfolios and these will be composed of
only risky assets or risky assets combined with risk-free asset. In either case,
all these portfolios will be perfectly positively correlated (Sharpe, 1964).

After determining the process of convergence to equilibrium asset prices, Sharpe
(1964) moved on deriving individual asset returns relative to an efficient port-
folio (the given individual asset must be part of). As the efficient portfolios
are fully diversified and exposed only to general risk of the entire economy, the
relationship between returns of efficient portfolios and returns of an individual
asset represents its responsiveness to changes in economic activity. The other
type of risk of individual assets, firm-specific risk, can be always eliminated by
diversification. For that reason, it is irrelevant to take this type of risk into
account when determining expected returns of an asset. Moreover, the rela-
tionship between the responsiveness to economic activity proxied by efficient

2Sharpe (1964) argued that there can be multiple efficient risky portfolios as long as they
are perfectly positively correlated, as opposed to Tobin’s conclusion of only single efficient
risky portfolio.



portfolio rate of return and an individual asset rate of return will be linear in
equilibrium as any non-linearity would be exploited by investors (Sharpe, 1964).

Summarizing the contributions to CAPM made by several authors, the model
is generally defined in literature as follows:

E(ri) = rf + βi(rm − rf ) (2.1)

where ri is the rate of return on asset i, rf is the risk-free rate, rm is the rate
of return of efficient risky portfolio, the market portfolio, and βi represents
responsiveness of returns on asset i to overall economic activity represented by
excess returns on market portfolio and it is defined as

βi = Cov(ri, rm − rf )
V ar(rm − rf ) (2.2)

There are several commonly used assumptions for equation (2.1) to hold. First,
investors are rational, reluctant to risk and select investments maximizing their
expected returns for their preferred level of risk. Second, investors’ expec-
tations regarding asset returns, standard deviations and mutual correlations
are homogeneous. Third, capital markets exhibit certain characteristics such
as no transaction costs, no taxes, no short-selling restrictions and existence
of risk-free assets. Moreover, the capital markets are competitive and non-
discriminating, i.e. all the characteristics apply to every market participant
and every investor is a price taker. Fourth, any investor may invest to or initi-
ate a short position of any size, even fractional position, of any asset, including
the risk-free asset.

Given the assumption requirements for formula (2.1), its applicability in real
world seems questionable. It may be the "no taxes" assumption that raises
the doubts of investors, "no transaction costs" or any other. For example, tax-
loss harvesting or holding successful positions for an extended period to avoid
capital gain tax explain why investor behaviour is affected by taxes (Constan-
tinides, 1983). Similarly, other real-world examples violating the other CAPM

assumptions could be found. Therefore, there is considerable amount of lit-
erature focused on testing of CAPM at various markets or under relaxation of
certain assumptions.



One of the early tests of the model was conducted by Jensen et al. (1972)
on a sample of all stocks listed on NYSE between 1926 and 1966 when they
applied both cross-sectional and time-series regressions. In their time-series
regression they estimated the following equation:

Rj,t = α + βjRmt + ϵj,t (2.3)

Since they worked with excess returns instead of total returns, significantly non-
zero intercept, α, would imply rejection of CAPM. To cope with the issue of
cross-sectionally dependent errors ϵj,t in case of individual securities data, they
aggregated securities into portfolios ranked by their respective βs estimated
from period preceding the main regression period. So j in equation (2.3) de-
notes portfolios constructed based on past relative correlation of the included
securities and the market. Even though their results were rather mixed, neg-
ative relationship between estimated α and portfolio βs was apparent. They
showed that more risky securities yielded less than implied by theory and vice
versa. In case of cross-sectional regression using the same grouping procedure,
they concluded that relation between average excess returns and β is linear,
however, the results were inconsistent with theory due to variation through
different estimation periods. Based on the above mentioned findings, Jensen
et al. (1972) claimed that CAPM theory is not substantiated by real data.

Another early test, test by Fama & MacBeth (1973) aimed on testing the
implications of CAPM. Namely, linearity between risk and return, β being the
ultimate measure of risk capturing all systematic risk and positivity of the
trade-off between risk and return. The following equation on β-ranked portfo-
lios was estimated:

Rpt = γ̂0t + γ̂1tβ̂p,t−1 + γ̂2tβ̂
2
p,t−1 + γ̂3ts̄p,t−1(ϵ̂i) + η̂p,t (2.4)

where γ̂2t = 0 hypothesized linearity of risk-return relation, γ̂3,t = 0 hypoth-
esized uniqueness of β as a measure of market risk and γ̂1t > 0 hypothesized
that investors are rewarded for bearing additional systematic risk. Their re-
sults came in favor of classical market model and its implications, concluding
that investors hold efficient asset combinations in terms of risk-return trade-off.

In spite of very restrictive assumptions that are not deemed realistic and mixed



performance in terms of empirical testing, CAPM is due to its simplicity even
nowadays still widely used in practice, especially in discount rate determination
for the purposes of valuation and capital budgeting.

2.2 Multi-factor Models
Despite its strong theoretical background built on Markowitz’s portfolio choice
theory, CAPM’s ability to explain variation in cross-section of rate of returns was
in question since its formulation by Sharpe (1964), Lintner (1965). Subsequent
research centered especially around the fact that β was supposed to represent
all the risk associated with owning a stock. In the wake of this research, other
factors capturing the cross-sectional variation of stock returns along with β

started to emerge.

Among the first factors capturing cross-sectional variation of returns on top
of the single-variable β specification was size, usually defined as firm’s mar-
ket capitalization, documented by Banz (1981), Keim (1983), Fama & French
(1992; 1993) and many others. The rationale behind the size premium pro-
vided by Fama & French (1992) and consistent with Chan & Chen (1991) is
that small companies are more prone to financial distress and investors demand
to be compensated for such an extra risk. This view regarding the source of
the size premium is coherent with the fact that size effect is strongest in case
of firms with high probability of default (Vassalou & Xing, 2004). Another
potential explanation is found in a greater exposure to information asymmetry
as reporting of smaller firms is less thorough (Banz, 1981) or lower liquidity
of small-capitalization stocks (Amihud & Mendelson, 1986). There is plenty of
research discrediting the idea of size serving as a risk proxy, e.g. size effect be-
ing caused primarily by outliers (Knez & Ready, 1997) or increased magnitude
of the size effect in January (Keim, 1983) etc.

Value is another factor well documented to explain cross-sectional variation
in returns. However, the source of this relation remains a subject of heated
debate. Proxied by various variables in prior literature, the most prominent
one with consistent and robust effect is book-to-market ratio (B/M, defined as
book value of equity divided by market capitalization) found in several studies
including Chan et al. (1991), Rosenberg et al. (1985), Fama & French (1992;
1993), Lakonishok et al. (1994) etc. The ability of B/M to further explain re-



turns is robust to inclusion of other value factors in a regression, i.e. B/M effect
is not consumed by the effects of the other value-related factors. The list of
other variables "mimicking" value effect and explaining variation in cross-section
of returns on top of CAPM extends primarily to cashflow-to-price ratio (Chan
et al., 1991; Davis, 1994) and earnings-to-price ratio (E/P, net earnings divided
by market capitalization) (Basu, 1983; Jaffe et al., 1989; Cook & Rozeff, 1984;
Reinganum, 1981; Davis, 1994). Earnings-to-price ratio, however, yields diverse
results across various studies. Whereas Basu (1983) claims that size effect dis-
appears when added as independent variable along the E/P, Reinganum (1981)
maintains the opposite stance that it is the E/P effect that is not robust to size.

Disagreement whether the relationships of returns and certain factors are present
due to ability of such factors to proxy for risk or whether these effects are
rather behavioural still persists. Fama & French (1992) argue that risk asso-
ciated with equities has multiple dimensions and that they could be captured
by market capitalization and B/M. Value, proxied by B/M, reflects investors’
expectations of future performance and probability of potential distress trans-
lating into higher rate of return required by equity investors as a compensation
for the additional risk, i.e. higher B/M implies higher expected returns as
those companies have weak future outlook and are exposed to increased risk
(Fama & French, 1992). Alternatively, Lakonishok et al. (1994) shows that
value effect is caused by naive investors extrapolating weak past growth too
far into the future. They conclude that value investing does not come with an
additional risk to be compensated for as the value stocks do not exhibit any
significantly higher standard deviations or βs compared to growth stocks. The
naive investors are, on the other hand, too optimistic about future prospects
of past well-performers making the growth stocks overpriced relatively to value
stocks. This explanation of Lakonishok et al. (1994) is consistent with over-
reaction rationale suggested by Bondt & Thaler (1985). In their study, past
losers outperformed past winners by 25% during a 3-year period following port-
folio formation despite carrying less volatility. Haugen (1995) also sides with
behavioural explanation and points out to overreaction of investors to new in-
formation as they incorrectly believe that current extraordinary performance
will persist too long.

Despite contradicting claims, whether value and size effects are risk-based or
behavioural, there is enough evidence of their ability to capture the cross-



sectional variation of returns.

Fama & French (1992) tested several risk factors identified in prior literature
B/M, E/P, size, β and leverage. Except β, all of the tested variables exhibit
explanatory power when studied individually. Including all of them simulta-
neously, B/M and size apparently consumed the effects of E/P and leverage.
These findings served as a backbone for their later study, Fama & French (1993),
to extend CAPM for value and size effects - three-factor model.

In Fama & French (1993), the methodology is distinct to the regressions they
used in Fama & MacBeth (1973) and the one in Fama & French (1992). First,
they sort their sample of stocks listed on NYSE, AMEX and Nasdaq between
1963-1991 into two groups based on size and three groups based on B/M ratio.
Based on the intersections of these five groups, six (2x3 sorts) portfolios are con-
structed, i.e. one portfolio is composed of stocks with low market capitalization
and high M/B, another consists of stocks with high market capitalization and
low M/B etc. Subsequently, explanatory variables hypothesized to proxy for
common risk factors, SMB and HML are created. Each month SMB variable
is calculated by subtracting average returns on the large market capitalization
portfolios from the average returns on the small market capitalization portfo-
lios while controlling for value effect. HML is calculated analogously for value.
Formulating the three-factor model, Fama & French used time-series regression
to estimate the following equation for 25 portfolios (5x5 sorts based on value
and size):

rpt = α + β1rMt + β2SMBt + β3HMLt + et (2.5)

where rm represents market excess returns over risk-free rate and rp is portfolio
excess return in month t.

As a result, the three-factor model captured over 90% of variation in returns
for vast majority of the 25 portfolios regressed separately, surpassing the ex-
planatory power of CAPM. Moreover, the regression slopes for SMB and HML
exhibited the hypothesized relationships and were significant for almost all port-
folios. When market premium kept as the only explanatory variable, regression
intercept, α, was highly significant for high B/M portfolios while consistently
increasing with value. In case of size, rather negative relationship was observed.



When SMB and HML were added to the regression, for all the regressed port-
folios but 3 out of the 25 tested, the significant α-returns vanished. However,
joint F-test still, although closely, rejected the zero-intercept hypothesis. On
the other hand, in all but 1 portfolio, the α was not substantially different from
0 in the economic terms. This suggests that market premium, size and value
jointly serve well, but not perfectly, as proxies for systematic risk (Fama &
French, 1993).

Complementing to factors in three-factor model by Fama & French (1993),
Novy-Marx (2013) argues that gross profitability (defined as revenues less
COGS, all divided by total assets) further explains the variation in cross-section
of returns. Even though high profitability is usually associated with low B/M
(hence considered a growth strategy), highly profitable firms exhibit substan-
tially increased returns. In addition, combined with value strategy, considerable
improvement of those strategies could be observed in terms of both expected re-
turns and volatility (Novy-Marx, 2013). This partially contradicts with Fama
& French (1993) risk-based explanation of value factor as they consider low
B/M firms to automatically exhibit low profitability. The paper also indicates
that three-factor model still lacks some factors carrying a risk premium as the
three-factor model test for 5 portfolios sorted on the gross profitability rejected
the model in case of the lowest and highest profitable portfolios. Novy-Marx
showed monotonically increasing α with gross profitability. In addition, using
returns spread between the two most and least profitable portfolios exhibited
significant α-returns of 0.5% per month. Haugen & Baker (1996) used lagged
return on equity as a proxy for profitability in their predictive regression. Even
though the model controlled for various price-related, technical, macroeconomic
and growth potential-related variables; statistically and economically signifi-
cant profitability-return relationship was found.

Titman et al. (2004) document another factor with a significant relationship
with cross-section of returns - increased capital expenditures. They find that
firms with increased capital expenditures tend to underperform the bench-
marks. It is important to be aware of two potential biases 1) increased in-
vestment expenditures usually follow extraordinary past performance, which
makes investors to irrationally misprice (Bondt & Thaler, 1985; Lakonishok
et al., 1994), 2) as every investment requires a financing source, there might be
a positive relation between increasing CAPEX and selling equity, which in turn



is associated with negative future returns (Loughran & Ritter, 1995; Bradshaw
et al., 2006). So Titman et al. conducted empirical testing while also control-
ling for the two negative anomalies to conclude negative ceteris paribus effect
of increasing capital expenditures. Cooper et al. (2008) selects more general
proxy, year-over-year growth of total assets, and documents consistent result
with those of Titman et al. (2004). Particularly, spread of risk-adjusted returns
between low and high asset growing companies amounted to 8% with high level
of statistical significance. When regressed along other recognized factors such
as B/M, size, mean reversal proxies, accruals etc. the asset growth was the
most significant factor in predicting the future returns (Cooper et al., 2008).

In the wake of prior evidence on profitability and investment factors affect-
ing cross-section of returns described above, Fama & French (2015) introduced
five-factors model, extending its predecessor - three-factor variant. The model
is defined as follows:

Ri,t = αi + β1iRMt + β2iSMBt + β3iHMLt + β4iRMWt + β5iCMAt + ei,t (2.6)

where the familiar variables are defined analogously to those in equation (2.5),
RMW denotes difference in monthly returns between well-diversified portfolios
with strong and weak profitability and CMA denotes the difference in monthly
returns between portfolios of conservatively and aggressively investing firms.

Explanatory power of the five-factor model was tested using GRS test3. The
test rejected the hypothesis of α being equal to zero for all tested portfolios,
suggesting that there are still some patterns left unexplained. However, the
model performed significantly better than its predecessor, three factor variant,
even in terms of other performance measures such as R-squared etc. The au-
thors also report that the explanatory power of value factor vanished when
profitability and investment proxies are included.

3GRS test from Gibbons et al. (1989) tests the hypothesis that the intercepts, α, in a
time-series regression are equal to zero for all regressed portfolios.



2.3 Anomalies
We have already discussed the most prominent factors4 affecting stock returns -
β, size, value, profitability and investment. They are well-documented in prior
literature and there is usually at least a discussion whether the given effect
is driven by increased risk or by irrational behaviour of investors and market
inefficiency. However, there is plenty of other determinants of stock returns
proposed by academic research, usually referred to as anomalies.

The accounting standards IFRS and US GAAP rely on accrual method of record-
ing revenues and expenses. Thus, revenues are recorded once the goods or
services are delivered even though the cash receipt comes with certain lag.
The same holds for expenses. So the accrual and cash flow components in the
financial statements might vary substantially. Using solely the accrual compo-
nent in financial analysis might lead to inaccurate assessment of earning power
of a company, so both these components should be taken into consideration
(Graham et al., 1962). Sloan (1996) argues that the earnings performance,
attributable to accrual part, is more likely to disappear compared to cash flow
part. Sloan (1996) reports that cashflow component has significantly higher
predictive power than accrual component in terms of 1-year ahead earnings. He
also finds that investors are excessively attached to earnings figures and fail to
incorporate complete information in financial statements into their evaluation
of stock price. On the other hand, Fairfield et al. (2003) attributes the accrual
anomaly to conservative accounting, e.g. expensing research and development
costs (R&D) coupled with lower returns on new investments. Richardson et al.
(2006) decomposed accruals into two categories - growth-related (those related
to sales generation) and efficiency-related (those related to amount of assets
needed to operate) showing that poor sustainability of earnings is associated
primarily with increase of the efficiency-related accruals.

When determining book value, only tangible assets such as property, plant
and equipment etc. are used. Intangible assets on balance sheet (e.g. trade-
marks, patents, copyright etc.) are usually excluded in the calculation even

4Even though consensus regarding source of an effect on expected returns is not always
found (risk-based or behavioral), in this thesis, the effects considered risk-related are termed
factors and those considered behavioral are termed anomalies. Though, in several cases the
terms are used interchangeably.



though, nowadays, they represent substantial portion of the entire asset pool
of modern company. One should also consider the investments into intangible
assets that are not capitalized, i.e. they do not appear on balance sheet at
all. These "invisible" investments usually include employee training expenses,
non-capitalized R&D costs etc. As a result, firms heavily investing into R&D
appear to be priced expensively relative to its non-innovative counterparts.
The growing importance of intangible assets in firms’ capital stock was noted
by several research papers (Eisfeldt et al., 2020; Belo et al., 2019). These pa-
pers estimate that, nowadays, majority of corporate investments are towards
intangibles. Such evidence encourages for a revision of tradition view on value
factor which is usually measured by only tangible-based B/M ratio. Eisfeldt
et al. (2020) makes such a revision by modification of HML factor of Fama
& French (1993) to account for intangibles on top of the original solely tan-
gible book value. Modified HML factor appeared to produce higher average
returns while reducing volatility at the same time. Their proposed strategy
of buying value firms with augmented intangibles and selling firms with only
tangible value exhibited solid returns even on recent data, i.e. in period when
value strategy lagged behind the rest of the market. Eisfeldt & Papanikolaou
(2013) also demonstrate that firms with high level of intangibles outperform
its counterparts. On the other hand, evidence of Chan et al. (2001) does not
support any link between R&D costs and future returns. In particular, three
years after portfolio construction, stocks incurring R&D costs yielded higher
average returns only by 0.15 p.p. than those not incurring any. Perversely,
they found evidence that stocks with increased R&D are subject to elevated
volatility.

Investment factor has already been covered above. However, this factor is also
associated with a need for financing. Various sources of funds and financing
structures affect cost of equity as it determines the volatility of cashflows at-
tributable to shareholders. Bhandari (1988) shows that leverage, measured by
debt-to-equity ratio, implies certain premium even when controlling for stock’s
β and size. This conclusion clearly indicates the failure of market β to fully
proxy for such an obvious source of risk - leverage. This conclusion is sup-
ported by similar study of Dhaliwal et al. (2006). They show that direction of
the relationship between leverage and cost of equity is consistent with theory
and its magnitude depends on corporate tax level due to tax-deductibility of
interest expenses. Deduction of interest expenses reduces the cost of debt to



the company, further benefiting its shareholders.

While capital structure is a risk-based factor, the events of capital raising and
their implications on future returns are recognized as rather behavioral anoma-
lies. Examples of such fundraising events are IPOs, SEOs, bond issuance etc.
Investing in IPOs is considered risky, but potential payout is high. Existing
academic research indicates that risk of losing money overweights the potential
benefits, especially in the long-run (see Ritter, 1991; Loughran & Ritter, 1995;
Spiess & Affleck-Graves, 1995; Bradshaw et al., 2006). Spiess & Affleck-Graves
(1995) extends their study to SEO event to conclude that post-IPO under-
performance is an anomaly associated with equity offering in general. After
controlling for firm’s age and B/M ratio as well as for specifics of the offering
itself, they argue that on average firms after SEO tend to exhibit abnormal
negative returns, especially in the long-run (see also Loughran & Ritter, 1995;
Bradshaw et al., 2006). Most of the mentioned studies offer explanation of man-
agers exploiting insider information to sell equity when the stock is positively
mispriced or artificially inflating earnings in the period preceding the SEO (Co-
hen & Zarowin, 2010). Totally reversed situation to selling firm’s equity due
to overvaluation is buying own firm’s equity for undervaluation. It has become
common practice that a firm buys back its own stock rather than paying cash
dividends, e.g. in the last decade S&P500 companies consistently spent more
cash on share repurchases than dividends. The usually pronounced reason by
managers that it is a good investment is generally supported by existing re-
search, i.e. it documents abnormal returns for share repurchasing firms in the
long-run, especially in case of value stocks (Ikenberry et al., 1995; Zhang, 2005).

Asset pricing (and other economic) models are usually a simplification of more
complex reality, and so rely upon many unrealistic assumptions, e.g. full ratio-
nality of agents. Behavioural finance relaxes this naive assumption and applies
psychology to understand financial market behaviour. Reversal anomaly has
already been mentioned above as it serves as alternative explanation to value
factor (Lakonishok et al., 1994). The research pool on the idea of buying past
losers and selling past winners includes Bondt & Thaler (1985) documenting
that past losers over the last 3 years are set to become future winners over the
next 3 years, Chopra et al. (1992) also seeing long-term mean reversal for prior
losers in a 5-year span etc. However, Jegadeesh (1990) identifies only short-
term reversal effect (1-month) and conversely finds positive autocorrelation for



longer lags indicating rather momentum effect. Even though momentum and
reversal strategies appear to be conflicting with each other, they do not always
compete as the time frames of these effects do not necessarily overlap. Momen-
tum strategies are profitable primarily in the period of 3-12 months following
portfolio formation (Jegadeesh & Titman, 1993), which is consistent with most
of the studies on mean reversals as these show reversal effect materializing ei-
ther within shorter period (1 month) or longer period (3-5 years). Moreover,
combination of these two seemingly rival strategies can yield higher abnormal
returns than choosing one or the other (Kot & Chan, 2006). Existing literature
identifies several proxies exhibiting predictive power on top of the standard
returns-related proxy variables for reversal and momentum anomalies, such as
52-week high (George & Hwang, 2004), past performance of overall industry
while controlling for individual firm characteristics (Moskowitz & Grinblatt,
1999) etc.

There are dozens of other anomalies detected by prior literature and related to
frictionality of financial markets or psychological element of investing. Haugen
& Baker (1996) emphasized the importance of stock liquidity as low liquidity
comes with additional transaction costs, e.g. wide bid-ask spread (see Amihud
& Mendelson, 1986). Amihud (2002) also suggests that stock returns reflect
an illiquidity premium. Haugen & Baker (1996) measure liquidity with various
volume-based metrics such as average daily volume-to-market capitalization
ratio, 5-year trend of this ratio etc. Further liquidity measures include high-
low estimator 5 or turnover ratio 6 (Leirvik et al., 2017). Past trading volume
is also linked to momentum and reversal strategies. Specifically, stocks with
high turnover ratios exhibit faster reversal of momentum effect, translating
into lower future returns than low-volume stocks (Lee & Swaminathan, 2000).
Seasons of the year also apparently affect investor’s behaviour. Particularly,
substantially skewed returns could be observed in January, especially for small
capitalization stocks and past losers (Thaler, 1987; Keim, 1983). Past losers
being usually a subject to January effect is consistent with the hypothesis of
tax-loss harvesting at fiscal year-end (Poterba & Weisbenner, 2001).

5High-low estimator = (daily price high - daily price low) / daily price high
6Turnover ratio = no. of shares traded at a given day / no. of shares outstanding



2.4 Predictability of Stock Returns
Existing pool of literature on asset pricing is flooded with factors and anoma-
lies explaining variation in expected returns. Between 1970 and 2010 prior
research identified at least 330 firm-specific variables associated with stock
returns (Green et al., 2013). How many of those variables really carry an ex-
planatory or predictive power is questionable due to various types of biases
detected across the academic papers.

Several authors point out the existence of survivorship bias in previous re-
search (see Kothari et al., 1995; Brown et al., 1995, etc.). Survivorship bias
is a specific type of more general bias - selection bias. It arises when inactive
or delisted companies are omitted in the sample, e.g. companies delisted due
to bankruptcy, merger or going private. As a result, financial performance of
the sample might be positively biased. Especially in case of analysis of cer-
tain anomalies such as B/M ratio or leverage, the investigated effects might
be substantially distorted. Companies with these characteristics usually face
increased likelihood of bankruptcy or delisting, e.g. Kothari et al. (1995) found
that the value effect proxied by B/M in Fama & French (1992) is less econom-
ically and statistically significant than they reported.

Look-ahead bias occurs when information, that had not been known in a given
period, is taken into account in the analysis, e.g. forming portfolios in January
based on last calendar year accounting data probably produces look-ahead bias.
In such case the accounting figures probably were not announced at the time of
the portfolio decision. Annaert et al. (2002) document on their sample of Eu-
ropean stocks that correcting for look-ahead bias yields only insignificant value
premium of 2%, as opposed to significant premium of 11% for sample suffering
for the bias. Another potential distortion of analysis outcome occurs in the
process of evaluating portfolio performance against an index. Compositions of
benchmark indices such as S&P 500 is subject to performance and compliance
with certain characteristics for member companies. Thus the composition is
somehow dynamic through time. Daniel et al. (2008) report that testing port-
folio performance against S&P 500 might produce bias up to 8% per annum,
when end-of-period index composition is used instead of the composition cor-
responding to the time of portfolio formation.



In many cases, factors (and associated hypotheses) compete with each other,
e.g. value considered as one of the most robust factors explaining returns (see
Fama & French, 1993; 2015; Chan & Chen, 1991, etc.) is challenged by over-
reaction anomaly (see Lakonishok et al., 1994; Bondt & Thaler, 1985, etc.).
Stocks with high B/M ratios are most likely past losers, hence overreaction ex-
planation is also relevant in this case. Correlation between these two variables
will most likely be present. Chan et al. (1991) documents significant drop in
explanatory power of B/M ratio when regressed along with past loser-winner
proxy. Similar logic applies also to size factor and liquidity-related anomalies.
In five-factor model (see Fama & French, 2015), accounting for profitability and
investment absorbs the explanatory power of value effect. Analogous findings
that a factor subsumes the effects of the others are common in asset pricing lit-
erature. Such subsumation is the main reason for simplicity of benchmark asset
pricing models, i.e. CAPM, three and five-factor models. Including only the
most robust factors in regression models reduces the risk of multicollinearity
and potential overfitting. Especially for task of prediction of expected returns,
the risk of overfitting is for traditional methods one of the key limitations to
account for all the discovered factors and anomalies, e.g. inclusion of hundred
of predictors led to zero predictability of future returns with negative values of
R2 in Gu et al. (2020). Lewellen (2015) shows that out-of-sample performance
is similar for 3 and 15-predictor specifications. As a result, only handful out of
the hundreds of potential candidate variables (see Green et al., 2013) is usually
selected. Further pitfalls stem from the need to specify the functional forms
upfront, including interactions between predictors. Even though prior litera-
ture provide guidance in this regard, the set of potential specifications is large
and the correct form is always ambiguous.

Recent research aimed at prediction of expected returns more frequently adopts
machine learning algorithms such as random forests, gradient boosting ma-
chines or neural networks to cope with the limitations of Ordinary Least Squares
(OLS) regression. Nowadays, these tools are widely utilized across finance
industry, especially for purposes of portfolio selection, risk management and
short-term trading. Machine learning techniques are well suited for the task
of prediction of expected returns as they mitigate the risk of overfitting and
remove the need to identify complex functional forms and interactions terms
manually. Moreover, arbitrary set parameters for controlling the fitting process
allow for inclusion of substantially greater number of predictors. In the environ-



ment of hundreds of reported anomalies (e.g. Hou et al. (2020) counts over 450
identified by prior research), selection of the right predictors at the discretion of
the researcher is not effective. Mclean & Pontiff (2016) demonstrate that the
majority predictive power of reported anomalies disappears post publication
anyway. Generally, key drawback of machine-learning-based methods is in in-
dividual effects interpretation. However, for the sole purpose of the prediction
task, these feature is not necessarily required. Estimation of individual effects
of the predictors is still possible but its accuracy is subject to model complexity
(see Friedman, 2001). Gu et al. (2020) emphasize the superiority of machine-
learning algorithms relative to OLS-based models in the field of equity risk
premium prediction. They report substantial improvement in out-of-sample
R-squared when random forests or neural networks are applied, especially for
large capitalization stocks. Their long-short value-weighted portfolio based on
neural networks delivers Sharpe ratio of 1.35, while three-factor (size, M/B and
momentum) OLS-based strategy has Sharpe ratio of 0.61.



3 Data & Universe Construction

3.1 Complete Sample
We acquired market, accounting and I/B/E/S data from Refinitiv Eikon Datas-
tream for all non-financial1 firms listed on stock exchanges 1) that are located
in North America or Europe and 2) with market capitalizion exceeding USD 1
trillion, i.e. NYSE, NASDAQ, NASDAQ Nordic, Euronext, Toronto SE, SIX
Swiss Exchange and Deutsche Boerse. For European stocks all fundamental
and market data are automatically converted to USD using historical exchange
rates provided by Refinitiv. All the categories of data are retrieved on monthly
frequency for the period from March 2000 to October 2021, spanning more than
21 years. Please see cross-sectional composition of stocks in the whole sample
in Table 3.1. You can observe that the sample is geographically well balanced.
Though, the split is not equal.

Table 3.1: Cross-section of stocks in the complete sample

min mean max
Europe 1,731 2,740 3,423
North America 2,297 3,204 4,370

Monthly number of stocks in the entire sample
between March 2000 and October 2021. The
number fluctuates over the observed period due
to new listings and delistings.

The dataset also includes stocks that were delisted during the observed period
in order to eliminate survivorship bias. There is total of 2,114 such securities
in the sample. We treat the delisted stocks by excluding them from the data
one month prior its delisting date. This type of treatment is primarily due to

1This thesis defines industries and sectors according to North American Industry Clas-
sification System (NAICS). The companies that fall into category Finance and Insurance, as
defined by NAICS, are considered financial and excluded from the data.
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lack of available information regarding reasons2 of the individual delistings on
Reuters Eikon Datastream.

The frequency and time alignment of the accounting data is designed such
that it reflects the real information set available at the time of each portfolio
rebalancing data. For last day of each month, we retrieve last twelve months
(LTM) data aligned according to financial results announcement dates (as op-
posed to usually used fiscal period-end dates). E.g., On 5 November, 2020
Discovery, Inc. submitted its 10-Q form for fiscal quarter ended 30 September,
2020. Thus, the retrieved accounting data for Discovery, Inc. for September
and October 2020 does not contain the figures from the most recent fiscal quar-
ter as it has not been published yet. Finally, in observation for November 2020
the LTM accounting figures reflect also the quarter ended 30 September, 2020.
Such data structure allows for mimicking real-world situation an investor faces
at the time of his decision-making process. This not only mitigates the risk
of look-ahead bias but also ensures that the portfolio construction process is
based on the most recent public information available each month.

Individual accounting figures that appear unreliable due to a conflict with ac-
counting standards are set to missing. E.g., positive cost items or negative cash
dividends paid. On top of that, firm-year observations with apparently illogical
or highly anomalous values in essential accounting variables are dropped from
the sample. This covers long-term debt greater than assets, profit margins
greater than 100%, or deeply negative etc.

In addition to the stock-level data, we obtained monthly size, value, profitabil-
ity, and investments factor premiums along with market and risk-free returns
for developed countries from Kenneth R. French’s data library3. These fac-
tors are based on global developed markets as defined by the source. As a
proxy for credit cycles serves ICE BofA US High Yield Index Option-Adjusted
Spread4 from FRED database. It is calculated as differences between US option-
adjusted high-yield index (capitalization-weighted index composed of public

2Common reasons for removal from a stock exchange are failure to meet listing require-
ments, voluntary delisting, or getting acquired by another company.

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
4Ice Data Indices, LLC, ICE BofA US High Yield Index Option-Adjusted Spread

[BAMLH0A0HYM2], retrieved from FRED, Federal Reserve Bank of St. Louis; https:
//fred.stlouisfed.org/series/BAMLH0A0HYM2

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://fred.stlouisfed.org/series/BAMLH0A0HYM2
https://fred.stlouisfed.org/series/BAMLH0A0HYM2


USD-denominated below investment grade bonds) and spot treasury curve. An-
other proxy for uncertainty prevailing in financial markets are average monthly
values of VIX Volatility index, which represents expected volatility for S&P
500 in the next 30 days as implied by current call and put options.

3.2 Universe Construction
In this section, the entire sample is trimmed into an universe composed of only
stocks with lower absolute valuations, cheap relative valuations and high level of
financial leverage. This universe is supposed to include stocks with mispricing
potential and with exposure to premium-yielding risk factors. This thesis builds
upon the findings of Rasmussen & Chingono (2015), so our definition of the
universe is equivalent to theirs. We construct such set of companies by applying
three separate filtering conditions to all firms in the sample. The conditions
are defined as follows:

1) Stocks with market value of equity between 25th and 85th per-
centile, sorted each month. Definition of small-capitalization stocks
is usually arbitrary in academic literature and sometimes differs from
the ranges seen in practice, e.g., Fama & French (2008) use USD 2.3
billion as the upper threshold for small stocks, while Nasdaq stock ex-
change considers small-capitalization stocks as those with market value
of equity less than USD 1 billion. Since this thesis defines the thresholds
using percentiles each individual month, the thresholds are variable in
time. This selection criteria is also aimed to exclude micro-capitalization
stocks which might lack sufficient liquidity.

In Table 3.3 you can see structure of the universe in terms market capital-
ization and other selected variables for pooled data (cross-sections across
all periods pooled together) and for cross-section in September 2021, the
last month of the observed period. Note that it shows only such compa-
nies that meet all three criteria.

2) Stocks with book-to-market ratio above its median value - cheaper
half of the sample every month. This criteria intends to further re-
strict the universe to stocks with characteristics that historically demon-
strated a risk premium. Value premium usually compensates for financial



distress (Fama & French, 1993) which also creates further space for uncer-
tainty and mispricing by investors. Detection of mispriced stocks among
high-value stocks would represent additional source of return on top of
historically exhibited value premium.

In prior literature, various proxies for value are used, e.g., B/M ratio, E/P
ratio, EBITDA/EV (see Fama & French, 1992; Davis, 1994; Rasmussen
& Chingono, 2015, and others) etc. This study adopts B/M metric as
it is the most conventionally used in academic literature and it is known
for most significant relationship with returns. Descriptive statistics are
presented in Table 3.3.

3) Stocks with leverage (defined as Long-term debt/EV) higher
than 50th percentile of the sample, each month. Even though
B/M effect is supposed to already contain risk associated with financial
leverage, this condition ensures its complete presence in the resulting
universe.

Above described breakpoints for the individual criteria for the universe con-
struction are set arbitrary such that sufficient number of observations is passed
through the filter each period. Minimum, maximum and average number stocks
in cross-section are listed in Table 3.2. Naturally, observations with missing val-
ues in variables essential for the universe selection are automatically dropped.
E.g., when it is not possible to calculate Long-term / EV due to a missing
component, the observation will not pass through the universe selection crite-
ria. In addition, observations with outliers5 or missing values in 1-month-ahead
returns variable are completely removed from the universe.

Table 3.2: Cross-section of stocks in the universe

min mean max
Europe 36 325 464
North America 127 379 570

Monthly number of stocks in the universe
of leveraged value small-caps between March
2000 and September 2021.

As a result, there is total of 182,526 firm-month observations comprising 3,793
5In this thesis Tukey’s method (see Tukey, 1977) for outlier detection is adopted. Ac-

cording to this rule, observations lying outside range [Q1−1.5(Q3−Q1), Q3+1.5(Q3−Q1)]
are considered outliers.



unique stocks over 259 months starting on March 2000 and ending on Septem-
ber 2021. The amount of observations per month in the universe rises in time
substantially, especially in early months of the observation period. This hap-
pens primarily due to increasing availability of data for essential accounting
variables on Refinitiv Eikon Datastream, especially for stocks listed in Europe.
E.g., in March 2000 only 10% of the European listed stocks in the sample had
non-missing value for Total Assets and other fundamental figures. However,
this improves rapidly in the early 5 years of the observation period. Since 2005
it is consistently over 60% of European stocks in the complete sample with
sufficient non-missing figures in essential variables. In Table 3.2 you can see
that the universe is on average geographically balanced.

Selected individual characteristics for the firm-year observations, that are al-
lowed to the universe, are presented in Table 3.3. Panel A summarizes the data
pooled together disregarding any effects of time. On the other hand, Panel B is
attached primarily for convenience as some characteristics developed through
the observed 21 years (e.g., average market capitalization nearly doubled dur-
ing the 21-year period). Since the pooled statistics are more relevant for the
methodology of this paper, concerning Table 3.3 it is always referred to statis-
tics in Panel A, unless stated otherwise. It is important to note that most of
the variables presented in the table are ratios susceptible to extreme values in
case of close-to-zero values in denominator.

Given the skewness and kurtosis, out of the presented variables 1-month returns
(%) has probability density function that is closest to normal. With positive
mean at 0.8% and standard deviation of 8.6% its distribution is defined as sym-
metric and slightly leptokurtic. It is consistent with previous research regarding
distribution of stock returns (see Hwang & Satchell, 1999; Kim & White, 2004).
Though it should be kept in mind that outliers in this variable are stripped off.
In terms of market capitalization, we can see that majority of firms exceed
USD 500 million valuation mark. Standard deviation as much as USD 1.3 bil-
lion is attributable to several micro-capitalization stocks still appearing in the
Universe. As implied by Table 3.3, average stock in the universe is valued at
0.88 multiple of book value and 16.7 multiple of earnings. Average enterprise
value is 6.3 times EBITDA. We can also observe that EBITDA/EV valuation
is the most relatively dispersed valuation metric in the table and also the one
with fattest tails. Comparing the valuations from Panel A to Panel B, stocks



became apparently more expensive during the observed period, particularly
with respect to book value and earnings. Solvency, another filtering criteria
for the universe, stands on average at 38% long-term debt relative to EV with
standard deviation of 23 percentage points. Average firm-year observation has
operating profit 4.2 times the annual cash outflows for debt servicing, however,
median value of 1.4 is more representative value for average constituent of the
universe. Asset growth was positive in the last twelve months to September
2021 in more than 50% cases (see Panel B) although this set of firms targets the
distorted ones. Mean value of 98% growth in assets (see Panel A) is affected
by extreme outliers as suggested by kurtosis of more than 46,000. Profitability
at the level of EBITDA is about 20%, whereas fatter left tail of its distribution
suggests that loss-making companies are present in the sample.



Table 3.3: Descriptive statistics for the universe

Panel A: Pooled observations

Q1 Median Mean Q3 Standard
Deviation Skewness Kurtosis

1-month return (%) -4.39 0.66 0.83 6.03 8.59 0.04 3.1
Market cap (USD mil.) 201 545 1,079 1,432 1,323 2.2 8.6
Book-to-Market 0.60 0.81 1.14 1.19 2.31 21.4 581
LT debt/EV 0.22 0.33 0.38 0.49 0.23 3.2 35.4
EBITDA/EV 0.09 0.13 0.16 0.19 0.58 -172.1 59,898
E/P 0.03 0.07 0.06 0.11 0.40 -1.0 987
ROA (CFO) 0.04 0.07 0.07 0.10 0.06 -0.1 12.1
DSCR 0.43 1.43 4.17 4.52 875.08 315.5 120,647
Asset growth -0.02 0.05 0.98 0.15 136.35 204.3 46,385
EBITDA margin 0.08 0.13 0.20 0.24 0.20 1.4 5.9
Panel B: Cross-section in September 2021

Q1 Median Mean Q3 Standard
Deviation Skewness Kurtosis

Market cap (USD mil.) 411 1,089 1,915 2,747 2,078 1.6 4.9
Book-to-Market 0.48 0.69 0.87 0.97 1.77 27.8 845.1
LT debt/EV 0.23 0.34 0.39 0.49 0.21 1.1 4.6
EBITDA/EV 0.07 0.12 0.13 0.17 0.13 2.4 19.6
E/P 0.01 0.06 0.04 0.10 0.23 7.0 175.1
ROA (CFO) 0.04 0.07 0.07 0.11 0.07 0.3 10.2
DSCR 0.24 1.15 2.89 3.53 30.46 0.00 168.7
Asset growth -0.01 0.06 0.10 0.12 0.39 12.7 235.3
EBITDA margin 0.09 0.14 0.21 0.28 0.22 0.9 5.1
Panel A presents descriptive statistics for selected variables for all firm-year observations in the uni-
verse of leveraged value small-caps, i.e., there is no time or cross-sectional discrimination. The universe
totals 182,526 firm-year observations comprised of 3,793 unique stocks and their characteristics over
the period from March 2000 to September 2021. Note that observations outlying in variable 1-month
return (1%) are dropped. Panel B shows the statistics only for cross-section as of September 2021.
Precise definitions of the variables are disclosed in Appendix A.

3.3 Variables
As already described above in Section 3.1 and demonstrated on Discovery, Inc.
example, the accounting data is retrieved in LTM format and aligned accord-
ing to announcement dates of the most recent quarterly (semi-annual, in case
of European firms) results. Naturally, LTM format affects only flow variables.
Stock variables such as balance sheet data are simply the most recently pub-
lished.



With reference to extensive pool of previous studies focused on factors and
anomalies affecting stock returns in the cross-section, we define 42 stock-level
features. These include various valuation metrics; profitability, solvency and
liquidity ratios; trading characteristics and forward-looking estimates by ana-
lysts. Variables expressing a relative change or a difference between accounting
figures in time are defined on year-over-year basis, unless specified otherwise.
Detailed description of individual variables adopted by this study is presented
in Appendix A.



4 Methodology

In this section, we discuss the methods applied in individual steps of our anal-
ysis, which encompasses 1) forecasting the ability to pay down long-term debt;
2) estimation of future returns and subsequent one-way portfolio sorts con-
struction; 3) testing of mispricing strategy based on the portfolio sorts; and 4)
examination of the mispricing strategy with respect to credit cycles and market
volatility. Unless otherwise stated, the methods presented in this section are
applied only to the universe of leveraged value small-caps (as defined in Sec-
tion 3.2), not the entire sample. Moreover, the dataset is further split into three
separate time frames - training sample, validation sample and testing sample.
Traning is the longest one (March 2000 - March 2013) and represents the main
component of in-sample period. Validation sample immediately follows (April
2013 - March 2015) and serves for purpose of hyperparameter tuning. Once the
arbitrary hyperparameters are determined, final model is fitted using union of
training and validation samples (=the whole in-sample period) and tested on
testing sample (=out-of-sample period) spanning from April 2015 to September
2021.

4.1 Forecasting Future Debt Reduction
Since Rasmussen & Chingono (2015) argue that deleveraging is the main driver
of future returns for leveraged value small-capitalization stocks, first step in
our analysis is to estimate future reduction in long-term debt. Considering
that debt is reduced mainly by means of sufficient cash generation from busi-
ness activities, we use fundamental-only stock-level lagged characteristics as
the predictors. Behavioral signals are not taken into account. Specifically, we
estimate the ability to pay down long-term debt in the period of next twelve
months (although data periodicity is monthly). Since companies in the sample
usually report their interim results quarterly or semi-annually, 1-month-ahead
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estimation of the debt reduction is not applicable. To summarize this, we
forecast the ability to reduce debt exposition in the next twelve months using
LTM accounting-based metrics, EBITDA/EV multiple (to proxy for negative
fundamental information that cannot be captured by accounting figures) and
forward-looking analysts estimates. All the predictive signals entering the esti-
mation reflect the most recent public information. Generally, we estimate the
following equation:

yi,t+12 = f(xi,t,1, xi,t,2, .., xi,t,K) + ϵi,t (4.1)

where yi,t+12 is binary variable taking value of 1 if the company i reduces its
long-term debt in next twelve months (i.e. long-term debt as of t+12 is less
than in period t) and 0 otherwise. t denotes individual monthly periods. xk

denotes individual predictors. Full list of such variables and their definitions
are listed in Appendix A.

For such classification problems (that is using firm-level characteristics to model
future binary events, e.g. bankruptcies), wide range of methods is available and
thoroughly tested in previous studies. Taking extensive literature on predicting
the binary event of bankruptcy as model performance benchmark (see Gepp
et al., 2010; Barboza et al., 2017), this thesis utilizes superior predictive power
of machine-learning classification methods over the conventional ones such as
logistic regression. The advantages of machine-learning techniques include ac-
counting for potential variable interactions not being limited by loss of degrees
of freedom, allowance for non-linear relationships, and arbitrary over-fitting
control mechanisms. The mostly referred to drawback of limited intepretability
does not pose a problem in case of our application and we provide interpretation
of individual effects anyway (see Section 4.3 for greater detail).

4.1.1 Gradient Boosting Machines with Trees (GBM)

Decision trees are one of the most favourite machine-learning algorithms due
to to their simplicity in terms of both application and interpretation. Most
straightforward way how to briefly introduce the decision tree algorithm is by
a graphical illustration. See depicted one in Figure 4.1. Each split in the de-



cision tree is made such that a selected loss function is minimized. At the
same time, each splitting is subject to arbitrary conditions that serve to miti-
gate overfitting (e.g., minimum number of observations per split or maximum
number of splits). Classification trees usually minimize Gini impurity measure
(which is the probability of misclassifiying an observation) to determine where
and whether to make a split.

Figure 4.1: Example of a decision tree

Decision tree with target (dummy) variable whether the company will
be able to reduce its debt in the next twelve months. The first split (i.e.
the upper one) is based on predictor AssetGrowth and implies that for
values lower than 0.058 the observation is classified as "Yes", i.e. the firm
will be able to reduce its debt, otherwise it is subject to further splitting
down the tree. This decision tree has 5 terminal nodes and depth of 4
(i.e. there is maximum of 4 consecutive splits).

"Boosting" is an ensemble method that combines several underlying models into
single and more precise one. Particularly, gradient boosting decision trees is
a combination of multiple decision trees, "weak learners", via gradient descent
optimization technique into a "strong learner". However, the individual trees -
that are combined - are not independent of each other. It is a sequential process
where individual weak learner is fitted with respect to the errors (defined by a
selected loss function, which is Bernoulli loss in our case) of the previous one.
Generally, stepwise implementation of a GBM algorithm of Friedman (2001)
with M iterations, loss function L(y, ˆ︁F ), input data (xi, yi) with i = 1, ..., N

and weak learner h(x, θm) is as follows:

1. Initiate ˆ︁F0 with a constant such that loss function L(y, ρ) is minimized,
and



2. for each iteration m, (m = 1, ..., M):

(a) Calculate negative pseudo residuals, which are defined as

˜︁yi = −
[︂

∂L(yi,F (xi))
∂F (xi)

]︂
F (x)=Fm−1(x)

for i = 1, ..., N.

Note that the pseudo residuals would equal to actual residuals if the
selected loss function was squared-error loss L2.

(b) Fit the weak learner h(x, θm) on the pseudo residuals and input data
(˜︁yi, xi) for i = 1,...,N, i.e.

θm = arg min
θ,β

N∑︂
i=1

[˜︁yi − βh(xi, θ)]2

.
(c) Find the optimal gradient descent step-size (i.e. optimal weight of

the mth weak learner in the final prediction function) by minimiza-
tion of the specified loss function.

ρm = arg min
ρ

N∑︂
i=1

L(yi, ˆ︁Fm−1(xi) + ρh(xi, θm))

.
(d) Update the prediction function as

ˆ︁Fm(x)← ˆ︁Fm−1(x) + ρmh(x, θm)

.
For further detail on the algorithm and further discussion the use of various
loss functions and weak learners, please refer to seminal paper Friedman (2001).

Hyperparameters are model characteristics that determine how the model learns.
It needs to be specified before the model sees its "learning materials" - the
training data. Shrinkage hyperparameter known as learning rate determines
contribution of each tree to the resulting function. Number of trees determines
the number of trees to be grown - iterations used for the optimization of the
selected loss function. Third important hyperparameter of the algorithm is
Maximum tree depth specifying maximum number of splits per individual tree.
High values of Number of trees and Shrinkage typically provide better fit in-
sample, however at the expense of out-sample stability. More trees increases
the risk of overfitting. On the other hand, lower Shrinkage diminishes the im-
portance of the errors that are fitted by every next tree, which decreases the



risk of overfitting.

Chingono & Rasmussen (2016) served as a benchmark in the matter of hy-
perparameter setting, however, we still performed extensive grid search consid-
ering values {400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400}
for Number of trees; {0.1, 0.05, 0.01, 0.005} for Shrinkage; {5,7,10} for Maxi-
mum tree depth and {5,10} for Minimum observations per node. In this tuning
process, all the individual model specifications were trained on training sample
and subsequently tested on validation sample. Set of hyperparameters with
maximum accuracy on the validation sample is the preferred here; i.e. 2000
trees learning at rate of 0.05 with maximum of 7 consecutive splits per tree and
minimum of 5 observations per terminal node. Once the hyperparameters are
optimized, final model is fitted on union of the training and validation samples.

In case of classification, the final arbitrary parameter required to be speci-
fied in before out-of-sample model evaluation is probability threshold. We set
the probability threshold based on Youden’s J statistic (see Youden, 1950) us-
ing validation sample, i.e., we set the threshold such that sum of specificity and
sensitivity is maximized.

4.2 Mispricing Strategy
We start with forecasting future 1-month-ahead returns. Mispricing strategy
is then executed by forming long-short portfolios each month based on the
forecasted future performance of individual stocks.

4.2.1 Predicting Future Returns

Analogously to Section 4.1, gradient boosting ensemble of tree-based learners
is the method of our choice. Specifically, it is gradient boosting regression trees
algorithm with Gaussian L2 loss function, which has been thoroughly tested
by prior studies in the exercise of predicting cross-sectional returns. It has also
been demonstrated to be advantageous over conventional regression methods,
given adequate sample size (see Gu et al., 2020; Leung et al., 2021; Tobek &
Hronec, 2021; Choi et al., 2021).

34 stock-level characteristics are supplied to the supervised learning process in



order to predict 1-month-ahead returns. Additionally to accounting ratios and
I/B/E/S estimates used for the prediction of future debt reduction, we extend
the set of predictors for behavioral factors such as momentum and short-term
reversal, various valuation multiples and the already predicted future ability to
pay down debt. To summarize, the following equation is estimated

ri,t+1 = g(ŷi,t+12, xi,t,1, xi,t,2, .., xi,t,S) + ϵi,t (4.2)

where ri,t+1 represents total return of stock i for period t+1, ŷi,t+12 denotes the
already predicted probability that stock i reduces its long-term debt in next
twelve months. xs denotes individual lagged predictors. Full list predictors is
disclosed in Appendix A.

Study Gu et al. (2020) serves as benchmark in terms of hyperparameter tuning,
so we center our grid search around their referenced values. The hyperparam-
eters are optimized throughout all combinations of the following values {200,
400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600} for Number
of trees, {0.1, 0.05, 0.01, 0.005} for Shrinkage; {5,7,10} for Maximum tree depth
and {5,7,10} for Minimum observations per node. Model is trained on training
sample and parameters subsequently selected such that root mean squared error
(RMSE) on Validation sample is minimized. Error-optimizing hyperparameter
combination is growing 200 trees at leaning at rate of 0.01 with maximum tree
depth of 10 and at least 5 observations per leaf. Final tuned model is trained
on union of training and validation samples.

4.2.2 Portfolio Construction and Testing

Each month we sort the universe based on the 1-month-ahead returns variable
predicted in Subsection 4.2.1. The sorted stocks are then split into deciles,
e.g. top decile portfolio consists of 10% highest-ranked stocks in terms of the
predicted returns. Each month the number of firms in the portfolios differs as
the size of the universe is also period-dependent. Finally, at the beginning of
each month we construct long-short portfolio by buying stocks in the top decile
and selling short stocks in the bottom decile. The constructed long-short port-
folio is therefore rebalanced based on the most recent information every month.
The strategy and generated returns assume 1/3 of the initial dollar exposition
is held in cash, e.g. we go long stocks worth $1, short stocks worth $1 and hold



$1 in cash. Transaction costs, cost of selling short and returns on cash holdings
are not taken into account. As a result, each month we are supposed to have
a portfolio with low exposure to market, size and value factors that seeks to
exploit idiosyncratic returns.

Performance of the long-short portfolio is tested against benchmark portfo-
lio and risk factors commonly adopted for testing purposes in asset pricing
literature, i.e., CAPM and multifactor models of Fama & French ( see Equa-
tion 2.1, Equation 2.5 and Equation 2.6). Testing period comprises 77 months
starting April 2015, ending September 2021.

The hypothesized mispricing strategy assumes that weak, or semi-strong mar-
ket efficiency do not hold, and seeks to exploit failures of market to correctly
reflect available information into prices. Consequent hypothesis conjectures
that in periods of increased uncertainty, investors might be more susceptible to
misprice the securities, especially those that are exposed to various risk factors
such as value, size and leverage. To test this hypothesis, we regress Jensen’s
alpha1 to proxy variable for credit cycles. Analogously, we regress the abnormal
returns (= Jensen’s alpha) to market volatility represented by VIX Volatility
index prices. The following equations are estimated

α̂t = γ + β1OASt + ϵi,t (4.3)

α̂t = γ + β1V IXt + ϵi,t (4.4)

where α̂t denotes Jensen’s alpha in period t. Its calculation is presented in
Equation 4.5 below. OASt denotes average option-adjusted spread between
below investment-grade US dollar-denominated bonds and spot treasury curve
during month t.

α̂t = rt − E(rt)

α̂t = rt − [rrf,t + β̂(rM,t − rrf,t)]
(4.5)

where rt is realized total return of the selected long-short portfolio in month
t, and β̂ is regression coefficient already estimated using CAPM as desribed
in second paragraph of this subsection. Analogously, to this CAPM-based

1Jensen’s alpha is a risk-adjusted measure of portfolio performance derived from CAPM
in Jensen (1968) and applied to measure performance of mutual funds.



calculation, we also calculate Jensen’s alpha using thee and five-factor models
by Fama & French and estimate the corresponding regressions (Equation 4.3).

4.3 Interpretability Measures for GBM
Machine-learning techniques including the supervised ones are sometimes touted
as "black box" methods. This is primarily due to its limited interpretability.
While assessment of the accuracy of the model predictions is equivalent to con-
ventional methods, interpretation of individual effects and their contribution
to those estimates requires more complex tools.

One of such tools usually reported is relative importance of individuals signals.
You can find charts depicting importance of individuals signals in Appendix A.
The relative importance is often reported in scaled values. However, we disclose
values not standardized so that further elaboration on top of solely relative in-
fluence is possible.

For the purpose of the classification problem, we measure the importance of
individual predictors using permutation test of Breiman (2001). This method-
ology determines the influence of a predictor xk as the decrease in classification
accuracy when variable xk is "noised up". Particularly, the decrease in classi-
fication accuracy is calculated as the difference between accuracy of the fitted
GBM model on original training data and the classification accuracy of the
GBM model such that for each tree the values of variable xk are randomly
permuted (while values of other predictors remain unchanged). The predictors
with largest increase of the missclasification rate are deemed most important.

In this study, for regression-tree-based models, relative importance is denoted
by the improvement in squared errors attributable to individual signals as de-
scribed by Friedman (2001). On the level of individual trees the original study
approximates absolute improvement associated with an input variable as fol-
lows:

Iĵ

2 =
J−1∑︂
t=1

it̂
21(vt = j) (4.6)

where j denotes the input signal of our interest, t denotes the individual nodes
of the tree with J representing the terminal one. i2

t is the reduction in squared



error, but taken into account only if the variable j is the splitting one. Subse-
quently, we get estimated reduction in squared errors for the entire model by
taking average over all the trees in the GBM. E.g., for input variable 6-month
cumulative return on the right-hand side of Figure B.1 the original unscaled
relative influence measure, I2

j , was 681,237; representing the overall reduction
in squared error attributable to any splitting based on the given variable per
average tree. We can further elaborate and divide the total reduced squared
error by the total weight of the data (number of observations in our case) to
estimate that inclusion of the particular variable decreases MSE of the model
by 6. Such an absolute importance value should be treated with a caution
due to interactions of the predictors, e.g., dropping a predictor that is usually
the splitting variable in the upper part of the tree would affect the estimated
MSE reduction attributed to the predictors closer to the terminal nodes. These
variable importance metrics are also helpful for signal selection.

Though relative variable influences still do not provide any explanation how
the input signal affects the target variable in terms of direction and magnitude.
Fortunately, partial dependence plots is effective visualisation tool depicting the
relationship of a signal and the target variable while averaging out the effects
of the other predictors. Estimation of partial dependence for tree-based mod-
els was defined in Friedman (2001). For a set variables of interest zu partial
dependence function can be estimated by

F u(zu) = 1
n

n∑︂
i=1

ˆ︁F (zu, zi,v) (4.7)

where ˆ︁F denotes prediction function, i denotes observations in the training
sample of size n and zi,v are the actual values of zv in the training data. Step-
wise practical implementation for a single variable of interest x with values
{x1, x2..., xl} is as follows:

1. Duplicate the entire training sample l times, such that you create identical
samples {S1, S2, ..., Sl};

2. for Si(i = 1, 2, ..l)

(a) replace all values of variable x with value xi and keep the other
variables unchanged,



(b) calculate predicted value for each observation in the sample using
prediction function ˆ︁F ,

(c) calculate mean to get F (xi);

3. plot the F (x) for ∀x ∈ {x1, x2, ...xl} (Greenwell, 2017).

Please see example of smoothed2 partial dependence plots in Figure B.2

2We smooth the partial dependence plot using method of Local Polynomial Regression
Fitting also know as "loess", where the fitting at each point x of the independent variable
is determined using adjacent observations, weighted by their distance from x. For greater
detail of this methodology see https://rdrr.io/r/stats/loess.html.

https://rdrr.io/r/stats/loess.html


5 Results

5.1 Debt Paydown
In this section, we discuss the performance of the gradient boosting decision trees
model (see detailed methodology in Section 4.1) trained on data between April
2000 and March 2015 and tested in subsequent 6,5 years - data the model has
never seen before. Both in-sample and out-sample contain only observations from
the universe, i.e., leveraged value small-caps. Table 5.1 displays confusion matrix
whether long-term debt is reduced or not in the next twelve months, represented
by two mutually exclusive classes "Yes" and "No". The probability threshold is set
to 0.48 (which is the threshold that maximizes the sum of specificity and sensitivity
on the validation sample, for further detail see Subsection 4.1.1), so observations
with predicted probabilities greater than or equal to 0.48 are classified as "Yes" -
those reducing its long-term debt in next twelve months - and "No" otherwise.

Table 5.1: Confusion matrix for Future debt paydown

Predicted
outcome

Actual outcome

No Yes total

No 19,170 8,824 27,994

Yes 15,257 20,019 35,276

total 34,427 28,843

The matrix compares outcomes predicted by our gradient boosting
machines model to the actual values of long-term debt reductions
in the next twelve months. The predictions are for out-of-sample
period (April 2015 - September 2020) for the universe of leveraged
value small-capitalization firms.
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First, we can observe that the sample is well-balanced since the prevalence of
reducing debt is approximately 46%, not far from an equal split. However,
the GBM algorithm predicts a slight majority of the firms to pay down the
debt. So the algorithm tends to slightly favor positive outcomes. Sensitivity of
69% shows how successful the model is in detecting firms that actually reduce
their debt. There is usually a trade-off between sensitivity of a classifier and
its precision, which denotes how often the classifier is correct when it predicts
a positive outcome. The best scenario is to get these two measures as high as
possible, which is 100% for both measures. F1 score combines both measures
such that we can evaluate the model performance regarding positive outcomes
while taking the trade-off into account. F1 score for the GBM model amounts
to 0.62. Rasmussen & Chingono (2015) argue that the ability to deleverage is
the main ingredient for prediction of future returns for small leveraged equities,
and we further use the predicted debt reductions for that purpose. Thus, the
model favouring higher sensitivity over low false positive rate is desirable here.
We can observe that out of the 35,276 observations predicted to reduce debt
in the future, 20,019 really did so. So Precision is 57%. In terms of "No" out-
comes, the detection rate (specificity) is 56%, meaning that 56% of the firms
that actually failed to reduce their debt in the next twelve months were cor-
rectly predicted to fail.

Finally, we can conclude that we are able to predict the future ability to
reduce long-term debt of a small leveraged high-value firm with accuracy of
more than 62%. This means that the built predictor classifies over 62% of the
cases correctly regardless of the actual outcome. Therefore, the probability of
successfully classifying an observation is 8 percentage points higher than us-
ing simple unconditional probability (i.e., classifying all observations as "No").
Another overall performance measure for classification models is Area under
curve (AUC), where the curve is receiver operating characteristic (ROC) curve.
ROC curve illustrates the model performance in terms of sensitivity and false
positive rate for various probability thresholds. Figure 5.1 depicts ROC curve
for our GBM model. Looking at the scale on the right-hand side and the color
of the ROC curve, you can observe the model performance with respect to
different probability thresholds. We can also observe that the ROC curve is
smooth, and there is no specific threshold value at which the separability of
the data would step up substantially.



Even though the choice of the applied classifier was made based on exten-
sive academic research regarding similar classification problems (see Barboza
et al., 2017; Chingono & Rasmussen, 2016; Gepp et al., 2010, etc.), we es-
timate logistic regression to provide a benchmark against a conventional re-
gression method. The accuracy of the estimated logit model is 59%, which
is lower than 62% for GBM. The GBM model scored 0.68 compared to 0.64
for the logit model in terms of AUC. The difference in performances of these
two algorithms is narrower than suggested by a similar study of Chingono &
Rasmussen (2016) though. In terms of the baseline model, GBM, we achieve
similar performance to Chingono & Rasmussen (2016) with substantially more
up-to-date and shorter in and out-of-sample data period.

Figure 5.1: ROC curve for Future debt paydown

The ROC curve depicts out-of-sample sensitivity (y-axis) and false pos-
itive rate (x-axis) for various probability thresholds. The dummy
variable whether the company will be able to reduce its debt in the next
twelve months is predicted using our GBM model over the 6.5-year-long
out-of-sample period starting in April 2015. The individual probability
thresholds are indicated by the color scale on the right-hand side of the
figure.

Previous studies focused on debt or bankruptcy-related classification problems
usually incorporated stock-level market data such as past returns in their clas-



sification models. We ignore such variables as the rationale behind their in-
clusion in those studies is not relevant here. Lagged returns can proxy for
information not captured by fundamental data; however, this primarily applies
to bankruptcy problems. Given the monthly frequency of our data, using past
returns to predict debt paydown would create excessive noise. We considered
the behavioral factors during the tuning phase of the model and they exhibited
near-zero predictive power on the validation sample.

On the left-hand side of Figure B.1, we can observe relative importance of
individual predictors. The two most important predictors are capital expen-
ditures relative to assets and consensus estimate on growth rate of sales, fol-
lowed by current ratio. The importance here means that introducing noise
into these signals would increase the model’s misclassification rate the most
(see Section 4.3 for further detail regarding this methodology), e.g., losing the
information contained in predictor CAPEX/Assets would decrease the model’s
accuracy by about 12.5 percentage points. It suggests that the future debt
reduction mostly depends on whether companies invest in their fixed assets,
i.e., those expanding property, plant, and equipment will rather take on more
debt than deleverage. Such negative relationship is demonstrated in respective
partial dependence plot in Figure B.2. The plots depict relationships between
individual predictors and target variable while averaging away the effect of the
others. Note that the relationship is not linear for none of the most important
predictors. For example, the probability of paying down debt is increasing in
Sales growth estimate only for negative growth rates. After that, the proba-
bility is decreasing with the lowest predicted probabilities as low as 30% for
high-growth companies. This is consistent with the rationale that high-growing
firms are likely rather to take on additional debt than deleverage.

In addition to the investment-related signals, liquidity and solvency ratios also
ranked on top in terms of their predictive power, which is consistent with the
universe composition, i.e. firms in financial distress are more likely to default
on their debt obligations. EBITDA/EV valuation multiple is the least signifi-
cant predictor. Therefore, it supports the rationale that only accounting-based
variables are relevant for future debt repayment and suggests that considera-
tion of market-based signals would be limited even without model supervision.
Please see Appendix B to explore the predictive power of other signals and
their marginal effects.



5.2 Mispricing strategy
Accurate prediction of future returns is the cornerstone in uncovering potential
alpha returns. Adopting the machine-learning algorithm specified in Subsec-
tion 4.2.1, we are able to predict monthly returns with RMSE of 8.6 percent-
age points. With the standard deviation of the pooled leveraged value small-
capitalization universe of 8.6 p.p. as well, the relative absolute error (RAE) is
equal to 1. This relative level of accuracy is consistent across the entire testing
period (i.e., it is approximately constant even when broken down into subperi-
ods and calculated individually for each of them). The RAE is stable even for
the calendar year 2020 despite increased volatility due to Covid-19 outbreak.
R-squared is equal to 0. With respect to the observed model performance met-
rics (RMSE, RAE, R-squared, and correlation coefficient between predicted and
true values), the gradient boosting machines model outperformed its OLS coun-
terpart in all aspects, e.g., RMSE of 8.6 p.p. vs. 9.0. This is consistent with
recent asset pricing literature supporting the application of machine-learning
techniques over the conventional ones (see Gu et al., 2020).

The right-hand side of Figure B.1 provides a visual representation of relative
predictive power of the 25 most dominant signals. Cumulative total return over
the last 6 months is clearly the most important one out of the 34 predictors
considered by the GBM model. The estimated reduction in MSE attributable
to the splits based on 6-month return (decimal) is almost 6. Comparison to
the MSE of fitted GBM model of 731 suggests the absolute importance of this
predictor. The second most significant signal is EBITDA/EV with estimated
MSE withholding of 2.9. This is not surprising as it serves as a proxy for value,
one of the most prominent risk factors. Analogously, we can observe that also
other well-documented risk factors such as profitability, investment, and size
are represented by respective proxies among the most important variables. On
top of these effects, many other anomalies such as intangibles, accruals, trading
volume, or analyst estimates show considerable contribution. Though, the ac-
curacy of the estimates of MSE reductions depends on the level of interactions

1Both estimated MSE reduction attributable to individual signals and the fitted GBM
MSE value of 73 are based on in-sample tests.



between the signals.

Using partial dependence plots (PDPs) in Figure B.3 we can further elabo-
rate on effects of the six most influential predictors. Each partial dependence
plot shows the predicted future return by the GBM model for given predictor
values while "averaging out"2 the effect of the others. Visual inspection pro-
vides quick insight into the marginal effects across various values of the signals.
Assuming that ROA (CFO) proxies for profitability, Asset growth proxies for
firm’s investment strategy and EBITDA/EV proxies for value, the estimated
partial relationships correspond to those of (Fama & French, 2015) in terms of
signs and importance.

The supremacy of 6-month return (decimal) is consistent with past relevant
literature since recent price actions are the most influential signals in the vast
majority of recent predictive studies using monthly data (e.g. Gu et al., 2020;
Choi et al., 2021, etc.). This past price action effect is usually in the form of
momentum. In this thesis, we recognize momentum as well; however, this is
true primarily for returns larger than 50% loss or lower than 25% gain in the
last 6 months. For loss larger than 50%, the stocks tend rather to reverse as
the marginal relationship is negative. Please see Figure B.3. Analogously for
EBITDA/EV, we can assume that the future returns are increasing in value
effect with flattening in the tails. Average monthly return in-sample3 is about
1.0%. Thus, we can see for what values of the given predictor, the average
future return prediction is above the in-sample average.

Before the mispricing strategy is established (i.e., we construct the long-short
portfolio), we can investigate the relationship between predicted and realized
returns, and the value added by the stock ranking. As described in Section 4.2,
each month, all firms are sorted into deciles based on the predicted future
returns. In Table 5.2 we can observe selected risk-adjusted performance in-
dicators across the derived deciles for the out-of-sample period April 2015 -
September 2021. Performance of the individual deciles relative to each other is
another evaluation tool for the constructed GBM model.

2Please see Section 4.3
3Similar to variable importance testing, marginal effects are derived on in-sample data so

partial dependence plots should be discussed with respect to in-sample data characteristics.



Table 5.2: Out-of-sample performance of decile portfolios

1 2 3 4 5 6 7 8 9 10
Excess return (%) -0.32 -0.05 0.44 0.48 0.58 0.36 0.69 0.66 0.74 0.71

SD (%) 3.84 3.76 3.62 3.25 3.54 3.50 3.75 3.88 3.94 3.87
Sharpe ratio -0.08 -0.01 0.12 0.15 0.16 0.10 0.18 0.17 0.19 0.18

Alpha -1.03 -0.78 -0.26 -0.16 -0.12 -0.33 -0.03 -0.09 -0.04 -0.03
Beta 0.78 0.79 0.76 0.69 0.75 0.75 0.79 0.81 0.84 0.81

The individual decile portfolios are constructed using sorts of predicted 1-month-ahead returns as de-
scribed in Subsection 4.2.2. Excess return (%) denotes the average of monthly return on top of US
Treasury bill rate over the out-of-sample period. SD denotes standard deviation of Excess return (%).
Sharpe ratio equals the excess return divided by standard deviation and represents the excess return per
unit of risk. Alpha and Beta are based on CAPM regressions for each decile portfolio over the out-of-
sample period from April 2015 to September 2021.

Monthly returns on top US Treasury bill rate are clearly increasing in the
ranking proposed by our GBM model. The average monthly excess return of
going long the bottom 10% of stocks with equal weighting and monthly rebal-
ancing is -0.32%, whereas the most profitable long-only strategy would be to
purchase stocks categorized in 9th decile with average monthly return of 0.74%.
Sharpe ratio provides a volatility-adjusted basis to asses returns and the pat-
tern is obviously positive as well. The alpha and beta reported in Table 5.2 are
based on CAPM4 and the increasing values of alpha display the value added by
the model. Even though the purpose of the table is to demonstrate the posi-
tive relationship between the portfolio sorts and their performance, the nega-
tive alpha return across the entire spectrum requires further discussion. The
negativity is attributable to the universe we pick the stocks from - leveraged
value small-capitalization stocks. Between 2015 and 2021, the portfolio tilting
favoured growth over value and the premiums historically presented faded com-
pletely. The estimated alpha for the entire universe is about -0.12% indicating
decent precision of the ranking by the model. During this out-sample period,
the value premium measured by HML was -0.47% and the size premium SMB
was slightly negative as well. Adjusting the positive exposure to such negative
premiums (i.e., estimating the three-factor model by Fama & French (1993))
would reverse the negative alpha for the top 4 deciles into positive territory.
Further factor exposure and abnormal returns analysis regarding top and bot-
tom deciles is presented later in this section.

4With benchmark market portfolio for developed countries as defined by Kenneth R.
French’s data library.



Figure 5.2: Probability distribution functions of selected deciles
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The decile portfolios are constructed using sorts of predicted 1-month-ahead returns as described
in Subsection 4.2.2. The two vertical lines represent the average monthly returns for respective
decile portfolios. Each probability distribution function is based on equal-weighted portfolio
returns for 78 months in the out-of-sample period (April 2015 - September 2021).

Piotroski (2000) argues that the success of simple value investing strategy
(based on book-to-market ratio) is driven by only a few outliers. Our mispric-
ing strategy is robust in this matter due to removal of the outlying observations
(in the future returns variable) for both model fitting and model testing. In
Figure 5.2 we plot distribution of 78 out-of-sample monthly returns for 1st and
10th decile portfolios. The two vertical lines in the chart depict the means of
the respective equal-weighted portfolios. Kurtosis of 3.22 for Decile 1 and 3.99
for Decile 10 suggest that the return series are not subject to extreme outliers.
Moreover, both samples are left-skewed, suggesting that exceptional negative
returns appear in both deciles. E.g., the worst-performing month was March
2020 due to uncertainty caused by global pandemic and both deciles exhibited
almost the same returns in that month.

Each month, returns of the mispricing strategy are calculated as the average of
return on stocks in Decile 10 and the return on selling short the stocks in Decile
1 with equal weighings and rebalancing every period. Please see Section 4.2 for
an explicit description of how to invest in such a strategy. Since the mispricing
hypothesis is primarily from a theoretical point of view, transaction costs are



not considered when calculating the strategy returns. However, a discussion on
transaction costs and the investability of the strategy will follow later in this
section.

Table 5.3: Out-of-sample mispricing strategy testing

Dependent variable: Excess return
Long-Short Long leg Short leg

(1) (2) (3) (4) (5)
Alpha 0.416∗∗∗ 0.424∗∗ 0.337∗∗ 0.114 0.561∗∗

(0.120) (0.124) (0.112) (0.189) (0.195)

Market 0.015 0.012 -0.014 0.767∗∗∗ -0.796∗∗∗

(0.028) (0.029) (0.029) (0.050) (0.051)

SMB 0.036 0.176∗ 0.572∗∗∗ -0.219
(0.083) (0.080) (0.136) (0.140)

HML 0.009 0.154∗ 0.177 0.130
(0.044) (0.074) (0.126) (0.130)

CMA -0.083 0.146 -0.313
(0.132) (0.224) (0.231)

RMW 0.500∗∗∗ 0.205 0.796∗∗∗

(0.108) (0.183) (0.189)

Observations 77 77 77 77 77
R2 0.004 0.007 0.240 0.849 0.834

The mispricing strategy is tested by regressing monthly excess returns of the
long-short portfolio described in Section 4.2 on major risk factors (i.e., we use
CAPM, and three and five-factor models by Fama & French). Variable Market
denotes monthly total return for global market portfolio as defined by Kenneth
R. French’s data library. SMB, HML, CMA and RMW represent factor pre-
miums (for small market capitalization, high book-to-market ratio, conservative
investment policy and robust profitability; respectively) as defined by Fama &
French. Alpha is the intercept and represents out-of-sample monthly abnormal
risk-adjusted returns of the mispricing strategy, i.e., mispricing in leveraged value
small-capitalization stocks.
. p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Table 5.3 provides table of the mispricing strategy tests using key asset pric-
ing models, i.e., we regress excess returns of the long-short portfolio on several
prominent risk factors. Adjusting for various risk factors (CAPM, FF3, and



FF5), the long-short portfolio yields significant alpha returns in the tested
period starting May 2015. The machine-learning-based strategy is able to pro-
duce a return of 0.34% per month on top of the return that would be required
by investors (by those investors who consider 5 risk factors - systematic risk,
size risk, risk of financial distress, weak profitability, and aggressive investment
policy). If adjusted only for risk proxied by market portfolio, the mispricing
strategy yields 0.42 % risk-adjusted abnormal monthly return.

We can observe that the exposure to market risk premium is not statistically
different from 0, which is consistent with the strategy that aims to exploit mis-
pricing and is supposed to be market neutral, i.e., market performance does
not affect the performance of this strategy. For individual legs of the mispric-
ing strategy, the market exposure is significant and symmetric (see (4) and (5)
in Table 5.3). The strategy slightly benefits from size premium, especially in
its long leg. In the short leg, the coefficient is negative as anticipated but in-
significant, which creates an overall tilt towards small-capitalization premium.
Given that the average market capitalization is $ 617 million and $ 1.3 billion
for stocks in the short leg and long leg, respectively, we can conclude that even
though small size usually yield a risk premium relative to large size, such an
effect does not hold within the small-capitalization spectrum. Otherwise, the
exposure of the short leg would be significantly negative. In fact, partial de-
pendence plot implies a rather positive relationship between size and return
within the universe.

Another noteworthy finding is that both short and long components yield value
premium even though we select the underlying stocks exclusively from high
book-to-market region, i.e., the shorting is - according to past asset pricing
literature - supposed to exhibit negative relation as this leg shorts the value
stocks. Book-to-market ratio is about 1 for the stocks in the long leg and 1.4
for those in the short one. Moreover, partial dependence plot showed that our
algorithm suggests a negative relationship between book-to-market valuation
and future return within the universe of leveraged value small-caps, especially
for stocks with book-to-market ratio over 0.8. While prior studies document
the B/M risk factor well, the findings are usually based on a broad sample of
stocks. Based on the significant coefficient of 0.154 for HML, we argue that this
value effect is not linear across the whole spectrum of B/M values and turns
negative for stocks with too high B/M multiples.



The relationship with investment policy is represented by CMA factor in the
table. The mispricing strategy is neutral to this factor since the performance of
the invested stocks is not affected in either leg. This is slightly surprising since
Asset growth - which serves as a proxy for investment policy factor in several
prior studies - is the fourth most important predictor of our GBM model, with
the marginal effect being clearly negative.

Conversely, the strategy is substantially loaded in profitability premium. The
universe from which the algorithm selects the stocks is not restricted to any
profitability values. Hence the algorithm can exploit the profitability premium
across the entire spectrum of profitability values (unlike for value factor where
the potential to capitalize on that premium in full is limited by definition of
the universe). The average operating profitability 5 is monotonically increas-
ing in the portfolio ranking with average operating profitability of -12.5% for
Decile 1 and 18% for Decile 10. Therefore, statistically positive exposure in
the short leg of the strategy indicates that selling short stocks with weak prof-
itability enhances expected excess return by 0.8 percentage points per month.
Coefficient for long leg is positive favouring long position into companies with
robust profitability; however, the statistical significance is rather low. Overall
the mispricing strategy yields a positive profitability beta return.

The monthly alpha for the short component of the mispricing strategy is 0.56
percentage points after controlling for key risk factors. On the other hand, the
long component fails to reject the zero-alpha hypothesis. Apparently, the short
leg in the mispricing strategy is the primary driver of the abnormal returns.
Contrariwise in terms of the returns not adjusted for various sources of risk,
long positions outperform the short ones. Please see Figure 5.3 for cumulative
performance based on the mispricing strategy, the long-only component, the
short-only component, and the equal-weighted portfolio of the leveraged value
small-capitalization stocks (=the universe). The mispricing strategy is superior
to simply holding the universe over the entire observed period. The volatility
of the strategy is also considerably lower.

5Operating profitability in this context is defined according to Fama & French (2015) as
operating income less interest expense divided by book equity.



Figure 5.3: Mispricing strategy cumulative performance

The figure depicts out-of-sample cumulative performance of the mispricing strategy (i.e. machine-learning-based long-short
portfolio as shown in Table 5.3 and defined in Subsection 4.2.2), its long-only, and short-only components; and equal-weighted
portfolio of leveraged value small-capitalization stocks (i.e., the universe defined in Section 3.2).

Universe of leveraged value small-caps likely suffers from lack of coverage by
analysts due to small size and elevated risk of financial distress reflected by
attractive valuation multiples. Such characteristics might represent an ideal
environment for mispricing by investors to take place, especially in periods of
elevated market volatility or credit crunches. If investors are really more sus-
ceptible to misprice in these periods, the constructed strategy will be able to
capitalize on that, i.e., yield higher abnormal returns than usual. In Table 5.4
we present results of regressing Jensen’s alpha - which represents the magni-
tude of the abnormal return each month (see Equation 4.5 for greater detail) -
on option-adjusted spread on high-yield bonds (1), and average monthly value
of index volatility VIX (2). We can see that neither of the two hypothesized
relationships is substantiated by the data, i.e., the coefficient is not statistically
positive in either case. Thus, we found no evidence that the mispricing strategy
performs (on a risk-adjusted basis) better during periods of lifted volatility or



tighter credit conditions.

Table 5.4: Mispricing during high volatility and tight credit

Dependent variable:
Jensen’s alpha
(1) (2)

Intercept 0.348 0.304
(0.432) (0.307)

OAS 0.015
(0.091)

VIX price 0.006
(0.016)

Observations 77 77
R2 0.0004 0.002
F Statistic (df = 1; 75) 0.027 0.157

Jensen’s alpha represents the magnitude of abnormal returns yielded by mis-
pricing strategy (i.e. yielded by machine-learning-based long-short portfolio as
shown in Table 5.3 and defined in Subsection 4.2.2) in each particular month af-
ter adjusting for market risk of CAPM. OAS is option-adjusted spread between
high-yield US bonds and US spot treasury curve. VIX price is a measure of ex-
pected volatility at S&P 500 in the next 30 days as implied by option prices. Null
hypothesis is that mispricing does not change with different credit conditions, or
market volatility, (1) and (2) respectively.
. p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Mispricing strategy beats the market on a risk-adjusted basis (see Table 5.3).
Put adjustments for various beta factors aside, the cumulative total return on
the global market portfolio is 92% as opposed to the return to mispricing strat-
egy of 46%. So the market performed better on absolute basis. However, it
does not necessarily imply that the superior strategy here is to hold the mar-
ket portfolio instead. According to portfolio selection theory (see Markowitz,
1952; Tobin, 1958), the investors should invest in such a risky portfolio that
the Sharpe ratio is maximized, and incorporate a position in risk-free asset to
achieve the absolute return of personal preference. Over the observed out-of-
sample period, Sharpe ratio6 is equal to 0.42 for the long-short portfolio and

6Please note the Sharpe ratio values are calculated using monthly data.



0.21 for global market portfolio7. Though adopting exclusively the mispricing
strategy is not optimal according to portfolio selection theory. Considering the
imperfect correlation of these two portfolios, the optimal risky portfolio would
consist of 91% of the long-short mispricing strategy-based portfolio and 9% of
the global market portfolio due to diversification.

So far, the analysis does not take into account any transaction costs. Given that
the short leg is the main contributor to the positive alpha of the strategy and
the small-capitalization nature of the universe, transaction costs might not be
necessarily negligible in this particular region of the portfolio. Average market
capitalization of the stocks sold short within this leg is USD 800 mil. Us-
ing a proprietary database of a large financial institution on security borrowing
fees8, Bekjarovski (2018) reports an average borrowing rate for similar-sized US
companies of 2.4% p.a. Adopting this finding as an assumption here, it would
represent 35% of the short leg monthly alpha (see (5) in Table 5.3). Man-
ual check9 on borrowing rates for several micro-capitalization stocks included
in our portfolio indicated rather lower than the assumed cost of borrowing.
Through there is potential for outliers in case of a deficient number of shares
available for borrowing. While this poses a noteworthy restriction to executing
the strategy in full, it is still investible given that on an average month, the
short leg consists of 90 stocks.

7Global market portfolio for developed countries by Kennetch R. French data library.
8In order to short sell a security, it needs to be borrowed. For borrowing a security, an

annualized borrowing rate is charged.
9Such manual check was carried out at the end of 2021 using borrowing rates quoted by

a global brokerage.



6 Conclusion

The focal point of this thesis is the universe of leveraged values small-capitalization
stocks, which are characterized by their exposure to common risk factors. We
show that the characteristic environment of this universe is also associated with
mispricing of the securities by investors. We also identify the major anomalies
that contribute to the predictability of returns and drive the abnormal returns
of the mispricing strategy.

First, we predict the ability of the companies to reduce long-term debt in
the course of the next twelve months as - according to prior literature - this
might be the primary driver of abnormal returns in such a universe. Having
gradient boosting machines algorithm learning on 15 years of fundamental-
only stock-level monthly data, we are able to predict future deleveraging with
out-of-sample accuracy of 62%. The most important predictor in this mat-
ter is CAPEX/Assets implying that higher CAPEX reduces the probability of
deleveraging in the near future, though not linearly. The other predictors that
reduced the out-of-sample misclassification rate the most are consensus esti-
mate of growth rate of sales (negative relationship for growing firms) and cur-
rent ratio (positively related to the probability of deleveraging). Even though
the predictions are ahead as much as 12 months, we are able to take advantage
of the monthly frequency of data due to LTM accounting figures. As a result,
most recent accounting data is considered, e.g., every quarterly release is im-
mediately reflected. Even though the boosted trees algorithm is often touted
as a "black-box" technique due to its limited interpretability, we present aver-
age partial prediction functions for individual predictors and estimates of their
predictive power allowing for further detail into the deleveraging determinants
(see Appendix B).

Subsequently, we formulate the mispricing strategy by sorting the universe
into deciles based on predicted future returns and by going long the top decile
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and selling short the bottom one. We predicted 1-month ahead returns over
6.5-years-long out-of-sample period starting in April 2015 with RMSE of 8.6
(i.e., equal to one standard deviation). The average excess return is -0.32% for
the Decile 1 portfolio and 0.72% for Decile 10 portfolio. The decile portfolios
are clearly increasing in Sharpe ratios and alphas determined by CAPM, vali-
dating the stock selecting process.

Finally, the constructed long-short portfolio yields abnormal risk-adjusted re-
turns of at least 0.34 percentage points per month according to all three asset
pricing models used for testing (CAPM, and three and five-factors models of
Fama & French). Since empirical asset pricing is a saturated research area,
several differential aspects should not be left unnoticed. We exclusively focus
on leveraged value small-capitalization universe, allowing for relationships spe-
cific to companies with such characteristics. In addition, we apply boosted
trees methodology that can capture complex relationships between the pre-
dictors and the future returns. We also present the predictive contribution of
individual signals and their nonlinear partial effects. Our monthly stock-level
data is aligned in terms of announcement dates and include delisted securities
eliminating look-ahead and survivorship bias. Thus, on each portfolio rebalanc-
ing date, the algorithm considers the most recent and only already-announced
information, mimicking a real information set an investor would have at his
disposal.

Sharpe ratio of the constructed strategy is 0.42, exceeding the global bench-
mark. Based on mutual correlation, the most efficient portfolio (considering
only these two assets) is composed of 91% mispricing strategy and 9% global
benchmark portfolio. However, security borrowing costs associated with the
short leg of the strategy would consume approximately 35% of the monthly
alpha return attributable to that leg if borrowing rate of 2.4% p.a. is assumed.
Since security borrowing rates are a function of lending supply and borrowing
demand, excessive rates might eventually occur. Detailed analysis of borrowing
rates is beyond the scope of this thesis. Further research on this matter would
help validate the mispricing strategy’s convertibility into real-world profits. In
spite of potentially further need for clarity on the self-sufficiency of the strat-
egy, it can readily be used in practice for stock screening. Another potential
application is determination of a proper discount rate, especially for short-term
periods.



Compared to previous studies addressing similar research questions, our al-
gorithms were trained and tested on a considerably shorter and more recent
period (from March 2000 to September 2021). While this allows to capture in-
vestors’ behavior and asset pricing trends of the current millennium within the
mispricing strategy, fundamental-only oriented model predicting future debt
paydown would likely benefit from a more extended training period. Choice
of the suitable machine-learning algorithm and associated specifications was
based on several past papers providing relevant benchmarks (e.g. Gu et al.,
2020). Though, further potential in terms of predictive power might lie in al-
ternative model specifications such as considering additional hyperparameters
or other loss functions, e.g., using Huber loss function1 poses an alternative
treatment of outlying observations.

1Huber loss function defined by Huber (1964) combines squared-error L2 and absolute
error L1 loss functions such that it switches from L2 to L1 for residuals greater than a
specified maximum error value δ.
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A Appendix A: Variable Definitions

Table A.1: List of variables

Variable Description Debt
paydown
model

Total
return
model

EBITDA/EV EBITDA / Enterprise value ✓ ✓

LT debt/EV Long-term debt / Enterprise value ✓ ✓

LT debt/Assets Long-term debt / Total assets ✓

log(Market cap) Natural logarithm of market capitalization ✓ ✓

DSCR Operating income / Debt service ✓ ✓

Current ratio Current asset / Current liabilities ✓

Cash ratio Cash and short-term investments / Current
liabilities

✓

log(Current ratio) Natural logarithm of Current ratio ✓

log(Cash ratio) Natural logarithm of Cash ratio ✓

ROA Net Income / Total assets ✓ ✓

ROA (CFO) Operating CF / Total assets ✓ ✓

Gross margin Gross profit / Total revenue ✓ ✓

Gross profitability Gross profit / Total assets ✓ ✓

EBITDa margin EBITDA / Total revenue ✓ ✓

Operating margin Operating income / Total revenue ✓

Operating margin
change

Operating margint −Operating margint−12 ✓ ✓

Accruals (CF) (Net income - Operating CF) / Total assets ✓ ✓

II



PP&E investment (PP&E / Total assets)t −
(PP&E / Total assets)t−12

✓ ✓

PP&E and inventory
change

(PP&E and inventory/ Total assets)t −
(PP&E and inventory/ Total assets)t−12

✓

Intangibles Intangibles / Total assets ✓ ✓

Dividend Payout Cash dividends / Net income ✓ ✓

Sales growth Total revenuet / Total revenuet−12 − 1 ✓ ✓

Asset growth Total assetst / Total assetst−12 − 1 ✓ ✓

CAPEX/Assets CAPEX / Total assets ✓ ✓

CAPEX/Assets dummyt (CAPEX/Total assets)t >
(CAPEX/Total assets)t−12

✓

NI growth est. Consensus estimate of net income growth
rate over next twelve months

✓ ✓

Sales growth est. Consensus estimate of total sales growth rate
over next twelve months

✓ ✓

1-month return (%) Total return over the last month, including
dividends. Expressed in percentage.

✓

6-month return
(decimal)

Total return over the last six months, includ-
ing dividends. Expressed in decimals.

✓

Debt Paydownt =1 if Long-term debtt > Long-term debtt−12,
and 0 otherwise

✓

Future Debt Paydownt Estimated probability of
Debt Paydownt+12 = 1, i.e. probability
of reducing long-term debt in next twelve
months. This estimate represents the target
variable for the Debt paydown model.

✓

Volume trend (3m) Average daily volumet /
Average daily volumet−3

✓

Price target relative Consensus share price target for next twelve
months / Current share price. Adjusted for
stock splits.

✓

R&D/Market Cap Research and development expense / Market
capitalization

✓

Extra items % NI Net income before extra items / Net income
-1

✓



Dividend Yield Cash dividend per share / Share price. Ad-
justed for stocks splits.

✓

Sales/Price Total revenue / Market capitalization ✓

E/P Net income / Market capitalization ✓

Book-to-Market Book value of equity / Market capitalization ✓

Asset turnover Total revenue / Total assets ✓



B Appendix B: Model Interpretation

Figure B.1: Variable importances in the predictive models
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Left-hand side of the figure shows what would be the increase in missclasification rate of our future debt paydown prediction model if we "noised
up" the individual signals while keeping the others unchanged. The right-hand side of the figure shows the reduction of mean squared errors for
predicting future monthly returns attributable to the individual predictors. In both cases the underlying predictive model is gradient boosting
machines with trees. Both the model fitting and the metrics are based on universe of leveraged value small-capitalization stocks for in-sample
period (March 2000 - February 2015). Detailed calculations are provided in Section 4.3.



Figure B.2: Future Debt Paydown - Partial dependency

The figure depicts estimated relationships between the probability of reducing long-term debt in next welve months
and selected individual predictors while averaging out the effects of the other predictors. The underlying predictive
model is gradient boosting machines that considers 25 lagged fundamental signals and is trained on leveraged value
small-capitalization stocks between March 2000 and February 2015. See detailed methodology in Section 4.3

Figure B.3: Future Return - Partial dependency

The figure depicts estimated relationships between 1-month ahead return and selected individual predictors while averaging
out the effects of the other predictors. The underlying predictive model is gradient boosting machines that considers 34
lagged stock-level signals and is trained on leveraged value small-capitalization stocks between March 2000 and February
2015. See detailed methodology in Section 4.3.
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