
BACHELOR THESIS

Tomáš Zeman

Cross-platform 2D game framework

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Jakub Gemrot, Ph.D.

Study programme: Computer Science

Specialization: General Computer Science

Prague 2022

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

I would like to thank my supervisor Mgr. Jakub Gemrot, Ph.D., my
family and friends for all their support and advices.

Title: Cross-platform 2D game framework

Author: Tomáš Zeman

Department / Institute: Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Jakub Gemrot, Ph.D., Department of Software
and Computer Science Education

Abstract: One of the most useful tools for game development is a game framework. It is
usually a complex software which offers abstraction of game components such as
rendering, physics, sound, user input or AI. The goal of this thesis is to create a simple
game framework for 2D games, focused on performance, extensibility and
multiplatformity. A second goal of this thesis is implementation of an example game for
demonstration of functions and functionality of the framework.

Programming language C++ was chosen for development of the framework along with a
portion of SDL library. Target platforms were chosen to be Windows and Linux. The
example game was successfully implemented and tested on both platforms using most of
the framework’s capabilities.

Keywords: game framework, 2D, C++, cross-platform

1

Contents
Introduction...5

Thesis Goals..6
1. Existing Frameworks...7

1.1. Overview...8
Unity 3D...8
Unreal Engine...10
Godot..12
GameMaker Studio 2..13
Cocos2d-x..14
libGDX..15
MonoGame..16

2.1. Comparison...17
3. Analysis...20

3.1. Programming Language..21
C++..21
C#...21
Java...22
Rust...22
Selection..22

3.2. Target platforms...23
Linux...23
Windows..23

3.3. Framework components..24
Scene handling..25
Rendering..25
Physics..25
Audio...25
Scripting..26
User interface..26
Networking..26
Entity Component System support...26

3.4. Libraries available...28
SDL...28
SFML..28
GLFW...28
Box2D...28

2

Chipmunk2D...29
Dear ImGui...29
NanoGUI...29
Gainput...29
GameNetworkingSockets...29

3.5. Selection..30
4. Development documentation...31

4.1. Architecture overview...31
SceneGraph...35
Utility Classes...35
Framework Subsystems (Engines)...35
Entity Component System..35
Resources...36
Scene...36

4.2. Scene...37
4.3. Scene Graph...38
4.4. Utility classes..40

Resources...40
Settings...40
Camera..40
Texture..40
Logger...40
Timer...41

4.5. Framework subsystems (Engines)...42
RenderEngine..42
SoundEngine...42
InputEngine..42
FileEngine...43
LuaEngine...43

4.6. Components..44
Console Component..45
GUI Component..45
Input Component..45
Physics Component...45
Sound Component...46
Sprite Component...46
Type Component..46

4.7. Systems...47
Physics System..47

3

Render System..47
PlayerInput System...47
Audio System..48
Console System...48
GUI System...48

4.8. Compilation..49
5. Example game...51

5.1. Example 1 - Empty Game..51
5.2. Example 2 - Player...55
5.3. Example 3 - Console...57
5.4. Example 4 - Physics...59
5.5. Example 5 - Audio..61
5.6. Example 6 - GUI..62
5.7. Example 7 - Animations & Scripting...64
5.8. Final Example..65

Conclusion...66

4

Introduction
Videogames have been made for decades. As hardware performance has

increased over the years, the complexity of modern cutting-edge videogames shot
up drastically. The most-played videogames are no longer developed by
individuals, but by whole teams of developers. As developing costs skyrocket, it
has become imperative to simplify the development process to save resources.
Software tools are the elegant solution to save on development time and
resources. These tools, big or small, simplify certain parts of the videogame
development process so that developers can focus on more important elements of
a game. This thesis seeks to implement such a tool.

One of the most common and most useful tools is the so-called game
framework or engine. Both of these are often used interchangeably since they lack
proper defnition. However, there are diferences. While framework is used for
lower level software and software without its own graphical interface, engine is
used for larger, more robust, software bundles, usually using their own graphical
application. This thesis focuses on the former concept of a game framework.

Game framework is a software tool or a set of tools, typically consisting of
subsystems for graphics, sound, physics, user input, AI, scene representation etc.
Game frameworks can be categorized based on many criteria, such as target
platforms, programming language, focus on 2D or 3D games or licensing.

Problems may arise when choosing the right framework or engine for
developing a particular game. For beginner developers existing engines, such as
Unity or Unreal Engine might be too complex or hard to navigate. For large
videogame development companies creating the latest AAA games using cutting-
edge technology no framework can be fexible or robust enough. The solution to
both of these issues is to create a custom framework.

5

Thesis Goals

 Create a 2D multi-platform (Linux and Windows) game framework

 Use the framework to create a simple game to demonstrate framework‘s
functions

Structure of This Thesis
Chapter One analyzes the existing software, its features, performance,

platforms available and other specifcs. Because the diference between a game
engine and a game framework is slight, both software presenting as a framework
and software presenting as an engine are considered. At the end of the chapter,
there is a comparison of the engines and frameworks discussed along with their
summary.

Chapter Two discusses reasoning behind programming language choice,
platform selection and libraries used. This chapter also describes components of
the framework built in this thesis.

Chapter Three describes implementation of the framework built here. This
chapter starts by providing an overview of the framework‘s architecture and
continues by detailed description of each component and their interfaces and
interactions.

Chapter Four presents a simple example game. The purpose of the
example game is to demonstrate functionality and features of the framework. The
body of this chapter mainly provides code snippets and screenshots of the game.

Chapter Five, the last chapter of this thesis, discusses the results and
options for future work.

6

1. Existing Frameworks
Currently, there exist dozens of publicly usable game engines and

frameworks1. These pieces of software difer in many aspects. Supported
platforms, licensing options, ofered performance, programming languages
supported, technical support availability and more can vary signifcantly. To
provide a better understanding of modern engine or framework capabilities,
several popular frameworks and engines have been selected for comparison. Here,
each of the selected is summarized with focus on licensing options, features,
supported languages and supported platforms. Last section compares them.

1 https://en.wikipedia.org/wiki/List_of_game_engines

7

https://en.wikipedia.org/wiki/List_of_game_engines

1.1. Overview

Unity 3D
Unity 3D is the most used game engine in the world with 48% market

share [1] and $234.8 million revenue in Q1 20212. It ofers wide platform support
including iOS, Android, WebGL, Nintendo Switch, Google Stadia, PS4, Xbox,
Oculus and more are added to support next-generation platforms.

Unity is currently (2022) available for free for companies or developers
whose revenue or funding is less than $100,000 in the last 12 months. The “Plus
plan“ provides developers with splash screen customization, advanced diagnostics
and analytics. This plan is only available to subjects with revenue or funding less
than $200,000 in the last 12 months. Above the $200,000 revenue level, subjects
are required to use Pro or Enterprise plans. These plans ofer advanced technical
support, high-end art assets, build server capacity, and more. Unity does not take
royalties.

2 https://unity.com/our-company/newsroom/unity-announces-frst-quarter-2021-fnancial-results

8

https://unity.com/our-company/newsroom/unity-announces-first-quarter-2021-financial-results

This game engine comes with an editor for creation of both 2D and 3D
games. It provides developers with many tools such as code editor, scene
visualization, asset management, particle system visualization and much more.

Unity supports scripting in C# natively and in any other language with
support for compiling into a .NET compatible DLLs (Dynamic Link Library).
Unity provides two scripting backends: Mono and IL2CPP (Intermediate
Language To C++). Mono, the default, compiles scripts written in C# using JIT
(Just-in-time) compiler. IL2CPP compiles intermediate language (in this case
C#) to C++, which is then compiled to native binary fle using AOT (Ahead-of-
time) compiler.

Unity is well optimized for development of games of various genres and
scales from small mobile games to large AAA games. Many successful games, for
example Kerbal Space Program (over 2 million copies sold [2]), HearthStone (over
23 million active players in 2020 [3]) or Subnautica (over 5 million copies sold
[4]), were made with Unity.

9

Unreal Engine
This second most commercially used engine supports slightly less

platforms, but still supports development for iOS, Android, Windows, Linux,
Google Stadia, Xbox, Nintendo Switch, PS4 and similar platforms. Unreal Engine
revenue was $97 million in 2019 [5] and its market share in 2021 was 13%.

Unreal Engine is currently (2022) free to use with 5% royalties if your
revenue exceeds $1,000,000. Unreal Engine also ofers a royalty-free licence for
internal projects, free projects and non-interactive content (flms, TV shows,
videos or still images). In all cases, full access to C++ source code of the engine
is provided.

Just like Unity, Unreal Engine also comes with an editor supporting 2D
and 3D games. The editor ofers similar features as Unity Editor.

10

Unreal Engine supports scripting in Blueprint Visual Scripting system.
This node-based system is used by developers to interactively create scripts,
which are then transformed to C++ classes. These classes will then be compiled
during the build phase for a specifc platform. Scripting natively in C++ is also
supported, and results in faster code at the cost of more development time.3

Unreal Engine is well optimized for large and complex games of diferent
genres, especially frst person games. Among successful games developed with this
engine are Life Is Strange [6], Fortnite [7] and Ark: Survival Evolved [8].

3 http://awforsythe.com/unreal/blueprints_vs_cpp

11

http://awforsythe.com/unreal/blueprints_vs_cpp

Godot
Godot engine is an open-source engine with focus on both 2D and 3D

games. Unlike the previous two engines discussed, Godot is completely free
without any royalties. While not many games are created using Godot, in
comparison with Unity and Unreal Engine, it ofers an editor with similar
functionalities as Unity and Unreal Engine. Platforms supported are similar to
Unreal Engine‘s: Windows, Linux, iOS, Android, Nintendo Switch, PS4, Xbox
One, various VR platforms, and others.

In terms of scripting, Godot ofers the widest support of languages.
Developers are able to use GDScript, its own scripting language, C#, C/C++,
block-based visual scripting and more languages by community provided
bindings.

Godot Engine is designed to be easy to use, but still fexible and complex
enough for medium scale games. There aren‘t many well-known examples of
games made with this engine due to its low market share, caused by its low
funding, in comparison to Unity or Unreal Engine. On top of that, Godot was
released in 2014, making it a relatively new engine. An example of a succesful
game made with Godot is Deponia [9].

12

Illustration 3: Godot Editor

GameMaker Studio 2
GameMaker Studio 2 (GMS) is a game engine focused on 2D games (with

limited 3D capability). Its original focus was on novice programmers, but with
recent releases, more advanced features, were implemented.

This engine supports development for multiple platforms such as Windows,
Linux, consoles or mobile phones. Its editor is easy to use with focus on visual
development. For scripting, GameMaker Studio created GameMaker language,
based on C programming language. Other scripting option is DnD™ (Drag and
Drop™) visual scripting.

Pricing is less friendly for novice programmers. It‘s only free licensing
options allows exporting games only to GXC, browser-based platform owned by
Opera. For exporting to desktop platforms, Windows, macOS and Linux, the cost
of a licence is 50$/year. For $100/year, developers can buy a licence that allows
for exporting games to desktop platforms, mobile platforms, web (HTML5) and
UWP (Universal Windows Platform). Development for three console platforms,
Playstation (4 and 5), Xbox (One and Series X|S) or Nintendo Switch, costs
$800/year. Best example of a succesful GMS game is Undertale [10].

13

Illustration 4: GameMaker Studio 2 - Editor

Cocos2d-x
Cocos2d-x is a free, open source, game framework for creating 2D games.

It does not provide an editor (editor is available as a standalone tool - Cocos
Creator). For developers it ofers easy to use and fast API.

The only supported platforms are mobile (iOS, Android) and desktop
(Windows, Linux, macOS). Among its features are: scene management, sprite
management, physics (uses Box2d or Chipmunk physics engines), animations,
sound support, basic GUI (Graphical User Interface), user input support (touch/
mouse/keyboard/accelerometer depending on platform) and others.

This framework is written in C++, but provides bindings for Lua and
JavaScript programming languages. Good example of a game made with this
framework is Hill Climb Racing mobile racing game with more than a billion
downloads in total [11].

14

libGDX
This game development framework is written in Java, ofers cross-platform

development and open-source code at no cost with comprehensive documentation.
Just like previous framework, it does not ofer an editor.

Supported platforms are Windows, Linux, macOS, Android, iOS and Web
(HTML5). Its development features consist of audio, input handling, 2D and 3D
graphics, fle system abstraction, networking, integration of services such as
Google Play Games, in-app purchases or various analytics, physics and more.

Examples of games written using this framework are Slay the Spire [12] or
mobile game Sandship (with more than 5 million downloads4).

4 https://play.google.com/store/apps/details?id=com.rockbite.deeptown&hl=en&gl=US

15

https://play.google.com/store/apps/details?id=com.rockbite.deeptown&hl=en&gl=US

MonoGame
MonoGame is another example of a game framework. Written in C#,

based on Microsoft‘s XNA (XNA‘s Not Acronymed) Framework, it is open-source
and supports multiple platforms: Android, iOS, Windows, macOS, Linux, PS4,
Xbox and Nintendo Switch with plans to support more.

Its ofered features are similar to other frameworks, 2D and 3D graphics,
audio, input handling and its own math library. Same as previous frameworks, it
does not ofer a game editor, only GUI editor for project management.

2. Noteworthy games made using this framework are Celeste [13],
Barotrauma [14] or Stardew Valley, which sold over 10 million copies in 4 years5.

5 https://www.stardewvalley.net/press/

16

https://www.stardewvalley.net/press/

2.1. Comparison
From these examples we can see that game engines provide developers with

powerful editors to separate game development from its coding aspect. On the
other side, frameworks tend to be more transparent about their architecture and
external libraries used. Engines are often sold to developers with many licensing
options. Frameworks are often free and open-source, enabling its further
development by community. Engines usually provide integration with third party
tools.

17

Pricing comparison
Non-commercial
use

Commercial
use

Price range

Unity 3D Free Paid
$399/year/seat -
$4000/month/20 seats

Unreal Engine Free
Free + 5%
royalties

5% royalties +
$0 - $1500/seat/year

Godot Free Free N/A

GameMaker Studio 2 Free trial (30 days) Paid $39 - $1500/year

Cocos2d-x Free Free N/A

libGDX Free Free N/A

MonoGame Free Free N/A

Table 1.1: Framework/Engine comparison - Pricing

Platform support

W
in

d
ow

s

L
in

u
x

m
ac

O
S

A
nd

ro
id

iO
S

F
ir

e

P
S

4

P
S

5

P
S

V
it

a

X
b

ox

N
in

te
nd

o
S

w
it

ch V
R

W
eb

G
oo

gl
e

S
ta

d
ia

R
as

p
b

er
ry

 P
i

Unity 3D ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘

Unreal Engine ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✘

Godot ✔ ✔ ✔ ✔ ✔ ✘ ✘6 ✔ ✔ ✘ ✘

GameMaker Studio 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✘ ✘

Cocos2d-x ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

libGDX ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔

MonoGame ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✔ ✔ ✘ ✘ ✔ ✘

Table 1.2: Framework/Engine comparison - Platform support

6 Unofcial support

18

Language support Native language Scripting options Open-source

Unity 3D C# C# No

Unreal Engine C++ C++, Blueprint Yes

Godot C++ C++, C#, GDScript,
Visual Script

Yes

GameMaker Studio 2 C++ GML, DnD™ No

Cocos2d-x C++ Bindings for Lua &
JavaScript

Yes

libGDX Java N/A Yes

MonoGame C# N/A Yes

Table 1.3: Framework/Engine comparison - Language support

Development options 2D/3D games Editor Notable features

Unity 3D 2D/3D Yes Asset store

Unreal Engine 2D/3D Yes Complex graphics

Godot 2D/3D Yes Wide scripting support

GameMaker Studio 2 2D (limited 3D) Yes Easy to use, Wide platform support

Cocos2d-x 2D No Lightweight

libGDX 2D/3D No Java development

MonoGame 2D/3D No Based on XNA

Table 1.4: Framework/Engine comparison - Development options

19

3. Analysis
This chapter frst summarizes the cons and pros and discusses the selection

of commonly used programming languages for framework development.

Second section discusses target platforms (Linux and Windows). For each
target platform I will summarize their advantages and disadvantages in terms of
game framework development, their specifc subsystems and other platform
specifc features.

In the third section, distinct components of a general game framework are
described. Not every framework contains all of the described components and
most frameworks contain more components.

In the fourth section, some third party libraries, providing abstraction of
one or more components mentioned in the third section, are summarized.

In the last section libraries selected for the framework are discussed.

20

3.1. Programming Language
The choice of a programming language afects most aspects of the

development process. Performance, library selection, memory overhead, platform
support, scripting language integration, extensibility, or the speed of the
development process all largely depend on the framework‘s native language.

C++
C++ is one of the most commonly chosen languages. It ofers great

performance by compiling code directly into platform specifc machine code.
Other advantages for of C++ include the numerous third party libraries available
and the control over optimizations and memory allocation resulting in very small
memory overhead.

Disadvantages of C++ are for example: possibility of memory leaks, need
to compile for each platform independently and harder debugging compared to
C# or Java.

C#
Very popular language for game and game framework development with

many libraries providing high level abstraction. C# compiles code to intermediate
language which is then interpreted by a virtual machine. This process slows its
execution, but makes debugging easier and allows it to run the same code on
multiple platforms.

Allocated memory is managed by a garbage collector. This approach
relieves the developers from manually managing memory, but introduces a
performance penalty and memory overhead.

21

Java
Similar to C#, Java compiles code to intermediate language, called

bytecode, which is then run using Java VM. Java emphasizes being a cross-
platform, high level language. As with C#, Java uses a garbage collector for
memory management.

Game framework development in Java makes games easily portable. The
exception to this is consoles, since Java VM is not available for most major
consoles. In terms of performance, Java programs are not as fast as C++
programs and a framework developed using Java will most likely need parts of it
have rewritten in C/C++.

Rust
Rust language ofers similar performance as C++ with easier and safer

memory management. However, it is a relatively new language from 2010 and
thus there is not as many libraries or as much community support as there is for
languages like C# or C++.

Selection
C++ was selected as the framework language. It was chosen mainly for

ofering a wide range of third party libraries, having the best performance while
supporting OOP and having a rich standard library.

22

3.2. Target platforms
Here positives and negatives of game development for two main desktop

platforms, Windows and Linux, will be summarized.

Linux
Supporting the Linux platform can be rather easy due to it‘s more

technical community, mostly open-source libraries, and easy compiling. Games for
this platform can use either OpenGL API (Application Programming Interface)
for 2D or 3D graphics or Vulkan for 3D graphics.

Windows
Windows is the most used desktop gaming platform7, supporting this

platform should be a priority for every framework aiming for success. Thanks to
this, the gaming market on Windows is also full of competition as vast majority
of desktop games support this platform.

Windows also ofers the use of Microsofts proprietary software DirectX.
This is a set of APIs for multimedia and game programming. Part of this is
Direct3D API for 2D and 3D graphics. Games for Windows can also use Vulkan
or OpenGL.

7 https://www.statista.com/statistics/265033/proportion-of-operating-systems-used-on-the-
online-gaming-platform-steam/

23

https://www.statista.com/statistics/265033/proportion-of-operating-systems-used-on-the-online-gaming-platform-steam/
https://www.statista.com/statistics/265033/proportion-of-operating-systems-used-on-the-online-gaming-platform-steam/

3.3. Framework components
Game frameworks can be divided into components that interact with each

other, providing unifed interface and abstraction. This approach makes
development of a framework easier since diferent components do not usually
depend on each other and a component can be developed without being burdened
by unnecessary dependencies. Abstraction provided by the framework then
separates developers from platform dependent or low-level code.

A good overview of various framework components can be found in the
Game Engine Architecture book by Jason Gregory (Gregory, J. 2018, fg. 1.16.)
[15]. From the fgure, a set of components most often used in a framework has
been selected:

• Scene handling

• RenderingEngine

• Physics

• Audio

• Scripting

• User interfaces

• Networking

• Entity Component System support

Many components mentioned in the book are not covered by this thesis for
multiple reasons such as being too advanced, unnecessary or specifc for 3D
games.

There is a short comparison of popular frameworks from the previous
chapter at the end of this section (Table 3.1). It summarizes their support of the
following components. Only native support is considered.

24

Scene handling
A common approach for dividing games into smaller parts is using scenes.

Each scene is basically a screen displaying diferent information. Scenes can vary
in granularity from small and specialised, displaying each level or menu screen, to
big and complex, displaying the entire game or all menu screens.

A game is then a collection of screens with a starting screen. Player then
navigates through the scenes, for example by pressing the “Start“ button in the
menu screen.

Rendering
Rendering subsystem takes care of rendering textures, user interface and

other game elements onto the screen. This uses graphic APIs such as OpenGL or
Direct3D either directly or through a graphics library. Graphic APIs then interact
with OS and hardware to send rendered data to GPU, which then renders it on
the screen.

Physics
Physics simulation is a useful but complex and demanding feature of a

framework. For this reason, there are dedicated physics libraries that try to
optimize this as much as possible. Not every game uses physics, but among
frameworks it is a common feature.

This component provides functionalities such as rigid-body simulations,
collision detection, sensors for proximity detection or joints.

Audio
The audio component of a framework functions as abstraction for playing

music or short sounds. It takes care of decoding various audio formats and
streaming them to audio devices.

25

Scripting
Scripting is a way for game developers to write code that does not have to

be compiled with the game and can be used to either modify the behaviour of the
game or act as a game itself. Scripts can also be used by third party developers to
modify or extend the game.

Scripting languages are typically interpreted at runtime. Because of this,
their performance is worse than that of compiled languages.

User interface
This components provides abstraction for handling user input from various

sources such as keyboard, mouse, controller or touchscreen.

Networking
All online multiplayer games need to connect to either a server or directly

to another client through the internet. Even some single-player games use
networking to check for updates or display real-time news in-game. Networking
component abstracts networking to provide a simpler interface than what OS or
framework‘s language library ofer.

Entity Component System support
Recently, game developers have started to use a software architecture

pattern called Entity „Component System“ more often, rather than using a pure
OOP approach. This patter prioritizes composition over inheritance and ofers
several advantages:

• Better scalability

• Separates game logic from game data, making changes to either one easier

• Code fexibility

26

Components

P
h

ys
ic

s

A
ud

io

S
cr

ip
ti

n
g

S
ce

n
e

S
u

pp
or

t

N
et

w
or

k
in

g U
se

r
in

te
rf

ac
e

E
C

S

Unity 3D ✔ ✔ ✔ ✔ ✔ ✔ ✔

Unreal Engine ✔ ✔ ✔ ✔ ✔ ✔ ✘

Godot ✔ ✔ ✔ ✔ ✔ ✔ ✘

GameMaker Studio 2 ✔ ✔ ✔ ✘ ✔ ✔ ✘

Cocos2d-x ✔ ✔ ✔ ✔ ✔ ✔ ✘

libGDX ✔ ✔ N/A ✔ ✔ ✔ ✘

MonoGame ✔ ✔ N/A ✘ ✔ ✘ ✘

Table 3.1: Framework Components - Comparison

27

3.4. Libraries available
In this section several known examples of libraries are introduced.

SDL
Simple DirectMedia Layer, SDL, is a cross-platform library providing low

level interface to hardware or system components such as audio, input devices,
graphics (using OpenGL and Direct3D) or networking 8

It is written in C with bindings to other languages, for example C#, Go,
Python or Rust.9

SFML
This multimedia library is very similar to SDL. Provides modules for

graphics, audio, networking and window management. Compared to SDL, this
library is written in C++ and implements object oriented design 10

GLFW
GLFW11 is another library providing a simple API, written in C. It uses

OpenGL and Vulkan backends for rendering and includes support for user input
devices. Many frameworks, Cocos2d-x or libGDX for example, use GLFW.12

Box2D
Box2D13 is a 2D physics engine, developed by Erin Catto. It is written in

C++ with community support for other languages. Several popular frameworks
and engines use Box2D to simulate 2D physics. Examples of these can be
libGDX14 or Unity15.

8 https://www.libsdl.org/
9 https://www.libsdl.org/languages.php
10 https://www.sfml-dev.org/faq.php#grl-whatis
11 https://www.glfw.org/
12 https://www.glfw.org/community.html
13 https://box2d.org/
14 https://github.com/libgdx/libgdx/wiki/Physics
15 https://docs.unity3d.com/Manual/PhysicsSection.html

28

https://docs.unity3d.com/Manual/PhysicsSection.html
https://github.com/libgdx/libgdx/wiki/Physics
https://box2d.org/
https://www.glfw.org/community.html
https://www.glfw.org/
https://www.sfml-dev.org/faq.php#grl-whatis
https://www.libsdl.org/languages.php
https://www.libsdl.org/

Chipmunk2D
This physics library is written in C and compared to Box2D focuses on

multi-threading support and performance.16 Chipmunk2D is included in Cocos2D
framework.17

Dear ImGui
Dear ImGui is a Graphical User Interface (GUI) library for C++.18 It is

sponsored by large companies such as Blizzard, Google, Nvidia or Ubisoft.19 Focus
of this library is on easy integration. This library is not very fexible in
customizating the look of the interface. For this reason it is best suited for
making tools rather than games.

NanoGUI
NanoGUI is a GUI library written in C++.20 Unlike Dear ImGui,

NanoGUI depends on GLFW and a few other libraries.

Gainput
Gainput is a C++ input library focused on games.21 It provides a unifed

interface and besides desktop or console devices (keyboard, mouse, gamepad), it
supports multi-touch screens or built-in sensors commonly found in mobile
devices.

GameNetworkingSockets
GameNetworkingSockets is a networking library written in C++.22 Among

its features are reliable and unreliable connection over UDP, encryption or IPv6
support.

16 https://chipmunk-physics.net/aboutChipmunk.php
17 https://chipmunk-physics.net/games.php
18 https://github.com/ocornut/imgui
19 https://github.com/ocornut/imgui/wiki/Sponsors
20 https://github.com/mitsuba-renderer/nanogui
21 https://github.com/jkuhlmann/gainput
22 https://github.com/ValveSoftware/GameNetworkingSockets

29

https://github.com/ValveSoftware/GameNetworkingSockets
https://github.com/jkuhlmann/gainput
https://github.com/mitsuba-renderer/nanogui
https://github.com/ocornut/imgui/wiki/Sponsors
https://github.com/ocornut/imgui
https://chipmunk-physics.net/games.php
https://chipmunk-physics.net/aboutChipmunk.php

3.5. Selection
The SDL library was chosen for ofering many subsystems, for user input,

flesystem access, sound, networking and more.

For physics implementation, Box2D library was selected since it is written
in C++ and for that reason, its integration in the framework will be easier.

Dear ImGui was selected to provide a GUI implementation. While not as
suitable for games as diferent GUI libraries with more customization options, it
is standalone and is easy to integrate and replace with a diferent library in future
versions of the framework.

Additionally, an ECS library23 was used to provide a simple Entity
Component System implementation. Library plf::nanotimer24 was used to provide
a cross-platform high-precision timer. As the scripting language, Lua was chosen,
LuaState25 binding library for C++ in particular.

23 https://github.com/SRombauts/ecs
24 https://www.plfib.org/nanotimer.htm
25 https://github.com/AdUki/LuaState

30

https://github.com/AdUki/LuaState
https://www.plflib.org/nanotimer.htm
https://github.com/SRombauts/ecs

4. Development documentation
This chapter serves as the development documentation of the framework.

The frst section summarizes the architecture and general framework structure.
The following sections further document inner structure and interface of
individual framework components. The last section documents flesystem
hierarchy and compilation process.

4.1. Architecture overview
The architecture of the framework is built around Entity Component

System [16] (ECS), further explained in this subchapter. The reason for using this
architectural pattern is to allow for easy extensibility and scalability. Further
subchapters starting at 3.2. refer to parts of Illustrations 8, 9 and 10.

Illustration 8 shows a visualization of the architecture.

The Class diagram in Illustration 9 represents a simplifed overview of the
most important classes including their attributes and functions.

Illustration 10 shows order of initialization of the framework‘s components.

31

32

33

34

SceneGraph
Each game or program using this framework is created via instancing the

SceneGraph class. This object contains a graph of game‘s scenes and main loop
function - the entry point. Scenes are logical wholes of each game, for example,
main menu, tutorial, frst level, second level, credits, or cutscene, can all be
diferent scenes.

Utility Classes
There are several, often general-purpose, classes that can be used anywhere

in the code. Their purpose is mainly to abstract complex functionality behind
simple interface.

Framework Subsystems (Engines)
These classes provide high-level interface to low-level functions.

Entity Component System
This architectural pattern can be characterized by the following:

• Prioritizes composition over inheritance.

• Consists of Entity, Component, System, and in most implementation also
Manager.

• Game objects are sets of Components, represented by Entity.

• Components hold object‘s data.

• Each System acts on every Entity with particular set or subset of
Components.

• Manager then provides an interface to managing entities and their data.

• Most implementations are compatible with data-oriented approach by
storing Components closer together in memory.

In this implementation, Entities are simple identifers: 32-bit numbers.
Game objects data is stored in a Manager class. Expression „Entity contains
Component“ here means that a Component storage inside the Manager has
registered the Entity and associated it with a Component object. Systems process

35

entities with required components, set by each System, in a loop. Creation,
destruction and Component association of Entities is handled by the Manager.

Resources
For simplifcation of loading assets (and similar objects) into the game,

this framework provides a Resources class. Essentially, it is a storage of pointers
to object‘s data, along with pointers to functions for allocating and deallocating
them

Scene
Finally, the Scene class contains game logic, an ECS Manager, and a set of

Resources that need to be loaded in the scene when it starts.

36

4.2. Scene
In general, games can be divided into various number of scenes, for

example: one scene (the entire game), three scenes (menu, loading screen, game)
or hundreds of scenes (for each level/stage). Its purpose is mainly to divide game
data and logic into smaller parts.

This framework‘s implementation of a scene is rather simple. Each Scene
has a unique SceneID (size_t data type) and a set of Resources that are
required to be allocated before the Scene can be initialized (SceneGraph handles
the initialization).

Each Scene defnes several functions (virtual functions are intended to be
implemented by game developers in their projects by inheriting Scene class):

• virtual Update() function called every game tick by the main loop

• Init() function that frst calls PreInit() and then PostInit()

• PreInit() which allocates required resources if they are not allocated

• virtual PostInit() function

• virtual reloadSettings() function that gets called upon modifcations
in values stored in the Settings class

• virtual DeInit() function called by Scene Graph when Scene gets
deinitialized

Additionally, Scene class stores a pointer to SceneGraph, an instance of
the ECS Manager and a vector of SDL_Event objects for user input. Using the
pointer to SceneGraph, scene can call Change() function to change the current
Scene.

37

4.3. Scene Graph
Scene Graph is an entry point for the game, containing the main loop. It

stores pointers to scene, and for each (ordered) pair of Scenes allows for
specifying a transition function between them.

Illustration 11 shows how the main loop works. First, Dear ImGui is
initialized, then start Scene is initialized. Next the loop checks if the game is
running (boolean value stored in SceneGraph). If not, current Scene and Dear
ImGui are deinitialized. If the game is running, the next step is checking SDL
events for window changes and executing reloadSettings() if Settings have
changed. Events indicating the game has exited are also checked. Then input
events are passed to Scene and Dear ImGui. Next, Settings are checked, screen is
cleared and Update() function of current Scene is called. Then Dear ImGui is
rendered and after that, SDL_RenderPresent() is called which renders sprites

38

that were scheduled for rendering in the Scene. Final step of the loop is writing
how long each phase took and other statistics to system console.

The process of changing scenes is depicted on Illustration 12. To change
the current scene, game logic calls Change() member function of the
SceneGraph. First, current Scene gets deinitialized by calling the DeInit()
function of the current scene. Then transition function, if present, is called and
new Scene is initalized, via Init() call, and Change() returns. When using the
DeInit() function to deallocate resources, Change() must be called after all
operations with these resources have been fnished.

39

4.4. Utility classes
To provide more abstraction, several global utility classes with various

usages were implemented.

Resources
The Resources class functions as database of Resource objects. Resource is

an object containing providing a function for allocating the respective resource
(e.g., renderer object, Texture, or sound fle), storing pointer to it, deallocating
the resource and a function for checking whether the resource is allocated. In
particular, assets in each scene are using this storage along with some
subsystems, for example the RenderEngine subsystem which stores a
SDL_Renderer.

Settings
This class also stores objects. It is a storage of std::string objects. In

addition to that, it provides functions for conversion into diferent data types. For
simple synchronization it provides a dirty bit and unsetDirty() functions
which unsets it. The bit gets set when a stored value is modifed.

Camera
This class stores the position and size of the camera and provides functions

for converting global coordinates to relative and checking if a rectangle is visible
by the camera.

Texture
Texture class provides high-level interface to loading a texture either from

an image on disk or from text using a given font.

Logger
Logger is a class for writing messages to system console. Ofers three

fatality levels: Error, Warning, Info. It has an internal bufer that is written into
using log() function and then is fushed into console using write() function.

40

Timer
Timer is a wrapper class providing a cross-platform precise timer using the

plf::nanotimer library. In addition to it‘s functions for measuring time, it has a
delay() function that waits a given amount of time and then returns.

41

4.5. Framework subsystems (Engines)
Apart from utility classes, subsystems in this section (further called

Engines) are intended to be more complex and have a Start() function to
initialize the Engine with startup options and needed Resources for it‘s
functioning. Each Engine provides abstraction of lower-level libraries.

Each Engine is a singleton26 accessed using either Engine template class or
directly for static functions. This class provides static functions Start<T> and
Stop<T> (where T is one of the Engine classes) for starting/stopping each
Engine specifed by the template parameter. These two functions operate over
Engine instances and Initialize (if the Engine was not running), Deinitialize (if
the Engine was running) or Reinitialize (using new options).

RenderEngine
RenderEngine initializes game window using SDL API calls: SDL_Init(),

SDL_CreateWindow() and SDL_CreateRenderer(). After initialization
provides access to SDL_Window and SDL_Renderer objects. RenderEngine also
provides static funtions for rendering Textures and Box2D shape and body
objects.

SoundEngine
SoundEngine initializes game audio using SDL API calls: Mix_Init()

and Mix_OpenAudio().

InputEngine
InputEngine currently serves as an example of an empty Engine

implementation. In future work, this Engine will provide support for unifed user
input interface.

26 https://refactoring.guru/design-patterns/singleton/cpp/example

42

https://refactoring.guru/design-patterns/singleton/cpp/example

FileEngine
FileEngine serves as interface for reading and writing bytes from/to fles

(saveBytes() and loadBytes()). It also defnes fileExists() and
fileSize() functions for querying whether a fle exists in the flesystem and
how big it is in bytes.

LuaEngine
LuaEngine provides simple interface for scripting in Lua. It contains a

lua::State object from the LuaState library and functions execute() and
executeFile() which execute a script either directly from a string or from a
fle.

43

4.6. Components
Each Component class has the purpose to store data for game objects.

Most only provide a constructor. Each Component class is also inherited from a
base Component class that contains a component identifer. Illustration 12 shows
the associations between Components and Systems.

44

Console Component
Console Component stores two strings: default console text and current

console text. It is used by the Console System.

GUI Component
GUI Component stores a name of a window, function to be called for its

rendering, vector of return values and an arbitrary pointer for passing parameters
to the function. It is used by the GUI System and helps with abstracting the
complexity of the Dear ImGUI library which displays it‘s GUI using a sequence of
calls to global functions (see Example 6) usually called from a single function per
window each tick.

Input Component
Input Component stores a boolean value indicating whether the entity

containing this component should process user input. It is used by the
PlayerInput System and Console System.

Physics Component
Physics Component, used by the Physics System and, when needed, by the

Render System. This component represents a physical object, either using Box2D
physics engine or internal simple physics and either solid (not moving) or
dynamic. Stores it‘s size, position, speed, maxSpeed and optionally a pointer to a
Box2D‘s b2Body object. Provides three constructors. Two for simple physics and
one for Box2D physics. In addition to constructors, it also implements functions
for getting or setting the object‘s position, size and velocity.

45

Sound Component
Sound Component stores a pointer to Mix_Chunk and Mix_Music

objects (from SDL). These two objects are independent. The diference between
these two types is in the API. Sound component also stores a 32bit integer
param and an 8bit unsigned integer representing a bit array of actions that needs
to be taken. Actions that can be taken by the Sound Component are: play chunk,
play chunk param times, play chunk infnitely, play music, pause music or stop
music. Actions regarding chunks are independent from actions regarding music.
This component is used by the Audio System.

Sprite27 Component
Sprite Component stores either a pointer to a Texture object or a colour.

Plus it stores rendering information: whether the sprite is bound to a physics
body. source rectangle (which part of a texture should be rendered), destination
rectangle (where on screen to render, if not bound to a physics body), angle; and
information for animating. For animating it stores size of a tile, starting tile, how
many consecutive tiles are part of the animation, how long each frame of
animation lasts in game ticks, frame ofset (which frame should be the starting
frame) and tick ofset (for synchronization purposes). It is used by the Render
System.

Type Component
Type Component stores an 8bit integer for general purposes and to

provide a minimal example of a component. It is only used by the
PlayerInputSystem to distinguish player object from other objects that may have
the same components.

27 Sprite - two-dimensional image representing an individual part of a larger whole

46

4.7. Systems
Each System processes (by calling updateEntity() function) every

entity that contains its required Components (set in Systems constructor).
Update function is called every game tick (every iteration of the main loop) for
every entity separately. This function has a second parameter besides the entity:
time since last tick (in seconds), which can be used by some systems.

Physics System
Physics System requires Physics Component. Box2D physics are handled

separately by creating a Box2D‘s b2World object and updating it using it‘s
Step() function, either directly in a scene‘s implementation or by creating a
separate Component/System for it (see Final Example). This System only
updates position of dynamic Physics Components using simple physics equations
without handling collisions.

Render System
Render System requires Sprite Component and when needed, Physics

Component. It renders each Sprite Component according to its settings. If the
Component is set to be bound to Box2D body, it uses the entity‘s Physics
Component for rendering over the physics body with correct angle.

PlayerInput System
PlayerInput System requires Input Component, Type Component and

PhysicsComponent. For every entity it checks Input and Type Components, if
Type contains 0 (indicating the entity is a player) and Input is set to be focused,
user input is read and forces are applied to Physics Component based on keys
defned in this class (w/a/s/d to move up/left/down/right). Maximum speed is
then checked and corrected. Lastly, player body is angled so that it faces the
mouse cursor.

47

Audio System
Audio System requires only the Sound Component. Depending on the

action from the Components data, SDL API calls Mix_PlayMusic(),
Mix_ResumeMusic() or Mix_HaltMusic() are called if Mix_Music is stored
in the Component and the appropriate action is set. Independently, for
Mix_Chunk, alternative way of storing audio, playing is handled by
Mix_PlayChannel() function and the respective action in the Sound
Component is reset.

Console System
Console System requires Input Component and Console Component. It

handles reading keyboard input and displaying the console on screen. After
entering a command and pressing enter, Console System parses the entered text
and if it fnds a matching command, calls the command with entered parameters.
Each command is stored as a function with a vector of string as it‘s only
parameter with a corresponding name. User functions can be defned in each
scene.

GUI System
GUI System requires GUI Component. Each tick, function from GUI

Component is called and values returned are stored in the Component. This way,
Dear ImGUI windows are properly displayed.

48

4.8. Compilation
Framework is header-only and therefore does not require to be compiled,

only included. When compiling a game using this framework, respective libraries
must be linked or included (see example/README.md).

For compilation, GCC28 supporting C++20 is required (at least GCC
version 9.2.). Cross-compilation for Windows is supported using Mingw-w6429.
Ubuntu 20.04 is recommended.

Steps to compile the frameworks examples (located in the example/
subdirectory):

1. Check if libraries in libs/ subdirectory exist. If not, download missing
libraries and place them in corresponding sub:

◦ https://gitlab.com/ZemanTomas/getoptcpp in libs/getoptcpp

◦ https://github.com/spurious/SDL-mirror.git in libs/SDL2

◦ https://github.com/bminor/SDL_ttf in libs/SDL2_ttf

◦ https://github.com/bminor/SDL_image in libs/SDL2_image

◦ https://github.com/mattreecebentley/plf_nanotimer.git in
libs/plf_nanotimer

◦ https://github.com/erincatto/box2d.git in libs/box2d

◦ https://github.com/Tyyppi77/imgui_sdl.git in libs/imgui_sdl

◦ https://github.com/ocornut/imgui.git in libs/imgui

◦ https://github.com/SDL-mirror/SDL_mixer in libs/SDL2_mixer

◦ https://github.com/Rapptz/sol.git in libs/sol

◦ https://github.com/AdUki/LuaState.git in libs/LuaState

2. Install libraries: sudo apt-get install liblua5.2-dev libsdl2-dev libsdl2-mixer-
dev libsdl2-ttf-dev libsdl2-image-dev libbox2d2.3.0

28 https://gcc.gnu.org/
29 http://mingw-w64.yaxm.org/doku.php/start

49

http://mingw-w64.yaxm.org/doku.php/start
https://gcc.gnu.org/

3. Install getopctpp library (from libs/getoptcpp subdirectory): sudo make
install (if building for Windows: sudo make win and then move
getoptcpp.dll in libs/win64/lib)

4. If not present, install GNU Make: sudo apt-get install make

5. For cross-compiling for Windows, install g++-mingw-w64-x86-64

6. For cross compiling for Windows, place Windows development libraries for
SDL2, SDL2_image, SDL2_mixer, and SDL2_ttf in libs/win64

7. For cross compiling for Windows, place lua52.dll, liblua52.a, libBox2D.dll
and libBox2D.a archives built for Windows in libs/win64/libs

8. From the example/ subdirectory:

1. For Linux: make EXAMPLEDIRECTORY=<example_directory>

2. For Windows: make EXAMPLEDIRECTORY=<example_directory>
win

9. Game executable game will be created. (For Windows build, it is needed to
put runtime DLLs next to the executable.)

50

5. Example game
In this chapter, an overview of example games is provided along with code

examples and commentary. For game developers, these examples can serve as a
basic guide on usage of the framework.

There are total of 8 example games, from the simplest example to the fnal
example game. Each example builds on top of the previous one and adds new
features. Assets for each example are stored in example/data subdirectory.

• First example shows how to create a game window

• Second example shows how to create a player character using ECS

• Third example shows how to work with the built-in console

• Fourth example shows how to create a physics object

• Fifth example shows how to use the audio system

• Sixth example shows how to create a simple GUI

• Seventh example shows how to implement animations and execute basic
LUA scripts

• Final example shows how to extend the ECS by additional System and
Component on a basic game prototype.

5.1. Example 1 - Empty Game
The frst example is focused on doing the bare minimum to provide a

working game window. Only two fles containing code will be need for now (until
the last example): main.cpp and Game.hpp. The frst fle should contain the
main() function and contents of the second fle will be discussed in this section.
First thing in main.cpp, after including SceneGraph.hpp, that needs to be done is
set default values using the Settings utility class.

Settings::getInstance()[Settings::FPS] = "60"; //Maximum FPS
Settings::getInstance()[Settings::SCREEN_WIDTH] ="800"; //Width of default window
Settings::getInstance()[Settings::SCREEN_HEIGHT] = "600"; //Height of default window
Settings::getInstance()[Settings::MEDIA_PATH] = "data"; //Location of assets

After that, RenderingEngine needs to start.

51

Engine::Start<RenderEngine>(REOptions()); //Start rendering engine

The next step is to initialize all resources. (And exit the program if this
step fails)

if(!Resources::Initialize()){
 Logger::write();
 return 1;
}

Now that resources are ready, next step is to create SceneGraph instance
and add a pointer to a scene to it.

SceneGraph graph;
graph.Add(new ExampleGame(&graph));

Before further describing implementation of the ExampleGame class, last
line of code that will enter the scene graph loop.

graph.Loop(0);

This function takes one parameter - SceneID, and will start the game loop using
the respective class as current scene.

In Scene implementation, two fles need to be included: ecs/ECS.hpp -
containing all needed Components and Systems; and utils/Scene.hpp - containing
Scene interface defnition.

Any user implemented Scene must inherit Scene class and provide its
constructor with a pointer to the SceneGraph instance declared earlier. Scene,
base class, also requires unique integer as its SceneID and a pointer to vector of
pairs <ResourceID,Resource*> used as a requirement for this scene to
allocate during the initialization.

Function reloadSettings() should be called every time there is a
change in any Settings variable that needs to apply changes in a special way. For
example if current SceneID would be stored in a Settings variable, then this
function would check if current SceneID is equal to the one stored and if not,
change the current scene to match.

Function Update(const float dt) is called every game tick.
Parameter dt here is the amount of time elapsed since the last game tick.

52

Function PostInit() and get called after the scene is loaded (when the
current scene in SceneGraph changes to it, including at the start as entry point).

Function DeInit() is called after the scene ends (game quits or current
scene changes to a diferent scene).

class ExampleGame : public Scene{
 public:
 ExampleGame(SceneGraph* _sg):
 Scene(_sg,0,new std::vector<std::pair<size_t,Resource*>>({}))
 {}
 void PostInit() override{}
 void reloadSettings() override{
 //Required to be called here to unset dirty bit indicating change
 Settings::unsetDirty();
 }
 void Update(const float dt) override{}
 void DeInit() override{}

};

53

54

5.2. Example 2 - Player
The goal of the second example is to create a player character. This

example uses player.png as the player texture. After resource initialization,
function Resources::AddResource(Resource*,size_t,bool) is called
with a pointer to a Resource instance containing functions needed to allocate a
player texture, Resource ID and a true value, indicating that the resource should
be immediatelly allocated.

In the scene constructor there are 4 main parts:

• Creating Component storage for all Components that are going to be used
in the scene.

• Creating Systems, that are needed. Physics and Render System in this
case.

• Creating a Box2D world needed for PhysicsComponent.

• Creating the Player entity. In this case it requires PhysicsComponent to be
able to be interacted with later and SpriteComponent so it can be
rendered.

//Create Component storages
manager.createComponentStore<PhysicsComponent>();
manager.createComponentStore<TypeComponent>();
manager.createComponentStore<SpriteComponent>();
//Create Systems
manager.addSystem(System::SysPtr(new PhysicsSystem(manager)));
manager.addSystem(System::SysPtr(new
RenderSystem(manager,RenderEngine::getRenderer(),textures,&cam)));
//Create Box2D world
world = new b2World({0.0f,0.0f});
//Create player
player = manager.createEntity();//Creating entity.
float_2D size = {24.0f,24.0f};
float_2D pos = {1000.0f,1000.0f};
manager.addComponent(player,PhysicsComponent(world,pos,size,true,true,
{0.0f,1.0f,0.1f,0.0f,15.0f}));
manager.addComponent(player,SpriteComponent(RenderEngine::getPlayerTexture(),
{10,3,13,26}));
manager.registerEntity(player);//Registering entity in the ECS

55

Next, update function needs to contain code to update the ECS and
Box2D world. And since the player can be anywhere in the map, RenderSystem
needs a Camera object reference to know which SpriteComponents to render. For
that reason, implementation of player tracking is added to this example.

void Update(const float dt) override{
 manager.update(dt);
 world->Step(1/60.0f,6,3);//Box2D documentation suggests constant update delta
 updateCamPos(dt,player,cam);
}

Additionally, reloadSettings() function should now contain code for
updating the size of the camera, since window size is contained in Settings
variables and after window size changes, the variables are updated.

56

5.3. Example 3 - Console
In this example, the console is implemented along with functions for

printing the player location.

First, the game needs to know where the font is located relative to the
media directory:

Settings::getInstance()[Settings::FONT] = "font.ttf";

Then, similarly to adding player textures, font Resource is added. In the
constructor, ConsoleComponent storage is created, custom console functions are
to a map container that is then passed to ConsoleSystem.

Console is an entity and as such needs to be created, have components
added to it (in this case Input and Console Components) and then registered
using the ECS manager object.

console = manager.createEntity();
manager.addComponent(console,InputComponent(false));
manager.addComponent(console,ConsoleComponent(""));
manager.registerEntity(console);

In the example, there are 2 functions intended for use by the console.

• teleportPlayer(float,float) - changes location of the player

• writePlayerPos() - writes current location of the player to system
console

Reference to these functions is passed along with the console function
name mapping in the ConsoleSystem constructor. Every function passed in the
console takes a vector of strings as a parameter. Additional informations passed
with the functions make sure there is a correct number of arguments when using
the commands.

57

map<string,pair<function<void(vector<string>&)>,size_t>> consoleFunctions = {
 {"teleportPlayer",
 {[this](vector<string>& par){teleportPlayer(stof(par[0]),stof(par[1]));},2}
 },
 {"displayPosition",
 {[this](vector<string>& par){writePlayerPos();},0}
 }
};
manager.addSystem(System::SysPtr(new ConsoleSystem(manager,&events,
 RenderEngine::getFont(),
 RenderEngine::getRenderer(),
 _sg,&consoleFunctions))
);

58

5.4. Example 4 - Physics
Fourth example implements another physics object, a box, and controls of

the player entity. Player controls are handled by PlayerInputSystem. Its
contructor requires, besides a reference to the ECS manager required by all
Systems, pointer to a vector of events from the Scene base class and a pointer to
a camera instance.

Next, PlayerInputSystem only processes entities with TypeComponent
with 0 as type and InputComponent. These two Components should be added to
player entity in order to control it.

Creating a box is similar to creating the player entity. In this case the
diference is that a box only requires Physics and Spire Component. Another
diference is that box is a rectangle and not moving, and for its rendering only a
colour is needed now.

box = manager.createEntity();
float_2D size_b = {34.0f,34.0f};
float_2D pos_b = {1050.0f,1050.0f};
manager.addComponent(box,PhysicsComponent(world,pos_b,size_b,false,false,
{0.0f,1.0f,0.1f,0.0f,15.0f}));
manager.addComponent(box,SpriteComponent(0xA00000FF));
manager.registerEntity(box);

59

60

5.5. Example 5 - Audio
Playing audio requires a working sound engine and a sound fle (beat.wav).

Settings::getInstance()[Settings::MUSIC] = "beat.wav";
Settings::getInstance()[Settings::MUSIC_ON] = "true";//Required framework variable
Engine::Start<SoundEngine>(SEOptions());

The sound fle is loaded using Mix_LoadMUS(char*) function which
returns pointer to a Mix_Music object.

//Mix_LoadMUS for loading music files, Mix_LoadWAV for chunks, both are from SDL_mixer
Mix_LoadMUS((Settings::getMEDIA_PATH()/Settings::getMUSIC()).string().c_str())

Music is then created as an entity with only SoundComponent added to it.
SoundComponents constructor takes a pointer to Mix_Music or Mix_Chunk
object.

To be able to turn music on and of, the variable action in
SoundComponent needs to be modifed. In function reloadSettings():

if(music != INVALID_ENTITY){
 SoundComponent& snd = manager.getComponentStore<SoundComponent>().get(music);
 if(Settings::getMUSIC_ON()){snd.action |= MUSIC_PLAY;}else{snd.action &=
~MUSIC_PLAY;}
}

61

5.6. Example 6 - GUI
GUI implementation consists of GUISystem and GUIComponent, which

takes two parameters, window name and a window function. The window
function returns a vector of arbitrary pointers - output variables, and takes
window name and an arbitrary pointer as parameters. The goal of this example is
to create a window with a slider for controlling players max speed.

static vector<void*> InitGUI1(string name, [[maybe_unused]] void* user_data){
 static float slider1 = 15.0f;
 static float color[4] = {1.0f,1.0f,1.0f,1.0f};
 vector<void*> params = {&slider1,color};
 ImGui::Begin(name.c_str());//Create window
 ImGui::SliderFloat("maxSpeed", (float*)params[0],1.0f,40.0f);
 ImGui::ColorEdit3("blockColor",(float*)params[1]);//Unused
 ImGui::End();//End creating window
 return params;//Output pointers to slider values and colour picker values
}

Now, to access window variables and modify players maxSpeed, in Update
function:

PhysicsComponent& p = manager.getComponentStore<PhysicsComponent>().get(player);
GUIComponent& w1 = manager.getComponentStore<GUIComponent>().get(window1);
p.maxSpeed = *(float*)w1.values[0];//Accessing window value

62

63

5.7. Example 7 - Animations & Scripting
This example has two goals, animating a box texture and executing a

script. Animation is set in the SpriteComponent. only requirement is that the
component should contain a tilemap with the animation frames.

//Sets SpriteComponent animation
//parameters: tile size 32x32, starting tile at (6,2), two frames long animation (left
to right)
manager.getComponentStore<SpriteComponent>().get(box).SetAnimation({32,32},{6,2},2);

Scripting requires LuaEngine. After that, scripts can be executed globally,
either directly or by specifying a script fle to execute.

//For binding functions or variables, use getState() and work with lua::State
Engine::getInstance<LuaEngine>().execute("print 'Hello lua!'");

64

5.8. Final Example
The last example expands on the previous example by three main features.

First feature is a procedurally generated world. This is done by implementing
WorldSystem and WorldComponent (see
example/ExampleFinal/WorldComponent.hpp and WorldSystem.hpp). Assets
needed for this example are player.png, tiles_small.png, tiles.png and beat.wav.

Second feature is a mouse user input. Mouse clicks modify world tiles.

Third feature is a console command for saving the modifed world on disk.

65

Conclusion
Creating a game framework is a very difcult task even for dedicated

groups of people. After analysing currently used game engines and frameworks
and selecting required components, a framework that encompasses minimum
needed functionality for game developers has been created. Resulting framework
supports, among others, dividing game logic and data into scenes, physics
simulation using the Box2D library, audio, scripting in Lua using the LuaState
library, basic GUI provided by the Dear ImGui library, rendering textures using
the SDL library. By natively developing in C++, developers can fully use
hardware and optimize games. Yet it can be easily extended to provide the same
features as popular commercial frameworks.

66

Literature
[1]: Malhotra, M. (2021). Unreal Engine vs Unity 3D Games Development: What
to Choose?. https://www.valuecoders.com/blog/technology-and-apps/unreal-
engine-vs-unity-3d-games-development/

[2]: Sirani, J. (2017). GTA Publisher Acquires Space Sim Kerbal Space Program.
https://www.ign.com/articles/2017/05/31/gta-publisher-acquires-space-sim-
kerbal-space-program

[3]: Blizzard Entertainment. (2021), Year of the Phoenix in Review.
https://playhearthstone.com/en-us/news/23625669/year-of-the-phoenix-in-review

[4]: Valentine, R. (2020). Subnautica has sold over 5m copies.
https://www.gamesindustry.biz/articles/2020-01-14-subnautica-has-sold-over-5m-
copies

[5]: McAloon, A. (2021). Epic v. Apple trial ofers rare look into Epic fnancials,
billions of Fortnite revenue. https://www.gamedeveloper.com/business/epic-v-
apple-trial-ofers-rare-look-into-epic-fnancials-billions-of-i-fortnite-i-revenue

[6]: Handrahan, M. (2017). Life is Strange was bought by 3 million people.
https://www.gamesindustry.biz/articles/2017-05-19-life-is-strange-was-bought-by-
3-million-people

[7]: Patra, I. (2021). Epic Games’ Fortnite earned $9 billion in its frst two years .
https://www.thehindu.com/sci-tech/technology/epic-games-fortnite-earned-9-
billion-in-its-frst-two-years/article34489818.ece

[8]: Batchelor, J. (2019). How Ark: Survival Evolved "fell into sustainable
revenue" without skins or loot boxes.
https://www.gamesindustry.biz/articles/2019-08-16-how-ark-survival-evolved-fell-
into-sustainable-revenue-without-skins-or-loot-boxes

[9]: manos426f. (2016). Interviews with the Daedalic Entertainment team.
https://ragequit.gr/specials/item/ragequit-gr-at-daedalic-days-2016-part-2-
interviews-english-text-edition/

67

[10]: Orland, K. (2018). Valve leaks Steam game player counts; we have the
numbers. https://arstechnica.com/gaming/2018/07/steam-data-leak-reveals-
precise-player-count-for-thousands-of-games/

[11]: Chapple, C. (2018). Fingersoft's Hill Climb Racing franchise rolls past one
billion downloads. https://www.pocketgamer.biz/interview/68010/fngersofts-hill-
climb-racing-franchise-rolls-past-one-billion-downloads/

[12]: Boudreau, I. (2019). Slay the Spire has sold more than 1.5 million copies.
https://www.pcgamesn.com/slay-the-spire/slay-the-spire-sales

[13]: Marks, T. (2019). Celeste Sequel (Probably) Won't Happen, Developer Says.
https://www.ign.com/articles/2019/09/07/celeste-developer-doesnt-want-to-
make-a-sequel-new-game-in-the-works

[14]: Regalis. (2021). Two years of Early Access.
https://barotraumagame.com/announcements/two-years-of-early-access/

[15]: Gregory, J. (2018). 1.6 Runtime Engine Architecture. In Game Engine
Architecture, Third Edition. Taylor & Francis Ltd.

[16]: West, M. (2007). Evolve Your Hierarchy.
https://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/

68

List of Illustrations
 Illustration 1: Unity Editor 2019 - Windows...9
 Illustration 2: Unreal Engine 4 Editor...10
 Illustration 3: Godot Editor...12
 Illustration 4: GameMaker Studio 2 - Editor...13
 Illustration 5: Cocos2d-x - Architecture...14
 Illustration 6: libGDX - life cycle of a game..15
 Illustration 7: XNA Framework - Architecture..16
 Illustration 8: Framework Architecture..32
 Illustration 9: Class Diagram...33
 Illustration 10: Lifecycle of a Game...34
 Illustration 11: Scene Graph - Main Loop..38
 Illustration 12: Scene Change...39
 Illustration 13: Component - System associations...44
 Illustration 14: Example 1 - Empty Game...54
 Illustration 15: Example 2 - Player..56
 Illustration 16: Example 3 - Console..58
 Illustration 17: Example 4 - Physics...60
 Illustration 18: Example 6 - GUI...63
 Illustration 19: Final Example..65

List of Tables
Table 1.1: Framework/Engine comparison - Pricing...18
Table 1.2: Framework/Engine comparison - Platform support.............................18
Table 1.3: Framework/Engine comparison - Language support............................19
Table 1.4: Framework/Engine comparison - Development options.......................19
Table 3.1: Framework Components - Comparison...27

Attachments
1. GitLab link to the resulting framework:

https://gitlab.com/ZemanTomas/spacegame

2. Source Code in a .zip archive.

69

https://gitlab.com/ZemanTomas/spacegame

