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Introduction
The main goal of this dissertation is to present contributions to the efficient
market hypothesis and the optimal distributional trading gain problem as
described in the following articles:

1. Večeř, J., J. Kampen, and R. Navrátil (2020). Options on a traded account:
symmetric treatment of the underlying assets. Quantitative Finance 20 (1),
37–47, https://doi.org/10.1080/14697688.2019.1634278

2. Navrátil, R., S. Taylor, and J. Večeř (2021). On equity market inefficiency
during the COVID-19 pandemic. International Review of Financial
Analysis 77, 101820, https://doi.org/10.1016/j.irfa.2021.101820

3. Navrátil, R., S. Taylor, and J. Večeř (2022). On the Utility Maximization
of the Discrepancy between a Perceived and Market Implied Risk Neutral
Distribution, European Journal of Operational research, https://doi.org/
10.1016/j.ejor.2022.01.048

We start by briefly introducing the main contributions of the articles. We
study the symmetric version of a passport option in Večeř et al. (2020), where we
find the optimal strategy for the holder of the option. In Navrátil et al. (2021),
we study the market efficiency during the COVID-19 pandemic, and we conclude
that the market was inefficient. Finally, in Navrátil et al. (2022), we focus on
the optimal distributional trading gain problem from a practitioner’s perspective,
and we show how one can approximate the replication of the optimal payoff using
a portfolio with integer positions in vanilla options.

All the articles are based upon the premise of the efficient market hypothesis,
which plays a fundamental role in modern finance and economics. Introduced by
Nobel price winner Eugene Francis Fama in his seminal work Fama (1965), the
efficient market hypothesis has had a tremendous influence on our understanding
of capital markets. In its most potent form, the efficient market hypothesis states
that prices fully reflect available information, both public and private, and thus it
is impossible to outperform the market systematically. Even though the efficient
market theory has been widely studied in the scientific literature, there is still no
consensus on whether this theory should be rejected or accepted. To this day, the
efficient market hypothesis is still veryactively studied in the scientific literature
to better understand financial markets.

Closely related to the efficient market hypothesis is the notion of a market
equilibrium, which can be viewed as an aggregated opinion of all agents in the
market. The market’s distributional opinion Q represents the risk-neutral density,
and a utility-maximizing agent with distributional opinion P can only trade
contracts with zero expected value from the market’s perspective. This leads
to the optimal distributional trading gain problem formally introduced by Večeř
(2020), which provides a flexible framework for utility-maximizing agents that
seek to find the optimal payoff given a distributional discrepancy between their
opinion and that of the market.

This thesis is divided into six chapters. The first chapter contains prelimi-
naries from stochastic calculus and dynamic programming needed throughout the
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text. The second chapter focuses on stochastic finance. In this chapter, we discuss
the efficient market hypothesis. Moreover, we discuss the optimal distributional
trading gain problem introduced above. Unfortunately, there does not typically
exist a traded instrument with a payoff that corresponds to the optimal payoff
from the trading gain problem. Thus for practitioners, it is crucial to replicate this
optimal payoff. In chapter three, we show how one can theoretically replicate the
desired payoff using a static portfolio by trading in bonds, forwards, and vanilla
put and call options.

Chapter 4 is based on the article Navrátil et al. (2021). In this part, we
study the efficiency of the United States equity market during the COVID-19
pandemic contributing to the ongoing research on the effect of COVID-19 on
financial data, see, for example, Baker et al. (2020); Azimli (2020); Cepoi (2020);
Baek et al. (2020); Just and Echaust (2020); Mazur et al. (2021); Ahmar and
Boj del Val (2020); Al-Awadhi et al. (2020); Topcu and Gulal (2020); Mirza et al.
(2020). Using utility-maximizing agents, we demonstrate that the market was
semi-strong inefficient from mid-February to late March 2020. An agent using
Merton’s portfolio would generate statistically significant profits across all studied
ETFs during this period. Another important observation concerns the individual
constituents of the S&P 500. We show that the larger the market beta of the
constituent, the greater the inefficiency of the stock and thus the greater the
opportunity for the utility-maximizing agent. On the other hand, the stock’s
leverage and cash assets were shown to negatively impact the final wealth of
the utility-maximizing agent, corresponding to the result of Ramelli and Wagner
(2020).

In Chapter 5, we extend the optimal trading gain problem using the results
that appeared in Navrátil et al. (2022). In the current literature, the downside of
the optimal trading gain problem is that there is generally no tradeable asset with
the optimal payoff. Since the market’s distributional opinion can be extracted
from European option premia (Breeden and Litzenberger (1978)), one can use the
SVI model to estimate the implied volatility surface, and then we can theoretically
replicate the optimal payoff using a static portfolio. Theoretical replication is
achieved using fractional positions in infinitely many vanilla options. However,
it is impossible to have fractional positions in the option contracts, and only a
limited set of options is traded. Restricting set used for replication was studied
by Leung and Lorig (2016) and Bossu et al. (2021). We go a step further in the
application for practitioners and study the problem as an integer programming
problem conditioned on the number of options used for replication. Even for a
small number of options used, we encounter extensive computational issues, and
so we use kernel search heuristics introduced by Angelelli et al. (2010, 2012) to
obtain an approximate solution to the problem. To our knowledge, we present
the first constructive method to create an options portfolio that maximized the
expected utility of an agent based upon the difference between his view on the
future price distribution of an underlying asset price and that of the associated
options market.

Chapter 6 is devoted to passport options and the role of volatility in the option
contract. Passport option contracts introduced by Hyer et al. (1997) in its most
common form allows the client to continuously move wealth between two assets
S resp. M , typically representing the stock market and the money market. The
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contract has a contractual constraint on the position in the first asset S, typically
[−1, 1], and the rest of the client’s wealth is invested in the second asset M . The
client can keep the trading profits at the option contract’s expiration while his
loss is forgiven. Even though this contract was traded, it was not very popular,
probably due to the fact that it was expensive. In Večeř et al. (2020) we present
a version of the passport option that works like insurance on actively traded
accounts. To make the contract attractive for investors with longer horizons, we
need to modify the passport option contract in two ways. Firstly, we treat both
assets symmetrically, and we set the payoff of the contract to be in the index
asset with equal weights I = S+M

2 . Secondly, we remove the leverage by allowing
only long positions, making the option contract less expensive. We show that the
optimal strategy is fully investing in the cheaper asset, and we discuss a possible
extension of the model to multiple assets.
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1. Preliminaries
This chapter covers topics from stochastic calculus theory and dynamic pro-
gramming principle. First, in the stochastic calculus section, we introduce the
definition of a martingale. In finance, martingales are often used to model market
prices, as they do not allow arbitrage opportunities. Next, we formulate Itô’s
formula and Girsanov’s Theorem. Girsanov’s Theorem describes the dynamics
of a stochastic process when we change the associated probability measure to
an equivalent probability measure. Girsanov’s Theorem is often used in pricing
theory when changing the associated measure to the risk-neutral measure. In the
second section, we introduce the Hamilton-Jacobi-Bellman (HJB) equation. The
HJB equation is used to find the optimal control of a given stochastic control
problem. Finally, we illustrate the usage of the dynamic programming principle
on a classic Merton’s problem in one dimension. In this case, the agent can
continuously transfer wealth between a risky asset and a riskless bond. The
agent’s goal is to find the optimal strategy that maximizes his expected terminal
utility.

1.1 Stochastic calculus
Definition 1.1.1. Let (Ω,F ,P) be a probability space. By filtration we mean the
family {Ft, t ≥ 0} of σ–algebras such that for all 0 ≤ s ≤ t < ∞ it holds

Fs ⊂ Ft ⊂ F .

Definition 1.1.2. Let (Ω,F ,P) be a probability space. We say that the filtration
{Ft, t ≥ 0} satisfies the usual conditions if the filtration

• is right continuous, i.e., Ft = ⋂︁
s>t Fs for all t ≥ 0.

• contains all null sets in F , i.e. F0 ⊃ {N ∈ F : P (N) = 0}.

We will always assume that the filtration satisfies the usual conditions
throughout this text. Even though this condition is sometimes not necessary,
it simplifies mathematical technicalities. For example, instead of assuming that
P–almost all trajectories of a stochastic process are continuous, we can, without
loss of generality, instead assume that all trajectories are continuous. For more
information, see, for example, Karatzas and Shreve (1991).

Definition 1.1.3. (Martingale) We say that process M = {M(t), t ≥ 0} is Ft–
martingale, if

(i) M is Ft–adapted;

(ii) E[|M(t)|] < ∞ for all t ≥ 0;

(iii) E[M(t) | Fs] = M(s) P − a.s. for all 0 ≤ s ≤ t < ∞.

Definition 1.1.4. (Local martingale) Let X = {X(t), t ≥ 0} be a continuous
Ft–adapted process. We say that X is a continuous Ft–local martingale, if there
exist Ft–stopping times Tn, n ∈ N such that
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• the sequence {Tn}∞
n=1 is increasing and Tn −→

n→∞
+∞ P − a.s.;

• processes X(n) = {X(min{t, Tn}) − X(0), t ≥ 0} are continuous Ft–
martingales.

The following definition is a generalization of a local martingale.

Definition 1.1.5. (Semimartingale) We say that Ft–adapted process X =
{X(t), t ≥ 0} is a continuous Ft–semimartingale if there exists a representation

X(t) = X(0) +M(t) + V (t), for every t ≥ 0 P − a.s.,

where M = {M(t), t ≥ 0} is a continuous Ft–local martingale and V = {V (t), t ≥
0} is a continuous Ft–adapted process with trajectories in BVloc(R+) = {f : R+ →
R : ∀t f has locally bounded variation on [0,t]} P-a.s. and M(0) = V (0) = 0.

Theorem 1.1.6. (Doob–Meyer decomposition) For any two continuous Ft–local
martingales M , N there is a unique Ft–adapted continuous process of bounded
variation ⟨M,N⟩ = {⟨M,N⟩t, t ≥ 0} satisfying ⟨M,N⟩0 = 0, P–a.s., such that
process MN − ⟨M,N⟩ is a continuous Ft–local martingale. If M = N , we write
⟨M⟩ = ⟨M,N⟩ and this process is non-decreasing.

Proof. See Karatzas and Shreve (1991) Problem 1.5.17.

The uniqueness in the Theorem 1.1.6 is meant in the sense of indistinguisha-
bility; see Karatzas and Shreve (1991).

Definition 1.1.7. We call the process ⟨M,N⟩ in the Theorem 1.1.6 the cross-
variation of M and N . If M = N , we call the process ⟨M⟩ the quadratic variation
of M .

We shall introduce a new notation for the following Theorem. For a function
f , by fxixj

we mean ∂2f
∂xi∂xj

, similarly for ft and fxi
. Furthermore, by C1,2(Rn) we

mean a set of functions f(t, x) : [0,∞)×Rn ↦→ R such that the partial derivatives
ft, fxi

, fxi,xj
exist and are continuous for 1 ≤ i ≤ j ≤ n. Similarly, we will use

C1,2
p (Rn) for functions f that also satisfies polynomial growth condition on Rn,

i.e. for some constants C, k we have f(t, x) ≤ C(1 + (xTx)k).

Theorem 1.1.8. (Itô’s formula) Let M = (M (1), . . . ,M (n))T be a vector of
continuous Ft–local martingales, V = (V (1), . . . , V (n))T be a vector of Ft–
adapted processes of bounded variation with V (0) = 0 and finally, let W =
(W (1), . . . ,W (n))T be n-dimensional Ft–Wiener proces. Set

X(t) = X(0) +M(t) + V (t), 0 ≤ t < ∞.

Then for any f(t, x) : [0,∞) × Rn ↦→ R such that f ∈ C1,2(Rn) holds

f(t,X(t))=f(0, X(0))+
∫︂ t

0
ft(s,X(s))ds+

n∑︂
i=1

∫︂ t

0
fxi

(s,X(s))dV (i)(s)

+
n∑︂

i=1

∫︂ t

0
fxi

(s,X(s))dM (i)(s)

+ 1
2

n∑︂
i=1

n∑︂
j=1

∫︂ t

0
fxixj

(s,X(s))d⟨M (i),M (j)⟩s, for any t ≥ 0 P − a.s.
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This can be rewritten in a differential form as

df(t,X(t)) = ft(t,X(t))dt+
n∑︂

i=1
fxi

(t,X(t))dV (i)(t) +
n∑︂

i=1
fxi

(t,X(t))dM (i)(t)

+ 1
2

n∑︂
i=1

n∑︂
j=1

fxixj
(t,X(t))d⟨M i,M j⟩t, 0 ≤ t < ∞.

Moreover, process {f(t,X(t)), t ≥ 0} is Ft–semimartingale.

Proof. The proof of the one-dimensional case is in Karatzas and Shreve (1991),
Theorem 3.3.3.

The following Theorem is a useful generalization of Itô’s formula. It allows us
to extend the class of functions used in Itô’s formula to convex functions, which
are not necessarily differentiable at all points. Convex functions are widely used
in finance and often represent the payoff of some option contract. Thus it is
desirable to generalize the Itô’s formula to this class of functions. To do that, let
us denote by D− the left-hand derivative.

Theorem 1.1.9. (Generalized Itô’s formula) Let X be a continuous local
martingale, then there exists a martingale local time for X, i.e. a non-negative
random field Λ = {Λt(a, ω), (t, a) ∈ [0,∞) × R, ω ∈ Ω} such that the following
hold:

• For every convex function f : R ↦→ R, we have the generalized change of
variable formula:

f(X(t)) = f(X(0)) +
∫︂ t

0
D−f(X(s))dX(s)

+
∫︂ ∞

−∞
Λt(a)dµ(a); 0 ≤ t < ∞, P − a.s,

where µ is the second derivative measure of the function f , that is

µ[a, b) = D−f(b) −D−f(a).

• for every Borel measurable function k : R ↦→ [0,∞) the identity∫︂ t

0
k(X(s, ω))d⟨X⟩s(ω) = 2

∫︂ ∞

−∞
k(a)Λt(a, ω)da, 0 ≤ t < ∞ (1.1)

holds for almost all ω ∈ Ω.

• For almost all ω ∈ Ω it holds for each a ∈ R that∫︂ ∞

0
1a(X(s))⟨X⟩sds = 0. (1.2)

Proof. This Theorem is a martingale version of more general semimartingale
Theorem 3.7.1. and Exercise 3.7.10. in Karatzas and Shreve (1991).
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As mentioned earlier, martingales are an important term in stochastic finance.
For example, martingales are widely used in asset pricing theory. However,
the process {f(t,X(t)), t ≥ 0} from Itô’s formula is Ft–semimartingale and
not a (local) Ft–martingale. Thus, we need some way to change the process
{f(t,X(t)), t ≥ 0} into Ft–martingale. The next Theorem plays a fundamental
role in the asset pricing literature, as it allows us to describe the evolution of the
stochastic process under an equivalent probability measure.

Theorem 1.1.10. (Girsanov’s Theorem) Let W = (W (1), . . . ,W (n))T be n-
dimensional Ft–Wiener process and let X = (X(1), . . . , X(n))T be a vector of
Ft–progressively measurable process such that E

[︂∫︁ T
0 X(t)TX(t)dt

]︂
< ∞ for some

T > 0. Set

G(t,X) = exp
(︄

n∑︂
i=1

∫︂ t

0
X(i)(s)dW (i)(s) − 1

2

∫︂ t

0
X(s)TX(s)ds

)︄
, 0 ≤ t ≤ T.

Assume

E[G(T,X)] = 1. (1.3)

Define the probability measure P̃ on FT by dP̃
dP = G(T,X) and set

˜︂W (i)(t) = W (i)(t) −
∫︂ t

0
X(i)(s)ds, 0 ≤ t ≤ T, i ∈ 1, . . . , n.

Then ˜︂W = (˜︂W (1), . . . , ˜︂W (n))T is an n-dimensional Ft–Wiener process on
probability space (Ω,FT , P̃).

Proof. See Theorem 3.5.1. in Karatzas and Shreve (1991) or Girsanov (1960).

To use the Theorem, 1.1.10 we need some criterion to check (1.3). One of
such criteria is the Novikov’s condition.

Theorem 1.1.11. (Novikov’s condition) Let W = (W (1), . . . ,W (n))T be n-
dimensional Ft–Wiener process and let X = (X(1), . . . , X(n))T be a vector of
Ft–adapted processes satisfying

P
(︄∫︂ T

0
(X(i)(t))2dt < ∞

)︄
= 1, 1 ≤ i ≤ n, 0 ≤ T < ∞.

If

E
[︄
exp

(︄
1
2

∫︂ T

0
X(t)TX(t)ds

)︄]︄
< ∞, 0 ≤ T < ∞,

then process Z = {Z(X, t), 0 ≤ t < ∞} defined by

Z(X, t) = exp
(︄

n∑︂
i=1

∫︂ t

0
X(i)(s)dW (i)(s) − 1

2

∫︂ t

0
X(t)TX(t)ds

)︄

is Ft–martingale.

Proof. See Corollary 3.5.13 in Karatzas and Shreve (1991).
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1.2 Dynamic programming
This section introduces the Hamilton-Jacobi-Bellman equation, which gives
necessary and sufficient conditions for the optimality of both control and value
of a stochastic control problem. Given a smooth solution v of the dynamic
programming equation, we present the sufficient conditions for v to be the value
function V of the presented problem. With the value function known, we can
find the optimal stochastic control by finding the maximizer in the HJB equation.
Even though the results are far-reaching, the proof relies on Itô’s formula. Finally,
we illustrate the dynamic programming principle on a typical control problem
example in mathematical finance, Merton’s optimal portfolio problem.

Before we get to the verification Theorem, we need to introduce Markov
processes first. These processes are commonly used in mathematical finance
because at any time r, the state of the process ξ(r) contains all relevant
information for the evolution of the process ξ for times t > r. For example,
this means that we can omit the whole history of the process ξ prior to time
r when studying the optimal control. This is often used in the efficient market
hypothesis, where it is assumed that asset prices reflect all available information
on the market, and thus do not depend on history. In this section, we closely
follow sections 5.5., 6.3 and 6.4 in Fleming and Rishel (2012).

To ease the notation, we introduce the transition function P̂ by

P̂ (s, y, t, B) = P(ξ(t) ∈ B|ξ(s) = y).

Furthermore, similarly, we introduce the conditional expectation Esy. More-
over, throughout this section, we assume that ξ is a stochastic process on a
time interval T with state-space Σ, which is a complete separable metric space.
Mathematically, the definition of the Markov process is

Definition 1.2.1. (Markov process) A stochastic process ξ on a time parameter
set T with state space Σ is a Markov process if

• For any t1 < t2 < · · · < tn in T and B ∈ B(Σ) holds

P(ξ(t) ∈ B|ξ(t1), . . . , ξ(tn)) = P(ξ(t) ∈ B|ξ(tn)).

• P̂ (s, ·, t, B) is B(Σ)–measurable for fixed s, t, and B.

• P̂ (s, y, t, ·) is a probability measure on B(Σ) for fixed s, y, and t.

• For s < r < t, s, r, t ∈ T holds the Chapman-Kolmogorov equation

P̂ (s, y, t, B) =
∫︂

Σ
P̂ (r, x, t, B)P̂ (s, y, r, dx).

We will often work with a class of Markov processes called diffusion processes.

Definition 1.2.2. (Diffusion process) A Markov process on an interval T is
called an n-dimensional diffusion process if

• For every ϵ > 0, t ∈ T , x ∈ En

lim
h↦→0

1
h

∫︂
|x−z|>ϵ

P̂ (t, x, t+ h, dz) = 0

10



• There exist functions aij(t, x), bi(t, x), i, j = 1, . . . , n such that for every
ϵ > 0 and t ∈ T , x ∈ En

lim
h↦→0

1
h

∫︂
|x−z|≤ϵ

(zi − xi)P̂ (t, x, t+ h, dz) = bi(t, x)

lim
h↦→0

1
h

∫︂
|x−z|≤ϵ

(zi − xi)(zj − xj)P̂ (t, x, t+ h, dz) = aij(t, x).

Under sufficient conditions, diffusion processes are solutions to a stochastic
differential equation

ξt,x(s) = x+
∫︂ s

t
b(u, ξt,x(u))du+

∫︂ s

t
σ(u, ξt,x(s))dW (u), s ≥ t, (1.4)

with a(t, x) = σ(t, x)σT (t, x) and starting point ξt,x(t) = x. The vector function
b is called the local drift coefficient, and the matrix-valued function a is called
the local covariance matrix. The meaning is apparent from (1.4).

Definition 1.2.3. Let X t,x = {X t,x(s), s ≥ t} be the unique strong solution of

X t,x(s) = x+
∫︂ s

t
b(u,X t,x(u))du+

∫︂ s

t
σ(u,X t,x(s))dWu, s ≥ t,

where µ and σ satisfy the condition required for the existence and uniqueness of
a strong solution.

For a function f : Rn ↦→ R we define the function A(t)f by

A(t)f(x) = lim
h↦→0

E [f(X t,x(t+ h))] − f(x)
h

if the limit exists.

We can immediately see that the domain of the operator A(t), called the
generator of X, contains all ψ ∈ C2(Rn) and

A(t)ψ = 1
2

n∑︂
i,j=1

ai,j(t, x) ∂2ψ

∂xi∂xj

+
n∑︂

i=1
bi(t, x) ∂ϕ

∂xi

.

There is a helpful link between diffusions and solutions to stochastic differen-
tial equations.

Theorem 1.2.4. Assume that Q is an open set, τ is the exit time from Q, and
(s, y) ∈ Q. Moreover, assume

• b, σ satisfy linear growth

• ψ is in C1,2
p (Q), ψ is continuous on the closure of Q

• ψt +A(t)ψ+M(t, x) ≥ 0 for all (t, x) ∈ Q where Esy [
∫︁ τ

s |M(t, ξ(t))|dt] < ∞

Then
ψ(s, y) ≤ E

[︃∫︂ τ

s
M(t, ξ(t))dt+ ψ(τ, ξ(τ))

]︃
.

Proof. See Theorem 5.5.1 in Fleming and Rishel (2012).
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Theorem 1.2.4 has important consequence.
Theorem 1.2.5. Assume that Q is an open set, τ is the exit time from Q, and
(s, y) ∈ Q. Moreover, assume

• b, σ satisfy linear growth

• ψ is in C1,2
p (Q), ψ is continuous on the closure of Q

• Esy [
∫︁ τ

s |ψt + A(t)ϕ|dt] < ∞ for each (s, y) ∈ Q.
Then

ψ(s, y) = −Esy
[︃∫︂ τ

s
(ψt + A(t)ψ) dt

]︃
+ Esyψ(t, ξ(τ)).

Proof. Easily follows from Theorem 1.2.4.

Theorem 1.2.5 shows the role of a generator A as the link between linear partial
differential equations and the conditional expectation of a diffusion process. This
link plays an important role in the theory of stochastic optimal control in the
form of a verification theorem. Until the end of the section, consider a stochastic
differential equation of the form

dξ(t) = f(t, ξ(t), u(t))dt+ σ(t, ξ(t), u(t))dw, t ≥ s (1.5)

where u represents the control process of the agent. The goal of the agent is to
find the optimal control u⋆ that minimizes

J(s, y,u) = Esy

[︄∫︂ T

s
L(t, ξ(t), u(t)) + Ψ(ξ(T ))

]︄
,

over all admissible u for some a priori given continuous functions L and Ψ with
polynomial growth. First, we need to introduce the control process to present
the verification theorem formally.
Definition 1.2.6. An admissible feedback control law is a borel measurable
function u : [T0, T ] × Σ ↦→ U satisfying

• For each initial data (s, y), there exists a Brownian motion W such that the
SDE (1.5) has a unique probability law solution ξ with ξ(s) = y

• For each k > 0 the expected value Esy[|ξ(t)|k] is bounded for t ∈ [s, T ]

• For each k > 0 we have E
[︂∫︁ T

s |u(t)(t, ξ(t))|kdt
]︂
< ∞.

At each time t, the control u(t) is applied via a feedback control law u

u(t) = u(t, ξ(t)).

With this feedback control u, there is an associated transition function P̂
u and

the generator Au defined in an obvious manner.
Finally, we make the following assumptions about f and σ. We suppose that

f, g ∈ C1([T0, T ] × En × U) and for some C

|f(t, 0, 0)| ≤ C |σ(t, 0, 0)| ≤ C

|fx| + |fu| ≤ C |σx| + |σu| ≤ C.

The above conditions ensure that the function J depends only on the control u
and is finite for every admissible control.

12



Theorem 1.2.7. (Verification Theorem) Let W (s, y) be a solution of the dynamic
programming equation

0 = Ws + min
v∈U

[Av(s) + L(s, x, v)] , (s, y) ∈ Q, (1.6)

with boundary data

W (s, y) = Ψ(s, y), (s, y) ∈ ∂⋆Q,

such that W is in C1,2
p (Q), continuous on the closure of Q and ∂⋆Q is a closed

subset of boundary of Q such that (τ, ξ(τ)) ∈ ∂⋆Q with probability 1. Then:

• W (s, y) ≤ J(s, y,u) for any admissible feedback control u and any initial
data (s, y) ∈ Q.

• If u⋆ is an admissible feedback control such that

Au⋆(s)W + Lu⋆(s, y) = min
v∈U

[Av(s)W + L(s, y, v)]

for all ((s, y) ∈ Q) then W (s, y) = J(s, y,u⋆) for all (s, y) ∈ Q, i.e. u⋆ is
optimal.

Proof. See Theorem 6.4.1 in Fleming and Rishel (2012).

Typically, the optimal control is thus found by showing the existence of a
smooth solution W to the HJB equation (1.6) and then showing that this smooth
solution is the value function of the stochastic control problem, which quickly
yields the optimal control. Unfortunately, the smoothness assumption of the
value function W can fail even for simple examples, and thus one has to consider
the viscosity solutions introduced by Crandall and Lions (1983). We illustrate the
dynamic programming theory with a classical example in mathematical finance
called the Merton problem, which was first introduced in Merton (1969) and
Merton (1975). Since then, the Merton problem has been actively researched.
For an excellent review, see the book Rogers (2013) which is solely dedicated to
the Merton problem.

Commonly, the Merton problem describes an agent who invests in one or more
risky assets and wishes to maximize his final expected utility. The agent can
invest in n-dimensional risky asset S described by a semimartingale process with
dividend rate δ or accrue interest at risk-free rate r. The dynamics of the wealth
of the agent with some initial wealth w(0) can be described through equation of
the form

dw(t) = r(t)w(t)dt+ u(t) (dS(t) − r(t)S(t)dt+ δ(t)dt) + e(t)dt− c(t)dt,

where process u represents the control of the agent and processes e resp. c
represents endowment resp. consumption.

For the simplest example, we assume that only one asset is available on the
market, i.e. n=1. The price of the risk-free asset B follows

dB(t) = B(t)rdt
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and the price of the risky asset S follows a geometric Brownian motion

dS(t) = αS(t)dt+ σS(t)dW (t).

The parameter α is called the drift and the parameter σ > 0 is called the volatility
of the asset S. The common assumption is that r < α, which we also assume.
The agent invests at any time t a fraction u(t) of his wealth w in a stock S, while
the remainder is invested in the bond B. We assume no consumption process c
and we impose no constraint on the control, i.e. u(t) ∈ R. The evolution of the
agent’s wealth w satisfies the following stochastic differential equation

dw(t) = w(t)rdt+ u(t)w(t) ((α− r)dt+ σdW (t))
w(s) = y.

We suppose that the agent uses power utility function U(x) = x1−a−1
1−a

with risk
aversion parameter a, and wishes to maximize his expected terminal utility

J = Esy [U(W (τ))] ,

where ρ > 0 and τ denotes the time the agent goes bankrupt or the final time T ,
whichever occurs first. Clearly, τ is a stopping time. The dynamic programming
equation can be written in the form

0 = Ws + rxWx + max
u

[︃
u(µ− r)xWx + 1

2x
2u2σ2Wxx

]︃
, (1.7)

with y > 0 and boundary conditions W (τ, x) = U(x). Guessing W (t, y) =
g(t)x1−a

1−a
and plugging into HJB equation (1.7) we have

0 = g′(t) x
1−a

1 − a
+ rx1−ag(t) + g(t)max

u

[︃
u(µ− r)x1−a + 1

2u
2σ2(−ax1−a)

]︃
.

Thus, g should satisfy ordinary differential equation

0 = g′(t) + (1 − a)g(t)
(︃
r + max

u

[︃
u(µ− r) − 1

2au
2σ2

]︃)︃
,

g(τ) = 1.

To ease notation, denote

ρ =
(︃

(1 − a)r + (1 − a)max
u

[︃
u(µ− r) − 1

2au
2σ2

]︃)︃
.

Solving the linear differential equation, one can find that

g(s) = eρ(T −s),

and so
W (t, x) = eρ(T −s) x

1−a

1 − a
.

Finally, substituting to the HJB equation we arrive at the optimal position

u(t) = µ− r

aσ2 , (1.8)
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which is often called Merton’s fraction.
It is interesting to note that we have found both the optimal control and

the optimal value in the Merton’s portfolio example above. However, it can
be challenging for some problems to find their optimal value, yet one can say
enough about the optimal value process to find the optimal control using the
verification theorem. A typical example is passport options, where one can easily
show the convexity in the spatial variable of the value function, which is sufficient
to guess the optimal solution cleverly, see Henderson and Hobson (2000). Another
approach, first used by Shreve and Večeř (2000) in this setting, is to use Hajek’s
mean comparison theorem.

Theorem 1.2.8 (Hajek’s mean comparison Theorem). Let {Mt, t ∈ [0, T ]} be a
continuous martingale with representation Mt = M0 +

∫︁ t
0 σsdWs. Assume that for

some function ρ on R, we have |σs| ≤ ρ(Ms) and there exists a unique solution
(in the sense of probability law) Nt to the stochastic differential equation

Nt = M0 +
∫︂ t

0
ρ(Ns)dWs. (1.9)

Then for any convex function Φ and any t ≥ 0,

E[Φ(Mt)] ≤ E[Φ(Nt)].

Proof. See Theorem 3 in Hajek (1985). However, it is required that the function
ρ is Lipschitz continuous in order for the stochastic differential equation (1.9) to
have a unique solution in the sense of probability law.

Hajek’s Theorem states that maximizing volatility also maximizes the ex-
pected convex payoff. Theorem 1.2.8 has been generalized to stochastic sums by
Kampen (2016).
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2. Stochastic finance
2.1 Efficient market hypothesis
In this section, we introduce the efficient market hypothesis (EMH). EMH had a
substantial influence on modern mathematical finance and is widely used as an
underlying assumption in many financial models as it allows us to price assets
fairly. EHM states that it is impossible to make a risk-free profit on the market
and that the available information is fully reflected in the asset price. To fully
grasp the impact of EMH on finance, it is useful to review its history. We follow an
excellent overview from the articles Sewell (2011), Degutis and Novickytė (2014),
and the references therein.

Louis Bachelier published his Ph.D. thesis in 1900 Bachelier (1900), where
he argues that the expected profit of the speculator is always equal to zero.
Bachelier used the Brownian motion to model stock prices ahead of his time.
Later Cowles (1933) analyzed the trade statistics of investment professionals and
concluded that the professionals were not able to earn excess returns over the
market. Cowles came to the same conclusion eleven years later in his follow-up
work Cowles (1944). Twenty years later, Fama laid the foundation stone of the
efficient market hypothesis in his influential article Fama (1965). In his empirical
analysis, Fama concluded that prices followed a random walk process, and he was
the first to use the term efficient market. In the same year, Samuelson (1965)
focused on martingale processes instead of a random walk for price processes, and
thus was the first to provide formal arguments for the efficient market hypothesis.
The efficient market hypothesis was popularized outside of academia by Malkiel
(1973).

Roberts (1967) and Fama (1970) divided the efficient market hypothesis into
three levels depending on how strong its assumptions are. The levels differ by
the information set Ωt available to traders at time t. In the weakest form, Ωt

consists only of current and past asset prices. Sometimes, Ωt also consists of
dividends, trading volume, or other information. If Ωt also consists of all publicly
known information, then EHM is in its semi-strong form. Most of the scientific
literature focuses on these two forms. The third form is that Ωt is enlarged
by private information. Because the third form is a powerful assumption, it
has many opponents. For example, Grossman and Stiglitz (1980) argues that
private information can be costly, and one should expect excess returns over the
market. Otherwise, agents would not allocate resources to obtain and analyze
the information as it would not offer them any competitive edge.

One of the strongest arguments for the efficient market hypothesis is mutual
funds’ inability to systematically outperform the index. In Jensen (1968), the
author analyzed actively managed funds in the US in the period 1945 to 1964.
Surprisingly, the author found that the funds underperformed the market by
approximately their expenses. In the continuation study, Malkiel (1995) analyzed
US equity mutual funds in the period 1971 to 1991 and came to the same
conclusion.

Not everyone agreed with the efficient market hypothesis, and from the
1980s, a growing amount of literature challenged the hypothesis. For example,
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De Bondt and Thaler (1985) found empirical evidence that stock prices overreact
to unexpected and dramatic news, thus weak form market inefficiency. In
addition, they found that most of the excess returns were earned in January.
This article is contributed to starting an alternative theory to EHM called
behavioral finance. Chopra et al. (1992) found that the overreaction of stock
prices is more substantial for smaller firms. Haugen (1995) argues that the
short-run overreaction may lead to price reversal in the future. Finally, another
competing theory to the efficient market hypothesis is the stochastic portfolio
theory introduced by Fernholz (2002). Stochastic portfolio theory is a framework
for studying the market microstructure and behavior of controlled portfolios while
allowing arbitrage opportunities on the market.

At the same time, there was also a growing literature that supports efficient
market hypothesis. In Metcalf and Malkiel (1994) the authors studied the
recommendations of four expert portfolio managers and found no evidence that
the experts can systematically beat the market. In Malkiel (2003), the author
closely studied scientific articles that are against the efficient market hypothesis
and concludes that markets are far more efficient than those papers suggest.
Schwert (2003) studied market anomalies inconsistent with the efficient market
hypothesis. The author concludes that once the anomalies were published in the
scientific literature, practitioners implemented the associated trading strategies
and the opportunities weakened or vanished, thus making the market more
efficient. In Malkiel (2005), the author shows that professionally managed
investment funds do not outperform index benchmarks. Recently, Richard and
Večeř (2021) studied the efficient market hypothesis in football prediction market
data and found no substantial trading opportunities.

We now return to the concept of martingales to better understand their role
in the efficient market hypothesis via the First Fundamental Theorem of Asset
Pricing; see Theorem 2.1.3 below. Even though the proof of this Theorem is
short and straightforward, it plays a central role in the asset pricing literature
and highlights the importance of the no-arbitrage principle. Before we formulate
the Theorem, we first define no-arbitrage assets, and we discuss the distinction
between an asset and its price as given by Večeř (2011).
Definition 2.1.1. Asset X is said to be a no-arbitrage asset if it keeps the same
value as time passes.

Let us discuss some examples to better understand the definition of no-
arbitrage assets. An example of an arbitrage asset is the US dollar, since one
could short the asset and buy a money market asset, thus creating an arbitrage
opportunity in terms of dollars. This idea is nicely illustrated in a famous saying
that today’s dollar is worth more than a dollar tomorrow. However, when one
considers a money market account that continuously reinvests the generated
interest, it is a no-arbitrage asset. Another example of an arbitrage asset is a
stock that does not reinvest its dividends.

To formally define the price of an asset, consider assets X and Y . The price
of an asset X is expressed in another asset Y , which we shall denote XY . Asset
Y is called a numeraire or reference asset. The typical choice of Y is a currency
or a money market account. Mathematically,

X = XY (t) · Y. (2.1)
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The symbol "=" used in (2.1) has to be understood as an equivalence relation
because X and Y are not numbers, but assets. We will write X(t) = Y (t) in
the sense of assets when XY (t) = 1 in the sense of numbers. The numeraire
approach can look a bit redundant at first, but it often leads to significantly
simplified calculations for asset pricing problems, which we will demonstrate when
deriving the Black-Scholes formula (Black and Scholes (1973)). From the equation
(2.1) easily follows two properties of the numeraire pricing approach. Firstly, the
inverse price YX(t) to XY (t), has to be defined as

YX(t) = 1
XY (t) ,

otherwise it would be possible to short one of the assets, go long on the other one,
and make a risk-free profit. Secondly, it is easy to change the numeraire used in
pricing.

Theorem 2.1.2 (Change of numeraire formula). Let X,Y,Z be assets. The prices
satisfy a change of numeraire formula

XY (t) = XZ(t)ZY (t).

Proof. It follows from

X = XZ(t) · Z = XZ(t) · ZY (t) · Y.

Finally, using the definition of the no-arbitrage asset, we can formulate the
First Fundamental Theorem of Asset Pricing.

Theorem 2.1.3. (First Fundamental Theorem of Asset Pricing) If there exists a
probability measure PY such that the price processes XY (t) are PY –martingales,
where X is an arbitrary no-arbitrage asset, and Y is an arbitrary no-arbitrage
asset with a positive price, then there is no arbitrage in the market.

Proof. Fix an asset Y . Suppose that there is an arbitrage in the market. Thus,
one can start with a zero price portfolio PY (0) = 0 and obtain a portfolio PY (T )
such that the random variable PY (T ) satisfies PY (T ) ≥ 0 and PY (PY (T ) > 0) > 0.
This is in contradiction with the martingale property of the process PY , since
EY [PY (T )] > 0 = PY (0).

To demonstrate the usage of the First Fundamental Theorem of Asset Pricing
and the numeraire approach, we now derive the Black-Scholes formula for
European options. We recall here that the European option contract is written
on two assets X resp. Y , typically representing a stock resp. currency. At the
expiration time T of the option, the buyer of the call (put) option has the right
to buy (sell) the asset X for K · Y , where K is defined a priori and is called the
strike price. That is the payoff for call, resp. put option in terms of the asset Y is
(XY (T ) −K)+ resp. (K −XY (T ))+. When pricing European option contracts, a
standard assumption in finance is that prices follow a geometric Brownian motion
with volatility parameter σ, i.e., we assume that there exists a martingale measure
PY such that
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XY (t) = σXY (t)dW Y (t),
where W Y is a PY –Brownian motion. The existence of the probability measure
PY implies the existence of the probability measure PX such that the price
process YX is a PX–martingale. Denote Φ the cumulative distribution function of
standardized normal distribution. Then, we can formulate and prove the Black-
Scholes formula.

Theorem 2.1.4. (Black-Scholes formula) Suppose that the price process XY =
{XY (t), t ≥ 0} follows a geometric Brownian motion with volatility σ. Then the
price of the European call option CBS

Y (t,XY (t), K) with strike K and expiration
time T at time t is

CBS
Y (t,XY (t), K) = Φ(d+) ·XY (t) −KΦ(d−), (2.2)

where
d± = 1

σ
√
T − t

log
(︄
XY (t)
K

)︄
± 1

2σ
√
T − t.

Proof. We follow Večeř (2011). Note that the European call option payoff in
terms of assets is a combination of two Arrow-Debreu securities

(X(T ) −K · Y (T ))+ = 1[XY (T )≥K] ·X(T ) −K · 1[XY (T )≥K] · Y (T ).

Thus, the price of the European call option is

CBS
Y (t,XY (t), K) = PX(XY (T ) ≥ K|XY (t)) ·XY (t) −KPY (XY (T ) ≥ K|XY (t)).

One can easily show that

PX(XY (T ) ≥ K|XY (t)) = Φ
(︄

1
σ

√
T − t

log
(︄
XY (t)
K

)︄
+ 1

2σ
√
T − t

)︄

and

PY (XY (T ) ≥ K|XY (t)) = Φ
(︄

1
σ

√
T − t

log
(︄
XY (t)
K

)︄
− 1

2σ
√
T − t

)︄

which yields (2.2).

It is important to note that the premium CBS
Y also depends on the volatility

parameter σ, even though we do not explicitly state it as one of its arguments.
We stress that, unlike other variables, the parameter σ is not directly observable
from the market. Note that higher volatility yields higher option premia due to
the convexity of the payoff.

In the case where one wishes that the reference asset Y is an arbitrage asset,
for example, the US dollar, one can use the change of numeraire formula in the
form CBS

Y = CBS
M MY with asset M representing the money market account which

is a no-arbitrage asset. With a constant interest rate r, this leads to the formula

CBS
Y (t,XY (t), K) = Φ(d+) ·XY (t) −Ke−r(T −t)Φ(d−). (2.3)
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Using put-call parity by Stoll (1969) one can immediately show that the price
PBS

Y for the put option is

PBS
Y (t,XY (t), K) = Ke−r(T −t)Φ(−d−) − Φ(−d+) ·XY (t) (2.4)

To simplify the numeraire notation in the rest of the text, we often omit the
reference asset Y in the XY price process if Y is either a currency or money
market.

2.2 Optimal distributional trading gain problem
Specifying and deriving optimal strategies for utility-maximizing agents has been
studied widely in many forms. Historically, its origins may be found in a 1738
article of Bernoulli, later republished in Bernoulli (1954). A more modern
formulation of a related problem appeared in Kelly (1956) whose main result is
commonly referred to as the Kelly criterion. This problem is typically understood
in the specific context of a logarithmic utility-maximizing agent trading on a
binary outcome, where the subjective belief of the agent differs from that of the
broader market. For example, binary outcomes appear in betting markets, where
the Kelly criterion determines the optimal bet size, given the agent’s bankroll,
on both possible outcomes. In the financial setting, the digital outcomes can
be understood as Arrow-Debreu securities, and the corresponding prices as state
prices introduced in Arrow (1964) and Debreu (1959).

Following Večeř (2020), we assume that there are two agents in the market.
One represents a market taker with a distributional opinion P and strictly
increasing concave utility function U , and the other represents a market maker
with a distributional opinion Q. The goal of the market taker is to find the optimal
payoff B1 that maximizes her expected utility. This market taker can construct
an arbitrary payoff B1 as long as its expected payoff from the perspective of the
market measure Q is the initial wealth B0. Mathematically, the market taker
faces the following optimization problem

max
B1

EP [U(B1)] (2.5)

s.t. EQ [B1] = B0.

The optimal payoff B1 of the optimization problem (2.5) is given by the
following Theorem.

Theorem 2.2.1. Let U(x) be a utility function satisfying U ′(x) > 0 and U ′′(x) <
0. Assume that p resp. q are the densities associated with P resp. Q. Denote I
to be the inverse of U ′. Then the optimal random variable B⋆

1 from the optimal
distributional gain problem (2.5) is given by

B⋆
1(x) = I

(︄
λ
q(x)
p(x)

)︄
, (2.6)

where λ solves
EQ

[︄
I

(︄
λ
q(x)
p(x)

)︄]︄
= B0. (2.7)
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Proof. We follow Večeř (2020). Consider Lagrange-type functional associated
with the constrained problem (2.5)

J [B1] =
∫︂

[U(B1(x))p(x) − λB1(x)q(x)] dx+ λB0.

The optimal F must satisfy
∂J

∂B1
= 0,

which leads to
U ′(B1(x))p(x) − λq(x) = 0. (2.8)

Solving (2.8) for B1, we can immediately see that

B1(x) = I

(︄
λ
q(x)
p(x)

)︄
,

where λ solves
EQ

[︄
I

(︄
λ
q(x)
p(x)

)︄]︄
= B0.

There are two things worth mentioning about the previous Theorem. First,
notice that we only need to know the likelihood ratio q

p
to find the optimal B⋆

1 .
This can be useful not only in some applications, where one can only find p and q
multiplied by some unknown constant c, but it also provides a direct link to the
likelihood ratio between q and p. Second, both the expected utility gain and the
expected profit are statistical divergences.

The solution of the above Theorem, under different conditions, has also
appeared in Kramkov and Schachermayer (1999). However, their result is limited
to positive random variables and utility functions satisfying Inada conditions.
They approached the problem using the Legendre transform-based optimization
technique.

In finance, the most common utilities are logarithmic utility, exponential
utility, and power utility, and therefore it is worth showing the formula for the
optimal payoff B⋆

1 for these utilities.
Example 2.2.1. (Logarithmic Utility) Let U(x) = log (x), then one can easily
compute that

B⋆
1(x) = B0

p(x)
q(x) .

Note that the expected utility EP [U(B⋆
1)] = log(B0) + DKL(P||Q), where DKL

is a Kullback-Leibler divergence, which is also called relative entropy. For more
information see Kullback and Leibler (1951).
Example 2.2.2. (Exponential Utility) Let U(x) = 1 − exp (−x), then

B⋆
1(x) =

[︄
log

(︄
p(x)
q(x)

)︄
+
∫︂

log
(︄
q(x)
p(x)

)︄
q(x)dx

]︄
+B0

=
[︄
log

(︄
p(x)
q(x)

)︄
+DKL(Q||P)

]︄
+B0.
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Thus, the expected profit is the sum of two Kullback-Leibler divergences and the
invested initial wealth B0. The expected utility can be written in the form

EP [U(B⋆
1)] = 1 − exp (DKL(Q||P) −B0) .

Example 2.2.3. (Power Utility) For a > 0, let U(x) = x1−a−1
1−a

. This leads to

B⋆
1(x) =

B0
(︂

p(x)
q(x)

)︂ 1
a

∫︁ (︂p(x)
q(x)

)︂ 1
a q(x)dx

. (2.9)

Clearly, for a → 1, the power utility converges to the logarithmic utility.
The relationship of logarithmic utility and power utility with Kullback-Leibler

divergence was first observed by Večeř (2020). This relationship is remarkable.
In model selection theory, an information theory approach is to select a model
with the lowest Akaike criterion Akaike (1974). Since the Akaike criterion is
based on Kullback-Leibler divergence, the criterion tries to select the model with
the lowest information loss with respect to the data. For utility-maximizing
agents, this means that the larger the divergence between the market measure
and the market taker’s measure, the larger the opportunity for the market taker.
Intuitively, this makes sense, as one would expect a more significant discrepancy
to yield larger gains for the market taker.

For the specific choice of logarithmic utility and binary outcome variable, we
can replicate the Kelly criterion.
Remark 2.2.1. (Kelly Criterion) Assuming that the subjective probability P
assigned a value P(X = 1) = p to an event X and the market probability, given
by Q assigned P(X = 1) = q, the optimal payoff B⋆

1 for U(x) = log(x) and initial
wealth B0 is

B⋆
1 =

⎧⎨⎩B0 · p
q

X = 1
B0 · 1−p

1−q
X = 0.

The Kelly criterion is typically stated in terms of the fraction of the bankroll that
is lost on the outcome of X = 0, or in other words, the value 1 − 1−p

1−q
= p−q

1−q
=

p(b+1)−1
b

, where b = 1
q

− 1.
Let us return to Merton’s problem. Following Večeř (2020), we reformulate

the problem in terms of optimal distributional gain. We again assume that the
market taker uses a power utility. The distributional opinion P of the market
taker about the stock price process S is

dS(t) = µS(t)dt+ σS(t)dW P(t)

while the market maker believes in Q such that

dS(t) = rS(t)dt+ σS(t)dWQ(t),

where r represents the risk-free rate. Defining the discounted price process X as

dX(t) = d(e−rtS(t))
e−rtS(t) = (µ− r)dt+ σdW P(t) = σdWQ(t),
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we can immediately see that the market taker believes that the increment dX
has a distribution

dX ∼ N((µ− r)dt, σ
√
dt).

On the other hand, the opinion of the market maker is simply

dX ∼ N(0, σ
√
dt).

Using (2.9) and initial bankroll B0 = 0, we can see that the optimal payoff is just
the discounted final value of the portfolio P ,i.e., we have

B⋆
1(X(T )) = e−rTP (T ) =

(︂
p(X(T ))
q(X(T ))

)︂ 1
a

∫︁ (︂p(x)
q(x)

)︂ 1
a q(x)dx

= exp
(︄
µ− r

aσ2 X(T ) − 1
2

(µ− r)2

(aσ)2 T

)︄
.

(2.10)
Clearly, the optimal terminal wealth (2.10) is a geometric Brownian motion with
volatility µ−r

aσ2 and drift µ−r
2aσ2 (1−aσ2

aσ2 ). Note that since the market is complete,
the optimal payoff B⋆

1 is replicable by actively trading in the underlying asset.
From the perspective of the market taker the replication strategy ∆ is a constant
position in the risky asset

∆(t) = µ− r

aσ2 . (2.11)

This result can be easily extended either to multiple assets or to Merton’s problem
with a single Poisson jump, see Večeř (2020). Note that Theorem 2.2.1 can be used
for any distributional opinion of the agent P and any distributional opinion Q of
the market. Thus, it provides a more general approach to determine the optimal
trading behavior of utility maximizers than that considered in Merton (1975),
which is restricted to the normal distribution. Therefore, having a subjective
opinion about the drift µ gives an optimal trading strategy of a power utility-
maximizing agent in terms of the well-known Merton ratio (1.8). We note that
one significant difference between the likelihood and Merton approaches is that
the likelihood approach allows for dynamic updating of the drift instead of taking
this to be a constant parameter as in the Merton model. Moreover, we note that
the optimality of repeated updating of the drift parameter is justified by the
likelihood method, which further extends Merton’s model.

We now return to the logarithmic utility. The choice of logarithmic utility
is natural to many agents since the optimal strategy also dominates any other
strategy in the long run, see Leo (1961). Večeř (2020) studied the equilibrium of
the market when a possibly infinite number of agents are present and showed the
relationship of the agents’ bankrolls to the Bayesian statistics. We restate below
both the equilibrium distribution and link to Bayesian statistics.

Suppose that there are agents on the market (Aθ)θ∈Θ, where Θ is a possibly
infinite index set. We suppose that each agent Aθ has logarithmic utility, bankroll
B0,θ, and a distributional opinion Pθ with density f(·|θ). Aggregating these agents
can be viewed as an agent representing the whole market with distribution M
associated with density m and some bankroll BM . The natural question is, of
course, what is the density m. To answer this question, we set the market bankroll

BM =
∫︂

Θ
B0,θµ(dθ) =

∫︂
Θ
B⋆

1,θµ(dθ), (2.12)
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which we assume to be finite. The measure µ is typically a counting measure in
case that the index set Θ is finite and the Lebesgue measure otherwise. If µ is a
Lebesgue measure, then the impact of each agent is weighted only by his or her
bankroll.

Theorem 2.2.2. (Equilibrium Distribution) The equilibrium density m is given
by

m(x) = 1
BM

∫︂
Θ
B0,θf(x|θ)µ(dθ). (2.13)

Proof. Using (2.12), we have

BM =
∫︂

Θ
B⋆

1,θµ(dθ) =
∫︂

Θ
B0,θ

f(x|θ)
m(x) µ(dθ) = 1

m(x)

∫︂
Θ
B0,θf(x|θ)µ(dθ).

And formula (2.13) follows.

From the definition of market bankroll BM , it is evident that m is indeed
a density function. Furthermore, since the density m is a mixture distribution
weighted by the bankrolls and measure µ, one can compute the expected value
and the variance of the underlying process knowing the distributional opinions of
the individual agents.

Let us now show the link to Bayesian statistics. Let f denote the density of
a prior on some parameter space Θ. We assume that for each θ ∈ Θ there is an
agent on the market with initial bankroll f(θ), distributional opinion f(x|θ) using
utility function U(x) = log(1 + x). The distributional opinion f(x|θ) is known
in Bayesian statistics as likelihood. Market equilibrium density m is in this case
simply

m(x) = f(x) =
∫︂

Θ
f(θ)f(x|θ)µ(dθ),

since BM = 1. Assume that the observation x1 is realized on the market. Then,
the updated bankroll for each agent is a posterior distribution of θ

B⋆
1,θ(x1) = f(θ)f(x1|θ)

f(x1)
= f(θ|x1).

Using mathematical induction, it can be easily shown that for an arbitrary
number of observations x1, . . . , xn on the market, the bankroll of the agents
evolves according to Bayesian updating, i.e. Bθ(x1, . . . , xn) = f(θ|x1, . . . , xn).
Since Bayesian statistics is an actively researched area, the properties of the
posterior are well known. The above relationship also provides an economic
interpretation of Bayesian updating.
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3. Static replication and SVI
model
The optimal distributional trading framework provides a powerful tool for utility-
maximizing agents. However, in general, there is no traded instrument with
a payoff that corresponds to the optimal payoff. This chapter shows that it
is theoretically possible to statically replicate the optimal payoff by trading in
bonds, forwards, and vanilla option contracts, which is a topic of the first section.
To be able to use static replication, one has to know the risk-neutral density seen
by the market. This density can be obtained from the price of vanilla option
contracts with the same underlying asset. However, the price depends on the
volatility of the price process of the underlying asset, which is not observable
from market data. Thus, the implied volatility obtained by inverting the Black-
Scholes formula for a given strike and maturity is used, which is only available for
strikes and maturities that are traded and have reasonable quotations. For this
reason, we need a model that allows us to obtain the implied volatility outside of
the traded strikes and maturities that satisfies a common financial assumption,
namely the efficient market hypothesis. In other words, we need a model that
does not allow for arbitrage opportunities. In section two of this chapter, we
introduce the stochastic volatility-inspired model introduced by Gatheral (2004)
that tackles this issue.

3.1 Static replication
Typically, there is no traded instrument on the market with the optimal payoff
B⋆

1 . Therefore, it is desirable to approximate B⋆
1 using the liquid assets available

on the market. Under the assumption that the payoff B⋆
1 is path-independent

and occurs at time T , Breeden and Litzenberger (1978) observed that static
replication of the payoff B⋆

1 is possible using bonds, forwards, and European style
options on the underlying asset. This result was later rigorously proved in Green
and Jarrow (1987) and Nachman (1988).

Theorem 3.1.1. Let f(X(T )) be twice differentiable payoff, then for any fixed
constant κ ≥ 0

f(X(T )) = f(κ) + f ′(κ)(X(T ) − κ)

+
∫︂ κ

0
f ′′(K)(K −X(T ))+dK +

∫︂ ∞

κ
f ′′(K)(X(T ) −K)+dK (3.1)

Proof. We follow the proof in Carr and Picron (1999). The Fundamental Theorem
of calculus implies that for any fixed κ, we have

f(X) = f(κ) − 1[X<κ]

∫︂ κ

X
f ′(u)du+ 1[X>κ]

∫︂ X

κ
f ′(u)du.
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Since f ′(u) = f ′(κ) −
∫︁ κ

u f
′′(v)dv we can write

f(X) = f(κ) − 1[X<κ]

∫︂ κ

X

[︃
f ′(κ) −

∫︂ κ

u
f ′′(v)dv

]︃
du

+ 1[X>κ]

∫︂ X

κ

[︃
f ′(κ) +

∫︂ u

κ
f ′′(v)dv

]︃
du

= f(κ) + f ′(κ)(X − κ)

− 1[X<κ]

∫︂ κ

X

∫︂ κ

u
f ′′(v)dvdu+ 1[X>κ]

∫︂ X

κ

∫︂ u

κ
f ′′(v)dvdu

Reversing the order of integration

f(X) = f(κ)+f ′(κ)(X−κ)+1[X<κ]

∫︂ κ

X

∫︂ v

X
f ′′(v)dudv+1[X>κ]

∫︂ X

κ

∫︂ X

v
f ′′(v)dudv

and integrating over u we have

f(X) = f(κ)+f ′(κ)(X−κ)+1[X<κ]

∫︂ κ

X
f ′′(v)(v−X)dv+1[X>κ]

∫︂ X

κ
f ′′(v)(X−v)dv.

Finally, moving the indicators to the integral leads to (3.1).

The interpretation of Theorem 3.1.1 is that we can replicate the payoff
f(X(T )) using a static portfolio consisting of f(κ) bonds, f ′(κ) forwards with
strike κ, and a basket of call and put options on the same underlying asset.
Under the efficient market hypothesis, the market price of the payoff f(X(T )) at
time t should be

Vt = EQ [f(X(T ))|X(t)]
= f(κ)B(t) + f ′(κ)EQ [X(T ) − κ|X(t)]

+
∫︂ κ

0
f ′′(K)PBS(t,X(t), K) + dK +

∫︂ ∞

κ
f ′′(K)CBS(t,X(t), K)dK,

where B(t) is the price of the unit bond at time t under the market measure Q.
For the particular case of κ = EQ[X(T )] being the forward value, we can see

that it is possible to value an arbitrary payoff using bonds and European style
option contracts since forward contracts are fairly valued from the market maker’s
perspective. Theorem 3.1.1 was extended to generalized functions in Carr and
Picron (1999), where the authors showed how one could use the replication to
hedge against the timing risk of American binary options.

In order to use the optimal distributional trading gain in practice, one has to
specify the market measure Q. We will show now how one can use market prices
of European vanilla options to extract the market-implied distribution. First of
all, the existence of the risk-neutral market density follows from the no-arbitrage
assumption Duffie (2010). Denote by r the risk-free rate. From the no-arbitrage
assumption, it must hold

CBS(t,X(t), K) = e−r(T −t)EQ
[︂
(X(T ) −K)+|X(t)

]︂
.

Differentiating with respect to the strike price K, we have the following

∂CBS(t,X(t), K)
∂K

= −e−r(T −t)
∫︂ ∞

K
q(x)dx.
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Differentiating once again with respect to K yields

∂2CBS(t,X(t), K)
∂2K

= e−r(T −t)q(x),

thus we have Breeden and Litzenberger (1978) result

q(x) = er(T −t)∂
2CBS(t,X(t), K)

∂2K
. (3.2)

Formula (3.2) implies that the market density is the second derivative of a call
option price divided by the discount factor. Using put-call parity, one can
get a similar result using the prices of put options. This result suggests that
theoretically, it is possible to get the distributional opinion implied by the market.
Using the Black-Scholes formula for option premium, one could directly compute
the market density q. However, the volatility σ of the underlying asset is not
observable from the market data. Thus, the implied volatility is used to match
the Black-Scholes theoretical formula with market prices. This is possible since
the market participants observe all other variables needed for the Black-Scholes
formula. Unfortunately, the implied volatility is not constant across various
strikes and often follows a volatility smile pattern. In particular, for a given
expiration, options that are either deep out of money or deep in the money
have higher market premiums and hence implied volatility than options around
the spot price. If we knew the volatility surface implied by the market, we could
reconstruct the market distributional opinion via the Black-Scholes formula. Note
that Dupire et al. (1994) showed that there exists a unique diffusion process (given
by a state-dependent diffusion σ(S, t)) that is consistent with the risk-neutral
distribution.

A significant estimation error is typically encountered when one attempts to
empirically interpolate and differentiate market option prices. To mitigate this
issue, many refinements of this idea have been developed. Two notable examples
include Jackwerth and Rubinstein (1998); Aït-Sahalia and Lo (1998) where in
the first reference, the authors utilize a non-parametric quadratic programming
techniques for risk-neutral density estimation purposes, and in the second, the
authors consider smoothing kernel regression methods for the sample problem.
Non-parametric methods have the advantage of capturing potentially nuanced
structures in the implied risk-neutral density that parametric counterparts may
overlook. However, they are also prone to considerable estimation error and
practical issues such as the possibility of butterfly arbitrage.

This work will focus on a method called the stochastic volatility-inspired
(SVI) parametric model. The SVI parametric model summarized in Gatheral
(2011) has the advantage that it is generic enough to capture a wide range of
market-implied volatility smiles, as well as having a natural interpretation of its
parameters and is relatively straightforward to fit market data. In addition, there
are known constraints that one may place on the model parameters to ensure that
the associated best-fit smiles are arbitrage-free, c.f. Gatheral and Jacquier (2014);
Ferhati (2020b). We will utilize these techniques for implied risk-neutral density
estimation in chapter 5 to extract the market’s view of the underlying asset
price distribution. Moreover, additional practical issues include the illiquidity
of option data. For example, some strikes could have no bid quotations at all.
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Finally, market prices are not continuous and are given by bid-ask quotations.
The spread size often depends on the option’s price and is typically smaller for
options with lower bid offers.

3.2 Stochastic volatility inspired model
When estimating the market density q from the option prices, it is necessary to
ensure that the estimate q̂ is well defined. Trivially, it must hold that q̂ ≥ 0 and∫︁∞

0 q̂(x)dx = 1 so it is indeed a density. Furthermore, the fitting procedure must
ensure no arbitrage opportunity on the market. By varying the expiration date,
one can model the market’s perspective on how the underlying asset price density
will evolve. Thus, one must ensure that there is no arbitrage using different
expirations. This type of arbitrage is called calendar spread arbitrage, and for
European options often refers to the monotonicity of option premia with respect
to maturity, see Carr and Madan (2005); Cousot (2007). The second type of
arbitrage that should not be possible is butterfly arbitrage. Butterfly arbitrage
is an arbitrage for options with the same maturity when one buys a single call
option contract with strike K − ϵ and K + ϵ while at the same time selling two
call options with strike K.

We start this section by introducing the notation required by the SVI model.
Then, we formulate and prove Theorems that specify constraints on the SVI
parameterization so that it is free of both calendar spread and butterfly arbitrage.
Finally, we mention the calibration procedure to obtain the SVI parameters.

In the following, let S = {S(t), t ≥ 0} be a price process. Denote F =
{F (t), t ≥ 0} by F (t) = E [S(t)|F0] the forward price process. By σimpl(k, T ) we
denote the implied volatility.

Definition 3.2.1. We define

• The total implied variance w(k, T ) = Tσimpl(k, T )

• The implied variance v(k, T ) = σimpl(k, t)

• The map of volatility surface (k, T ) ↦→ w(k, T )

• The slice function k ↦→ w(k, T ) for fixed maturity T > 0.

Definition 3.2.2. We say that a volatility surface w is free of static arbitrage
(arbitrage without rebalancing positions) if and only if

• w is free of calendar spread arbitrage

• each slice function is free of butterfly arbitrage

To ensure no calendar spread arbitrage, one has an intuitive condition on the
volatility surface w given by Gatheral and Jacquier (2014).

Theorem 3.2.3. Suppose that the dividends are proportional to the stock price
and w is continuously differentiable. Then, the volatility surface w is free of
calendar spread arbitrage if and only if for all k ∈ R and T > 0

∂w(k, T )
∂T

≥ 0.
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Proof. Let us now consider two call options with prices C1, C2 and strikes K1, K2
and maturity times t1, t2 respectively, such that the options have the same
moneyness, i.e.

K1

F (t1)
= K2

F (t2)
=: ek,

and t1 < t2. Process Y = {Y (t), t ≥ 0} defined by Y (t) = S(t)
F (t) is a martingale by

the dividend proportionality assumption. Note that we can write

C1 = EQ
[︂
(S(t1) −K1)+

]︂
= 1
F (t1)

EQ
[︂
(X(t1) − ek)+

]︂
,

and similarly for the second option. Using this relationship and standard
martingale inequality we have

C1

K1
ek = EQ

[︂
(Y (t1) − ek)+

]︂
≤ EQ

[︂
(Y (t2) − ek)+

]︂
= C2

K2
ek.

Thus, by keeping the moneyness constant and dividends proportional to the
underlying asset price, the option premia in the Black-Scholes model are non-
decreasing in time to maturity. Thus, it must hold that for fixed k we have
∂w(k,T )

∂T
≥ 0.

We now consider the second type of arbitrage discussed above, i.e., the
butterfly arbitrage. It is well known that the absence of this arbitrage corresponds
to the existence of the risk-neutral measure, see, for example, Cox and Hobson
(2005). In contrast to the calendar spread arbitrage, butterfly arbitrage is studied
for the slice function, i.e., we fix time t to maturity.

Theorem 3.2.4. Assume that the slice function is in C2(R). Then, the slice
function is free of butterfly arbitrage if and only if

g(k) :=
⎛⎝1 −

k ∂w(k,t)
∂k

2w(k, t)

⎞⎠2

− 1
4
∂w(k, t)2

∂k

(︄
1

w(k, t) + 1
4

)︄
+ 1

2
∂2w(k, t)
∂k2 ≥ 0.

and
lim

k ↦→∞
d+(k) = −∞.

Proof. Twice differentiating the Black-Scholes formula (2.2) with respect to k
yields

q(k) = g(k)√︂
2πw(t, k)

exp
(︄

−d−(k)2

2

)︄
.

To ensure that q integrates to one, we need additional boundary conditions. One
can show that if call prices converge to zero for k ↦→ ∞, which is equivalent to
lim

k ↦→∞
d+(k) = −∞, then q is indeed a density. For more information about this

step, see Rogers and Tehranchi (2010).

Putting these two Theorems together, we have the result of Roper (2010).

Theorem 3.2.5. If the volatility surface w satisfies
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• w(t, ·) is of class C2(R) for each t ≥ 0

• w(t, k) > 0 for all (t, k) ∈ R+ × R

• w(·, k) is non-decreasing for each k ∈ R

• for all (t, k) ∈ R+ × R the risk neutral density is non-negative

• w(0, k) > 0 for all k ∈ R

• lim
k ↦→∞

d+(k) = −∞ for each t > 0

Finally, since we know the conditions on the volatility surface to be free
of static arbitrage, we can formulate the SVI parameterization of the volatility
surface. Note that there exist multiple parameterizations of the SVI model. In
order to be consistent with the literature, we slightly abuse the notation for the
volatility surface w in the following definition.

Definition 3.2.6. (Raw parameterization) Let χR = {a, b, ρ,m, σ} denote the
parameters of the SVI model. For a fixed time to maturity T , by SVI raw
parameterization of the total implied variance w we mean

w(k;χR) = a+ b
[︃
ρ(k −m) +

√︂
(k −m)2 + σ2

]︃
, (3.3)

where k is the logarithmic forward moneyness and the parameters satisfy the
constraints a ∈ R, b ≥ 0, |ρ| < 1,m ∈ R and a+ bσ

√
1 − ρ2 ≥ 0.

See Lemma 3.3 in Gatheral and Jacquier (2014) for sufficient condition for
raw parameterization (3.3) to be free of calendar spread arbitrage. Similarly, see
Theorem 4.1 for sufficient and necessary condition for the parameterization to be
free of butterfly arbitrage. We note that there exist equivalent parametrizations
of the SVI model, namely the natural SVI parameterization and the SVI Jumps-
Wings parametrization, c.f., Gatheral and Jacquier (2014).

Let us briefly explain the meaning of the SVI model parameters. Increasing
the parameter a increases the volatility on the whole surface. Parameter b is the
slope parameter of the volatility smile. The increase in parameter ρ increases
the slope of the left-wing while simultaneously increasing the slope of the right-
wingy, that is, counter-clockwise rotation. The parameter m is a horizontal shift
parameter, and, finally, the parameter σ determines the curvature of the smile
near the at-the-money strike. Note that in the Black-Scholes model, the volatility
is flat, which means that b = 0.
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4. Equity Market Inefficiency
During the COVID-19 Pandemic
This chapter is based on the article Navrátil et al. (2021) in which we studied
market inefficiency during the COVID-19 pandemic. The disruption of global
financial markets caused by the COVID-19 pandemic is an event seldom
considered in typical risk scenarios. Governments imposed strict stay-at-home
orders worldwide, which resulted in a sudden decline in economic activity. The
reaction in international equity markets was swift and severe; for example, the
S&P 500 lost approximately one-third of its value in the span of only one month
starting on February 20, 2020, cf. Baker et al. (2020). In this chapter, we show
that during the market’s initial reaction to the COVID-19 pandemic, the market
was inefficient and that utility-maximizing agents could generate statistically
significant profits using only historical price data and virus-related data forecast
ETF returns using Merton’s optimal portfolio problem.

The effect of COVID-19 and consecutive interventions on the properties
of American equity markets, including performance and volatility, has been
actively investigated in the scientific community. In Azimli (2020), using quantile
regression, the authors demonstrate how tail dependence structures between
equity sectors were altered during the pandemic period. The efficient market
hypothesis during the COVID-19 pandemic and an associated comparison with
the global financial crisis is studied in Choi (2021). Similarly, DIMA et al.
(2021) investigated the response of VIX to the COVID-19 pandemic in the
context of information efficiency. The impact of news coverage for the six
most affected countries during COVID-19 on different quantile ranges of equity
indices is examined in Cepoi (2020). Furthermore, the author found a positive
correlation between gold and stock market returns. Cross-country studies of the
equity market impact are considered in Frezza et al. (2021). Here, the authors
analyzed the effect of COVID-19 on fifteen equity markets from Europe, the
US, and Asia using the tools of fractal analysis to find that even though Asian
markets have regained efficiency, European and US markets still have inefficient
components and have been slower to rebound to pre-pandemic efficiency. In
related work, Nguyen et al. (2021) examines the international equity market
effects of COVID-19. In particular, they study how volatility spillover effects
propagated from the United States and Chinese equity markets to other major
international analogs. Structural changes to volatility and their resulting impact
on returns are examined in Baek et al. (2020); Just and Echaust (2020). Thorough
performance analysis of the American equity sectors and associated connections
with asymmetric volatility is studied in Mazur et al. (2021). We confirm
and further the results of several of these authors by considering the market
inefficiency problem from the perspective of utility-maximizing agents, showing
that it naturally extends the Merton optimal portfolio framework to the dynamic
trading setting, cf. Merton (1975). Namely, we construct portfolios that trade
only in single-risk security, taken to be a broad-based ETF and a treasury bill.
We note that dynamic generalizations of the Merton optimal portfolio have been
previously considered, cf. Campbell and Viceira (1999). This offers a new
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approach to defining and testing market efficiency. Namely, if a portfolio produces
a statistically significant profit over a benchmark, then the market is inefficient.
However, we note that the market may not necessarily offer any statistically
efficient means to monetize such inefficiency through trading.

In addition, the development of emerging market forecasting methods has been
the focus of several recent studies. ARIMA-based forecasting methods during the
initial Covid-19 crisis period were shown to be effective in Ahmar and Boj del
Val (2020). Daily growth in new Covid-19 cases and deaths is shown to be a
predictor of future negative returns in Al-Awadhi et al. (2020). The impacts of
the European and Asian market are contrasted in Topcu and Gulal (2020), and it
is shown that the size and timing of national fiscal stimulus programs differentiate
recovery times. Finally, the price reaction of European investment funds’ during
Covid-19 is considered in Mirza et al. (2020).

The central theme of this chapter is that the returns of index securities
became predictable to the point that the profitability of certain utility-maximizing
trading strategies was statistically significant. We use a likelihood-based
derivation of optimal trading rules for utility-maximizing agents introduced in the
optimal distributional trading gain section. This result is utilized to document
market inefficiency during the 2020 COVID-19 pandemic. This inefficiency is
demonstrated numerically in the case of broad-based market and GICS sector
ETFs. Finally, we note that one may monetize market inefficiency by executing
a trading strategy that is optimal for a power utility-maximizing agent.

The remainder of this chapter aims to estimate µ on a daily basis, rebalance a
portfolio consisting of a single risky and riskless asset, and finally, check whether
the associated trading strategy has statistically significant profits. Note that we
have two representations of the optimal profit, one that is based on the likelihood
(2.10) and one that is based on the replication of the optimal portfolio (2.11). We
finally note that the optimal portfolio representation in terms of the likelihood
ratio is exact. The two representations should be identical in the complete market
situation, but we can see some minor discrepancies from discrete hedging, where
we rebalance the positions on a daily basis rather than continuously.

This chapter is organized into two parts. We start with data description and
methodology to create out-of-sample forecasts for the parameters µ and σ by
combining multiple linear models. Then, using the developed optimal trading
strategy for power utility-maximizing agents, we show that such optimal trading
strategy has a strong Sharpe ratio, desirable risk statistics, and statistically
significant profitability during the weeks following the initial spread of COVID-19
for various sector ETFs.

4.1 Statistical Model and Data
We now discuss a regression-based model used to estimate the drift and volatility
parameters µ and σ in Merton’s formula (2.11). Specifically, we describe a
mechanism to generate out-of-sample predictions for the return µ and volatility
σ of several ETFs by combining multiple univariate linear regressions that utilize
other liquid securities and virus-related data as predictors. We then discuss the
end-of-day price dataset and the associated period on which these models are
estimated.
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4.1.1 Estimating the Drift and Volatility
We utilize a combination of univariate ordinary least squares linear regression
models to estimate the drift parameter on a daily basis. Here, the target excess
return of the j-th ETF is denoted by µj

t+1 and the i-th predictor is xi
t, where the

subscripts indicate that all predictors are lagged one day prior to the target time
series. We consider linear models of the form

µj
t+1 = βijxi

t + ϵt+1, for t = 1, . . . , T − 1, (4.1)

where here we assume that the residuals ϵt+1 are i.i.d. draws from a random
variable that satisfies E(ϵt+1) = 0 and Var(ϵt+1) = σ2 < ∞. Here the excess
returns are defined in terms of the difference of an ETF and the three month
treasury bill yield.

We reestimate µj
t+1 on a rolling basis when testing market efficiency during the

COVID-19 crisis. That is to say, at time t we train the model on N consecutive
prior observations ((xt−N , µt−N+1), . . . , (xt−1, µt))T yielding an estimate β̂ij

t of the
regression coefficient. Then we create a single out-of-sample prediction µ̂t+1 =
β̂txt of the unobserved variable µt+1. During the next trading day, we observe
the actual value µt+1 and refit the model by adding the observation (xt, µt+1) and
omitting the first observation (xt−N , µt−N+1) from the training set. Repeating this
procedure, we obtain a vector of sample forecasts (µ̂t+1, . . . , µ̂T ). In addition, the
volatility parameter σt is estimated directly from the empirical standard deviation
of the historical excess returns (µt−N+1, . . . , µt−1))T . In the empirical results
section, we will show the dependence of the final portfolio value on the specific
choice of the hyperparameter N . Even as we vary the hyperparameter N greatly,
the market still shows inefficiency.

4.1.2 Combining Predictions
Multiple economic indicators have been shown to be a useful tool for enhancing
the predictive power of the equity risk premium, c.f. Neely et al. (2014). In
particular, the combination approach of utilizing the predictive power of several
different models has proven successful in this application, e.g., Dangl and Halling
(2012) and Rapach et al. (2010). To improve the robustness of the forecast and
out-of-sample performance, we utilize a similar model combination technique by
fitting several individual univariate linear regression models, which comprise a
single forecasting model for future excess returns. Mathematically, this method
is specified by taking a weighted sum of individual drifts to construct an aggregate
model,

µ̂i
t =

∑︂
j

wij
t µ̂

ij
t . (4.2)

Here µ̂i
t is a predictor of µt for the j-th model, and wij

t is the weight of this model
at observation t for the i-th ETF whose excess returns are being estimated.

Common choices for the weights include the mean, median, and trimmed
mean, c.f. Zhang et al. (2018) or Balcilar et al. (2015). We select uniform weights
wj,t = 1

M
, where here M is the number of statistical models. In addition, we note

that there are many additional techniques to improve further the out-of-sample
forecasting performance, such as constraining predictors as in Pan et al. (2020)
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or adding new low correlation predictors, c.f. Zhang et al. (2019). However, our
main purpose is to demonstrate market inefficiency during the COVID-19 crisis,
and we found that using a simple uniform weighting scheme is sufficient for this
task.

4.1.3 Dataset Construction
We aim to focus on examining market inefficiency shortly after the emergence
of COVID-19 and restrict our dataset to include daily data from February 2020
through May 2020. We consider excess returns of several ETFs, including an
S&P 500 ETF SPY, as well as eleven ETFs that cover each of the GICS sectors;
namely, VCR, VDC, VDE, VGT, VNQ, XLB, XLC, XLF, XLI, XLU, and XLV.
These will all serve as target variables within the regressions considered below.

In addition, we construct a dataset of one-day time-lagged predictors, which
consist of daily returns from highly liquid securities, as well as information related
to the severity and spread of the virus. Specifically, we consider daily excess
returns of the VIX volatility index, gold futures, and bitcoin. In addition, a
fixed income component is incorporated with daily two-year US treasury data,
and market loss risk aversion is captured through the short interest index (c.f.
Rapach et al. (2010)) of SPY. Finally, we incorporate the daily COVID-19 related
case count and death rates from the United States into the predictor data set.

Data was obtained from multiple public sources. Specifically, end of day ETF
and VIX data was obtained from Yahoo finance, treasury data was obtained from
the United States Department of the Treasury website (treasury.gov), bitcoin
prices were obtained from coinmarketcap.com, gold futures data was gathered
from investing.com, and the data used in the SSI index was downloaded from
http://regsho.finra.org/regsho-Index.html. Additionally, the COVID-19 data
was downloaded from ourworldindata.org. When available, we utilized Python
APIs to download data and the pandas package to align and prepare data for
subsequent modeling.

We restrict our focus to the period starting in late February 2020, when the
equity market began to react to the global spread of COVID-19. During this
time, equity markets in the United States exhibited strong mean reversion, as
can be seen, for example, by fitting an AR(1) process to the excess daily return
time series of the SPY ETF. Specifically, assume that excess daily returns follow
mean reversion process yt = αyt−1 + ϵt. Then over the two-month period under
consideration, we estimate α̂ = −0.40 with an in-sample R2 of 13.7%. Noting
that the market exhibited extreme volatility during this time, the R2 for this
simple mean reversion indicator is quite strong. Next, We seek to understand
whether similar behavior is present in the out-of-sample dataset.

4.2 Empirical results
We now consider a simple trading technique based on determining the optimal
investment strategy of an agent who wishes to maximize the utility EP[U(F )],
where we take U to be the previously described power utility U(x) = x1−a

1−a
for

a ≥ 0 and where F is the final portfolio value. The agent assumes that the
equity market or ETF price evolves according to a geometric Brownian motion
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with parameters µ and σ. Using the combination approach described above, the
agent estimates the drift µ and the volatility σ parameters from historical data.
The optimal position πt at time t in the risky asset is then defined by Merton’s
fraction in equation (2.11) while the remainder of the capital is invested in the
three-month treasury bill. We also impose a single trading constraint; specifically,
we do not allow for leveraged portfolios, i.e., πt ∈ [−1, 1]. We will assume that the
agent rebalances this position on a daily basis at the close and that there are no
transaction costs given the strong liquidity of the securities under consideration.

To demonstrate the inefficiency of the entire market as well as individual
sectors, we suppose the agent invests independently in each of the target
ETFs. First, we note that the agent realizes a positive bankroll for all ETFs
under consideration. The final bankroll depends on the specific choice of
hyperparameters; N for the training window size and the utility risk aversion
parameter a. While the parameter N requires some statistical insight to properly
select, the parameter a is given according to the personal preference of the agent.
We examine the performance of the trading strategy in more detail below as a
function of N and a, and initially select N = 10 and a = 0.8 in the examples
below to demonstrate market inefficiency.

We plot the agent’s bankroll assuming an initial unit amount of capital for
all ETFs on the left subplot of Figure 4.1. On the right subplot, we display the
evolution of the agent’s bankroll benchmarked to the respective ETF, i.e., the
right panel compares Merton’s portfolio against a long-only buy and hold strategy.
During the first month prior to the spread of COVID-19, the data supports the
hypotheses that markets were efficient given that the bankroll oscillates around
the starting capital value. Then, the market’s inefficiency becomes prominent
during late February, independent of the specific choice of the ETF, the agent
realizes a significant profit. Finally, during the final month and a half of the
period under consideration, the efficiency returns as ETF profits again resemble
noise.

Trading strategy performance and risk statistics for all ETFs are given in
Table 4.1. Notice that the profit for all ETFs is positive. The greatest profit is
found in VDE, the Vanguard Energy ETF, while the smallest profit is in XLU,
the Utilities Select Sector ETF. The annualized Sharpe ratio of trading in SPY,
the market ETF, is 3.02, with a final bankroll of 1.58. The maximum drawdown
statistics range from 7.9% to 27.4%. Although the maximum drawdown of this
strategy is quite large, note that the drawdowns of the respective ETFs range
from 25% (VDC) to 57% (VDE), so the portfolio allocation strategy dramatically
reduces the drawdown. The value and the conditional value at risk statistics are
calculated at the 95% level, and the out-of-sample R2 is given according to

R2
OOS = 100 ∗

(︄
1 − (r − r̂)2

(r − r̄)2

)︄
,

where here r̄ denotes the mean excess daily return r of the respective ETF.
Benchmarking by the underlying ETF, we find that the largest trading

opportunity resides in the Vanguard Energy ETF and in the financial select
sector ETF (XLF), while the rest of the considered ETFs behaved similarly from
the perspective of the utility-maximizing agent. Using multi-fractal detrended
fluctuation analysis, a method developed in Kantelhardt et al. (2002) was used
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to study sector-level efficiency, Choi (2021) found that during the COVID-19
pandemic, the consumer discretionary (VCR) and energy sector (VDE) ETFs
were the most efficient while the financial sector (XLF) and the utilities sector
(XLU) were the least efficient. Our results suggest that in an inefficient market,
the degree of market inefficiency of a utility maximizing agent plays a more minor
role than, for example, the volatility of the traded asset.

Figure 4.1: The left subplot displays the evolution of an agent’s bankroll in terms of
the dollar value for each ETF under the Merton fraction portfolio described above over
the COVID-19 crisis. The right subplot depicts the evolution of the agent’s bankroll in
terms of relative value against the respective ETF.

Final Bankroll SR R2
OOS % Profitable % DD % VaR % CVaR %

VDE 2.25 3.57 1.97 59.76 27.43 12.60 14.48
XLC 2.01 4.96 16.35 60.98 9.38 7.10 10.77
XLF 1.94 3.50 12.52 57.32 16.87 11.33 13.05
VGT 1.77 3.37 15.53 54.88 11.14 9.15 13.02
XLV 1.73 3.90 11.88 60.98 7.92 7.02 12.38
XLB 1.61 3.18 5.68 58.54 11.50 9.03 10.63
SPY 1.58 3.02 12.90 56.10 9.72 9.20 12.85
VCR 1.56 2.91 6.47 63.41 13.81 9.02 13.57
XLI 1.53 2.50 7.00 59.76 14.21 11.56 15.07
VNQ 1.48 1.97 6.40 52.44 12.70 9.52 14.65
VDC 1.42 2.60 11.22 59.76 14.74 4.98 12.09
XLU 1.37 1.71 4.54 50.00 18.74 10.51 15.61

Table 4.1: Trading strategy risk and performance metrics for GICS sector ETFs
during the period from the beginning of February 2020 to the end of May 2020.
The Sharpe ratio (SR) is annualized. VaR and CVaR are calculated at the 95%
level.

To illustrate the behavior of Merton’s portfolio in more detail, we plot the
estimate of the drift parameter µ in Figure 4.2. Note the relatively large estimated
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values during mid-March for all ETFs. Similarly, we plot the evolution of the
agent’s position in the respective ETFs in Figure 4.3. Notice that in this volatile
period, the agent’s position is, in most cases, either fully long or fully short.
This resembles a bang-bang type strategy where it is always optimal to switch
from one extreme to another. This implies that the influence of the risk aversion
parameter a will have a small effect on the portfolio’s final value.
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Figure 4.2: Evolution of the estimated drift parameter µ for the respective ETFs
during the COVID-19 crisis period.
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Figure 4.3: Evolution of the portfolio position πt in the risky asset during the
COVID-19 crisis period.

To further study the properties that allowed Merton’s portfolio to generate
excess returns due to the market inefficiency, we now focus on the individual
constituents of the S&P 500. We are interested in studying the effect of the
market beta, leverage, P/E ratio, and cash assets of individual firms on the final
value of Merton’s portfolio constructed from groups of stocks with similar values
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for these fundamental quantities. The market beta of each stock is computed
using excess returns in the year 2019. To ensure a uniform comparison, we exclude
stocks that entered the S&P 500 index during the year 2019. We define leverage
by summing the short-term and long-term debt over each firm’s balance sheet
assets, P/E ratio as the share price divided into earnings, and cash assets as the
percentage of cash and marketable securities of total assets.

Using the previous trading strategy, we compute the evolution of the bankroll
for each stock using the same hyperparameters and regressors as above. We then
cluster the S&P 500 constituents into five equally sized groups based on quintile
buckets of their market beta, leverage, P/E ratio, or cash assets as they were
known at the pre-pandemic time in December 2019. The results are plotted in
Figure 4.4. From the plot we conclude that regardless of the studied property,
Merton’s portfolio was able to, on average, generate excess returns over the
market index. Only market beta seems to have a positive effect on the final
value of Merton’s portfolio. Intuitively, this makes sense as one would expect
that larger movements in the price of securities in an inefficient market present
greater opportunities for the utility maximizing agent. We statistically confirm
this result using a linear model of the form

Y i ∼ β0 + β1P/E ratioi + β2Leveragei + β3Cash assetsi + β4Market betai, (4.3)

where Yi is the predicted final bankroll of Merton’s portfolio for i-th company.
Moreover, to easily compare the estimated coefficients, we center and normalize
the regressors. The results are summarized in Table 4.2. We find that the market
beta is statistically significant and positively affects the final bankroll of the
portfolio. Cash assets and leverage have a statistically negative effect on the final
bankroll. Finally, we have not found statistical evidence for the effect of the P/E
ratio on the final value of Merton’s portfolio. The R2 of the linear regression
is 0.152. This result corresponds to Ramelli and Wagner (2020) who studied
non-financial companies in the Russel 3000 index and found statistical evidence
between the company’s leverage, cash holdings, and the cumulative return of the
company during the COVID-19 pandemic.
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Figure 4.4: Evolution of the dollar value of Merton’s portfolio for constituents in
the S&P 500 index. For each studied property, the constituents of the S&P 500
are divided into five equally sized groups based upon their quintile buckets. For
each group, we compute Merton’s portfolio and plot the respective group mean.

coef std err t P> |t| [0.025 0.975]
Intercept 1.5930 0.023 70.747 0.000 1.549 1.637
P/E ratio -0.0301 0.023 -1.328 0.185 -0.075 0.014
Leverage -0.0612 0.023 -2.645 0.008 -0.107 -0.016
Cash assets -0.0499 0.024 -2.059 0.040 -0.097 -0.002
Market beta 0.2013 0.025 8.158 0.000 0.153 0.250

Table 4.2: This table shows results of OLS regression (4.3).

We finally demonstrate that Merton’s portfolio does not outperform during
a regular efficient market. Specifically, consider the one-year period prior to the
market reaction to the global spread of COVID-19, i.e., February 2019 through
May 2019. We follow the same methodology as before to estimate the µ and σ
parameters of each ETF except that no COVID-19 related data is included. In
Figure 4.5, we gain display the evolution of the agent’s bankroll in both dollar
value and ETF relative value. The average loss in dollar value is approximately
10%, while the average loss against a simple buy and hold strategy is, on average,
12%.

4.2.1 Hyperparameter Selection
We next offer suggestions on choosing the estimation window size N and the risk
aversion parameter of the utility function a. We note that the length of the fitting
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Figure 4.5: The left subplot displays the evolution of an agent’s bankroll in terms
of the dollar value for each ETF under the Merton fraction portfolio described above
one year prior to the COVID-19 crisis. The right subplot depicts the evolution of the
agent’s bankroll in terms of the relative value of the respective ETF.

window N has a large effect on the final portfolio value while the risk aversion
parameter a has a relatively small impact on performance. This is due to the fact
that we do not allow for leverage, and Merton’s optimal portfolio allocation will
usually be either fully long or short.

We demonstrate the effect of N and a by examining the performance of
the trading strategy for all combinations of N ∈ {5, 6, . . . , 50} and a ∈
{0.01, 0.02, . . . , 1}. We are interested in the average final bankroll for all ETFs.
In Figure 4.6, note that varying the a parameter for a fixed N value only
has a marginal effect on performance. In contrast, varying the N parameter
significantly impacts the final value of the portfolio. Note that extremely low
values of N underperform in comparison with other choices. For example,
relatively small N values, i.e. N = {8, . . . , 15} yield the strongest performing
strategies as such values allow one to quickly capture the changes in the market
and provide sufficient data in the rolling window to estimate the drift and
volatility parameters to a sufficient accuracy. Large values of N behave similarly,
since they do not allow the model to react sufficiently quickly to market changes.
Note that for all choices of N , the final portfolio realizes a net gain. The highest
profit obtained with a final bankroll value of 1.79 has parameters N = 9 and
a = 0.48.
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Figure 4.6: Plot of the final bankroll of the Merton optimal trading strategy as a
function of the fitting window length N and risk aversion parameter a during the
COVID-19 timeframe described above.

4.3 Conclusion
This whole chapter is based on Navrátil et al. (2021) where we examined the
inefficiency of the United States equity market during the initial spread of the
COVID-19 pandemic during 2020. We have shown that even the relatively simple
Merton optimal portfolio trading strategy has strong out-of-sample performance
during this period. The results were applied to S&P 500 and eleven GICS sector
ETFs. Furthermore, the profitability of the trading strategy was shown to be
robust to the choice of the risk aversion parameter of the utility function and the
size of the lookback window.

We finally note that it would be of interest to examine further the performance
of asset allocation techniques and the multivariate extension of Merton’s optimal
portfolio ratio during the COVID-19 timeframe. In addition, it would be of
interest to develop extensions of these results in the case where the portfolio
follows an extension of geometric Brownian motion, i.e., jump processes, that
more closely reflect market price movements. In particular, the likelihood
approach offers a considerably simplified framework over known stochastic
control-based methods to derive optimal trading rules in the case of more general
stochastic processes.
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5. Utility Maximization of the
Discrepancy between a Perceived
and Market Implied Risk Neutral
Distribution
This chapter covers the results that appeared in Navrátil et al. (2022). Securities
trading provides a mechanism for agents to express a view on a forecast of
the future price of an asset. For example, if one feels that a security price is
undervalued, a natural way to express such a view would be to purchase the
security, hold it until its perceived market value is realized, and then generate a
profit by selling. However, binary views on whether a security price will increase
or decrease seldom capture the entirety of an agent’s opinion. For example, equity
analysts often establish future price targets in terms of a view on the expected
value of a given security price based on their opinion of the likelihood of occurrence
of multiple future price evolution scenarios. This results in an individual agent
effectively forecasting a discretized future price distribution for the security
price. Additionally, one may consider the market-implied distributions from
associated derivative contracts whose underlying is the security being considered
by individual analysts. Risk neutral pricing theory provides a means to estimate
such implied distributions from a collection of call and put option prices with
varying strikes but fixed expiration dates in a model-free manner. When any
discrepancy between a forecasted and market distribution exists, one may develop
a profitable portfolio in the event that the current market distribution transitions
towards the forecasted distribution. Our main aim is to develop techniques that
allow one to construct the optimal portfolio to realize these gains in the sense that
it will maximize the utility of the agent prescribing the forecasted distribution.

Option markets are inherently forward-looking in the sense that the current
values of put and call contracts reflect the market expectation of the future
price and volatility of the underlying security price. Given the recent rapid
growth in both trading volume and available options markets, considerable data
is available to develop estimation methods for the option market implied future
price distribution of the underlying security. The seminal result in option implied
risk neutral density estimation was presented in Breeden and Litzenberger (1978),
where it is demonstrated that one may represent this density as the second
derivative of a chain of call option prices with respect to the strike for a fixed
maturity value. Significant estimation error is typically encountered when one
attempts to interpolate and differentiate market option prices empirically. To
mitigate this issue, many refinements of this idea have been developed. Two
notable examples include Jackwerth and Rubinstein (1998); Aït-Sahalia and Lo
(1998) where in the first reference, the authors utilize nonparametric quadratic
programming techniques for risk-neutral density estimation purposes, and in
the second, the authors consider smoothing kernel regression methods for the
sample problem. Nonparametric methods have the advantage of capturing
potentially nuanced structures in the implied risk-neutral density that parametric
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counterparts may overlook. However, they are also prone to considerable
estimation error and practical issues such as the removal of butterfly arbitrage.
The stochastic volatility inspired (SVI) parametric model summarized in Gatheral
(2011) has the advantage that it is generic enough to capture a wide range of
market implied volatility smiles as well as having a natural interpretation of its
parameters and being relatively straightforward to fit to market data. In addition,
there are known constraints that one may place on the model parameters to ensure
that the associated best-fit smiles are arbitrage-free, c.f. Gatheral and Jacquier
(2014); Ferhati (2020b). We will utilize these techniques for implied risk-neutral
density estimation to extract the market’s view of the underlying asset price
distribution.

Given an implied market distribution and an agent’s perceived future price
distribution of a security price, we develop a method to determine the optimal
payoff function and associated options portfolio that the agent should purchase in
order to maximize his benefit from the discrepancy. Rüschendorf and Vanduffel
(2019) studied a similar problem independently using a different setup with
extensions to investor’s preferences following the cumulative prospect theory and
Yaari’s dual theory. They studied the optimal payoff using quantile formulation
of the portfolio selection problem, while in our approach, we work directly with
the densities of the risk-neutral measure Q and the subjective agent’s measure
P. We next consider the question of what portfolio of tradeable securities the
agent may construct in order to replicate such a payoff as precisely as possible.
There is considerable literature on the replication of complex derivatives in terms
of simpler tradeable securities. Static hedging techniques to replicate exotic
options are developed in Carr et al. (1998); Leung and Lorig (2016). Targeted
applications to volatility derivatives and barrier options are examined in Carr
and Madan (2001); Carr and Lee (2008); Carr et al. (2017). In Bossu et al.
(2021), the authors showed that the static replication formula is part of an integral
equation framework. We examine related techniques that focus on replicating the
optimal payoff function with increasing number of vanilla call and put options.
In particular, we first consider strangle portfolios and then extend to include
additional securities in order to construct more accurate replicating portfolios.
Our results suggest that portfolios consisting of ten option contracts provide a
precise replication of the optimal payoff function. From this point, increasing the
number of option contracts in the replicating portfolio provides only a marginal
decrease in replication error.

This chapter presents several novel contributions including, to our knowledge,
the first constructive method to create an options portfolio that maximized the
expected utility of an agent based upon the difference between his view on the
future price distribution of an underlying asset price and that of the associated
options market. First, explicit formulae for the optimal payoff function are
developed in the cases of logarithmic and power utility functions. In addition,
a replicating portfolio is developed for the utility-maximizing portfolio, and
associated hedging applications are discussed. Next, a method is developed to
approximate the optimal payoff function with a collection of call and put options.
Finally, this underlying model assumption of a geometric Brownian motion is
lifted. In particular, the SVI model is used to estimate the option implied market
risk-neutral density. This is integrated into the prior framework to determine
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the corresponding utility maximizing option portfolio and integer programming
techniques are used to solve associated optimization problems.

This chapter is organized as follows. In Section 2, we derive explicit formulae
for the optimal payoff function in the case of a geometric Brownian motion
and logarithmic and power law utilities. In addition, a pricing formula for
the optimal hedging strategy and an associated replicating hedging portfolio are
given. In Section 3, we discuss the estimation of the risk neutral density using
the SVI formula. In Section 4, the kernel search integer programming method
is outlined and applied to the construction of the utility maximizing portfolio.
Section 5 contains several numerical examples of the construction of optimal
payoff functions and examination of the tradeoff between the number of securities
in the approximation portfolio and the precision of the replication. Finally, in
Section 6, we conclude and provide future research considerations.

5.1 Pricing with a Logarithmic Utility within a
Geometric Brownian Motion Model

Similarly to the previous chapter, we will again utilize the Optimal Distributional
Trading Gain problem with B0 = 0. A common assumption for asset price
evolution is the geometric Brownian motion model with a drift µ and volatility
parameter σ; we examine this case in further detail. Note that other models,
like the Heston stochastic volatility model, may also be considered. In the cases
where explicit closed formulas exist for the density of the price process, we can
compute the optimal payoff (2.6) directly. On the other hand, cases like the
Heston model considered in, del Baño Rollin et al. (2010) do not exhibit a closed-
form density in terms of elementary functions, which leads to additional challenges
that need to be considered. If there is no such closed formula for the density of
the price process, then one may approximate the optimal payoff numerically. The
thorough investigation of such techniques alongside the development of associated
numerical optimization methods would be interesting to explore in further detail.
In addition, we note that there are a number of additional techniques one can
utilize in the time-varying volatility case to assess the accuracy of a given density
forecast. In particular, Diebold et al. (1998) develop methods along these lines
and provide applications to GARCH and related volatility models. Similarly, it
would be of interest to adapt these methods to continuously varying stochastic
volatility models.

In the following, let g denote the density of a geometric Brownian motion, i.e.
for parameters µ and σ the density at time t is given by

g(x, µ, σ, t, S(0)) = 1√
2π

1
xσ

√
t

exp

⎛⎜⎝−

(︂
log x− logS(0) − (µ− 1

2σ
2)t
)︂2

2σ2t

⎞⎟⎠ .
where here S(0) denotes the initial asset price. In addition, we define its growth
parameter by γ = µ− 1

2σ
2.

Theorem 5.1.1. Suppose that the market taker with utility U(x) = (1+ x
B

)1−a−1
1−a

believes the market behaves like a geometric Brownian motion with parameters
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(µ1, σ1) whereas a market maker holds the view that the parameters are given by
(µ2, σ2). Assume that σ2

2 − σ2
1(1 − a) ̸= 0, then the optimal payoff B⋆

1 is given by

B⋆
1(x) = B

⎛⎜⎜⎜⎜⎝
σ2 exp

(︄
− (log x

S(0) −γ1T)2

2σ2
1aT

+ (log x
S(0) −γ2T)2

2σ2
2aT

)︄

σ̃ exp
(︃

− (log S(0)+γ1T )2

2σ2
1aT

+ (log S(0)+γ2T )2( 1
a

−1)
2σ2

2aT
+ µ̃2

2σ̃2

)︃ − 1

⎞⎟⎟⎟⎟⎠ , (5.1)

where
µ̃ = (logS(0) + γ1T )σ2

2 − (logS(0) + γ2T )σ2
1(1 − a)

σ2
2 − σ2

1(1 − a) , (5.2)

and

σ̃ =

⌜⃓⃓⎷ σ2
1σ

2
2aT

σ2
2 − σ2

1(1 − a) . (5.3)

Proof. We compute
∫︁∞

0

(︂
p(x)
q(x)

)︂ 1
a q(x)dx directly by factoring out terms in the

integrand that do not depend on x which is then rewritten in terms of the
transition density of a scaled geometric Brownian motion. To simplify notation,
define

u = logS(0) + γ1T and v = logS(0) + γ2T. (5.4)
Substituting the densities p and q leads to

∫︂ ∞

0

(︄
p(x)
q(x)

)︄ 1
a

q(x)dx = σ2

σ1

∫︂ ∞

0
exp

(︄
− (log x− u)2

2σ2
1aT

+ (log x− v)2

2σ2
2aT

)︄

× 1√
2π

1
xσ2

√
T

exp
(︄

−(log x− v)2

2σ2
2T

)︄
. (5.5)

Under the assumption σ2
2 − σ2

1(1 − a) ̸= 0, using (5.2) and (5.3) the term in
the exponential of (5.5) may be rewritten in the form

. . . = − u2

2σ2
1aT

+
v2
(︂

1
a

− 1
)︂

2σ2
2aT

− log2(x)(σ2
2 − σ2

1(1 − a))
2σ2

1σ
2
2aT

+ 2 log(x)(uσ2
2 − vσ2

1(1 − a))
2σ2

1σ
2
2aT

= − u2

2σ2
1aT

+
v2
(︂

1
a

− 1
)︂

2σ2
2aT

−
log2(x) + 2 log(x)uσ2

2−vσ2
1(1−a)

σ2
2−σ2

1(1−a)

2 σ2
1σ2

2aT

σ2
2−σ2

1(1−a))

= − u2

2σ2
1aT

+
v2
(︂

1
a

− 1
)︂

2σ2
2aT

+ µ̃2

2σ̃2 − (log x− µ̃)2

2σ̃2 .

Thus the term containing an x can be written as a scaled geometric Brownian
motion which leads to∫︂ ∞

0

(︄
p(x)
q(x)

)︄ 1
a

q(x)dx

= σ̃

σ1
exp

⎛⎝−(logS(0) + γ1T )2

2σ2
1aT

+
(logS(0) + γ2T )2

(︂
1
a

− 1
)︂

2σ2
2aT

+ µ̃2

2σ̃2

⎞⎠ .
Finally, using (2.9) we conclude the proof.
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The special case of logarithmic utility in Theorem 5.1.1 may be written in the
following more elegant form.

Theorem 5.1.2. Suppose that the market taker with utility U(X) = log(1 + x
B

)
believes the market behaves like a geometric Brownian motion with parameters
(µ1, σ1) and the market maker views the true parameters as (µ2, σ2). The optimal
payoff B⋆

1 is given by

B⋆
1(x) = B

⎛⎜⎝σ2

σ1
exp

(︄
−

(︂
log x

S(0) − γ1T
)︂2

2σ2
1T

+

(︂
log x

S(0) − γ2T
)︂2

2σ2
2T

)︄
− 1

⎞⎟⎠ . (5.6)

Moreover, F is in L2
P if and only if either of σ2

1 < 3
2σ

2
2 or both σ2

1 = 3
2σ

2
2 and

2σ2
1γ2 − 3σ2

2γ1 ≥ 0 hold.

Proof. Formula (5.6) follows from Theorem 5.1.1 and setting a = 1. To show
when F is in L2

P, we compute the second moment of the shifted payoff F + B.
For simplicity, suppose that S(0) = 1, T = 1 and B = 1 as one may construct
generic parameter values through rescaling and translation. We compute

EP(F +B)2 =
∫︂ ∞

0

σ2
2
σ2

1
exp

(︄
− (log x− γ1)2

σ2
1

+ (log x− γ2)2

σ2
2

)︄
g(x, µ1, σ1, 1, 1)dx

=
∫︂ ∞

0

σ2
2√
2π

1
xσ3

1
exp

(︄
−3 (log x− γ1)2

2σ2
1

+ (log x− γ2)2

σ2
2

)︄
dx, (5.7)

and rewrite the exponential term in (5.7) as

−3 (log x− γ1)2

2σ2
1

+ (log x− γ2)2

σ2
2

= (2σ2
1 − 3σ2

2) log2 x− (4σ2
1γ2 − 6σ2

2γ1) log x+ 2σ2
1γ

2
2 − 3σ2

2γ
2
1

2σ2
1σ

2
2

.

Clearly, if 2σ2
1 > 3σ2

2, the random payoff F has infinite variance. In the case
2σ2

1 = 3σ2
2 the log2 term vanishes, so convergence is determined by the sign

of the log term. Finally, if σ2
1 < 3

2σ
2
2, the function after the integral in (5.7)

can be written as a lognormal density modulo a constant; hence the integral
converges.

Formula (5.6) represents the likelihood ratio payoff in the asset space. When
σ1 < σ2, resp. σ2 > σ1, the likelihood ratio is directly, resp. inversely,
proportional to a lognormal density. The optimal payoff for two sets of parameters
is displayed in Figure 5.1. The first set of parameters, µ1 = µ2 = 0.1, σ1 =
0.3, σ2 = 0.4, represents a case where the forecasted and market distribution
have the same drift, but the forecasted distribution assumes a reduced volatility.
Thus a logarithmic utility-maximizing agent can speculate on the absence of a
larger move in the underlying asset price. A popular option trading strategy
that speculates on the absence of such a move is called a strangle. Specifically,
a strangle consists of a put option with strike K1 and a call option with
strike K2 > K1. These options are usually out of the money, which reduces
the net cost of the overall option strategy. The second set of parameters is
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Figure 5.1: The blue line corresponds to the optimal payoff with parameters
µ1 = 0.1, σ1 = 0.3, µ2 = 0.1, σ2 = 0.4 while the orange line corresponds to the
optimal payoff with parameters µ1 = 0.1, σ1 = 0.4, µ2 = 0.05, σ2 = 0.35.

µ1 = 0.1, µ2 = 0.05, σ1 = 0.4, σ2 = 0.35. In this case, the forecasted distribution
of the agent is more volatile than the market distribution; however, it has a
greater risk premium. The optimal payoff for the agent believing in a higher
volatility grows beyond any bound as the underlying asset price either goes to
zero or infinity, whereas for an agent believing in the smaller volatility, the optimal
payoff is bounded from above as well as from below by minus one.

The payoff function (5.6) may be replicated by a dynamic portfolio containing
the underlying asset.
Theorem 5.1.3. Under the martingale measure Q the price V (t) of the contract
that pays B⋆

1 assuming the underlying evolves according to a geometric Brownian
motion is given by

V (t) = B

[︄
σ̃

σ1
√
T − t

exp
(︄

− (logS(0) + γ1T )2

2σ2
1T

+ (logS(0) + γ2T )2

2σ2
2T

− (logS(t) + γ2(T − t))2

2σ2
2(T − t) + µ̃2

2σ̃2

)︄
− 1

]︄
, (5.8)

and the associated delta hedging strategy is

∆(t) = (V (t) +B)
[︄

− logS(t) + γ2(T − t)
σ2

2(T − t)S(t)

+
σ2

1T
(︂

σ2
1T

T −t
(logS(t) + γ2(T − t)) − σ2

1(γ2T + logS(0)) + σ2
2(γ1T + logS(0))

)︂
σ̃2(T − t)

(︂
σ2

1T

T −t
+ σ2

2 − σ2
1

)︂2
S(t)

]︄
,

where here

µ̃ =
(logS(0) + γ1T )σ2

2 − (logS(0) + γ2T )σ2
1 + (logS(t) + γ2(T − t))σ2

1
T

T −t

(σ2
2 − σ2

1) + σ2
1

T
T −t

,

(5.9)
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and

σ̃ =
⌜⃓⃓⎷ σ2

1σ
2
2T

(σ2
2 − σ2

1) + σ2
1

T
T −t

. (5.10)

Proof. The price V (t) of the payoff F at time t given by X(t) is computed using

V (t) = EQ [B⋆
1 |X(t)]

=
∫︂ ∞

0
B

⎛⎜⎝σ2

σ1
exp

(︄
−

(︂
log x

S(0) − γ1T
)︂2

2σ2
1T

+

(︂
log x

S(0) − γ2T
)︂2

2σ2
2T

)︄
− 1

⎞⎟⎠
× 1√

2π
1

xσ2

√︂
(T − t)

exp

⎛⎜⎝−

(︂
log x

S(t) − γ2(T − t)
)︂2

2σ2
2(T − t)

⎞⎟⎠ dx
To simplify notation, denote

u = logS(0) + γ1T, v = logS(0) + γ2T, w = logS(t) + γ2(T − t). (5.11)

The exponential term can be now be expressed as

− u2

2σ2
1T

+ v2

2σ2
2T

− w2

2σ2
2(T − t) − log2(x) [(σ2

2 − σ2
1)(T − t) + σ2

1T ]
2σ2

1σ
2
2T (T − t)

+ log(x) [2uσ2
2(T − t) − 2vσ2

1(T − t) + 2wσ2
1T ]

2σ2
1σ

2
2T (T − t) .

Since the term − u2

2σ2
1T

+ v2

2σ2
2T

− w2

2σ2
2(T −t) does not depend on x, it can be factored

out of the integral. Using (5.9) and (5.10), we can rewrite the remaining terms
as

−
log2(x) − 2 log(x)2uσ2

2(T −t)−2vσ2
1(T −t)+2wσ2

1T

(σ2
2−σ2

1)(T −t)+σ2
1T

2σ2
1σ2

2T (T −t)
(σ2

2−σ2
1)(T −t)+σ2

1T

= −(log(x) − µ̃)2

2σ̃2 + µ̃2

2σ̃2 .

Once again, the term µ̃2

2σ̃2 does not depend on x and can be factored out of the
integral. The portion with the logarithm can be scaled to a log-normal density,
thus yielding

V (t) = B
σ̃

σ1
√
T − t

exp
(︄

− u2

2σ2
1T

+ v2

2σ2
2T

− w2

2σ2
2(T − t) + µ̃2

2σ̃2

)︄
−B. (5.12)

Substituting u, v, w into (5.12) results in equation (5.8).
Finally, the fraction of capital invested in the risky asset S is given by ∆(t) =

∂V (t)
∂S(t) .

Remark 5.1.1. In the special case that σ = σ1 = σ2, the hedging strategy ∆
simplifies to

∆(t) = µ1

σ2
V (t) +B

S(t) ,

while in the classical Merton’s portfolio problem, the replication strategy is
a constant fraction ∆(t) = µ1

σ2 . The difference in the replication formula comes
from the fact that in the optimal distributional trading gain problem, the market
taker is maximizing an expected utility under the P measure, whereas the market’s
distributional opinion is expressed in the Q measure.
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Figure 5.2: The upper two plots depict the price of the contract based upon the
underlying asset price and option time until expiration for parameter sets µ1 = 0.1, σ1 =
0.3, µ2 = 0.0, σ2 = 0.4 (left) and µ1 = 0.1, σ1 = 0.4, µ2 = 0.0, σ2 = 0.3 (right). The
lower plots display the hedging position in the underlying asset.

We plot the price of the contract with respect to the price of the underlying
asset and expiration time in Figure 5.2 for both sets of previously described
parameters.

5.1.1 Approximation of the optimal payoff
Suppose that an agent seeks to replicate the payoff f(X(T )). From (3.1) we
know that one can replicate the payoff f(X(T )) by a static portfolio consisting
of f(x0) bonds, f ′(x0) forwards, and a basket of call and put options on the
same underlying asset. For the special case x0 = EQ[X(T )] being the forward
value, we note that the forward contracts are fairly valued from the market
maker’s perspective. Leung and Lorig (2016) studied situations when the perfect
replication is not available given a set of hedging instruments. They derived
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a model-free expression for the optimal static hedge that minimizes the mean
squared error subject to a cost constraint for entering into the positions in the
bond and option contracts.

We study the problem from a different perspective. Instead of minimizing the
mean squared error of the replication subject to a cost constraint we incorporate
the cost of the replication into the static portfolio. Specifically, let P and
Q represent probabilities measures of a forecasted and market distribution,
respectively. Then for a payoff X we seek a static portfolio Π such that
EP[(X − Π)2] is minimized under the condition that EQ[Π] = 0. Moreover, to
minimize both the impact of the strategy on the market and liquidity risks, we
minimize over a fixed number of option contracts.

Let us illustrate the optimization procedure on options with fixed time until
expiration T = 1. We assume that the market’s distributional opinion about
the underlying asset’s price is a lognormal process with drift µ2 and volatility
σ2. The option’s premiums are priced via the Black-Scholes formula, which is
now fully determined by the type of option and strike price. First, we fix the
number of different option strikes N we intend to use for the approximation.
Denote by Ki and mi the strike of the i-th option and its type (put or call)
for i = 1, . . . , N . Similarly, by ni we denote the position in the i-th option
with negative ni indicating a short position. Finally, by p(Ki,mi) we denote the
Black-Scholes Q–option’s premium for strike Ki and option type mi.

To ease notation, we define the function

g(X,K,m) =
⎧⎨⎩(x−K)+ − p(K,m) for m = call option

(K − x)+ − p(K,m) for m = put option

For all K > 0, we have EQg(X,K,m) = 0, where X is the value of the
underlying asset at the expiration time of the option. For a fixed N , we consider
the following mean squared minimization optimization problem for the market
taker

min
ni

EP

⎡⎣(︄F (X) −
N∑︂

i=1
nig(X,Ki,mi)

)︄2⎤⎦ . (5.13)

In other words, we want to minimize the L2 error from the perspective of the
market taker. Note that the problem (5.13) is a quadratic optimization problem.
Let us define the matrix C(K,m) by

Ci,j = EP [g(X,Ki,mi)g(X,Kj,mj)] for 1 ≤ i, j ≤ N,

and the vector D(K,m) by the expectation,

Di = EP [F (X)g(X,Ki,mi)] for 1 ≤ i ≤ N.

The optimization problem (5.13) can be written in the usual quadratic form

min
ni

[︃1
2n

T C(K,m)n− nTD(K,m)
]︃
. (5.14)

To solve the optimization problem (5.14) we utilize the Python programming
language, in particular the cvxpy (c.f. Diamond and Boyd (2016); Agrawal
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(a)

(b)

Figure 5.3: (a) The optimal payoff for parameters µ1 = 0.1, σ1 = 0.3, µ2 =
0.1, σ2 = 0.4 and its approximation error. (b) The optimal payoff for parameters
µ1 = 0.1, σ1 = 0.4, µ2 = 0.05, σ2 = 0.35 and its approximation error.

et al. (2018)) and pandas packages for convex optimization and data preparation,
wrangling, and plotting purposes, respectively.

The dependence on K in (5.14) does not permit one to solve this optimization
problem directly. To remedy this situation, we introduce a set of strikes
(Ktest

1 , . . . , Ktest
100 ) chosen to be uniformly spaced quantiles of the lognormal

distribution under the P measure which we optimize. The matrix C and vector
D are then estimated using Monte Carlo techniques. Note that a brute-force
search through all asset weight combinations for large N is computationally very
extensive given the problem becomes equivalent to the feature selection question
involving the construction of a performance maximizing feature subset, which is
known to be NP hard. Thus, iterating over all possible combinations quickly
becomes computationally infeasible. To overcome this issue, we use a greedy
algorithm since it is easy to implement and, as we will see, provides a good
approximation of the replication. That is, in the first step, we start by finding
the optimal strikes K1 and K2 and their types m1 and m2 with position sizes
determined by solving this optimization problem with the cvxpy package. For
the next step, we fix strikes K1, K2 and the option types m1,m2 and find the next
two optimal strikes, option types, and then recalculate the position for all other
options. We repeat this procedure until we determine nN−1 and nN .

On the left side of Figure 5.3, we display the increasingly accurate approximate
payoffs with N = 2, 4 and 6 options for two sets of parameters. Notice that even
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Figure 5.4: In the left subplot, we plot the SVI fit of the implied volatility values of
a three month option chain of the S&P 500 ETF SPY. On the right plot we plot the
associated risk neutral density.

in the case N = 2, the approximation fits well for the first set of parameters
µ1 = 0.1, σ1 = 0.3, µ2 = 0.1, σ2 = 0.4. The options have strikes resp. types
K1 = 0.93, K2 = 1.22 resp. m1 = put,m2 = call and thus one should
expect that in practice both of these strikes should be liquid enough to enter
the strangle. Enlarging the number of options used results in adding options
with strikes K3 = 1.14, K4 = 2.04, K5 = 0.78, K6 = 1.32 and option types
m3 = put,m4 = put,m5 = call,m3 = put. For the second set of parameters
µ1 = 0.1, σ1 = 0.4, µ2 = 0.05, σ2 = 0.35 the approximation of N = 2 options fails
to capture the optimal payoff when the underlying asset goes bankrupt, as the
optimal options are two call options with strikes K1 = 1.36 and K2 = 2.8. For
N = 4 the additional options are two put options with strikes K3 = 0.44 and
K4 = 0.66 that allow us to capture the left tail of the payoff. On the right side
of Figure 5.3, we plot the mean squared error of the approximation. Note that
when using N ≥ 8 options, the approximation error only marginally decreases.

5.2 Risk Neutral Density Estimation with the
SVI Parameterization

In practice, a lognormal assumption in the form of an asset price return
distribution is too rigid. This section will estimate the implied market distribution
directly from option price data using the SVI model. We will follow the
implementation of the SVI model presented in Ferhati (2020b) which uses a
sequential quadratic programming algorithm to obtain a risk-neutral density free
of static arbitrage, i.e., an arbitrage that does not require position rebalancing.

In Figure 5.4, we plot the risk-neutral density and SVI fit of the model using
SPY options as an example. The calibrated parameters found via the sequential
least-squares quadratic programming algorithm are a = −0.003, b = 0.001, ρ =
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−0.017,m = 421.78 and σ = 52.32.One can easily check that the resulting density
is indeed a density and is free of both calendar spread and butterfly arbitrage,
see, for example, Ferhati (2020a).

We will take this risk-neutral density as the option market’s view on the
distribution of the underlying asset price at the expiration time of the option.
It will be integrated into the above results to determine an optimal replicating
portfolio for a static trading strategy to maximize the expected utility of an
agent seeking to benefit from the difference between this distribution and his own
forecasted distribution. Next, we discuss how one may determine such a portfolio
through optimization techniques.

5.3 Optimal Option Portfolio Determination via
Kernel search

We seek to determine the optimal portfolio of call and put options an agent
should hold to maximize an expected utility based upon the difference between a
forecasted and actual market risk-neutral distribution. To avoid computational
costs related to integer programming problems, we utilize a kernel search heuristic
framework introduced by Angelelli et al. (2010, 2012). The idea of the kernel
search heuristics is to select a kernel Λ ⊂ M of promising securities and then
solve the associated integer programming problem by considering securities only
in Λ. The remaining securities are then divided into buckets Bi, and the algorithm
solves a sequence of restricted integer programming problems constructed from
the original objective to create a progressively refined solution.

Formally, the kernel search consists of two phases, the initialization phase, and
the extension phase. In the initialization phase, the kernel Λ is selected, and then
the rest of the assets are divided into buckets. A smaller Λ may result in a low-
accuracy solution but usually requires significantly lower computational cost to
obtain than the optimal solution on this set. One method to select Λ is to use the
optimal solution of the continuous relaxation of the initial problem, see Angelelli
et al. (2012). Their approach relies on sorting all assets in non-decreasing order
using some criterion based on the weights in the relaxed problem. First, C assets
are chosen as the kernel Λ, where C is the heuristic parameter. The rest of the
assets are then divided in sorted order into buckets of fixed length Lb, where Lb

is chosen apriori, with the possibility that the last bucket is smaller. Finally,
the integer programming problem for the kernel Λ is solved to obtain the initial
solution of the problem. This concludes the initialization phase.

The extension phase tries to improve the solution obtained in the initialization
phase and consists of iterating over buckets Bi and solving the integer problem
for Λ ∪ Bi with two additional natural constraints. The first constraint is that
we need to improve the optimal value of the current solution, and the second
condition is that at least one of the assets in Bi has to be used, which reduces
the computational complexity of the problem. If the solution is feasible, i.e. it
improved our optimal value, we update our optimal value and set Λ := Λ ∪ Λi,
where Λi ⊂ Bi is the subset of assets in Bi that are used in the new optimal
solution. To control the size of the kernel Λ, Guastaroba and Speranza (2012)
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introduced the removal of assets that have not been used in the last p iterations.
The kernel search heuristics algorithm is summarized below.

Algorithm 1: Kernel search
Initialization phase
1. Solve the continuous relaxation of the original problem
2. Determine a kernel Λ and sequence of buckets Bi

3. Solve the integer problem for Λ
Extension Phase
while i ≤ number of buckets do

1. Solve the integer problem for Λi = Λ ∪Bi

2. if model Λi is feasible then
Update kernel with newly selected securities Λi from Bi, i.e.
Λ := Λ ∪ Λi

Update the optimal value
3. Remove non-promising securities from the kernel Λ

end

The theoretical replication formula (3.1) implies that one only needs a subset
of call and put options depending on the choice of x0. In our numerical study we
choose x0 to be the forward value, i.e. x0 = S(0)erT . To illustrate the solution
of the relaxed problem, we plot the approximated payoff and individual weights
in the options contracts in Figure 5.5 for SPY. Notice that the approximation
visually corresponds to the theoretical payoff for smaller movements in the
underlying asset price. For larger movements, the approximation starts to differ
from the theoretical payoff, which is caused by sparsity of the out-of-the-money
strikes. Moreover, the position in each option contract is rather small which poses
a problem since the position in the option contracts can only be integer valued in
practice. Finally, trading a large selection of option contracts poses a significant
risk to the market taker. For example, once other market participants notice
heavy market activity from the market taker, the price of the option contracts
is likely to move against the market taker, and thus the price for entering the
position would be higher.

5.4 Numerical Examples
In this section, we consider several numerical examples related to the optimization
problem (5.13). We start by listing deviations from the above theoretical
approach, which are essential for practical applications. Next, we briefly describe
the actual market data used in these experiments and estimate the risk-neutral
measure Q via the SVI model. Finally, using integer programming techniques,
we consider examples that approximate the theoretical payoff (5.6) with option
portfolios.

5.4.1 Differences from the theoretical approach
From the practitioner’s point of view, the following are differences from the above
theoretical approach that should be taken into consideration:
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Figure 5.5: The upper plot is the theoretical payoff (blue) along with its approximation
using fractional asset positions (orange) in put and call options for SPY. In the lower
plot, positions in individual put (red) and call (blue) options are displayed.

• The position sizes ni are integer-valued as one cannot buy or sell a fractional
share of an option contract. Thus, the optimization problem (5.13) has to
be reformulated in the integer programming optimization setting.

• A single option contract covers 100 shares of the underlying asset.

• The strikes available on the market comprise a discrete set, e.g. one cannot
select an arbitrary strike value. Moreover, deep-out-of-the-money options
may have liquidity problems.

• The distributional opinion measure Q of the market is not readily available
and needs to be estimated in order to calculate (5.6).

5.4.2 Market Data and Software
We now discuss the market data used in these numerical studies and related soft-
ware relevant to their implementation. We use the tia and blpapi Python packages
to construct end-of-day put and call option market data using Bloomberg’s API.
We consider end-of-day closing prices for call and put options written on two
equity indices: SPY and DAX. To minimize liquidity risk, we filter out options
whose bid price is lower than $0.01.

To illustrate the data, we shall focus on the SPY options. We examine the
options on February 19th, 2021, and consider an end-of-quarter expiration on
June 18th, 2021. The prices of the call and put options are displayed on Figure
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5.6. Note that the closing price of the underlying asset was $390.7. Using the
three-month Treasury yield as a risk-free rate proxy, we use the Newton-Raphson
technique to calculate the implied volatility of the options from their prices.

Figure 5.6: February 19th, 2021 end of day prices and implied volatilities for SPY
put and call options with maturity June 18th, 2021. The plot data represent implied
volatility values for different strikes.

5.4.3 Approximation of the Payoff
Using the risk-neutral density obtained from the SVI model, we can compute the
optimal payoff (5.6) and its approximation. Note that we allow the distributional
opinion of the market to be any probability measure P such that F is continuous.
We start by rewriting the optimization problem (5.13) to reflect real market
conditions. Suppose there are M sufficiently liquid hedging assets available for
the optimization; each of the assets can be identified by its strike Ki and its type
mi for i ∈ {1, . . . ,M}. The position in the option contracts can only be integer-
valued. Thus the optimization problem (5.13) can be written in the following
form:

min
ni

EP
[︃1
2n

T C(K,m)n− nTD(K,m)
]︃
, (5.15)

ni ∈ Z,
M∑︂

i=1
|ni| ≤ N.

To solve the optimization problem (5.15), we utilize the Gurobi optimization
library (Gurobi Optimization (2021)), the cvxpy convex optimization Python

58



Symbol No. call options No. put options Spot
SPY 161 169 $ 390.72
DAX 106 113 13 886.93 €

Table 5.1: Description of the filtered option data set.

package, and a kernel search heuristic. Note that the above is an integer quadratic
problem and is inherently non-convex. In its full generality, integer quadratic
problems are NP-complete problems, see Vavasis (1990).

5.4.4 Numerical Experiment Results
In this subsection, we apply the proposed methodology to a historical financial
dataset. All numerical experiments were conducted on a Windows machine with
an Intel Core i5-3470 CPU with 3.20GHz and 16 GB of RAM.

We illustrate the approximation procedure for two choices of the market
taker’s measure P for logarithmic, exponential, and power utility functions. Our
first choice is that the market taker believes that the implied volatility on option
contracts should be 50% lower than the market price. The second choice is that
the implied volatility should be 50% higher. The matrix C and vector D are then
estimated using Monte Carlo. Finally, to make assets comparable, we modify the
option’s payoffs and premiums so that they are not denominated in dollars, but
in the underlying asset. This allows us to compare different options quickly.

Single maturity

Our choice of studied symbols are SPY and DAX as options on indices are highly
liquid, and thus one can assume that the approximation of the theoretical payoff
will be sufficiently good. We study the options on February 19th, 2021, focusing
on the quarter expiration on June 18th, 2021. Moreover, to make the indices
SPY and DAX comparable, we normalize them by the spot price of the underlying
asset. As mentioned in the data section, we filter out options with small bid prices
and bid-ask spreads greater than 10% of the bid price to reduce the liquidity risk.
The number of options considered and the associated spot prices are summarized
in Table 5.1.

On the left side of Figure 5.7, we plot the market-implied density where
associated option market implied volatility values were estimated using the SVI
model. In addition, we also display the density of the market taker who believes
that the implied volatility of each option on the market should be 50% higher or
50% lower. Notice that the market density for SPY and DAX are very similar.
In the middle of Figure 5.7, we plot the optimal payoffs for the logarithmic utility
(blue), power utility with a = 0.75 (orange) and exponential utility (green).
Similarly, the higher volatility case is plotted on the right. For the lower volatility
case, note that the market taker realizes a profit only for small moves in the price
of the underlying asset, and in the case of bigger moves, his loss is bounded for
logarithmic and power utility, which behave similarly. For the higher volatility
case, the market taker can realize multiple units of the underlying asset in case
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of more significant moves, which is due to the fact that the market assumes that
these events are extremely unlikely.

Figure 5.7: The left subplot contains estimated risk neutral densities (blue) along
with the density of the market taker believing in smaller (orange) resp. higher (green)
volatility. On the middle plots (lower volatility) resp. right plots (higher volatility) are
associated with optimal payoffs in the asset space for logarithmic utility (blue), power
utility with a = 0.75 (orange) and exponential utility (green) for the market taker.

For the implementation of kernel search heuristics, we choose the parameter
C = 20 for the size of the initial kernel Λ. For the choice of the bucket length Lb,
we follow Guastaroba et al. (2017) where the authors recommend to use Lb = C.
Finally, we set the removal parameter p = 3 as this choice leads to significant
computational speedup while having only a minor effect on the quality of the
solution found.

To illustrate the behavior of the kernel search heuristics, we plot the
approximation for N = 10 and N = 20 in Figures 5.8 and 5.9 for the SPY
and DAX indices. In the higher volatility case, the kernel search fit captures
the optimal payoff (2.6) in both cases. For the lower volatility case, the kernel
search algorithm reasonably captured the center of the payoff curve, but it fails to
capture payoffs for larger movements in the price of the underlying asset. This is
because a one-contract option covers one hundred shares of the underlying asset
and, more importantly, the lower volatility model believes that these outcomes
are extremely unlikely, and thus their contribution to the density-weighted L2

error from the market taker’s perspective is minuscule.
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Figure 5.8: Approximation of the optimal payoff for the SPY ticker using N = 10
(orange) resp. N = 20 (green) options.

Figure 5.9: Approximation of the optimal payoff for the DAX ticker using N = 10
(orange) resp. N = 20 (green) options.
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Errors for the kernel search heuristics are plotted in Figure 5.10. Note that
using twelve or more options for the approximation procedure has only a small
marginal impact on the L2 error and that the SPY and DAX error functions
behave similarly. The fact that the approximation error does not decrease
monotonically in the number of options can be contributed to the removal part
of the kernel search algorithm.

Figure 5.10: Error for the approximation of SPY (blue) and DAX (orange).

Finally, we note that one could be interested in enriching the option data set
used for replication by options that were filtered due to the specific choice of x0 in
the replication formula (3.1). The intuition is that by enriching the option data
set, one could achieve a better approximation of the optimal payoff at the cost
of larger computational time. To study this problem, we ran the approximation
procedure five times on both the entire option price dataset and on the filtered
version for the lower volatility case with logarithmic utility in the case of the SPY
ticker. In Figure 5.11, we plot the average computational time on a logarithmic
scale and the average approximation error. Using the entire option data set
significantly increases computational time, but does not improve the quality of
the replication procedure. To better illustrate the difference in computational
time, note that using ten options for the replication provides a relatively good
approximation of the optimal payoff. The computational time using ten options
for the replication in the filtered data set case was 2.9 seconds, while for the whole
data set, it was 214.6 seconds.
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Figure 5.11: Comparison of runtime on logarithmic scale (left) and approximation
error (right) for lower volatility case with logarithmic utility and SPY ticker using all
options on the market (orange) versus using filtered option data set (blue).

5.4.5 Multiple maturities
In this subsection, we focus on constructing replicating portfolios during time
periods of increased levels of market uncertainty. Specifically, during the end of
November 2021, a new variant of COVID-19 called omicron was discovered. Since
this variant appears to be more contagious than the current prevalent COVID-
19 delta variant, equity and commodity markets reacted to an anticipation of
lockdowns and the halt of international travel. For example, WTI crude oil lost
around 10% of its value on November 26th. Similarly, airline industry stocks have
declined significantly.

In addition to the SPY and DAX ETFs, we also examine the USO (United
States Oil Fund) and GLD (SPDR Gold Shares) funds. USO may be seen as a
particularly risky asset during the omicron uncertainty period, while GLD can
be viewed as a relatively stable one. We use the same methodology as in the
previous subsection. We run the replication procedure for various maturities for
each symbol but only focus on the logarithmic utility function. The list of option
maturities differs for each ticker and can be seen in Figure 5.12. The SPY ticker
has the greatest number of option strikes available on the market. The quantity
of option contracts available for other tickers varies greatly by maturity. For
example, for USO, we can see that the number of options available for the March
18th 2022 maturity is very limited, which indicates a potential problem when
replicating the portfolio.
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Symbol Spot ∆1 ∆2 ∆3 ∆4 ∆5
SPY $ 470.74 1.0 1.0 1.0 1.0 5.0
DAX 15623.31 € 50.0 50.0 50.0 100.0 100.0
USO $ 52.03 0.5 1.0 1.0 1.0 0.5
GLD $ 166.58 1.0 1.0 1.0 1.0 1.0

Table 5.2: Spot option price at December 10th, 2021 together with minimal
option strike distances ∆ between neighboring options available at the market
for maturities as in Figure 5.12.

Figure 5.12: Number of analyzed call (blue) and put (orange) options for various
tickers and maturities.

To achieve an accurate replication of the theoretical payoff, it is crucial to
both have a large number of options available and to consider strikes as close
together as possible. Naturally, the greater the minimal distance between two
strikes the rougher the approximation of the payoff. In Table 5.2, we describe
the spot price of the underlying ETF and the minimum distance ∆ between two
neighboring option strikes. As the minimal distance for SPY, DAX, and USO is
relatively small, in terms of the spot price of the underlying asset, one could hope
to achieve a strong replicating portfolio. In contrast, option strikes on USO are
minimally about 2% of the spot price apart from each other, thus one can expect
a lower quality fit.

The replication error for the logarithmic utility as a function of maturity is
plotted in Figure 5.13. Let us briefly describe the results. From the considered
tickers, the replication error for SPY is the lowest for both the lower volatility and
the higher volatility case. For SPY, the option maturity with highest replication
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Figure 5.13: Error for the approximation of SPY, DAX, USO and GLD. Colors
correspond to maturities as given in Figure 5.12 in the same order: brown, pink, gray,
ochre, blue.

error is December 16th, 2022. This is because the minimal distance between
neighboring option strikes increases from 1 to 5, which naturally yields a poorer
replication. For DAX we see that in the lower volatility case, the lowest replication
error is achieved by options that expire on January 22, 2022. This is because
there is a denser set of options available on the market for the replication and the
discrepancy between the distributional opinions of the market taker and market
maker is lower since the time until expiration is the least of the considered
maturities. For other maturity times, we note that in the low volatility case,
there is only a minor improvement in the L2 error of the replication when using
five or more option contracts. USO achieves the worst replication, which is due
to the sparse option data set available. GLD achieves a similar replication error
as the DAX, with the exception that the replication when using options with
a January 20, 2023 expiration achieves poor performance. This is due to the
sparsity of the options available around the spot price.

In Figure 5.14 we plot the approximation for USO and GLD with maturities
July 15th, 2021, respectively for March 18th, 2021 using N = 6 option contracts.
For the lower volatility case, the replicating portfolio for GLD seems to capture
the theoretical payoff around the spot price, however, for USO, the fit is of lower
quality which can be contributed to sparsity of available strikes on the market.
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Figure 5.14: Approximation of the optimal payoff for the USO resp. GLD using
options with maturity July 15, 2021 resp. March 18, 2021 using N = 6 options.

5.5 Conclusion
In this chapter, we have examined a utility-maximizing portfolio from the
perspective of an agent who believes in the distributional discrepancy between
the risk-neutral and market-implied densities of an underlying asset. Under
a geometric Brownian motion assumption, we provided exact formulas for the
price and delta hedge for this portfolio. In the general case, we use integer
programming and kernel search heuristics for the static replication of the optimal
gain of the agent under the assumption that the price of the replicating portfolio
from the market’s perspective is trivial. We show that the replicating portfolio
consisting of ten options provides a good approximation of the optimal payoff
for various utility functions using historical market data. Moreover, according
to our numerical results, it is sufficient only to use a subset of the options
available on the market for the replication procedure, which significantly reduces
the computational time of integer programming methods while having no impact
on the replication quality.
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6. Options on a traded account:
symmetric treatment of the
underlying assets
6.1 Introduction
This chapter is based on the article Večeř et al. (2020) in which we studied
passport options with two assets. We restate the results here and mention a
possible extension to an arbitrary number of assets. Options on a traded account
have been widely studied in the previous literature. In the simplest setup, the
client is free to trade in two underlying assets subject to specific contractual
limits. At maturity, he can keep the profits from this trading strategy while
his losses are forgiven, which intuitively leads to risky strategies. Some of the
contracts within this family, such as passport options, have even been actively
traded. However, such contracts have been unpopular so far. Arguably, the
major reason is the fact that the previously studied contracts are expensive in
relation to the client’s portfolio, which we will demonstrate with several examples.
Moreover, these contracts treat the two underlying assets asymmetrically. In the
traditional setup, the restriction of the trading position is set to one asset only,
and the residual wealth is invested in the second asset. For the passport option,
the restriction on the position in the first asset is [−1, 1], which means that the
agent can take any position between long and short. The residual wealth gives
the position in the second asset. The typical starting wealth is at X = 0 for the
traded account insured by the option, and since one position in the underlying
asset is short, and the other is long, the corresponding option covers losses on
heavily leveraged positions, making the resulting contract relatively expensive
and speculative for any practical purposes of investment or pension funds that
could naturally benefit from the existence of such products.

Passport options were introduced in the paper of Hyer et al. (1997). The
authors derived the optimal strategy in the geometric Brownian motion model,
which is achieved by a short position when the traded account is positive
and a long position when the traded account is negative. They also found
the corresponding option value by solving the corresponding pricing partial
differential equation. Andersen et al. (1998) described a numerical algorithm for
solving the pricing differential equation. Henderson and Hobson (2000) showed
that the same strategy remains optimal in the presence of stochastic volatility.
Shreve and Večeř (2000) considered more general trading limits on the first asset.
The optimality of the solution was proved using probabilistic arguments based
on a comparison theorem of Hajek (1985). Večeř (2001) later showed that Asian
options are special cases of options on a traded account when the restriction on
the first asset has a specific deterministic form and found a novel pricing partial
differential equation. Delbaen and Yor (2002) showed that the strategy for the
passport option remains optimal when the portfolio rebalancing is restricted to
a discrete time. Kampen (2016) considered multivariate passport options, where
the traded account consists of more than one asset. Moreover, the author observed
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that optimal strategies might depend on the sign of correlations between assets.
The decomposition of the passport option into a portfolio of plain vanilla contracts
was studied by Buchen and Malloch (2014). The Greeks of the passport option
were studied by Kanaujiya and Chakrabarty (2017).

The fact that the trading constraints on the two assets are asymmetric in
the previously considered options on a traded account limits the applicability of
such contracts. If we consider a foreign exchange type option with the underlying
currencies, the dollar and euro, the contract with asymmetric constraints would
be different from the perspective of the dollar and the euro investor. This is not
the case for the plain vanilla options, where a call option from the perspective
of the first currency is a put option from the perspective of the second currency.
This leads to a natural question of whether we can formulate an option on a
traded account with the symmetrical treatment of the two underlying assets.

The approach that treats both assets symmetrically is relatively straightfor-
ward. Instead of imposing an absolute restriction on the position in the first asset,
one can simply require a relative restriction in terms of the fraction of the current
wealth. The most natural restriction allows the client to invest any proportion
of his wealth in the first asset, so the α fraction of the invested wealth in that
asset is in the interval [0, 1]. Obviously, this is symmetric with respect to the
second asset, as the residual wealth proportion 1 −α invested in the second asset
is restricted to the same interval [0, 1]. Moreover, this approach generalizes to any
number of assets, so we can formulate the symmetric problem for an arbitrary
number of assets I. This is a very natural approach as the investors are typically
free to invest any portion of their wealth to assets of their choice, corresponding to
a [0, 1] fraction of their total wealth. The problem of finding the optimal strategy
that maximizes the option value is rather complex for any N > 2, and thus we
limit ourselves to a solution for N = 2 assets only.

Imposing symmetric trading restrictions is only the first necessary step for
the symmetric treatment of the underlying assets. We also need to use the
reference asset that treats the individual assets symmetrically. Here, a candidate
for reference asset is an index that starts with 50% of both assets and remains
static afterward. Our paper is structured as follows. In the next section, we
mathematically formalize the definition of the option on a traded account that
treats both assets symmetrically. This is model-independent. Next, we assume
geometric Brownian motion dynamics and first derive the evolution of the asset
prices with respect to the index. In the following step, we find the evolution of the
actively traded account with respect to the index. In order to find the optimal
strategy, we need to generalize Hajek’s Comparison Theorem and adapt it to
our problem. This extends a comparison result for stochastic sums published in
Kampen (2016). It is still true that the optimal strategy has the largest volatility
with respect to the index, which is interesting in itself as the resulting portfolio has
the largest price variance. Thus it determines the maximal possible distributional
departure in the sense of L2 norm from the index that can be achieved by active
trading. This is a well-known stop-loss strategy that invests all the wealth in the
weaker asset. The volatility maximizing strategy also maximizes the probability
of reaching the higher goal in a given time framework, which is shown at the end
of our paper. A similar problem was studied in a different setup by Kulldorff
(1993).
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Our proposed setup may be appealing to conservative investment funds, such
as pension funds. The pension funds typically face regulatory constraints that
prevent significant fund losses. However, the client may want to be given a choice
to move their investments to different markets, typically to the money market or
the stock market. In order to prevent substantial losses resulting from switching
between different markets, an insurance policy may be needed to cover such losses.
In order that this insurance is possible, it should be reasonably cost-effective,
costing only a small fraction of the client’s wealth. The competitive costs are not
expected to exceed 2% of the client’s wealth annually, corresponding to typical
hedge fund charges. As we show in our paper, the contract costs are indeed very
small depending on the parameter σ

√
T , where σ is the relative volatility of the

two markets and T is the time horizon. For instance, when σ
√
T = 0.1 which

corresponds to a EUR-USD currency pair over a one-year horizon, the cost of the
option is just 1.813% of the client’s wealth. In contrast, the passport option on
the same horizon with a trading constraint corresponding to the initial client’s
wealth costs 4.116% of his wealth, making it hardly competitive. The cost of the
insurance for the same currency pair over T = 20 year horizon (σ

√
T = 0.4472)

gives the cost of the option 9.746% of the client’s wealth, making the total cost
below 0.5% annually. The corresponding passport option costs more than double,
namely 20.489% of the client’s wealth. The stock market (SP500) and the money
market pair has typically a larger relative volatility that takes a wide range of
values in the interval [0.1,0.3], but the option contracts would still be fairly priced
even for volatility σ = 0.2. A T = 20 year contract (σ

√
T = 0.8944) gives the

option price 20.993%, which corresponds to an annual cost of around 1% of the
client’s wealth. The corresponding passport option costs 46.860%.

6.2 Model Free Setup
Our entire analysis is limited to only two underlying assets S and M . Asset
S often represents the stock market, while asset M often represents the money
market. For simplicity, we consider only assets with their martingale measure,
such as stocks that reinvest dividends or the money markets. For instance,
the prices expressed with respect to a reference asset M are PM martingales.
In particular SM(t) is a PM martingale. Assets that do not have their own
martingale measure, such as the currencies, can be linked to the corresponding
money markets using the proper discounting.

We can further simplify the setup and introduce the following scaling

SM(0) = 1.

At the start of the investment period, the investor creates a self-financing portfolio
X by starting at X(0) = S(0) = M(0) and at time t:

X(t) = ∆S(t)S(t) + ∆M(t)M(t), (6.1)

where ∆S and ∆M represents the agent’s strategy. Mathematically, we assume
that these processes are progressively measurable. Moreover, we only allow long
positions in the assets, i.e. we assume

∆S(t) ≥ 0, ∆M(t) ≥ 0. (6.2)
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The constraint in Equation (6.2) means that the investor is free to invest any
fraction between [0, 1] of his wealth X into the asset S with the remaining fraction
of his wealth going to the money market M . This follows from Equation (6.1) by
using X as a numeraire:

1 = ∆S(t)SX(t) + ∆M(t)MX(t).

In particular, the investor may choose to fully invest in one fund, say in the stock
market, so we have ∆M(t) = 0 and

1 = ∆S(t)SX(t),

or
XS(t) = ∆S(t).

The lower bound condition in one of the markets imposes an upper bound
condition in the second market, so the positions are constrained by

XS(t) ≥ ∆S(t) ≥ 0, XM(t) ≥ ∆M(t) ≥ 0,

This is a very natural condition. Moreover, it treats both assets equivalently,
imposing the same restriction. Note that the upper bounds are random and
depend on the current value of the investor’s wealth X. A trivial observation
is that X must always be non-negative with zero wealth being an absorbing
boundary.
Remark 6.2.1 (Relationship to passport options). The constraint for the passport
option is on the position in the stock market only

a ≤ ∆S(t) ≤ b,

the position in the second market M follows from

∆M(t) = XM(t) − ∆S(t)SM(t).

In particular, it can be negative even in the situation when we constrain the
investor to have a positive position in S(t) by requiring ∆S(t) ≥ a ≥ 0. The
condition is not symmetric for both assets since the imposed restriction does
not treat them equivalently. This is arguably one of the main reasons why such
a contract is not appealing to the investors. Moreover, the traded account can
become negative in contrast to the situation that treats both assets symmetrically.
Remark 6.2.2 (Trading restrictions allowing shorting). The trading restrictions
can be generalized to allow shorting. The symmetric restriction is to allow the
investor to have another lower bound on the stock position and the money market
position in terms of the fraction of his wealth. The fraction of the wealth in the
stock market is given by ∆S(t)SX(t), the fraction of wealth in the money market
is given by ∆M(t)MX(t). The symmetric condition is that both fractions are
limited by the same lower bound c:

∆S(t)SX(t) ≥ c, ∆M(t)MX(t) ≥ c,

or in another words,

∆S(t) ≥ c ·XS(t), ∆M(t) ≥ c ·XM(t).
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The lower bound in one asset imposes an upper bound on the other asset:

(1 − c) ·XS(t) ≥ ∆S(t) ≥ c ·XS(t), (1 − c) ·XM(t) ≥ ∆M(t) ≥ c ·XM(t).

The constant c can be negative (allowing for shorting). However, the maximal
allowed c is 1

2 as one cannot impose to have positions in both assets above 50%
of the wealth.

For preservation of the symmetry of the contract, it is necessary that the
reference asset also treats both assets equally. One obvious choice is to use

I(t) = 1
2(S(t) +M(t)). (6.3)

The asset I can be regarded as an index consisting of the two assets, or
equivalently, a basket of the two assets.

The contact on the actively traded account can be then defined by a payoff
at the terminal time T

(XI(T ) −K)+ units of I(T )

for some contractually defined strike K. As XI(0) = 1, the strike corresponding
to the at the money option equals K = 1. In order to preserve the symmetry,
the contract has to be settled in the index I rather than a single asset S or M .
For instance, if the contract is written on two currencies, say dollar and euro,
the contract seen from the position of the dollar investor or the euro investor is
identical.

6.3 Price Evolution in the GBM Model
The seller of the option must be ready to cover any trading strategy used by the
contract holder. In particular, the fair price of the contract corresponds to the
trading strategy ∆S(t) that maximizes the value of the option

EI
[︂
(XI(T ) − 1)+

]︂
.

Let us assume a geometric Brownian motion model for the stock price SM(t), so

dSM(t) = σSM(t)dWM(t).

Any discounting is already incorporated in the money market M and the price
SM(t) is PM martingale. Similarly, the inverse price

dMS(t) = σMS(t)dW S(t)

is a PS martingale. The relationship between WM(t) and W S(t) is

dW S(t) = −dWM(t) + σdt.

From the self-financing trading assumption, the evolution of the trading portfolio
X is

dXM(t) = ∆S(t)dSM(t)
and

dXS(t) = ∆M(t)dMS(t).
In order to find the optimal strategy, we need to find price evolutions with respect
to the index I.
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Lemma 6.3.1. The evolution of the price MI(t) under the probability measure
PI is given by

dMI(t) = 1
2σMI(t)(2 −MI(t))dW I(t).

Proof. Note that

MI(t) = M(t)
1
2(M(t) + S(t)) = 2

1 + SM(t)

and an application of Ito’s lemma gives

dMI(t) = d

(︄
2

1 + SM(t)

)︄

= 1
2σMI(t)(2 −MI(t))

[︄
−dWM(t) + σSM(t)

(1 + SM(t))dt
]︄

= 1
2σMI(t)(2 −MI(t))dW I(t).

The process MI(t) must be PI martingale, which determines W I(t) as

dW I(t) = −dWM(t) + σSM(t)
(1 + SM(t))dt = −dWM(t) + 1

2σSI(t)dt.

The SDE in Equation (6.3) is interesting on its own as it represents the
evolution of the asset with respect to the index. From the definition of I in
Equation (6.3), we have

2 = MI(t) + SI(t), (6.4)
constraining the MI(t) process between 0 and 2:

0 ≤ MI(t) ≤ 2.

One can think about MI(t) as the scaled proportion of the money market M
in the index I. The price MI(t) has the largest volatility when MI(t) = 1, or
in other words, when M(t) = S(t). The process MI(t) loses volatility in two
extreme cases, when MI(t) = 0 and when MI(t) = 2. The first case corresponds
to SM(t) = ∞, so the asset M is worthless in comparison with the asset S, the
second case corresponds to SM(t) = 0 when the asset S is worthless in comparison
with the asset M .

Note that from the symmetry of the problem, we have immediately

dSI(t) = −1
2σSI(t)(2 − SI(t))dW I(t). (6.5)

It also follows from Equation (6.4).
Now we are ready to compute the evolution of XI(t).

Lemma 6.3.2. The evolution of the actively traded portfolio X with respect to
the index I follows:

dXI(t) = 1
2
(︂
XI(t) − 2∆S(t)

)︂
σSI(t)dW I(t). (6.6)
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Proof. A straightforward application of Ito’s lemma gives

dXI(t) = d(XM(t) ·MI(t)) = 1
2
(︂
XI(t) − 2∆S(t)

)︂
σSI(t)dW I(t).

From ∆S(t) = XS(t)−∆M(t)MS(t), we also have an alternative representation

dXI(t) = −1
2
(︂
XI(t) − 2∆M(t)

)︂
σMI(t)dW I(t). (6.7)

6.4 Optimal Strategy
One would intuitively expect that the optimal strategy should maximize the
absolute value of the dW I(t) term

(︂
XI(t) − 2∆S(t)

)︂
σSI(t). However, the mean

comparison theorem of Hajek would apply only without the stochastic term SI(t),
and thus we must address this problem differently. Our result indeed confirms
the intuition that the dW I(t) term should be maximized in the absolute value in
order to find the optimal strategy and the option value. Note that the following
comparison result is not restricted to models with constant volatility. Only the
boundary conditions simplify in the latter case, and therefore we mention the
boundary conditions in the more general case, too.

The proof considered here is based on partial integration and the relationships
between derivatives of the fundamental solution and its adjoint (forward and
backward density in probabilistic terms).

Note that such an argument cannot be based on the full convexity of a suitable
approximating value function: nontrivial convex functions usually are not zero
everywhere at infinity, and we need such an approximation in order to do partial
integration. Furthermore, it is natural to work with smoothed and strictly convex
approximations of natural payoffs in finance which usually have kinks, because
this ‘globalizing’ of a local convexity at a kink is effected for the value function
by the density at any short time anyway. Note that we are interested in strict
orders of value functions when determining an optimal strategy. Furthermore, the
argument given here is essentially global because we evaluate finite differences of
an integrated Green’s identity on the boundary of large balls. Such arguments
may be used to obtain full or partial convexity criteria in specific circumstances
such as fixed controls in regular control spaces, univariate payoffs, and strictly
elliptic operators. However, there is no general algorithm by which we could
obtain local pointwise criteria about Greeks or partial convexity from this type
of argument. The example of symmetric passport option considered here may
serve for illustration of the latter remark: it turns out that the optimal control
function is not even continuous, and in such a situation, we can not know a priori
whether the value function is regular enough in order to have Greeks which exist
in a pointwise sense. For this, additional reasoning is needed case by case and
may hold or not.

The portfolio process related to a given stochastic strategy ∆ is denoted by
X∆

I . For each strategy ∆ we define

vδ(t, x, y) := EI [(X∆
I (T ) − 1)+|SI(t) = x,X∆

I (t) = y].
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Let us consider the transformation to normal coordinates uδ(τ, z1, z2) :=
vδ(t, z1, z2), where τ = T −t z1 = ln(x) and z2 = ln(y). The stochastic strategy ∆
corresponds to a strategy δ in value space which is a function of the underlyings.
The function uδ satisfies the initial- boundary value problem

uδ
τ − 1

8σ
2(2 − exp(z1))2uδ

z1z1 + 1
4σ

2(2 − exp(z1))(exp(z1) − 2δ)uδ
z1z2

− 1
8σ

2(exp(z1) − 2δ)2uδ
z2z2 = 0. (6.8)

with initial condition

u(0, z1, z2) = (exp(z2) − 1)+.

We impose natural boundary conditions at spatial infinity and have an additional
finite boundary condition at z1 = log(2). We get

uδ
τ − 1

8σ
2(2 − 2δ)2uδ

z2z2 = 0, at z1 = log(2).

This equation corresponds to the process

dXI(t) = 1
2
(︂
XI(t) − 2∆S(t)

)︂
σSI(t)dW I(t)

such that we can apply Hajek’s result at the boundary where z1 = log(2). Hence
we know δ = 0 at {(τ, z1, z2)|z1 = log(2)} a priori. We may say that δ lives
in reduced control space if δ ∈ Cc := {δ ∈ C3|δ|z1=ln(2) = 0}. The boundary
condition reduces to

uδ
τ − 1

2σ
2uδ

z2z2 = 0, at z1 = log(2), (6.9)

and such a boundary condition can be considered if the volatilities are regular
functions. In case of constant volatilities the latter condition simplifies to

uδ(t, log(2), z2) = exp(z2) ·N(d+) −N(d−),

where d± = z2± 1
2 σ2τ

σ
√

τ
. The problem may be considered on the domain D = [0, T ]×

(−∞, log(2)] × R. There are three further issues here concerning comparison: a)
in which space does the strategy function δ live?; b) the problem has a boundary
in finite space, and comparison has to be adapted to this situation, and c) the
spatial part of the operator is not strictly elliptic. We formulate the comparison
theorem in regular strategy spaces and for a regularized problem. More precisely,
we modify the asset dynamics, where for small ϵ > 0 we define

dSϵ
I = −1

2σSI(t) (2 − SI(t)) dW I,ϵ(t) (6.10)

where W I,ϵ(t) is constructed by adding a small perpendicular process, i.e.,

dW I,ϵ(t) = dW I + ϵdW⊥,I ,
⟨︂
dW I , dW⊥,I

⟩︂
= 0

The corresponding equation for uδ,ϵ gets an additional factor (1+ϵ)2 in the second
term of the equation (6.8) and becomes strictly elliptic. Concerning issue a) we
compare C3 strategies in order to prove identity for derivatives of the density and
its adjoint up to second order. The issue in b) is addressed in the proof of the
following theorem.
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Theorem 6.4.1 (Comparison Theorem). Let δ, δ′ ∈ C3
c and ϵ > 0 be strategies of

the value functions uδ,ϵ, uδ′,ϵ defined on the domain D. Then the order of these
value functions is induced by the order of the volatility of the portfolio term alone,
i.e., for τ ∈ (0, T ]

1
8σ

2(x− 2δ)2 <
1
8σ

2(x− 2δ′)2 ⇒ uδ,ϵ(τ, .) < uδ′,ϵ(τ, .).

Proof. See Appendix 6.7.

The regular control space C3 does not contain the volatility-maximizing
function I(z1 ≤ 0) = I(exp(z1) ≤ 1) or I(x ≤ 1) of the portfolio term. Define the
sequence of functions hϵ, where

hϵ(z1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if z1 ≤ −ϵ,

exp
(︂
−1 − ϵ

z1

)︂
if −ϵ ≤ z1 ≤ 0,

0 else.

Let δϵ ∈ C∞ be defined by a convolution of hϵ with a smoothing Gaussian kernel
which is close to the identity. Then this a sequence of functions δϵ which is
monotonically increasing as ϵ decreases and limϵ↓0 δ

ϵ = δopt = I(x ≤ 1). According
to Theorem 6.4.1 we have

vδϵ(t, x, y) = lim
ϵ↓0

EI [(X∆ϵ

I (T ) − 1)+|SI(t) = x,X∆ϵ

I (t) = y]

and stochastic ODE theory shows that the limit vδopt(t, x, y) exists as ϵ ↓ 0.

Theorem 6.4.2 (Optimal strategy). The optimal strategy maximizing

EI [XI(T ) −K]+

is given by

∆̄S(t) = X̄S(t) · I(SI(t) ≤ 1), ∆̄M(t) = X̄M(t) · I(SI(t) ≥ 1),

meaning that one should be fully invested in the weaker asset. The evolution of
the optimal portfolio is given by

dX̄I(t) = 1
2 (SI(t) − 2 · I(SI(t) ≤ 1)))σX̄I(t)dW I(t).

Proof. According to Theorem 6.4.1, the optimal strategy maximizes the absolute
value of the dW I(t) term. The optimal position ∆S(t) is attained at one of the
ends of the interval for its possible range. When ∆S(t) = 0, the absolute value
reduces to

XI(t).
When ∆S(t) = XS(t), the absolute value is equal to

−XI(t) + 2XS(t).
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Thus ∆S(t) = 0 is optimal when

XI(t) ≥ −XI(t) + 2XS(t),

which is equivalent to
S(t) ≥ M(t).

∆̄S(t) =
⎧⎨⎩XS(t), S(t) ≤ M(t),

0, S(t) ≥ M(t),
and

∆̄M(t) =
⎧⎨⎩0, S(t) ≤ M(t),
XM(t), S(t) ≥ M(t),

More succinctly,

∆̄S(t) = X̄S(t) · I(SI(t) ≤ 1), ∆̄M(t) = X̄M(t) · I(SI(t) ≥ 1).

Thus it is optimal to be fully invested in the weaker asset. The evolution of the
optimal portfolio is given by

dX̄I(t) = 1
2
(︂
X̄I(t) − 2∆S(t)

)︂
σSI(t)dW I(t)

= 1
2
(︂
X̄I(t) − 2X̄S(t) · I(SI(t) ≤ 1))

)︂
σSI(t)dW I(t)

= 1
2 (SI(t) − 2 · I(SI(t) ≤ 1)))σX̄I(t)dW I(t).

Remark 6.4.1 (Volatility maximizing strategy). The above strategy

∆̄S(t) = X̄S(t) · I(SI(t) ≤ 1), ∆̄M(t) = X̄M(t) · I(SI(t) ≥ 1),

also maximizes
VarI(XI(T )) = EI

[︂
(XI(T ) − 1)2

]︂
,

and the resulting portfolio has the maximal possible variance (or volatility) with
respect to the index.

Thus the resulting portfolio is as far as possible from the index in the
distributional L2 sense. It means that some mass of this portfolio is expected
to be far from the index in both the positive or a negative sense. The scope of
validity of this observation in the case of multiple stocks is interesting without
further saying as we know that correlation signs between stocks are significant
for optimal strategies, even for classical passport options.

Figure 6.1 shows two simulated scenarios with σ = 0.1 and T = 20. The
volatility corresponds to a typical foreign exchange pair such as EUR-USD.
The first-time horizon was chosen to reflect the length of the existence of the
euro currency. The first graph illustrates the mechanism of how the maximum
volatility portfolio increases due to frequent crosses of the asset prices of the
initial par price. The second graph shows that the situation when these crosses
of the par price do not happen after some small time and thus the portfolio tracks
the weaker asset.
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Figure 6.1: Two simulated scenarios with σ = 0.1 and T = 20. Red and blue
graphs represent the prices of the two individual assets with respect to the index,
the purple graph represents the trading strategy that maximizes the volatility.
The scenario on the left represents the situation when there is a large number of
crosses of the initial par price 1. These crosses push the volatility maximizing
porfolio up. The right graph shows the situation when the crosses of the initial par
price do not happen after year 3 and the volatility maximizing portfolio simply
follows the weaker asset.

As seen in Figure 6.1, the prices of the individual assets do not depart too far
from the initial price 1 even on a relatively long period of 20 years. Recall that
the price evolution of the individual asset M with respect to the index I is given
by

dMI(t) = 1
2σMI(t)(2 − MI(t))dW I(t).

The dW I(t) term has the maximal value when MI(t) = 1 and it gets smaller with
an increasing distance from 1.
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Figure 6.2: Numerically simulated densities of the optimal solution XI(T ) in blue
and the price of an individual asset SI(T ) for σ = 0.1, T = 20 (left) and T = 100
(center) and T = 500 (right) in orange. The price SI(T ) eventually shifts from
the initial price of 1 to the two edges 0 and 2, but only very slowly.

To illustrate the distribution of the asset prices and the volatility maximizing
strategy, Figure 6.2 shows the simulated densities for the optimal XI(T ) and
SI(T ) for σ = 0.1, T = 20, T = 100 and T = 500. As seen from the graph,
the difference between the distribution of the price of an individual asset and the
distribution of the the optimal portfolio is only small even on such a long time
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horizon of 20 years, meaning that the trading strategy to always invest in the
weaker asset is distributionally very similar to investing in any of the two assets
to start with. In other words, it is not that straightforward to move away from
the index by trading in the individual components of the index and the strategies
that fully invest in one asset result in a similar distribution, at least on a scale of
several years.

Since the strategy that fully invests in the weaker asset also maximizes
the price variance with respect to the index (index always has value 1), the
distribution of this strategy has the largest dispersion among all trading strategies
that do not short any of the two assets. There is a visible mass on the right side
of the graphs in Figure 6.2 that produces the maximal dispersion. In order to
see a larger distributional difference between the optimal strategy and the price
of an asset, we show the simulated densities for the time horizon of 100 years.
On an extreme time horizon of 500 years, we see that the prices of individual
assets converge to 0 or 2 and the volatility maximizing strategy has the most
mass around zero as it tracks the weaker asset.

Figure 6.3 shows how the volatility maximizing strategy performs in the real
situation of currency pairs. The exchange rates were obtained from the European
Central Bank1 and it currently spans the period starting from January 1999 until
March 2019. These data covers 18 currencies with the complete time series from
1999. We pick four major currencies, namely EUR, USD, GBP, and JPY, for
illustrative purposes. We have six possible currency pairs, namely EUR-USD,
EUR-GBP, EUR-JPY, USD-GBP, USD-JPY, and GBP-JPY. The graphs show
the volatility maximizing portfolios’ performance in all these six scenarios and
the price evolutions of individual assets. The reference asset is, in every case, a
basket that consists of 50% of the two corresponding currencies. It is interesting
to note that each volatility maximizing strategy ended above the starting value
of 1.

Figure 6.4 shows the two most extreme scenarios obtained from the pairwise
comparison of 18 available currencies, namely the GBP-HUF and CHF-ZAR
currency pairs. This illustrates that such scenarios do not pose any significant
concern, as doubling or halving the portfolio value over 20 years in the most
extreme cases from 153 currency pairs does not create a serious risk issue.

We conclude this section with a study of the value function that corresponds
to the price of the option that pays off EI [XI(T ) − 1]+ units of the index I
at expiration T . Let us assume that the holder of the option uses the optimal
strategy that maximizes the value of this option. Then if we introduce a function

v(t, x, y) = EI [(X̄I(T ) − 1)+|SI(t) = x, X̄I(t) = y], (6.11)

we get the following result:
Theorem 6.4.3 (Value function). The function v defined as

v(t, x, y) = EI [(X̄I(T ) − 1)+|SI(t) = x, X̄I(t) = y],

satisfies the following PDE

vt + 1
8σ

2x2(2 − x)2vxx − 1
4σ

2x(2 − x)y(x− 2I(x ≤ 1))vxy

+ 1
8σ

2y2(x− 2I(x ≤ 1))2vyy = 0 (6.12)
1https://www.ecb.europa.eu/stats/eurofxref/eurofxref-hist.zip
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Figure 6.3: Performance of the most volatile strategy (purple) that invests in the
cheaper of the two assets for all possible currency pairs of EUR, USD, GBP and
JPY from 01/1999 – 03/2019. The evolutions of the two individual currencies
for the specific currency pair are in blue (first listed currency) and in red (second
listed currency).
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Figure 6.4: The most profitable pair for the volatility maximizing strategy is
GBP-HUF that experienced frequent crosses and the resulting portfolio nearly
doubled (1.925). In contrast, the worst performing currency pair was CHF-ZAR
resulted in a final portfolio value of 0.507, where the volatility maximization
strategy tracked the weaker currency ZAR (South African Rand) that historically
depreciated.

with the terminal and the boundary conditions

v(T, x, y) = (y − 1)+,

v(t, x, 0) = 0,

v(t, 0, y) = y · N(d+) − N(d−),
v(t, 2, y) = y · N(d+) − N(d−),
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where
d± =

ln(y) ± 1
2σ

2(T − t)
σ

√
T − t

.

Proof. Since v(t, SI(t), XI(t)) as a process is a PI martingale, the dt term must
be zero. This gives:

vt + 1
8σ

2x2(2 − x)2vxx − 1
4σ

2x(2 − x)y(x− 2I(x ≤ 1))vxy

+ 1
8σ

2y2(x− 2I(x ≤ 1))2vyy = 0.

The terminal condition and the y boundary conditions are straightforward. The x
boundary condition follows from the fact that near the boundary points SI(t) = 0
and SI(t) = 2, the process XI(t) becomes geometric Brownian motion in a limit:

dX̄I(t) = 1
2 (SI(t) − 2 · I(SI(t) ≤ 1)))σX̄I(t)dW I(t)

≈ ±σX̄I(t)dW I(t)

and thus the standard Black-Scholes formula for European call option applies on
the two boundaries.

It is not difficult to see that the price of the option is a function of σ
√
T due

to the scaling property of the Brownian motion W I . Figure 6.5 shows the price of
the option as a function of σ

√
T for fixed initial values of SI(0) = XI(0) = 1 (blue

curve). The analogous passport option that uses the initial wealth as a trading
constraint is plotted in red. The price of the passport option is substantially
higher. The realistic values of σ

√
T are well below 1, so the most relevant prices

for practical applications are on the very left of this graph. From the previous
discussion, the individual asset prices and the optimal strategy for the newly
proposed contract do not tend to move away from the initial price one even on a
relatively long-term horizon such as 20 years. Thus such a contract is expected
to be relatively cheap. Indeed, if we take σ = 0.1 and T = 20, the initial price of
the option that pays off (XI(T ) − 1)+ is only 0.09746 units of I (so only 9.746%
of any of the asset as S(0) = M(0) = I(0)). In comparison, an option covering
a constant position in a single asset S with a payoff (SI(T ) − 1)+ costs slightly
less, namely 0.08853 units of I. In contrast, the passport option for the same
parameters costs 20.490%, significantly more than the newly proposed option.
We note that one could further reduce the option’s cost by utilizing the idea in
Taylor and Večeř (2021), where the authors studied plain vanilla options with
maturity in years and argued that instead of focusing on simple returns, one
could focus on logarithmic returns in order to reduce the fair price of the option.

For numerical illustration, Figure 6.6 shows the numerical solution of the value
function as a function of both SI and XI for a fixed σ

√
T = 1.

6.5 Maximizing Probability of Reaching a Goal
The volatility maximization strategy also has the property that it maximizes
the probability of reaching a higher goal. This section confirms that a slight
modification of the volatility maximization strategy is also an optimal strategy
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Figure 6.5: Price of the option contract as a function of σ
√

T (blue) with fixed
values SI(0) = XI(0) = 1. The price of the analogous passport options is plotted
in red for comparison.
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Figure 6.6: Numerical solution of the value function from Equation (6.12) with
fixed parameters σ

√
T = 1 as a function of SI and XI .

to the problem of maximizing the PI probability that the portfolio’s value at
time T will be at least α. We want to maximize PI(XI(T ) ≥ α) for all possible
strategies ΔS(t) and ΔM(t).

Theorem 6.5.1. (The optimal strategy for reaching α > 1) The optimal strategy
for maximizing the probability of reaching a higher level α > 1 before time T ,

P(XI(T ) ≥ α),

is to be fully invested in the cheaper asset until level α is reached. Then it is
optimal being fully invested in the asset I.
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Proof. We can easily observe that for an arbitrary strategy, it is optimal to fully
invest in the asset I once the value of the portfolio reaches α, thus completely
eliminating the probability of ending below α. Our approach is to find a sequence
of convex functions ϕn, n ∈ N such that their limit is an indicator at α. In order
to do that, let us stop the process XI once its value reaches α since it is optimal
to fully invest in the asset I from that point. Let us denote a stopping time τ by

τ = inf{t ∈ [0, T ] : XI(t) = α},

with the convention inf{∅} = T . From the continuity of XI , we can see that τ is
indeed a stopping time, since {α} is a closed set. Trivially, τ is bounded, hence
the stopped process Xτ

I (t) = {Xτ
I (t), t ∈ [0, T ]} defined as

Xτ
I (t) =

⎧⎨⎩XI(t), for t ≤ τ,

α, for t > τ,

is a continuous PI–martingale from the Optional Stopping Theorem. Thus we
can use Theorem 6.4.1 with a payoff function

ϕn(x) = n
(︃
x+ 1

n
− α

)︃+
, x ∈ R

for any n ∈ N. Note that for any x ∈ [0, α],

lim
n→∞

ϕn(x) = I[x=α].

From the convexity of functions ϕn for any n ∈ N, it holds for any strategy q

EI [ϕn(Xτ
I,q(T ))] ≤ EI [ϕn(Xτ

I,opt(T ))],

where Xτ
I,q resp. Xτ

I,opt are evolutions of the portfolio value for strategy q and for
the optimal strategy opt respectively (investing in the cheaper asset). Since the
processes Xτ

I,q and Xτ
I,opt are bounded by α, we can use Lebesgue’s Dominated

Convergence Theorem to conclude

PI(Xτ
I,q(T ) = α) = EI [I[Xτ

I,q(T )=α]] = EI [ lim
n→∞

ϕn(Xτ
I,q(T ))]

= lim
n→∞

EI [ϕn(Xτ
I,q(T ))] ≤ lim

n→∞
EI [ϕn(Xτ

I,opt(T ))]

= EI lim
n→∞

[ϕn(Xτ
I,opt(T ))] = EI [I[Xτ

I,opt(T )=α]]

= PI(Xτ
I,opt(T ) = α).

Hence it is optimal to invest in the cheaper asset until the goal α is reached.
Then, it is optimal to switch in the asset I entirely.

6.6 Generalization to N assets
A significant advantage of the equal treatment of the underlying assets is that we
can naturally generalize the contract to N assets. Let us consider the situation
when we have N assets S1, S2, . . . , SN . We can easily generalize the definition of
the index to

I(t) = 1
N

N∑︂
i=1

Si(t)
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and consider a traded account X(t) with positions ∆i(t) in the asset Si in an
obvious manner

X(t) =
N∑︂

i=1
∆i(t)Si(t),

subject to no shorting constraints ∆i(t) ≥ 0. This in turn implies an upper
bound on ∆i(t) ≤ XSi

(t) corresponding to being fully invested in the asset Si. A
contract protecting the trading losses pays off (XI(T ) −K)+ units of I(T ) at the
maturity time T .

In order to treat all assets symmetrically, we need to slightly change the
geometric Brownian motion model dSij(t) = σijSij(t)dW j since otherwise the
constraints imposed on Sik by evolution of Sij and Sjk breaks the desired
symmetry. Thus, we propose a symmetric version of geometric Brownian motion

dSij(t) = Sijσ
T
ijdW

j(t) and Sij(0) = 1, (6.13)

where W j = (W j1, . . . ,W jn) is an n-dimensional Brownian motion and σij are
n-dimensional vectors. To simplify further calculations we set σiik(·) = 0 for every
i and k. The model is heavily overparametrized. Nevertheless, we can write

dSji(t) = dS−1
ij (t) = − 1

S2
ij(t)

dSij(t) + 1
S3

ij(t)
d⟨Sij⟩t

= −Sji(t)σT
ijdW

j + Sji(t)σT
ijσij(t)dt,

and at the same time, from the definition of Sji, it holds

dSji(t) = Sji(t)σT
jidW

i(t).

To preserve the symmetry, we choose

σij = σji and dW i(t) = dW j(t) − σijdt.

We now have a nice relation between σijk’s, as can be seen from the calculations
below

dSlj(t) = dSli(t)Sij(t)
= Sli(t)dSij(t) + Sij(t)dSli(t) + dSli(t)dSij(t)
= Sli(t)Sij(t)σT

ijdW
j(t) + Sij(t)Sli(t)σT

lidW
i(t) + σT

liσij(t)dt
= Slj(t)

(︂
σT

ij

(︂
dW j(t) + σli(t)dt

)︂
+ σT

lidW
i(t)

)︂
= Slj(t)

(︂
σT

ijdW
i(t) + σT

lidW
i(t)

)︂
= Slj(t)σT

ljdW
j(t).

Thus we have
σlj = σli + σij, l, i, j ∈ {1, . . . , n+ 1}. (6.14)

The model is still over-parametrized even with constraints on σ parameters
discussed above. For example, for three assets, it can be shown that the market
can be described as four σ parameters. From the market, we can observe nine
evolutions in the prices Sij. Three evolutions Sii are trivially constant ones. The
remaining six evolutions are S12,S13,S23 and their inverses. Thus we have four
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parameters that are described by three price processes. As it turns out, if we
can estimate the volatilities of the prices from the market, then, independently of
the choice of parameters, the models are equivalent. We shall need the following
theorem from the theory of stochastic differential equations.

Theorem 6.6.1. Let g, σ : R+ ×Rm ↦→ Rm×d be Borel measurable functions such
that σσT = ggT on R+ × Rm. Then there exists a weak solution of stochastic
differential equation

dX(t) = σ(t,X(t))dW (t), X(0) = 1, (6.15)

if and only if there exists a weak solution to stochastic differential equation

dY (t) = g(t, Y (t))dW (t), Y (0) = 1. (6.16)

Moreover, the solution of (6.15) has same law as the solution of (6.16).

Proof. This theorem is a special case of the martingale problem, first noticed by
Stroock and Varadhan (1969).

Using Theorem 6.6.1 with the system of stochastic differential equations for
S21, . . . , S(n+1)1, we can immediately see that as long as we can observe the
volatilities of the prices from the market, it does not matter what are our specific
estimates of σ’s.

Theorem 6.6.2. Suppose the market model is given by

dSij(t) = Sij(t)σT
ijdW

j(t) and Sij(0) = 1,

and further suppose that we are able to observe volatilities of the market prices
at each time, that is at each time t we know σT

ijσij for every i and j. Then
irrespectively of chosen estimates of σ parameters the model is the same.

Proof. Let σ̂ij be the estimate of σij for every i, j such that σ̂T
ijσ̂ij = σT

ijσij. We
will use theorem 6.6.1 for equations

d
(︂
S21(t), . . . , S(n+1)1(t)

)︂T
=
(︂
S21(t)σT

21, . . . , S(n+1)1(t)σT
(n+1)1

)︂
dW 1(t)

and

d
(︂
Ŝ21(t), . . . , Ŝ(n+1)1(t)

)︂T
=
(︂
Ŝ21(t)σ̂T

21, . . . , Ŝ(n+1)1(t)σ̂T
(n+1)1

)︂
dW 1(t)

Denote g resp. ĝ the diffusion matrix of X resp. X̂. From the assumption on
estimates, ggT = ĝĝT on the diagonal, so we need to check whether (ggT )ij =
(ĝĝT )ij for i ̸= j. Let us fix i and j. Multiplying, we need to check Si1Sj1σ

T
i1σj1 =

Si1Sj1σ̂
T
i1σ̂j1. Using (6.14) we get

σT
ijσij = (σi1 + σ1j)T (σi1 + σ1j) = σT

i1σi1 + 2σT
i1σ1j + σT

1jσ1j

Similarly,
σ̂T

ijσ̂ij = σ̂T
i1σ̂i1 + 2σ̂T

i1σ̂1j + σ̂T
1jσ̂1j.

Thus, from the assumptions, it follows that σT
i1σ1j = σ̂T

i1σ̂1j. Since σ1j = −σj1
the theorem follows.
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Remark 6.6.1. Although we have not found the proof for the multivariate case,
one can prove that the optimal strategy is being fully invested in one asset. The
main idea is based on studying the price of the option. Denote

v(t, x, s1, . . . , sN) = E
[︂
(XI(T ) − 1)+|XI(t) = x, S1I = s1, . . . , SNI = sN

]︂
be the price of the option. Then v is convex in x. To see this, fix trading strategy
∆ and let

X3
I (t) = λX1

I (t) + (1 − λ)X2
I (t).

Then
X3

I (T ) = λX1
I (T ) + (1 − λ)X2

I (T ).
From this we have

E(X3
I (T ) − 1)+ = E(λX1

I (T ) + (1 − λ)X2
I (T ) − 1)+

= E(λX1
I (T ) − λ+ (1 − λ)X2

I (T ) − (1 − λ))+

≤ E(λX1
I (T ) − λ)+ + E((1 − λ)X2

I (T ) − (1 − λ))+

= λE(X1
I (T ) − 1)+ + (1 − λ)E(X2

I (T ) − 1))+

= λv(t, x1, . . . ) + (1 − λ)v(t, x2, . . . ),

and the convexity follows from maximizing the left hand side over all possible
strategies ∆.

Since v is convex in x, we have vxx ≥ 0. Finally, if we calculate the HJB
equation for the price v, then the dependence on strategy ∆ is quadratic for the
term vxx and linear for terms vxsi

. Since vxx ≥ 0 the option price is convex in ∆,
and thus the optimum is found on the boundary, i.e., being fully invested in one
asset only.

6.7 Proof of Theorem 6.4.1
Proof. For small positive angle θ consider the transformed coordinates(︄

z̃1
z2̃

)︄
=
(︄

cos(θ) sin(θ)
− sin(θ) cos(θ)

)︄(︄
z1
z2

)︄
(6.17)

Multiplying with the inverse (rotation by −θ), we observe that − sin(−θ)z1̃ +
cos(−θ)z2̃ = sin(θ)z1̃ + cos(θ)z2̃ = z2 such that both coefficients sin(θ), cos(θ) in
the sum representation of z2 are positive for θ positive and small. As z2 lives on
the whole space, the transformed coordinates live on the whole space for any small
positive θ. Hence in transformed coordinates, the problem is defined on the whole
space where initial data are defined as a payoff of a weighted sum (exp(z2)−1)+ =
(exp(sin(θ)z1̃ + cos(θ)z2̃) − 1)+. For a smoothed payoff fϵ (smoothing close to
identity), define for small δ0 > 0 and large R an approximation (in H2 ∩ C2) of
the payoff function

fR
ϵ,δ0(w) =:

⎧⎪⎨⎪⎩
fϵ(w) if |w| ≤ R,

fϵ(w) exp(−δ0|w −R|2) if |w| > R.

85



Let uδ,θ,ϵ,δ0,R be a value function of the regularized (i.e., strictly elliptic ap-
proximation) form of the equation (6.8) in rotated coordinates with data
fR

ϵ,δ0(sin(θ)z1̃ + cos(θ)z2̃), let pδ,θ,ϵ,δ0,R be the corresponding fundamental solution,
and let p∗,δ,θ,ϵ,δ0,R be its adjoint (backward and forward equation density in
probabilistic terms). The approximative value function itself and the multivariate
spatial derivatives of order |α| ≤ 2 have the representation

Dα
z̃ u

δ,θ,ϵ,δ0,R(τ, z1̃, z2̃) =
∫︂ τ

0

∫︂
Rn
fR

ϵ,δ(ξ)Dα
z̃ p

δ,θ,ϵ,δ0,R(τ, z1̃, z2̃;σ, ξ1, ξ2)dξ1dξ2dσ.

(6.18)
Next, for w = (w1, w2) and σ < s < τ define

v(s, w) = pδ,θ,ϵ,δ0,R(s, w;σ, ξ1, ξ2)

u(s, w) = p∗,δ,θ,ϵ,δ0,R(s, w; τ, z1̃, z2̃).

Let Lv = 0 and L∗u = 0 abbreviate the equations for u, v (approximative
equations for (6.8)). We may assume that ϵ > 0 is small enough such that
σ + ϵ < s < τ − ϵ. Integrating over the domain [σ + ϵ, τ − ϵ] × BR (where BR is
the 2-dimensional ball of radius R around the origin) we have

0 =
∫︁ τ−ϵ

σ+ϵ

∫︁
BR

(uLv − vL∗u)(s, w)dwds

=
∫︁

BR
(u(τ − ϵ, w)v(τ − ϵ, w) − v(σ + ϵ, w)u(σ + ϵ, w))dw + r∗

BR
,

(6.19)

where limR↑∞ r∗
BR

= 0 for the reminder term which follows from C3-regularity
of coefficients and an a priori estimates of the densities. Next, for directions
h, consider finite difference quotients D+

h u(s, w) = u(s,w+h)−u(s,w)
h

, D−
h u(s, w) =

u(s,w)−u(s,w−h)
h

, D2
hu(s, w) = D+

h
u(s,w)−D−

h
u(s,w)

h
, and for multiindices α, let Dα

h

denote the coordinate versions of these difference equations. Then from (6.19),
we get for all 0 ≤ |α| ≤ 2

0 =
∫︁
R2((Dα

hu)(τ − ϵ, w)v(τ − ϵ, w) − (Dα
h (v)(σ + ϵ, w)u(σ + ϵ, w))dw

=
∫︁
R2((Dα

hu)(τ − ϵ, w)pδ,θ,ϵ,δ0,R(τ − ϵ, w;σ, ξ1, ξ2)

−(Dα
hv)(σ + ϵ, w)p∗,δ,θ,ϵ,δ0,R(σ + ϵ, w; τ, z1̃, z2̃))dw

(6.20)

We conclude that
(Dα

z̃ v)(τ, z̃) = (Dα
ξ u)(σ, ξ).

Hence we can do partial integration and obtain comparison for arbitrary small θ,
which is preserved in the limit θ ↓ 0.
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7. Conclusion
In the thesis, we have focused on the efficient market hypothesis, utility-
maximizing agents, and optimal distributional trading gain problem of the form

max
B1

EP [U(B1)]

s.t. EQ [B1] = B0.

In the case of two agents, one representing a market taker and one representing
a market maker, who share a geometric Brownian motion distributional assump-
tion, we have provided exact formulas for the price and hedge of the optimal
random payoff B⋆

1 . Furthermore, we showed how one could construct a static
portfolio Π with a payoff that replicates the random variable F ⋆. To construct
the static portfolio, we have used the implied market density estimated using the
stochastic volatility-inspired model. For practitioners, we showed how one could
use kernel search heuristics to solve the associated integer programming problem
that minimizes the L2 distance between the payoff of the random variable F ⋆ and
the payoff of the portfolio Π.

Another application of the optimal distributional trading gain that we have
focused on was the study of market efficiency during the COVID-19 pandemic. We
have considered a utility-maximizing agent that invests in a single ETF contract
and bases his position in the ETF using Merton’s portfolio. The drift required by
Merton’s portfolio is estimated using a combination of estimates from univariate
linear regressions computed on historical price and virus-related data. We have
shown that using these out-of-sample estimates, the agent realizes a substantial
profit in all ETFs we have considered.

Finally, we have studied a symmetric version of a passport option. For two
assets, we have found the optimal strategy and we have shown that the optimal
strategy also maximizes the probability of outperforming the market index before
the expiration of the option contract. Moreover, we have demonstrated the
application of the passport to currency pairs and the desirability of the contract
when one wishes to insure an actively traded account with a very large investment
horizon.

87



Bibliography
Agrawal, A., R. Verschueren, S. Diamond, and S. Boyd (2018). A rewriting system

for convex optimization problems. Journal of Control and Decision 5 (1), 42–60.

Ahmar, A. and E. Boj del Val (2020). Suttearima: Short-term forecasting
method, a case: Covid-19 and stock market in spain. Science of The Total
Environment 729, 138883.

Aït-Sahalia, Y. and A. Lo (1998). Nonparametric estimation of state-price
densities. Journal of Finance 53 (2), 499–547.

Akaike, H. (1974). A new look at the statistical model identification. IEEE
transactions on automatic control 19 (6), 716–723.

Al-Awadhi, A., K. Alsaifi, A. Al-Awadhi, and S. Alhammadi (2020). Death and
contagious infectious diseases: Impact of the COVID-19 virus on stock market
returns. Journal of Behavioral and Experimental Finance 27, 100326.

Andersen, L., J. Andreasen, and R. Brotherton-Ratcliffe (1998). The passport
option. Journal of Computational Finance 1 (3), 15–36.

Angelelli, E., R. Mansini, and M. G. Speranza (2010). Kernel search: A general
heuristic for the multi-dimensional knapsack problem. Computers & Operations
Research 37 (11), 2017–2026.

Angelelli, E., R. Mansini, and M. G. Speranza (2012). Kernel search: A new
heuristic framework for portfolio selection. Computational Optimization and
Applications 51 (1), 345–361.

Arrow, K. J. (1964). The role of securities in the optimal allocation of risk-bearing.
The Review of Economic Studies 31 (2), 91–96.

Azimli, A. (2020). The impact of COVID-19 on the degree of dependence and
structure of risk-return relationship: A quantile regression approach. Finance
Research Letters 36, 101648.

Bachelier, L. (1900). Théorie de la spéculation. In Annales scientifiques de l’École
normale supérieure, Volume 17, pp. 21–86.

Baek, S., S. Mohanty, and M. Glambosky (2020). Covid-19 and stock market
volatility: An industry level analysis. Finance Research Letters 37, 101748.

Baker, S., N. Bloom, S. David, K. Kost, M. Sammon, and T. Viratyosin (2020).
The unprecedented stock market reaction to covid-19. The Review of Asset
Pricing Studies 10, 742–758.

Balcilar, M., R. Gupta, and S. M. Miller (2015). Regime switching model of
us crude oil and stock market prices: 1859 to 2013. Energy Economics 49,
317–327.

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk.
Econometrica 22 (1), 23–36.

88



Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities.
The journal of political economy 81, 637–654.

Bossu, S., P. Carr, and A. Papanicolaou (2021). A functional analysis approach
to the static replication of European options. Quantitative Finance 21 (4),
637–655.

Breeden, D. T. and R. H. Litzenberger (1978). Prices of state-contingent claims
implicit in option prices. Journal of business 51 (4), 621–651.

Buchen, P. and H. Malloch (2014). CLA’s, PLA’s and a new method for pricing
general passport options. Quantitative Finance 14 (7), 1201–1209.

Campbell, J. and L. Viceira (1999). Consumption and portfolio decisions when
expected returns are time varying. Quarterly Journal of Economics 114, 433–
495.

Carr, P., K. Ellis, and V. Gupta (1998). Static hedging of exotic options. Journal
of Finance 53 (3), 1165–1190.

Carr, P. and R. Lee (2008). Robust replication of volatiliy derivatives. NYU
Mathematics in Finance Working Paper Series, 1–49.

Carr, P., R. Lee, and M. Lorig (2017). Robust replication of barrier-style claims
on price and volatility. Papers 1508.00632, arXiv.org, revised May 2017.

Carr, P. and D. Madan (2001). Towards a theory of volatility trading. Cambridge
University Press Cambridge, UK.

Carr, P. and D. B. Madan (2005). A note on sufficient conditions for no arbitrage.
Finance Research Letters 2 (3), 125–130.

Carr, P. and J.-F. Picron (1999). Static hedging of timing risk. The Journal of
Derivatives 6 (3), 57–70.

Cepoi, C.-O. (2020). Asymmetric dependence between stock returns and news
during COVID-19 financial turmoil. Finance Research Letters 36, 101658.

Choi, S.-Y. (2021). Analysis of stock market efficiency during crisis periods in the
us stock market: Differences between the global financial crisis and COVID-19
pandemic. Physica A: Statistical Mechanics and its Applications 574, 125988.

Chopra, N., J. Lakonishok, and J. R. Ritter (1992). Measuring abnormal
performance: do stocks overreact? Journal of financial Economics 31 (2),
235–268.

Cousot, L. (2007). Conditions on option prices for absence of arbitrage and exact
calibration. Journal of Banking & Finance 31 (11), 3377–3397.

Cowles, A. (1933). Can stock market forecasters forecast? Econometrica: Journal
of the Econometric Society 1 (3), 309–324.

Cowles, A. (1944). Stock market forecasting. Econometrica, Journal of the
Econometric Society 12 (3/4), 206–214.

89



Cox, A. M. and D. G. Hobson (2005). Local martingales, bubbles and option
prices. Finance and Stochastics 9 (4), 477–492.

Crandall, M. G. and P.-L. Lions (1983). Viscosity solutions of hamilton-jacobi
equations. Transactions of the American mathematical society 277 (1), 1–42.

Dangl, T. and M. Halling (2012). Predictive regressions with time-varying
coefficients. Journal of Financial Economics 106 (1), 157–181.

De Bondt, W. F. and R. Thaler (1985). Does the stock market overreact? The
Journal of finance 40 (3), 793–805.

Debreu, G. (1959). Theory of value: An axiomatic analysis of economic
equilibrium. New Haven, CT: Yale University Press.
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