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Abstract: Meggido and Papadimitriou [Theor. Comput. Sci., 1991] introduced
the class TFNP of search problems for which a solution always exists and is poly-
nomially verifiable. In this thesis, we study the possibility of reducing different
problems into problems in TFNP. The property which is in common for prob-
lems, for which we study the reducibility to TFNP, is that all instances of these
problems have a unique solution (if there is any solution present).

In the first part of this thesis, we study a problem called ARRIVAL, which was
introduced by Dohrau, Gärtner, Kohler, Matoušek and Welzl [A Journey Through
Discrete Mathemathics: A Tribute to Jǐŕı Matoušek, 2017]. ARRIVAL is the
following decisional problem: Given a graph in which a train is moving according
to prescribed rules does the train arrive to a given vertex? We first improve the
result of Dohrau et al. who showed that the problem is in NP ∩ coNP. We show
that there exists a unique certificate for being in the language and, thus, prove
that it lies in UP ∩ coUP.

We also study the search version of the ARRIVAL problem, which asks for the
transcript of number of traversals for each edge. It was known that the search
version lies in PLS, which was proven by Karthik C. S. [Inf. Process. Lett.,
2017]. We improve this result by showing a reduction from ARRIVAL to End-Of-
Metered-Line (a problem introduced by Hubáček and Yogev [SIAM J. Comput.,
2020]) and, thus, prove that it lies in the class CLS.

In the second half of this thesis, we study the possibility of showing hardness
in TFNP based on cryptographic assumptions. We first rule out a fully black-
box construction of a worst-case hard TFNP problem from a hard-on-average UP
problem. Thus, we also rule out constructions of hard TFNP problems from hard-
on-average problems in NP. Then, we consider more structured assumption of
injective one-way functions (which imply a hard-on-average problem in UP). We
show that, even in this case, it is not possible to construct a worst-case hard TFNP
problem assuming that the reduction from injective one-way functions (OWF) is
“simple”. More precisely, a security reduction is “simple” if it queries the TFNP
instances non-adaptively and independently on the one-way function with respect
to which it is running. Note that there are known “simple” constructions based
on other cryptographic assumptions (such as collision resistant hash functions)
and, thus, we believe that our restrictions on the security reduction are natural.
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Introduction
Megiddo and Papadimitriou [1991] introduced the class of total search problems
called TFNP, that is problems for which we are guaranteed the existence of a solu-
tion and our task is to find it. Johnson et al. [1988], Megiddo and Papadimitriou
[1991], Papadimitriou [1994] and Daskalakis and Papadimitriou [2011] introduced
various subclasses of TFNP. The classification of these subclasses is based on the
property used to argue their totality. This gives us a whole hierarchy of classes
with various conjectured hardness. We focus on hardness of structured search
problems which belong to TFNP and its subclasses. In Chapter 1 we define more
formally the class TFNP and the subclasses that are most relevant to this thesis.
We also summarize the known results which are tightly connected to our work.

The thesis has two main parts. Chapter 2 is dedicated to the natural reach-
ability problem on switch graphs called Arrival, which was defined and first
studied by Dohrau et al. [2017]. Switch graphs, also known under the name prop-
machines as a special case of “deterministic” random walks, and their variants are
well studied in combinatorics and automata theory. The problem Arrival can be
described as: Given a graph G and a train which moves along the edges of G un-
der some specific rules, does it ever reach one specified vertex called destination?
Already since the paper of Dohrau et al. [2017] it was known that the problem
is in NP ∩ coNP. Later, Karthik C. S. [2017] proved that the search version of
Arrival is contained in PLS. We improve both these results. First we prove that
it is polynomially testable that a given vector is a run-profile (which describes
per each edge the exact number of times it was traversed by the train on its route
from origin to destination). Thus, proving containment of Arrival in UP∩ coUP
(a variant of NP ∩ coNP for which the certificate for being in the language is
unique). Then we present a reduction from Arrival to End-Of-Metered-Line.
Thus, showing that Arrival is contained also in CLS. This result makes it un-
likely for S-Arrival to be PLS-hard, which was one of the possibilities suggested
by the containment in PLS shown by Karthik C. S. [2017]. Since there are known
black-box separations among subclasses of TFNP (see Morioka [2001] and Buresh-
Oppenheim and Morioka [2004]), which suggest that CLS is a proper subclass of
PLS. This part of the thesis is based on the paper Gärtner et al. [2018].

In the second half of the thesis, we focus on impossibility results. More pre-
cisely, in Chapter 3, we prove that there is no fully black-box construction of a
worst-case hard TFNP problem from average-case hard problem in UP. Thus we
also rule out fully black box-constructions from average-case hard problems in
NP. Then, in Chapter 4, we consider constructions of hard problems in TFNP
from injective one-way functions (which imply average-case hard problem in UP).
Unfortunately, we are not able to rule out the existence of any fully black-box
constructions in this case. But we achieve at least a partial result in this direction
by showing that no “simple” fully black-box construction exists. On the other
hand, most known constructions, e.g., the construction of Pigeon from one-way
permutations by Papadimitriou [1994], satisfy our notion of “simple”. Thus, our
result can be viewed as an evidence that if there exists a construction it has to be
quite non-standard. The impossibility of a construction from injective one-way
functions (Chapter 4) was published in Hubáček et al. [2020] and the impossi-
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bility of a construction from average-case hard UP problem (Chapter 3) is based
on unpublished joint work with Arka Rai Choudhuri, Pavel Hubáček, Chethan
Kamath and Karel Král.
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1. Definitions and Overview of
Known Results

1.1 Complexity of Search Problems – TFNP
In computational complexity, we often study decision problems, i.e., we are given
an instance of some problem and we want to decide whether it is a YES-instance
or a NO-instance. Whereas, in practise, we often want not only to decide but to
find the solution if it exists. This motivates the study of the complexity of search
problems, i.e., problems where we want to return not only one bit (whether the
solution exists or not) but rather the solution itself. There are many problems for
which we do not know how to find a solution in polynomial time even though we
are guaranteed that some solution exists. That is, the decision version of these
problems is easy. These problems are captured by the TFNP class which was
defined by Megiddo and Papadimitriou [1991].

TFNP stands for Total Functions from NP and it is a class of all total search
problems, i.e., problems where all instances are syntactically guaranteed to have a
solution. There are many intriguing problems with unresolved complexity which
lie in TFNP and its subclasses, e.g., finding Nash equilibria, inverting a one-way
permutation, integer factoring, finding fixed points, and many more.

Definition 1.1.1 (TFNP, Megiddo and Papadimitriou [1991]). We say that a
problem is in TFNP if the underlying relation R (that is for all i, s ∈ {0, 1}∗, it
holds that (i, s) ∈ R if and only if s is a solution for instance i) satisfies:

Verifiable in poly-time: There exists a polynomial time deterministic algo-
rithm C such that for all i, s ∈ {0, 1}∗, it holds that C(i, s) = 1 if and
only if (i, s) ∈ R, and

Totality: there exists a polynomial p such that for every i ∈ {0, 1}∗, there exists
s ∈ {0, 1}∗ of length at most p(|i|) such that (i, s) ∈ R.

1.1.1 Overview of Subclasses of TFNP
The standard method for arguing computational hardness in TFNP is via clus-
tering these problems into subclasses characterised by the existential argument
guaranteeing their totality (see Papadimitriou [1994]). In the following para-
graphs, we introduce subclasses of TFNP, where, for each subclass, we present
one of its complete problems which helps to illustrate the kind of problems which
belong to the class. The inclusions between subclasses are depicted in Figure 1.1.
It is unlikely that there would be an inclusion which is not depicted in Figure 1.1,
due to the known black-box separations between the classes (see Beame et al.
[1998], Morioka [2001], Buresh-Oppenheim and Morioka [2004]). More precisely,
the black-box separation PLS ̸⊆ PPP has been shown by Buresh-Oppenheim and
Morioka [2004] only for “nice” reductions. A “nice” reduction from a problem
A to a problem B, as defined by Buresh-Oppenheim and Morioka [2004], is a
Turing reduction, which makes at most one query to the oracle and, moreover,
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if the instance of A has a unique solution then so does the queried instance of
B. Also no separation is known for UniqueEOPL and CLS, thus, it may hold that
UniqueEOPL = CLS.

PPA: The class PPA is the class of problems for which the totality is given
by the argument that any graph must have an even number of vertices of odd
degree, from which the name of the class Polynomial Parity Argument (PPA)
follows. This class was also defined by Papadimitriou [1994], who introduced the
complete problem for this class called Leaf.

Definition 1.1.2 (Leaf, Papadimitriou [1994]). Given a circuit N , which on an
input x ∈ {0, 1}n outputs a set of at most two strings from {0, 1}n, return:

Type 1: Either 0n if |N(0n)| ≠ 1 or N(0n) = {0n},

Type 2: or x ∈ {0, 1}n \ {0n} such that |N(x) \ {x} | = 1 or ∃y ∈ N(x) such
that x /∈ N(y).

We interpret N as a circuit which gives the set of all potential neighbours
of the input vertex. For any x, y ∈ {0, 1}n, the underlying graph contains an
undirected edge {x, y} if and only if x ∈ N(y) and y ∈ N(x). The solution of the
first type ensures that 0n is a leaf in the graph (we call it a trivial leaf as it should
be always present). The solution of the second type corresponds to returning any
nontrivial leaf or a vertex on which N does not describe an undirected graph (as
y has a neighbour x but x is not a neighbour of y).

PPP: The class PPP (Polynomial Pigeonhole Principle) was defined by Pa-
padimitriou [1994]. The totality of problems in PPP can be shown by applying a
Pigeonhole principle, i.e., if there are n pigeons in at most n−1 holes, there must
be a hole with at least two pigeons. Thus, the complete problem for this class,
called Pigeon, is: Given a circuit which represents a length-preserving function,
find either a preimage of zero (having no preimage of zero rules out one hole) or
a collision (corresponding to a hole with two pigeons).

Definition 1.1.3 (Pigeon, Papadimitriou [1994]). Given a circuit P : {0, 1}n →
{0, 1}n return:

Type 1: Either x ∈ {0, 1}n such that P (x) = 0n,

Type 2: or x, y ∈ {0, 1}n such that P (x) = P (y).

As an example of important problems known to lie in PPP we mention for
instance inversion of one-way permutations for which reduction to Pigeon was
proven by Papadimitriou [1994] or finding collisions of a function (folklore).

PPAD: The abbreviation PPAD stands for Polynomial Parity Argument on Di-
rected graphs and the class was defined by Papadimitriou [1994]. The argument
for totality is similar to PPA, but on directed graphs. Thus, instead of inspect-
ing vertices of odd degree, we inspect unbalanced vertices, i.e., any vertex with
indegree that differs from its outdegree. Again, it holds that if there is any unbal-
anced vertex, then the graph must contain at least two such vertices. A complete
problem for this class is Source-Or-Sink, defined as follows:

6



Definition 1.1.4 (Source-Or-Sink, Papadimitriou [1994]). Given two circuits
P, S which on input x ∈ {0, 1}n output a string of length n, return

Type 1: Either 0n if P (S(0n)) ̸= 0n or S(P (0n)) = 0n,

Type 2: or x ∈ {0, 1}n \ {0n} such that S(P (x)) ̸= x or P (S(x)) ̸= x.

We can again interpret the circuits P, S as a directed graph on vertices V =
{0, 1}n, where for any u, v ∈ V there is a directed edge (u, v) if and only if
S(u) = v and P (v) = u. The absence of a solution of the first type guarantees
that there is an oriented path starting at 0n. The solutions of the second type
give us either a source of a different directed path or a sink on some path in the
graph.

As pointed out by Papadimitriou [1994], PPAD is a subset of PPA, since we
can get an instance of Leaf by forgetting the orientation of the edges. That is, if
N denotes the circuit from the definition of Leaf (see Definition 1.1.2) then we
set N(x) = {P (x), S(x)}, for all x ̸= 0n, and N(0n) = {S(0n)}.

On the other hand, the orientation allows us to argue the totality using the
pigeon-hole principle, too. Papadimitriou [1994] proved the inclusion PPAD ⊆
PPP. Informally, an instance Q of Pigeon1 can be created from an instance (P, S)
of Source-Or-Sink (see Definitions 1.1.3 and 1.1.4) as follows: Assuming that the
successor of every sink is a self-loop (i.e., S(x) = x whenever P (S(x)) ̸= x)2, the
circuit Q applies the successor twice and returns the result, i.e., Q(x) = S(S(x)).
Thus, any sink x and its predecessor P (x) introduce a collision under the circuit Q,
since Q(x) = x = Q(P (x)). The class contains many important problems, for
instance, finding Nash equilibria in bimatrix games (see Daskalakis et al. [2009],
Chen et al. [2009]).

PLS: PLS (Polynomial Local Search) is a class capturing the hardness of search-
ing for local optima. It was defined by Johnson et al. [1988], who describe any
problem from the class PLS to be either minimization or maximization problem
for which I is the set of instances recognizable in polynomial time, for each i ∈ I,
we have a finite set Si of all solutions, a cost function costi : Si → N on the so-
lutions, and, for any s ∈ Si, we have sets Ni(s) of “neighbouring” solutions to s
(one can imagine solutions which can be retrieved by a small alternation of the
solution s). Moreover, the following three algorithms must exists for the problem
to be in PLS:

1. A1 which given an instance i ∈ I returns a generic solution s ∈ Si,

2. A2 which given an instance i ∈ I and a potential solution s outputs whether
s is a solution and the cost costi(s) of the solution and

3. A3 which given an instance i ∈ I and a solution s ∈ Si returns any solution
s′ ∈ N(i, s) with better valuation (i.e., costi(s′) < costi(s) for minimization
problem or costi(s′) > costi(s) for maximization problem) or returns that
s is locally optimal.

1In Definition 1.1.3, Q corresponds to a circuit P , but as P is used for the predecessor circuit
in the context of Source-Or-Sink we denote the Pigeon circuit by Q in this paragraph.

2This assumption is without loss of generality, as we can enforce it by a local modification
of the successor circuit S.

7



Then the task of the PLS problem is to find a locally optimal solution, that is
a solution s ∈ Si which has the minimal (for minimization problems), resp. the
maximal (for maximization problems), valuation among its neighbours.

Thus, PLS contains all problems which are reducible to the following PLS-
complete problem, called LocalOpt. Note that we may interpret the circuit V as
the valuation and the circuit S provides us with a candidate for a better solution.

Definition 1.1.5 (LocalOpt, Johnson et al. [1988]). Given two circuits S, V ,
where S : {0, 1}n → {0, 1}n and V : {0, 1}n → {0, 1}n, return x ∈ {0, 1}n such
that V (S(x)) ≤ V (x), where we interpret the output of V as an integer.

CLS: The class CLS (Continuous Local Search) was defined by Daskalakis and
Papadimitriou [2011] to capture problems in local optimization over continuous
domains. The class contains any total search problem which is reducible to the
following problem called Continuous-LocalOpt (CLOpt).

Definition 1.1.6 (CLOpt, Daskalakis and Papadimitriou [2011]). Given an arith-
metic circuit f : [0, 1]3 → [0, 1]3 and an arithmetic circuit p : [0, 1]3 → [0, 1], two
real constants ε, λ ∈ (0, 1), and unary representation of a natural number K,
find either a point x ∈ [0, 1]3 such that p(f(x)) ≤ p(x) + ε or a pair of points
x, x′ ∈ [0, 1]3 certifying that either p or f is not λ-Lipschitz or a point x ∈ [0, 1]3
for which there exists a gate such that its output has size bigger than (size(x)K)3.

It is not easy to prove that a combinatorial problem is in CLS by show-
ing a reduction directly to CLOpt. For such reductions, another problem called
End-Of-Metered-Line (EOML) might be better suited. The problem was defined
by Hubáček and Yogev [2020] who also showed that EOML reduces to CLOpt and,
thus, lies in the class CLS. Although End-Of-Metered-Line seems like a good
candidate for a CLS-complete problem and its containment in CLS allowed prov-
ing hardness of CLS from cryptographic assumptions (see Hubáček and Yogev
[2020] and Section 1.3.1 where overview of hardness results is provided), it is
currently not known whether it is CLS-hard or not.

Definition 1.1.7 (End-Of-Metered-Line, Hubáček and Yogev [2020]). Given
circuits S, P : {0, 1}m → {0, 1}m, and V : {0, 1}m → [2m]∪{0} such that P (0m) =
0m ̸= S(0m) and V (0m) = 1, find a string x ∈ {0, 1}m satisfying one of the
following:

Type 1: Either P (S(x)) ̸= x or S(P (x)) ̸= x ̸= 0m,

Type 2: x ̸= 0m and V (x) = 1,

Type 3: either V (x) > 0 and V (S(x)) − V (x) ̸= 1 or V (x) > 1 and V (x) −
V (P (x)) ̸= 1.

3This type of solution was recently added by Daskalakis and Papadimitriou in corrigendum,
see http://people.csail.mit.edu/costis/CLS-corrigendum.pdf, due to a technical issue
with the definition. A subtle issue in the original definition (without the parameter K and the
additional solution) is that the arithmetic circuits p, f could use repeated squaring to compute
numbers doubly exponential in the size of their inputs, which would prevent p, f from being
evaluated in polynomial time. The same issue was pointed out by Fearnley et al. [2021].
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TFNP

PPA PPP PLS

PPAD

CLS = PPAD ∩ PLS

UniqueEOPL

Figure 1.1: The structure of TFNP and its subclasses. A class A is included in a
class B if there is an arrow from B to A.

The circuits S and P define a directed graph analogously as in the problem
Source-Or-Sink. The circuit V is a valuation of the vertices and it should
correspond to an “odometer” which counts how far on the path starting at 0n is
the vertex located. Then solutions of the first type correspond to the end point
of the directed path, alternatively a starting point of a different path. Existence
of a solution of the second or third type shows that the circuit V is not a proper
“odometer”.

To mention the connection to other classes, Daskalakis and Papadimitriou
[2011] proved that CLS ⊆ PPAD ∩ PLS. This was recently improved by Fearnley
et al. [2021] who showed that there is an equality, i.e., CLS = PPAD ∩ PLS.

UniqueEOPL: Recently, Fearnley et al. [2020] studied the problems in CLS
which are known to have unique solutions. They defined the problem UniqueEOPL
(Unique End Of Potential Line) using its promise variant Promise-UniqueEOPL.

The Promise-UniqueEOPL is as follows: Given a graph which is promised to
consist of a unique line starting at 0n and self loops on vertices outside of the
line, find the sink of the unique line. The graph is given by circuits describing
the predecessor of a vertex, the successor of a vertex and a so-called valuation
which says how far on the described line from the trivial source the vertex lies.

To capture the uniqueness without the promise, in UniqueEOPL we are al-
lowed to return also certificates for violation of this promise, i.e., two vertices
which are provably on different lines (e.g., by giving a non-trivial source). Fearn-
ley et al. [2020] defined the class UniqueEOPL as all problems which can be
reduced to the problem of the same name. This class contains many impor-
tant problems such as Unique Sink Orientation (USO) or solving PLCP (the
Linear Complementarity Problem for P-matrices), see Fearnley et al. [2020].
Another problem from this class is Arrival which we describe in more detail in
Section 1.2.
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1.2 Arrival
The problem Arrival was introduced by Dohrau et al. [2017]. It is a natural
computational problem on switch graphs, which Dohrau et al. [2017] informally
described as follows:

Suppose that a train is running along a railway network, starting from
a designated origin, with the goal of reaching a designated destination.
The network, however, is of a special nature: every time the train
traverses a switch, the switch will change its position immediately
afterwards. Hence, the next time the train traverses the same switch,
the other direction will be taken, so that directions alternate with each
traversal of the switch.
Given a network with origin and destination, what is the complexity
of deciding whether the train, starting at the origin, will eventually
reach the destination? Dohrau et al. [2017]

1.2.1 Containment in Complexity Classes
Already in Dohrau et al. [2017], it was shown that the problem Arrival lies in
NP∩ coNP. To determine whether the train eventually reaches its destination, it
is natural to consider a run profile, i.e., the complete transcript describing how
many times the train traversed each edge. Dohrau et al. [2017] presented a natural
integer programming interpretation of run profiles called switching flows, which
have the advantage of being trivial to verify. The downside of switching flows
is that they do not guarantee to faithfully represent the number of times each
edge has been traversed; a switching flow might contain superfluous circulations
compared to a valid run profile. Nevertheless, Dohrau et al. [2017] proved that
the existence of a switching flow implies that the train reaches its destination,
and, thus, a switching flow constitutes an NP witness for Arrival.

The coNP membership was shown by an insightful observation about the
structure of switch graphs. Specifically, the train reaches its destination d if
and only if it never enters a node from which there is no directed path to d. The
railway network can thus be altered so that all such vertices point to an additional
“dead-end” vertex d̄. The coNP witness is then simply a switching flow from the
origin to the dead-end d̄.

Given that the decision variant of Arrival is in NP ∩ coNP, it is natural to
study the search complexity of Arrival in the context of total search problems
with the guaranteed existence of a solution, i.e., within the complexity class TFNP
(which contains the search analogue of NP∩ coNP). Karthik C. S. [2017] noticed
that the search for a switching flow is a prime candidate to fit into the hierarchy
of TFNP problems. He introduced S-Arrival, a search version of Arrival that
seeks a switching flow to either the destination d or the dead-end vertex d, and
showed that it is contained in the complexity class PLS of total problems amenable
to local search.

By reducing S-Arrival to End-Of-Metered-Line Gärtner et al. [2018] showed
that S-Arrival lies in the class CLS. Gärtner et al. [2018] also proved that it is
possible to verify in polynomial time whether the given switching flow is a run
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profile or not. Thus Arrival is in UP ∩ coUP.4
Finally, Fearnley et al. [2020] pointed out that the End-Of-Metered-Line

instance contains exactly one line and, thus, the proof actually shows the con-
tainment in the UniqueEOPL class.

1.2.2 Hardness Results
Fearnley et al. [2017] studied multiple variants of reachability games on switch
graphs and, as one of their results, gave a lower bound on the complexity of
deciding Arrival. Specifically, they showed that Arrival is NL-hard. That is
any problem solvable by a non-deterministic Turing machine in logarithmic space
can be reduced to Arrival, where the reduction uses only logarithmic amount of
memory.

Fearnley et al. [2017] introduced a natural 1-player and 2-player variants of
Arrival. In the one player variant, the vertices are split into two sets V0, V1. The
player controls the movement of the train in the vertices V1 whereas the movement
through the vertices from the set V0 is specified by the switching behaviour.
The player wins if the train arrives in its destination. Fearnley et al. [2017]
showed that, in this case, it is NP-complete to decide whether train arrives to its
destination.

Similarly, in the two player variant, the vertices are split into three sets V0, V1
and V2. The first player controls movement of the train in vertices from V1 and
wins if the train arrives to its destination. The other player controls vertices in
V2 and wins if the train never arrives. The movement through V0 is still given by
the switching behaviour. As Fearnley et al. [2017] showed, deciding this variant
is PSPACE-hard.

1.2.3 Overview of the Algorithms
The first algorithm for Arrival was provided by Dohrau et al. [2017], who showed
that the train run can be simulated in time O (n2n). They showed that if the
train visits any vertex more than 2n times, it has to cycle and, thus, it never
reaches the destination. On the other hand, they proved existence of switching
graphs on which the simulation takes Ω(2n) time.

The reduction of S-Arrival to End-Of-Metered-Line by Gärtner et al. [2018]
allowed for a better algorithm for S-Arrival. Namely, the algorithm of Aldous
[1983] can be used to find a solution for S-Arrival. This gave a randomized
algorithm running in time O

(︂
poly(n)2n/2

)︂
(see Gärtner et al. [2018])5.

Currently the best known algorithm for Arrival was shown by Gärtner et al.
[2021] who proved that Arrival can be solved in 2O(√n log(n)). Moreover, their
technique shows that Arrival can be solved in polynomial time if the graph has
a feedback vertex set of constant size (i.e., if there are constantly many vertices
such that after their removal the graph contains no directed cycle).

4These results are covered by this thesis, but we list them in this overview to draw a full
picture of what is known.

5Note that, even though it is a part of Gärtner et al. [2018], this result is not covered by
this thesis, because I was not involved in proving this particular result.
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1.3 Constructing a Hard Problem in TFNP
The possibility of existence of polynomial time algorithms for all of TFNP is
still open. Especially, disproving existence of polynomial algorithm would imply
FP ̸= FNP6 and, thus, proving an inequality between P and NP. On the other
hand, all problems in TFNP might be solvable in polynomial time, even when
P ̸= NP.

One way to give an indication that TFNP is not easy would be proving that
it contains an FNP-hard problem. This would imply that TFNP is worst-case
hard whenever FNP is worst-case hard. Unfortunately, it was shown already by
Megiddo and Papadimitriou [1991] that the inclusion of an FNP-hard problem in
TFNP would imply that NP = coNP as the totality of TFNP would provide us
with a certificate for NO-instances. Note that this would be a breakthrough result
since the relationship between NP and coNP as well as the question whether the
polynomial hierarchy collapses are long-standing open problems in complexity
theory. Thus, we need different assumptions to be able to indicate the hardness
of problems in TFNP – for example, by showing that their hardness follows from
some cryptographic assumptions.

To be able to present the hardness results, let us first explain two different
notions of hardness, called worst-case and average-case hardness. Worst-case
hardness states that there exist hard instances. To give an example of worst-case
hardness one can imagine the standard reductions used for definition of NP which
preserve worst-case hardness.

Intuitively, for any worst-case hard problem, there could be only few hard
instances per each instance length, but it might be hard to generate any hard-
instance. In fact, finding a hard instance might be even harder than solving it.
The stronger notion of average-case hardness, introduced by Levin [1986], over-
comes this issue by making sure that hard instances are easy to find. More specif-
ically, a problem is average-case hard if there exists a polynomial-time algorithm
which samples the hard instances. To make a reduction preserving average-case
hardness it is not sufficient to transform instances of one problem A into instances
of problem B but we also have to be able to provide a polynomial-time sampler
of hard instances of B.

Many constructions of average-case hardness in TFNP and its subclasses have
been shown based on various cryptographic primitives and we summarize these
results in Section 1.3.1. Existence of these results raises the following question:

What is the weakest or least structured assumption under which we can prove
average-case or worst-case hardness in TFNP?

We give an overview of existing negative results in Section 1.3.2.

1.3.1 Known Constructions
Hardness from standard cryptographic primitives or number theoretic assump-
tions was long known for the “higher” classes in TFNP like PPP and PPA. We

6FP is the class of search problems solvable in polynomial time, i.e., a search variant of P,
and FNP is the class of search problems solvable in non-deterministic polynomial time, i.e., a
search variant of NP.
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have already mentioned the result of Papadimitriou [1994] that one-way permu-
tations (OWP) imply average-case hardness in PPP. It is a folklore knowledge that
existence of collision-resistant hashing (e.g., hardness of integer factoring or the
discrete logarithm problem in prime-order groups) implies average-case hardness
in PPP. In addition, Jeřábek [2016], building on the work of Buresh-Oppenheim
[2006], showed that PPA as well as PPP is no easier than integer factoring.

However, it is only recently that we are better understanding the crypto-
graphic hardness of the lower classes in TFNP. This was catalysed by the result
of Bitansky et al. [2015], who, expanding on Abbot et al. [2004], devised an
average-case hard PPAD instance created from quasi-polynomially hard indis-
tinguishability obfuscation (iO) for P/poly and sub-exponentially hard injective
one-way functions. This result was improved by Garg et al. [2016], who relaxed
the security assumptions on the primitives and provided a construction from iO
and OWP, which are hard only against polynomial algorithms and Komargodski
and Segev [2017], who provided a construction of average-case hard PPAD in-
stance from quasipolynomially secure private key functional encryption scheme
for circuits of polynomial size and subexponentially secure injective one-way func-
tions.

Hubáček and Yogev [2020] introduced the End-Of-Metered-Line problem,
which, as they proved, lies in the class CLS. They showed that there exists an
average-case hard distribution of End-Of-Metered-Line based on the existence
of OWP and indistinguishability obfuscation for P/poly. Thus, they extended the
results of Bitansky et al. [2015], Garg et al. [2016] all the way down to the class
CLS.

The underlying assumptions were relaxed further to cryptographic assump-
tions that are more plausible than indistinguishability obfuscation like soundness
of Fiat-Shamir transformation for sumcheck protocol and existence of worst-case
hard problem in #P by Choudhuri et al. [2019a], hardness of iterated squaring
modulo composite number by Choudhuri et al. [2019b] and a construction from
continuous Verifiable Delay functions by Ephraim et al. [2020].

Using similar ideas, Bitansky and Gerichter [2020] presented an unconditional
construction of hard-on-average distributions in the complexity class PLS in the
random oracle model. They also proved worst-case hardness in PLS based on
randomized Exponential Time Hypothesis and an assumption on bilinear maps
by Kalai et al. [2019]. Building on these results, a flurry of recent works (e.g.,
Kalai et al. [2020], Kalai and Zhang [2020], Jawale and Khurana [2020], Jawale
et al. [2020], Lombardi and Vaikuntanathan [2020]) further weakened the assump-
tions required for proving average-case hardness in CLS. More concretely, they
constructed average-case hardness in CLS assuming (sub-exponential) hardness
of learning with errors. Thus, bringing us closer to proving average-case hardness
in CLS under a standard concrete cryptographic assumption.

Constructions from average-case hardness in NP: Perhaps the most rel-
evant constructions with respect to results presented in this thesis are the ones of
Hubáček et al. [2017] and Pass and Venkitasubramaniam [2019]. Hubáček et al.
[2017] showed that average-case hardness in NP (which is implied by existence
of one-way functions) implies average-case hardness in TFNP under complexity
theoretic derandomization assumption. More specifically their construction of
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average-case hard TFNP assumes that there exists a function computable de-
terministically in time 2O(n), but having non-deterministic circuit complexity at
least 2Ω(n). Alternatively, they showed a construction of a hard-on-average prob-
lem in TFNP based on injective one-way functions and non-interactive witness
indistinguishable proof systems for NP. Pass and Venkitasubramaniam [2019]
complemented the Hubáček et al. [2017] result by showing that when one-way
functions do not exist, average-case hardness in NP implies average-case hardness
in TFNP.

1.3.2 Impossibility Results
On the opposite site, there are results giving evidence that average case hard prob-
lems cannot be based on certain types of assumptions. As already mentioned,
Megiddo and Papadimitriou [1991] proved that worst-case hard TFNP problems
cannot be based on worst-case hard FNP problems unless the polynomial hier-
archy collapses since such a result would imply that NP = coNP (and analogous
result but for constructing worst-case hard PLS problem is known already since
Johnson et al. [1988]). Mahmoody and Xiao [2010] proved that a randomized
reduction from SAT to any TFNP problem would imply that SAT is polynomially
checkable.7 These results were expanded by Buhrman et al. [2010] who showed
that there exists an oracle under which TFNP is easy but polynomial hierarchy
does not collapse. All these results give evidence for impossibility of constructions
of worst-case hard problems in TFNP from a worst-case hard problem in NP or
polynomial hierarchy.

The impossibility of constructing TFNP hardness from one-way functions was
studied by Rosen et al. [2017]. They gave a partial answer by showing that there
do not exist hard-on-average distributions of TFNP instances over {0, 1}n with
fewer than 2no(1) solutions from any primitive which exists relative to a random
injective trapdoor function oracle (in particular, from one-way functions or col-
lision resistant hash functions). Their main observation was that the argument
in Rudich [1988], which separates one-way functions from one-way permutations,
can be strengthened to separate other unstructured primitives from structured
primitives (such as problems in TFNP).

However, it seems that the Rudich [1988] argument has been exploited to
its limits in Rosen et al. [2017], and, therefore, it is not clear whether their
approach can be extended to fully separate one-way functions and TFNP. Thus,
the situation is contrasting to NP ∩ coNP, the decision counterpart of TFNP,
whose relationship with (injective) OWFs is much better studied. In particular,
we know that hardness is implied by one-way permutations due to the existence
of hard core predicates (see Goldreich and Levin [1989]). But Bitansky et al.
[2021] showed that injective OWFs, even with indistinguishability obfuscation,
(and, therefore, public-key encryption) cannot imply (worst-case) hardness in
NP ∩ coNP in a black-box way.

7A problem P is polynomially checkable (as defined by Blum and Kannan [1995]) if there is a
randomized polynomial algorithm A which given oracle access to any algorithm B and input x ∈
{0, 1}∗: If B solves P correctly (i.e., ∀x′ : B(x′) = P (x′)) then AB(x) returns “CORRECT” with
high probability. Otherwise, when running on input x such that B(x) ̸= P (x), the algorithm
AB(x) returns “INCORRECT” with high probability. Existence of such an algorithm for SAT
is an open question for over 25 years (see Blum and Kannan [1995]).
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Recently, Hubáček et al. [2020]8 attempted to extend the result of Bitansky
et al. [2021] to TFNP and showed that there is no simple fully black-box con-
struction of a worst-case hard TFNP problem from injective one-way functions.
A formal definition of a (simple) fully black-box construction and the result of
Hubáček et al. [2020] can be found in Chapter 4.

8This results is part of this thesis (see Chapter 4), but for completeness of this overview we
also list the paper here.
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2. Arrival Is Contained in CLS
One of the open problems suggested by Dohrau et al. [2017] was whether deciding
the termination of Arrival is contained in UP∩coUP (recall that UP is a subclass
of NP such that for each YES-instance there is a unique certificate). Recall that
given a railway network with an origin o and a destination d, the transcript of the
route of the train captured in the run profile from o to d (if it exists) is unique. In
this chapter we show that it is possible to efficiently decide whether a switching
flow (the certificate for being in NP defined by Dohrau et al. [2017]) corresponds
to a run profile, which provides a positive answer to the above question and places
Arrival inside UP ∩ coUP.

Additionally, we show that S-Arrival (the search version of Arrival) is con-
tained in the complexity class CLS. We establish the containment in CLS through
a reduction to EOML (see Definition 1.1.7). Recall that in EOML we are given a
source in a directed graph with vertices of in-degree and out-degree at most one,
and the task is to find a sink or a source different from the given trivial source.
The access to the graph is given locally via information about the successor and
predecessor of each vertex together with its distance from the trivial source. In
our construction, the graph consists of a single path on vertices corresponding to
partial run profiles (transcript of the route of the train after doing exactly k-steps
from origin o for any k ∈ N) where the edges are between two partial run profiles
which differ exactly by one move of the train and many isolated vertices – vertices
which do not correspond to partial run profiles.

We give an idea of our proofs in Section 2.1 and give the formal definitions
of the most frequently used terms in Section 2.2. In Section 2.3, we prove that
we can verify the run profiles in polynomial time. Finally, in Section 2.4, we put
these results together and show the containment in UP∩ coUP as well as in CLS.

2.1 Our Techniques
Recall that a switching flow is a run profile with additional superfluous circu-
lations compared to the valid run profile. Our main technical observation is a
characterization of switching flows that correspond to the valid run profile. Given
a switch graph G and a switching flow f , we consider the subgraph G∗ induced
over the railway network by the “last-used” edges; for every vertex v, we include
in G∗ only the outgoing edge that was, according to the switching flow, used by
the train last time it left from v. Note that such last-used edges can be efficiently
identified simply by considering the parity of the total number of visits at every
vertex. When f is a valid run profile, then it is straightforward to see that the
subgraph G∗ is acyclic. We show that this property is in fact a characteriza-
tion, i.e., any switching flow for which the induced graph G∗ is acyclic must be a
run profile. Given that this property is easy to check, we can use it to efficiently
verify run profiles as UP witnesses. (The coUP witness is then a run profile to
the dead-end at d̄.)

For our reduction from S-Arrival to End-Of-Metered-Line, we extend the
above observation to partial switching flows that are not required to end at the
destination. The vertices of the EOML graph created by our reduction correspond
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to partial switching flows in the S-Arrival instance. The directed edges connect
partial run profiles to their natural successors and predecessors, i.e., the partial
run extended or shortened by a single step of the train. Any switching flow that
does not correspond to some partial run profile is an isolated vertex in the EOML
graph. Finally, the trivial source is the empty switching flow, and the distance
from it can be computed for any partial run simply as the number of steps taken
by the train so far. Given that there is only a single path in the resulting EOML
graph and that its sink is exactly the complete run, we get that the unique solution
to the EOML instance gives us a solution for the original instance of S-Arrival.

To make the reduction efficiently computable, we need to address the verifica-
tion of partial run profiles. As it turns out, partial run profiles can be efficiently
verified using the graph G∗, in a similar way to complete run profiles discussed
above. The main difference is that the graph of last-used edges for a partial run
profile can contain a cycle, as the train might visit the same vertex multiple times
on its route to the destination. However, we show that there is at most one cycle
in G∗, which always contains the current end-vertex of the partial run. The com-
plete characterization of partial run profiles (which covers also full run profiles)
is given in Lemma 2.3.3, and the formal reduction is described in Section 2.4.2.

2.2 Preliminaries
In the rest of this chapter we use the following standard notation. For k ∈ N,
we denote by [k] the set {1, . . . , k}. For a graph G = (V, E), we reserve n = |V |
for the number of vertices. The basic object that we study are switch graphs, as
defined by Dohrau et al. [2017]. To emphasize that a variable corresponds to a
vector we use bold letters (such as r, f , δ). We usually denote the n-th entry of
a vector x by xn but for better readability we sometimes use x(n) instead of xn

to avoid recursive subscripts.

Definition 2.2.1 (switch graph). A switch graph is a tuple G = (V, E, s0, s1)
where s0, s1 : V → V and E = {(v, s0(v)), (v, s1(v)) | ∀v ∈ V }.1

In order to avoid cumbersome notation, we slightly overload the use of s0, s1
and treat both as functions from vertices to edges; that is by sb(v) we denote the
edge (v, sb(v)) for b ∈ {0, 1}. We use this convention throughout the paper unless
stated otherwise.

The Arrival problem was formally defined by Dohrau et al. [2017] as follows.

Definition 2.2.2 (Arrival, Dohrau et al. [2017]). Given a switch graph G =
(V, E, s0, s1) and two vertices o, d ∈ V , the Arrival problem is to decide whether
the algorithm Run (Algorithm 1) terminates, i.e., whether the train reaches the
destination d starting from the origin o.

To simplify theorem statements and our proofs, we assume without loss of
generality that both s0(d) and s1(d) end in d.

A natural witness for termination of the Run procedure considered in previous
work (e.g., Dohrau et al. [2017]) is a switching flow. We extend the definition of
a switching flow to allow for partial switching flows that do not necessarily end
in the desired destination d.

1Whenever s0(v) = s1(v) for some vertex v ∈ V we depict them as multiple edges in figures.
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Algorithm 1: Run
Input : a switch graph G = (V, E, s0, s1) and two vertices o, d ∈ V
Output: a vector r ∈ N|E| where re for each edge e ∈ E, corresponds to the

number of times the train traversed e

1 v ← o // position of the train
2 ∀u ∈ V set scurr(u)← s0(u) and snext(u)← s1(u)
3 ∀e ∈ E set re ← 0 // initialize the run profile
4 step← 0
5 while v ̸= d do
6 (v, w)← scurr(v) // compute the next vertex
7 r(v,w) ← r(v,w) + 1 // update the run profile
8 swap(scurr(v), snext(v))
9 v ← w // move the train

10 step← step + 1
11 end
12 return r

Definition 2.2.3 ((partial) switching flow, end-vertex). Let G = (V, E, s0, s1) be
a switch graph. For o, d ∈ V , we say that f ∈ N2n is a switching flow from o to
d if the following two conditions hold.

Kirchhoff’s Law (flow conservation):

∀v ∈ V :
∑︂

e=(u,v)∈E

fe −
∑︂

e=(v,w)∈E

fe = [v = d]− [v = o] ,

where [·] is the indicator variable of the event in brackets.

Parity Condition:

∀v ∈ V : fs1(v) ≤ fs0(v) ≤ fs1(v) + 1 .

Kirchoff’s law means that o emits one unit of flow, d absorbs one unit of flow,
and at all other vertices, in-flow equals out-flow. If d = o, we have a circulation.

Given an instance (G = (V, E, s0, s1), o, d) of Arrival, we say that f is a
switching flow if it is a switching flow from o to d. A vector f ∈ N2n is called
a partial switching flow iff f is a switching flow from o to v for some vertex
v ∈ V . We say that v is the end-vertex of the partial switching flow. We denote
the end-vertex of f by vf .

Definition 2.2.4 ((partial) run profile). A run profile is the switching flow r
returned by the algorithm Run (Algorithm 1) upon termination. A partial run
profile is a partial switching flow corresponding to some intermediate value of r
in the algorithm Run (Algorithm 1).

Observation 2.2.5 ([Dohrau et al., 2017, Observation 1]). Each (partial) run
profile is a (partial) switching flow.

Observation 2.2.6. An end-vertex vf of a switching flow f is computable in
polynomial time.

Proof. It is sufficient to determine which vertex has a net in-flow of one.
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Figure 2.1: An example of a switch graph G with a switching flow f (on the left)
and the corresponding graph G∗f (on the right). The s0 edges are denoted by full
arrows and the s1 edges are denoted by dashed arrows. For each edge in G, the
switching flow f is specified by the adjacent integer value.

2.3 The Complexity of Run Profile Verification
Dohrau et al. [2017] proved that it is possible to efficiently verify whether a given
vector is a switching flow. In this section we show that we can also efficiently
verify whether a switching flow is a run profile. Combining this with the results
by Dohrau et al. [2017], we prove that the decision problem of Arrival is in
UP∩ coUP (see Section 2.4.1) and that the search problem of Arrival lies in the
complexity class CLS (see Section 2.4.2). As outlined in Section 2.1, our approach
for verification of run profiles is based on finding a cycle in a natural subgraph
of the railway network G defined below. Specifically, we consider the subgraph
of G that contains only the last visited outgoing edge of each vertex, i.e., every
vertex has out-degree at most one (see Figure 2.1 for an illustration).

Definition 2.3.1 (G∗f ). Let (G = (V, E, s0, s1), o, d) be an instance of Arrival,
and let f ∈ N2n be a partial switching flow. We define a graph G∗f = (V, E∗) as
follows

E∗ =
{︂
s0(v) : ∀v ∈ V s.t. fs0(v) ̸= fs1(v)

}︂
∪{︂

s1(v) : ∀v ∈ V s.t. fs0(v) = fs1(v) > 0
}︂

.

Observation 2.3.2. Given a partial switching flow f , the graph G∗f can be com-
puted in polynomial time.

Lemma 2.3.3. A partial switching flow f is a partial run profile iff fs0(d) =
fs1(d) = 0 and one of the following two conditions holds:

1. There exists no cycle in G∗f .

2. There exists exactly one cycle in G∗f and this cycle contains the end-vertex
of f .

The main idea of the proof is based on the following fact: a switching flow f
which is not a run profile must contain a circulation (as shown by Dohrau et al.
[2017]). Let f be a switching flow that we get from a run profile r by adding some
flows on cycles, then the last added circulation (the last added cycle) must form
a cycle in the corresponding graph G∗f . On the other hand, a cycle containing
the end-vertex is formed in G∗f whenever the train arrives to a previously visited
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Figure 2.2: An example of a switch graph G and cycles in the graphs G∗ corre-
sponding to partial run profiles after 3, 4, and 5 steps of the train (respectively
from left to right). We use hatching to highlight the current end-vertex.

vertex. An illustration of the graph G∗ at consecutive steps of the algorithm
Run, with the corresponding evolution of the end-vertices and cycles, is given in
Figure 2.2.

We prove the “⇐” implication of Lemma 2.3.3 by contradiction. Given a
switching flow f we consider the longest run profile r that is everywhere at
most f . We denote the difference f−r by δ. We utilize the following observation
at two points in our proof. First, to prove that both f and r have the same end-
vertex, that is vr = vf . Second, to prove that any cycle we find in the intersection
of G∗f and the non-zero edges of δ avoids vf .

Observation 2.3.4. Let f be a switching flow and let r be the longest partial
run profile such that all coordinates are at most f and denote δ = f − r. Then
δs0(vr) = δs1(vr) = 0.

Proof of Observation 2.3.4. Suppose that either δs0(vr) ̸= 0 or δs1(vr) ̸= 0, and
that r is such that the next edge for the train to continue on is s0(vr). From the
maximality of r we get that δs0(vr) is equal to zero. Then we get

fs1(vr) > rs1(vr) (since δs1(vr) is non-zero)
= rs0(vr) (from the parity condition for r)
= fs0(vr) (from the maximality of r)

This leads to a contradiction with the parity condition of Definition 2.2.3 as
fs1(vr) > fs0(vr).

The other case is similar: suppose that the train should continue with the
edge s1(vr). From the maximality of r we get that δs1(vr) is equal to zero. And
thus we get

fs0(vr) > rs0(vr) (since δs0(vr) is non-zero)
= rs1(vr) + 1 (from the parity condition for r)
= fs1(vr) + 1 (from the maximality of r)

This gives a contradiction with the parity condition of Definition 2.2.3 as fs0(vr) >
fs1(vr) + 1.

Proof of Lemma 2.3.3. We start by proving that any partial run profile r has
at most one cycle and that this cycle always contains the end-vertex vr. We
proceed by induction on the length of the run profile, i.e., the number of steps
in the algorithm Run. The base case is the initial run profile 02n for which G∗02n

contains no edge and thus also no cycle. For the induction step, let us assume
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that a vector ri is a partial run profile and the vector ri+1 is the partial run
profile after one step from ri.

Observe that the graph G∗ri+1 can be obtained from the graph G∗ri by removing
the outgoing edge from the end-vertex vri (if there is any such edge) and adding
an edge (vri , vri+1) (see Figure 2.2 for illustration). If G∗ri contains a cycle then
removing the edge from the end-vertex vri to its successor in G∗ri produces a
cycle-free graph. Adding an edge between vri and vri+1 creates a graph with at
most one cycle. Moreover, if there is a cycle then it has to contain vri+1 .

To prove the reverse implication, assume we have a partial switching flow f
that satisfies the conditions from the statement of this lemma, i.e., G∗f has at
most one cycle and if the cycle is present it contains the end-vertex vf . Let us
denote by r the longest partial run profile such that all its coordinates are at
most f , that is re ≤ fe for each e ∈ E. Consider the difference δ = f − r of the
switching flow and its longest run profile. We complete the proof by the following
case analysis:

1. If the end-vertex vf is the same as the end-vertex vr (vf = vr), then the
difference δ = f − r is a flow, and moreover it is a circulation. That is the
Kirchhoff’s law is satisfied in all vertices of G:

∀v ∈ G :
∑︂

e=(u,v)∈E

δe −
∑︂

e=(v,w)∈E

δe = 0 .

If δ is identically zero we are done as f = r, and thus f is a partial run
profile. Otherwise, we show that the circulation δ will result in a cycle in
G∗f . Namely we prove that for any vertex v if v has at least one outgoing
edge with a non-zero value in δ then G∗f contains an outgoing edge from v
which has non-zero value in δ. Using this and the fact that δ satisfies the
Kirchhoff’s law everywhere, we find a cycle in G∗f .
Let u be any vertex of G such that at least one edge s0(u) and s1(u) is
non-zero in δ. Observe that if both s0(u) and s1(u) are non-zero in δ then
G∗f contains one of them. Now assume that only one edge from s0(u), s1(u)
is non-zero δ. We claim that then this non-zero edge is contained in the
graph G∗f . There are only two possible cases:

(a) Either rs0(u) = fs0(u), and thus rs0(u) = rs1(u) − 1 and fs0(u) = fs1(u)
(see Table 2.1a), and G∗f contains the edge s1(u),

(b) or rs1(u) = fs1(u), and thus rs0(u) = rs1(u) and fs0(u) = fs1(u) + 1 (see
Table 2.1b), and G∗f contains the edge s0(u).

To construct the cycle we proceed as follows:

(a) First choose any edge e = (u0, u1) in G∗f which is non-zero in δ. Such
an edge exists since for any vertex u such that s0(u) or s1(u) is non-
zero in δ, the graph G∗f contains sb(u) for b ∈ {0, 1} such that sb(u) is
non-zero in δ.

(b) Proceed by picking adjacent edge in G∗f which is a non-zero edge in δ.
Assume that we have chosen edges (u0, u1), (u1, u2), . . . (ui−1, ui), then
we claim that either s0(ui) or s1(ui) is non-zero in δ and is contained
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s0(u) s1(u)
δ 0 1
r a a− 1
f a a

(a) Case 1a.
The left column is filled in by the as-
sumptions of Case 1a. To fill in the
right column in such a way that δ is
non-zero and the values preserve the
parity condition, we have to set rs1(u) =
a− 1 and fs1(u) = a.

s0(u) s1(u)
δ 1 0
r a a
f a + 1 a

(b) Case 1b.
The right column is filled in by the as-
sumptions of Case 1b. To fill in the left
column in such a way that δ is non-zero
and the values preserve the parity con-
dition, we have to set rs0(u) = a and
fs0(u) = a + 1.

Table 2.1: Case analysis from the proof of Lemma 2.3.3 when only one of the
edges s0(u) and s1(u) is non-zero in δ.

in G∗f . This is because by Kirchhoff’s law either s0(ui) or s1(ui) is
non-zero in δ and by the fact that G∗f contains sb(ui) for b ∈ {0, 1}
such that sb(ui) is non-zero in δ.

As there are only finitely many vertices the above mentioned procedure
produces a directed cycle. By Observation 2.3.4, we know that all outgoing
edges from vr = vf are zero in δ, and thus the end-vertex vf is not contained
in the cycle we have found.

2. If the end-vertex vf is not the same as the end-vertex vr (vf ̸= vr) then we
get a contradiction with f being a partial switching flow. It follows from
Observation 2.3.4 that

∑︂
e=(u,vr)∈E

fe −
∑︂

e=(vr ,w)∈E

fe ≥
∑︂

e=(u,vr)∈E

re −
∑︂

e=(vr ,w)∈E

re =
⎧⎨⎩0 vr = o,

1 otherwise,

which is in contradiction with f being a partial switching flow for which
the end-vertex vf differs from vr.

This concludes the proof of Lemma 2.3.3.

Lemma 2.3.5. It is possible to verify in polynomial time whether a vector is a
run profile.

Proof. We can check that a vector f is a switching flow in polynomial time due
to Dohrau et al. [2017]. The construction of the graph G∗f is polynomial by
Observation 2.3.2. Lemma 2.3.3 gives us a polynomial time procedure to check
if f is also a run profile as it is sufficient to check if G∗f contains more than one
cycle or whether it has a cycle not containing the end-vertex. This check can be
done by a simple modification of the standard depth-first search on G∗f .
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2.4 The Computational Complexity of Arrival
In this section, we use our efficient structural characterization of run profiles from
Lemma 2.3.3 to improve the known results about the computational complexity
of Arrival. Specifically, we show that the decision version of Arrival is in
UP ∩ coUP and the search version is in CLS.

2.4.1 The Decision Complexity of Arrival
Our upper bound on the decision complexity of Arrival follows directly from the
work of Dohrau et al. [2017] by application of Lemma 2.3.5.

Theorem 2.4.1. Arrival is in UP ∩ coUP.

Proof. The unique UP certificate for a YES-instance of Arrival is the run pro-
file r returned by the algorithm Run. Clearly, for each YES-instance there exists
only one such vector r and r does not exist for NO-instances. By Lemma 2.3.5, we
can determine whether a candidate switching flow r is a run profile in polynomial
time.

The coUP membership follows directly from the reduction of NO-instances of
Arrival to YES-instances of Arrival as suggested by Dohrau et al. [2017]. The
reduction adds to the original graph G a new vertex d̄, and for each vertex v ∈ V
such that there is no directed path from v to the destination d, the edges s0(v)
and s1(v) are replaced with edges (v, d̄). This alteration of the original switch
graph can be performed in polynomial time. Dohrau et al. [2017] proved that the
train eventually arrives either at d or d̄. The unique coUP witness for Arrival is
then a run profile from o to the dead-end d.

2.4.2 The Search Complexity of Arrival
The search complexity of Arrival was first studied by Karthik C. S. [2017], who
introduced a total search variant of Arrival as follows.

Definition 2.4.2 (S-Arrival, Karthik C. S. [2017]). Given a switch graph G =
(V, E, s0, s1) and a pair of vertices o, d ∈ V , define a graph G′ as follows:

1. Add a new vertex d̄.

2. For each vertex v such that there is no directed path from v to d, replace
edges s0(v) and s1(v) with edges (v, d̄).

3. Edges s0(d), s1(d), s0(d̄), and s1(d̄) are self-loops.

The problem S-Arrival is to find a switching flow in G′ either from o to d or
from o to d̄.

The above Definition 2.4.2 is motivated by the proof of membership in NP ∩
coNP by Dohrau et al. [2017]. Namely, in order to ensure that a solution for
S-Arrival always exists, it was necessary to add the dead-end vertex d̄ to the
switch graph G.

Note that our method for efficient verification of run profiles from Lemma 2.3.5
allows us to define a more natural version of S-Arrival directly on the graph G
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without any modifications. Instead of relying on the dead-end vertices, we can
use the fact that a partial run profile with an edge that was visited for 2n + 1
times is an efficiently verifiable witness for NO-instances of Arrival.

Definition 2.4.3 (S-Arrival– simplified). The S-Arrival problem is: Given a
switch graph G = (V, E, s0, s1) and a pair of vertices o, d ∈ V , find one of the
following:

1. a run profile r ∈ N[2n] from o to d, or

2. a run profile r ∈ N[2n] from o to any v ∈ V such that

• r(u,v) = 2n + 1, where u is the last vertex visited by the train before it
reached the end-vertex v of r, and

• re′ ≤ 2n for all e′ ̸= (u, v).

The correspondence of the above version of S-Arrival to the original one
follows formally from the following lemma.

Lemma 2.4.4 ([Karthik C. S., 2017, Lemma 1]). For any G = (V, E, s0, s1) and
a pair of vertices o, d ∈ V . Let r be a run profile (thus vr = d), then re ≤ 2n for
each edge e ∈ E.

To argue membership of our version of S-Arrival in TFNP, we need to show
that both types of solutions in Definition 2.4.3 can be verified efficiently. Solutions
of the first type are simply run profiles, and we have already shown that they
can be verified in polynomial time in Lemma 2.3.5. In order to be able to verify
solutions of the second type, it remains to argue that for any partial run profile,
the immediate predecessor of its end-vertex can be determined in polynomial
time.

Lemma 2.4.5. Let r be a partial run profile after R ≥ 1 steps and u be the
vertex visited by the train at step R− 1. Then

1. either u is the unique predecessor of vr in G∗r, or

2. there is a single cycle in G∗r containing vr and u is the predecessor of vr on
this cycle.

Proof. First, note that if u is the end-vertex one step before vr becomes the end-
vertex then G∗r must contain the edge (u, vr), as it is the last edge used by the
train to leave u. Thus, in the first case (when vr has only one predecessor in G∗r)
the immediate predecessor of vr in the partial run r is unambiguously given by
the only predecessor of vr in G∗r.

For the second case we show that G∗r contains a directed cycle C (containing
the end-vertex vr) and u is unambiguously given by the predecessor of vr in
G∗r that lies on C. We find the cycle C by constructing the longest possible
directed path c0 = vr, c1, . . . , ck in G∗r without repeating vertices. Note that it
cannot happen that ck has no outgoing edge in G∗r. Otherwise, r would have two
different end-vertices vr and ck (as having no outgoing edge in G∗r means that the
train has never left this vertex). By Lemma 2.3.3, the directed edge from ck has
to end in the end-vertex vr, or else there would be a cycle in G∗r that avoids vr.
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The algorithm Run takes R steps to generate the run profile r, i.e., ∑︁e∈E re =
R. Let tr : V → {0, 1, . . . , R − 1} be the function returning the last step after
which a vertex was left by the train in the partial run profile r. Observe that,
except for the edge through which the train arrived to vr,2 it holds for all edges
(x, y) ∈ G∗r that tr(x) < tr(x) + 1 ≤ tr(y). However if we consider the vertices
c0 = vr, c1, . . . , ck on the cycle C, clearly the above inequality must have been
broken for some edge (ci, cj) (otherwise tr(c0) < tr(c1) < . . . < tr(ck) < tr(c0)
which is a contradiction). As only the last used edge can break the inequality it
must be the case that the train was in vertex ck at the step R− 1.

Observation 2.4.6. S-Arrival (defined in Definition 2.4.2) reduces to simpli-
fied S-Arrival (defined in Definition 2.4.3).

Proof. Given a solution of the second type of the simplified S-Arrival, i.e., the
long run profile, we can get a run profile r to d̄ in polynomial time. For each vertex
u we can determine whether there is an oriented path from it to the destination
d, and if there is no such path we set rs0(v) = rs1(v) = 0. We compute the end
vertex vr and set s0(vr) = 1. All other components of r are set according to the
original solution of the simplified S-Arrival.

S-Arrival is in CLS

Karthik C. S. [2017] showed that S-Arrival is contained in the class PLS. We
improve this result and prove that S-Arrival is in fact contained in CLS. We show
this result by reducing S-Arrival to a problem End-Of-Metered-Line (defined
by Hubáček and Yogev [2020]) which is contained in CLS as shown by Hubáček
and Yogev [2020] (see Section 1.1.1). For the better readability we restate the
definition of End-Of-Metered-Line problem here too:

Definition 1.1.7. (Restated) End-Of-Metered-Line is the following prob-
lem: Given circuits S, P : {0, 1}m → {0, 1}m, and V : {0, 1}m → [2m] ∪ {0} such
that P (0m) = 0m ̸= S(0m) and V (0m) = 1, find a string x ∈ {0, 1}m satisfying
one of the following:

1. Either P (S(x)) ̸= x or S(P (x)) ̸= x ̸= 0m,

2. x ̸= 0m and V (x) = 1,

3. either
V (x) > 0 and V (S(x))− V (x) ̸= 1

or
V (x) > 1 and V (x)− V (P (x)) ̸= 1.

The circuits S, P from Definition 1.1.7 implicitly represent a directed graph
with vertices labelled by binary strings of length m, where each vertex has both
out-degree and in-degree at most one. The circuit P represents the predecessor
and the circuit S represents the successor of a given vertex as follows: there is
an edge from a vertex u to a vertex v iff S(u) = v and P (v) = u. Finally, the

2The inequality does not hold for the end vertex vr, since the train has not left it yet and
thus tr(vr) has not been updated to the time R yet.
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circuit V can be thought of as an odometer that returns the distance from the
trivial source at 0m or value 0 for vertices lying off the path starting at the trivial
source. The task in End-Of-Metered-Line is to find a sink or a source different
from the trivial one at 0m (the solutions of the second and of the third type in
Definition 1.1.7 ensure that V behaves as explained above). We are now ready
to present our reduction from S-Arrival to End-Of-Metered-Line.

Theorem 2.4.7. S-Arrival can be reduced to End-Of-Metered-Line and, thus,
it is contained in CLS.

Proof. Let (G, o, d) be an instance of S-Arrival. We construct an instance of
EOML that contains a vertex for each candidate partial switching flow over the
switch graph G, i.e., for each vector with 2n coordinates and values from [2n +
1] ∪ {0}. The EOML instance comprises of a directed path starting at the initial
(empty) partial run profile 02n. Each vertex on the path has an outgoing edge
to its consecutive partial run profile. Any vertex that does not correspond to a
partial run profile becomes a self-loop. Finally, the valuation circuit V returns
either the number of steps in the corresponding partial run profile or the zero
value if the vertex does not correspond to a partial run profile.

Formal description of the circuits S, P , and V defining the above EOML graph
is given by algorithms Successor (Algorithm 2), Predecessor (Algorithm 3),
and Valuation (Algorithm 4)

Algorithm 2: Successor
Input : a vector x ∈ ([2n + 1] ∪ {0})2n

Output: a vector y ∈ ([2n + 1] ∪ {0})2n

1 if x is a partial run profile then // efficiently testable by Lemma 2.3.5
2 compute the end-vertex vx

3 if vx = d or xe = 2n + 1 for some e ∈ E then
4 return x // the train terminates or runs for too long
5 else
6 b← x(s1(vx))− x(s0(vx)) // parity of the current visit at vx

7 e← sb(vx) // the next edge to traverse

8 yh ←
{︄

xh + 1 if h = e

xh otherwise
// run profile update

9 return y

10 end
11 else
12 return x // self-loop
13 end

A polynomial bound on the size of the circuits S, P , and V follows directly
from Observation 2.3.2 (computing G∗), Lemma 2.3.5 (testing whether a given
vector is a partial run profile), Observation 2.2.6 (computing the end-vertex), and
Lemma 2.4.5 (computing the previous position of the train).

Lemma 2.3.3 and Lemma 2.4.5 imply that the EOML graph indeed consists of
a single directed path and isolated vertices with self-loops. By the construction
of V (it outputs the number of steps of the train), there are no solutions of
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Algorithm 3: Predecessor
Input : a vector x ∈ ([2n + 1] ∪ {0})2n

Output: a vector y ∈ ([2n + 1] ∪ {0})2n

1 if x = 0 then
2 return 0 // the trivial source
3 end
4 if x is a partial run profile then // efficiently testable by Lemma 2.3.5
5 compute the end-vertex vx

// correctness by Lemma 2.4.5
6 if vx has a single predecessor in G∗x then
7 e← the only incoming edge of vx in G∗x
8 else
9 e← the only incoming edge of vx which lies on a directed cycle

10 end
11 if xe ≤ 2n + 1 and xe′ < 2n + 1 for all e′ ̸= e then

12 yh ←
{︄

xh − 1 if h = e

xh otherwise
13 return y

14 end
15 end
16 return x // self-loop

Algorithm 4: Valuation
Input : a vector x ∈ ([2n + 1] ∪ {0})2n

Output: a value v ∈ N

1 v ← 0 // default value for self-loops
2 if x is a partial run profile then // efficiently testable by Lemma 2.3.5
3 v ← 1 +

∑︁2n
i=1 xi

4 end
5 return v

the second or the third type (cf. Definition 1.1.7). Thus, the EOML instance has a
unique solution which has to correspond to a run profile in the original S-Arrival
instance or to a partial run profile certifying that the train ran for too long (see
the second type of solution in Definition 2.4.3).
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3. Worst-Case Hardness in TFNP
and Average-Case Hard UP
Problem
In this chapter, we show that it is not possible to create in a black-box way a worst-
case hard TFNP problem from average-case hard problem in NP or even in the
class UP. This black-box separation could be seen as a warm-up for Chapter 4,
where we rule out the existence of a simple fully black-box construction from
injective one-way functions. Intuitively, it is more difficult to come up with a
reduction from any average-case hard problem in NP than from a specific one
– inversion of an injective one-way function. As the construction from injective
one-way functions may utilize the restricted nature of the problem compared to
any average-case hard problem in NP. Thus, the separation presented in this
chapter is technically much easier than the one given in Chapter 4 and rules out
any (not just “simple”) fully black-box construction.

We describe our proof informally in Section 3.1. In Section 3.2, we formalize
the notation and definitions used in this chapter. In Section 3.3, we formally
define fully black-box separations, present our oracle Solve and show our main
results – the separation between average-case hardness in NP and worst-case
hardness in TFNP. The core of the argument is presented in Section 3.4, where
we prove all the lemmata used to prove our main result.

3.1 Our Techniques
Our results employ the framework of black-box separations (see e.g., Impagliazzo
and Rudich [1989], Reingold et al. [2004], Fischlin [2012]). The approach sug-
gested in Impagliazzo and Rudich [1989] for demonstrating that there is no fully
black-box construction of a primitive P from another primitive Q is to come up
with an oracle O relative to which Q exists, but every black-box implementation
CQ of P is broken. However, as explained in Reingold et al. [2004], Matsuda and
Matsuura [2011], this approach actually rules out so-called “relativized” construc-
tions (which are less restricted than fully black-box constructions). To rule out
just fully black-box constructions it suffices to use the so-called two-oracle tech-
nique introduced by Hsiao and Reyzin [2004]. Here, the oracle O usually consists
of two parts: an idealised implementation of the primitive Q and a “breaker”
oracle for primitive P . In our context, P corresponds to a TFNP problem and
the oracle O corresponds to an oracle relative to which average-case hard NP
problem exists and a procedure Solve which provides a solution for any instance
of a TFNP problem.

As an oracle relative to which average-case hard NP problem exists, we use
the random language oracle defined by Brzuska and Couteau [2020]. Brzuska and
Couteau [2020] proved that the random language gives us an average-case hard
problem in NP if we are given an oracle access to it. To rule out the existence
of fully black-box constructions of worst-case hard (and, thus, also average-case
hard) TFNP problems from average-case hard NP language, we have to argue that
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an oracle access to such a “breaker” oracle Solve for TFNP does not help any
security reduction R in deciding whether the given instance is a YES-instance or
a NO-instance.

The existence of a “useless” solution When constructing our oracle Solve,
we want to make sure that it returns a solution which does not “help” security re-
duction to distinguish whether an instance x is a YES-instance or a NO-instance.
For us, such a “useless” solution is a solution on which no pair (x, w) ∈ W is
queried, where W is the relation specifying the NP problem, i.e., (x′, w′) ∈ W
if and only if x′ is YES-instance and w′ is a witness for x′. Giving a security
reduction R a solution which queries such a pair is very helpful for R as it re-
veals the witness w and R can for sure know that x is a YES-instance. On the
other hand, if we avoid returning such solutions the information which is given
to the security reduction R from Solve is only negative. In the sense that it
rules out few witnesses w (i.e., indicate for them that (x, w) /∈ W ), but there
might still exists another witness w′ such that (x, w′) ∈ W . That means that the
returned solution does not reveal whether the instance is a YES-instance or not.
The problem is that our oracle Solve does not know the exact challenge x on
which the security reduction R is running. Thus, instead of protecting the pairs
(x, w) ∈ W for one particular x, the oracle Solve protects these challenge-witness
pairs simultaneously for many different challenges x.

The existence of such a solution follows from the totality of the problem.
As there has to be a solution present no matter the number of YES-instances.
Thus, we consider a language which has only NO-instances (or more specifically
all instances of at least some length are NO-instances). By the totality, we get
a solution for such a language. And then show that this solution remains to be
present with high probability even when we consider languages taken from the
random distribution. To formalize that the solution is not helpful we provide a
security experiment in which the reduction cannot do better than guess whether
the instance is YES-instance or NO-instance and prove that the view for R is the
same in the “real” execution with high probability.

3.2 Preliminaries
For any relation W ∈ {0, 1}n×{0, 1}n, let χW denote the characteristic function
on the first coordinate of W . That is, χW is the following function:

∀x ∈ {0, 1}∗ : χW (x) =
⎧⎨⎩1 if ∃w ∈ {0, 1}∗ such that (x, w) ∈ W,

0 otherwise

For strings x, y ∈ {0, 1}∗, we use x ≤lex y or y ≥lex x to denote that x is
lexicographically smaller than or equal to y. For any finite set A, x← A denotes
that x is chosen uniformly at random from the elements of A.

Definition 3.2.1 (UniqWitness). We define a class of relations UniqWitness,
where a relation W belongs to UniqWitness if W ⊆ ⋃︁∞

n=1 ({0, 1}n × {0, 1}n) and
for any x ∈ {0, 1}∗, there exists at most one w ∈ {0, 1}∗ such that (x, w) ∈ W .
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To give an intuition behind the above definition, we want the class UniqWitness
to correspond to the class UP in a sense that given an oracle access to a rela-
tion W ∈ UniqWitness and given an input x ∈ {0, 1}∗ we can decide in non-
deterministic polynomial time whether there exits a witness w ∈ {0, 1}∗ such
that (x, w) ∈ W and, moreover, there is at most one such w for each x. Then,
we may define the YES-instances as the strings x ∈ {0, 1}∗ for which there ex-
ists w ∈ {0, 1}∗ such that (x, w) ∈ W and NO-instances to correspond to those
x ∈ {0, 1}∗ for which no such witness w ∈ {0, 1}∗ exists.

To restrict ourself to only a specific word length, we use the following notation.
Notation 3.2.2. Let n ∈ N. For any relation W ∈ ⋃︁

n∈N {0, 1}n × {0, 1}n we
define

• W<n = {(x, w) ∈ W : |x| = |w| < n},

• Wn = {(x, w) ∈ W : |x| = |w| = n}, and

• W>n = {(x, w) ∈ W : |x| = |w| > n}.
We consider the following distribution over problems from UniqWitness, which

was defined by Brzuska and Couteau [2020].
Definition 3.2.3 (Distribution RL, Brzuska and Couteau [2020]). For any natural
number n ∈ N, define the following distribution over

UniqWitnessn = {Wn | W ∈ UniqWitness}

called RLn. Where Wn ← RLn is sampled as follows: For every x ∈ {0, 1}n, x
is a YES-instance with probability 1/2. For every YES-instance x, we choose
a witness w, such that (x, w) ∈ Wn, uniformly at random from {0, 1}n (let us
emphasize that the random choices are independent for different choices of x).

We define the distribution RL over all languages from UniqWitness in such a
way that for any word length n ∈ N we sample the relations Wn using RLn, i.e.,
W ← RL denotes that W = ⋃︁

n∈N Wn where each Wn ← RLn.

3.3 Separating TFNP and Average-Case Hard-
ness in UP

In this section, we prove that there is no fully black-box construction of a worst-
case hard TFNP problem from an average-case hard NP (resp. UP) problem. Let
us first formally define a fully black-box construction in this context.
Definition 3.3.1 (Fully black-box construction of a worst-case hard TFNP prob-
lem from an average-case hard UP problem). A fully black-box construction of
a worst-case hard TFNP problem from an average-case hard UP problem is a
tuple (R, TR, C, TC , p) of oracle-aided algorithms R, C, functions TR, TC, and a
polynomial p satisfying the following properties:

1. Efficiency: For any W ∈ UniqWitness, any input x ∈ {0, 1}∗, and any
choice of the internal randomness r ∈ {0, 1}∗, the algorithm RW (x; r) halts
in time TR (|x|).
For any W ∈ UniqWitness, and any inputs i, s ∈ {0, 1}∗, the algorithm
CW (i, s) halts in time TC (|i|+ |s|).
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2. Correctness: For each W ∈ UniqWitness and i ∈ {0, 1}∗, there exists
s ∈ {0, 1}∗ such that |s| ≤ p (|i|) and CW (i, s) = 1.1

3. Black-box proof of security: There exists a polynomial q such that for
any W ∈ UniqWitness, any sampler Samp, and any oracle-aided algorithm
Solve, if for all instances i ∈ {0, 1}∗

SolveW (i) returns s such that CW (i, s) = 1

then there exists infinitely many n ∈ N such that for all W ∈ UniqWitness:

Pr
x←Samp(1n),
r←{0,1}TR(n)

[︂
RW,Solve(x; r) = χW (x)

]︂
≥ 1

2 + 1
q(n) ,

where r represents the internal random choices of R.2

Definition 4.3.1 has the following semantics. The deterministic algorithm C
specifies the TFNP problem and the algorithm R is the (security) reduction which,
given access to any TFNP solver, solves the average-case hard NP problem. First,
we illustrate the definition of fully black-box construction using the construction
of a hard Pigeon problem (see Definition 1.1.3) from one-way permutations which
was shown by Papadimitriou [1994]. Then, we provide some additional remarks
on important points in the above definition.

Example of a fully black-box construction. The circuit P in the Pigeon
construction of Papadimitriou [1994] is as follows: Given a permutation π and an
inversion challenge y of length n, the Pigeon circuit is defined as

P π
y (x) = π(x)⊕ y.

First, observe that as π is a permutation P π
y (x) has no collision, i.e., for any

x ̸= x′ it holds that P π
y (x) ̸= P π

y (x′). Thus, there exists exactly one solution in
this Pigeon instance, which is x such that P π

y (x) = 0n. Then π(x) ⊕ y = 0n,
which implies that x is the preimage of y and the returned solution provides us
the preimage of the challenge y.

To illustrate our definition of a fully black-box construction, for any permuta-
tion π and challenge y, the circuit P π

y corresponds to an instance. The algorithm
C on input

(︂
P π

y , x
)︂
, respectively

(︂
P π

y , (x, x′)
)︂
, outputs 1 if and only if P π

y (x) = 0n,
respectively if P π

y (x) = P π
y (x′). The reduction algorithm R(1n, y) simply queries

the TFNP solver Solve with the instance i = P π
y , i.e., a circuit computing the

function P π
y (x) = π(x) ⊕ y, and outputs the solution s returned by Solve for

which, by construction, π (s) = y.
1This corresponds to totality of the TFNP problem, see Definition 1.1.1.
2Note that we can restrict the length of the string r by TR(n) since TR(n) upper bounds the

running time of the reduction R and, thus, it cannot do more than this many random choices. If
the reduction does less choices we may simply ignore the last bits of r which would correspond
to unused random choices of R.
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Constructions of worst-case vs. average-case hardness in TFNP. Notice
that our Definition 4.3.1 considers constructions of a worst-case hard TFNP prob-
lem – the reduction has access to Solve which is promised to return a solution
to any instance of the TFNP problem. To capture constructions of average-case
hardness in TFNP, we would need to extend the construction with an efficiently
sampleable distribution D of instances of the TFNP problem and require the re-
duction to solve the problem from UniqWitness when given access to any Solve
that returns solutions for instances coming from the specific distribution D (see
Definition 5.1 in Rosen et al. [2017]). However, given that we are proving a
black-box separation, showing impossibility for worst-case hardness is a stronger
result.

The quality of Solve. Note that we consider security reductions which solve
the problem from UniqWitness given access to Solve which outputs a solution
with probability 1, whereas some definitions in the literature allow the reduction
to work only with some non-negligible probability. This also makes our negative
result stronger – it is potentially easier to give a reduction when given access to
Solve which is guaranteed to always return a solution.

We prove the following theorem.
Theorem 3.3.2. There is no fully black-box construction (R, TR, C, TC , p) of a
worst-case hard TFNP problem from average-case hard UP problem with a success
probability of the security reduction better than 1/2+2−0.9n such that both running
times TR, TC ∈ O

(︂
ℓpolylog(ℓ)

)︂
, where n is the security parameter and ℓ corresponds

to the length of the input of R, resp. C.
As the average-case hard distribution in UP is also an average-case hard dis-

tribution for NP we immediately get the following corollary.
Corollary 3.3.3. There is no fully black-box construction (R, TR, C, TC , p) of a
worst-case hard TFNP problem from average-case hard NP problem with a success
probability of the security reduction better than 1/2+2−0.9n such that both running
times TR, TC ∈ O

(︂
ℓpolylog(ℓ)

)︂
, where n is the security parameter and ℓ corresponds

to the length of the input of R, resp. C.
The security reduction may retrieve the information whether a given word is

in the language (i.e., whether for its challenge x there exists a witness w such
that (x, w) ∈ W ) in various ways. It may query the challenge-witness pair (i.e.,
the pair (x, w) ∈ W ) directly or it may retrieve some information by querying to
Solve. We say that it queries the challenge-witness pair indirectly if it is queried
on the solution returned from Solve. We distinguish the following sets of queries
based on where they originate and which oracle is queried.
Notation 3.3.4 (Query sets Q). We distinguish the following sets of queries to
oracles depending where these queries originated and which oracle is queried.

• Let Q
(︂
CW (i, s)

)︂
denote the set of all pairs (x, w) ∈ {0, 1}∗ × {0, 1}∗ on

which the oracle W has been queried by C running on an input (i, s) .

• Let QSolve
(︂
RW,Solve(x; r)

)︂
denote the set of all instances i ∈ {0, 1}∗ on

which the oracle Solve has been queried by the reduction R running on
an input x ∈ {0, 1}∗ and with internal randomness r ∈ {0, 1}∗.
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• Let Qdir
W

(︂
RW,Solve(x; r)

)︂
denote the set of all pairs (x′, w) ∈ {0, 1}∗×{0, 1}∗

on which the oracle W has been queried by the reduction R running on
an input x ∈ {0, 1}∗ and with internal random choices r ∈ {0, 1}∗.

• Let Qindir
W

(︂
RW,Solve(x; r)

)︂
denote the set of pairs (x′, w) ∈ {0, 1}∗ × {0, 1}∗

on which the oracle W has been queried indirectly, i.e., all pairs that have
been queried by the algorithm C when running on an input (i, s) where
i ∈ QSolve

(︂
RW,Solve(x; r)

)︂
and s = SolveW (i).

• Let QW

(︂
RW,Solve(x; r)

)︂
= Qdir

W

(︂
RW,Solve(x; r)

)︂
∪Qindir

W

(︂
RW,Solve(x; r)

)︂
.

Note that these sets may have non-empty intersection.

Solve algorithm: Our algorithm Solve is described in Algorithm 5. The
intuition behind the algorithm is that we list all possible solutions which can
be returned in the set Si,W and try to return any “benign” solution. That is, a
solution which does not query a tuple (x, w) which is in the relation W . If such
a solution exists, we return it and, intuitively, this solution should not be helpful
for a security reduction as it does not reveal any witnesses.

Unfortunately, it may happen that no such “benign” solution exists. If there
is no solution which could be returned, we have to relax the conditions on the
“benign” solutions. In Section 3.4.2, we show that if we allow Solve to return
some witnesses in the order of increasing challenge length, then Solve does not
“help” the security reduction too much.

Algorithm 5: SolveW
C (i)

Hardwired : a fully black-box construction (R, TR, C, TC , p) of a worst-case
hard TFNP problem from an average-case hard UP problem

Oracle access: an oracle for W ∈ UniqWitness, i.e., an oracle which on input
(x, w) returns 1 if and only if (x, w) ∈W .

Input : an instance i ∈ {0, 1}∗
Output : a solution s ∈ {0, 1}∗ such that CW (i, s) = 1 and |s| ≤ p (|i|)

1 Si,W =
{︂

s ∈ {0, 1}∗
⃓⃓⃓

CW (i, s) = 1 and |s| ≤ p (|i|)
}︂

2 ℓ = 1
3 while True do
4 Bi,W,ℓ =

{︂
s ∈ Si,W

⃓⃓⃓
Q
(︂
CW (i, s)

)︂
∩W≥ℓ = ∅

}︂
5 if Bi,W,ℓ ̸= ∅ then
6 return lexicographically smallest s ∈ Bi,W,ℓ

7 end
8 ℓ = ℓ + 1
9 end

The correctness of the algorithm Solve (Algorithm 5) is discussed in Sec-
tion 3.4.1, where we prove that Solve always halts and returns a string which
is a solution for the queried instance. That is, we prove that TFNP is easy in
the presence of oracle Solve. We state the lemma here and provide its proof in
Section 3.4.1.
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Lemma 3.3.5. Let (R, TR, C, TC , p) be a fully black-box construction of a worst-
case hard TFNP problem from an average-case hard UP problem. For every in-
stance i ∈ {0, 1}∗ and every relation W ∈ UniqWitness, algorithm Solve (Algo-
rithm 5) returns a solution, i.e., a string s ∈ {0, 1}∗ of length at most p (|i|) such
that CW (i, s) = 1.

The probability that the security reduction is successful in deciding whether
its challenge x is a YES-instance (i.e., the probability that RW,Solve(x; r) returns
the value χW (x)) is upper bounded in Section 3.4.2, where we prove the following
lemma.

Lemma 3.3.6. Let (R, TR, C, TC , p) be a fully black-box construction of a worst-
case hard TFNP problem from an average-case hard UP problem and

qC(n) = max
⃓⃓⃓
Q
(︂
CW<n(i, s)

)︂⃓⃓⃓
,

where the maximum is over W ∈ UniqWitness, x ∈ {0, 1}n, r ∈ {0, 1}TR(n),
i ∈ QSolve

(︂
RW (x; r)

)︂
and s ∈ {0, 1}∗ such that |s| ≤ p (|i|). Then, for any

n ∈ N, there exists W ∈ UniqWitness such that:

Pr
x←{0,1}n,

r←{0,1}TR(n)

[︂
RW,Solve(x; r) = χW (x)

]︂
≤ 1

2 + TR(n) (qC(n) + 1)
2n+1 .

We can easily upper bound the number of queries made by the algorithm C
with respect to the length of the instance i. However, for the statement of the
lemma we need to upper bound this number with respect to the length of the
challenge on which R is running. Here the function qC comes into play. Intuitively,
this function upper bounds the number of queries of algorithm C on any relevant
input (i, s). Where, by relevant input (i, s), we mean the instances i which are
queried for some challenge of length n and strings s of length at most p (|i|).

Combining the above lemmata, we prove our Theorem 3.3.2.

Proof of Theorem 3.3.2. Let (R, TR, C, TC , p) be any such construction. Then, by
Lemma 3.3.5, algorithm Solve (Algorithm 5) returns a valid solution of the un-
derlying TFNP problem with probability 1. On the other hand, by Lemma 3.3.6,
for each n there exists a relation W ∈ UniqWitness for which we can upper bound
the probability that R solves the underlying UP problem by:

Pr
x←{0,1}n,

r←{0,1}TR(n)

[︂
RW,Solve(x; r) = χW (x)

]︂
≤ 1

2 + TR(n) (qC(n) + 1)
2n+1 ,

where qC(n) is the maximum of
⃓⃓⃓
Q
(︂
CW ′

<n(i, s)
)︂⃓⃓⃓

over the choices of relation W ′ ∈
UniqWitness, challenge x′ ∈ {0, 1}n, randomness r′ ∈ {0, 1}TR(n), instance i ∈
QSolve

(︂
RW ′(x′; r′)

)︂
and a possible solution s ∈ {0, 1}∗ such that |s| ≤ p (|i|).

We observe that, on an input of length n, the security reduction can query
an instance of length at most TR(n) since TR upper bounds its running time.
Thus, we consider strings s of length at most p (TR(n)) and the whole input
(i, s) for the algorithm C can be upper bounded by TR(n) + p (TR(n)). Since TC
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upper bounds the running time of C, we can finally upper bound the size of the
set Q

(︂
CW ′

<n(i, s)
)︂

from the above statement and, thus, upper bound qC(n) by
TC (TR(n) + p (TR(n))).

As both TR and TC are assumed to be quasi-polynomial functions and p is a
polynomial, we get that qC(n) is O

(︂
npolylog(n)

)︂
and also that

TR(n) (qC(n) + 1) ∈ O
(︂
npolylog(n)

)︂
∈ o

(︂
20.1n

)︂
.

Thus, for any large enough n, we can bound the success probability of R for
uniform distribution on challenges (that is the probability over the internal ran-
domness r ← {0, 1}TR(n) of the security reduction and the choice of a challenge
x← {0, 1}n that RW,Solve(x; r) returns χW (x) for all W ∈ UniqWitness) by

Pr
x←{0,1}n,

r←{0,1}TR(n)

[︂
RW,Solve(x; r) = χW (x)

]︂
≤ 1

2 + TR(n) (qC(n) + 1)
2n+1

≤ 1
2 + 2−0.9n.

Note that the reduction should be successful for any polynomial-time algorithm
Samp, which samples the challenges x ∈ {0, 1}n. Especially it should be success-
ful for our choice of Samp which returns the uniform distribution on {0, 1}n. Let
us also emphasize that in the proof of security (see Definition 3.3.1) we require
the security reduction to be successful on infinitely many different n ∈ N for every
choice of W ∈ UniqWitness. Thus, the above inequality concludes the proof.

3.4 Proofs of Supporting Lemmata for Theo-
rem 3.3.2

3.4.1 Solve Always Returns a Solution
Here we prove that algorithm Solve (Algorithm 5) always halts and returns a
valid solution. By the nature of the algorithm, it is clear that if it halts the
returned solution is valid. Thus, the proof effectively simplifies to showing that
Solve halts.

Lemma 3.3.5. (Restated) Let (R, TR, C, TC , p) be a fully black-box construc-
tion of a worst-case hard TFNP problem from an average-case hard UP problem.
For every instance i ∈ {0, 1}∗ and every relation W ∈ UniqWitness, algorithm
Solve (Algorithm 5) returns a solution, i.e., a string s ∈ {0, 1}∗ of length at
most p (|i|) such that CW (i, s) = 1.

Proof. If algorithm Solve halts then it returns a string s ∈ Bi,W,ℓ for some ℓ ∈ N
and Bi,W,ℓ ⊆ Si,W . Thus, s is a valid solution of length at most p (|i|) satisfying
CW (i, s) = 1. We only need to show that Solve always returns.

By the totality of the construction C (see Correctness in Definition 3.3.1),
the set Si,W is not empty. We consider any solution s ∈ Si,W and the queries C
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makes to the oracle W during the computation of CW (i, s). Let k be the length
of the longest query, that is

k = max
(x,w)∈Q(CW (i,s))

|x|.

Then, after k +1 iterations of the while loop, ℓ = k +1 and Q
(︂
CW (i, s)

)︂
∩W≥ℓ =

(as, by the definition of k, there are no queries of length at least ℓ). Thus,
s ∈ Bi,W,k+1 and Solve returns at the very latest at the (k + 1)-st iteration.

3.4.2 Success Probability of the Security Reduction Is
Small Even in the Presence of Solve

In this section, we prove Lemma 3.3.6 and, thus, upper bound the success proba-
bility of the security reduction. To prove the lemma, we consider an experiment
in which we invoke the reduction with a fake oracle W ′ instead of W . More
specifically, instead of running R with the real oracle W , we give the reduction
an oracle W ′ which “hides” all challenges of length at least n. That is, no pair
(x, w) with x of length n or longer is contained in W ′ but W ′ agrees with W on
all shorter challenges. In other words, it holds that W ′ = W<n.

It is clear that the probability that RW ′ returns the value χW (x) correctly
when it runs with respect to the oracle W ′ instead of W is bounded by 1/2.
Indeed, it could only guess whether the given challenge x ∈ {0, 1}n is in the
relation with some witness w (i.e., whether there exists w ∈ {0, 1}n for which
(x, w) ∈ W holds). Then, we argue that, with high probability, the views of
R when running with respect to W and W ′ are the same. Thus, proving that,
even though R runs with respect to the real oracle W , its success probability is
bounded by 1/2 + ϵ, where ϵ is the probability that the views differ.

To show that the views are identical with an overwhelming probability, we
need to argue that all queries to the oracle Solve are answered identically. For
any instance i ∈ {0, 1}∗, we upper bound the probability that Solve answers
differently in the following claim.

Claim 3.4.1. Let n ∈ N be any natural number and i ∈ {0, 1}∗. For any prob-
lem W ∈ UniqWitness, let sW,n ∈ {0, 1}∗ denote the solution returned by Solve
(Algorithm 5) when running on an instance i ∈ {0, 1}∗ with respect to W<n, that
is sW,n = SolveW<n(i), and let QW,n be the corresponding set of queries, i.e.,
QW,n = Q

(︂
CW<n (i, sW,n)

)︂
.

Then,

Pr
W←RL

[︂
SolveW (i) ̸= sW,n

]︂
≤ |QW,n|

2n+1 .

Proof. Let i be any instance and n ∈ N. We show that for any relation W ∈
UniqWitness:

SolveW (i) = sW,n if Qw,n ∩W≥n = ∅,

36



where sW,n and QW,n are as defined in the statement of the lemma. Then, using
the union bound, we get the desired upper bound as follows:

Pr
W←RL

[︂
SolveW (i) ̸= sW,n

]︂
≤ Pr

W←RL
[QW,n ∩W≥n ̸= ∅]

≤
∑︂

(x,w)∈Qw,n

|x|≥n

Pr
W←RL

[(x, w) ∈ W≥n]

≤
∑︂

(x,w)∈QW,n

|x|≥n

1
2n+1

≤ |QW,n|
2n+1 ,

where the second inequality holds because each x is in the language for some
witness w with probability 1/2 and the witness is chosen uniformly at random
from all strings of length |x| ≥ n. Thus, any pair (x, w) is in the language with
probability exactly 1/2|x|+1 ≤ 1/2n+1 if |x| = |w| and probability zero otherwise.

Let us fix any relation W ∈ UniqWitness and a solution sW,n, as well as,
the query set QW,n as in the statement of the lemma. It sufficess to show that
SolveW (i) = sW,n whenever

QW,n ∩W≥n = ∅. (3.4.1)

Recall that, by the definition of the benign set from the algorithm Solve (see
line 4 in Algorithm 5), for any ℓ ∈ N:

Bi,W,ℓ =
{︂
s ∈ Si,W

⃓⃓⃓
Q
(︂
CW (i, s)

)︂
∩W≥ℓ = ∅

}︂
,

where Si,W =
{︂
s ∈ {0, 1}∗

⃓⃓⃓
|s| ≤ p (|i|) ∧ CW (i, s) = 1

}︂
. Let us denote the iter-

ation in which SolveW (i) halts by tW and the returned solution by sW . Similarly,
let tW,n denote the iteration in which SolveW<n(i) halts and we already know
that it returns sW,n. We show a few observations about sW , sW,n, tW and tW,n

which, when combined together, give us that sW = sW,n.

sW ∈ Bi,W,tW
and sW,n ∈ Bi,W<n,tW,n

: These containments follow trivially from
the nature of the algorithm Solve. More specifically, if SolveW (i) halts
in the t-th iteration then the set Bi,W,t is non-empty and Solve returns a
solution from Bi,W,t (see line 6 of Algorithm 5).

tW,n ≤ n: If we restrict the length of challenges to be strictly less than n as well
as at least n we get empty relation, i.e., the set (W<n)≥n = ∅ and, thus,
also its intersection with Q

(︂
CW<n(i, s)

)︂
is empty for any s ∈ {0, 1}∗. That

is, Bi,W<n,tW,n
contains all solutions of the instance i. By correctness (see

Definition 3.3.1) there is at least one solution and, thus, SolveW<n(i) halts
(at the latest) in the n-th iteration of the while loop.

sW,n ∈ Bi,W,tW,n
: First we observe that all queries Q

(︂
CW<n (i, sW,n)

)︂
= QW,n

are answered the same when running with respect to W instead of W<n.
That follows from the fact that W<n agrees with W on all queries (x, w)
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where |x| < n and the assumption that QW,n ∩ W≥n = ∅ (see Equa-
tion (3.4.1)), which ensures that W<n agrees with W also on queries from
(x, w) ∈ QW,n where |x| ≥ n. Thus, sW,n is a solution with respect
to W (i.e., CW (i, sW,n) = 1) and, moreover, the set of queries also re-
mains unchanged when C runs with respect to W instead of W<n that is
Q
(︂
CW<n (i, sW,n)

)︂
= QW,n = Q

(︂
CW (i, sW,n)

)︂
.

Since tW,n ≤ n we have W≥tW,n
=
(︂(︂

W≥tW,n
∩W<n

)︂
∪W≥n

)︂
. Using this

equality and de Morgan rules we can rewrite the intersection from the def-
inition of Bi,W,tW,n

as follows:

Q
(︂
CW (i, sW,n)

)︂
∩W≥tW,n

= Q
(︂
CW (i, sW,n)

)︂
∩
(︂(︂

W≥tW,n
∩W<n

)︂
∪W≥n

)︂
=
(︂
Q
(︂
CW (i, sW,n)

)︂
∩
(︂
W≥tW,n

∩W<n

)︂)︂
∪
(︂
Q
(︂
CW (i, sW,n)

)︂
∩W≥n

)︂
.

Since W<n agrees with W on all pairs (x, w) ∈
(︂
W≥tW,n

∩W<n

)︂
and sW,n

is in Bi,W<n,tW,n
the first intersection has to be empty. The second intersec-

tion follows from already shown equality Q
(︂
CW (i, sW,n)

)︂
= QW,n and the

assumption that QW,n ∩W≥n = ∅ (see Equation (3.4.1)).

tW ≤ tW,n: From sW,n ∈ Bi,W,tW,n
we know that SolveW (i) must return (at the

latest) in the tW,n-th iteration of the while loop as the “benign” set contains
at least sW,n in this iteration.

sW ∈ Bi,W<n,tW
: We have already proved that sW ∈ Bi,W,tW

and in particular
Q
(︂
CW (i, sW )

)︂
∩W≥tW

= ∅. As tw ≤ tw,n ≤ n and W<n agrees with W

on all queries (x, w) where |x| < n, all queries are answered the same by
oracle W<n as by W . Thus, sW is a solution with respect to W<n too and,
moreover, Q

(︂
CW (i, sW )

)︂
= Q

(︂
CW<n (i, sW )

)︂
.

Since (W<n)≥tW
⊆ W≥tW

and queries Q
(︂
CW<n (i, sW )

)︂
= Q

(︂
CW (i, sW )

)︂
the intersection

Q
(︂
CW<n (i, sW )

)︂
∩ (W<n)≥tW

⊆ Q
(︂
CW (i, sW )

)︂
∩W≥tW

= ∅

and, thus, sW ∈ Bi,W<n,tW
.

tW = tW,n: The fact that sW ∈ Bi,W<n,tW
gives us that SolveW<n(i) returns in

the iteration tW or earlier. That is, tW,n ≤ tW . Combining with the already
proven inequality tW ≤ tW,n we get the equality.

sW = sW,n: Let t denote the iteration in which both algorithms return, that is
t = tW = tW,n. If we combine the above observations we get:

sW , sW,n ∈ Bi,W,t as well as sW , sW,n ∈ Bi,W<n,t

Recall that Solve returns the lexicographically smallest solution (see line 6
of Algorithm 5). As SolveW (i) returns sW in the t-th iteration and both
sW , sW,n ∈ Bi,W,t we get that sW ≤lex sW,n. Similarly since SolveW<n(i)
returns sW,n in the t-th iteration and both sW , sW,n ∈ Bi,W<n,t we get that
sW,n ≤lex sW . Combining these inequalities we get that sW = sW,n.

38



The last observation concludes the proof because we have shown that both al-
gorithms return the same solution sW = sW,n whenever Qs,n ∩W≥n = ∅ and we
have upper bounded the probability of this event by |QW,n| /2n+1.

Now we are ready to upper bound the success probability of the security
reduction.

Lemma 3.3.6. (Restated) Let (R, TR, C, TC , p) be a fully black-box construc-
tion of a worst-case hard TFNP problem from an average-case hard UP problem
and

qC(n) = max
⃓⃓⃓
Q
(︂
CW<n(i, s)

)︂⃓⃓⃓
,

where the maximum is over W ∈ UniqWitness, x ∈ {0, 1}n, r ∈ {0, 1}TR(n),
i ∈ QSolve

(︂
RW (x; r)

)︂
and s ∈ {0, 1}∗ such that |s| ≤ p (|i|). Then, for any n ∈ N

there exists W ∈ UniqWitness such that:

Pr
x←{0,1}n,

r←{0,1}TR(n)

[︂
RW,Solve(x; r) = χW (x)

]︂
≤ 1

2 + TR(n) (qC(n) + 1)
2n+1 .

Proof. Let us fix any construction (R, TR, C, TC , p) and a number n ∈ N as in the
statement of the lemma. We first upper bound the probability that RW,Solve(x; r)
returns χW (x), with respect to internal randomness r of the reduction R and the
choices of both x ← {0, 1}n as well as W ← RL. That is, we prove the following
bound rather than the one in the statement of the lemma.

Pr
x←{0,1}n,W←RL,

r←{0,1}TR(n)

[︂
RW,Solve(x; r) = χW (x)

]︂
≤ 1

2 + TR(n) (qC(n) + 1)
2n+1 .

Note that from this bound the lemma follows as by averaging there exists W such
that the same bound holds when the probability is taken only over the choice of x.

To prove the above inequality we consider the following experiment:

1. We choose an auxiliary language W ′ ← RL<n, that is we sample W ′′ ← RL
and set W ′ = W ′′

<n.

2. We run the security reduction R on our challenge x with respect to W ′ and
R outputs a bit b.

3. After R outputs we sample the language W ← RL in such a way that
W<n = W ′.

Observe that the distribution on languages W ∈ UniqWitness in the experiment
is the same as if we choose W ← RL directly. We argue that with high probability
the view of R when running with respect to W is the same as when running with
respect to W ′. Thus, the answer of R on the challenge x is the same.

Recall that when we sample W ← RL we add (x, ·) to W with probability
exactly 1/2. Thus, once we fix a bit bx, the probability over the choice of W ← RL
that χW (x) = bx is exactly 1/2. This gives us that the probability that the
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reduction returns χW (x) even though it runs with respect to W ′ instead of W as
follows:

Pr
x←{0,1}n,W←RL,

r∈{0,1}TR(n)

[︂
RW ′,Solve(x; r) = χW (x)

⃓⃓⃓
W<n = W ′

]︂
= 1

2

It suffices to show that the views of RW ′,Solve and RW,Solve are the same with
high probability. To this end we need to show that in both cases all queries to
Solve as well as to W are answered the same. First we show that the probability
that a direct query should be answered differently is small. Observe that as
W ′ ⊆ W this is equivalent to upper bounding the following probability for any
x ∈ {0, 1}n and any r ∈ {0, 1}TR(n):

Pr
W←RL

[︂
Qdir

W ′

(︂
RW ′,Solve(x; r)

)︂
∩ (W \W ′) ̸= ∅

⃓⃓⃓
W<n = W ′

]︂
.

By the definition of RL (see Definition 3.2.3), any pair (y, u) is in the relation
W with probability 1/

(︂
2|y|+1

)︂
if |y| = |u| and with probability zero otherwise.

Thus, we may bound the above inequality using union bound as follows:

Pr
W←RL

[︂
Qdir

W ′

(︂
RW ′,Solve(x; r)

)︂
∩ (W \W ′) ̸= ∅

⃓⃓⃓
W<n = W ′

]︂
≤

∑︂
(y,u)∈Qdir

W ′(RW ′,Solve(x;r))
Pr

W←RL
[(y, u) ∈ W \W ′ | W<n = W ′]

≤
∑︂

(y,u)∈Qdir
W ′

(︂
RW ′,Solve(x;r)

)︂
,

|y|≥n

1
2|y|+1

≤

⃓⃓⃓
Qdir

W ′

(︂
RW ′,Solve(x; r)

)︂⃓⃓⃓
2n+1 ,

where the second inequality follows from the condition that W<n = W ′ and, thus,
W \W ′ contains only pairs (y, u) such that |y| ≥ n.

Now we bound the probability that any query to the oracle Solve is answered
differently when the security reduction runs with respect to W ′ instead of W .
That is, we bound the following probability for any x ∈ {0, 1}n and any r ∈
{0, 1}TR(n):

Pr
W←RL

[︂
∃i ∈ QSolve

(︂
RW ′,Solve(x; r)

)︂
: SolveW (i) ̸= SolveW ′(i)

⃓⃓⃓
W<n = W ′

]︂
.

By Claim 3.4.1 the probability that Solve answers any query i differently
can be bounded by:

Pr
W←RL

[︂
SolveW (i) ̸= SolveW ′(i)

]︂
≤ q

2n+1 .

where q denotes the number of queries CW ′ makes when running on the instance i
and the solution s = SolveW ′(i). By assumptions of the lemma we can upper
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bound q by qC(n). Thus, using union bound we get

Pr
W←RL

[︂
∃i ∈ QSolve

(︂
RW ′,Solve(x; r)

)︂
: SolveW (i) ̸= SolveW ′(i)

⃓⃓⃓
W<n = W ′

]︂
≤

∑︂
i∈QSolve(RW ′,Solve(x;r))

Pr
W←RL

[︂
SolveW (i) ̸= SolveW ′(i)

⃓⃓⃓
W<n = W ′

]︂

≤
∑︂

i∈QSolve(RW ′,Solve(x;r))

qC(n)
2n+1

≤
⃓⃓⃓
QSolve

(︂
RW ′,Solve(x; r)

)︂⃓⃓⃓ qC(n)
2n+1

If all queries to both oracles Solve and W are answered the same for W
as well as for W ′, the returned bit is the same too. Thus, by adding all the
inequalities proven above (and taking the probability also with respect to the
challenge x and the randomness r) we get that:

Pr
x←{0,1}n,

r←{0,1}TR(n),
W←RL

[︂
RW,Solve(x; r) = χW (x)

]︂

≤ 1
2 + max

x∈{0,1}n,

r∈{0,1}TR(n)

⃓⃓⃓
Qdir

W ′

(︂
RW ′,Solve(x; r)

)︂⃓⃓⃓
+
⃓⃓⃓
QSolve

(︂
RW ′,Solve(x; r)

)︂⃓⃓⃓
qC(n)

2n+1

≤ 1
2 + TR(n) (qC(n) + 1)

2n+1 .

where we bound the number of direct queries to oracle W as well as the number
of queries to oracle Solve by the running time TR of the reduction. Now by
averaging, there is a choice of W ∈ UniqWitness such that the above bound holds
even when the probability is only over the choice of the challenge x and the
randomness r, which concludes the proof.
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4. Worst-Case Hardness in TFNP
and Injective One-Way Functions
In this chapter we show impossibility of simple construction of a worst-case hard
(and thus also average-case hard) TFNP problem from (injective) one-way func-
tions. The proof follows a similar blueprint as the proof in Chapter 3. But as
injective one-way functions (which imply average-case hardness in NP) are much
more structured than any average-case hard problem we are not able to prove the
impossibility in full. Instead we rule out only simple constructions.

Simple constructions. We recall the details of the construction of a hard-
on-average distribution in TFNP from one-way permutations (see Papadimitriou
[1994]) to highlight the restrictions on the type of reductions considered in our
results.

Consider the total search problem Pigeon (see Definition 1.1.3) which is com-
plete for a subclass of TFNP known as PPP, and Papadimitriou [1994] gave the
following construction of a hard Pigeon problem from one-way permutations
(discussed already in Section 3.3 in paragraph “Example fully black-box con-
struction”). Given a (one-way) permutation f : {0, 1}n → {0, 1}n and a challenge
y ∈ {0, 1}n for inversion under f , the reduction algorithm defines an instance of
Pigeon by the oracle-aided circuit P f

y computing the function P f
y (x) = f(x)⊕ y.

It is not hard to see that the instance of Pigeon Pf
y has a unique solution corre-

sponding to the preimage of y under f and, therefore, any algorithm solving it
breaks the one-wayness of f .

Note that the above construction of a hard (on average) TFNP problem is
extremely simple in various aspects:

• The construction is fully black-box, i.e., the Pigeon instance can be imple-
mented via an oracle-aided circuit treating the one-way permutation as a
black-box and the reduction inverts when given oracle access to an arbitrary
solver for Pigeon.

• The reduction is many-one, i.e., a single call to a Pigeon-solving oracle
suffices for finding the preimage of y.

• The reduction is f -oblivious, i.e., the oracle-aided circuit P f
y defining the

Pigeon instance depends only on the challenge y and does not depend on
the one-way permutation f in the sense that P f

y itself can be fully specified
without querying f . In other words, given the challenge y, the instance
P f

y submitted to the Pigeon oracle by the reduction is, as an oracle-aided
circuit, identical for all permutations f .

• The reduction is deterministic, i.e., it simply passes y to specify the Pigeon
instance.

It is known that such a fully black-box construction of Pigeon with a deter-
ministic f -oblivious many-one reduction exists also assuming collision-resistant
hash functions exist (folklore). Specifically, for any hash function h : {0, 1}n →
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{0, 1}n−1 from the collision-resistant family, the Pigeon instance is defined as
P h(x) which returns h(x) concatenated with 1. Since P h concatenates the value
h(x) with 1 for any input x, it never maps to the all-zero string and, therefore, has
the same collisions as h. Note that, unlike in the above construction from one-
way permutations, the instances resulting from collision-resistant hash functions
do not have a unique solution. In fact, there are always at least 2n−1 non-trivial
collisions (even in two-to-one functions where each y ∈ {0, 1}n−1 has exactly two
preimages) and this structural property is inherent as shown by Rosen et al.
[2017]. Importantly, the property of having nearly exponentially many solutions
is not in contradiction with the resulting distribution being hard-on-average. Cur-
rently, there is no actual evidence suggesting that average-case hardness in TFNP
cannot be based on the existence of injective one-way functions.

The above constructions motivate us to study whether there exist such “sim-
ple” constructions of an average-case hard TFNP problem under weaker crypto-
graphic assumptions such as the existence of injective one-way functions, and we
answer this question in negative (see Section 4.3.2, Theorem 4.3.4 for the formal
statement). Even though restricted, our results are the first step towards the full-
fledged black-box separation of TFNP and (injective) one-way functions. We note
that the full-fledged separation would necessarily subsume the known separation
of collision-resistant hash functions and injective one-way functions (see Simon
[1998]), for which, despite the recent progress, there are only non-trivial proofs
(see Matsuda and Matsuura [2011], Haitner et al. [2015], Bitansky and Degwekar
[2019]).

We explain the differences between the proof presented here and the proof
for impossibility of constructions from average-case hard problem in NP (i.e., the
result presented in Chapter 3) in Section 4.1. Then we introduce the notation
and definitions needed for the proof in Section 4.2. In Section 4.3 we present the
formal definition of a “simple” fully black-box constructions as well as the proof
of their impossibility for the deterministic f -oblivious many-one reductions. The
proofs of all the lemmata are given in Section 4.4. Finally in Section 4.5 we extend
our results from Section 4.3 to randomized and non-adaptive constructions.

4.1 Our Techniques
Similarly as in Chapter 3 we show the impossibility using the so-called two oracle
technique by Hsiao and Reyzin [2004]. Here the oracle O comprises of a random
injective function (which yields an injective one-way function) and a procedure
Solve which provides a solution for any instance of a TFNP problem. To ar-
gue that Solve does not help inverting injective one-way function we use the
reconstruction paradigm of Gennaro and Trevisan [2000]. Here we explain the
structural insights that are key to our separation and guided us in the design of
our oracle Solve.

The existence of a “useless” solution. At the core of our negative result is a
new structural insight about TFNP instances constructed from (injective) one-way
functions. Observe that any one-way function gives rise to a search problem with
a hard-on-average distribution which is total over its support (but all instances
outside its support have no solution). Specifically, for any one-way function
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f : {0, 1}n → {0, 1}n+1, an instance is any y ∈ {0, 1}n+1 and the solution for y
is any x ∈ {0, 1}n such that f(x) = y. The hard-on-average distribution then
corresponds to sampling x uniformly from {0, 1}n and outputting the instance
y = f(x) (as in the standard security experiment for one-way functions). When
attempting to construct a hard search problem which is truly total and has a
solution for all instances (not only for the support of the hard distribution), one
has to face the frustrating obstacle in the form of “useless” solutions which do
not help the reduction in inverting its challenge y. Note that, as the resulting
TFNP problem must be total for all oracles f , there must exist a solution even for
oracles with no preimage for the challenge y. By a simple probabilistic argument,
it follows that for a random oracle f and a random challenge y, with overwhelming
probability, there exists a solution to any TFNP instance which does not query a
preimage of y, i.e., a “useless” solution from the perspective of the reduction.1

Thus, demonstrating a black-box separation would be straightforward if the
TFNP solver knew which challenge y is the reduction attempting to invert. Our
solver would simply output such a “useless” solution and we could argue via
the reconstruction paradigm that no reduction can succeed in inverting y given
access to our solver. In this work, we show that it is possible to construct a TFNP
solver which returns such a “useless” solution with overwhelming probability even
though the solver does not know the input challenge of the reduction.

Reduction-specific Solve. Note that a reduction in a fully black-box con-
struction must succeed in breaking the one-way function f when given access to
any oracle Solve (see Definition 4.3.1). In other words, to rule out the exis-
tence of constructions with a fully black-box reduction, it is sufficient to show
that for every reduction there exists a Solve which is not helpful in inverting;
in particular, Solve may depend on the reduction. To enable Solve to answer
the reduction’s query with a “useless” solution with overwhelming probability, we
take exactly this approach and construct a reduction-specific Solve for any con-
struction of a TFNP problem from injective one-way functions. We significantly
differ in this aspect from the previous works which relied on the reconstruction
paradigm of Gennaro and Trevisan [2000], e.g., the works which employed the
collision-finding oracle of Simon [1998] (see Haitner et al. [2015], Pass and Venki-
tasubramaniam [2010], Rosen and Segev [2010], Brakerski et al. [2011]). We note
that the possibility of designing a breaker oracle which depends on the fully black-
box construction was exploited already by Gertner et al. [2001], who considered
Solve which depends on the implementation rather than the reduction algorithm
(as in our case). That is, to rule out the construction of a primitive P from a
primitive Q, they considered an oracle Solve that depends on the implementa-
tion CQ of the primitive P , whereas in our case Solve depends on the reduction
algorithm R that is supposed to break Q given access to an algorithm that breaks
CQ. The possibility of proving black-box separations via reduction-specific ora-
cles was also observed in the work of Hsiao and Reyzin [2004] who, nevertheless,
did not have to leverage this observation in their proofs.

1Note that the above argument fails in the case of one-way permutations, where the challenge
y ∈ {0, 1}n is in the image for any permutation f : {0, 1}n → {0, 1}n. The construction of a
TFNP problem then simply does not have to deal with the case when the challenge y is not in
the image of f , and it can ensure that every solution is useful for inverting the challenge y.
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On a high level, given that Solve can use the code of the reduction R, Solve
can simulate R on all possible challenges y to identify the set of challenges on
which R queries the present instance that Solve needs to solve. As we show,
the solution then can be chosen adversarially so that it avoids such solutions
of interest to the reduction. To turn this intuition into a formal proof, one
needs to show that our Solve indeed does not help in inverting injective one-way
functions and we do so along the lines of the reconstruction paradigm of Gennaro
and Trevisan [2000].

Applying the compression argument. Two important subtleties arise in the
proof when we try to turn the reduction into a pair of compression and decom-
pression algorithms, which we explain next. First, the reconstruction paradigm
is conventionally applied to random permutations (as in Gennaro and Trevisan
[2000], Haitner et al. [2015]), whereas the reduction R and the algorithm Solve
are designed for random injective functions. The natural approach is to simply
proceed with the same style of proof even in our setting. Specifically, one would
presume that a similar incompressibility argument can be leveraged if we manage
to somehow encode the image of the random injective function. While this intu-
ition is correct in the sense that it allows correct compression and reconstruction,
it turns out that the space required to encode the image is too prohibitive for
reaching the desired contradiction with known information-theoretic lower bounds
on the expected length of encoding for a random injective function. To resolve
this issue, we construct compressor and decompressor algorithms for a random
permutation, but we equip the algorithms with shared randomness in the form
of a random injective function h : {0, 1}n → {0, 1}n+1 independent of the random
permutation π : {0, 1}n → {0, 1}n to be compressed. Whenever the compressor
and decompressor need to provide the reduction or Solve with access to the
injective function f : {0, 1}n → {0, 1}n+1, they compose the permutation π with
the shared injective function h and then pass off the composed injective function
f = h ◦ π to the reduction. With this modification, we are able to show that any
reduction which succeeds in inverting injective one-way functions given access to
our Solve can be used to compress a random permutation on {0, 1}n below a
standard information-theoretic lower bound on the size of a prefix-free encoding
of such random variable. We note that this is reminiscent of the approach used
in Matsuda and Matsuura [2011] for separating injective one-way functions from
one-way permutations.

Second, we cannot employ the actual oracle Solve in our compression and
decompression algorithms: even though we can use the reduction when compress-
ing and decompressing the random permutation, we must be able to consistently
simulate Solve without accessing the whole permutation. In general, the choice
of the “breaker” oracle that can be simulated efficiently without too many queries
to the permutation is a crucial part of the whole proof, and, a priori, it is un-
clear how to design a TFNP solver which also has such a property. Nevertheless,
we show that there exists a Solve which can be efficiently simulated given only
(sufficiently small) partial information about the permutation.

f-oblivious reductions. As our Solve simulates the reduction on possible
challenges y, we need for technical reasons that the reduction is f -oblivious
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(namely, for correctness of our encoding and decoding algorithms). However,
we believe that f -obliviousness is not overly restrictive as it is a natural property
of security reductions. Besides the two fully black-box constructions of Pigeon
with f -oblivious reductions (described already at the beginning of Chapter 4),
f -oblivious security reductions appear also in the cryptographic literature. See
for example the standard security reduction in the Goldreich-Levin theorem (see
Goldreich and Levin [1989]) establishing the existence of hard-core predicate for
any one-way function (note that this particular security reduction is also non-
adaptive). An orthogonal notion of a π-oblivious construction appears in the
work of Wee [2007]. However, it is the implementation of the constructed primi-
tive which is “oblivious” to the one-way permutation π in his work.

4.2 Preliminaries
Unless stated otherwise, all logarithms are base two. For X ⊆ {0, 1}∗, we use X
to denote the set {0, 1}∗\X. For strings x, y ∈ {0, 1}∗, we use x <lex y or y >lex x
to denote that x is lexicographically strictly smaller than y.

Notation 4.2.1 (Functions). Let X, Y ⊆ {0, 1}∗, f : X → Y be a function and
X ′ ⊆ X be a set.

1. f ↾ X ′ denotes the restriction of f on X ′, i.e., the function f ′ : X ′ → Y
such that ∀x ∈ X ′ : f ′(x) = f(x).

2. Dom(f) denotes the domain of f , i.e., the set X.

3. Im(f) denotes the image of f , i.e., the set {f(x) | x ∈ X} ⊆ Y .

4. f [X ′] denotes the image of the restriction of f on X ′, that is the set
Im (f ↾ X ′).

Notation 4.2.2 (Injective functions). We denote by Injmn the set of all injective
functions from {0, 1}n to {0, 1}m. For the special case when n = m we get the
set of all permutations on {0, 1}n.

The set Inj is the set of all functions f : {0, 1}∗ → {0, 1}∗, such that f can
be interpreted as a sequence f =

{︂
fn | fn ∈ Injµ(n)

n

}︂
n∈N

of injective functions,
where µ : N → N is an injective function such that for all n ∈ N : µ(n) > n and
µ(n) ≤ 100nlog n.

We say that the function µ is the type of f and we define the corresponding
type operator τ : Inj → (N→ N) such that τ(f) = µ.

We denote the set of all possible types by T, i.e.,

T = {µ : N→ N | ∃f ∈ Inj such that τ(f) = µ} .

Through the paper fn denotes the function f ↾ {0, 1}n (i.e., restriction of f to
the domain {0, 1}n.), where f ∈ Inj.

Finally let µ ∈ T be any type, then by Injµ we denote the set of all injective
functions from Inj of type µ.

46



Notation 4.2.3 (Sampling). Let A be any finite set we use x← A to denote that
x is taken uniformly at random from the set A.

Moreover, for any type µ ∈ T we use f ← Injµ to denote that functions
{fn = f ↾ {0, 1}n}n∈N are chosen independently2 and uniformly at random from
all functions from Injµ(n)

n .

In our proofs, we often compose a function defined on all binary strings with
a function defined only for binary strings of certain length; namely, we often want
to compose a function from Inj with a permutation of n-bit strings. The desired
resulting function should always be a function from all binary strings. For the
ease of exposition, we extend the standard notation for function composition as
follows.

Notation 4.2.4 (Function composition). Let X, Y, Z be any sets such that X ⊆ Y
and let f : X → Y and g : Y → Z. We define the function g ◦ f : Y → Z as:

(g ◦ f) (x) =
⎧⎨⎩g (f(x)) if x ∈ X,

g(x) if x ∈ Y \X.

Finally, we recall some basic information-theoretic results about prefix-free
codes.

Definition 4.2.5 (Prefix-free code). A set of code-words C ⊆ {0, 1}∗ is a prefix-
free code if there are no two distinct c1, c2 ∈ C such that c1 is a prefix (initial seg-
ment) of c2, i.e., for any two distinct c1, c2 ∈ C there exists 0 ≤ j < min (|c1| , |c2|)
such that (c1)j ̸= (c2)j.

Proposition 4.2.6 (Theorem 5.3.1 in Cover and Thomas [2012]). The expected
length L of any prefix-free binary code for a random variable X is greater than
or equal to the entropy H(X).

Corollary 4.2.7. To encode a uniformly random permutation π ∈ Injnn using
prefix-free encoding it takes at least log (2n!) bits in expectation.

Proof. The entropy of a uniformly randomly chosen permutation from Injnn is
log (2n!) as we choose uniformly at random from 2n! distinct permutations. By
Proposition 4.2.6, we get that the expected size of the encoding is at least log (2n!).

4.3 Separating TFNP and Injective OWF

4.3.1 Fully Black-Box Construction of Hard TFNP Prob-
lem from Injective OWF

Below, we give a definition of fully black-box construction of a (worst-case) hard
TFNP problem from an injective one-way function.

2Note that, since µ is injective, any f ← Injµ satisfies f ∈ Injµ.
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Definition 4.3.1 (Fully black-box construction of a worst-case hard TFNP prob-
lem from injective-OWF). Let µ ∈ T be any type. A fully black-box construction
of a worst-case hard TFNP problem from injective one-way function of type µ is
a tuple (R, TR, C, TC , p) of oracle-aided algorithms R, C, functions TR, TC, and a
polynomial p satisfying the following properties:

1. R and C halt on all inputs: For all f ∈ Injµ, n ∈ N, and y, i, s ∈ {0, 1}∗,
the algorithm Rf (1n, y) halts in time TR (n + |y|), and the algorithm Cf (i, s)
halts in time TC (|i|+ |s|).

2. Correctness: For all f ∈ Injµ and for all i ∈ {0, 1}∗, there exists s ∈
{0, 1}∗ such that |s| ≤ p (|i|) and Cf (i, s) = 1, i.e., for any instance of the
TFNP problem there exists a solution of polynomial length.3

3. Fully black-box proof of security: There exists a polynomial p′ such
that for all f ∈ Injµ and any oracle-aided algorithm Solve, if

∀i ∈ {0, 1}∗ : Solvef (i) returns s such that Cf (i, s) = 1

then for infinitely many n ∈ N,

Pr
x←{0,1}n

[︂
Rf,Solve (1n, f(x)) = x

]︂
≥ 1

p′(n) .

Note that all the remarks mentioned in Section 3.3 apply to this definition too
and are important for our proof. But we point out one more important property
of the above definition on which we crucially rely in our proof.

Reduction-specific Solve. Let us emphasize the order of quantifiers restrict-
ing the security reduction in Definition 4.3.1:

∃ (R, TR, C, TC , p) ∀f ∀Solve :
Solvef solves the TFNP problem C =⇒ Rf,Solve inverts f.

Importantly, the reduction must invert when given access to any oracle Solve.
As a consequence, in order to establish a separation, the above statement is
negated and it suffices to show that for every reduction there exists a solver (see
proof of [Hsiao and Reyzin, 2004, Proposition 1] for more details). Thus, in the
proof of an oracle separation, the oracle Solve may even depend on the behaviour
of the reduction R, and, in particular, Solve can simulate the security reduction
R on an arbitrary input. We exploit these properties in establishing our results.

Direct and indirect queries to f . The security reduction R can learn some-
thing about f in various ways. It may query f directly or the information might
be deduced from the solution of some queried instance of the TFNP problem re-
turned by Solve. We introduce the following notation in order to distinguish
where queries originate (similarly as in Notation 3.3.4), which allows us to reason
about the view the security reduction has over the function f in our proof of
Theorem 4.3.4.

3The Correctness corresponds to the totality of the TFNP problem, see Definition 1.1.1.
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Notation 4.3.2 (Query sets Q). We distinguish the following sets of oracle
queries depending on where these queries originated and which oracle is queried.

• Let Q
(︂
Cf (i, s)

)︂
denote the set of all preimages x ∈ {0, 1}∗ on which the

oracle f has been queried by C running on an input (i, s).

• Let QSolve
(︂
Rf,Solve(1n, y)

)︂
denote the set of all instances i ∈ {0, 1}∗ on

which the oracle Solve has been queried by R running on a security pa-
rameter n and challenge y.

• Let Qdir
f

(︂
Rf,Solve(1n, y)

)︂
denote the set of preimages x ∈ {0, 1}∗ on which

the oracle f has been queried by R running on an input y and security
parameter n.

• Let Qindir
f

(︂
Rf,Solve(1n, y)

)︂
denote the set of all preimages x ∈ {0, 1}∗ on

which the oracle f has been queried indirectly, i.e., it has been queried by
C running on an input (i, s) where i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
and s =

Solvef (i).

• Let Qf

(︂
Rf,Solve(1n, y)

)︂
= Qdir

f

(︂
Rf,Solve(1n, y)

)︂
∪Qindir

f

(︂
Rf,Solve(1n, y)

)︂
.

Note that these sets may not be disjoint. When f is a partial function (i.e., when
f is not defined on all inputs) the query set contains all queries queried up to
the point of the first undefined answer and the query with the undefined answer
is included as well.

Restrictions on the power of the reduction. We consider various restricted
classes of security reductions as defined below.

Definition 4.3.3 (Properties of security reductions). Let µ be any type. We dis-
tinguish the following properties of a security reduction R from TFNP to injective
one-way functions of type µ.

The security reduction can be either deterministic or randomized. For a ran-
domized security reduction, we extend the input of R to a triple (1n, y; r), where
the meaning of n, resp. y, remains unchanged (i.e., n is the security parameter,
y is the challenge), and r ∈ {0, 1}∗ is the randomness of the security reduction.
The success probability of a randomized security reduction is taken not only over
the choice of the challenge x but also over the choice of its randomness r similarly
as in Definition 3.3.1.

The security reduction R is many-one4 if for all f ∈ Injµ, for any oracle
Solve and for all y ∈ {0, 1}∗, Rf,Solve(1n, y) makes a single query to the oracle
Solve.

The security reduction R is non-adaptive if for all f ∈ Injµ, for any oracle
Solve and for all y ∈ {0, 1}∗, all the queries of Rf,Solve(1n, y) to the oracle
Solve are submitted in parallel (i.e., the queries to Solve do not depend on the
answers received from Solve).

4Note that this may slightly differ from the standard definition of many-one reduction from
complexity theory, in particular the one used for decision problems, where the algorithm returns
the same output as it gets from the oracle query. Whereas we allow the security reduction to
post-process the output from the Solve oracle.
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The security reduction R is f -oblivious if for all challenges y ∈ {0, 1}∗, for
any oracle Solve, and any pair of functions f, f ′ ∈ Injµ, the distributions of
queries QSolve

(︂
Rf,Solve(1n, y)

)︂
and QSolve

(︂
Rf ′,Solve(1n, y)

)︂
are identical (i.e.,

the queries to Solve depend only on the input y and are independent of the
oracle f). 5

We say that a fully black-box construction (R, TR, C, TC , p) of a worst-case
hard TFNP problem from injective one-way functions is deterministic (resp. ran-
domized), many-one (resp. non-adaptive) and f -oblivious if the corresponding
security reduction R is deterministic (resp. randomized), many-one (resp. non-
adaptive) and f -oblivious.

4.3.2 Impossibility for a Deterministic f-Oblivious Many-
One Reduction

In this section, we show that there is no fully black-box construction of a hard
TFNP problem from injective one-way functions with a deterministic f -oblivious
many-one reduction. The proof of this result is already non-trivial and highlights
our main technical contributions. In Section 4.5, we explain how to extend this
result to rule out fully black-box constructions even with a randomized f -oblivious
non-adaptive reduction.

Theorem 4.3.4. Let µ ∈ T be any type. There is no fully black-box construction
(R, TR, C, TC , p) of a worst-case hard TFNP problem from injective one-way func-
tions of type µ with a deterministic f -oblivious many-one reduction with success
probability at least 2−0.1n such that both running times TR, TC ∈ O

(︂
ℓpolylog(ℓ)

)︂
,

where n is the security parameter and ℓ corresponds to the length of the input of
R, resp. C.

In the above theorem, the running time of both R and C is restricted to
quasi-polynomial. Note that the standard notion of cryptographic constructions
requires R, C to run in polynomial time in order to be considered efficient. We
are ruling out a broader class of potentially less efficient reductions.

The proof of Theorem 4.3.4 uses, on a high level, a similar template as other
black-box separations in the literature. That is, we design an oracle O relative
to which (injective) one-way functions exist but TFNP is broken (even in the
worst case). We follow the two-oracle approach of Hsiao and Reyzin [2004], and,
therefore, our oracle O = (f, Solve) consist of:

1. f ∈ Injµ: a sequence of random injective functions which implements injec-
tive one-way functions; and

2. Solve: a reduction-specific oracle that solves TFNP instances.

It is a well-established result that a random injective function is one-way (see, e.g.,
Claim 5.3 in Rosen et al. [2017] for the more general case of random functions).
The bulk of technical work revolves around showing that f remains one-way

5Alternatively the reader may think of the f -oblivious reduction as consisting of two algo-
rithms R = (R1, R2). Where the first one takes as input the security parameter n, the challenge
y and may query only the oracle Solve. In contrast the algorithm R2 is allowed to query only
the oracle f and its input consist n, y and the output of R1.
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Algorithm 6: The oracle Solve.
Hardwired : a deterministic f -oblivious many-one fully black-box

construction (R, TR, C, TC , p) of a worst-case hard TFNP
problem from injective-OWF of type µ

Oracle access: an injective function f = {fn}n∈N ∈ Injµ
Input : an instance i ∈ {0, 1}∗
Output : a solution s ∈ {0, 1}∗ such that Cf (i, s) = 1 and |s| ≤ p (|i|)

1 Compute Zi =
⋃︁TC(|i|+p(|i|))

n=1

{︂
y ∈ {0, 1}µ(n) | i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂}︂
2 for n ∈ {1, . . . , TC (|i|+ p (|i|))} do
3 if | {0, 1}µ(n) \ Zi| < 2n then
4 Set Zi = Zi \ {0, 1}µ(n)

5 end
6 end
7 Compute Yi = Zi ∩ Im(f)
8 Compute Ni = {n ∈ N | Yi ∩ Im (fn) ̸= ∅}
9 for n ∈ Ni do

10 Compute Yi,n = Yi ∩ Im (fn)
11 end
12 Compute Si,f =

{︂
s ∈ {0, 1}∗ | |s| ≤ p (|i|) ∧ Cf (i, s) = 1

}︂
13 while True do
14 Bi,f =

{︂
s ∈ Si,f | f

[︂
Q
(︂
Cf (i, s)

)︂]︂
∩ Yi = ∅

}︂
15 if Bi,f ̸= ∅ then
16 return lexicographically smallest s ∈ Bi,f

17 end
18 Choose n ∈ Ni such that |Yi,n|

2n is maximized.
19 Set Ni = Ni \ {n}
20 Set Yi = Yi \ Yi,n

21 end

even in the presence of Solve. For any fully black-box construction with a
deterministic f -oblivious many-one reduction, we provide an oracle Solve which
finds a solution for any TFNP instance (i.e., TFNP is easy in the presence of
Solve) and argue that it does not help the reduction in inverting injective one-
way functions. The description of our oracle Solve is given in Algorithm 6 and
it is explained below.

Oracle Solve: Let (R, TR, C, TC , p) be the construction of a hard TFNP prob-
lem from injective one-way function with a deterministic f -oblivious many-one
security reduction. We define our oracle Solve for the particular choice of
(R, TR, C, TC , p), especially we hard-wire both C and R in the algorithm Solve.
Ideally, Solve should output a solution i which gives the reduction R no infor-
mation about the inversion of its challenge y. Unfortunately, Solve is unaware of
the particular challenge y on which Rf (1n, y) queried Solve with the instance i.
Nevertheless, Solve can compute the set Zi of all challenges y on which the
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reduction queries the instance i.6 The challenges in Zi become “protected” and
Solve will attempt to provide a solution which does not reveal a preimage of
any y ∈ Zi, i.e., s such that Cf (i, s) does not make an f -query on a preimage of
any y ∈ Zi.

Note that we could run into a potential technical issue when defining Zi as
the set of all challenges y on which R queries the instance i might be infinite.
However when the instance i is queried by the security reduction R on some very
long challenge y then C contributes no indirect query to f−1(y) as the running
time of C depends only on the length of the instance i. More formally: the
running time of C is bounded by TC (|i|+ p (|i|)) thus C cannot query f on longer
inputs. Therefore, we can consider only possible challenges y from {0, 1}µ(n) for
n ≤ TC (|i|+ p (|i|)).

Unfortunately we cannot protect all such challenges y ∈ Zi. For technical
reasons we do not protect any challenge of length m = µ(n) for some n ∈ N if
almost all challenges of length m query the instance i. More specifically if there
are less then 2n challenges in the set {0, 1}m \Zi, then any injective function from
Injµ contains at least one string from Zi in its image. Then if the solution of
instance i would be conditioned on querying a preimage of Zi (i.e., Cf (i, s) = 1
if and only if f

[︂
Q
(︂
Cf (i, s)

)︂]︂
∩ Zi ̸= ∅) then no matter how we choose f ∈ Injµ

there is a solution to the instance i. Thus we cannot use Correctness (see Defini-
tion 4.3.1) to show existence of a solution which would not query preimage of any
“protected” challenge y ∈ Zi in this case. We show that with high probability
Im (fn) contains many challenges from Zi and that any solution does not signif-
icantly help R with inverting a random challenge y ∈ Im (fn) since the instance
i is queried by R on many distinct challenges. After removing such challenges
from the protected set we restrict the set to only those challenges which are in
the image of the one-way function f (see the set Yi on line 7 of Algorithm 6).

On lines 8–12, Solve computes the following auxiliary sets Ni, Yi,n, and Si,f .
The set Ni contains all the lengths of the preimages x such that the reduction
Rf,Solve (1n, f(x)) queries the instance i. Solve then splits Yi into subsets Yi,n

using the input lengths of interest in Ni. Finally, Solve computes the set Si,f

which is the set of all possible solutions for the instance i.
The strategy of Solve is to return a solution from the set of “benign” solu-

tions Bi,f , which do not induce any query to preimages of the protected challenges
in Yi. If there is any such “benign” solution then Solve simply halts and returns
the lexicographically smallest one. Unfortunately, it might still be the case that
every solution queries a preimage of some y ∈ Yi, e.g., if the instance i is queried
for all challenges y ∈ Im(f) of a given preimage length n and on each solution s
at least one x of length n is queried (i.e., Bi,f = ∅ unless we remove Yi,n from Yi).
Since Solve in general cannot output a solution while protecting the whole set Yi,
it will proceed to gradually relax the condition on the set of protected challenges.

Note that we might allow Solve to return a solution even though it induces
queries to preimages of protected challenges, as long as the reduction queries the
instance i on the corresponding image length often enough, as any fixed solution
induces only a bounded number of queries to f (bounded by TC). Therefore, if the

6Here we crucially rely on f -obliviousness of the reduction algorithm R which ensures that Zi

depends only on the type of the function f , which allows SolveSim to simulate Solve without
querying f on too many inputs.
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set of challenges on which R queries i is dense enough w.r.t. some preimage length
then, with overwhelming probability, an arbitrary solution will be “benign” for
the random challenge y given to the reduction. Thus, we allow Solve to return a
solution revealing preimages of challenges from the auxiliary set Yi,n maximizing
|Yi,n|

2n . If the fraction |Yi,n|
2n is small then Solve is able to find a “benign” solution

which protects the preimages of length n (see Claim 4.4.10).
Whereas, if the fraction |Yi,n|

2n is large enough then any fixed solution will be
“benign” w.r.t. the actual challenge of R with overwhelming probability as each
solution can induce queries to preimages of only a small number of challenges
from the set Yi,n (see Claim 4.4.9).

In order to show formally that Solve does not help in inverting the injective
one-way function, we employ an incompressibility argument similar to Gennaro
and Trevisan [2000]. Specifically, we present algorithms Encoden (given in Al-
gorithm 7) and Decoden (given in Algorithm 8) which utilize the reduction R
to allow compression of a random permutation more succinctly than what is
information-theoretically possible. When compressing the random permutation
by Encoden, we have access to the whole permutation and we can effectively
provide the reduction with access to Solve. However, to be able to use the
reduction also in the Decoden, we have to be able to simulate access to our
Solve oracle given access only to a partially defined oracle f (as we are recon-
structing f). For the description of the algorithm SolveSim, which simulates
the Solve oracle for the purpose of decoding in Decoden, see Algorithm 9.

Encoden algorithm: The algorithm Encoden (Algorithm 7) uses the reduc-
tion R to compress a random permutation π on bit strings of length n. Note that
even though R succeeds in inverting an injective function, for technical reasons,
we leverage its power in order to compress a permutation. One particular issue
we would run into when trying to compress an injective function f which is not
surjective is that the encoding would have to comprise also of the encoding of the
image of f which might render the encoding inefficient.

Nevertheless, in order to use the reduction for compressing, we must provide
it with oracle access to an injective function which is not a bijection. Thus, we
equip Encoden (as well as Decoden) with an injective function h. Encoden

then computes the function f as a composition of the functions h ◦ π and uses
the reduction with respect to the composed oracle f . We emphasize that h is
independent of π, therefore it cannot be used in order to compress π on its own.

First, Encoden computes the set INVf which is the set of all challenges y on
which the reduction successfully inverts (i.e., the reduction returns f−1(y)). Then
Encoden computes the set Gf , which is the set of “good” challenges y, on which
the reduction successfully inverts even though Solve returns a solution which
does not induce a query to any preimage of y. This set is used to reduce the size
of the trivial encoding of f – the part of f corresponding to the challenges in Gf

will be algorithmically reconstructed by Decoden using the security reduction R.
Specifically, Encoden computes Yf , the subset of Gf for which the preim-

ages will be algorithmically reconstructed, as follows: Encoden processes the
challenges y in Gf one by one in lexicographically increasing order and stores all
f -queries needed for reconstruction by R (i.e., for any x′ such that there was an
f -query x′, the element f(x′) is removed from the “good” set Gf as we cannot
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Algorithm 7: The algorithm Encoden.
Hardwired : a deterministic f -oblivious many-one fully black-box

construction (R, TR, C, TC , p) of a worst-case hard TFNP
problem from injective-OWF of type µ

Common Input: an injective function h ∈ Injµ shared with Decoden

Input : a permutation π ∈ Injnn
Output : an encoding M of π

1 f = h ◦ π, i.e., f(x) =
{︄

h (π(x)) for all x of length n

h(x) otherwise
2 INVf =

{︂
y ∈ Im (hn) | Rf,Solve(1n, y) = f−1(y)

}︂
3 Gf =

{︂
y ∈ INVf | f−1(y) /∈ Qindir

f

(︂
Rf,Solve(1n, y)

)︂}︂
4 Yf = ∅ and Xf = ∅
5 while Gf ̸= ∅ do
6 Pick lexicographically smallest y ∈ Gf

7 Gf = Gf \
(︂
f
[︂
Qf

(︂
Rf,Solve(1n, y)

)︂]︂
∪ {y}

)︂
8 Yf = Yf ∪ {y} and Xf = Xf ∪

{︁
f−1(y)

}︁
9 end

10 if |Xf | < 20.6n then
11 return M = (0, π)
12 end
13 else
14 return M = (1, |Xf |, Yf , Xf , σ = f ↾ ({0, 1}n \Xf )) ∈

{0, 1}
1+n+

⌈︂
log ( 2n

|Yf |)
⌉︂

+
⌈︂

log ( 2n

|Xf |)
⌉︂

+⌈log(|{0,1}n\Xf |!)⌉

15 end

reconstruct the preimage of y using R without knowing the image of x′ under f).
Encoden outputs an encodingM which describes the size of Xf , the sets Yf

and Xf (where Xf is the set of preimages corresponding to Yf ), and the partial
function representing the function f on inputs of length n outside of Xf . Thus,
the encoding saves bits by not revealing the bijection between Xf and Yf which
is algorithmically reconstructed instead (we bound the savings in Lemma 4.3.8).
Specifically, the size of Xf (equal to the size of Yf ) can be encoded using log 2n = n

bits. Yf is a subset of Im (fn) = Im (hn) and it is encoded using ⌈log
(︂

2n

|Yf |

)︂
⌉ bits as

the index of the corresponding subset of size |Yf | (the set Xf is encoded in a similar
manner). Finally, the bijection between {0, 1}n \Xf and Im(f)\Yf is encoded as
the index of the corresponding permutation on a set of size | {0, 1}n \Xf | using
⌈log (| {0, 1}n \Xf |!)⌉ bits.

A small technicality arises when the set Xf , respectively the set Yf , is not
large enough, the above mentioned encoding would be inefficient as the trivial
encoding outputting the whole description of the permutation π would use fewer
bits. Thus, Encoden simply outputs the trivial encoding when Xf is too small.
The first bit of the encoding distinguishes between these two cases.

Decoden algorithm: The encoding returned by Encoden is uniquely decod-
able by Decoden given in Algorithm 8 (see Section 4.4.2). When the output

54



Algorithm 8: The algorithm Decoden.
Hardwired : a deterministic f -oblivious many-one fully black-box

construction (R, TR, C, TC , p) of a worst-case hard TFNP
problem from injective-OWF of type µ

Common Input: an injective function h ∈ Injµ shared with Encoden

Input : an encoding M
Output : a permutation π ∈ Injnn

1 Parse M = (b,M′), where b ∈ {0, 1}
2 if b = 0 then
3 Decode π from M′
4 return π

5 end
6 Parse M′ = (|Xf |, Yf , Xf , σ)

/* f ′ is partial as it is defined only outside Xf */

7 Set partial function f ′ =
{︄

σ for inputs of length n

h otherwise
8 while Yf ̸= ∅ do
9 Pick lexicographically smallest y ∈ Yf

10 Let f ′′(x) =
{︄

y for all x ∈ Dom(h) \Dom(f ′)
f ′(x) otherwise

/* By SolveSim (h, f ′, ·) we denote the fact that we run SolveSim
with first two inputs fixed to h respectively f ′ and only
the last input (instance i) is provided by the reduction.
*/

11 x = Rf ′′,SolveSim(h,f ′,·)(1n, y)
12 Let f ′(x) = y
13 Set Yf = Yf \ {y}
14 end
15 return π =

(︁
h−1 ◦ f ′

)︁
↾ {0, 1}n

of Encoden starts with “0” bit, the rest of the encoding is an explicit encoding
of π and we are immediately done with its reconstruction. If the output starts
with “1” bit, the following n bits represent |Xf | = |Yf |. Decoden then reads
the following

⌈︂
log

(︂
2n

|Xf |

)︂⌉︂
bits of the encoding to reconstruct the set Yf (as the

j-th subset of Im (fn) = Im (hn) of size |Xf |). Similarly, Decoden reconstructs
the set Xf using the following

⌈︂
log

(︂
2n

|Xf |

)︂⌉︂
bits. The remaining bits represent σ,

a restriction of f on all the n-bit inputs outside of Xf , given by the index of the
corresponding bijection between {0, 1}n \ Xf and Im (fn) \ Yf . Note that such
encoding of σ does preserve the structure of the restriction but it looses the infor-
mation about the domain and image of σ. However, both are easy to reconstruct.
The domain is simply {0, 1}n \Xf and the image of σ can be computed from Yf

and the common input h as Im (σ) = Im (fn)\Yf = Im (hn ◦ π)\Yf = Im (hn)\Yf .
Decoden then computes the remaining preimages one by one in lexicographic

order (on the remaining images in Yf ) using the security reduction R, adding the
reconstructed mapping into a partial function f ′. Note that during the computa-
tion of the preimage of y, the reduction might make an f -query on x which has
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no defined output. But as Decoden takes y ∈ Yf in the same order as Encoden

added them to the set Yf , this happens if and only if the preimage of the current
challenge y is being queried. Thus, we answer any such query by y (it is crucial
that this happens only for f -queries made directly by R) which is captured in
the definition of the auxiliary function f ′′ defined by Decoden and used as the
oracle for the security reduction R.

Once Encoden finds the preimages of all challenges y from Yf , the function f ′

is defined everywhere. To reconstruct the permutation π on {0, 1}n, Decoden

can simply compose the inverse of h with the reconstructed function f ′.

SolveSim algorithm: For the ease of presentation we usually do not explicitly
mention the oracle h as it is given by context (we run Decoden and SolveSim
with respect to only one h at a time).

The computation of the algorithm SolveSim (Algorithm 9) is similar to
the computation of Solve (Algorithm 6). First, SolveSim computes the sets
Zi, Yi, Ni and Yi,n for all n ∈ Ni. There is one big difference between Solve and
SolveSim. As SolveSim does not have access to the whole function f it uses
h or the partial knowledge of f , namely the partial function f ′, everywhere f is
used in the Solve algorithm.

• We use h whenever we need to determine the image of fn for some n.
As ∀n ∈ N : Im (hn) = Im (fn) using Im (hn) instead of Im (fn) makes no
difference to the computation.

• The second place where h is used instead of f is when SolveSim computes
the set Zi. Specifically, when determining challenges y for which the security
reduction R queries the given instance i, the algorithm SolveSim computes
the same Zi as if it used f by the f -obliviousness of the security reduction.

• In all other places, SolveSim uses the partial knowledge of f (i.e., the
partial function f ′). This causes a real difference in the computation. In
particular, the set Si,f ′ (as computed by SolveSim) may differ a lot from
Si,f (as computed by Solve) as some solutions from Si,f potentially query
some unknown parts of f . Thus, the set Si,f ′ computed by SolveSim is
just a subset of the whole Si,f . The set Si,f ′ contains only the solutions
SolveSim is “aware of” (i.e., those for which f ′ is defined for all queries
and thus SolveSim may verify the solution). The rest of the computation
is practically the same, except that SolveSim is restricted just to the set
of solutions Si,f ′ . The main trick is that we make sure that SolveSim is
aware of the solution which should be returned and it does not matter that
it ignores other solutions of the instance.

Structure of the proof of Theorem 4.3.4. For ease of presentation and
understanding, we divide the proof into four lemmata, Lemma 4.3.5 through 4.3.8.
Lemma 4.3.5 shows that given an instance i of the TFNP problem represented by
the algorithm Cf , our Solve always returns a solution, i.e., an s ∈ {0, 1}∗ such
that Cf (i, s) = 1 (formal proof is given in Section 4.4.1). Thus, any distribution
of instances of the TFNP problem is easy in the presence of Solve.
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Algorithm 9: The algorithm SolveSim.
Hardwired : a deterministic f -oblivious many-one fully black-box

construction (R, TR, C, TC , p) of a worst-case hard TFNP
problem from injective-OWF of type µ

Input : a function h ∈ Injµ, partial injective function f ′ ∈ Injµ, and
an instance i ∈ {0, 1}∗

Output : a solution, i.e., s ∈ {0, 1}∗ : Cf ′(i, s) = 1 ∧ |s| ≤ p (|i|)

1 Compute Zi =
⋃︁TC(|i|+p(|i|))

n=1

{︂
y ∈ {0, 1}µ(n) | i ∈ QSolve

(︂
Rh,Solve(1n, y)

)︂}︂
2 for n ∈ {1, . . . , TC (|i|+ p (|i|))} do
3 if | {0, 1}µ(n) \ Zi| < 2n then
4 Set Zi = Zi \ {0, 1}µ(n)

5 end
6 end
7 Compute Yi = Zi ∩ Im(h)
8 Compute Ni = {n ∈ N | Yi ∩ Im (hn) ̸= ∅}
9 for n ∈ Ni do

10 Compute Yi,n = Yi ∩ Im (hn)
11 end
12 Compute

Si,f ′ =
{︂

s ∈ {0, 1}∗
⃓⃓⃓
|s| ≤ p (|i|) ∧Q

(︂
Cf ′(i, s)

)︂
⊆ Dom(f ′) ∧ Cf ′(i, s) = 1

}︂
13 while True do
14 Bi,f ′ =

{︂
s ∈ Si,f ′ | f

[︂
Q
(︂
Cf ′(i, s)

)︂]︂
∩ Yi = ∅

}︂
// "benign" solutions

15 if Bi,f ′ ̸= ∅ then
16 return lexicographically smallest s ∈ Bi,f ′

17 end
18 Choose n ∈ Ni such that |Yi,n|

2n is maximized.
19 Set Ni = Ni \ {n}
20 Set Yi = Yi \ Yi,n

21 end

Lemma 4.3.5. For any instance i ∈ {0, 1}∗, any type µ ∈ T and any f ∈ Injµ,
the algorithm Solvef (i) halts and returns a solution, i.e., it returns a string
s ∈ {0, 1}∗ such that |s| ≤ p (|i|) and Cf (i, s) = 1.

To argue that Solve does not help in inverting injective functions, we analyze
the joint properties of the algorithms Encoden and Decoden. First, we show
that Decoden always returns the correct permutation encoded by Encoden

(see Section 4.4.2 for the formal proof).

Lemma 4.3.6. For all n ∈ N, µ ∈ T, π ∈ Injnn, and h ∈ Injµ,

Decodeh
n

(︂
Encodeh

n(π)
)︂

= π,

where Encoden, respectively Decoden, is given in Algorithm 7, respectively
Algorithm 8.

We crucially rely on f -obliviousness of the security reduction for the proof
of Lemma 4.3.6. It is the property which allows us to simulate the algorithm
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Solve during the decoding phase, as SolveSim needs to be able to compute the
same set Zi, respectively Yi, as Solve does. Moreover, SolveSim cannot query
f on all preimages as Solve does when computing Zi, respectively Yi. Due to
f -obliviousness of the reduction, we may substitute f by h in the computation
of Zi and Yi in SolveSim as the resulting sets depends only on the image of the
function given to R as an oracle (and Im(f) = Im(h)).

Second, we show that the encoding output by Encoden is prefix-free (see Sec-
tion 4.4.3 for the formal proof).

Lemma 4.3.7. Let µ ∈ T be any type, h ∈ Injµ be any injective function and
n ∈ N, then the encoding given by the algorithm Encoden (Algorithm 7) is
prefix-free, i.e.,

∀π, π′ ∈ Injnn such that π ̸= π′ : Encodeh
n(π) is not a prefix of Encodeh

n(π′).

Finally, we bound the expected size of the encoding given by Encoden

(see Section 4.4.4) which contradicts the information-theoretic bound implied
by Corollary 4.2.7.

Lemma 4.3.8. Let µ ∈ T be any type and (R, TR, C, TC , p) be a determinis-
tic f -oblivious many-one fully black-box construction of a worst-case hard TFNP
problem from an injective one-way function of type µ. Assume n ∈ N is large
enough so that n ≥ 50 and 2q(n) + 2 ≤ 20.2n, where q(n) is the maximal num-
ber of f -queries made by C on the queried instance (see Definition 4.4.5). Let
the success probability of R on security parameter n be β ≥ 2−0.1n, i.e., for any
f ∈ Injµ we have

Pr
x←{0,1}n

[︂
Rf,Solve (1n, f(x)) = x

]︂
= β ≥ 2−0.1n.

Then
∃h ∈ Injµ : Eπ←Injnn

[︂⃓⃓⃓
Encodeh

n(π)
⃓⃓⃓]︂
≤ log (2n!)− 8

10n20.1n.

We claim (see Claim 4.4.6) that the upper bound 2q(n) + 2 ≤ 20.2n used in
the statement of the lemma is without loss of generality for large enough n and
for all quasi-polynomial (and, hence, also for efficient) algorithms R, C. We use
this fact again in the proof of the main theorem (Theorem 4.3.4), and refer the
readers to Section 4.4.4 for the precise statement and its proof.

Equipped with the above lemmata, we prove Theorem 4.3.4.

Proof of Theorem 4.3.4. Suppose to the contrary that there is such a construction
(R, TR, C, TC , p). By Lemma 4.3.5, the algorithm Solve (Algorithm 6) returns
a valid solution with probability one. Thus, the reduction R must invert f with
high probability when given access to any oracle f ∈ Injµ and our oracle Solve,
i.e.,

Pr
x←{0,1}n

[︂
Rf,Solve (1n, f(x)) = x

]︂
≥ 1

p′(n)
for some polynomial p′ and infinitely many n ∈ N.

Let n ∈ N be large enough such that
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1. 2q(n) + 2 ≤ 20.2n,

2. Prx←{0,1}n

[︂
Rf,Solve (1n, f(x)) = x

]︂
≥ 1

p′(n) ,

where q(n) is the maximal number of f -queries made by C on the queried
instance (see Definition 4.4.5). As already pointed out, the quasi-polynomial
bounds on running times TC , TR ∈ O

(︂
npolylog(n)

)︂
imply that q(n) ∈ o (20.2n) (see

Claim 4.4.6). Thus, for large enough n, the upper bound 2q(n) + 2 ≤ 20.2n holds
without loss of generality.

For any h ∈ Injµ, we can use the algorithm Encodeh
n (Algorithm 7) to en-

code a given permutation π ∈ Injnn. Decodability of the encoding follows from
Lemma 4.3.6. Moreover, by Lemma 4.3.7, the encoding is a prefix-free code.
By Lemma 4.3.8, there is a function h ∈ Injµ such that the pair of algorithms
Encodeh

n and Decodeh
n defines an encoding of π ← Injnn with expected length

at most log (2n!) − 8
10n20.1n. This contradicts the information-theoretic bound

on the expected length of any prefix-free encoding of a random permutation on
{0, 1}n given by Corollary 4.2.7.

4.4 Proofs of the Supporting Lemmata for The-
orem 4.3.4

The first lemma we need to prove is that the algorithm Solve halts and returns
a valid solution on any input TFNP instance i. Section 4.4.2 is devoted to prov-
ing the correctness of our encoding, i.e., the fact that the algorithm Decoden

uniquely and correctly decodes Encoden’s input permutation. We show that
the encoding itself is prefix-free in Section 4.4.3. Section 4.4.4 is the core of the
incompressibility argument. We show that the expected size of our encoding is
smaller than the information-theoretic bound.

4.4.1 Solve Always Returns a Solution
In this section we show that algorithm Solve halts and returns a proper solution.
When the algorithm Solve halts it is easy to show that the returned solution is
a valid solution of the given TFNP problem and that it is of the correct length
(such a solution has to exist by correctness of the reduction). Thus the proof
essentially reduces to proving that Solve eventually halts, at latest when the
set Yi becomes empty.

Lemma 4.3.5. (Restated) For any instance i ∈ {0, 1}∗, any µ ∈ T and any
f ∈ Injµ the algorithm Solvef (i) halts and returns a solution, i.e., it returns a
string s ∈ {0, 1}∗ such that |s| ≤ p (|i|) and Cf (i, s) = 1.

Proof. First observe that all sets Zi, Yi, Ni, Yi,n and Si,f are well defined and can
be computed in finite time.

Notice that in each iteration of the while loop we remove one n from the set
Ni. Thus after |Ni| iterations the set Ni is empty. During the whole algorithm
we keep the invariant that

Yi ⊆
⋃︂

n∈Ni

{0, 1}n
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(see lines 7, 8, 19 and 20 of Algorithm 6). After |Ni| iterations of the while loop
the set Yi is empty as well. Once Yi = ∅, the set Bi = Si,f . As the set Si,f is
nonempty by correctness of the TFNP problem (see Definition 4.3.1 - Correctness)
the algorithm Solve always halts.

Finally when the algorithm returns (only line 16 of Algorithm 6), it returns
a string s from the set Bi ⊆ Si,f . Thus |s| ≤ p (|i|) and Cf (i, s) = 1 by the
definition of the set Si,f (see line 12 of Algorithm 6).

4.4.2 Encoding Is Uniquely Decodable
In this section, we show that the encoding given by Encoden (Algorithm 7)
is uniquely decodable by Decoden (Algorithm 8), i.e., we prove the following
lemma.

Lemma 4.3.6. (Restated) For any n ∈ N, any µ ∈ T, any π ∈ Injnn and for
any h ∈ Injµ

Decodeh
n

(︂
Encodeh

n(π)
)︂

= π,

where Encoden, Decoden are as described in Algorithms 7 and 8.
To prove this lemma, we work with a partial function f ′ computed during

the decoding. We show by induction on the number of steps of Decoden that
during the whole computation f ′ agrees with the function f . During decoding
we fill in the undefined values of f ′. To find the missing values we find preimages
of challenges y from image of f one by one using the reduction algorithm R.

We need to show that the missing mapping is computed correctly. To this
end, we show that the reduction as run during the decoding phase gives the same
output as it gave when run during the encoding phase. To prove this we show
that all f -queries (both direct and indirect) made by the reduction (when run in
the decoding phase) are answered exactly as if f would be queried.

The first step is to show that all direct f -queries are answered correctly
(Claim 4.4.1).

Claim 4.4.1. Let n ∈ N be any number, µ ∈ T be any type, h ∈ Injµ be any
function, π ∈ Injnn be any permutation and let f = h ◦ π. Let M be the output of
Encodeh

n(π) (see Algorithm 7) and assume that M = (1, |Xf | , Yf , Xf , σ). Let
j ∈ N be such that 1 ≤ j ≤ |Xf |.

Let y be the j-th lexicographically smallest string from Yf (i.e., y is picked in
the j-th iteration of the while loop, see line 8 of Algorithm 8). Let

Xf,j = {x ∈ Xf |f(x) is the k-th lexicographically smallest in Yf for k < j} ,

f ′ = f ↾
(︂
Xf,j ∪Xf

)︂
and

f ′′ : {0, 1}∗ → {0, 1}∗ be such that f ′′(x) =
⎧⎨⎩f ′(x) for x ∈ Dom(f ′)

y otherwise

Then
∀x′ ∈ Qdir

f

(︂
Rf,Solve(1n, y)

)︂
f ′′(x′) = f(x′).
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Note that if Decoden computed the first j − 1 preimages then f ′, f ′′ from
Algorithm 8 correspond to their definition given in Claim 4.4.1. This is formalized
in the proof of Claim 4.4.3.

Proof of Claim 4.4.1. Let x′ be any query from Qdir
f

(︂
Rf,Solve(1n, y)

)︂
. We distin-

guish the following four cases:

x′ /∈ Xf : In this case f ′(x′) is defined (it is set before the first iteration of the
while loop). Thus f ′′(x′) = f ′(x′) = f(x′), where the last equality follows
from the assumptions.

x′ ∈ Xf ∧ f(x′) <lex y: Then x′ ∈ Xf,j and f ′(x′) is defined in the j-th iteration,
as Decoden (Algorithm 8) computes preimage of f(x′) before y. Thus
f ′′(x′) = f ′(x′) = f(x′), where the last equality follows from the assump-
tions.

x′ ∈ Xf ∧ f(x′) = y: In this case f ′(x′) is undefined (we are computing the preim-
age of y in j-th iteration of while loop), thus by definition of f ′′, f ′′(x′) =
y = f(x′).

x′ ∈ Xf ∧ f(x′) >lex y: As f(x′) >lex y, the Encoden (Algorithm 7) processes y

before f(x′). Then if x′ is in Qdir
f

(︂
Rf,Solve(f,·)(1n, y)

)︂
, Encoden removes

f(x′) from Gf (line 7, Algorithm 7). This means that f(x′) is never added
to Yf and similarly x′ is never added to Xf . Thus no such direct query to f
can occur during the computation of Rf,Solve(1n, y).

Claim 4.4.1 shows that each direct oracle query to f (that is a query done
by the reduction itself) is answered correctly by f ′′. Next we show that both
algorithms Solve (Algorithm 6) and SolveSim (Algorithm 9) answer the TFNP
query with the same solution whenever the algorithm Decoden (Algorithm 8)
queries SolveSim during the simulation of the security reduction R.

The main observation is that the algorithm SolveSim is aware of the so-
lution returned by Solve (i.e., f ′ is defined for all f -queries made during the
computation). Then we show that the procedure which picks the solution out of
all solutions in algorithm Solve gives the same result in algorithm SolveSim,
which is possibly aware of only a few solutions of the instance. Here we utilize the
fact that the algorithm Solve always returns lexicographically smallest “benign”
solution.

Claim 4.4.2. Let n ∈ N be any number, µ ∈ T be any type, h ∈ Injµ be any
function, π ∈ Injnn be any permutation and let f = h ◦ π. Let M be the output
of Encodeh

n(π) (see Algorithm 7) and assume that M = (1, |Xf |, Yf , Xf , σ). Let
j ∈ N be such that 1 ≤ j ≤ |Xf |. Let y be the j-th lexicographically smallest
string from Yf (i.e., y is picked in the j-th iteration of the while loop). Let

Xf,j = {x ∈ Xf | f(x) is the k-th lexicographically smallest in Yf for k < j}

and
f ′ = f ↾

(︂
Xf,j ∪Xf

)︂
.
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Then the query to Solve is answered correctly, i.e.,

∀i ∈ QSolve
(︂
Rf,Solve(1n, y)

)︂
Solvef (i) = SolveSim (h, f ′, i) .

Proof. We fix i ∈ QSolve
(︂
Rf,Solve(1n, y)

)︂
. Let sSolve be the solution returned

by Solvef (i) and sSolveSim be the solution returned by SolveSim (h, f ′, i). To
prove sSolve = sSolveSim, we examine the sets Sf,i, Bf,i, Sf ′,i and Bf ′,i used in the
algorithms Solve and SolveSim. For the ease of presentation we denote the
sets as follows:

SSolve,f : Let SSolve,f denote the set Sf,i as computed by the algorithm Solve
(Algorithm 6, line 12).

SSolveSim,f ′: Let SSolveSim,f ′ denote the set Sf ′,i as computed by the algorithm
SolveSim (Algorithm 9, line 12).

BSolve,f,k: Let BSolve,f,k denote the set Bf,i as computed in the k-th iteration of
the while loop by the algorithm Solve (Algorithm 6, line 14).

BSolveSim,f ′,k: Let BSolveSim,f ′,k denote the set Bf ′,i as computed in the k-th iter-
ation of the while loop of the algorithm SolveSim (Algorithm 9, line 14).

Moreover by f -obliviousness the sets Zi, Yi, Ni, Yi,n depend only on the type
and the image of f which is identical to the image of h and h is known to
SolveSim. Thus all sets used in algorithms Solve and SolveSim except for
SSolve,f , SSolveSim,f ′ , BSolve,f,k, BSolveSim,f ′,k are independent of f (just dependent
on its image) and can be computed by both Solve and SolveSim.

First recall that y ∈ Yf thus by the definition of Yf , respectively the definition
of Gf ⊇ Yf (Algorithm 7, lines 3, 4, 6 and 8), we get that f−1(y) /∈ Q

(︂
Cf (i, s)

)︂
as y would be never added to Gf otherwise. Also observe that images of all queries
x ∈ Qf

(︂
Rf,Solve(1n, y)

)︂
⊇ Q

(︂
Cf (i, s)

)︂
are removed from Gf (Algorithm 7, line 7)

while y is processed. This means that for any x ∈ Q
(︂
Cf (i, s)

)︂
either x /∈ Xf or

f(x) <lex y, in both cases f ′(x) is defined and f ′(x) = f(x) by the assumption of
the claim. Thus

sSolve ∈ SSolveSim,f ′ . (4.4.1)

On the other hand by the assumptions of the claim f ′ ⊆ f , thus every s ∈
SSolveSim,f ′ is a solution also with respect to f . In other words sSolveSim ∈ SSolve,f

and more generally the following property holds:

SSolveSim,f ′ ⊆ SSolve,f . (4.4.2)

During the entire computation both Solve and SolveSim hold the exact same
set Yi, as that is computed and updated independently of f , respectively f ′. Thus
by the definition of BSolveSim,f ′,k and BSolve,f,k and Equation (4.4.2) we have that

∀k ∈ N BSolveSim,f ′,k = BSolve,f,k ∩ SSolveSim,f ′ . (4.4.3)
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Fix k ∈ N such that BSolve,f,k or BSolveSim,f ′,k is nonempty. We show that both
sets BSolve,f,k and BSolveSim,f ′,k are non-empty. Moreover we show the following:

{sSolve, sSolveSim} ⊆ BSolve,f,k ∩BSolveSim,f ′,k (4.4.4)

We distinguish the following cases:

BSolve,f,k = ∅: By the assumption BSolveSim,f ′,k ̸= ∅. Thus SolveSim returns
in the k-th iteration of the while loop and the returned solution sSolveSim
has to be contained in BSolveSim,f ′,k. By Equation (4.4.3), we get that
sSolveSim ∈ BSolve,f,k. Which is a contradiction as we assumed that BSolve,f,k

is empty.

BSolve,f,k ̸= ∅: As BSolve,f,k ̸= ∅, the Solve algorithm returns in the k-th iter-
ation of the while loop and thus sSolve ∈ BSolve,f,k. By Equation (4.4.1),
sSolve is contained in SSolveSim,f ′ too. Thus by Equation 4.4.3, sSolve ∈
BSolveSim,f ′,k. Now using the fact that BSolveSim,f ′,k ̸= ∅ and the same ar-
gumentation as in the case above we get that sSolveSim ∈ BSolveSim,f ′,k and
sSolveSim ∈ BSolve,f,k. Which proves that both sSolve, sSolveSim ∈ BSolve,f,k ∩
BSolveSim,f ′,k.

Thus we proved that both algorithms Solve and SolveSim return in the k-th
iteration of their while loop. Recall that the lexicographically smallest solution
from BSolve,f,k, respectively BSolveSim,f ′,k, is returned. Thus by Equation 4.4.4
both algorithms Solve and SolveSim return the same string sSolve = sSolveSim.

We combine Claims 4.4.1 and 4.4.2 to show that the function f ′ is defined
consistently with f during the whole computation.

Claim 4.4.3. Let n ∈ N be any number, µ ∈ T be any type, h ∈ Injµ be any
function, π ∈ Injnn be any permutation and let f = h ◦ π. Let M be the output
of Encodeh

n(π) (see Algorithm 7) and assume that M = (1, |Xf |, Yf , Xf , σ). Let
j ∈ N be such that 0 ≤ j ≤ |Xf |. Let f ′ be the partial function computed by
Decodeh

n (M) after j iterations of the while loop (line 8, Algorithm 8). Then

f ′ ⊆ f

i.e., for any x ∈ Dom(f ′) we have f ′(x) = f(x).

Proof. We proceed by induction on j, i.e., the number of iterations of the while
loop of the algorithm Decoden (Algorithm 8). Before the first iteration, we set
f ′ according to h for all strings of length different from n. Thus f ′ is the same
as f on these strings because f differs from h only by applying a permutation
to Im (hn) (more specifically by applying π to {0, 1}n before applying hn). For
inputs of length n we set f ′ according to σ (see line 11 of Algorithm 7). Recall
that σ = f ↾ ({0, 1}n \Xf ), thus f ′ is consistent with f on all strings of length n
for which f ′ is defined. Thus, we immediately get f ′ ⊆ f .

In each iteration of the while loop, the algorithm Decoden (Algorithm 8)
sets the preimage of exactly one y ∈ Im(f). We show that the preimage is
computed correctly. Suppose that we are in the j-th iteration of the while loop
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(line 8, Algorithm 8) and y is chosen in the j-th iteration as the lexicographically
smallest string in Yf (i.e., for all y′ ∈ Im(f), y′ <lex y, we know the preimage
of y′). We set the preimage of y in f ′ to be the output of Rf ′′,SolveSim(h,f ′,.)(1n, y).

Note that the fact that y is in Yf implies that Rf,Solve(f,·)(1n, y) = f−1(y),
as y ∈ Yf are taken from the set INVf (see line 2, Algorithm 7). As the preim-
age of y is computed as Rf ′′,SolveSim(h,f ′,.)(1n, y), we need to show that all oracle
queries in the computation are answered the same way as in the computation
Rf,Solve(f,.)(1n, y). Then

f ′−1(y) = Rf ′′,SolveSim(h,f ′,.)(1n, y) = Rf,Solve(f,.)(1n, y) = f−1(y).

We use Claims 4.4.1 and 4.4.2 to argue that the queries were answered cor-
rectly. Note that the assumption on f ′ used in these claims follows from the
induction hypothesis. As in the j-th iteration of the while loop f ′ is defined for
all x /∈ Xf and for the j − 1 preimages of the lexicographically smallest strings
from Yf . By the induction hypothesis f ′ is defined correctly (i.e., f ′ gives the
same output as f on all x ∈ Dom(f ′)). By Claim 4.4.1 all f -queries are answered
correctly, i.e., for any x′ ∈ Qdir

f

(︂
Rf,Solve(f,.)(1n, y)

)︂
we have f ′′(x′) = f(x′). To

prove that Solve query is answered correctly observe that by f -obliviousness of
the reduction the same TFNP instance is queried, i.e.,

QSolve
(︂
Rf ′′,SolveSim(h,f ′,·)(1n, y)

)︂
= QSolve

(︂
Rf,Solve(1n, y)

)︂
.

By Claim 4.4.2 the query to SolveSim is answered identically as it would be
answered by Solve. Thus Rf ′′,SolveSim(h,f ′,·)(1n, y) = Rf,Solve(f,·)(1n, y) and the
preimage of y is set correctly.

Finally we use Claim 4.4.3 to prove that Decoden correctly decodes the
message of Encoden and outputs the right permutation.

Proof of Lemma 4.3.6. We assume that the first bit of the output of Encoden

(Algorithm 7) is 1, otherwise a full description of π has been sent to Decoden

(Algorithm 8) and the lemma holds trivially. Let f = h ◦ π similarly as in the
Encoden algorithm (Algorithm 7). We have to show that Decoden (Algo-
rithm 8) on line 15 holds function f ′ such that f ′ = f . We use Claim 4.4.3 to
get that f ′ ⊆ f . Now observe that on line 15 of Algorithm 8 the function f ′ is
defined for all inputs. Thus f ′ = f . Finally the Decoden algorithm returns a
function (h−1 ◦ f) ↾ {0, 1}n = (h−1 ◦ h ◦ π) ↾ {0, 1}n = π.

4.4.3 Encoding Is Prefix-free
To be able to directly leverage coding theory we show that our encoding is in fact
prefix-free. If the set of invertible images Yf is small the encoding starts with
a “0” bit followed by a trivial (prefix-free) encoding of the given permutation.
Otherwise we show that the two codewords either differ at the beginning or are
of the same length. Unique decodability gives us that such codewords must differ.
In the proof we use the following claim (Claim 4.4.4) which computes the size of
an encoding of a permutation π as returned by Encoden (Algorithm 7).

Claim 4.4.4. The size of the encoding computed by Encoden (Algorithm 7) is
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1. 1 + ⌈log (2n!)⌉ bits in case Encoden (Algorithm 7) returnedM = (0, π) on
line 11, and

2. 1 + n + 2
⌈︂
log

(︂
2n

|Xf |

)︂⌉︂
+ ⌈log ((2n − |Xf |)!)⌉ bits in case Encoden (Algo-

rithm 7) returned a message M = (1, |Xf |, Yf , Xf , σ) on line 14.

Proof. When we say that we encode an index of a combinatorial object, we mean
that we enumerate all instances of this object in some natural order and then
encode the index of our particular instance. Specifically for the case of k-element
subsets of a set of size n, we enumerate all such subsets in the lexicographical
order and then just give an index – a number between one and

(︂
n
k

)︂
always using

precisely
⌈︂
log

(︂
n
k

)︂⌉︂
bits (we use leading zeroes as a padding in case there would

be less bits). Similarly, for the case of permutations of n objects, we enumerate
all such permutations in lexicographical order and then give the particular index
using exactly ⌈log (n!)⌉ bits (again, potentially padding the index with leading
zeroes).

1. In the first case (return on line 11) the encoding consists of the single “0”
bit and an index of a permutation on all binary strings of length n. Thus
we use 1 + ⌈log (2n!)⌉ bits.

2. In the second case (return on line 14) the encoding consists of a single “1”
bit, a size of the set Xf ⊆ {0, 1}n (this is always encoded by n bits), two
sets Xf ⊆ {0, 1}n and Yf ⊆ Im (fn) both of size |Xf | thus encoded using⌈︂
log

(︂
2n

|Xf |

)︂⌉︂
bits each, and an index of a bijection between {0, 1}n \Xf and

Im (fn) \ Yf . Note that we do not have to encode the image of fn as well
as the domain and the image of σ, as those can be computed (Im (fn) =
Im (hn), domain of σ is the set {0, 1}n \ Xf and Im (σ) = Im (fn) \ Yf ).
Thus we always use 1 + n + 2

⌈︂
log

(︂
2n

|Xf |

)︂⌉︂
+ ⌈log ((2n − |Xf |)!)⌉ bits for the

encoding.

Now we use Claim 4.4.4 to show that the encoding is prefix-free.

Lemma 4.3.7. (Restated) Let µ ∈ T be any type h ∈ Injµ be any injec-
tive function and n ∈ N, then the encoding given by the algorithm Encoden

(Algorithm 7) is prefix-free, i.e.,

∀π, π′ ∈ Injnn such that π ̸= π′ : Encodeh
n(π) is not a prefix of Encodeh

n(π′).

Proof. Let π, π′ ∈ Injnn be any permutations such that π ̸= π′. Let Eh(π) =⃓⃓⃓
Encodeh

n(π)
⃓⃓⃓

and Eh(π′) =
⃓⃓⃓
Encodeh

n(π′)
⃓⃓⃓
. Note that by Lemma 4.3.6,

Encodeh
n(π) ̸= Encodeh

n(π′),

65



otherwise we could not uniquely decode the permutation. First observe that if
both Encodeh

n(π), Encodeh
n(π′) start with “0” bit, then

Eh(π) = 1 + ⌈log (2n!)⌉ = Eh(π′).

Combining the facts that Encodeh
n(π) ̸= Encodeh

n(π′), but Eh(π) = Eh(π′), we
get that Encodeh

n(π) is not a prefix of Encodeh
n(π′).

We have described the encoding formally in the proof of Claim 4.4.4. It
suffices to prove the lemma for the case when both encodings Encodeh

n(π) and
Encodeh

n(π′) start with “1” bit. Note that the following n bits denote the size
of Xh◦π. Thus, if |Xh◦π| ≠ |Xh◦π′|, the encodings Encodeh

n(π) and Encodeh
n(π′)

differ on the first n + 1 bits and Encodeh
n(π) is not a prefix of Encodeh

n(π′).
On the other hand, if |Xh◦π| = |Xh◦π′ | = a then the lengths Eh(π) and Eh(π′) are
equal:

Eh(π) = 1 + n + 2
⌈︄
log

(︄
2n

a

)︄⌉︄
+ ⌈log ((2n − a)!)⌉ = Eh(π′).

In combination with Encodeh
n(π) ̸= Encodeh

n(π′), we get Encodeh
n(π) is not a

prefix of Encodeh
n(π′), which concludes the proof of the lemma.

4.4.4 Bounding the Size of the Encoding
The most important part of the whole proof is bounding the expected size of
our encoding. To show the upper bound it is crucial to bound the probability
that a random y is in the “good” set Gf (see Algorithm 7, line 3), i.e., the set
of challenges y where the reduction inverts and the solution returned by Solve
does not query a preimage of the challenge itself. We bound this probability in
Claim 4.4.7. The bound will rely on the fact that C can do only a few queries to
the function f . Unfortunately the number of queries C can make to f is upper
bounded by the size of the input of C whereas for us it is useful to upper bound
the number of queries with respect to the security parameter n which is given
to the security reduction R on the input. Thus we use the following function
as an upper bound on the number of queries and we upper bound its values in
Claim 4.4.6.

Definition 4.4.5. Let µ ∈ T be any type and (R, TR, C, TC , p) be any determinis-
tic f -oblivious many-one fully black-box construction of a worst-case hard TFNP
problem from injective-OWF of type µ. By q : N → N we denote the function
which upper bounds the number of queries which might be done indirectly, i.e.,

q(n) = max
f∈Injµ, x∈{0,1}n

s∈{0,1}∗, |s|≤p(|i|)

⃓⃓⃓
Q
(︂
Cf (i, s)

)︂⃓⃓⃓
,

where i is the instance queried on f(x), i.e., QSolve
(︂
Rf,Solve (1n, f(x))

)︂
= {i}.

Note that the queries considered in the above definition are indirect (i.e., they
originated in C and we do not consider f -queries made directly from R). We
highlight that the definition takes into account all inputs (i, s) where s is any
string of length at most p (|i|), i.e., even on strings s for which Cf (i, s) = 0.
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Lemma 4.3.8. (Restated) Let µ ∈ T be any type and (R, TR, C, TC , p) be
a deterministic f -oblivious many-one fully black-box construction of a worst-case
hard TFNP problem from an injective one-way function of type µ. Assume n ∈ N
is large enough so that n ≥ 50 and 2q(n) + 2 ≤ 20.2n, where q(n) is the maximal
number of f -queries made by C on the queried instance (see Definition 4.4.5).
Let the success probability of R on security parameter n be β ≥ 2−0.1n, i.e., for
any f ∈ Injµ we have

Pr
x←{0,1}n

[︂
Rf,Solve (1n, f(x)) = x

]︂
= β ≥ 2−0.1n.

Then
∃h ∈ Injµ : Eπ←Injnn

[︂⃓⃓⃓
Encodeh

n(π)
⃓⃓⃓]︂
≤ log (2n!)− 8

10n20.1n.

In Claim 4.4.6, we show that for quasi-polynomial algorithms R, C and for
large enough n the bound on q(n) used in the statement of Lemma 4.3.8 is without
loss of generality.
Claim 4.4.6. Let µ ∈ T be any type and (R, TR, C, TC , p) be any determinis-
tic f -oblivious many-one fully black-box construction of a worst-case hard TFNP
problem from injective-OWF of type µ. We can bound q(n), i.e., the maximal
number of f -queries made by C on any queried instance (see Definition 4.4.5),
by

q(n) ≤ TC

(︂
2p
(︂
TR

(︂
101nlog n

)︂)︂)︂
. (4.4.5)

Moreover, if both TC , TR ∈ O
(︂
npolylog(n)

)︂
then

q(n) ∈ o
(︂
20.2n

)︂
. (4.4.6)

Proof. Here we use the restriction that ∀n ∈ N : µ(n) ≤ 100nlog n which upper
bounds output lengths of the injective function (see Notation 4.2.2). Note that
these restrictions are reasonable. The case where the length of output of a func-
tion depends only on the length of the input is perhaps the most natural. It also
makes sense to upper bound the length of the output as for exponential stretch
the reduction would just query all possible preimages and thus would be able to
invert on its own. On the other hand we cover all natural injective functions –
with stretch c, where c is a fixed constant.

For any x ∈ {0, 1}n the reduction Rf,Solve (1n, f(x)) is running on input of
length at most n + 100nlog n ≤ 101nlog n (see Notation 4.2.2) and thus can query
the TFNP instance i of length at most TR

(︂
101nlog n

)︂
. Thus any considered input

of C (consisting of i and s ∈ {0, 1}∗ of length at most p (|i|)) is of length at most
TR

(︂
101nlog n

)︂
+ p

(︂
TR

(︂
101nlog n

)︂)︂
≤ 2p

(︂
TR

(︂
101nlog n

)︂)︂
. Finally, we can bound

the number of queries of C by its running time by TC

(︂
2p
(︂
TR

(︂
101nlog n

)︂)︂)︂
. This

concludes the proof of Equation (4.4.5).
Note that when both TC and TR are in O

(︂
npolylog(n)

)︂
, then also:

q(n) ≤ TC

(︂
2p
(︂
TR

(︂
101nlog n

)︂)︂)︂
∈ O

(︂
npolylog(n)

)︂
⊆ o

(︂
20.2n

)︂
,

which proves the Equation (4.4.6).
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We prove the upper bound on the expected length of the encoding (stated in
Lemma 4.3.8) with expectation taken not only over the choice of π but also over
the choice of h← Injµ (the expectation could be also understood to be taken over
the choice of f ← Injµ where f = h ◦ π). Then we use an averaging argument to
show that there exists h ∈ Injµ for which the expected length of encoding is short
enough, where the expectation is only over the choice of π, i.e., the message to
be encoded.

Now we bound the probability that a given y is “good”. That is the reduction
returns the preimage of y and, moreover, the Solve query is answered with a
solution which is independent of the preimage of y (i.e., there is no query to the
preimage of y during computation Cf (i, s), where i is the queried instance and s
is the returned solution). We distinguish two bad events:

1. FAIL: the reduction does not invert and

2. HIT: the Solve solution queries the preimage.

The probability of FAIL is immediately upper bounded by (1 − β), where β is
the success probability of the security reduction. Thus we focus on bounding the
probability of HIT event to bound the overall probability of y not being “good”.

Bounding the probability of HIT: the event that Solve solution queries the
preimage of y, the following two bounds will come handy. We fix the queried
instance i, look at only one preimage length n and distinguish two cases:

1. There are many challenges y ∈ Im (fn) for which the reduction queries the
instance i. In this case the bound in Claim 4.4.9 will be used to show that
the solution does not “help” the reduction too much.

2. Or there exist only few challenges y ∈ Im (fn), such that i is queried. In
this case we want to bound the probability that Yi,n = Zi∩{0, 1}n (i.e., the
“protected” images of fn as in Algorithm 6) becomes “unprotected” (i.e.,
removed from Yi and the “benign” solution may query the preimage of some
y from Yi,n) before the solution is returned. By Claim 4.4.11 we bound the
probability that there are only few challenges in Zi ∩ Im (fn) but strings
of length µ(n) are “unprotected” right from the start (deleted on line 4 of
Algorithm 6 due to existence of many strings of length µ(n) which query the
instance i). The probability that Yi,n was “protected” at the beginning of
the algorithm but later removed from the set Yi due to absence of “benign”
solution (see lines 21 and 22 of Algorithm 6) is bounded by Claim 4.4.10.

Then after combining these bounds we derive the following upper bound:

Claim 4.4.7. Let µ ∈ T be any type and (R, TR, C, TC , p) be any determinis-
tic f -oblivious many-one fully black-box construction of a worst-case hard TFNP
problem from injective-OWF of type µ. Let n ≥ 16 be any natural number and
let π ∈ Injnn be any permutation. Let q(n) be the maximal number of f -queries
made by C on the queried instance (see Definition 4.4.5). Then

Pr [f(x) /∈ Gf ] ≤ 2 (q(n) + 1)
2n/2 + Pr

[︂
Rf,Solve(1n, y) ̸= f−1(y)

]︂
,
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where the probabilities are taken over the choice of x ← {0, 1}n , h ← Injµ and
both f = h◦π and Gf are as defined in the algorithm Encoden (see lines 1 and 3
of Algorithm 7).

In the proof of the claim and supporting claims we leverage the following fact
from probability theory.
Lemma 4.4.8. Let A be a random event and let C = {C1, C2, . . . , Cn} be a finite
set of disjoint random events that cover the whole probability space. That is

∀i ̸= j : Pr [Ci ∩ Cj] = 0 ∧ Pr [C1 ∪ C2 ∪ . . . ∪ Cn] = 1.

We define Pr [A | C] = 0 whenever Pr [C] = 0, then the following inequality holds:

Pr [A] ≤ max
C∈C

Pr [A | C] .

Proof. Since C forms a partition of the probability space we may write:

Pr [A] =
∑︂

C′∈C
Pr [A | C ′] Pr [C ′]

≤
∑︂

C′∈C

(︃
max
C∈C

Pr [A | C]
)︃

Pr [C ′]

= max
C∈C

Pr [A | C]

The following claim (Claim 4.4.9) upper bounds the probability that Solve
returns a solution querying the preimage of length n for some challenge y on
which the reduction is running. We bound the probability for any fixed instance i.
The bound is meaningful only for the case that on a given preimage length the
reduction queries the instance i often (i.e., for many different preimages x, the
reduction running on f(x) queries the instance i).

In this case, we leverage the fact that there are at most q(n) queries made
on each solution. Thus no matter which solution is returned from the Solve
algorithm, it queries at most q(n) different preimages x. In other words the
returned solution could be “useful” for the reduction for at most q(n) out of
many different challenges.
Claim 4.4.9. Let µ ∈ T be any type and (R, TR, C, TC , p) be any determinis-
tic f -oblivious many-one fully black-box construction of a worst-case hard TFNP
problem from injective-OWF of type µ. Let i ∈ {0, 1}∗ be any instance of the
corresponding TFNP problem (defined by C). Let

q = max
⃓⃓⃓
Q
(︂
Cf (i, s)

)︂⃓⃓⃓
,

where the maximum is taken over f ∈ Injµ and s ∈ {0, 1}∗ such that |s| ≤ p (|i|).
Let k ∈ N, Y ⊆ {0, 1}∗ be a set of size k and

FY =
{︂
f | f ∈ Injµ ∧ Y ⊆ Im(f)

}︂
.

Then for any f ∈ FY and for any s ∈ {0, 1}∗, such that |s| ≤ p (|i|):

Pr
y←Y

[︂
f−1(y) ∈ Q

(︂
Cf (i, s)

)︂]︂
≤ q

k
.
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Proof. The probability follows from the assumption that for any s ∈ {0, 1}∗
such that |s| ≤ p (|s|) the algorithm Cf (i, s) makes at most q queries to f (i.e.,⃓⃓⃓
Q
(︂
Cf (i, s)

)︂⃓⃓⃓
≤ q). Thus

Pr
y←Y

[︂
f−1(y) ∈ Q

(︂
Cf (i, s)

)︂]︂
≤

⃓⃓⃓
Q
(︂
Cf (i, s)

)︂⃓⃓⃓
|Y |

≤ q

k
.

Now we prove a second bound on the probability that for some instance i the
algorithm Solve returns a solution which hits the preimage of some reduction’s
challenge f(x). This bound is meaningful in the case when the reduction queries i
only on a few challenges from Im (fn), where n is the security parameter (i.e.,
n = |x|).

Recall that Yi,n is the set of challenges y whose preimages are of length n
and on which the reduction queries the instance i, i.e., this bound is used when
Yi,n is small. Note that if the returned solution queries the preimage of any y
from Yi,n, it may “help” the reduction non-trivially (imagine Yi,n containing only
one element - then Solve may potentially reveal all preimages of length n over
different instances).

We want to bound the probability that Solve stops to “protect” Yi,n before
returning the solution (i.e., removes Yi,n from Yi). We assume that Yi,n is pro-
tected before the first iteration of the while loop and removed only due to absence
of a “benign” solution. That is we assume

⃓⃓⃓
{0, 1}µ(n) \ Zi

⃓⃓⃓
≥ 2n and thus strings

of length µ(n) are not removed from the protected set on line 4 of Algorithm 6.
The probability that this assumption is not satisfied is upper bounded separately
by Claim 4.4.11.

Note that it is not sufficient to show that there is a solution which does not
query the preimage of any y ∈ Yi,n for a single fixed preimage length n. As
even though we have such a solution, there might be another Yi,n′ , such that its
preimages are queried on all solutions. Then Solve would have to stop “protect-
ing” Yi,n′ to be able to return a solution. The problem occurs when Solve stops
“protecting” Yi,n before Yi,n′ .

We show that if we stop “protecting” the sets Yi,n in the order given by
decreasing density (|Yi,n|/2n) it is unlikely that we would remove a small set Yi,n.
Especially we bound the probability that there exists a solution which does not
query preimage neither for any y from Yi,n nor for any y from Yi,n′ , where the
density of Yi,n′ is smaller (i.e., |Yi,n′|/2n′ ≤ |Yi,n|/2n).

To bound this probability, we consider another function g ∈ Injµ, which is
similar to f , but we “hide” the preimages of all Yi, resp. Zi (the set of all
“protected” images of different lengths). This means that for any x ∈ f−1 [Yi] we
let g(x) = y′, where y′ is chosen outside of the Im(f)∪Zi where Zi is the set of all
challenges querying the instance i. By the assumption that for any “protected”
length n there are at least 2n different strings in {0, 1}µ(n) \ Zi we can always
find such a function g. By correctness there is a solution with respect to g that
cannot query the preimage of any y from Yi (as Yi is not in the image set). We
show that with high probability this solution remains to be a solution and that
it also does not query a preimage of any y ∈ Yi even when C is run with respect
to f .
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Claim 4.4.10. Let µ ∈ T be any type and (R, TR, C, TC , p) be any f -oblivious
many-one fully black-box construction of a worst-case hard TFNP problem from
injective-OWF of type µ. Let i ∈ {0, 1}∗ be any instance of the corresponding
TFNP problem and

q = max
⃓⃓⃓
Q
(︂
Cf (i, s)

)︂⃓⃓⃓
. (4.4.7)

where the maximum is taken over f ∈ Injµ and s ∈ {0, 1}∗ such that |s| ≤ p (|i|).
Let δ : N→ [0, 1] be any function, Z ⊆ {0, 1}∗ be a finite set, such that

∀n ∈ N :
⃓⃓⃓
{0, 1}µ(n) \ Z

⃓⃓⃓
≥ 2n, (4.4.8)

Y ⊆ Z such that

∀n ∈ N :
⃓⃓⃓
{0, 1}µ(n) ∩ Y

⃓⃓⃓
≤ δ(n)2n (4.4.9)

and FY be the set defined as follows

FY =
{︂
f ∈ Injµ | Im(f) ∩ Z = Y

}︂
. (4.4.10)

Let BADf denote the event that

∀s ∈ {0, 1}∗ such that |s| ≤ p(|i|) :
either Cf (i, s) ̸= 1 or Y ∩ f

[︂
Q
(︂
Cf (i, s)

)︂]︂
̸= ∅.

Suppose FY is nonempty, then

Pr
f←FY

[BADf ] ≤ sup
n∈N

δ(n)q.

Intuitively the set Z corresponds to all challenges which query the instance i
and the set Y contains only those which are in the image of f . The function δ
upper-bounds the density of the set Z in the image of f .

Proof. For any m ∈ N let Z(m) denote the subset of Z which consists of all strings
of length m, i.e., Z(m) = Z ∩ {0, 1}m and similarly let Y(m) = Y ∩ {0, 1}m. We
define the following set

HZ =
{︂
h ∈ Injµ | Z ∩ Im(h) = ∅

}︂
. (4.4.11)

Intuitively the set HZ is the set of functions “avoiding” the set Z in their image.
The set FY represents the set of functions “containing” exactly challenges Y from
the set Z in their image (where the density of elements of Y , respectively Z, is
bounded for all preimage lengths).

We define the set Xf,Z to be the set of preimages of Z with respect to f (i.e.,
Xf,Z = {x | f(x) ∈ Z}). Now we can bound the probability using Lemma 4.4.8
as follows (we prove the inequality below):

Pr
f←FY

[BADf ] ≤ sup
h∈HZ

Pr
f←FY

[︂
BADf | f ↾ Xf,Z = h ↾ Xf,Z

]︂
(4.4.12)
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First note that by the assumptions (see Equation 4.4.8) the set HZ is not empty.
Unfortunately HZ contains uncountably many functions, whereas Lemma 4.4.8
assumes that HZ is finite. We claim that we can consider all the functions only
up to a certain input length. Since the instance i is fixed, the running time
and thus also the length of any f -query made by the algorithm C is bounded
by TC (|i|+ p (|i|)). Thus the probability of BADf depends only on the choice
of f1, f2, . . . , fTC(|i|+p(|i|)) since longer inputs are ignored during the computation
and make no difference in the probability. For the ease of presentation we slightly
abuse the notation and use all functions from Injµ instead of restricting ourself
to only short input lengths.

To prove the above inequality we show that for any function f ∈ FY there
exists a function h ∈ HZ such that f ↾ Xf,Z = h ↾ Xf,Z and that the number of
such functions depends only on Y and is independent of the exact matching f .
Let HZ,f be a set defined as follows:

HZ,f =
{︂
h ∈ HZ | f ↾ Xf,Z = h ↾ Xf,Z

}︂
.

We show that the set HZ,f is nonempty and finite for any f ∈ FY . Moreover we
prove that for any f, f ′ ∈ FY the sets HZ,f and HZ,f ′ are of the same size. We
compute the size of the set HZ,f as follows:

|HZ,f | =
⃓⃓⃓{︂

h ∈ HZ | f ↾ Xf,Z = h ↾ Xf,Z

}︂⃓⃓⃓
(4.4.13)

=
∏︂

n∈N, m=µ(n)
s.t. {0,1}m∩Z ̸=∅

⎛⎝(︄2m − 2n −
⃓⃓⃓
Z(m)

⃓⃓⃓
+
⃓⃓⃓
Y(m)

⃓⃓⃓
⃓⃓⃓
Y(m)

⃓⃓⃓ )︄ (︂⃓⃓⃓
Y(m)

⃓⃓⃓
!
)︂⎞⎠ . (4.4.14)

First note that 2m − 2n −
⃓⃓⃓
Z(m)

⃓⃓⃓
≥ 0 by the assumptions on the size of Z(m) (see

Equation (4.4.8)) and thus the binomial number is well defined standard binomial,
i.e., the below integer is at most the above one. By definition, both f, h ∈ Injµ (see
Equations (4.4.10) and (4.4.11) - definition of FY , respectively HZ), and further-
more Im(h)∩Z = ∅ (see Equation (4.4.11) for definition ofHZ). Equation (4.4.14)
follows from the fact that there are exactly

(︂2m−2n−|Z(m)|+|Y(m)|
|Y(m)|

)︂ ⃓⃓⃓
Y(m)

⃓⃓⃓
! possibili-

ties how to define h ↾ (Xf,Z ∩ {0, 1}n) as Im (h ↾ Xf,Z) ∩ (Z ∪ Im(f)) = ∅ and

|(Z ∪ Im(f)) ∩ {0, 1}m| = 2n +
⃓⃓⃓
Z(m)

⃓⃓⃓
−
⃓⃓⃓
Y(m)

⃓⃓⃓
,

where m = µ(n). Note that size of HZ,f is finite, as Z is a finite set and thus
the product contains finitely many factors. Observe also that |HZ,f ′ | = |HZ,f | as
the size depends only on the type µ and the sizes of the sets Z and Y , but is
independent of the exact mapping f .

It suffices to prove that for each h ∈ HZ :

Pr
f←FY

[︂
BADf | f ↾ Xf,Z = h ↾ Xf,Z

]︂
≤ δ(n)q.

We fix any h ∈ HZ and show the upper bound for the fixed function h. By
the correctness of the underlying TFNP problem (see Definition 4.3.1 for the
exact order of the quantifiers), there exists s ∈ {0, 1}∗ such that |s| ≤ p(i) and
Ch(i, s) = 1. Let Qh be the set of queries made on the solution Ch(i, s), i.e.,
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Qh = Q
(︂
Ch(i, s)

)︂
. Note that if Qh ∩ Xf,Z is empty then all queries C makes

on input (i, s) are answered equally for h as for f thus s is a solution also with
respect to f (i.e., Cf (i, s) = 1) and Q

(︂
Cf (i, s)

)︂
has empty intersection with Xf,Z

(as Q
(︂
Cf (i, s)

)︂
= Qh). Thus using union bound we get the following probability:

Pr
f←FY

[︂
BADf | f ↾ Xf,Z = h ↾ Xf,Z

]︂
≤ Pr

f←FY

[Xf,Z ∩Qh ̸= ∅]

≤
∑︂
n∈N

Pr
f←FY

[Xf,Z ∩Qh ∩ {0, 1}n ̸= ∅] .

We bound the probability for a single preimage length n and the corresponding
image length m = µ(n). Let qn denote the number of queries of length n, i.e.,
qn = |Qh ∩ {0, 1}n| and K denotes min (2n, |Z ∩ {0, 1}m|). We may bound the
probability as follows:

Pr
f←FY

[Xf,Z ∩Qh ∩ {0, 1}n ̸= ∅]

≤ max
k∈{1,2,...,K}

Pr
f←FY

[Xf,Z ∩Qh ∩ {0, 1}n ̸= ∅ | |Xf,Z ∩ {0, 1}n| = k]

≤ max
k∈{1,2,...,K}

|Qh ∩ {0, 1}n| ·
(︂

2n−1
k−1

)︂
(︂

2n

k

)︂
= max

k∈{1,2,...,K}

k

2n
qn

First inequality follows from the fact that condition |Xf,Z ∩ {0, 1}n| = k over dif-
ferent k creates a partition of the probabilistic space and we may use Lemma 4.4.8.
Second inequality is computed as follows:

1. We have
(︂

2n

k

)︂
possibilities how to choose the set Xf,Z ∩ {0, 1}n as a subset

of {0, 1}n of size k.

2. But there are at most |Qh ∩ {0, 1}n| ·
(︂

2n−1
k−1

)︂
ways to choose the set in such

a way that it has nonempty intersection with Qh. We have to pick at least
one x from Qh ∩ {0, 1}n and the remaining k − 1 elements can be chosen
arbitrarily from the remaining 2n − 1 elements.

Using the definition of FY (see Equation 4.4.10), respectively Y (see Equa-
tion 4.4.9), to bound k

2n ≤ δ(n) we get the following bound:

Pr
f←FY

[Xf,Z ∩Qh ∩ {0, 1}n ̸= ∅] ≤ sup
k∈{1,2,...,K}

k

2n
qn ≤ δ(n)qn.
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Finally we summarize all the inequalities above:

Pr
f←FY

[BADf ] ≤ sup
h∈HZ

Pr
f←FY

[︂
BADf | f ↾ Xf,Z = h ↾ Xf,Z

]︂
(see Equation (4.4.12))

≤ sup
h∈HZ

∑︂
n∈N

Pr
f←FY

[Xf,Z ∩Qh ∩ {0, 1}n ̸= ∅]

≤
∑︂
n∈N

δ(n)qn

≤ sup
n∈N

δ(n)
∑︂
n∈N

qn

≤ sup
n∈N

δ(n)q.

The last inequality follows by the definition of qn = |Qh ∩ {0, 1}n| and the as-
sumption on the maximal number of queries made on a potential solution (see
Equation 4.4.7) as we can bound∑︂

n∈N
qn =

∑︂
n∈N
|Qh ∩ {0, 1}n| = |Qh| ≤ q.

We use the following claim, whenever the image of the function f contains only
few challenges y we should protect, however there are too many challenges outside
the image of f that should be protected. In this case we cannot use Claim 4.4.10
in particular because the assumption on Z (see Equation (4.4.8)) is not satisfied
and thus there is no function for which the set of protected challenges of the given
length would be empty. For this reason Solve never “protects” challenges of any
length for which its input instance i is queried too often (see line 4 of Algorithm 6).
We show that for a randomly chosen function from Injµ it is unlikely that its image
contains only small number of such “protected” challenges. More specifically we
show the following claim, where one can interpret the set A as the set of all
possible strings of the fixed output length, the set B as all challenges on which
the particular instance is queried and the set C as the image of the function
f ← Injµ with respect to the fixed output length. The assumptions on sizes
a, b, c in the following claim are chosen to match the usage of the claim. More
specifically from the fact that the function goes from n to at least n + 1 bits
and from the fact that there is no function which image avoids the “protected”
challenges (i.e., any choice of C of size c must contain at least one element from
B).

Claim 4.4.11. Let a, b, c ∈ N be such that a ≥ 2c and b ≥ a − c + 1. Moreover
assume c ≥ 16. Let A be any set of size a and B be any subset of A of size b.
Then

Pr
[︂
|C ∩B| ≤

√
c
]︂
≤ 2√

c
,

where the probability is taken over C which is chosen uniformly at random from
all subsets of A of size c.

Proof. In this proof all probabilities are taken over C which is chosen uniformly
at random from all subsets of A of size c. Without loss of generality we can
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assume that b = a − c + 1 as the probability only decreases with larger b. We
count the number of ways to choose a set containing exactly i elements from B
and c− i elements from A\B. Using a−b = c−1 (and thus also i = |C ∩B| ≥ 1)
we rewrite the probability as follows:

Pr
C

[︂
|C ∩B| ≤

√
c
]︂

=
∑︁√c

i=1

(︂
b
i

)︂(︂
a−b
c−i

)︂
∑︁c

j=1

(︂
b
j

)︂(︂
a−b
c−j

)︂
=
∑︁√c

i=1

(︂
b
i

)︂(︂
c−1
c−i

)︂
∑︁c

j=1

(︂
b
j

)︂(︂
c−1
c−j

)︂
≤

∑︁√c
i=1

(︂
b
i

)︂(︂
c−1
c−i

)︂
∑︁c−

√
c

j=
√

c

(︂
b
j

)︂(︂
c−1
c−j

)︂ .

Observe that

∀i ∈
{︂
1, 2, . . . ,

√
c
}︂

:
(︄

c− 1
c− i

)︄
≤
(︄

c− 1√
c

)︄
and

∀j ∈
{︂√

c, . . . , c−
√

c
}︂

:
(︄

c− 1
c− j

)︄
≥
(︄

c− 1√
c

)︄
.

Note that by the assumption b = a− c + 1 ≥ c + 1 we can also bound

∀i ∈
{︂
1, 2, . . . ,

√
c
}︂

:
(︄

b

i

)︄
≤
(︄

b√
c

)︄
and

∀j ∈
{︂√

c, . . . , c−
√

c
}︂

:
(︄

b

j

)︄
≥
(︄

b√
c

)︄
.

Adding these bounds together and using the assumption that c ≥ 16 we get
the following:

Pr
C

[︂
|C ∩B| ≤

√
c
]︂
≤

∑︁√c
i=1

(︂
b
i

)︂(︂
c−1
c−i

)︂
∑︁c−

√
c

j=
√

c

(︂
b
j

)︂(︂
c−1
c−j

)︂
≤

√
c
(︂

b√
c

)︂(︂
c−1

c−
√

c

)︂
(c− 2

√
c)
(︂

b√
c

)︂(︂
c−1

c−
√

c

)︂
≤ 2√

c
(2
√

c ≤ c
2 for c ≥ 16)

which concludes the proof.

Now we are ready to prove Claim 4.4.7. That is we show that if the reduction
is too successful it has to return a correct preimage for many challenges y even
though their preimages are not queried on the solution obtained from Solve. Or
equivalently show that a too successful reduction gives us a set Gf which is too
large and thus can be later used to get too efficient encoding. Intuitively there
is a trade-off based on the density: we use Claims 4.4.10 and 4.4.11 when the
density is small and we use Claim 4.4.9 when the density is large enough.
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Proof of Claim 4.4.7. Recall that y ∈ Im (fn) is in Gf if it satisfies the following
two conditions:

1. Rf,Solve(1n, y) inverts f on y, and

2. there is no indirect query for y (i.e., f−1(y) /∈ Qindir
f

(︂
Rf,Solve(1n, y)

)︂
).

We denote the event that R fails to invert f on y by FAILf,y (if this happens
y /∈ INVf see line 2 of Algorithm 7) and the event that there was an indirect
query to the preimage of y as HITf,y (and thus y is not added to Gf see line 3 of
Algorithm 7).

We bound the probability using union bound as follows:

Pr
x←{0,1}n, h←Injµ

f=h◦π

[f(x) /∈ Gf ] ≤ Pr
x←{0,1}n, h←Injµ

f=h◦π, y=f(x)

[FAILf,y] + Pr
x←{0,1}n, h←Injµ

f=h◦π, y=f(x)

[HITf,y] .

Note that the probability of FAILf,y is one of the summands in the statement
of the claim as

Pr
x←{0,1}n, h←Injµ

f=h◦π, y=f(x)

[FAILf,y] = Pr
x←{0,1}n, h←Injµ

f=h◦π

[︂
Rf,Solve (1n, f(x)) ̸= x

]︂
.

Thus we only need to show that

Pr
x←{0,1}n, h←Injµ

f=h◦π, y=f(x)

[HITf,y] ≤ 2 (q(n) + 1)
2n/2 . (4.4.15)

Let us call Pn the set of possible TFNP instances that the reduction might
query when running on some challenge y and a security parameter n:

Pn =
{︂
i ∈ {0, 1}∗ | ∃x ∈ {0, 1}n , ∃f ∈ Injµ : i ∈ QSolve

(︂
Rf,Solve (1n, f(x))

)︂}︂
.

Observe that the size of Pn is finite as the length of the challenge f(x) and
thus also the running time of R and the length of the longest queried instance
is limited. Moreover since R is a deterministic many-one reduction the instance
i is queried if and only if {i} = QSolve

(︂
Rf,Solve (1n, f(x))

)︂
. Which means that

C =
{︂
i ∈ QSolve

(︂
Rf,Solve (1n, f(x))

)︂}︂
i∈Pn

defines a partition of the probability
space and we may use Lemma 4.4.8 to bound:

Pr [HITf,y] ≤ max
i∈Pn

Pr
[︂
HITf,y | i ∈ QSolve

(︂
Rf,Solve (1n, f(x))

)︂]︂
, (4.4.16)

where the probabilites are taken over the choice of x← {0, 1}n, h← Injµ and we
define f = h ◦ π, y = f(x).

This allows us to fix any instance i ∈ {0, 1}∗ and bound the probability that x
was indirectly queried on the fixed TFNP instance i. Note that if the challenge
f(x) is contained in Yi (see line 7 of Algorithm 6) when the solution is returned,
respectively the set Yi,n is never removed before the algorithm Solve returns,
then the returned solution does not query the preimage of the challange f(x).
Thus we inspect whether the set Yi,n is still “protected” at the time when the
algorithm returns. We use the following notation in the rest of the proof. Let
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tend
i,f = j if the algorithm Solvef (i) returns the solution in the j-th iteration of

the while loop (see line 13 of Algorithm 6). Furthermore let tdel
i,f,n denote the

iteration of the same while loop in which Yi,n is removed from Yi (see line 20 of
Algorithm 6). Note that we set tdel

i,f,n =∞ in the case when Yi,n is never removed
from Yi and we set tdel

i,f,n = 0 if the set is removed already before the while loop,
i.e., on line 4 of Algorithm 6.

Let δ : N→ [0, 1] be the function defined as δ(n) = 1
2n/2 (the choice is explained

at the end of the proof). We can rewrite the probability as follows:

Pr [HITf,y] = Pr
[︂
HITf,y

⃓⃓⃓
tend
i,f ≤ tdel

i,f,n

]︂
Pr
[︂
tend
i,f ≤ tdel

i,f,n

]︂
+

+ Pr
[︄
HITf,y

⃓⃓⃓⃓
⃓ tend

i,f > tdel
i,f,n ∧

|Yi,n|
2n

> δ(n)
]︄

Pr
[︄
tend
i,f > tdel

i,f,n ∧
|Yi,n|
2n

> δ(n)
]︄

+

+ Pr
[︄
HITf,y

⃓⃓⃓⃓
⃓ tend

i,f > tdel
i,f,n ∧

|Yi,n|
2n
≤ δ(n)

]︄
Pr
[︄
tend
i,f > tdel

i,f,n ∧
|Yi,n|
2n
≤ δ(n)

]︄
,

(4.4.17)

the probabilities are taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h ◦ π, y = f(x) (i.e., the TFNP

instance i is fixed and we choose uniformly at random x, h such that i is queried).
Observe that,

Pr
[︂
HITf,y

⃓⃓⃓
tend
i,f ≤ tdel

i,f,n

]︂
= 0

the probability is taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h ◦ π, y = f(x). This holds because

the returned solution does not contain preimage of any element from Yi and y ∈ Yi

during the iteration tend
i,f .

Using this and bounding some of the probabilities by 1 we get the following
bound:

Pr [HITf,y] ≤ Pr
[︄
HITf,y

⃓⃓⃓⃓
⃓ tend

i,f > tdel
i,f,n ∧

|Yi,n|
2n

> δ(n)
]︄

+

+ Pr
[︄
tend
i,f > tdel

i,f,n ∧
|Yi,n|
2n
≤ δ(n)

]︄
,

the probabilities are taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h ◦ π, y = f(x).

We bound the first probability using Claim 4.4.9 for the instance i, k = |Yi,n| ≥
δ(n)2n, the set Y = Yi,n and q(n) as the upper bound on the number of f -queries
made by C. Thus we get:

Pr
[︄
HITf,y

⃓⃓⃓⃓
⃓ tend

i,f > tdel
i,f,n ∧

|Yi,n|
2n

> δ(n)
]︄
≤ q(n)

k
≤ q(n)

δ(n)2n
,

the probability is taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h ◦ π, y = f(x).

We can use Claims 4.4.10 and 4.4.11 to bound the second probability. We
want to argue that it is unlikely that Yi,n is deleted before Solve returns and
Yi,n has a small density in the image of f . We distinguish two cases and bound
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the probability by Claim 4.4.11 if tdel
i,f,n = 0, i.e., the case where the set was never

protected by the algorithm Solve, and by Claim 4.4.10 if tdel
i,f,n is greater than 0,

i.e., the set was deleted because there was no “benign” solution before its removal.
We first bound the probability that Pr

[︂
tdel
i,f,n = 0 ∧ |Yi,n|

2n ≤ δ(n)
]︂
. Observe that

by our choice of δ(n) = 1
2n/2 there are at most δ(n)2n = 2n/2 strings in Yi,n

since the set Yi,n is not dense in Im (fn). Also note that there must be at least
2µ(n) − 2n + 1 strings of length µ(n) on which instance i is queried. This follows
from the definition of the set Zi in the algorithm Solve (see lines 1 and 4 of
Algorithm 6). Let us denote the set of all strings of lenth µ(n) for which instance i
is queried by Zi,n. Thus we can rewrite the probability

Pr
[︄
tdel
i,f,n = 0 ∧ |Yi,n|

2n
≤ δ(n)

]︄
= Pr

[︂
|Zi,n| ≥ 2µ(n) − 2n + 1 ∧ |Yi,n| ≤ 2n/2

]︂
≤ Pr

[︂
|Yi,n| ≤ 2n/2

⃓⃓⃓
|Zi,n| ≥ 2µ(n) − 2n + 1

]︂
≤ Pr

[︂
|Im(h) ∩ Zi,n| ≤ 2n/2

⃓⃓⃓
|Zi,n| ≥ 2µ(n) − 2n + 1

]︂

the probabilities are taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h◦π, y = f(x). We use Claim 4.4.11

to show that such a choice of h is unlikely. We set A = {0, 1}µ(n) and B to be the
set of all challenges of length µ(n) for which instance i is queried, i.e., B = Zi,n.
We let the set C represent the image of the function f ↾ {0, 1}n, thus we set
c = 2n. Note that the assumption on b = |B| from Claim 4.4.11 is satisfied since
the probability is conditioned on |Zi,n| ≥ 2µ(n)−2n +1. Similarly the assumption
on c = |C| ≥ 16 follows directly from the assumptions of this claim. The claim
gives us the following bound:

Pr
[︂
|C ∩B| ≤ 2n/2

]︂
≤ 2

2n/2

where the probability is over a uniform distribution over all subsets C ⊂ A of
size c. Thus we bound

Pr
[︄
tdel
i,f,n = 0 ∧ |Yi,n|

2n
≤ δ(n)

]︄
≤ 2

2n/2 .

From now we assume that tdel
i,f,n > 0 and in particular there must be at most

2µ(n) − 2n strings of length µ(n) on which instance i is queried by the definition
of tdel

i,f,n and Zi (see lines 1 and 4 of Algorithm 6). We need to determine the
sets Y, Z we use in the Claim 4.4.10. There might be preimage lengths n′ such
that whenever Yi,n is “protected” Yi,n′ is also “protected” (in particular all n′

satisfying |Yi,n′ | /2n′ ≤ |Yi,n| /2n). Thus we need to use Claim 4.4.10 for the set Y
which is a union of all Yi,n′ with small density (i.e., small |Yi,n′ | /2n′). Let Y del

i

be the set Yi as defined in the algorithm Solve in the iteration tdel
i,f,n (i.e., the

iteration in which Yi,n is deleted). Similarly as in the algorithm Solve (see line 1
of Algorithm 6) we define the set Zi to be the set of all strings which query the
instance i, i.e.,

Zi =
TC(|i|+p(|i|))⋃︂

n=1

{︂
y′ ∈ {0, 1}µ(n) | i ∈ QSolve

(︂
Rf,Solve (1n, y′)

)︂}︂
.
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Let Zdel
i be a subset of Zi where we restrict the set only to strings of “relevant”

lengths (lengths for which strings are still protected in the tdel
i,f,n iteration of the

algorithm), i.e.,
Zdel

i =
{︂
y′ ∈ Zi | Y del

i ∩ {0, 1}|y
′| ̸= ∅

}︂
.

In other words Zdel
i is a superset of Y del

i which contains also relevant strings (i.e.,
those on which instance i is queried) which are outside the image of f .

We use Claim 4.4.10 where we set Z = Zdel
i and Y = Y del

i . First we prove
that Y and Z satisfy the assumption of Claim 4.4.10. More specifically that Y
can be partitioned into finitely many sets Yi,n′ , where n′ ∈ N, in such a way that

1. Y = ⋃︁
n′∈N Yi,n′ ,

2. ∀n′ ∈ N ∀y ∈ Yi,n′ : |y| = µ (n′), and

3. ∀n′ ∈ N : |Yi,n′ | ≤ δ(n)/2n′ .

Similarly Z can be partitioned into finitely many sets Zi,n′ , where n′ ∈ N, in such
a way that

1. Z = ⋃︁
n′∈N Zi,n′ ,

2. ∀n′ ∈ N ∀z ∈ Zi,n′ : |z| = µ (n′), and

3. ∀n′ ∈ N :
⃓⃓⃓
{0, 1}µ(n′) \ Zi,n′

⃓⃓⃓
≥ 2n′ .

Note that for our choice of both Y and Z these conditions are satisfied. The
first two conditions for Y are satisfied trivially by setting each Yi,n′ to the corre-
sponding set in Solve. The third condition follows from the fact that we are in
the iteration in which Yi,n should be removed from Yi. We are removing the set
Yi,n with the highest density and |Yi,n| /2n ≤ δ(n) thus all other sets Yi,n′ ⊆ Y del

i

have density at most δ(n). Similarly for the set Z we can trivially satisfy the
first two conditions by splitting Zdel

i into sets Zi,n′ = Zdel
i ∩ {0, 1}µ(n′). The last

condition follows from the fact that tdel
i,f,n > 0 and thus we “protect” only strings

of lengths which satisfy this inequality (see line 4 of Algorithm 6).
Thus we can use Lemma 4.4.8 and bound the probability as follows

Pr
[︄
tend
i,f > tdel

i,f,n > 0
⃓⃓⃓⃓
⃓ |Yi,n|

2n
≤ δ(n)

]︄

≤ max
Y,Z

Pr
[︄
tend
i,f > tdel

i,f,n > 0
⃓⃓⃓⃓
⃓ |Yi,n|

2n
≤ δ(n) ∧ Zdel

i = Z ∧ Y del
i = Y

]︄
,

the probabilities are taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h ◦ π, y = f(x) and the maximum

is over all sets Y, Z such that

Y ⊆ Z ⊆
TC(|i|+p(|i|))⋃︂

n′=1
{0, 1}µ(n′)

satisfying the conditions described above (the condition on strings length copies
that from algorithm Solve, see line 1 of Algorithm 6).
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Now we fix any sets Y and Z, such that Y ⊆ Z ⊆ ⋃︁TC(|i|+p(|i|))
n′=1 {0, 1}µ(n′)

and both satisfy the conditions on existence of partitioning described above. We
upper bound the probability using Claim 4.4.10, where we set the instace to i,
the upper bound on the number of f -queries made by C to q(n), the density of
challenges y querying instance i to δ(n), the type of the function to µ, the sets of
all protected challenges to our fixed set Z and its intersection with the image of
the considered functions to Y . Recall the definition of FY from Claim 4.4.10:

FY =
{︂
f ∈ Injµ | Im(f) ∩ Z = Y

}︂
, (4.4.18)

Observe that by our careful choice of sets Y and Z the set FY is not empty. Let
us also recall the definition of BADf from Claim 4.4.10 which denotes the event
that:

∀s ∈ {0, 1}∗ such that |s| ≤ p(|i|) :
either Cf (i, s) ̸= 1 or Y ∩ f

[︂
Q
(︂
Cf (i, s)

)︂]︂
̸= ∅.

Claim 4.4.10 gives us that

Pr
f←FY

[BADf ] ≤ δ(n)q(n).

Observe that for our choices of i, q(n), δ(n), µ, Z and Y the event BADf cor-
responds to the situation that there was no “benign” solution before Yi,n was
deleted from Yi, i.e., it bounds the probability tend

i,f > tdel
i,f,n > 0 and thus we get

Pr
[︄
tend
i,f > tdel

i,f,n > 0
⃓⃓⃓⃓
⃓ |Yi,n|

2n
≤ δ(n) ∧ Zdel

i = Z ∧ Y del
i = Y

]︄
≤ δ(n)q(n),

the probability is taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h ◦ π, y = f(x).

Summarizing the above inequalities we get

Pr [HITf,y] ≤ Pr
[︄
tend
i,f > tdel

i,f,n ∧
|Yi,n|
2n
≤ δ(n)

]︄
+

+ Pr
[︄
HITf,y

⃓⃓⃓⃓
⃓ tend

i,f > tdel
i,f,n ∧

|Yi,n|
2n

> δ(n)
]︄

≤ Pr
[︄
tdel
i,f,n = 0 ∧ |Yi,n|

2n
≤ δ(n)

]︄
+

+ Pr
[︄
tend
i,f > tdel

i,f,n > 0 ∧ |Yi,n|
2n
≤ δ(n)

]︄
+

+ Pr
[︄
HITf,y

⃓⃓⃓⃓
⃓ tend

i,f > tdel
i,f,n ∧

|Yi,n|
2n

> δ(n)
]︄

≤ 2
2n/2 + q(n)

δ(n)2n
+ δ(n)q(n),

the probabilities are taken over the choice of h ← Injµ, x ← {0, 1}n such that
i ∈ QSolve

(︂
Rf,Solve(1n, y)

)︂
holds, where f = h ◦ π, y = f(x).
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Finally as δ(n) = 1
2n/2 , we get

Pr
x←{0,1}n, h←Injµ

f=h◦π, y=f(x)

[HITf,y] ≤ 2
2n/2 + q(n)

δ(n)2n
+ δ(n)q(n)

= 2 (q(n) + 1)
2n/2 .

Note that δ is chosen in such a way that it minimizes the sum q(n)
δ(n)2n + δ(n)q(n).

This concludes the proof of Claim 4.4.7 as we proved that
Pr [f(x) /∈ Gf ] ≤ Pr [FAILf,y] + Pr [HITf,y]

≤ Pr
[︂
Rf,Solve(1n, y) ̸= f−1(y)

]︂
+ 2 (q(n) + 1)

2n/2 ,

where the probabilites are taken over the choice of x← {0, 1}n, h← Injµ and we
define f = h ◦ π, y = f(x).

Finally, we upper bound the expected size of encoding produced by Encoden

(see Algorithm 7) stated in Lemma 4.3.8.

Proof of Lemma 4.3.8. Let Eh(π) denote the size of encoding, i.e., Eh(π) =⃓⃓⃓
Encodeh

n(π)
⃓⃓⃓
and let f be a random variable which corresponds to h◦π through-

out the whole proof. First we bound the size of encoding for permutation π in
the case that Encoden returned M = (1, |Xf | , Yf , Xf , σ), i.e., |Xf | ≥ 20.6n. We
denote the size of Xf by A and set N = 2n. As stated in Claim 4.4.4 the size of
encoding from algorithm Encoden in case A ≥ 20.6n is

Eπ←Injnn, h←Injµ

[︂
Eh(π) | A ≥ 20.6n

]︂
= 1 + n + 2

⌈︄
log

(︄(︄
N

A

)︄)︄⌉︄
+ ⌈log ((N − A)!)⌉

≤ 4 + n + log
⎛⎝(︄N

A

)︄2

· (N − A)!
⎞⎠

= 4 + n + log (N !) + log
(︄(︄

N

A

)︄
1
A!

)︄
.

We bound the last term as follows:

log
(︄(︄

N

A

)︄
1
A!

)︄
≤ log

(︄(︃
eN

A

)︃A (︃ e

A

)︃A
)︄

= A (n + 2 log e− 2 log A) .

Recall that by assumption 20.6n ≤ A on the other hand A = |Xf | ≤ 2n as
Xf ⊆ {0, 1}n. Now we differentiate by A and get

(A (n + 2 log e− 2 log A))′ = n + 2 log e− 2 log A− 2
ln 2 .

The derivative is negative and the function is decreasing for A ∈ [20.6n, 2n] and
n ≥ 50. We can bound

log
(︄(︄

N

A

)︄
1
A!

)︄
≤ A (n + 2 log e− 2 log A)

≤ 20.6n
(︂
n + 2 log e− 2 log 20.6n

)︂
(decreasing for A ∈ [20.6n, 2n])

≤ 20.6n (−0.1n) . (using n ≥ 50)
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If we combine the above bounds, we get the following bound on the size of
the encoding for case A ≥ 20.6n:

Eπ←Injnn, h←Injµ

[︂
Eh(π) | A ≥ 20.6n

]︂
= 4 + n + log (N !) + log

(︄(︄
N

A

)︄
1
A!

)︄
≤ 2n + log (N !) + 20.6n (−0.1n)
≤ log (N !)− n20.2n.

Now we bound the probability that A = |Xf | ≥ 20.6n. By assumption of the
lemma we can bound (2q(n) + 2) ≤ 20.2n and get:

Pr
π←Injnn, h←Injµ

f=h◦π

[︂
|Xf | ≥ 20.6n

]︂
≥ Pr

[︂
|Gf | ≥ (2q(n) + 1) 20.6n

]︂

= Pr
[︂⃓⃓⃓

Gf

⃓⃓⃓
≤ 2n − (2q(n) + 1) 20.6n

]︂
= Pr

[︂⃓⃓⃓
Gf

⃓⃓⃓
≤ 2n − 20.8n

]︂
. (2q(n) + 1 ≤ 20.2n)

By Claim 4.4.7 we can bound the expected size of Gf as follows:

Eπ←Injnn, h←Injµ
f=h◦π

[︂⃓⃓⃓
Gf

⃓⃓⃓]︂
≤
(︄

2 (q(n) + 1)
2n/2 + (1− β(n))

)︄
2n

≤
(︄

2 (q(n) + 1)
2n/2 +

(︂
1− 2−0.1n

)︂)︄
2n (as β(n) ≥ 2−0.1n)

≤ 2 · 20.7n + 2n − 20.9n (as 2q(n) + 2 ≤ 20.2n)

≤ 2n − 9
1020.9n. (as n ≥ 50)

We can use the Markov inequality to bound

Pr
π←Injnn, h←Injµ

f=h◦π

[︂⃓⃓⃓
Gf

⃓⃓⃓
> 2n − 20.8n

]︂
≤

2n − 9
1020.9n

2n − 20.8n
.

Combining these inequalities we get:

Pr
π←Injnn, h←Injµ

f=h◦π

[︂
|Xf | ≥ 20.6n

]︂
≥ Pr

[︂⃓⃓⃓
Gf

⃓⃓⃓
≤ 2n − 20.8n

]︂

= 1− Pr
[︂⃓⃓⃓

Gf

⃓⃓⃓
> 2n − 20.8n

]︂
≥ 1−

2n − 9
1020.9n

2n − 20.8n

≥ 8
102−0.1n. (n ≥ 50)
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We are ready to bound the size of the encoding as follows:
Eπ←Injnn, h←Injµ [Eh(π)] = Pr

π,h

[︂
|Xπ◦h| < 20.6n

]︂
(1 + log N !) +

+ Pr
π,h

[︂
|Xπ◦h| ≥ 20.6n

]︂
Eπ,h

[︂
Eh(π)

⃓⃓⃓
|Xπ◦h| ≥ 20.6n

]︂
≤ Pr

π,h

[︂
|Xπ◦h| < 20.6n

]︂
(1 + log N !) +

+ Pr
π,h

[︂
|Xπ◦h| ≥ 20.6n

]︂ (︂
log (N !)− n20.2n

)︂
≤ 1 + log (N !)− Pr

π,h

[︂
|Xπ◦h| ≥ 20.6n

]︂
n20.2n

≤ 1 + log (N !)−
(︃ 8

102−0.1n
)︃

n20.2n

≤ log (N !)− 8
10n20.1n.

Finally by averaging argument there exists a function h ∈ Injµ such that
Eπ←Injnn [Eh(π)] ≤ log (N !)− 8

10n20.1n.

4.5 Extensions
In this section, we prove extensions of the result from Section 4.3.2. We first allow
the security reduction to submit multiple queries to the oracle Solve as long as
the queries are non-adaptive. This extension is a rather small modification of the
previous proof and can be found in Section 4.5.1.

Then in Section 4.5.2 we further broaden our result by allowing even random-
ized non-adaptive reductions. Here non-trivial changes even for oracle Solve are
needed. If we would define the sets Zi, Yi to be the sets of all challenges that ever
query the instance (see lines 1 and 7 of Algorithm 6) and protect them the same
way as before, we could run into troubles. This is because we would try to protect
also the challenges for which the probability of querying the instance i would be
very small. There could be many such challenges which could lead to absence
of a “benign” solution and thus the algorithm would weaken the conditions on
“benign” solution and stop to protect all challenges for a specific security param-
eter. But it might help the security reduction a lot if we give it a solution for
a challenge y which is queried with high probability. To deal with this problem
we stop protecting the challenges y in order of decreasing probability. For more
details see Section 4.5.2.

4.5.1 Non-Adaptive Reductions
It is possible to extend our proof from Section 4.3.2 to rule out even non-adaptive
security reductions which submit multiple queries to the oracle Solve in parallel,
though still f -obliviously, as defined in Definition 4.3.3.

Notice that the algorithms Solve, Encoden, Decoden, and SolveSim (see
Algorithms 6 to 9) are well defined even for non-adaptive reductions and we
can use them without any change. Our analysis showing that Solve always
returns a solution (Lemma 4.3.5), that Decoden correctly decodes the permu-
tation (Lemma 4.3.6), and that the encoding is prefix-free (Lemma 4.3.7) remain
unchanged as well. The statement of Lemma 4.3.8 also holds without a change.
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The only difference in our proof would be in the proof of Claim 4.4.7 in
Equation (4.4.16), where we are upper bounding the probability of an indirect hit.
In the non-adaptive reductions, the right side upper bounds only the probability
that ℓ-th query to Solve causes an indirect hit for some fixed ℓ (if we would
define the set of instances i appropriately to correspond to instances queried as
the ℓ-th query). Then we use union bound over ℓ to say that no query causes an
indirect hit (similarly as we do in the black-box separation for average-case NP,
see Chapter 3). Thus the maximum in Equation (4.4.16) needs to be multiplied
by TR

(︂
n + 100nlog(n)

)︂
, since this upper bounds the running time of the security

reduction R and thus also the number of Solve queries.
Accordingly, the bound on the indirect hit (Equation (4.4.15)) changes to

Pr
x←{0,1}n, h←Injµ

f=h◦π, y=f(x)

[HITf,y] ≤
TR

(︂
n + 100nlog(n)

)︂
2 (q(n) + 1)

2n/2 . (4.5.1)

This is still O
(︂
npolylog(n)

)︂
. Thus when we propagate this bound into the proof of

Lemma 4.3.8 we can still bound the probability of indirect hit by 20.2n for large
enough n. Therefore Eπ←Injnn, h←Inj

f=h◦π

[︂
|Gf |

]︂
remains unchanged for large enough n

and we can prove the following strengthening of Theorem 4.3.4.

Theorem 4.5.1. Let µ ∈ T be any type. There is no fully black-box construction
(R, TR, C, TC , p) of a worst-case hard TFNP problem from injective one-way func-
tions of type µ with a deterministic f -oblivious non-adaptive reduction with suc-
cess probability at least 2−0.1n such that both running times TR, TC ∈ O

(︂
ℓpolylog(ℓ)

)︂
,

where n is the security parameter and ℓ corresponds to the length of the input of
R, resp. C.

4.5.2 Randomized Reductions
In this section, we describe how to generalize our proof to handle fully black-box
constructions of hard TFNP problems from injective-OWF with randomized se-
curity reductions. More precisely we focus on reductions which are randomized
non-adaptive but still f -oblivious. We show the impossibility of such construc-
tions too. Written formally we get the following theorem of the full strength:

Theorem 4.5.2. Let µ ∈ T be any type. There is no fully black-box construction
(R, TR, C, TC , p) of a worst-case hard TFNP problem from injective one-way func-
tions of type µ with a randomized f -oblivious non-adaptive reduction with success
probability at least 2−0.1n such that both running times TR, TC ∈ O

(︂
ℓpolylog(ℓ)

)︂
,

where n is the security parameter and ℓ corresponds to the length of the input of
R, resp. C.

Note that our algorithm Solve (as described in Algorithm 6) is not able to
handle randomized reductions. One could imagine that the construction has for
each challenge y ∈ {0, 1}∗ created a specific instance iy ∈ {0, 1}∗ which is created
in such a way that most solutions query the preimage of y. R when running on
a challenge y queries iy with high probability but to “hide” the real challenge it
queries also some instances iy′ for y′ ̸= y, each of them with small probability.
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As there are many different challenges for which iy is queried, we cannot apply
Claim 4.4.10 to argue the existence of a “benign” solution. Thus Solve would
probably stop to “protect” all challenges of length |y| and return some solution –
which with high probability helps R to invert on y. This would lead to a successful
security reduction as a “useful” solution would be returned from Solve with high
probability over the choice of queried instance.

The crux of the problem is that once solve encounters absence of a “benign”
solution it stops to “protect” challenges in “batches” – in particular stops to
“protect” all solutions of some length at once. This is not needed and Solve can
rather give up on “protecting” the challenges one by one, taking the probability
that the specific instance i (on which Solve runs) is queried into account. We
give the precise description of the new algorithm Solve in Algorithm 10.

Solve as described in Algorithm 10 works properly: We don’t give a full
formal proof for this here, but by a similar argument as in Lemma 4.3.5 we can
argue that it halts at the latest after |Yi| ≤ 2TC(|i|+p(|i|))+1 iterations of the while
loop when there are no challenges present in Yi. Thus Solve may return any
solution at this step and at least one solution exists by the correctness of the
construction (see Definition 4.3.1).

The only catch is that for every challenge we need to be able to compute
the probability that the instance i is queried. But as we are interested only in
challenges from y ∈ {0, 1}µ(n), where n ∈ {1, 2, . . . TC (|i|+ p(|i|))} we can for
each such challenge simulate the reduction on (1n, y; r1), (1n, y; r2), . . . , (1n, y; rℓ)
where strings r1, r2, . . . , rℓ represent the random choices of R. Note that there are
only finitely many strings r1, r2, . . . rℓ we need to take into account as the running
time of R is bounded by TR (n + |y|) = TR (n + µ(n)) ≤ TR

(︂
n + 100nlog n

)︂
. Thus

we may consider only strings r1, r2, . . . rℓ ∈ {0, 1}TR(n+µ(n)) (if the reduction does
less than this amount of random choices the remaining random bits are ignored)
and we can still compute the probability precisely.

Encoding and decoding of a random permutation: The encoding and
decoding of a random permutation π ∈ Injµ can be again done by algorithms
Encoden, Decoden (see Algorithms 7 and 8) with only small changes. First
we need to use as a subroutine a new simulator SolveSim (previously described
in Algorithm 9) to simulate our new Solve (described in Line 8). As all the
changes are in the order in which Solve stops to “protect” the challenges it
suffices to observe that the probabilities are independent on the function f (due
to f -obliviousness of the reduction) and thus SolveSim can hold the same values
as Solve does.

The second change to the algorithms is that we need to equip Encoden

and Decoden with a new source of shared randomness which will be used to
simulate the security reduction. For this it suffices to choose one string ry ∈
{0, 1}TR(n+µ(n)) per each challenge y ∈ Im(fn) = Im(hn). Then both Encoden

as well as Decoden when simulating R on input (1n, y) use ry for the random
choices made by R. By the fact that TR (n + µ(n)) upper bounds the running time
of R we know that no more random bits are needed. If only ℓ < TR (n + µ(n))
random choices are made by R, only the first ℓ bits of the string ry are used and
the remaining bits are ignored.

85



Except the changes described above, the proofs of Lemmas 4.3.6 and 4.3.7
can be used for the randomized reductions as well. Thus we have correctness
of the Encoden,Decoden routines and we know that they produce prefix-free
encoding. It suffices to upper bound the length of a produced encoding.

Bounding the length of the encoding: The crucial step of the proof is to
bound the length of the resulting encoding, that is to show an equivalent of
Lemma 4.3.8. We need to show (similarly as in Claim 4.4.7) that the probability
that a “useful” solution was returned from Solve is small. That is we want to
show that with high probability over the choice of the challenge y there was not
an indirect hit (the solutions returned from Solve do not reveal the preimage
of y). We include a full proof of Claim 4.5.3 an equivalent of Claim 4.4.7 for
randomized reductions.

The rest of the proof can be done similarly as we bound the probability that
a random challenge is in the good set by

2 (q(n) + 1) TR (n + µ(n))
2n/2 + Pr

[︂
Rf,Solve(1n, y; r) ̸= f−1(y)

]︂
.

Since the numerator 2 (q(n) + 1) TR (n + µ(n)) ∈ O(npolylog(n)) ⊆ o(2−0.2n) the
proof of Lemma 4.3.8 can be left without change even for the randomized non-
adaptive f -oblivious reductions and the proof of Theorem 4.5.2 follows by the
same argumentation as in the proof of Theorem 4.3.4.

Claim 4.5.3. Let µ ∈ T be any type and (R, TR, C, TC , p) be any randomized
deterministic f -oblivious non-adaptive fully black-box construction of a worst-
case hard TFNP problem from injective-OWF of type µ. Let n ≥ 16 be any
natural number and let π ∈ Injnn be any permutation. Let q(n) be the maximal
number of f -queries made by C on any queried instance (see Definition 4.4.5).
Then

Pr [f(x) /∈ Gf ] ≤ 2 (q(n) + 1) TR (n + µ(n))
2n/2 + Pr

[︂
Rf,Solve(1n, y; r) ̸= f−1(y)

]︂
,

where the probabilities are taken over the randomness of r ← {0, 1}TR(n+µ(n)) of the
security reduction R, the choice of x← {0, 1}n , h← Injµ and both f = h◦π and
Gf are as defined in the algorithm Encoden (see lines 1 and 3 of Algorithm 7).

Note that in the statement of the claim we consider the randomness r of the
security reduction to be only the strings of length {0, 1}TR(n+µ(n)). As we already
mentioned this can be done without loss of generality as R cannot make more
than this amount of random coin tosses (by the fact that the running time of R
is bounded) and if it does less we can just ignore the last bits as unused random
coin tosses.

Also note that the function q(n) (Definition 4.4.5) was defined only for de-
terministic many-one reduction, i.e., in the definition we consider the exact one
choice of the instance i which is queried by security reduction. We need to slightly
alter the definition in the case of randomized non-adaptive reduction to choose
any instance i which is queried with non zero probability and take the maximum
also over the choice of such an instance i.
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The proof follows the blueprint of the proof of Claim 4.4.7 the main differences
are that we have to take the probabilities of querying a particular instance into
account and the changes described in the Section 4.5.1 which allow us to deal
with the non-adaptivity of the security reduction. As the changes are non-trivial
we include the full proof with the aforementioned changes.

Proof. Recall that y ∈ Im (fn) is in Gf if it satisfies the following two conditions:

1. Rf,Solve(1n, y; r) inverts f on y, and

2. there is no indirect query for y (i.e., f−1(y) /∈ Qindir
f

(︂
Rf,Solve(1n, y; r)

)︂
).

We denote the event that R fails to invert f on y by FAILf,y (if this happens
y /∈ INVf see line 2 of Algorithm 7) and the event that there was a indirect
query to the preimage of y as HITf,y (and thus y is not added to Gf see line 3 of
Algorithm 7). We bound the probability using union bound as follows:

Pr [f(x) /∈ Gf ] ≤ Pr [FAILf,y] + Pr [HITf,y] ,

where the probability is over the randomness r ← {0, 1}TR(n+µ(n)), h← Injµ and
x← {0, 1}n, f denotes the function h ◦ π and y = f(x).

Note that the probability of FAILf,y is one of the summands in the statement
of the claim as

Pr [FAILf,y] = Pr
[︂
Rf,Solve (1n, f(x); r) ̸= x

]︂
.

where the probability is over the randomness r ← {0, 1}TR(n+µ(n)), h← Injµ and
x ← {0, 1}n, f denotes the function h ◦ π and y = f(x). Thus we only need to
show that

Pr [HITf,y] ≤ 2 (q(n) + 1) TR (n + µ(n))
2n/2 . (4.5.2)

where the probability is over the randomness r ← {0, 1}TR(n+µ(n)), h← Injµ and
x← {0, 1}n, f denotes the function h ◦ π and y = f(x).

From now we assume that there is only one query made to Solve. To em-
phasize this the event HIT(1)

f,y corresponds to the event that there was an indirect
query to a challenge y assuming that the security reduction always queries Solve
on at most one instance. Observe that if we bound the probability of this event:

Pr
[︂
HIT(1)

f,y

]︂
≤ 2 (q(n) + 1)

2n/2 , (4.5.3)

then

Pr [HITf,y] ≤ 2 (q(n) + 1) TR (n + µ(n))
2n/2 ,

where the probabilities are in both cases over the choice of r ← {0, 1}TR(n+µ(n)),
x ← {0, 1}n, h ← Injµ, f denotes the function h ◦ π and y = f(x). This follows
from the non-adaptivity of the queries because any reduction R for which HITf,y

has larger probability gives us a 1-query reduction R′ where HIT(1)
f,y has larger
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probability than possible by Equation (4.5.3) as follows: R′ on the input (1n, y; r)
chooses uniformly at random one query i from QSolve

(︂
Rf,Solve(1n, y; r)

)︂
. As the

running time (and thus also the number of queries made by R) is upper bounded
by TR(n + µ(n)), we get

Pr
[︂
HIT(1)

f,y occurs for R′
]︂
≥ Pr [HITf,y occurs for R]

TR (n + µ(n)) ,

where the probabilities are over the choice of r ← {0, 1}TR(n+µ(n)), x ← {0, 1}n,
h ← Injµ, f denotes the function h ◦ π and y = f(x). Thus we can restrict
ourselves to security reductions which submit at most one query to Solve.

Similarly as in the proof of Claim 4.4.7 we now want to fix one instance
i ∈ {0, 1}∗ and bound the probability of HIT(1)

f,y assuming i is the queried instance.
Let Pn denote the set of possible TFNP instances that the reduction might query
when running on some challenge y ∈ {0, 1}µ(n) and a security parameter n:

Pn =
⎧⎨⎩i ∈ {0, 1}∗

⃓⃓⃓⃓
⃓⃓ i ∈ QSolve

(︂
Rf,Solve (1n, f(x); r)

)︂
for some x ∈ {0, 1}n , r ∈ {0, 1}TR(n+µ(n)) , f ∈ Injµ

⎫⎬⎭ .

Observe that the size of Pn is finite as the length of the challenge f(x) and thus
also the running time of R and the length of the longest queried instance are
limited. Moreover C =

{︂
i ∈ QSolve

(︂
Rf,Solve (1n, f(x); r)

)︂}︂
i∈Pn

defines a partition
of the probability space since we assume that R makes at most one query to
Solve. Thus we may use Lemma 4.4.8 to bound:

Pr
[︂
HIT(1)

f,y

]︂
≤ max

i∈Pn

Pr
[︂
HIT(1)

f,y | i ∈ QSolve
(︂
Rf,Solve (1n, f(x); r)

)︂]︂
, (4.5.4)

where the probabilities are in both cases over the choice of r ← {0, 1}TR(n+µ(n)),
x← {0, 1}n, h← Injµ, f denotes the function h ◦ π and y = f(x).

This allows us to fix any instance i ∈ {0, 1}∗ and bound the probability that x
was indirectly queried on this fixed instance i. Note that if the challenge f(x) is
contained in Yi (see line 8 of Algorithm 10) when the solution is returned, then
the returned solution does not query the preimage of the challange f(x). Thus
we inspect whether the challenge y is still in Yi,n ⊆ Yi and thus still “protected”
at the time when the algorithm returns. We use the following notation in the
rest of the proof. Let tend

i,f = j if the algorithm Solvef (i) returns the solution in
the j-th iteration of the while loop (see line 14 of Algorithm 10). Furthermore
let tdel

i,f,n,y denote the iteration of the same while loop in which y is removed from
Yi, respectively Yi,n (see lines 21 and 22 of Algorithm 10). Note that we set
tdel
i,f,n,y =∞ in the case when y is never removed from Yi,n neither from Yi and we

set tdel
i,f,n,y = 0 if the set is removed already before the while loop, i.e., on line 5 of

Algorithm 10.
We distinguish the following two “bad” events when we deleted a challenge

from the protected set, but returning its preimage can potentially “help” the
reduction too much:

BADD(1)
i,f,n: There is a challenge y from {0, 1}µ(n) which is unprotected from the
start of the algorithm (i.e., Ui,n ̸= ∅, see line 4 of Algorithm 10), but

|Zi| < 2n/2
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where Zi is as computed on line 1 of Algorithm 10, i.e., Zi contains all
challenges from {0, 1}µ(n) which query the instance i.

BADD(2)
i,f,n: The algorithm removed a challenge y ∈ {0, 1}µ(n) from Yi,n, respec-
tively Yi, due to absence of a “benign” solution in an iteration of the while
loop in which |Yi,n| ≤ 2n/2.

We bound the probabilities of these two events and then show that if none of them
occurs the returned solution does not cause an indirect hit with high probability.

Similarly as in the proof of Claim 4.4.7, we can bound the probability of the
first event using Claim 4.4.11 for A = {0, 1}µ(n), B being the set of challenges
from {0, 1}µ(n) which have zero probability of querying the instance i and C being
the image of fn, respectively hn. As we choose h← Injµ, the image fn is chosen
from all subsets of A of size 2n uniformly at random and we know that µ(n) > n
thus |A| ≥ 2|C|. The inequality |B| ≥ |A| − |C| − 1 follows from the fact that
Zi contained more than 2µ(n) − 2n challenges, otherwise Ui,n = ∅. Thus we can
bound the probability of BADD(1)

i,f,n by:

Pr
[︂
BADD(1)

i,f,n

]︂
≤ 2

2n/2 , (4.5.5)

where the probability is over the choice of r ← {0, 1}TR(n+µ(n)), x ← {0, 1}n,
h← Injµ and f denotes the function h ◦ π.

To bound BADD(2)
i,f,n we use Claim 4.4.10 similarly as in the proof Claim 4.4.7.

Let Y del
i denote the set Yi during the iteration in which BADD(2)

i,f,n occurs (for the
first time) and Zdel

i be the set Zi after we potentially deleted few challenges from
it, i.e., after the deletions made on line 5 of Algorithm 10. We observe that by
Lemma 4.4.8 the probability can be bounded by

Pr
[︂
BADD(2)

i,f,n

]︂
≤ max

Y,Z
Pr
[︂
BADD(2)

i,f,n

⃓⃓⃓
Y del

i = Y ∧ Zi = Z
]︂

where the probability is over the choice of r ← {0, 1}TR(n+µ(n)), x ← {0, 1}n,
h← Injµ and f denotes the function h ◦ π and the maximum is over

Y ⊆ Z ⊆
TR(n+µ(n))⋃︂

n=1
{0, 1}µ(n) ,

such that for every n′ ∈ N: |Y ∩ {0, 1}n′
| ≤ 2n′

/2n/2 and |Z| ≤ 2µ(n′) \ 2n′ . Note
that in the iteration in which BADD(2)

i,f,n occurs the conditions on Z and Y are
satisfied as:

|Zi| ≤ 2µ(n′) \ 2n′ : On line 5 of Algorithm 10 we add challenges to Zi making sure
that this condition is satisfied.

|Y del
i ∩ {0, 1}n′

| ≤ 2n′
/2n/2: By the definition of BADD(2)

i,f,n we removed a chal-
lenge from Yi,n which contains at most 2n/2 challenges. Since we choose Yi,n

from which we delete the challenge in the order of decreasing density (see
lines 21 and 22 of Algorithm 10) each other set must have density at most
2n/2/2n = 1/2n/2.
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Then the fact that BADD(2)
i,f,n occurred implies that there was no “benign”

solution before deleting another challenge from Y even though the density of
“protected” challenges was already small (smaller than 1/2n/2). Thus using
Claim 4.4.10 we get:

Pr
[︂
BADD(2)

i,f,n

]︂
≤ max

Y,Z
Pr
[︂
BADD(2)

i,f,n

⃓⃓⃓
Y del

i = Y ∧ Zi = Z
]︂

(4.5.6)

≤ q(n)
2n/2 (4.5.7)

where the probability is over the choice of r ← {0, 1}TR(n+µ(n)), x ← {0, 1}n,
h← Injµ and f denotes the function h ◦ π and the maximum is over

Y ⊆ Z ⊆
TR(n+µ(n))⋃︂

n=1
{0, 1}µ(n) ,

such that for every n′ ∈ N: |Y ∩ {0, 1}n′
| ≤ 2n′

/2n/2 and |Z| ≤ 2µ(n′) \ 2n′ .
If neither BADD(1)

i,f,n nor BADD(2)
i,f,n occurs but we still got a solution which

queries the preimage of our challenge y ∈ {0, 1}µ(n) (i.e., causes an indirect query)
there must be a set Y del

i,n of at least 2n/2 different challenges from the image of fn

for which the reduction queries the instance i with non-zero probability and with
respect to which a “benign” solution was returned from Solve. This is beacuse
the solution can query only the challenges which are not “protected” at that point
of time. To be unprotected we have to delete the challenge y either from Zi on
line 5 of Algorithm 10 or in Yi and Yi,n on lines 21 and 22 of Algorithm 10. In
the first case the fact that BADD(1)

i,f,n does not occur implies existence of at least
2n/2 challenges in Im(fn) which query i with non-zero probability. In the second
case removing the challenge y and keeping less than 2n/2 solutions “protected”
corresponds to an occurence of BADD(2)

i,f,n.
Moreover as we have been removing the challenges from Yi,n and thus also

from Yi in the order of minimal probability of querying i, we can bound

Pr
[︂
HIT(1)

f,y

⃓⃓⃓
¬BADD(1)

i,f,n ∧ ¬BADD(2)
i,f,n

]︂
≤ q(n)

2n/2

where the probability is over the choice of r ← {0, 1}TR(n+µ(n)), x ← {0, 1}n,
h← Injµ, f denotes the function h ◦ π and y = f(x).

Thus using union bound and combining the above inequality with already
proven Equations (4.5.5) and (4.5.7) we get:

Pr
[︂
HIT(1)

f,y

]︂
≤ Pr

[︂
BADD(1)

i,f,n

]︂
+ Pr

[︂
BADD(2)

i,f,n

]︂
+ Pr

[︂
HIT(1)

f,y

⃓⃓⃓
¬BADD(1)

i,f,n ∧ ¬BADD(2)
i,f,n

]︂
≤ 2

2n/2 + q(n)
2n/2 + q(n)

2n/2

≤ 2(q(n) + 1)
2n/2

where the probabilities are over the choice of r ← {0, 1}TR(n+µ(n)), x ← {0, 1}n,
h← Injµ, f denotes the function h ◦ π and y = f(x).
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Algorithm 10: The oracle Solve.
Hardwired : a randomized f -oblivious non-adaptive fully black-box

construction (R, TR, C, TC , p) of a worst-case hard TFNP
problem from injective-OWF of type µ

Oracle access: an injective function f = {fn}n∈N ∈ Injµ
Input : an instance i ∈ {0, 1}∗
Output : a solution s ∈ {0, 1}∗ such that Cf (i, s) = 1 and |s| ≤ p (|i|)

1 Compute

Zi =
TC(|i|+p(|i|))⋃︁

n=1

{︂
y ∈ {0, 1}µ(n)

⃓⃓⃓
i ∈ QSolve

(︂
Rf,Solve(1n, y; r)

)︂
for some r

}︂
2 for n ∈ {1, . . . , TC (|i|+ p (|i|))} do
3 if

⃓⃓⃓
{0, 1}µ(n) \ Zi

⃓⃓⃓
< 2n then

4 Compute Ui,n ⊆ Zi ∩ {0, 1}µ(n) containing exactly 2n −
⃓⃓⃓
{0, 1}µ(n) \ Zi

⃓⃓⃓
challenges for which probability of querying i is minimal

5 Set Zi = Zi \ Ui,n

6 end
7 end
8 Compute Yi = Zi ∩ Im(f)
9 Compute Ni = {n ∈ N | Yi ∩ Im (fn) ̸= ∅}

10 for n ∈ Ni do
11 Compute Yi,n = Yi ∩ Im (fn)
12 end
13 Compute Si,f =

{︂
s ∈ {0, 1}∗ | |s| ≤ p (|i|) ∧ Cf (i, s) = 1

}︂
14 while True do
15 Bi,f =

{︂
s ∈ Si,f | f

[︂
Q
(︂
Cf (i, s)

)︂]︂
∩ Yi = ∅

}︂
16 if Bi,f ̸= ∅ then
17 return lexicographically smallest s ∈ Bi,f

18 end
19 Choose n ∈ Ni such that |Yi,n|

2n is maximized.
20 Choose y ∈ Yi,n such that the probability of querying i is minimal for

challenge y.
21 Set Yi = Yi \ {y}
22 Set Yi,n = Yi,n \ {y}
23 if Yi,n = ∅ then
24 Set Ni = Ni \ {n}
25 end
26 end
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Conclusion
In Chapter 2, we studied the complexity of the Arrival problem and shown that
the run-profiles are efficiently recognizable which combined with results of Dohrau
et al. [2017] demonstrates that Arrival ∈ UP ∩ coUP. We have also proven that
Arrival belongs to the class CLS by presenting a reduction from Arrival to
EOML. As pointed out by Fearnley et al. [2020], using the same reduction, we
get a reduction from Arrival to UniqueEOPL. There are a few other problems
in TFNP which are guaranteed to have a unique solution. Such problems are,
for instance, PLCP and USO, which are also reducible to UniqueEOPL as shown by
Fearnley et al. [2020]. This raises the following open question:

What is the relation between Arrival and other TFNP problems with unique
solution? Or more specifically, can we reduce Arrival to PLCP or USO?

The fact that Arrival is in the class CLS (which is very close to FP, i.e., the
search version of P) also raises the following question:

Is there a polynomial algorithm for Arrival?

To this end there are some promising results such as the recent results by
Gärtner et al. [2021] who give a sub-exponential time algorithm for Arrival.
Moreover, they have demonstrated existence of a polynomial-time algorithm at
least for graphs with a feedback vertex set of constant-size.

In Chapters 3 and 4, we study the possibility of basing worst-case hardness
in TFNP on average case hardness in NP (or in UP), respectively, on injective
one-way functions. In the first case, we rule out any fully black-box construction
of worst-case hard problem in TFNP from an average-case hard NP problem. Un-
fortunately, we have not been able to show the same result for one-way functions.
More specifically, we can rule out only “simple” reductions from injective one-way
functions to TFNP. Thus, the natural question is whether it is possible to extend
this result:

Is it possible to rule out fully black-box constructions of worst-case hardness in
TFNP from (injective) OWF even when the security reduction is not f -oblivious

and/or has adaptive queries?
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Nešetřil, and Robin Thomas, editors, A Journey Through Discrete Mathemat-
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1. Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubáček, Karel Král,
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Structures Lower Bounds and Popular Conjectures. arXiv:2102.09294,
2021, Under submission
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