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lization, we establish variance asymptotic and the asymptotic normality of such
estimator. Next, we study asymptotic properties of a cylinder process in the
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of large numbers as well as a formula of the asymptotic variance for the area of
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limit theorem for the cylinder process using the method of cumulants.
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Introduction

Modelling of geometrical structures is of great interest within the scope of stochas-
tic geometry since the structures appear in profusion in the natural sciences like
geology, material sciences and astronomy as well as in technical sciences for ex-
ample when studying communication networks (including social, transportation
and wireless networks). Therefore, popular models include among others unions
of random sets (particles), random tessellations or random graphs. Frequently,
but it is not a rule, those structures are derived from a simple point process
making it easier to track.

Many questions arising in stochastic geometry may be understood in terms of
the behaviour of statistics of large random geometric structures. However, these
random structures tend to have a problematic finite size description. Therefore,
a natural way how to overcome this difficulty is to let the system size grow to
infinity and study its asymptotic behaviour. This thesis aims to give a survey
of selected limit techniques used in stochastic geometry as well as explore recent
development and collect results providing laws of large numbers and central limit
theorems for functionals of these random structures. The limiting regimes are
first, increasing intensity of the defining point process and second, unboundedly
growing observation window. It depends on the situation which approach is
more suitable. For instance, we prefer to let the observation window grow when
studying the volumes or lengths. On the other hand, for some scale-invariant
functionals, one could let the intensity increase.

The structure of the thesis goes as follows:

o The first chapter introduces standard notation and theory of point processes
in a general setting. Special situations are presented including spatial point
processes, processes of compact subsets (particles) in R? and processes with
marks. Afterwards, further geometric structures are discussed such as ran-
dom tessellations and random graphs. The theory is supplemented by var-
ious examples. The thesis aims to be self-contained. Therefore, the first
chapter covers all the theory of point processes needed in the subsequent
parts.

o The following three chapters each cover one asymptotic method. Each
method is briefly explained. Proofs of the main results are included if they
are short or interesting for the theory. Some of the proofs had to be adjusted
to the setting of this thesis, some others were completed as they had only
hints in the literature. Many examples of application are then presented,
emphasizing the most recent ones and the author’s own. The reader can
also find references for further application. The methods are namely:

Malliavin—Stein’s method: The second chapter is devoted to the approach
to probabilistic approximations that combines Stein’s method with infinite-
dimensional integration by parts formulae based on the use of Malliavin-
type operators. The first stones of the method were built in a seminal
paper Nualart and Peccati [2005], where the authors established central
limit theorem called the fourth moment theorem for sequences of multiple



stochastic integrals of a fixed order. Since this paper, a significant develop-
ment appeared in Nourdin and Peccati [2009a], where by bringing together
Stein’s method with the Malliavin calculus, the authors were able to asso-
ciate quantitative bounds to the fourth moment theorem. The basic idea
of the approach is that, in order to assess the discrepancy between some
Gaussian law and the distribution of a non-linear functional of a Gaussian
field, one can apply infinite-dimensional integration by parts formulae from
the Malliavin calculus of variations (see e.g. Malliavin [1997]) to the general
bounds associated with the so-called Stein’s method (see Stein [1972]) for
probabilistic approximations. In particular, the Malliavin—Stein approach
covers the ideas from Chatterjee [2009], where Stein’s method was combined
with finite-dimensional integration by parts formulae for Gaussian vectors,
in order to deduce second order Poincaré inequalities.

Within the framework of this thesis, however, we use a version of Malliavin
calculus for functionals of Poisson processes using the Fock space repre-
sentation as was introduced in Peccati and Reitzner [2016]. The method
then leads to central limit theorems as well as computing explicit rates of
convergence for models in stochastic geometry.

An interested reader is strongly recommended to visit this webpage gov-
erned by Professor Nourdin which provides a constantly updated list of all
existing papers written around the Malliavin—Stein method.

Method of stabilization: Another important tool of geometric limit theory
is the concept of stabilization presented in the third chapter. Roughly
speaking, a functional of some random structure stabilizes if its behaviour
at a given location depends only on the environment within a certain finite
but possibly random distance. This approach allows one to study statistics
which may be expressed as a sum of spatially dependent terms having short-
range interactions but complicated long-range dependence.

The motivation behind implementing this theory in the scope of stochas-
tic geometry originated in a desire to understand the asymptotics of the
classical Euclidean optimization problems including the traveling salesman
problem initiated in Beardwood et al. [1959] by showing the limit law of
the length of the shortest tour through n i.i.d points in the unit cube in
R?. Independently, a similar result was shown in Miles [1970] for the total
edge length of some planar tessellations driven by a homogeneous Poisso-
nian input. The modern theory of stabilization used in stochastic geometry
was introduced in its present form in Penrose and Yukich [2001], Penrose
and Yukich [2002] and Penrose and Yukich [2003] based on previous work
of Kesten and Lee [1996].

Method of cumulants: We use the classical result from probability theory by
Marcinkiewicz [1939] stating that normal distribution is the only one with
finitely many non-zero cumulants (semi-invariants). In the fourth chapter,
we show that cumulants of a random variable derived from a random ge-
ometric structure can be expanded in terms of cumulant measures of the
defining point process. Under suitable restrictions on those measures, the
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cumulants of higher orders can be shown to tend to zero yielding central
limit theorems.

For a more thorough acquaintance with the cumulant method, the reader
is referred to Saulis and Statulevicius [1991].

As far as we know, the above described methods are the most frequent ones
when proving some asymptotic results in stochastic geometry. Nevertheless, the
list is still far from being exhaustive. It would probably take more than one thesis
to cover all available methods conscientiously. We shall at least mention limit
theorems for geometric functionals enjoying variants of subadditivity or superad-
ditivity properties (a detail survey of this subject is available in the monograph
Yukich [1998]), techniques dealing with associated random fields (e.g. Bulinski
and Shashkin [2007]) with the application on the volume of the excursion sets
in Bulinski et al. [2021] or ideas based on constructing a clan of ancestors for
Gibbsian inputs invented in Ferndndez et al. [1998].

At last, let us clear the connections between this thesis and author’s publica-
tions.

o D. Flimmel and V. Benes. Gaussian approximation for functionals of Gibbs
particle processes. Kybernetika, 54:765-777, 2018.

The paper follows recent development in the limit theory of functionals of
Gibbs point processes in the Euclidean space in order to generalize results to
Gibbs processes of geometrical objects (particles). First, the authors verified
that the existence of a stationary Gibbs particle process is guaranteed under
analogous conditions as stated by Dereudre [2017] for Gibbs point processes.
Next, it was found that the methodology of Torrisi [2017] based on the
Malliavin—Stein method can be applied to Gibbs particle processes. Based
on these results, Gaussian approximation was derived for an innovation of
a stationary Gibbs planar segment process. Namely two functionals were
investigated: the normalized number of segments observed in a window and
normalized total length of segments hitting the window.

The results are presented here in order to demonstrate applications of
Malliavin—Stein’s method. However, we do not include all results or proofs
since they already appeared in the master thesis Flimmel [2017].

o D. Flimmel, Z. Pawlas, and J. E. Yukich. Limit theory for unbiased and
consistent estimators of statistics of random tessellations. Journal of Ap-
plied Probability, 57:679-702, 2020.

The paper focuses on stationary generalized weighted Voronoi tessellations
of R% observed within a bounded observation window tending to the whole
space. Given a geometric characteristic of the typical cell, we use the minus-
sampling technique to construct an unbiased estimator of the average value
of this geometric characteristic. Under mild conditions on the weights of
the cells, we establish variance asymptotics and the asymptotic normality of
the unbiased estimator as the observation window tends to the whole space
using the stabilization properties of the generating point process. Moreover,
the weak consistency is shown for this estimator. Specially, apart from



already known results for Voronoi tessellations, stabilization properties are
shown for Laguerre and Johnson—Mehl tessellations generated by a Poisson
point process.

e D. Flimmel and L. Heinrich. On the variance of the area of planar cylinder
processes driven by Brillinger-mixing point processes. Submitted to Elec-
tronic Journal of Probability.

We study some asymptotic properties of cylinder processes in the plane de-
fined as union sets of dilated straight lines (appearing as mutually overlap-
ping infinitely long strips) derived from a stationary independently marked
point process on the real line, where the marks describe thickness and ori-
entation of individual cylinders. We observe such cylinder process in a do-
main pK unboundedly growing to the whole space with p — co. Provided
the unmarked point process satisfies a Brillinger-type mixing condition and
the thickness of the typical cylinder has a finite second moment we prove
a (weak) law of large numbers as well as a formula of the asymptotic vari-
ance for the area of the cylinder process in pK. Due to the long-range
dependencies of the cylinder process, this variance increases proportionally
to p®. The main technique used in this paper is the expansion of the first
two cumulants of the studied random variable in order to connect it with
factorial cumulant measures of the defining point process.

This paper is a starting point for deriving a central limit theorem using the
cumulant method by showing that under similar assumptions, all the cumu-
lants of orders three and higher converge to zero with p — co. There have
been some attempts, but so far it has led to an inadequate strengthening of
the assumptions. Some results are demonstrated at the end of Chapter 4
to illustrate the application of the method. However, these results are not
published and the authors agreed to continue the cooperation in order to
obtain more promising results.

In conclusion, new results obtained during the authors PhD study are, namely:

Method of stabilization

o Theorem 3.12 and 3.13 proving the (asymptotic) unbiasedness and consis-
tency of some estimators of a geometric characteristic of the typical cell in
the weighted Voronoi tessellation,

e Theorem 3.14 showing the asymptotic variance and central limit theorem
for the estimators mentioned above. The result is valid if the weighted
Voronoi tessellation is generated by a stationary Poisson point process and
any general weight function,

e Theorem 3.15 and 3.16 providing applications of the above listed results
leading to limit theory for unbiased estimators of first, the distribution
function of the volume and second, the Hausdorff measure of the bound-
ary of the typical cell in a weighted Poisson—Voronoi tessellation, where
the weight function relates either to Voronoi, Laguerre or Johnson-Mehl
tessellation,



Proposition 3.1 and 3.2 showing the stabilization properties of scores and
cells of Voronoi, Laguerre and Johnson—Mehl tessellations generated by
a Poisson input. In fact, these results extend some older results in Mc-
Givney and Yukich [1999], Penrose and Yukich [2001, 2003],

Lemmas 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 serve as auxiliary results in the proofs
of the above stated results.

Method of cumulants

Lemma 4.1 connecting the Choquet functional of the cylinder process and
the probability generating functional of its generating point process. This
is a first important step to connect the cumulants of the area of the planar
cylinder process with the cumulant measures of its generating point process.
Special cases are presented in Corollary 4.1 and Example 4.2,

Lemma 4.3 and Corollary 4.2 showing the convergence of the expected value
of the area of the cylinder process generated by a Brillinger-mixing point
process in R!. Theorem 4.3 then asserts a planar mean-square ergodic
theorem,

Theorem 4.4 providing the exact asymptotic variance of the area of the
cylinder process generated by a point process with a strong version of
Brillinger-mixing property,

Theorem 4.5 is a unpublished result giving a central limit theorem for the
area of the cylinder process driven by a point process satisfying much more
strict assumptions on the factorial cumulant measures than Theorem 4.4,

Lemmas 4.2, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 are essential parts of
the proofs of the above stated results.



1. Random geometric objects

The first chapter serves as an introduction to the theory of point processes as well
as a recapitulation of definitions and results used in the subsequent chapters. It
is mainly based on monographs Daley and Vere-Jones [2003] and Daley and Vere-
Jones [2008], Rataj [2006], Baddeley [2007], Schneider and Weil [2008], Chiu et al.
[2013] and Last and Penrose [2017].

1.1 Random measures and point processes in
general setting

The aim of this section is to introduce the concept of the point process in a general
way as a special type of random measure on a locally compact space. This
notion covers processes of points in R?, compact sets, convex bodies, curves,
lines, etc. Special examples will be discussed in the subsequent sections. If not
stated otherwise, we assume that all random elements throughout this thesis are
defined on a common probability space (€2, F,P) and by E, Var, resp. Cov we
denote the expectation, variance, resp. covariance w.r.t. P.

Locally finite measures

Let X be a locally compact, separable space equipped with a metric p. Without
loss of generality, we assume that every bounded closed set is compact with
respect to p. Further in the text, we will often use the following standard notation:

B(X) ... Borelo-field of subsets of X,
By(X) ... bounded Borel sets,

F(X) ... closed sets,

C(X) ... compact sets.

Definition 1.1 (Finite measure).
A measure p on (X, B(X)) is finite, if u(X) < oo.

Definition 1.2 (Locally finite measure).
A measure p on (X, B(X)) is locally finite, if u(B) < oo for all B € By(X).

The notation for sets of measures will be used as follows:

M(X) ... space of all locally finite measures on (X, B(X)),

M;(X) ... space of all finite measures on (X, B(X)),

N(X) ... spaceofalllocally finite integer-valued measures on (X, B(X)),
N;(X) ... space of all finite integer-valued measures on (X, B(X)).

If it does not lead to confusion, we use the simplified notation M, M, N, N for

the latter spaces. The elements of N are often called counting measures.
Moreover, denote by M the smallest o-field on M which makes all the pro-

jections pu — p(B) measurable for all Borel sets B. Lemma 3.1.2 in Schneider



and Weil [2008] shows that N € M. By N, we denote the trace o-field of M on
N, ie.
N={MAN:MeM).

For a measure p € M, the support supp(p) is the smallest closed set A in X
such that pu(X\A) = 0. Specially, if © € N, then

supp(u) = {z € X: p({z}) = 1},

Example 1.1.
Take k € Nu {0,00} and 1, ...,z € X. Define a counting measure p by

H = 25127

k
=1

where for z € X, §, is the Dirac measure, i.e. for A € B(X)

5,(A) = 1, ifxe A,
U0, ifx ¢ A

Remark. Since we assumed X to be locally compact and separable, all measures
in M;(X) are regular (Stépan [1987], Lemma 1.7.1) and tight (Stépdn [1987],
Lemma 1.7.3).

Random measures

Definition 1.3 (Random measure).
A random measure on X is a measurable mapping

U (Q,F,P) - (M, M).

The image measure Py = P U1 is the distribution of the random measure V.

For ¥ a random measure and B € B(X), we use the notation ¥(B) for the
mapping w — V(w)(B).

Definition 1.4 (Intensity measure).
Let ¥ be a random measure on X. The measure on X defined by

a(B) =E[¥(B)], BeB(X),

is called the intensity measure of the random measure .

Remark. Since V(B) = 0, a(B) is always defined, but o does no longer need to
be locally finite. However, the intensity measures of random measures and point
processes in this text will always be assumed to be locally finite.

Theorem 1.1 (Campbell).
Let W be a random measure on X with intensity measure o« and let f : X — R be
a non-negative, measurable function. Then

E L FdU = L fdav.

8



The intensity measure is also known under the name first moment measure.
Let us now introduce the higher moment measures in a similar way.

Definition 1.5 (m-th moment measure).
Let ¥ be a random measure on X and let m € N. The m-th moment measure
a'™ of U is the Borel measure on X™ for which

o™ (By x - x By) = EU™(By x --- x Bp) = EU(By)---U(By),
where By, ..., By, € B(X).

Here, the product measure W™ is a random measure on X and therefore,
™) is the intensity measure of U in the sense of Definition 1.4.
For m € N, define the space

al

X0 = {(x1,...,2n) € X" : x; are pairwise distinct}.

Definition 1.6 (m-th factorial moment measure).
Let m € N. For a random measure ¥, we define the m-th factorial moment
measure as the Borel measure o™ on X™ for which

ol™(By x - x B,) = EU™((By x -+ x By) n X7),
where By, ..., B, € B(X).
Theorem 1.2 (Campbell’s theorem for higher-order moment measures).

Let U be a random measure and f : X™ — R be a non-negative measurable
function. Then

E f h(xy, ..., ep) O™ (d(21, ... 20)) = fxr, ... am)a™ (A(xy, .. 20))
m Xm
and

Ef W) @) = [ Fn . m)a™ @A, o),
X

m m
# XZ

where U™ is the restriction of U™ on X7

Point processes

A point process is a special example of a random measure. A simple point pro-
cess is a random measure that can be described by a locally finite sum of Dirac
measures, i.e. a random collection of isolated points producing no multiplicities
in X. It can also be defined as a random closed set in X which is almost surely
locally finite. Multiplicities in a process can also be treated using marks attached
to each point (see Section 1.3).

Definition 1.7 (Point process).
A point process on X is a measurable mapping

1 (Q,F,P) — (N,N).

9



Remark. The measurable space (N, ) is often called the outcome space of
a point process on X.

Definition 1.8 (Simple point process).
A point process p on X is called simple if

P(u({z}) <1, Ve e X) = 1.

Definition 1.9 (Distribution of a point process).
Let p be a point process on X. By the distribution of the point process p, we
understand the probability measure P, on the space (N, ) given by

P(A)=PueA) =P({weQ:pw)eA}), AeN.

Notation. Point processes can be considered either as random measures or as
random sets of discrete points. Due to this interpretation, we will often treat
them accordingly and for € N write = € u instead of x € supp(u). At the same
time, we denote by u(B) = n the fact that the set B contains n points of u.
Among other reasons, it allows us to simplify the notation for the mean values

and write
E ) flo)

TEL

instead of
f £(2)6(dz) P.(do).
N JRd

Moreover, if 1 is simple, we will write p = {xq,xo,...}.

The characteristics of random measures can be defined in the same way for
point processes. However, some definitions and results have simpler interpreta-
tion. For example, if p is a simple point process, then the intensity measure «
evaluated in some set B € B(X) is the mean number of points of x lying in B.

Remark. If ;4 is a simple point process, then the Campbell’s theorem takes form

EZﬂ@:me (1.1)

TEW

The next theorem is a version of Campbell’s theorem for the m-th moment
measure o™ and the m-th factorial moment measure al™ of a simple point
process 4 and it is formulated in Schneider and Weil [2008].

Theorem 1.3 (Campbell’s theorem for a simple point process).
Let 1 be a simple point process in X and let f : X™ — R be a non-negative
measurable function. Then

E Z f<x17~.-7xm): f(x1’7xm)a(m)(d($1,,gjm)>
(@150 JEP™ xm

and

E Z flz,. . x,) = fxe, .. zm)a™(d(2, ... 2m)).

(ac17...,:cm)eummx;"



Using Theorem 1.3, we can see the relation between the measures a® and
al?l. For a simple point process 1 on X and By, B, € B(X), we have

01(2)(31 X Bg) =E Z 131X32(I1,$2) + Z 131(1’)132(1')
(acl,acz)e;ﬂmxzé TEW
Hence,
o (B x By) = al®(By x By) + a(B; n By). (1.2)

A recurrent relation between higher-order moment measures and factorial mo-
ment measures can be found. Before stating it, we recall the notion of Stirling
number of the second kind. We follow the definition of Daley and Vere-Jones
[2003], Section 5.2. For any integer n and k, we define the factorial powers of n
by

w. Jnn—1)--(n—k+1), for k=0,...,n,
B 0, for k > n.

Definition 1.10 (Stirling number of the second kind).
The Stirling number of the second kind {’;} is defined by the relation

SELANT
b — nll
24}

whenever n > k.

Alternatively, the Stirling number of the second kind can be defined using an
explicit formula

{k}: TV () =gk i k=1,
l 0, ifk<lL.

Having the notion of Stirling numbers of the second kind, we can now describe
a connection between moment measures and factorial moment measures. For

A e B(X) and k € N we have

a®)(xfA) =) {’;}awxg_lm.

=1

Definition 1.11 (Probability generating functional).

Denote by G(X) the class of Borel functions w : X — [0, 1] with 1 — w vanishing
outside some bounded set. For a point process i on X, we define the probability
generating functional G, by

Gu(w)=F (Hw(x)) . we G(X).

TEL

As in the case of ordinary random variables, the probability generating func-
tional is associated with the moment structure of the point process.

11



Theorem 1.4 (Proposition 9.5.VI in Daley and Vere-Jones [2008]).
Let G, be the probability generating functional of a point process p on X whose
k-th moment measure ezists for k € N. Then for 1 —w € G(X) and p — 0,

Gu(1—pw) = 1+Z (_f)J ng w(zy) ... w(z;) o (dey x - xda;) +o(pF). (1.3)

Theorem 1.5 (Corollary 9.5.VII in Daley and Vere-Jones [2008]).
Under the conditions of Theorem 1.4, if the (k + 1)-th moment measure of
exists, then the remainder in (1.3) is bounded by

it
(k+1)! Lkﬂ w(ay) - w(wge)a™ M (day x - x dagg).
TR

Similar expression as in Theorem 1.4 leads to the definition of factorial cumu-
lant measures associated with a point process y when expanding the logarithm of
the probability generating functional instead of the probability generating func-
tional itself.

Theorem 1.6 (Corollary 9.5.VIII in Daley and Vere-Jones [2008]).
Under the conditions of Theorem 1.4, the probability generating functional can be
expressed using the factorial cumulant measures YU for p — 0, as

_p)j

j!

log G, (1 — pw) = Z ( ng w(zy) - wlz) N (dey x - x day) + o(ph).

Factorial cumulant measures form a useful tool in expressing and studying
dependencies among distant parts of a point pattern. The relation between fac-
torial moment measures and factorial cumulant measures is based on the general
relationship between mixed moments and mixed cumulants (see e.g. Chapter 4 in
Baccelli et al. [2020]) and can serve as an alternative definition for the measures.
For k € N, we have

J
V(B x---xBy) = Z 177G -1)! Z HO‘[‘KT‘](XSGKTBs)a (1.4)

j=1 KioOK;={1,...k} r=1

o) x - x By) = Z > H’y (Xser, Bs),  (L.5)

J=l1Kiu-uKj={1,.. k}r=1

where By, ..., By € B(X) and the sum ZKlu-quj:{l ’’’’’ yy is taken over all parti-
tions of the set {1,..., k} into j non-empty sets Kj, ..., K, and |K;| denotes the

cardinality of the set K;. Note that 4] is a locally finite, signed measure on
[R*, B(R*)].

Example 1.2.
The first factorial cumulant measure coincides with the intensity measure (first

12



moment measure), whereas the second factorial cumulant measure equals to
2By x By) = ol(By x By) — a(By)a(Bs)
= C((2) (Bl X BQ) — Oé(Bl M BQ) — CK(Bl)Oé(BQ)
= cov(u(Br), i(Bz)) — a(By N Bs),

where in the second equality, we used relation (1.2).

Besides the probability generating functional, the most useful transform of
a random measure is the Laplace functional.

Definition 1.12 (Laplace functional).
Let ¥ be a random measure and f a non-negative measurable function of bounded
support on X. Then the Laplace functional is defined by

L) =& [ (- [ stoyian)|

Analogically, the k-th cumulant measures of the point process u can be defined
either via expanding the Laplace functional or based on the relation with the
moment measures up to k-th order. The next theorem shows the Taylor series
expansion of the Laplace functional about f = 0.

Theorem 1.7 (Proposition 4.2.2 in Baccelli et al. [2020]).
Let W be a random measure on X and f : X — R, be a measurable function such
that the mapping (z1,...,x) — f(z1)--- f(zx) is integrable with respect to a®,
i.e.
fxy) - flzp)a®(day x - x day,) < o0,
Xk
Then, forte R,

k
o(tf) =1+ Z

where |e(t)| < 4 f( f(zp)a®(dzy x - - - x day) and limy_g €, (t) = 0. More-
over, fort — 0,

. tk
J f 371 ) (J)(dl'l X oo X dl']) + EGk(t)j

J

log Ly (tf) = Z S RGNS Fla)y D (day x - x day) + oft¥),

where YY) is the j-th cumulant measure of .

Take k£ € N. The cumulant measures and moment measures are related by
(cf. Baccelli et al. [2020], Chapter 4)

G-t Y J]a%D(x ek, By),

KoUK ={1,...k} r=1

'y(’“)(Bl X - x By) =

'Mw

Il
—

J

k
Oé(k)(Bl X e X Bk) = 2 Z Hﬁ)/(‘ TD EKTBs)a

J=l1Kiu--uK;={1,..k}r=1
where By, ..., By € B(X).
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Example 1.3.
The first cumulant measure also coincides with the intensity measure, the second
cumulant measure is equal to the covariance measure

Y2 (A x B) = a®(A x B) — a(A)a(B) = cov(u(A), u(B)).

Palm distributions

In this section we focus on a type of conditional distributions for random mea-
sures which are formally defined in terms of so-called Palm distributions, first
introduced in Palm [1943].

Definition 1.13 (Campbell measure).
Campbell measure of a random measure ¥ on X is defined as

C(B xU) =E[U(B)1{W eU}], BeBX),UeM.

It represents a refinement of the intensity measure a(B) = C(B x M). By
Lemma 3.1.1 in Baccelli et al. [2020], the Campbell measure is a unique o-finite
measure on X x M. Moreover, assuming the intensity measure « of the random
measure Y is locally finite, then the measure disintegration theorem allows to
disintegrate the Campbell measure in a way that

C(BxU) = f P*(U)a(dz), BeB(X),Ue M, (1.6)
B

where P'(-) is a probability kernel from X to M. Note that the family {P(-)},ex

is unique a-almost everywhere.

Definition 1.14 (Palm distribution).

If P(-) is the probability kernel defined by (1.6), then P*(-) is called Palm dis-
tribution of ¥ at point x € X and {P*(-)},ex is a family of Palm distributions of
v,

In another words, P"(i/) is the Radon-Nikodym derivative of C(- x U) with
respect to the intensity measure, i.e.

Heuristically speaking, if x4 is a point process with intensity measure «, then P* ()
interprets as a conditional probability that p € U given that there is a point of
the process u located at x. Note that for a point process without a fixed atom at
this particular location, the probability of the condition is null. Hence, the basic
discrete definition of the conditional probability does not apply. Moreover, we
would have that

P*({v e Nsv({z}) = 1}) =1, for a-a.a. zeX.

For a simple point process, we may define a modified version of the Campbell
measure and the Palm distribution by removing a point that may be present at
location x.

14



Definition 1.15 (Reduced Palm distribution).
For a point process p, we define the reduced Palm distribution at point x € X by

PLU) :=P"(U+6,), UeN,

T

where U + 0, = {v + 0,;v € U}.

Theorem 1.8 (Refined Campbell theorem).
For a simple point process p with intensity measure o, it holds that

EZh(x,u)zf

TEWU XxN

h(z,v)C(d(z,v)) = JX JN h(z,v)P*(dv)a(dz),

E > h(x, p\{z}) = L JN h(z, V)P (dv)a(dz)

TEU

for any non-negative measurable h : X x N' — R.

An important tool, in particular in the analysis of spatial point process (see
Section 1.2), is the Papangelou conditional intensity, first introduced in Papan-
gelou [1974]. The definition relies on the so-called reduced Campbell measure.

Definition 1.16 (reduced Campbell measure).
The reduced Campbell measure C' of a point process i is defined by

C'(BxU)=E[uB)1{n—d,eU}], BeBX),UeN.

Definition 1.17 (Papangelou conditional intensity).

Let ;1 be a point process on X and suppose its reduced Campbell measure C'
is absolutely continuous with respect to the product measure p ® P,. Then any
Radon-Nikodym density A\* of C' relative to p ® P, is called the Papangelou
conditional intensity of .

For any non-negative measurable f : X x N(X) — R, we have

E [2 f(x,u\{x»] - | BN s o o).

TEW

The Papangelou conditional intensity \*(z,x) p(dz) for a point configuration x €
N(X) has an intuitive interpretation of the conditional probability of observing
one point in the infinitesimally small set conditional on that p agrees with x
outside this set.

Examples

Example 1.4 (Binomial point process).
Let @ be a probability measure on X and let n € N. Assume that Xi,..., X, are
independent random elements on X following the same law (). Then

w=0x, + -+ 0,
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is a point process on X called the binomial point process with sample size n and
sampling distribution Q).

Having p the binomial point process with sample size n and sampling distri-
bution @, then, for B € B(X), u(B) follows the binomial distribution, i.e.

P(u(B) = k) = (Z)Q(B)k(l —QB)Y™, k=0....n.

The intensity measure of the process p is then
a(B) =E Y 1{X;e B} = > P(X; € B) = nQ(B).
i=1 i=1

Example 1.5 (Poisson point process).

Let « be a locally finite non-atomic measure on X. The Poisson point process
on X with intensity measure « is a point process n on X satisfying the following
conditions

1. for every compact set B < X n(B) is a Poisson distributed random variable
with parameter o(B);

2.if By,...,B,, n € N, are pairwise disjoint compact subsets of X, then
n(By), ..., n(B,) are independent random variables.

Remark. For a Poisson point process 1 on X with intensity measure o and k£ € N,
the k-th factorial moment measure equals of (cf. Corollary 3.2.4 in Schneider
and Weil [2008]). Moreover, as shown in Example 4.2 in Chiu et al. [2013], the
probability generating functional equals to

Gy (w) = exp (— L@ - w(:p))a(dx)) . (1.7)

From the latter expression, we conclude that (cf. Baccelli et al. [2020], Example
4.1.13) the first factorial cumulant measure of 1 equals its intensity measure and
for k > 2, the k-th factorial cumulant measure is null.

From now on, we will use the notation 7 exclusively for the Poisson point
process, the underlying space shall always be specified. For the fundamental
properties including the existence of a general Poisson process, see Last and
Penrose [2017].

Theorem 1.9 (Slivnyak—Mecke formula).
Let n be a Poisson point process on X with intensity measure o, take m € N and
let f:N xX™ — R be a non-negative measurable function. Then

E Z S, (@6)i=1,...m)

(xly---vl'm)exg

- J . JE f <7] + i_ilém“ ($1)1—1m> a(dzy) - - aldz,y,).
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Example 1.6 (Cox process).

Let ¥ be a random measure with a.s. no atoms. The Cox process (or the doubly
stochastic Poisson process) u directed by W is a Poisson process on X with random
intensity measure VU, i.e. the distribution of y is given by

P(u(B) = k) = f e“’(B)V(B‘)kP\p(dy), keNu {0}, B e B(X).
M(X) k!

The Cox process is indeed a well defined point process on X (see Section 6.2
in Daley and Vere-Jones [2003]). The intensity measure of a Cox process f is

En(B) = | Ena(B)Po(da) = | a(B)Pa(da) = BU(B),
where 7, denotes the Poisson point process with intensity measure «.

Example 1.7 (Cluster point process).

Let pup be a point process on X (parent point process) and let {&,,z € X} be
a collection of finite point processes (daughter point processes), i.e £, (X) < «
a.s. for all z € X. Take B € B(X) and define a point process u by

u(B) = j &4(B)up(da).

If u(B) < oo a.s. for all B € B(X), then p is called a cluster point process.

A special example of a cluster point process is a Poisson cluster process, which
is a cluster process such that its daughter processes are mutually independent,
independent of the parent process, which is a Poisson point process. If we take
X = R and assume, moreover, up to be stationary with intensity Ap (see Defini-
tions 1.18 and 1.19) and that the daughter processes have the number of points
distributed according to some law Ny that are placed around the origin with
respect to a common density f, then we talk about the Neyman-Scott process.
Depending on the choice of the distribution of the number of points and den-
sity f, we meet special examples such as Matérn cluster process (Matérn [1986]),
Gauss—Poisson process, etc.

Example 1.8 (Finite point process with density with respect to the
distribution of the Poisson point process).
A point process p on X is called finite if

P(u(X) < 0) = 1.

Let n be a finite Poisson point process on X with intensity measure o and distri-
bution F,. Consider a measurable mapping p : Ny — R, satisfying

| 0, = 1.
Ny
A point process p with distribution P,, such that

P,(A) = j p(x)AP,(x), AeN(X),

A
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is called the point process with density p with respect to the distribution of the
Poisson point process 7.

For a point process with density p with respect to the distribution of Poisson
point process 1 on R?, the following representation of the Papangelou conditional
intensity (see Definition 1.17) holds true.

Theorem 1.10 (Theorem 4.1 in Baddeley [2007]).
Let i be a finite point process in a bounded set A = R® with density p with respect
to a finite Poisson process 1. Assume that the density p is hereditary, i.e. satisfies

p(x)>0=p(y) >0, x,yeN;ycx
Then the Papangelou conditional intensity of the point process p exists and equals
p(x v {z})
p(x)
If p(x) = 0, we set \*(z,x) = 0.

A (z,x) = , xeNprzelzré¢x

Theorem 1.11 (Lemma 4.2 in Baddeley [2007]).

Let i be a finite point process in a bounded set A = R with density p with respect
to a finite Poisson process n and a Papangelou conditional intensity \*. Then p
is completely determined by \*.

For example, the Strauss point process on R is constructed as a finite point
process having density p with respect to the distribution of the Poisson point
process 1 with intensity measure a(B) = |B|; (d-dimensional Lebesgue measure
of B) for all B < A with

p(x) = CpFEI),

where C' is the normalising constant, 5 > 0,0 < v < 1,r > 0 are parameters,
#(x) denotes the number of points in x and

s(x)= D) Yz —y| <7}

T,YeEX

is the number of pairs in a configuration x in A being at most r units apart from
each other. By using v = 0, one obtains the hard-core process. The choice v =1
returns back the Poisson point process. By applying Theorem 1.10, the Papan-
gelou conditional intensity of the Poisson point process with intensity measure
a(B) = B|B|4, B = A, simplifies to A*(x,x) = f.

1.2 Spatial point processes

Most commonly in applications, we meet the case when X = R¢ (where usually
d =2 or d = 3). Spatial point processes are useful as statistical models in the
analysis of observed patterns of points, where the points represent the locations
of some object of study (trees in a forest, disease cases, etc.). The linearity of the
Euclidean space allows defining stationary random measures and point processes.
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In the previous section, we defined the factorial moment measures of a random
measure (a point process, resp.). Assuming those measures are absolutely con-
tinuous with respect to the underlying Lebesgue measure, we can define product
densities of a point process.

Another frequent choice is X = S%, the d-dimensional unit sphere. The latter
case is not discussed here, but we refer the reader e.g. to Cuevas-Pacheco and
Mpgller [2018], Mgller et al. [2018] or Mgller and Rubak [2016]. For the Borel
o-fields, we use the standard shorter notation B? := B(R?), B := B(R). In the
rest of the thesis, we use the notation |Bly for the Lebesgue measure of B = R¢.

In this section, we extend the list of examples of point processes from the
previous section. The examples include cluster point processes, determinantal
point processes, Gibbs point processes and Brillinger-mixing point processes.

Definition 1.18 (Stationary random measure).
The random measure ¥ on R? is stationary if ¥ 2y 4z forall ze R

Definition 1.19 (Intensity function, intensity).
Let s be a point process on R? with intensity measure a. If o is absolutely
continuous with respect to the Lebesgue measure on R?, then we can write

a(B) = L Mz)de, Be Bl

The function A is called the intensity function of the point process p. If A is
constant, we talk about the intensity of the point process pu.

Remark. If the random measure V¥ is stationary, then its intensity measure « is
invariant under translation. The only translation-invariant, locally finite measure
on R? is, up to the constant, the Lebesgue measure | - |;. Hence, if we assume
that « is locally finite, then there is a constant A € [0, o) such that a(-) = A |- 4.
The constant A is called the intensity and it corresponds with Definition 1.19.

Remark. If the point process p has the intensity function A, then the Campbell
theorem (1.1) reduces to

B f) = | S

TEW

Definition 1.20 (Product density).

Let m € N and let i be a point process with m-th factorial moment measure al™.
If o™ is absolutely continuous with respect to the Lebesgue measure on R™*¢,
then the corresponding density is called m-th order product density, i.e.

a[m](31 X oo X By,) = f J A[m](:rl, ooy Ty) dy - dagy,
Bm B
where By, ..., B,, € B%.
We interpret the m-th order product density A™(zy,... 2,,) as the proba-
bility that exactly one point of the process p lays in the infinitesimally small ball

around z;,7 = 1,...,m.
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Remark. If ;1 is stationary, then A2l depends only on the difference of its argu-
ments, i.e. M (z1,25) = A\(z1 — 25), where ), is a suitable function.

Definition 1.21 (Pair correlation function).
Let p be a point process on R? with the product densities of the first two orders
A =: X and AP, Then the function ¢ : R** — R defined by

0, if \(z) =0or \(y) =0,
o]

>‘[2] (xvy) o
NEPYE otherwise,

is called the pair correlation function of the point process .

Example 1.9 (m-th order product density of the Poisson point process).
If the Poisson point process 1 has the intensity function A, then its m-th order
product density satisfies

Ay, oo a) = ﬁ A(z;).

i=1

Moreover, the pair correlation function is equal to 1 for any pair of points z,y
such that z # y and A(z) > 0, A(y) > 0.

Examples

In the previous section, we presented the Poisson point process having the prop-
erty that there are no interactions among the points of the process. On the other
hand, cluster point processes can be viewed as point processes, where nearby
points attract each other. As the opposite, we present examples of point pro-
cesses usually used to model repelling data sets. Namely, Gibbs processes and
determinantal point processes (DPP’s). Briefly, the class of Gibbs point pro-
cesses is more flexible, although less tractable due to the uniqueness issues. On
the other hand, the biggest advantage of DPP is the knowledge of all its moment
measures. More involved comparison of these models as well as discussion over
their advantages and disadvantages can be seen in Lavancier et al. [2015] and
Lavancier et al. [2014]. The link between the models has been studied in Georgii
and Yoo [2005].

Example 1.10 (Determinantal point process).
Let p be a simple point process on R? and we assume that its product density
functions satisfy

/\[n] (LUl, R ,l’n) = det (C(IZ, xj))léi,jgn; ne N, (Il, Ce ,I‘n) € Rnd

for some function C' : R? x R — R. Then we call ;1 a determinantal point process
(DPP) with a kernel C.

Remark. Note that Poisson process is a special case of DPP, where C(z,y) = 0
whenever x # y.

20



The DPP’s were first introduced in Macchi [1975] to model fermions in quan-
tum mechanics, i.e. particles that repel one another. The existence of DPP’s is
discussed in the latter paper or in Soshnikov [2000].

In fact, it is possible to consider complex-valued function C. Then it would
lead to complex-valued joint densities, which is not consistent with the setting of
this thesis. We refer to Hough et al. [2009] for more details.

Example 1.11 (Gibbs point process).
The Gibbs point processes cover a wide class of point processes with interaction
among the points used largely in statistical physics for modelling systems with
a large number of interacting particles. The interaction can be attractive, repul-
sive or depending on geometrical features. A special case is the Poisson point
process showing no interactions. For a general presentation of Gibbs measures,
see Georgii [2011]. An intuitive introduction to Gibbs point processes in R? can
be found in Dereudre [2017]. Another introductory text that also includes the
motivation from the statistical mechanics is in Friedli and Velenik [2017].

First, we recall the definition of the Gibbs point process on a bounded set
A < RY. For this reason, denote by N, the space of finite point configurations
inside A and N}, the corresponding trace o-field. In finite volume, they are
defined, intuitively, as modifications of Poisson point processes involving inter-
actions among the points. To model the interactions, we deal with an energy
function as a measurable function

H:N;—Ru {0}
which will be assumed to be

o non-degenerate, if
H(J) < «,

e hereditary, if for any x € Ny and v € x

H(x) <+ = H(x\{z}) < =,

o stable, if there exists a constant A > 0 such that for any x € Ny

H(x) > —A#(x),

o invariant under shifts (stationary), if for any x € Ny and z € R?

H(x) = H(x+ z).

Definition 1.22 (Finite volume Gibbs point process).
Let A = R? be such that 0 < |A|l; < co. The finite volume Gibbs point process
on A with activity z > 0, inverse temperature § > 0 and energy function H is
a point process p having distribution P/f’ﬁ on N, satisfying

1
Pi’ﬂ(dx) _ ZzﬁefBH(x)pnlz\(dx), X € Ny, (1.8)

)

A

where P is the distribution of the Poisson point process 73 in A with intensity
z and ZX”B , called the partition function, is the normalization constant.
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Due to non-degeneracy and stability of H, the partition function Zi’ﬂ is pos-
itive and finite. Hence, Pi’ﬁ is well defined.

The finite volume Gibbs point process is an example of a point process having
density p with respect to the distribution of a Poisson point process, where

1
73"

p(x) 2 e=BH) e Ny,

Another option is to define the finite volume Gibbs point process using the Pa-
pangelou conditional intensity (recall Definition 1.17), which may be easier to
understand than the density. As the result of Theorem 1.10, using the conditional
intensity eliminates the normalizing constant ngﬁ needed for the probability den-
sity. We then have a finite volume Gibbs process characterized by
A (z,%) = ze PHEOLED-HE),

The expression in the exponent is called the local energy of x in x and is usually
denoted by h(z,x). Note that if = € x, then h(z,x) = 0.

Let us demonstrate some examples of frequent choices of the energy function.

o Ising model: The configuration of the Ising model in a finite discrete set
A < 74 are elements of the set Q, := {—1,1}*. Discrete variables represent
magnetic dipole moments of atomic “spins” that can be in one of two states
(positive or negative). The spins are arranged in a lattice, allowing each spin
to interact with its neighbours. The associated energy of a configuration
X = {Z;}ien is defined by

H(x)=— Z TiT; — hzxm

(i,j) S Asi~g ieA

where h € R is the magnetic field and ¢ ~ j denotes the fact that sites ¢ and
j are neighbours. This simplest example does not allow the spins in A to

interact with other spins located outside A. For more options, see Chapter
3 in Friedli and Velenik [2017].

« Pairwise interaction model: Let g : RY — Ru{oo} be a Borel measurable
function, called the pair potential. We assume that g(z) = g(—=x) for any
r € R% The pairwise energy function is defined for any x € N; by

Hx)= >, glz—y)
(wrex

Often, it is assumed that the pair potential g is a function on R, and

H(x)= ), g(lz—yl), xeNy.

{zyhex

See Dereudre [2017] and the reference therein that such energy function H
is hereditary, non-degenerate and stable. The choice g(u) = 1jo,(u), where
r is a given parameter, leads to the Strauss process.
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« Energy based on geometrical objects: The motivation is to provide
random configurations such that special geometrical features appear with
higher probability than in the case of the original Poisson point process.
Here, we show an example of the energy function based on Voronoi tessel-
lation (see the notation in Section 1.5). Let C(z,x) be the Voronoi cell for
a configuration x € Nt and = € x. Then we define the energy function by

H(X> = Z ]-[C(x,x) is bounded]gp(0<x7 X))J
TEX
where ¢ is any function from the space of polytopes in R? to R (e.g. volume,
(d—1)-dimensional Hausdorff measure of the boundary, number of vertices,
etc.).

Of course, the above examples could be freely combined. We can define pair
potential which takes into account pairs of Voronoi cells, higher-order interactions,
etc.

Theorem 1.12 (GNZ equations).
For any positive measurable function f: R? x Ny — R,

J S %\ (o} P (%) J f Fl, )N (2, x)da P2 (dx).

TEX

The GNZ equations have been first introduced by Georgii, Nguyen and Zessin
(cf. Georgii [1976], Nguyen and Zessin [1979]). Note that they generalize the
Slivnyak—Mecke formulas for Poisson point processes (Theorem 1.9).

The finite volume Gibbs model can be defined by writing down its probability
density which is no longer possible in the infinite volume case. Also to define the
energy of an infinite configuration x is meaningless. See Section 6.1 in Friedli
and Velenik [2017] for an explanation. The main idea is to define a sequence of
finite Gibbs point processes (ij Jns1 on A, = [-n,n]? and let n — co. Then
we extract a convergent subsequence and call its accumulation point the infinite
volume Gibbs point process.

Definition 1.23 (Local functions).

The function f : N — R is said to be local if there exists a bounded set A c R?
such that for all x € N, f(x) = f(xa). By xa we denote the configuration of x
inside A.

Definition 1.24 (Local convergence topology).

The local convergence topology on the space of probability measures on N is
the smallest topology such that for any local bounded function f : N — R the
function P — { fdP is continuous.

Take the sequence A,, = [—n, n]?, the finite volume Gibbs processes (ij Jn>1
given by (1.8) for common parameters z > 0,5 > 0 and energy function H

. . . %8
assumed to be stationary. We use a stationarization to define measures P, ,n >
1, i.e.

Jf PA,L

(dx)du, for all f: N — R.

TL?’L
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We interpret Pj\f as the Gibbs measure where the origin o is replaced by a random
point chosen uniformly in A,,.

Theorem 1.13 (Proposition 9 in Dereudre [2017]).

The sequence (sz)n>1 is tight for the local convergence topology.

Definition 1.25 (Infinite volume Gibbs point process).

Let us denote by P*” one of the accumulation points of the sequence (Pf\’f)nzl.
We call the measure P> the infinite volume Gibbs point process.

For intuitive, yet more rigorous explanation of the transition between the finite
volume and infinite volume cases, see Chapter 6 in Friedli and Velenik [2017] or
Section 2 in Dereudre [2017]. It is possible to characterize the infinite volume
Gibbs point process using the GNZ equation similarly as in the finite volume
setting. We need a further assumption on the energy function H.

Definition 1.26 (Finite range energy function).

The energy function H has a finite range (or is finite range) with R > 0 if for
every bounded set A = R? the local energy Ha(-) := H(-) — H(-ac) satisfies for
every finite configuration x € Ny

Ha(x) = H(XapB(0,r) — H(Xa@B(o.R)\A)-

By @, we denote the Minkowski sum.

Theorem 1.14 (GNZ equations in infinite volume case).

Let P be a probability measure on N'. Let H be a finite range energy functions
and z > 0,5 = 0 be two parameters. Then P is the infinite volume Gibbs measure
with the energy function H, activity z and inverse temperature 3 if and only if
for any positive measurable function f : R? x N — R

J;{f(ﬁ,x\{x})P(dx) = JJRU; A (z,x) f(z,x)dzP(dx), (1.9)

where the function \*(x,x) = ze #@X) e R? x € N, is the Papangelou condi-
tional intensity of P.

For conditions ensuring that (1.9) holds, see Ruelle [1969]. It is important to
emphasize that (1.9) may not give a unique solution. The uniqueness and the
existence of the solution is still an open problem for a large spectrum of Gibbs
models. We refer to Dereudre et al. [2010] for several existence theorems. There
exist techniques in the literature used in order to obtain uniqueness of Gibbs
measures, namely the Dobrushin criterion (Dobruschin [1968]), cluster expansion
(Ruelle [1969] or Jansen [2019]), and disagreement percolation (Hofer-Temmel
and Houdebert [2019]).

Example 1.12 (Brillinger-mixing point process).

The assumption of stationarity allows us to disintegrate the moment measures
and cumulant measures of higher orders. This disintegration then leads to the
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definition of reduced versions of the measures associated to u. For example, for
the k-th factorial cumulant measure, we have

BBy x - x By) — Af S (By—2) - x (B —2))dz,  (1.10)
By
where By, ..., B, € B and B; — x is the translation of the set B; by = € R%

Definition 1.27 (Reduced factorial cumulant measure).

The measure 7,[2, on R¥*=Y from the expression (1.10) is called reduced k-th

factorial moment measure.

Remark. The reduced cumulant measures of the second and higher orders are
signed measures, hence admit the Hahn—Jordan decomposition (Dudley [2002],

Theorem 5.6.1). Therefore, for any k > 2, there exist two measures ’yTUzL, N
(k]

Vred,— uniquely determined by y[k] such that

red

k
Viell Wvge]d ,+ f)/vgell,f :

The total variation measure of vui

and

is then

|’y7‘ed| Wre}i + + 77[611 —

and the total variation is [y |7y := [y (REG=D)).

Reduced factorial cumulant measures are the basis of the Brillinger-mixing
property.

Definition 1.28 (Brillinger-mixing process).
A stationary point process pu is Brillinger-mixing if, for k£ > 2, we have

Wy < oo (1.11)

The condition (1.11) expresses some kind of weak correlatedness (or asymp-
totic uncorrelatedness) of the numbers of points lying in bounded sets having
a large (or unboundedly increasing) distance of one another. This type of weak
dependence does not necessarily imply ergodicity, see Heinrich [2018], but allows
to prove central limit theorems for various stochastic models related with point
processes, e.g. in stochastic geometry, statistical physics for d > 1 or in queue-
ing theory for d = 1, see e.g. Heinrich and Schmidt [1985]. Brillinger-mixing
processes cover a wide class of processes including e.g.

o Neyman—Scott process: if the distribution of the number of points in each
cluster have all moments finite, then it is Brillinger-mixing. It remains true
for any Poisson-cluster process (Example 4.1 in Heinrich [2013]),

e Cox process: Under some more involved assumptions, the Cox process is
also Brillinger-mixing (Heinrich [1988]).

« Determinantal point process: Recently in Biscio and Lavancier [2016], it
has been shown that also DPP’s are Brillinger-mixing if its kernel C' is
symmetric continuous real-valued function in L*(R?) with C'(0) = p and
the Fourier transform of C' has values in [0,1]. The latter assumption
guarantees the existence of such DPP.
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1.3 Marked point processes

In many applications, we observe a further random element M; assigned to each
point x; of the point pattern. The mark M; carries some additional information
and takes values in some mark space M. The class of processes considered in
this section includes processes of objects that are characterized by their location
and weight. Such processes are covered formally by the general theory, as they
can be viewed as point processes on a product space. Nevertheless, marked point
processes deserve attention on their own due to their importance in applications.

We will restrict this section to the case when the unmarked point process is
a process on R? and leave the space M to be a complete separable locally compact
metric space equipped with a o-field M.

Definition 1.29 (Marked point process).
By a marked point process we understand a point process ji,, on R? x M such
that

A (B x M) := E p, (B x M) < o0

for all B € B := B,(R?). The point process p given by pu(B) = p,(B x M) is
called the unmarked point process. The measure «,, is the intensity measure of
the marked point process fi,.

Definition 1.30 (Simple marked point process).
We say that a marked point process p,, is simple if the unmarked point process
0 is simple.

The Campbell theorem (see expression 1.1) also holds:

E Y fam) = [ £ man(dl.m)

(2.m)epim

for any non-negative measurable function f on RY x M.

It is clear from Definition 1.29 that every marked point process is a point
process on the product space R? x M. Nevertheless, not every point process on
R x M can be viewed as a marked point process. For example, if M = R and we
take a stationary Poisson point process on R? x M = R4*! with positive intensity
A, then

(B xR) = X|B x R|gqy1 = 0

for arbitrary B € B¢ with |B|; > 0.
Example 1.13 (Marked Poisson point process).
Let a,, be a locally finite non-atomic measure on R¢ x M. The marked Poisson

point process on R? with marks in M and intensity measure c,, is the point
process 1, satisfying the following conditions:

1. 9(B1 x L), ..., nm(Bg x L) are mutually independent random variables
for pairwise disjoint B; x L; € Bf x B(M) and k € N,

2. Nm(B x L) is Poisson distributed with mean o, (B x L) for any B € B¢, L €
B(M).
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Remark. A marked Poisson point process 7, with the intensity measure a, is
simple if and only if a,, ({z} x M) = 0 for all x € R%.

Definition 1.31 (Independently marked point process).

A marked point process ftm = Y, 6,0, i called independently marked if {M;}
are identically distributed, mutually independent and independent of the un-
marked point process p = Y, 0y,

Definition 1.32 (Stationary marked point process).
A marked point process ;1 on R? with marks in M is stationary if its distribution
is invariant under shifts of R? only, i.e. (x,m) — (x + v, m) for all v € R%,

Theorem 1.15 (Theorem 2.3 in Baddeley [2007]).

Let i be a stationary marked point process in R% such that the corresponding un-
marked point process of unmarked points has finite intensity A\. Then the intensity
measure « of i takes the form

a(A x B) = M|, Q(B)

for all Ae B,B e B(M). The probability measure QQ on M is called the distribu-
tion of the typical mark.

Remark. (Campbell’s theorem for a stationary marked point process) If pu is
a stationary marked point process on R? with intensity A, then

E ) f(x,m):)\IEQJRdf(x,M)dx,

(z;m)ep

where M is a random variable distributed according to ) and Eg, is the expecta-
tion w.r.t Q).

Example 1.14 (Germ-grain model, Boolean model).

A stationary independently marked point process p,, = {(x;,Z;),7 = 1} on R?
with the mark space M = C¥ (the space of all non-empty compact sets in R?
equipped with the Hausdorff metric, see Section 1.4) is called germ-grain process.
The associated random set

is called germ-grain model. If the unmarked point process is the Poisson point
process, we call the random set = Boolean model.

Example 1.15 (Cylinder process in the plane).
Let g(p, ¢) := {(z,y) € R? : & cos p+y sin ¢ = p} be a parametrized line (Hessian
normal form), where p € R! stands for the signed distance of the line from the
origin o and ¢ € [0, ) is the angle (measured anti-clockwise) between the normal
vector v(p) = (cos,sinp)’ on the line (with direction in the half-plane not
containing o and the x;-axis).

We describe a cylinder process in R? (see Figure 1.1) in terms of its generating
stationary, independently marked point process on R!. For doing this, let (®g, Ry)
be the generic random vector taking value in the mark space [0, 7] x [0,00) that
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describes the orientation ®, and the cross-section (or base) Zy := [—Ry, Ro] of
the typical cylinder. In addition, we assume that &3 and R, are independent with
distribution functions G and F', respectively, i.e. P(Ry < 1, Py < @) = F(r) G(yp).

Now we introduce a stationary independently marked point process as locally
finite, simple counting measure W, := 3., 0(p, (@,,r,)] defined on the Borel sets
of R! x [0, 7] x [0,00), whose finite-dimensional distributions are shift-invariant
in the first component. The stationary unmarked (or ground) point process ¥ =
Yicz 0p, ~ P with finite and positive intensity A = EW¥([0,1]) > 0 is assumed
to be independent of the i.i.d. sequence {(®;,R;) : i € Z := {0,+1,+2,...}}
of mark vectors. Each triplet [P, (®;, R;)],i € Z, determines a random cylinder
g(P;, ®;) @ b(o, R;) , where b(o,r) = {(x1,22) € R? : 22 + x5 < r?} is the circle in
R? with radius r > 0 and centre in the origin o and @ stands for Minkowski sum
of subsets of R?. The intensity measure Apq((-) x [0,¢] x [0,7]) := EWL4(() x
[0, ] x [0,7]) can be expressed for r > 0,0 < ¢ < 7 as

Apa((:) x [0,¢] x [0,r]) = EW()P(® < @, Ro <7) = A| - [ G(p) F(r).

Definition 1.33 (Cylinder process in R?).
By a cylinder process = := EEG in the Euclidean plane R? derived from the
stationary independently marked point process \Ifﬁg, we understand the random
union set defined by
€L

Note that Z forms a random set in R? which in general is neither closed nor
stationary. Cylinder processes have numerous applications (mostly for d = 2,3)
among others in material sciences to model materials consisting of long thick fibres
or thick membranes, see e.g. Spiess and Spodarev [2011]. Generally, cylinder
processes in R? are defined as countable unions of dilated affine subspaces of
R¥, k=1,...,d—1 seee.g. Weil [1987], Schneider and Weil [2008] or Molchanov
[2005].

(a) (b) (c)

Figure 1.1: Three realizations of the cylinder process in the planar unit window.
All three cases are generated by a marked point process with uniformly distributed
widths. On picture (a), the unmarked point process is a stationary Poisson
process with the orientations distributed uniformly in [0, 7). On picture (b), the
unmarked process is a stationary Poisson process and the orientations take three
different values with the same probability. On picture (c), the unmarked process
is a Thomas point process with the distributions being uniform in [0, 7/4).
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1.4 Particle processes

In this section, we present a special case of point processes, namely the particle
processes. Those are point processes in the space of all non-empty compact
subsets of R?. The definitions and results listed in this section are mostly based
on Section 4.1 in Schneider and Weil [2008].

To work with particles, we use the following notation.

Notation. For a compact set K < R? we denote by B(K) the circumscribed
ball (circumball) of K and by ¢(K) the centre (circumcenter) of B(K'). We define
spaces of particles

C? ... set of all compact subsets (particles) in R?,

C@ .. set of all non-empty compact subsets in R¢,

CW ... {KeC9:¢(K)=o}, where o is the origin in R?,
¢ . {KeC9:¢(K)e A}, where A « RY,

Moreover, for K, L € C'Y we denote by K @ L and K the operations
K@L:={zr+y:zeK, yelL},
K:={-z:zeK}.
We equip the space C¢ with the Borel o-field B(C?) generated by the Fell
topology on the space of closed subsets of R? restricted to C%. Moreover, let the

space C'Y be equipped with the Hausdorff metric. Recall that the Hausdorff
metric pgy on C'9 is defined for K, L € C9 by

pu(K, L) := max {supinf ||z — y||,sup inf ||z — y||} :
rek YEL yeL zeK

where || - || denotes the Euclidean distance. The corresponding Borel o-field
B(CY) is a trace of B(C?), (cf. Theorem 2.4.1 in Schneider and Weil [2008]). It
can be shown that C'? is a Polish space (cf. Theorem A.26 in Last and Penrose
[2017]).

In order to define the particle process, we need to specify the outcome space
(the space of all particle configurations). It is defined as follows:

« By N? we denote the space of all locally finite subsets x on C¥, meaning
that the cardinality

#{Lex: LnK # J} <o
for all K € C9. The space N is equipped with the o-field

Nl=o({xeN?: #{K ex: KeB}=m}, BeB,(CY),meN).

« For A = R denote by N¢ the system of finite subsets of C/(xd) equipped with
the trace o-field A"(C\).

o By N%, we denote the subsystem of N? consisting of finite sets.
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Definition 1.34 (Particle process).
A particle process is a point process on C9, i.e. a random element

6 : (Q>~FaP) - (Nd7 Nd)
Its distribution is P = P¢ 1.

A particle process can also be viewed as a marked point process with mark
space C'9 where the points of the unmarked point process set the location of the
particle (using for example the circumcenter).

Definition 1.35 (Intensity measure of a particle process).

The intensity measure of a particle process ¢ is a Borel measure a on C® defined
by a(B) = E&(B), B e B(CY).

Recall that in Section 1.1, we assumed that all intensity measures are locally
finite. In the case of particle processes, this assumption transforms to bounded-
ness in the sense

a{KeC9:KnB+@}) <w, forall BeC?. (1.13)

Definition 1.36 (Stationary particle process).
A particle process ¢ is called stationary if P, = P for each z € RY, where for
any x € N(C@) we set

x+r={K+z:Kex}, K+ ={y+z:ye K}.

If a particle process ¢ is stationary and its intensity measure satisfies (1.13),
then it can be decomposed, so that there exist § > 0 and a probability measure
Q on C9 such that for all non-negative measurable functions f on C¥) it holds

L(d) f(K)a(dK) = 5[@ » fz + K)Q(AK)dz.

See Lemma 11.5 in Rataj [2006] for the proof. The constant (§ is called the
intensity of the process £ and Q is the reference particle distribution. A random
set with distribution Q is called the typical grain of £&. Note that the reference
particle distribution satisfies

QUK €C: ¢(K) = 0}) = 1,

where ¢(K) is the centre of the circumscribed ball B(K) of K.
A reference measure of a stationary particle process with reference distribution
Q is a measure A on C@ defined by

A(B):J f ik 12 dz Q(dAK), B e B(CY), (1.14)
cld) JRd

Note that the measure \ is invariant under shifts, i.e. A(B) = A\(B + z), = € R%.

Example 1.16 (Gibbs particle process).

We construct the Gibbs particle process by the same procedure we used in Sec-
tion 1.2 starting from a finite volume Gibbs point process defined by probability
density. Then, by using the GNZ formula we define the infinite volume Gibbs
particle process.
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Finite volume Gibbs particle process

Let H : N? — R, U {oo} be the energy function, i.e. a measurable function that
is non-degenerate, hereditary, invariant under shifts and stable (see Section 1.2
for the notion).

In the following we consider a bounded set A = R? with |A|; > 0. Further, let

M(B) = L . JA1[K+zeB]dx@(dK), Be B(C\?)

and 7, be the Poisson process on C/(\d) with intensity measure Ay and distribution
ma- We define a finite volume Gibbs particle process uy on A with activity z > 0,
inverse temperature $ > 0 and energy function H as a particle process with
distribution Pi’ﬂ on N¢ given by the Radon—Nikodym density p with respect to
A, Where

—— N ex H , xe N4,
75 (A, x NS

Nj(x) is the number of particles K € x with ¢(K) € A and

p(x) =

23 = [ # exp(-aH () ma(dx)
N{
is the normalizing constant.
The local energy h : C'@ x lec — R is defined as
h(K,x) =H(xu{K})— H(x).

The Georgii-Nguyen—Zessin (GNZ) equations follow for any measurable function
f:C9 x N;ic —> R,

JZf (K, x\{K}) P’ (dx) —zJ ff (K, x)e PPEX ) (dK) PP (dx). (1.15)

Kex Nd C(d)

The GNZ equations characterize the finite volume Gibbs particle process, i.e.
if any probability measure on N4 satisfies (1.15) for any f as stated, then it is
equal to P7”. The function

(K, x) = zexp(—Bh(K,x)), K eC{", xeNi

is the Papangelou conditional intensity.

Infinite volume Gibbs particle process

Take a sequence of windows A,, = [—n,n]|? = R?, spaces C/(\Ci), intensity measures
) = § 5, L[k 12e1dzQ(dK) for a fixed probability measure @ on Cg such that
there is some R > 0 so that

Q({K eC? : B(K) c B(o,R)}) = 1. (1.16)

Further, take Poisson particle processes 1y, with distributions 7y, , Gibbs particle
processes jp, with distributions P/ff ,neN.
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A measurable function f : N¢ — R is called local if there is a bounded set
A < R? such that for all x € N¢ we have f(x) = f(xa). The local convergence
topology on the space of probability measures P on N? is the smallest topology
such that for any local and bounded function f : N¥ — R the map P — § fdp
is continuous.

Define a probability measure Pif such that for any n > 1 and any measurable
function f : N¢ — R it holds

 H60P3 ) = (20 JA P @xde (1)

It can be shown that the sequence (pj\’f)nzl is tight for the local convergence
topology (cf. Chapter 15 in Georgii [2011]). We denote P> one of its cluster
points.

Due to the stationarization (1.17), P> is the distribution of a stationary
particle process, in order to show that it satisfies the GNZ equations one needs
to add an assumption on the energy function. The energy function H has a finite
range r > 0 if for every bounded set A — R? the energy Ha is a local function
on A @ B(0,r). The finite range property allows extending of the domain of Ha
from the space lec to N¢, since for x € N¢ we put

Ha(x) = Ha(Xa@B(0,r))-

Lemma 1.1 (Proposition 2.1 in Flimmel and Benes [2018]).

If the energy function H is non-degenerate, hereditary, stable, invariant under
shifts and has a finite range property, then there exists an infinite volume sta-
tionary Gibbs particle process P*% with the energy function H.

The stationary Gibbs particle process also satisfies GNZ equations for any
measurable function f:C@ x N¢ — R, :

[ 3 steoxan e = [ [ 7000x e x@) P ax),

Kex
(1.18)
where \ comes from (1.14). Conversely, any measure P on N? which satisfies
(1.18) is a distribution of a stationary Gibbs particle process.

Pairwise interactions
Assume that the energy function is of the form

H(x)= > g(KnL), xeNf, (1.19)

{K,L}cx

where g : C¢ — R, is a measurable function, we assume that it is invariant
under shifts and g(&f) = 0. The expression g(K n L) in (1.19) plays a role of pair
potential. Such energy function is non-degenerate, hereditary, stationary and
stable. If we restrict ourselves to bounded particles K € C'¥ : B(K) < B(0, R)
for some R > 0, then H has finite range r = 2R.
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The corresponding conditional intensity is of the form

Lex

N (K,x) := zexp {—62 g(K n L)} . KeC9 xeN? (1.20)

where 2 > 0, 5 > 0.

Specially, take Q being concentrated on the set S < C® (the space of all
segments in R? n B(o, R) centered in the origin), which corresponds to Qy ® Q,
where Qp, Qp is the reference distribution of directions, lengths of segments,
respectively. Further, let g have a form

g(K)=1{K + @}, KeC

Then we call the corresponding stationary Gibbs process a Gibbs segment process.
The conditional intensity is

N (K, x) = ze PN K e SE x e N2,
where Ny (K') denotes the number of intersections of K with the segments in x.
It has to be mentioned that the reference distribution Q need not coincide with

the observed joint length-direction distribution of the process, cf. Benes et al.
[2019].

1.5 Random tessellations

Random tessellations are an important model in stochastic geometry (cf. Chiu
et al. [2013] or Schneider and Weil [2008]) and they have numerous applications
in engineering and the natural sciences (cf. Okabe et al. [2000]).

By a tessellation we understand a subdivision of the space R? = | JC; into
d-dimensional sets C; with no common interior points. Such geometrical patterns
can be observed in many natural situations, such as polycrystalline materials,
foam structures, etc. Hence, random tessellation models have been widely used
in physics, materials science and chemistry. Depending on the situation, the sets
C; might be called cells, crystals, regions, etc.

Definition 1.37 (Tessellation).
A tessellation in R? is a countable system T of subsets of R? (cells) satisfying the
following conditions:

1. T is a locally finite system of non-empty closed sets meaning that

Y dicaprg < oo, forall Be By
CeT

2. The cells C' € T are compact, convex and have interior points.

3. The sets of T' cover the whole space, i.e.

UC:Rd.

CeT
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4. If C,C" e T and C # ', then int C nint C' = .

Remark. Since the cells of the tessellation are assumed to be compact and convex
then they are necessarily convex polytopes (Lemma 10.1.1. in Schneider and Weil

[2008]).

Definition 1.38 (Faces).

The intersection of a d-dimensional convex polytope P with its supporting hy-
perplane is called face. A face of dimension k € {0,...,d — 1} is called a k-face.
The 0-faces are the vertices, the 1-faces are edges and the (d — 1)-faces are facets.

For k € {0,...,d — 1}, denote by Fy(P) the set of all k-faces of a polytope P
and put

F(P) = O F.(P).

We are interested in such tessellations where the faces of neighbouring cells over-
lap.

Definition 1.39 (Face-to-face tessellation).
A tessellation T is called face-to-face

CnCel[F(C)nFC)ui{g}, VC,CeT.

Similarly as for the individual cells, we define the sets of k-faces connected to
a tessellation T'. If T' is face-to-face, define for k € {0,...,d — 1}

and

Definition 1.40 (Normal tessellation).
A face-to-face tessellation 7" is called normal if every k-face of T' (i.e. element of
F.(T)) is contained in precisely d — k + 1 cells, k =0,...,d — 1.

Note that the condition stated in the latter definition always holds for k = d—1
since we assumed T is face-to-face.

Definition 1.41 (Random tessellation).
Denote by T the set of all face-to-face tessellations of the space R?. By a random
tessellation, we understand a particle process ¢ on R? such that £ € T a.s.

A random tessellation is called face-to-face or normal, if all its realizations are
P-almost surely face-to-face or normal, respectively.

Random tessellations can be regarded either as point processes of convex
polytopes (special case of particle processes) or can be constructed from random
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processes of geometric objects (e.g., points, balls or hyperplanes) in space. A de-
tailed treatment of random tessellations can be found in Mgller [1994] and in
Lautensack [2007]. It is often convenient to represent a random tessellation 7" as
a marked point process in R? with an appropriate mark space. We can associate
various point processes with T, for example the point processes of vertices, edge
midpoints, etc. If these point processes are marked with suitable marks, then we
can identify T with the corresponding marked point process.

Examples

Example 1.17 (Hyperplane tessellation).
Denote by H a locally finite system of hyperplanes in R?. The cells of a hyperplane
tessellation are constructed as closures of the connected components of

(Us)

If we take an independently marked stationary Poisson point process 7, =
{(2:,6;),7 = 1} on R with marks uniformly distributed in [0,7), we can con-
struct a planar Poisson line process, where the points of the unmarked Poisson
point process stand for the signed distance from the origin and the marks for the
orientation of the lines (infinitely long cylinders). The corresponding hyperplane
tessellation is referred to as Poisson line tessellation (see Figure 1.2).

The hyperplane tessellation is face-to-face, yet it is not normal.

Figure 1.2: A tessellation of R? induced by the Poisson line process.

Example 1.18 (Voronoi tessellation).
Let A # & be a locally finite set in R?. To each = € A, we define a set

C(x,A) i={2eR%: |z — 2| < ||z — y| for all y e A}.

Then C(x, A) represents a set of points in R? such that x is their nearest point
among points in A. The set C(z, A) is in fact a closed convex set, since it can be
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written as an intersection of closed half-spaces defined for x # y by

Hi0) = {2 €Y oo =) < 5 (blP - Jof?) .

Then,
Clz,A) = [\ H ().

yeEAy#x

We call the set C(z, A) the Voronoi cell of x with respect to A and =z is called
the nucleus of C'(z, A).

Theorem 1.16 (Theorem 10.2.1 in Schneider and Weil [2008]).

Let A < RY be locally finite, non-empty and such that the corresponding Voronoi
cells C(xz, A),x € A, are bounded. Then the collection T := {C(x,A);x € A} is
a face-to-face tessellation.

Theorem 1.17 (Theorem 10.2.2 in Schneider and Weil [2008]).

Let pi be a stationary point process in RY (assumed to satisfy p # & a.s.) and let
T := {C(z,p);x € u} be the collection of the corresponding Voronoi cells. Then
T is a stationary face-to-face random tessellation, provided that p has a locally
finite intensity measure.

The tessellation T := {C(x, u);x € p} defined in Theorem 1.17 is called the
Voronoi tessellation generated by the point process u. If p is a Poisson point
process the set T is known as Poisson—Voronoi tessellation.

Theorem 1.18 (Theorem 10.2.3 in Schneider and Weil [2008]).
Every Poisson—Voronoi tessellation in R? is normal.

Example 1.19 (Delaunay triangulation).

Delaunay triangulation can be viewed as dual to Voronoi tessellation (see Figure
1.3). Let A = R? be a locally finite set such that the convex hull conv(A) = R4
Let T = {C(xz,A);x € A} be a corresponding Voronoi tessellation. Let e be
a vertex of T', i.e. e € Fo(T'). Then we define the Delaunay cell D(e, A) by

D(e, A) := conv{z € A;e e Fo(C(x, A))}.

Theorem 1.19 (Theorem 10.2.6 in Schneider and Weil [2008]).
Let A < R? be as above and T the corresponding collection of Voronoi cells. Then

D :={D(e,A);e e Fo(T)}
is a face-to-face tessellation.

If we take a point process p and let T be the corresponding Voronoi tessel-
lation, we call the collection D := {D(e, u);e € Fo(T)} from Theorem 1.19 the
Delaunay triangulation generated by u. If u is a Poisson point process, we speak
about Poisson—Delaunay triangulation.
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Figure 1.3: A realization of the Poisson—Voronoi tessellation of R? (blue) to-
gether with the Poisson-Delaunay tessellation of R? (red) induced by the same
realization of Poisson point process (black dots).

Example 1.20 (Laguerre tessellation).

Laguerre tessellations form a generalization of the Voronoi tessellations where
a weight is attached to each of the generating points. First, we define the power
of y € R? with respect to a pair (x,m,) € R? x R by

pow(y, (z,ma)) = |y — z* — m;.

Now, let A  R? x R be a countable set such that ming m,,jes pow(y, (z,m;))
exists for each y € R%. Then we define the Laguerre cell of (x,m,) € A by

C((x,my), A) := {y e R : pow(y, (x,m,)) < pow(y, (2, my)), Y(z',my) € A}

The point z is called the nucleus of the cell C'((x,m;), A). The Laguerre tessel-
lation induced by the set A is the set of all non-empty Laguerre cells arising from
the points of A. By choosing the weights to be zero for all nuclei, we obtain the
Voronoi tessellation.

Note that some nuclei may generate an empty Laguerre cell which was not
the case for the Voronoi tessellation. Also, if not empty, the Laguerre cell not
necessarily contains its nucleus.

Theorem 1.20 (Theorem 2.2.8 in Lautensack [2007]).
Let A be the set as above satisfying moreover the following conditions:

o For every y € R and every t € R only finitely many elements (x,m,) € A
satisfy
pow(y, (z,m;)) < t,

o the convex hull convi{z : (x,m,) € A} = R%

Then every Laguerre cell generated by A is compact and the Laguerre tessellation
1s face-to-face.
If, moreover, the points of A are in general position, i.e.
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o No k + 1 nuclei are contained in a (k — 1)-dimensional affine subspace of

R? for k =2,...,d and
e no d+ 2 points have equal power with respect to some point in RY,

then all Laguerre cells generated by A have dimension d and the Laguerre tessel-
lation is normal.

Again, we can replace the deterministic set A by a marked point process on
R? with marks in R. If ,, is a stationary marked Poisson process in R¢ with
marks in R, then the Laguerre tessellation induced by 7, almost surely exists
and it is referred to as the Poisson—Laguerre tessellation.

Let us also mention the possibility to construct the Delaunay—Laguerre tes-
sellation and refer to Section 2.3 in Lautensack [2007] for more details.

The importance of Laguerre tessellations can be shown by the following the-
orem.

Theorem 1.21 (Theorem 2.4.3 in Lautensack [2007]).
Every normal tessellation of R? for d = 3 is a Laguerre tessellation.

Example 1.21 (Johnson—Mehl tessellation).

Let A < R? x R, be locally finite. The idea behind Johnson—Mehl tessellations
is that the cell generated by a point (x,t,) € A starts to grow with common
speed in all directions immediately after being born which happens at time ¢,.
The tessellation is then created when the cells have no space to grow and fill the
whole space. More precisely, we say that a point y € R? is reached by the point
x at the time T'(y, (x,t,)), where

Ty, (z,ta)) = |z —y| — ta-
The Johnson—Mehl cell generated by (z,t,) with respect to A is then defined by
O((ZIZ’, tx)’ A) = {y € Rd : T(y7 ($a tu’v)) < T(yv (ZL’/, tdf’))? V(ZU/, tit’) € A}

The Johnson—Mehl tessellation induced by the set A is then a collection of non-
empty Johnson—Mehl cells.

Note that the Johnson—Mehl tessellation does not necessarily satisfy our defi-
nition of tessellation, since the cells may not be convex (see Figure 1.4 for a com-
parison). Hence, we do not assess the normality and face-to-face property. Also,
as in the case of Laguerre tessellation, here the Johnson—Mehl cells may not
contain their nuclei. Nevertheless, Johnson—Mehl tessellations form another im-
portant generalization of Voronoi tessellation and we recommend Mgller [1992]
for more details.

The Voronoi, Laguerre and Johnson-Mehl tessellation can be covered by the
following concept.

Example 1.22 (Weighted Voronoi tessellation).
The cells of the generalized weighted Voronoi tessellations are defined as follows.
Let p,, be a marked point process on R? with marks in M < R,. We introduce
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(a)

Figure 1.4: Realization of Voronoi tessellation (a), Laguerre tessellation (b) and
Johnson-Mehl tessellation (c) generated based on the same point set. The circles
around points in pictures (b) and (c) represent the weights attached to each
point. We observe in (b) that the nucleus does not necessarily lie in the cell it is
generating. In (c), we see that some points generate an empty cell.

a weight function p : R4 x (RY x M) — R which for each (x,m,) € p,, generates
the weighted Voronoi cell

CP((z,my), ) = {y € R 2 ply, (x,my)) < ply, (&', mar)), V(@' mar) € i}

Special choices of the weight function lead to the examples already presented
above,

(i) Voronoi cell: pi(y, (x,ma)) := |z —yl,
(i) Leguerre cell: po(y, (z,m4)) = | — ol =
(iii) Johnson—-Mehl cell: p3(y, (x,m,)) := ||z — y| — m..

Notice that larger values of m, generate larger cells C'((x, m,), it,,). The weight
functions p;(-, (r,m;)),i = 1,2,3 are often called the power of the point x; see
Section 10.2 in Schneider and Weil [2008]. When p,, is a marked Poisson point
process we shall refer to these tessellations as weighted Poisson—Voronoi tessella-
tions.

1.6 Random geometric graphs

In the previous section, we discussed that some random tessellations could be
generated by a deterministic rule and random configuration of points. A very
similar approach leads to another important class of geometric structures. Ran-
dom geometric graphs are random structures that can be easily described. A set
of points is randomly scattered according to some probability distribution, and
any two distinct points are connected by an edge if they satisfy some geomet-
ric construction rule (e.g. they are separated by a distance less than a certain
specified value). That being said, some of the models for random tessellations
can be interpreted as random graphs. These geometric structures form a nat-
ural model for systems in nature and society, telecommunication networks (see
Zuyev [2010]), pattern recognition (see Toussaint [1982]) and other applications
in computer science and optimization.

Classical random graph theory initiated in Erdos and Rényi [1959] defines
a random graph of n vertices and N edges as a graph chosen randomly among
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all possible N-edged graphs with n vertices. Another variant is to fix n vertices
and connect each pair of vertices at random, independently from other pairs.
These variants are both known under the notion of Erddés—Rényi model. Here we
concentrate on graphs with a random set of vertices induced by a point process
and some geometric rule.

Our notion of random geometric graphs goes as follows: A graph is a pair
G = (V,€), where V < R? is a non-empty set of vertices and & < V2 is a set
of (un)directed edges, i.e. pairs of (un)ordered distinct points of V. If we allow
the set V to be a point process (typically Poisson point process), then we speak
about a random geometric graph. A path is a sequence of distinct vertices and
corresponding edges, each of which connects two consecutive vertices in the se-
quence. The length of a path is a sum of the Euclidean lengths of the edges in the
path. We recommend Penrose [2003] for a survey on random geometric graphs.

In the rest of this section, we present a list of classical examples of construction
rules of a random graph.

Example 1.23 (Gilbert graph).

Let x € N be a locally finite point set and let § > 0 be a fixed parameter. Two

distinct points x, y € x are connected by an edge if |z —y| < §. If x is a realization

of a Poisson point process, then the resulting graph is referred to as Gilbert graph.
One of the possible generalizations of Gilbert graph is to take a symmetric

function G : R? — [0,1] and put an edge between any distinct points z,y € x

with probability G(x — y).

Example 1.24 (k-nearest neighbour graph).

Let k € N be a fixed positive integer. The k-th nearest neighbour graph on a locally
finite point configuration x € N is a directed graph where an edge is going from
x to y in x if y is one of the k nearest neighbours of x among all the points in
x. It can happen that the graph is not well defined due to the higher number
of points having exactly the same distance from x. In that case, an additional
rule has to be included (e.g. lexicographic ordering). Nevertheless, this event
has zero probability for x being a realization of a suitable point process (Poisson,
binomial, etc.)

An undirected version of the k-nearest neighbour graph is sometimes con-
sidered and is defined as the k-nearest neighbour graph where all the directions
are forgotten. In case, there is a double edge between two points, we take it as
a single one.

Example 1.25 (Sphere of influence graph).

The sphere of influence of a given point x in a point configuration x is the largest
ball in R? centered in z not containing any other point of x. An edge of the
sphere of influence graph on x is present between two distinct points x,y € x if
their spheres of influence overlap. By definition, the sphere of influence graph is
undirected.

Some of the examples of random graphs are connected with combinatorial
optimization problems. In order to introduce them, let us fix a given vertex set
V= {xl,...,mn}.
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Example 1.26 (Travelling salesman).

We say a path over a given vertex set V = {x1,...,z,} is closed if it is traversing
each vertex exactly once. We chose such £& among all the possible sets of edges
such that the corresponding path is closed has a minimal length among all closed
paths.

Example 1.27 (Minimum spanning tree).

A cycle in a graph is a non-empty path in which the only repeated vertices are

the first and last vertices. A spanning tree of V is an undirected connected graph,

such that it connects all the vertices in V without any cycles. Note that if there

are n vertices in the graph, then each spanning tree has exactly n — 1 edges.
The minimum spanning tree is a spanning tree with a minimal length of the

path among all the spanning trees of V.

Example 1.28 (Minimal matching).
Suppose that V is an even number. A matching of V is an undirected graph
requiring every vertex to be matched (i.e. to form an edge with another vertex)
and all the edges to have no common vertices. Hence, then there is exactly
#(V)/2 edges in the path.

A minimal matching of V is a matching with minimal length of the path
among all other matchings of V.

In any of the mentioned optimization problems, instead of the length of edges,

we can consider any weight associated to a given edge and minimize with respect
to the total weight of the path.
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2. Malliavin—Stein’s method

Stein’s method serves as a way to get explicit estimates in probability theory,
typically yielding a normal or Poisson approximation. By approximation in this
context, we mean providing estimates of a given distance between the laws of two
random variables. Examples of the probability distances include total variation
distance, Kolmogorov or Wasserstein distance.

The method was first introduced in Stein [1972] in order to give a convergence
speed for the central limit theorem for a sum of dependent random variables
satisfying a mixing condition. The main building block is Stein’s lemma, which
characterizes a normally distributed random variable Z. That is, the fact that
Z ~ N(0,1) if and only if

E[f(Z2)] =E[Zf(2)]

for all continuous functions f : R — R, for which the above expectations exist.
The approach was then extended to Poisson approximation in Chen [1975] leading
to the so-called Chen—Stein method. According to the Chen—Stein lemma, N has
Poisson law with parameter A > 0 if and only if for every bounded f : N — N,

E[Nf(N)] = E[Af(N + 1)].

At this work, only the normal approximation is considered. For the Poisson
approximation by the Chen—Stein lemma, see e.g. Section 2.4 in Bourguin and
Peccati [2016].

The Malliavin calculus of variations was introduced in Malliavin [1978] as an
infinite-dimensional differential calculus with operators acting on functionals of
Gaussian processes. The theory is based on the infinite-dimensional integration
by parts formulae. It was shown recently in Nourdin and Peccati [2009a] and
Nourdin and Peccati [2009b] that one can combine Malliavin calculus on the
Gaussian space and Stein’s method in order to obtain bounds for the normal and
non-normal approximation of functionals of Gaussian fields. Later in Peccati et al.
[2010], this approach was extended to the normal approximation of functionals
of Poisson measures defined on abstract Borel spaces. The idea is to express the
estimates arising from Stein’s method in terms of Malliavin operators.

The application in stochastic geometry, however, profits from the version of
the Malliavin calculus build on the Poisson space. The typical aim is to approxi-
mate behaviour of certain functionals of point processes with the standard normal
or Poisson distribution. In this chapter, we show how the Malliavin calculus of
variations and Stein’s method of probability approximations may be combined
into a powerful and flexible tool, the Malliavin—Stein method, for proving cen-
tral limit theorems as well as computing explicit rates of convergence for models
in stochastic geometry. The application is illustrated on selected models from
stochastic geometry at the end of this chapter. For a nice presentation of very
recent developments in the theory of Malliavin—Stein’s method, we recommend
Azmoodeh et al. [2021].
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2.1 Stein’s method for normal approximation

The aim of this section is to introduce the idea behind Stein’s method in the
one-dimensional case. The standard modern reference concerning Stein’s method
for normal approximation is the monograph Chen et al. [2011]. This text is also
based on Nourdin and Peccati [2012], Barbour and Chen [2005a] and Barbour
and Chen [2005b]. The multi-dimensional case is not discussed here and we
recommend Chapter 4 in Nourdin and Peccati [2012] for the matter.

Distances between probability distributions

The goal of Stein’s method is to find an upper bound for the difference between
the expectations of all functions of a given family of test functions under two
given distributions. The choice of the test functions determines the associated
metric.

Definition 2.1 (Separating collection of functions).

Let H be a collection of measurable functions h : R¢ — C. We say that the
collection H is separating if the following holds true: If P, () are probability
measures on R? such that {|h|dP, {|h|dQ < o0 and (hdP = (hdQ for all h e H,
then P = Q).

Definition 2.2 (Distance between probability distributions).
Let H be a separating collection of functions and P, () two probability measures
on R? with §|r|dP, §|h|dQ < oo for all h € H. Then the distance between laws P

and ) induced by H is defined by
fth - Jhd@’ .

Remark. If H is a separating collection of functions, then the probability dis-
tance dy induced by H verifies the usual axioms of a distance (metric) on the
space of probability measures P on R? such that

dH(Pu Q) = sup
heH

f |h(z)|dP(z) < o0

Rd

for all h € H. Specifically, for probability measures P, @, S:
« dy(P,Q) = du(Q, P),
o dy(P,Q) =0 if and only if P = @,
o« dy(P,Q) < dy(P,S) + du(S, Q).

Now, we present a list of the typical choices of the separating collections H.
For simplicity, we assume the distributions P, @ in the following definitions to be
some probability measures on R. The extension to the higher dimensional case
is straightforward.
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Definition 2.3 (Total variation distance).
The total variation distance between two distributions P and () is defined by

fhdp—fhd@',

Definition 2.4 (Kolmogorov distance).
The Kolmogorov distance between two distributions P and () is defined by

fhdp - fhd@

Remark. The total variation distance of distributions P, () can be equivalently
defined as

dTV(Pa Q) .= sup
heH

where H := {14; A€ B(R)}.

di (P, Q) 1= sup
heH

)

where H 1= {1(_.1; 2 € R},

drv(P.Q) i= sup{|P(4) — Q(A)|: A< BR)}
Analogically, the Kolmogorov distance of P, () can be rewritten in the form
dic(P.Q) = sup{| P(~0, 2] — Q(—w0,2]|; = € R}.
Clearly, for two probability measures P, () it holds that
0<dg(P,Q) <drv(P,Q) <1.

Definition 2.5 (Wasserstein distance).
The Wasserstein distance between two distributions P and @) is defined by
dW<P7 Q) ‘= sup

f hdP — J hdQ
heLip(1)

where Lip(1) := {h : R — R; |A’| < 1} denotes the class of real-valued Lipschitz
functions with Lipschitz constant less than or equal to 1. Here by |k|, we denote

SUp,er ()]

)

The Wasserstein distance is also known as Kantorovich—Monge—Rubinstein
metric. Note that it ranges in [0, o0].

Notation. Let Px and Py be the distributions of random variables X and Y,
respectively. We will use the notation d(X,Y') for d(Px, Py) whenever d is any
distance on the space of all probability measures on R.

Proposition 2.1 (Theorem 3.3 in Chen et al. [2011]).
If X is a real-valued random variable and Z the standard normally distributed

random variable, then
drg (X, 7)) < 2+4/dw (X, Z).

The following result states that the convergence with respect to drv, dg and
dy is stronger than weak convergence. Hence, d(X,, X) — 0 implies X, NS
whenever X, {X,,,n € N} are random variables and d is either total variation,
Kolmogorov or Wasserstein distance.

44



Proposition 2.2 (Proposition C.3.1 in Nourdin and Peccati [2012]).
The topologies induced by the three distances drv,dx and dy on the set of prob-
ability measures on R are strictly stronger than the topology of the convergence
in distribution.

Moreover, the Kolmogorov distance metrizes the convergence in distribution
towards real-valued random variables whose distribution function is continuous.
However, this result can not be extended to the total variation nor Wasserstein
distance.

Proposition 2.3 (Proposition C.3.2 in Nourdin and Peccati [2012]).
Let X, { X, }n>1 be random variables in R and let X have a continuous distribution

function. Then X,, 2 X if and only if dg(Xp, X) — 0 as n — .

Stein’s lemma

In this section, we always denote by Z the standard normally distributed random
variable. For a sequence of random variables X,,, the goal is to find uniform upper
bounds of the type d(X,,Z) < ¢(n),n = 1 for d being one of the probability
distances defined above. The sequence {¢(n)},>1 of positive numbers is referred
to as the rate of convergence if ¢p(n) — 0.

Let f : R — R be a bounded measurable function with bounded derivative.
Then the following observation can be made:

E[f(2)-Zf(Z)] =0. (2.1)

It can be shown directly by integration by parts

E f'(Z) = \/127? J_ Flz)e ™ Pde

- \15 J " (w)e ™ da
~EZf(2).

Moreover, let Cyy be the set of continuous and piecewise continuously differ-
entiable functions f : R — R such that E|f/(Z)| < o0. Then the equality (2.1)
can be generalized into a characterization of the standard normal distribution
that forms a base of Stein’s method for normal approximation:

Theorem 2.1 (Stein’s lemma).
Let W be a real-valued random wvariable. Then W has a standard normal distri-
bution if and only if

Ef(W) =EWf(W) (2.2)

for all f € Cyy.

Proof. We revise the proofs of Lemma 2.1 and Lemma 2.2 in Chen and Shao
[2005].
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1. Necessity: Take f € Cpy and suppose W has a standard normal distribution.
Then

E f'(W) = \/12? f_ Fw)e™dw

::\g&rjfwj”ﬁu)(Jf;(—x)eﬂﬁﬂd$>(hu
i \/12? f:o F(w) ( LOO xer/de) duw.

Using Fubini’s theorem, we arrive at

erm) == [ ([ ) coeria

+\éﬂ£w<ffw@mox5“@m

_ L[ x) — ze Az
-5 | )= e
—EWf(W).

2. Sufficiency: For a fixed z € R, we are interested in the ordinary differential
equation
f'w) —wf(w) = 1_(pz(w) — $(2), (2.3)
where ® is a distribution function of the standard Gaussian random vari-
able. Multiplying both sides of (2.3) by —e "2 Jeads to

<e*w%?fcw>)': (1 — B(2)).

Hence, the solution f, of (2.3) is given by

w

f2(w) = eMQ/ZJ [1(—oo,z] (z) — @(Z)]6_$2/2dx

—0

o0
- _ewZ/QJ [1( op,(2) — B(2)]e™*da

B 2me?’ PO (w)[1 — ®(2)], ifw< 2,
21e” 2D (2)[1 — ®(w)], if w> 2.

Clearly, f. is continuous and piecewise continuously differentiable for all z € R.
We shall prove that E|f/(Z)| < co. By (2.3), we have

f;<w) = wfz(w) + 1(_w,z](w) — (I)(Z)
[rtin 1 o0, v o
wf,(w) — ®(z), forw > z.

The function wf,(w) is increasing. To see that, take z = 0. The other case is
similar, since f_,(—w) = f.(w). For w < z, it is clear, since

wﬂ@mh=%mu—¢@»(u+w%ww¢myyﬁ;)>u
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On the other hand, for w > 0, note that

o0 0
J e~ Ay < f Lo wP2qy = €

w W w

—w?/2

Moreover,
we—w2/2

(1+w?)v2r

To show (2.6), denote g;(w) := (1 + w?) {” e 12dx and go(w) := we *"/2. We

can observe that
g1(0) = A/7/2 > 0 = g2(0). (2.7)

1— ®(w) > (2.6)

At the same time
Jim gy (w) =0 = lim g (w). (2.8)
Further, for w > 0,

0
g1 (w) — gy(w) = wa e Pdr — (1 + w?)e ™2 — (1 — w?)e /2

wOO 2 2
= QwJ e TPy — 27V /2
< 0.

In the third inequality, we used (2.5). Since the difference of the derivatives is
always non-positive, the graphs of g; and gs never cross each other. Otherwise,
it would contradict the observations (2.7) and (2.8). Thus, g;(w) = g2(w) for all
w = 0, from which (2.6) follows immediately.

Now, we use (2.6) to estimate the derivative of wf,(w) for w > z:

(wf.(w)) = 21d(2) ((1 +w?)e 2 (1 — d(w)) — ) > 0.

Indeed, the function wf,(w) is increasing with limits

lim wf,(w) = Jim 2rwe” PO(w)[1 — (z)] = d(z) — 1 (2.9)

w—

and
Tim wf.(w) = lim v2rwe” ?®(2)[1 — B(w)] = B(2). (2.10)

By plugging (2.9) and (2.10) into (2.4), we obtain for w < z
0< fiw) =wfo(w)+1-0(2) < limaf.(z) +1-2(2) =1,
and for w > z
L=l 2f@) - B(:) < whw) - B(2) = £L(w) <0

Finally, E|f.(Z)| < 1 and therefore, f, € Cyq. Suppose that (2.2) holds for all
f € Cpq. Then it is also satisfied by f, and hence, by (2.3), we have

0=E[£,(W)=WLW)] = E[1(0g(W) = D(2)] = PW < 2) - &(2).

Thus, W has a standard normal distribution.

47



Stein’s equation

Based on Stein’s lemma, if X is a random variable for which E [X f(X) — f'(X)]
is close to zero for some large class of smooth functions f, is it possible to con-
clude that X is close (with respect to some distance) to the standard normal
distribution? To answer the question, we need to introduce the notion of Stein’s
equation associated with a given function h such that E |h(Z)| < o0.

Definition 2.6 (Stein’s equation).
Let h : R — R be a Borel function such that E |h(Z)| < co. Then Stein’s equation
associated with h is the ordinary differential equation

f'(z) —xf(x) = h(x) —Eh(Z). (2.11)
A solution to (2.11) is a function f that is absolutely continuous and such that

there exists a version of the derivative f satisfying (2.11) for all x € R.

Proposition 2.4 (Proposition 3.2.2 in Nourdin and Peccati [2012]).
FEvery solution to (2.11) has the form

f(2) = e 1 e f [h(y) — ER(Z)]e¥Pdy, xR,
where c € R.

Notation. Denote by f;, the unique solution f to the Stein’s equation associated
with a function h that satisfies

lim e 2 f(x) = 0.

r—+00

Note that f;, is given by

fle) = e [ [hty) ~ ERZ)e 2y
- (2.12)
== [ [hy) ~ ER(Z)e " ay.

Lemma 2.1 (Lemma 2.3 in Chen and Shao [2005]).
For any absolutely continuous function h : R — R, the solution f; given in (2.12)

satisfies
1l < m\f h() = ER(Z)], 2I]),

| /3]l < min(2[A() = EA(Z)], 4]|K'])

and

|2l < 2]
Normal approximation with respect to dry,dx and dy
For a given random variable X, the goal now is to bound

sup [E h(X) — Eh(Z)],
heH
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where H is some separating collection of functions h: R — R with E |h(X)| < o
and E |h(Z)] < co. The trick of Stein’s method consists of finding another class
of functions H’ such that

sup [Eh(W) —Eh(Z)| < sup [E[f'(X) = X fF(X)]|.
heH fer

First, by taking expectation on both sides of (2.11), we arrive at
EA(X) ~ Eh(Z) = E[f,(X) - X fu(X)]

Hence,
du(X,Z) = sup B [f(X) = X fu(X)]]

Let us now focus on the examples of H associated with total variation, Kol-
mogorov and Wasserstein distances. The following three theorems can be found
in Nourdin and Peccati [2012] (cf. Sections 3.3 - 3.5). We took hints from there
to complete the proofs.

Theorem 2.2 (Normal approximation w.r.t dry).
Let h : R — [0,1] be a Borel function. Then, the solution f to Stein’s equation

(2.11) satisfies
T
flaf5 and 15 <2

In particular, for any integrable random variable X

drv(X, Z) < Sup E f/(X) -EXf(X)],

where Fry = {f : R — R absolutely continuous ;| f|| < +/7/2,|f"] < 2}.

Proof. Take any h : R — [0, 1] Borel. Then obviously, |h(x) —Eh(Z)| < 1 for all
x € R. The statement then follows directly from Lemma 2.1.

O
The bounds from Theorem 2.2 can be applied for the Kolmogorov distance as well
since the relationship dx < dry holds. However, they can be further improved.

Theorem 2.3 (Normal approximation w.r.t. dg).
Let z € R. Then the solution f, satisfies

|l < == and [fI] <1.

In particular, for any integrable random variable X,

dr(X,7Z) < Sup Ef(X) -EXf(X)],

where Fi = {f : R = R absolutely continuous; | f|| < v2w/4,|f"] < 1}.
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Proof. Recall that the Kolmogorov distance is induced by the set of functions
H = {1(_-; 2 € R}. For a special choice h = 1(_ .}, 2 € R, we denote by f. the
solution f1_, , given by (2.12). Then, for z < z, we have

fo(x) = 12 j [1py(y) — ELi(Z)] e ¥y

—o0

ex2/2f (1—®(2))e ¥/ dy

= V27" PO(2)(1 — B(2))
2me” 2B (2) (1 — B(2)).

It is easy to check that the function g(z) := v/2me*”/2®(2)(1 — ®(z)) attains its
maximum in z = 0, therefore

fo(x) <

~[%
=

Analogically, having x > z,

folw) =€/ U e V' 2dy — f

= V21e” 2B (2)(1 — B(x)
< Vare () (1 - B(a)

2T
S

D(z —y2/2dy>

o0

~—

~

Moreover, by f. we denote the corresponding version of the derivative of f, sat-
isfying the Stein’s equation

fl(z) = o f.(2) + 1o zy(x) — (2).

The estimate | f.| < 1 was already shown in the proof of Theorem 2.1.

Theorem 2.4 (Normal approximation w.r.t. dy).
Let X be a square-integrable random variable. Then

d(X.2) < sup [EF(X) ~EXF(X)],

where Fy := {f : R — R continuously differentiable; | f'| < /2/7}.

Proof. Let h be any Lipschitz function with the Lipschitz constant 1. Then
the solution f, of Stein’s equation (2.11) is continuously differentiable directly
from the explicit expression (2.12). Further, by Proposition 3.5.1 in Nourdin and
Peccati [2012], f, admits the representation

o ot B _—
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and | f7 | < +/2/7. The statement of Theorem 2.4 is then a direct consequence of
this result.
[

Remark. 1. In the definition of Fry and Fg, we assume that for f € Fry,
f € Fk resp., there exists a version of f” satisfying the prescribed conditions.

2. The supremum sup;.z [E f/(X) — E X f(X)|, where F is either Fry or F,
stands for sup sz sup{|E g(X) — E X f(X)|, g a version of f'}.

3. The requirement that X is integrable is needed so that E|X f(X)| exists
for every f € Fry or f € Fg. The assumption of square-integrability
guarantees the existence of E | X f(X)| for all f e Fy .

Example 2.1 (Berry—Esseen bounds and CLT).

The Stein’s method can be applied to provide a proof of the classical Berry—
Esseen theorem. Let {Xj;k > 1} be a sequence of i.i.d. random variables such
that EX; = 0 and E X2 = 1. Define for n € N,

1 n
Sn = nklek

El

Then by the Stein’s method

CE|X,|?
N

where C' > 0 is some universal constant depending neither on n nor X, k € N

(as shown lately in Tyurin [2009], it holds for C' = 0.4785). As a consequence, if
E| X > < o,

s 2z

2.2 Malliavin calculus on the Poisson space

Malliavin calculus (also known as stochastic calculus of variations) extends the
calculus of variations from deterministic functions to stochastic processes. In
particular, it allows the computation of derivatives of random variables and in-
tegration by parts with random variables which is needed in order to explicitly
assess the bounds arising from Stein’s method.

The aim of this section is to briefly explain the basic elements of Malliavin
calculus on the Poisson space and demonstrate how the bounds in the previous
section based on Stein’s method can be combined with Malliavin operators on
abstract Poisson spaces defined via the Fock space representation. This section is
mainly based on Peccati and Reitzner [2016] and Last and Penrose [2017].

For an introduction to the theory of Malliavin calculus on the Wiener space,
we recommend Nualart [2006] or Nourdin and Peccati [2009a].
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Malliavin operators

Here and throughout the whole section, we will assume that (X, X) is some fixed
measurable space and 7 is a Poisson point process on X (see Example 1.5) with
o-finite intensity measure A and distribution F,. By the Poisson space, we mean
the space L*(N(X), P,) of all measurable functions f : N(X) — R satisfying
E f(n)? < c. A measurable function of a Poisson process is called Poisson
functional.

Moreover, for a space X equipped with a measure p, we will shorten the
notation and write L9(p) for L4(X, p) whenever ¢ > 0 and it is clear what is the
underlying space. Throughout this chapter, we will moreover use the following
notation.

Notation.
Ly(P) := {F; F = f(n) P-a.s. for some measurable f : N(X) — R},
LY(P) := {F e L)(P); Fe L'(P)}, ¢>0.
Similarly, denote
Ly(P®A) := {G;G = g(n,z) P@A-a.s. for some measurable h : N(X) x X — R},

LIPRA) :={Ge L)(P®N):;Ge L/(P®N}, q¢>0.

The functions f, resp. g such that F = f(n) for some F € L)(P) and G = g(n, z)
for some G € Lg (P® M) are called the representatives of the functionals /' and G,
resp.

Next, for f, g € L*(A\"), we denote the inner product of f and g by

fy @n=| fgd\".
XJT:

The associated norm is denoted by

[l = A <Fs o

For n = 0, we put {a,b), = ab for a,b € R. For n = 1, to emphasize that
fg€ L1(A), we write (f, g)ra(n), resp. | f]rap-

Definition 2.7 (Difference operator).
Let F': N(X) — R be a measurable function. For y € X, we define the difference
operator (or add-one cost operator) as a function D, F' : N(X) — R satisfying

D,F(x) = F(x+9,) — F(x), xeN(X).
Iterating this definition, we get for n € N, n > 2, the difference operator of

-----

...........

where D! = D and D°F = F.

For F e L(PP) and z € X define the random variable D, F := D, f(n) and for
n € Nand xy,...,7, € X define D}, 2, f(1). Moreover, denote by
D"F the mapping (w,x1,...,z,) — (D,

-----
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By the Slivnyak-Mecke equation (see (1.9)), the definitions of DF and D"F
are P ® A-a.s. independent of the choice of the representative f.

Remark. The n-th order difference operator can be expressed by

..... WFE) = D () *IF (x - Z%) , (2.13)

jed

n
D?J1

where #(J) denotes the number of elements in J. It shows that Dy F is
a symmetric mapping in y; ..., y, € X and that (x,y1,...,9,) — Dy F(x)is

measurable.

Notation. For all F': N(X) — R and n € N, we define the expectation of the
n-th order difference operator of F' as a function T, F on X", where

TnF(yla s 7yn) = E[DZ1 ynF(n)]

77777

and set ToF' = E[F(n)], whenever these expectations exist. Otherwise, we put
T.F(y1,--.,yn) = 0. Note that the mapping T,,F : X" — R is again symmetric
and measurable.

Definition 2.8 (Wiener—It6 integral).
For n > 1 and g € L?*(\"), we define the n-th order Wiener—Ité integral of g as
a random variable I,,(g) defined by

In(g) = Z (71)71—#@]) Jfg(ajh s axn)n(#(J))(de))\n_#(J)(dec)a
n)
where z; := (2;)jes and J¢ := {1,...,n}\J.

Remark. The Slivhyak—Mecke equation (1.9) combined with Fubini’s theorem
implies that the integrals in Definition 2.8 are finite and E I,,(g) = 0.

If g is, moreover, symmetric (i.e. invariant towards any permutation of the
variables), then

I(g) = Zn](—l)”—k (’;) Jgdn(“ &N

k=0
See Chapter 12 in Last and Penrose [2017] for further properties of I,,(g).

The following result based on 1t6 [1956] and Wiener [1938] is an analogy to an
orthogonal expansion into series of polynomials for a square-integrable function
of a real variable. It was proved in this form for Poisson functionals in Last and
Penrose [2011], Theorem 1.3.

Theorem 2.5 (Wiener—Itd chaos expansion).
Let f € L*(P,). Then for alln e N, T, f € L*(A\") and
1
where the series converges in L*(P). Moreover, if for n € N, g, € L*(\") is
a symmetric function such that f(n) = > L1.(g,) with convergence in L*(PP),

n=0 n!

then go = E f(n) and g, = T,,f A"-a.e. on X and for all n € N.
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For F € L2(P) denote f, := SE D"F. Then by Theorem 2.5, F' can be written

as .
F=EF+ Y L(f) (2.14)

n=1
For many models in stochastic geometry, the Wiener-It6 chaotic expansion
and associated operators from Malliavin calculus could be further analysed be-
cause the expressions usually consist of terms with a natural geometric interpre-

tation.

Example 2.2 (Poisson U-statistic).
Let n € Nand f e L'(\") symmetric. Then we define the Poisson U-statistic of
order n with kernel function f by

U(f,n) :=Jf(:vl,...,xn)n(”)(d(xl,...,xn)): D flrr ),

where in the last expression, we sum over all mutually different points x1,...,z,
of n.
For k € {0,...,n} define symmetric functions f; € L*(\*) by

fre(xy, .. xg) i= <Z> Jf(xl, e T YTy ,yn_k))\"_k(d(yl, e Unek))-

Then the U-statistic with kernel function f admits the following representation
(Proposition 12.11 in Last and Penrose [2017]):

The next definition introduces three Malliavin-type operators defined in terms
of the chaotic expansions that are involved in the estimates of the distances

between Poisson functionals and standard normal distribution (recall Theorems
2.2, 2.3 and 2.4).

Definition 2.9 (Malliavin operators).
We define the operators D, d, L on L(IP) as follows:

1. Derivative operator D: Define the domain of D by domD as the set of
all F'e L7(P) admitting a chaotic decomposition (2.14) such that

e}
D innl|fu]? < o0 (2.16)
n=1

Then for F' € domD, the random function z — D, F' is given by

o0
D,F =) nl,(f(z,), zeX
n=1
where for symmetric function f € L*(A"), f(z,-) indicates the function on

Xt given by (z1,..., 2, 1) = f(z,21,.. ., T0 ).
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. Skorohod integral ¢: For a function G' € L} (P®\), we have that G(z) :=

G(-,x) € L*(P) and hence, from Theorem 2.5

where g,,(z,z1,...,3,) == SE DI G(x). The Skorohod integral of G is
defined by

5(G) = Z In+1(gn)'

The domain domd of § is defined as the set of functions G € L2 (P ® \)
satisfying

e}
Y (n+1) Jgidxn“ < o,
n=0

where g,, is the symmetrization of g,, i.e.

n+1

- 1 n
gn($17 s ,$n+1) = m Z EDJ:1,...,aci_1,xi+1 ..... a:n+1G(xi)'
T=1

Ornstein—Uhlenbeck generator L: The domain of L, domL, is defined
as the set of functions F' € L7(P) with the chaotic decomposition (2.14)
satisfying

0
Z n*n!| fa]? < oo.
n=1
For F' € domL, we define the Ornstein—Uhlenbeck generator of L by

LF :=— i nl,(fr).
n=1

The inverse of L is given by

L'F = — i L.(fn).
n=0

Let us mention several properties of the Malliavin operators:

1.

Note that the derivative operator D transforms random variables into ran-
dom functions. The condition (2.16) guarantees that the Malliavin deriva-
tive of F' coincides with the difference operator DF' (see e.g. Theorem 6.2
in Nualart and Vives [1990] for the proof).

. The operator ¢ is the adjoint of the difference operator D and the following

formula holds.

Theorem 2.6 (Integration by parts formula).
Let F' € domD and G € domé. Then,

E f (D, F)G(x)\(dz) = E F(G).
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See Theorem 4 in Last [2016] for the proof or Proposition 4.2 in Nualart
and Vives [1990] for more general result.

3. The random variable L~"F" is well defined for all F' € L}(PP), L~'F € domL
and if EF =0, then LL7'F = F.

4. The operators D, § and L are connected by the following identity.

Theorem 2.7 (Proposition 3 in Last [2016]).
Let F € domL. Then F € domD, DF € domd and

§(DF) = —LF.

Fock space representation

Definition 2.10 (Fock space).

Let H, denote the space of all \"-a.e. symmetric functions f € L?(\") equipped
with the inner product (-,-) and the corresponding norm ||f||,. We define the
Fock space H as the space of all sequences f = (f,,)n=0, fn € Hy, i.e. as the direct
product of the spaces H,,, i.e.

e o]
H= X H,
n=0
with the scalar product defined by
o0
Fom=),~ <fnag71>n7 fgeH.
i—0 "

Note that H is a Hilbert space, i.e. a complete metric space with respect to
the metric ((un)n=0, (Vn)n>0) \/< Up — Un)nz0, (Un — Vn)n>0)g- AD extensive
treatment of the stochastic calculus on H can be found in Meyer [1995]. Our goal
is to prove that the linear mapping f +— (T,,(f))ns0 is an isometry from L?(\")
into the Fock space H. Then it follows from Theorem 2.5 and isometry properties
of stochastic integrals that the mapping is in fact a bijection from L?(P,) to the
Fock space.

Theorem 2.8 (Fock space representation).
Let f,ge L*(P,). Then Tf := (T,,f)n=0 € H and

ELf(mg(n)] = <Tf,Tg)n.

Remark. In other words, Theorem 2.8 says that

E [fmg(n)] = (E [F(n)])( Z | Tuf, Tagpy - (2.17)

E [f0) = (€ [FD* + ), 1T (218)
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Proof. We will follow the proofs of Lemma 18.3, Lemma 18.4, Lemma 18.5 and
Theorem 18.6 of Last and Penrose [2017]. The proof consists of four individual
steps. In prior to show that the equality holds for arbitrary f,g € L*(P,), we
will prove it for special space of bounded and measurable functions, which will
be proved to be dense in L?(P,). Then we apply some approximation arguments
to prove the theorem.

Step 1 Let Xp be the system of all measurable sets B € B(X) for which A\(B) < .
Denote by Ry(X) the space of all bounded functions v : X — R, vanishing
outside some B € Aj. Furthermore, denote by G the space of all (bounded and
measurable) functions g : N(X) — R of the form

g(p) = are™ M + 4 a0,

where n € N, ay,...,a, € R, v1,...,v, € Ry(X) and p(v) denotes the integral
§odp for 1 e N(X) and v € Ro(X). Let us show that equality (2.17) holds for
f,9€G.

By linearity, it is sufficient to consider functions f and g of the form

f(u) = exp[—p(v)], g(p) = exp[—p(w)]

for v,w € Ry(X). First, we will calculate T, f and T,g for n € N. For each
p e N(X) and z € X, we have

Flt6,) = exp | - j o(y) (1 + 6)(dy) | = exp[—pu(v)] exp[—v(z)],

X

and therefore,
Dy f (1) = exp[—p(v)](exp[—v(z)] = 1).
Iterating this identity, we can get for all n € N and all x4, ..., z, € X that

n

Dy o f(1) = exp[—p(v)] | [(exp[— —1). (2.19)

~~~~~
=1

Recall that for the Poisson point process n with intensity measure A, the
Laplace functional (see Definition 1.12) takes form

Ly(u) =exp[-A(l—€e™)], u:X->R,. (2.20)

From (2.19) and (2.20), we obtain that

T.f =exp[—A(1—e )] | [(exp[— —1).
=1

)

Analogously for ¢g. Since v, w € Ry(X) it follows that T, f, T,g € H,,,n = 0. Using
again equality (2.20), we obtain that

E[f(n)g(n)] = exp[-A(1 — e “T))].

Now, we can compute the right-hand side of (2.17)
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and hence the assertion holds true for f, g € G.

Step 2 We need to prove that the set G is dense in L?*(P,). Let W be the space
of all bounded measurable g : N(X) — R that can be approximated in L*(P,)
by functions in G. We want to use the functional version of the monotone class
theorem (see Theorem 2.12.9 in Bogachev [2007]). We can see that space G
is closed under uniformly bounded convergence. It also contains the constant
functions and it is closed under multiplication. If we denote by N the smallest
o-field on N(X) such that g — h(u) is measurable for all h € G, then according
to Theorem 2.12.9 in Bogachev [2007], W contains any bounded N’-measurable
g.
On the other hand we can write for every C' € X; that
w(C) = lim t71(1 — e ™) e N(X),

t—>0+

such that p — p(C) is N'-measurable. Since \ is o-finite, for any C' € X there
exists a monotone sequence Cy, € Xy, k € N such that C' = UCY, so that p— p(C)
is N'-measurable. Thus, N' = A and it follows that W contains all bounded
measurable functions. Hence W is dense in L?(P,).

Step 3 For further purposes we will show that f, f!, f%,... € L?(P,) satisfying
¥ — fin L*(P,) as k — oo implies

lim | B (D5, .. f() = DF, o J* AN (A1, 20)) = 0 (2.21)

k—oo | T T
cn

for all n € N and C' € &j. According to (2.13), it is sufficient to prove

lim | E ”f (miaﬁ)—fk (774—%5%)“)\"(d(xl,...,xn))zo (2.22)

Ccn

for all m € {0,...,n}. The case of m = 0 is obvious. Assuming m € {0,...,n},
we apply on the integral inside the limit in (2.21) the Slivnyak—Mecke equation
(see (1.9)). Thus,
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o {[r (e $5oe) - (o 530 ) | iaonc

= AC)n JE ”f (mi%) —f* <n+i%)

o
=N B | [ £~ PO o)

m

()™ [[f(n) = fE(m)| n"™ (C™)]
(O™ (E [(f(n) = FE(m)*D)2 (E [(n"™(C™)*])?,

where by ™ (C™), we denote the number of m-tuples of points of 1 in C while
n™(C™) restricts on m-tuples with mutually distinct points.

The last bound follows from the Cauchy-Schwarz inequality. Since all mo-
ments of the Poisson distribution exist, we obtain (2.22) and hence (2.21).

<A
<A

NI

Step 4 Recall the polarization identity of the scalar product

Because of the linearity of the scalar product, it is sufficient to show that (2.18)
holds to prove the theorem.

Since the system G is dense in L?(P,), for every f € L?(P,) there is a sequence
f¥ € G such that f* — f in L?*(P,) as k — co. In step 3, we proved that
Tf* keN, is a Cauchy sequence in H, hence has a limit f = (}n) € H, meaning
that

0

. 1 5
lim ) [T, f* — 7,2 = 0. (223)

k—o0 !
n=0

Taking the limit in the identity E[f*(n)?] = (T f*, T f*)u yields

ELf()*] = (f, P

Equation (2.23) immediately implies that f, = E[f(n)] = Tof. It remains to
show that for any n > 1, we have

fo=Tu.f, N'-ae. (2.24)

Let C' € Xy and let B := C™. Denote by (A")p the restriction of the mea-
sure A" to B. By (2.23) T, f* converges to f in L*(B,(\")p) and hence also in
LY(B,(\")g). Meanwhile, by the definition of T, and the equality (2.21), T;, f*
converges in L'(B, (A\")g) to T, f. Hence the uniqueness of these limits yields
fn = T,fA™a.e. on B. Since A is assumed to be o-finite, this implies (2.24) and
hence the theorem.

O]
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Covariance identity

The covariance identity is a direct consequence of the Fock space representation
theorem. It will be further used to obtain bounds on the Wasserstein distance
between the standard normal distribution and distribution of a Poisson functional.
Assume that we have a square integrable Poisson functional F' (i.e. F' € L2(IP))
and t € [0,1]. To obtain the covariance identity, we need to introduce an operator
P, F defined by a combination of ¢-thinning and independent superposition. Then
we will be able to rewrite the Fock space series representation as an integral
equation involving only the first order difference operator and the operator P;.

Definition 2.11 (Operator P,).
Let for F' € L, (IP) with a representative f define

PF:=E J fe + ) Ia_pa(dp)n |, te[0,1],

N(X)

where 7, is a t-thinning of 7 and 11, denotes the distribution of a Poisson process
with intensity measure X

Lemma 2.2.
For F e L%(IP’), the definition of P,F almost surely does not depend on the choice
of the representative f and

EPF = EF. (2.25)

Consequently, P,F € L} (P), whenever F € L} (P).
Proof. The first statement follows directly from the application of the superpo-

sition and thinning theorems (see Theorem 3.3 and Corollary 5.9 in Last and
Penrose [2017]), since

I, =E J {n, + p e Ha_pa(dp)
N(X)

Due to Lemma B.16 in Last and Penrose [2017], which is based on the monotone
convergence theorem, there exists a measurable version of E[f(n, + p)|n] such
that

RF=E f FO+ ) apa(dp)in | = J E [f(ne + )] a—pa(dp),
N(X) N(X)

P-a.s. for all t € [0, 1]. We can also see that
BF =E [f(n+m-)ln] (2.26)

where 7] _, is a Poisson process with intensity measure (1 — ¢)\, independent of
the pair (n,7m:). The equality (2.25) follows from (2.26).
[l
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Using the conditional version of the Jensen inequality (Proposition B.1 in Last
and Penrose [2017]) and equality (2.25), we can determine an estimate for the
p-th absolute moment of P F'.

Lemma 2.3 (Contractivity property).
For anyp > 1, F e LL(P) and t € [0,1], we have

E [|PF]] < E [|F]7].

Proof. Let f be a representative of F' and denote g = |f|P,G = g(n). Then,

E [|P.F|"] B [f (e +nb_)n]|” <E [E[I1f (e + ni_)P|n]]

=E
=E [E [g(n + )] = E [AG] =E [G] = E [|F|].

Lemma 2.4 (Mehler’s formula).
Let F e L;(P), ne N and t € [0,1]. Then

Dy o XN'ea.a. (z1,...,7,) € X", P—a.s.

-----

Fl, X'-a.a. (z1,...,2,) € X"

For the proof of Lemma 2.4, see Lemma 20.1 in Last and Penrose [2017].

Notation. Let for F' € L7(P) denote by DF the mapping (w,z) — (D F)(w).
The next theorem will additionally require DF € L?*(Q x X,P® \), i.e.

E J(DxF)z)\(dx) <

Theorem 2.9 (Covariance Identity).
For any F,G € L2(P) such that DF, DG € L*(Q x X,P® \), we have

E[FG] - E[F]E[G] = E f f (D, F)(P,D,G)dtA(dz) | . (2.27)

Proof. We follow the proof of Theorem 20.2 in Last and Penrose [2017]. Using
first the Cauchy—Schwarz inequality and then the contractivity property (Lemma
2.3) we can estimate
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E J J D, F||P,D,G|dtA(dx)

<E J(DxF)ZA(dx) E fflPtD G)2dtA(dx)

| X _

<E J (D.F)2A(dz) | E f(DzG)QA(dx) ,

X

which is finite by the assumption. Therefore, using Fubini’s theorem and Mehler’s
formula (Lemma 2.4), we obtain that the right-hand side of (2.27) equals

J f IR [(D,F)(PD,G)]dtA(dx). (2.28)

We can now apply the Fock space representation (Theorem 2.8) to the expectation

inside the integral. For ¢ € [0,1] and taking into account also Lemma 2.4, we
obtain

0 tntl

T Z o JE [Dr L JFIE[DE! LGN (d(2y, ..., ).

77777
=1

Xn

We want to insert this expression into formula (2.28) and use Fubini’s theorem
(to be justified below). Compute (2.28) as

f f (D, FIE [D,GdtA(dx)

-----

-----

.....

Eventually, by Theorem 2.8, this equals to E [F'G]| — E[F|E [G], which yields
the asserted formula (2.27). The use of Fubini’s theorem is justified by identity
(2.18) and the Cauchy—Schwarz inequality.

]
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A direct consequence of Theorem 2.9 is the following upper bound for the

variance. More general variance inequalities were developed in Last and Penrose
2011].

Corollary 2.1 (Poincaré inequality).
Let F' € L*(P), and DF € L*(Q x X,P® \), then

Var FF < E J(DmF)Q/\(dx).

Remark. Corollary 2.1 forms a Poisson version of the famous Chernoff-Nash—
Poincaré inequality formulated in the framework of Gaussian analysis stating that
for X = (X1,...,X,) an i.i.d. standard Gaussian vector and f being a smooth
function on R?, we have that

Var f(X) < E[Vf(X)|?
where V f is the gradient of f.

2.3 Normal approximation of Poisson function-
als

In this section, we will demonstrate how the bounds of Theorems 2.2, 2.3 and 2.4
can be combined with the Malliavin operators (see Definition 2.9). The connec-
tion of Stein’s method and Malliavin calculus was first mentioned in Nourdin and
Peccati [2009a] in order to derive explicit bounds in the Gaussian and Gamma
approximations of random variables in a fixed Wiener chaos of a general Gaus-
sian process. Later in Peccati et al. [2010], the theory was first formulated in the
framework of point measures.

Recall that 7 is assumed to be a Poisson point process with locally finite
intensity measure A and distribution P, and Z stands for the standard Gaussian
random variable.

Theorem 7 and Theorem 8 in Bourguin and Peccati [2016] give bounds on the

Wasserstein and Kolmogorov distances in the language of the Malliavin operators
D and L7

Theorem 2.10 (Bounds on the Wasserstein distance).
Let F € domD be such that EF = 0. Then

2
dw(F,Z) < \[E ’1 — (DF, —DL*1F>L2(A)‘ + JJE [|D.F?| D, L7 F|] A(d).
™

Theorem 2.11 (Bounds on the Kolmogorov distance).
Let F e domD be such that EF = 0. Then
\2
dx(F,Z) <E [1 = (DF,=DL™"F)2,| + T”]E [{|DF?,|DL7'F|)]

1

+ 5E [(DFP,|F x DL7'F))]

+ sngE [{(DF)D1(p=.), DL F|)r2n]
zE
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where Da:l[F>z] = 1[Fz>z] — 1[F>Z],ZL' e X.

Working with the operator L™! can be rather difficult. One option is to use
the chaotic expansion (2.14) of L™'F. Tt was illustrated in Lachi¢ze-Rey and
Reitzner [2016] and Schulte and Théle [2016] for the case where F' is a Poisson
U-statistic. In particular, it was stated that such F' lives in a finite sum of Wiener
chaoses.

Another possibility is to use the following representation of L='F in terms of
the operator P; (see Definition 2.11): For F € L2(IP), we have

S

1
L7'F = —f ~P,Fds.
0

In combination with the covariance identity (Theorem 2.9), one can obtain the
following bounds for the Wasserstein distance.

Theorem 2.12 (Theorem 21.2 in Last and Penrose [2017]).
Let F e L}(P) satisfy DF € L*(2 x X,P® \) and E[F] = 0. Then

dw(F,2) <E | |1 - f J(PtDzF)(DwF)dt)\(dx)

1
L E f f \P.D, F|(D, F)2dtA(dx)
X 0

Nevertheless, the operator P, might still be difficult to manage. One can
again use the covariance identity (Theorem 2.9) and the contractivity property
(Lemma 2.3) and determine a bound depending only on the random functions
DF and D*F, which could be evaluated directly for some simple choices of the
Poisson functionals (see Example 2.3). The following result was shown in Last
et al. [2016].

Theorem 2.13 (Second order Poincaré inequality).
Suppose that F' € L7 (P) satisfies DF € L*(Qx X, P®M), E[F] = 0 and moreover,
Var [F] = 1. Denote

1/2

apy =2 J(E[(DxlF)Q(DxQF)Q])l/Q(E[Azl,zz,zs(F)])1/2A3(d(’£17mzaws)) ,
_ 1/2

Op2 1= JE [Axl,xg,xg(F)])\S(d(xl,96’27903)) )
_Xii

& [|D,F[*]\(dw),

ap3 =

|
P

where Ay, vy0s(F) = (D% . F)*(D2 . F)% Then the upper bound on the Wasser-

r1,x3 xr2,r3
stein distance can be expressed in terms of the constants api, aps, p3 as

dw(F,Z) < apy + aps + aps.
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Theorem 2.14 (Theorem 1.2 in Last et al. [2016]).
Assume the assumptions of Theorem 2.13 hold and denote, moreover,

1
arps =5 [E Fﬂ”“f [E(D,F)* " A(da),
X
- 1/2
-
aps = E (D, F)*\(dx) :
| %
- 1/2
1T 47172 2 471/2 2 442
apg = | | 6[E(Dy, F)|"" [E(D2 ,,F)']"" +3E (D2, ., F)'N(d(z1, 22))
J
_X2

Then
dg(F,Z) < ap1 + apo + aps + aps + aps + apg.

Remark. The contents of Theorem 2.13 and Theorem 2.14 form a starting point
of the method of stabilization presented in the subsequent chapter.

Example 2.3 (CLT for non-homogeneous Poisson processes).
Let n be a Poisson point process on R, whose intensity measure \ satisfies
0 < A([0,t]) < oo for all sufficiently large ¢t and A\([0, 0)) = 0.

We will define Poisson functionals F;, ¢ > 0 as the normalized difference
between the actual number of points of point process 1 in the interval [0,¢] and
the expected number of points in this interval, i.e.

A([0,¢])
We want to use Theorem 2.13 to prove the central limit theorem. First, we
have to verify its assumptions. We can observe that all moments of F; exist, since
Poisson distribution has all moments finite. Furthermore, since

E[n([0,¢])] = Var [n([0,t])] = A([0,]),

the assumptions on the variance and the expectation are evidently satisfied.
Take an arbitrary point x € R,. Then for the difference operator of the
functional F}, it holds from the definition that

D, Ey(y) = (180D = n([0,4]) _ 1fa € [0.1]

A([0,2]) A([0,2])
The difference operator of F; is no longer random, which implies that the assump-
tion of square integrability of DF holds and moreover, the difference operators
of the higher orders are zero.
It remains to plug the difference operator of F; into the formulae for the
constants ap;, apg, aps in Theorem 2.13, i.e.

Fy(n) = L

ap1 = 07
apo = Oa

3 _ # xTr E xXr) = !
aps = fE[|D$F| I\ (dz) = OXIE fl[ [0.11A(d2) =~



Thus,

dw(F(t),Z) < m. (2.29)

The right-hand side of (2.29) tends to zero as ¢ goes to infinity, hence F(t) 2 Z
as t — 0.

2.4 Selected asymptotic results in stochastic ge-
ometry

In this section, we present several asymptotic results from the literature that are
based on Malliavin—Stein’s method which was discussed in the previous sections.

Example 1: Normal approximation and CLT in the Boolean
model

Recall that the Boolean model (Example 1.14) is a random set

== @ +2E),

i1

where 7, = {(z;,Z;),7 = 1} is a stationary independently marked Poisson point

process on R? with marks in the space C@ of non-empty compact sets in R% and

the mark distribution Q. Let A € (0, 0) be the intensity of the unmarked Poisson

point process 7 on R? and a,, = \| - | ® Q the intensity measure of 7,,.
Moreover, we assume that QQ satisfies the integrability condition

J|K@ B,(0)[4Q(dK) < %, ¥r > 0. (2.30)

Condition (2.30) guarantees that = is a random element of the space F¢ of closed
subsets of R? (Proposition 17.5 in Last and Penrose [2017]).

Let W be a fixed observation window with |IW|4 € (0,00). If Q is concentrated
on convex sets, then by observing = in W, we see a finite union of convex sets.
Hence, = n W is amendable to additive translation-invariant functionals ¢, such
as intrinsic volumes (Example 2.4 below).

The aim is to study random variables of the type

(2N W),

where ¢ is a suitable geometric function defined on compact sets and r» > 0 is
large. First, let ¢ = | -|4. Then Fy := |Z n W], is a Poisson functional with
E Fw = p|W|4, where

p=Ploez) <1
is the volume fraction of =. The following Lemma gives the asymptotic variance
of F,.y when r — oo.
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Lemma 2.5 (Proposition 22.1 in Last and Penrose [2017]).
We have that

Var [Fir] = (1 — p)? J W A (W + )o@ — 1)dz,

where By(x) = [ |K n (K + 2)|4Q(dK). Moreover, if the boundary of W denoted
by OW satisfies |OW |4 = 0, then

: 1 .
lim m\far [Fow] = (1 —p)? f(er( ) — 1)da.

The following bound on the Wasserstein distance between a suitably normal-
ized version of Fj and the standard normal random variable Z can be proved.
For this purpose, we use the following notation:

Pap = f(|K]d)k@(dK), keN,

and

cw = (1“1/5)2 U W A (W + z)|g(eMa® — 1)dx]1 .

Theorem 2.15 (Theorem 22.2 in Last and Penrose [2017]).
Let I, := (Var [Fy])"V2(Fw — E Fy) and assume that ¢g3 < o0 and ¢gq > 0.
Then

dw (Fw,Z) < (IW]a) " [2(Ada2)* 2ew + N 2pgacw + )\¢d,36:13/1//2]'

Remark. The assumption ¢q; > 0 guarantees that Var [Fy| > 0 (see Exercise
22.2 in Last and Penrose [2017]).

Corollary 2.2 (Corollary 22.3 in Last and Penrose [2017]).
Assume that |0W |4 = 0,41 > 0 and ¢pg3 < 0. Then

2 D
Fojayw — 2, asr — 0.

Remark. The rate of convergence in Corollary 2.2 is r—1/2.

Under additional assumptions of W being convex and Q being concentrated
on the system K@ of compact convex sets with positive Lebesgue measure one
can extend Theorem 2.15 and Corollary 2.2 for the class of geometric functions.

Definition 2.12 (Geometric function).
A function ¢ : C* — R is geometric if it is translation-invariant (meaning that
o(K + ) = ¢(K) for all z € R? and K € C?), additive and satisfies

M(p) = sup{|o(K)| : K e K9 K < [-1/2,1/2]%} < 0.

Example 2.4 (Intrinsic volumes).
Define the Minkowski sum of K, L c R by K ® L := {z +y;x € K,y € L}. The
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Steiner formula states that for K < R convex, the volume of the set K @ B,(o)
(the parallel set of K) can be expressed as a polynomial of degree d:

d
|K @ B, (0)]lg = Y r" ke V;(K),

J=0

where kj, is the volume of the k-dimensional unit ball and V}, is the k-th inérinsic
volume.

For example, if K # &, then Vo(K) = 1 and Vy(K) = |K|4. Moreover, if K
has a non-empty interior, then

1
Vi1 (K) = §Hd—1(aK)7
the (d — 1)-dimensional Hausdorff measure of the boundary of K.

Remark. The intrinsic volumes Vj, . .., V; are geometric functions on C%.

Given a geometric function ¢, in Last and Penrose [2017], Theorem 2.13 was
applied to the Poisson functional Fy, := (2 n W).

Theorem 2.16 (Theorem 22.7 in Last and Penrose [2017]).
Suppose ¢ is a geometric function such that ow,, := (Var [Fiv,])Y% > 0. Denote
V(K) := |K & By(0)|q and assume that

JV(KP@(@U() < .
Let v,y = oyl (Fw,, — E Fw,,). Then
dw (Fw,p, Z) < crop? [VW)]Y2 + cooy? V (W),
where ¢y, co do not depend on W.

Corollary 2.3 (Theorem 22.8 in Last and Penrose [2017]).
Assume that the conditions of Theorem 2.16 hold and moreover,

2

o
.. W,
lim inf 2
7—00 T

> 0.

Then there exists ¢ > 0 such that

A

dw(FW#;) < C7"_1/2.
In particular, Z:ﬂWW ey

Example 2: Normal approximation and CLT for geometric
U-statistics

Recall that a Poisson U-statistic of order k with kernel function f : X* — R is
defined by

U(f.n) = f (a0 ® @, 2)),
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where 7 is a Poisson point process on X with non-atomic locally finite intensity
measure \. U-statistics play an important role in stochastic geometry since many
interesting functionals can be expressed as U-statistics, for instance the intrin-
sic volumes. In Example 2.2, it was shown that a U-statistics can be expressed
as a finite sum of multiple Wiener—It6 integrals (see the chaotic representation
(2.15)). Therefore, to study the asymptotic properties of a U-statistic is equiv-
alent to study the individual Wiener—It6 integrals. The Malliavin operators in
this case are usually easy to handle. For instance, if F' = I;(f) is a multiple
Wiener—1t6 integral of order k > 1 and f € L?(\¥), then

D,F = kI,_1(f(z,)), zeX

and
LF = —kI(f), L7'F = —k:*lfk(f).

Directly from the chaotic representation (2.15) and Slivnyak—Mecke equation
(1.9), one can show the following result.

Proposition 2.5 (Proposition 1 in Lachiéze-Rey and Reitzner [2016]).
Let U(f,n) be a Poisson U-statistic of order k with symmetric kernel function
feL*(\*). Then E|U(f,n)| < o and

EU(f,n) = ff(xl, TN (. a).

If, moreover, U(f,n) € L*(P,), then

k

Var [U(f,n)] = D n!l a2,

n=1

where f, are given in (2.15).

To study the asymptotic behaviour of U-statistics, we denote by 7, the Poisson
point process on X with intensity measure \; = tA and put F; = U(f,n;) where
f € L'()\) is some fixed symmetric function such that F; has a finite variance.
Then F; — E F; admits the chaotic representation

—EF, = Z I gnt
where the stochastic integrations are with respect to A}’ and

k
Gnt(T1, .. ) = thn <n) Jf(xl, Ty YLs e Yk ) AT A (YL - Ykn))-
Define a constant n; by

ny = inf{n; |gn|n # 0}.

In fact, nq is the so-called Hoeffding rank of the U-statistic U(f, n;) (see e.g. Vitale
[1992] for the theory of Hoeffding decomposition). The following asymptotic
result can be proved using the Malliavin—Stein’s method.
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Theorem 2.17 (Theorem 7.3 in Lachiéze-Rey and Peccati [2013]).
Let [y := (Var [F}])"Y2(F, — EF,). Then there exist constants ci,cs,cs not de-
pending on t such that

ct?* ™™ < Var (F) < ept? ™
If ny =1, then U(f,n;) follows a central limit theorem and

dw(ﬁt,Z) < C3t71/2,
dK(Ft,Z) < Cgtil/Q.

Remark. If ny > 1, then U(f,n;) does not follow a central limit theorem. See
Section 2.1 in Lachieze-Rey and Reitzner [2016] for the discussion over the speed
of the convergence depending on the choice of the kernel function f.

Next, we present one example of U-statistic counting the intrinsic volumes
of the intersections in the flat process. For more examples, see Chapter 4 in
Lachieze-Rey and Reitzner [2016].

Example 2.5 (Intersection process).
Denote by A(d,i) the affine Grassmanian (the space of all i-dimensional spaces
in R endowed with the usual hit-and-miss topology and Borel o-field).

Let 7; be a Poisson point process on A(d,7) with intensity measure A\; = tA
for some locally finite and non-atomic measure A on A(d, ). Then we call 7, the
Poisson flat process.

Take a compact, convex observation window W < R? with interior points.
Suppose we observe only what is happening inside W, i.e. we understand 7, as
a point process on [W]:={L e A(d,i); L n W # &}.

Denote by n{" the process of the intersections of k flats of 1, for k < d/(d—1)
and define the U-statistic ®; by

o1
By = @ (W,isk, j) = o Y VLo aLgnW)

(L1, Li)eny ,

,...d—1and k = 1,...,m, where m is the
).
Theorem 2.18 (Theorem 10 in Lachiéze-Rey and Reitzner [2016]).
There is a constant ¢ = ¢(W,i,k, j) such that fort > 1,

for j =0,...,d — k(d —1i),i =0
greatest integer with m < d/(d — i

dw (9, Z) < ct™?  and  di(®,, Z) < ct™V2.

Example 3: Normal approximation for point processes with
Papangelou conditional intensity

The Malliavin—Stein’s method can work successfully also for functionals of point
processes having a Papangelou conditional intensity (Definition 1.17). In Torrisi

[2017], bounds on the Wasserstein distance between the standard normal distri-
bution and distribution of so-called innovations are proved using the techniques
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from Malliavin—Stein’s method for point processes having Papangelou conditional
intensity. Consequently, these bounds are derived for Gibbs point processes in
R? d e N.

Definition 2.13 (Innovation of a point process).

Let © be a point process on X with Papangelou conditional intensity A\* and
intensity measure X\. Then we define the innovation of the point process u as
a random variable

L) i= Yptan =)~ [ ol )X (z,)A(do)

for any measurable ¢ : X x N — R, for which |Ix(p)| < o for p-a.a. x € N.

Remark. It follows from the Georgii-Nguyen—Zessin formula (Theorem 1.12)
that E[I,()] = 0 for any innovation defined above.

Theorem 2.19 (Theorem 3.1 in Torrisi [2017]).
Let ¢ : X x N — R be a measurable function satisfying

E f (e, )X (@, wA(da) | < o0 and E f (e, 1) PA* (A (de) | < 0,

Then,

dw(1,(9).2) <\ 2B | [1 = [ ol ) Dalu(0)3 () (d)

™
X

V2 | [ Il 102 Lu(0) X ()N (@)

Remark. An advantage of Theorem 2.19 is that it allows the function ¢ to
depend also on a given realization of the point process p. That gives us an op-
portunity to study important functionals as the volume of intersections between
particles in this realisation, etc. However, the terms are usually difficult to eval-
uate.

The following result simplifies considerably the bound in Theorem 2.19, but
with the price that the function ¢ no longer depends on a given realization, hence
it is only function on X.

Theorem 2.20 (Corollary 3.5 in Torrisi [2017]).
Let ¢ : X — R be a measurable function such that

j p(@)|E [X*(z, p)] A(dz) < o0 and f\m)rzE X (2, )] A(da) < .
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Then,
dw (I.(¢), Z) <

\/f -2 f 9(2)]2E [\ (z, )] A () f (@) () Pz, 3, mAdz)Ndy)

+ f () PE [X* (2, ) A ()
\f f (@) () [E [ DA (5, 1)|X* (2, )] M) A(dy)
42 j o) P ) [ D" (g, 1) X* (2, 1) A () A cly)
f () () () E[[DA (g, 1) DA (22 ) A* () I A(dy)A ().

Moreover, if we add the assumption of repulsivity of the point process u, we
can express the bound of Theorem 2.20 using the product densities (Definition
1.9) up to the third order.

Definition 2.14 (Repulsive point process).
The point process 1 on X with the Papangelou conditional intensity A* is said to
be repulsive if

A (z,x) = N (z,y) forx,ye NX),xcy,zeX.

Notation. In what follows we use the following notation. Define functions as :
X2x N —-Rand a3 : X3 x N - R by

ay (7, y, ) 1= E[N* (2, p) N*(y, p)],
az(w,y, 2, 1) = B[N (2, ) \* (y, ) \* (2, )],

for z,y, z € X and the point process p on X.

Corollary 2.4 (Corollary 3.7 in Torrisi [2017]).
Let p : X — R be a measurable function such that

f (@) [E [\ (z j)] M) < o0 and f|so<x>|2E X (. )] A(dr) < ot
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If, moreover, p is repulsive, we have

A (1,(9), 2) <
\ﬁ -2 f (@)A1 (2)A(d) f (o(@)p(y)2as(z, y, A2 \(dy)

n f (@) AT (@) A(d) + \/f f (@) o(y)(an(r v, 1) — APz, ) M(dz)A(dy)

2 f () )] (a(, 9, 1) — NP, ) M)A (dy)

n f (@) () ()| (s, . 2, 1) — N9 (2, , 2)A(dz)A(dy)A(d2).

Corollary 2.4 may be useful to provide explicit bounds in the normal approx-
imation of innovations of repulsive point processes for which the first three corre-
lation functions are explicitly known. This is the imminent case of determinantal
point processes (recall Example 1.10 or see Section 7 in Torrisi [2017]).

Example 4: Normal approximation and CLT in the Gibbs
setting

The general bound of Theorem 2.20 can be used in the normal approximation
of the innovation of a Gibbs point process on R? with pair potential where the
exact form of the conditional intensity is known.

Recall that a pair potential is a Borel measurable function ¢ : R? — Ru {40}
such that ¢(x) = ¢(—x). For x € N and u € R?, we define the relative energy of
interaction between the point v and the configuration x by

E(u,x) = { vex yex
+00, otherwise.

A point process p on R? is called the Gibbs point process with activity 7 > 0
and pair potential ¢ if its Papangelou conditional intensity takes form

M (u,x) = Texp{—FE(u,x)}, ueR? xeN.

Moreover, it will be assumed that p is stationary, inhibitory, i.e. ¢ = 0 and finite
range meaning that 1 — e~? has compact support.

Theorem 2.21 (Theorem 5.3 in Torrisi [2017]).
Let pu be a stationary Gibbs point process with activity T > 0 and pair potential
¢ : R — [0, +0], and suppose

pe LR |- |a) N LX(RY |- 1a).

If, moreover, p has finite range, then for any p, q, p', ¢ > 1 such that % + é =
beion
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2
dW(IM(‘P): Z) < \/;\/1 - 201H90”%2(Rd,\~|d) + 7'02”90%2(11@4.\01) + A,

where
. 3 2 2 -
A ':H90||L3(Rd,\~|d) + ;THQDHLQ(Rd,Lhi)Hl —¢€ ||L1(Rd,\-|d)
+ 27l ama Il — €l e
+ 7'2HSOHLPP’(Rd,|.|d)H@Hm/(u@d,\.m)HSDHL‘Z(RdJ-Id)Hl - eid)”il(Rd,Hd)
and
T T
cy &

N 1+ ’7'H1 — ei¢‘|L1(Rd,|-|d)’ B 2 — exp{—THl — eid)HLl(]Rd,Hd)}‘

Example 2.6 (Hard-core process).
Take r > 0 fixed and let ¢ : R? — R U {c0} be a real function defined by

o(z) = {o, if ] > r,

+o0, if |z <.
Set the relative energy between point v € R? and system of points x € N as

2. d(u—y), if%{lqﬁ(u—y)l < o,

E(u,x)= < vex
+00, otherwise
0, if Ju—y|>r Vyex,
+,00 otherwise. '

Then we define the hard-core point process with pair potential by its Papangelou
conditional intensity

A* (u, X) = Texp{—E(u, X)} = 7_1[||ufy\|>r, vyex], UE Rd, x € N.
Theorem 2.22 (Theorem 4.8 in Flimmel [2017]).

Consider for each n € N a stationary hard-core point process p™ in R with
activity T, > 0 such that 7, — 7 as n — oo, and with pair potential

oly) = {o, if |z > 7,

+oo, if ||lx|| <y,

where r, = 0, r, — 0 as n — . Let K,, n € N, be bounded Borel sets in R?
such that |K,|q — o as n — . Define functions

1

n(r) = —F——=—" 1k, (7),
©n() TP (x)

dyw (1,0 (¢n), Z) — 0

neN,zeR?
Then,

as n — 0.
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Proof. Tt is clear that the point processes (™ have finite ranges. Also, for every

nelN

|Kn|d
[on(2)|dz = f K, ()| dz = < w0
RJ(; \/Tn|K ’d Tn
and
: 1
J|g0n |dx—f (x)] dex = — < .
’\/Tn|K |d Tn

Hence, the assumptlons of Theorem 2.21 are satisfied and so we can compute
bounds on the Wasserstein distance between the standard normal distribution Z
and the innovation I, (¢y) for each n € N.

First, we need to compute the L' norm of the function 1 — e=%" :

= oy = | 1= @de = [ 1de =18, )l
R4 By, (o)
Set p =g =79 = ¢ =2 and compute for given n € N the constants A cg

and 02 ) from Theorem 2.21:

C(n) _ Tn _ Tn
! L+ 7)1 —e 9| pgayy,y 1+ 7alBr(0)]d

(n) Tn Tn
C - =
2 = el — e o) 2 exp (—mlBr (o))

and

n 2 _
A® = HSOnH%3(Rd,|-\d) + \/;Tn||90n%2(Rd,|.d)||1 —€ ¢"\|L1(Rd,\~|d)

+ 27—71“9071“%2(Rd,|-|d)”1 - eiganLl(Rd,Hd)

+ 73||<PnH%4(Rd,|.|d)||S0n”L2(Rd,|~|d)Hl - €_¢”\\%1(Rd,|.\d)

1 \/5
=7+ Z|B,. (0)| + 2|B,, (o
e W\ (o) +2|B,,(0)l4

VT 2
+ \/WGBTTL( )|d) :

We can see that

R R A 0

as n — o0. Altogether, using bound from Theorem 2.21, we arrive at

2 n n n n
dw (Lo (pn), Z) < \fw = 260" [ pnla(gayyy + 0 I onldega, + A

1 n
\/7\/ f+c§)7 +c§)A(),

which tends to 0 as n approaches +c0.
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Example 2.7 (Strauss process).
The Strauss process is a Gibbs point process p with activity 7 and range of
interaction r > 0 with the pair potential

¢(z) = (=logu) 1<, we[0,1],2€R?
Then ¢ satisfies the assumptions of Theorem 2.21 and
Hl — eid)HLl(RdJ,m) = (1 — u)ﬁ;drd,

where k4 is the volume of the unit ball in R¢.

The result of Theorem 5.3 in Torrisi [2017] was later extended in Flimmel and
Benes [2018] to the case X = C¥ d e N (recall the notation of Section 1.4).

Assume p is a stationary Gibbs particle process with the energy of the form
(1.19). The explicit form of the Papangelou conditional intensity is given by
(1.20).

The innovation of a Gibbs particle process p is of the form

L#) = X K ) = [ e A U A

Kep

for any measurable ¢ : C¥ x N? — R, for which I(¢) is defined and finite
p-a.e. on N¢.

Theorem 2.23 (Theorem 3.3 in Flimmel and Benes [2018]).

Let p be a stationary Gibbs particle process given by the conditional intensity of
the form (1.20) with activity T > 0, inverse temperature 5 = 0, reference particle
distribution Q satisfying (1.16), and with pair potential g which is bounded from
above by some positive constant a. Let ¢ : C1Y — R be a measurable function
that does not depend on £ € N* and

we LYCD, N\ n L2CDN).
Then

dWUu(@) \/»\/1 —27(1 - 6b)”90“ 2(C(d) ) +T H90||L2(c(d) A)
3 2 o0 9 Ba
+ 7lelza ez + —7 lellzr eyl — e

+ 272l 22w 0 e ) |1 — €77

+ 731 e |1 — €772

Example 2.8 (Gibbs planar segment process).

Take Q being concentrated on the set S® < C® (the space of all segments in
R%*n Bg(0) centered in the origin). Theorem 2.23 can be applied to the special case
of planar segment process to derive central limit theorems for two functionals: the
normalized number of segments observed in a window and normalized total length
of segments hitting the window. We take windows forming a convex averaging
sequence (cf. Daley and Vere-Jones [2003]), i.e. monotone increasing sequence of
convex bounded Borel sets converging to R2.
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Theorem 2.24 (Theorem 3.4 in Flimmel and Benes$ [2018]).
Consider for each n € N a stationary Gibbs planar segment process €™ with the
conditional intensity

A (K, x) = Tnexp{—ﬂnZ H{KnL+# @}}, KeS xe N,

Lex

where 7, > 0 and B, = 0. Moreover, suppose that 5, — 0 and 0 < ¢ <
Tn < co < 00, n € N, for some constants c1,cs and that the common reference
particle distribution Q for all €™ has the uniform directional distribution. Let
{W,, neN} be a conver averaging sequence in R? such that |W,|q = o(8;1) (i.e.
|WhlaBn tends to zero with growing n). Forn € N and K € S, define

1
on(K) = ——— H{K n W, # J}.
( Tn’Wn’d

Further

I(K)
where [(K) denotes the length of the segment K, | is a random variable that
follows the law of Qr, and E, denotes the expectation with respect to Q. Then

Un(K) = (K),

dW([E(">((10n)7 Z) - 07 dW(I§<") (wn)a Z) — 0

as n — 0.
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3. Method of stabilization

In this chapter, we present a recent method for studying the limit behaviour of
geometric structures evincing local form of dependency. Typical examples of ap-
plication include random graphs (Section 1.6), germ-grain models (Example 1.14)
and other geometric structures based on marked point processes such as weighted
Voronoi tessellations (Example 1.22) or Delaunay triangulation (Example 1.19),
where the unmarked point process displays only local dependencies.

The asymptotic properties are usually investigated via geometric functionals
called scores or score functions of the type

§(z, %),

where £ is a real-valued function defined on pairs (z,x) of x € x and a locally
finite point configuration x in R? (or some more general space).
We shall write H(x)(:= H*(x)) for the total sum over all x € x, i.e.

H(x):= ) &(z,x). (3.1)
TEX
The statistic H(x) typically describes a global property of a geometric structure
generated by x and the value £(z, x) represents the interaction of = with respect
to x.

For a general point process p, H(p) is a sum of mutually dependent terms.
A lot of functionals in stochastic geometry are in the form (3.1), e.g. the total
edge length of a random graph, statistics of Voronoi set approximation, etc. The
object of our interest is then the asymptotic behaviour of H(u n W)), where
W, is a suitable observation window tending to R?. Alternatively, we let the
observation window be fixed and let the intensity of a stationary point process
tend to infinity. Often, the values of {(z,x) and £(y,x), x # y, are not unrelated
but, loosely speaking, become more related as the distance between x and y
becomes smaller. This dependency cause problems when developing the limit
theory for H on random point sets.

The stabilization method is a tool that allows one to study statistics of this
type, which may be expressed as a sum of spatially dependent terms, where
the short-range interactions can be controlled. Roughly speaking, a geometric
functional stabilizes if its behaviour at a given point is locally determined by
a certain finite, possibly random, neighbourhood of this point. Or, in another
words, any local modification (e.g. insertion of a point into the underlying point
process) has only a local effect.

The notion of stabilization comes from Lee [1997, 1999] and Avram and Bert-
simas [1993]. The modern theory of stabilization in the context of central limit
theorems in stochastic geometry was introduced in Penrose and Yukich [2001,
2002] and Baryshnikov and Yukich [2005]. The laws of large numbers for stabiliz-
ing functionals of point processes on R? are investigated in Penrose and Yukich
[2003]. For a survey on limit theorems in stochastic geometry with a particular
focus on stabilization we refer to Schreiber [2010].

Notation. For a score function & we will write &(z,x) for £(x,x U {x}) whenever
x € N and z € R%
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The most commonly understood definition of a stabilizing functional goes as
follows:

Definition 3.1 (Stabilizing score function, radius of stabilization).

A score function £ is said to be stabilizing with respect to a point process pu if and
only if for each x € R? there exists an a.s. finite random variable R, := RS (1)
such that

g(xhu) :€($a (MﬁBRI(l’)) UA)? a.s.

for all finite A = R¥\ Bg,(z), where as usual B,(x) is a ball in R? with radius r
around x. The random variable R, is called the radius of stabilization.

Definition 3.1 says that the value of {(z, u) is almost surely fully determined
by the configuration of u inside By, (z). Naturally, the concept of stabilization
plays the most significant role in the study of Poisson functionals, since the con-
figuration of a Poisson point process 1 inside Bg(z) does not depend on the
configuration outside Bg(z) for any x € n and R > 0. Nevertheless, also the
cases of binomial and Gibbsian inputs are considered in the literature (see Pen-
rose and Yukich [2001] for the binomial case and Schreiber and Yukich [2013] for
the Gibbsian case).

The strength of the stabilization is characterized by the tail distribution of
the radii of stabilization, i.e. the probabilities P(R, > ), > 0.

Definition 3.2 (Exponentially stabilizing score functions).
We say that £ is exponentially stabilizing if there exist constants cgap, Qstar €
(0, 00) such that for all x € R? and r > 0,

1
P<Rx > ’f‘) < Cstap €XP (—Tastab> )
Cstab

Yet, there are several different variations available for proving central limit
theorems based on stabilization, all having slightly different notions of the stabi-
lization property. We shall mention at least three approaches and briefly compare
their assumptions and results. Namely, it is

1. add-one cost stabilization: an approach based on martingale differences
presented in Penrose and Yukich [2001],

2. moment approach: a combination of cumulant method (see Chapter 4) and
stabilization introduced in Baryshnikov and Yukich [2005],

3. Stein’s method: a combination of the Malliavin—Stein bounds (see Chapter
2) and stabilization presented in Last et al. [2016].

Even though every approach generates a large scale of applications, especially
in the random graphs theory, we will demonstrate the usage on the nearest neigh-
bour graph as it is the most frequently discussed example in the literature. The
rest of the chapter is organized as follows: Sections 3.1-3.3 each discusses an in-
dividual approach. Section 3.4 is devoted to the stabilization property of random
tessellations, where the results of the previous sections are used.
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3.1 Add-one cost stabilization

The add-one cost version of stabilization is based on the martingale method
developed in Kesten and Lee [1996] and Lee [1997], where the authors studied
random Euclidean minimal spanning trees. The main idea of the method is that
the value of £(z,x) is unaffected by the external configuration of x (i.e. by points
beyond some stabilization distance from z) and moreover, the value of £ for the
points outside the stabilization region of x is not affected by the presence of
x. Therefore, this version of stabilization is sometimes referred to as external
stabilization.

The presentation below is mostly based on Penrose and Yukich [2001], where
the authors derived a general central limit theorem for functionals of random
graphs as defined in Section 1.6. The functionals of interest include the total edge
length, the total number of any type of component, etc. The limit behaviour of
these functionals is investigated in two regimes:

1. increasing non-random number of random points being distributed uni-
formly in a fixed region or

2. increasing observation window in RY.

Definition 3.3 (Add-one cost).

The add-one cost D,(x) of a point configuration x # x with respect to geometric
functional ¢ is given as the increment caused by inserting a point z € R? into x,
ie.

D,H(x) := H(x U {z}) — H(x).

Note that the add-one cost is exactly the difference operator of the first order
(see Definition 2.7) and itself is a geometric statistic. It will be assumed that H
is translation-invariant, so that

H(x+y) = H(x)

for all x « R? and y € R%. Then it is enough to investigate the case when a point
is inserted in the origin. Thus, we denote

A(x) := Do(H)(x) = H(x U {o}) — H(x)
for a point set x € R%.

Remark. The add-one cost method does not require the functional H to be in
the form (3.1). Nevertheless, most of the examples in Penrose and Yukich [2001]
have such form and the add-one cost then equals

DacH<X) = 2 f(y,XU{ﬁ})—Zg(y,X).

yexu{x} yex

Assumptions

Notation. In what follows, we denote for r > 0 and = € R? the d-cube centered
in z by Q,(z) := [~r,7]¢+ 2. Moreover, for ' < R¢, let dF denote the boundary
of F, i.e. the intersection of the closure of F' with the closure of its complement
and set 0, F 1= Uyeor@y ().
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Let us fix d = 1 and A > 0. We suppose that (W,,),>1 is a sequence of bounded
observation windows in R¢ satisfying the following conditions:

o |[Wylg =n/Aforall neN,
« W, / Rda
o the vanishing relative boundary condition:

0-W,
lim M =0, forallr >0,
n—0o0 n
o the polynomial boundedness condition: There exists a constant [3; such that
the diameter of W, satisfies diam(W,,) < 8in”! for all n e N,

Denote by W the collection of all regions A = R? having the form A = {W,, + z :
x € R4, n e N}. Moreover, let W, be a fixed bounded Borel set in R? satisfying
[Wohlqa = 1 and |0W;|g = 0 and denote by W, the collection of all regions of the
form A = aWy + = with a > 1,2 € R%.

Definition 3.4 (Regularity condition).
We say that a collection of sets B is reqular if there exists 6 > 0 such that for all
r € [1,00), whenever B € B and z,y € W with |z — y| = r, we have

|B,/a(x) 0 B| = 6r°.

For example, the collection of all boxes B = R? of the form H?:l[aiabi]
with b; = a; + 1 for each ¢ is regular. Similarly, the collection of all balls or
ellipsoids is regular. As for W, the sufficient condition for being regular is that
14| B,(x) n W4 is bounded away from zero, uniformly over x € Wy and r € (0,1]
meaning that W, has a reasonably smooth boundary.

We will take into consideration the following types of underlying point pro-
cesses for our random structures:

o Let X, = 0x, +--- + 0x,,, where X3, X5,... are i.i.d. random variables
uniformly distributed in Wy,

o let p, = dy, + --- + dy, denote the binomial point process on W,,, where
Y1, ..., Y, are i.i.d. random variables uniformly distributed in W,,,

e let m, be a homogeneous Poisson process on W,, with intensity A\. By n we
denote the Poisson process with intensity A on R .

The point process A&, corresponds to the first scenario of the increasing non-
random number of points in a fixed region while yu,, and 7, represent the second
scenario of the increasing observation window.

Definition 3.5 (Strongly stabilizing functional, radius of stabilization).
The functional H is strongly stabilizing if there exists a.s. finite random variable
S (a radius of stabilization of H) and A(o0) such that with probability 1,

A((n n Bg(o)) U A) = A(), for all finite A = R*\ Bg(o).
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Hence S is a radius of stabilization if the add-one cost is almost surely not
affected by inserting points into 7 outside the ball Bg(o). In other words, the
functional H is strongly stabilizing for the add-one cost method if and only if its
add-one cost stabilizes in the sense of Definition 3.1.

Definition 3.6 (Weakly stabilizing functional).
The functional H is weakly stabilizing on W if there is a random variable A(o0)
such that

A(nn Ay) 2> A(o)

n—0o0

as A, > R? A, eW.

Roughly speaking, strong or weak stabilization says that the first order dif-
ference operator has a behaviour which is determined by local data.

Clearly, the strong stabilization implies weak stabilization on WW. Neverthe-
less, there is no general result comparing the strong stabilization or the weak
stabilization with the point stabilization of Definition 3.1. For the Poisson input,
however, if £ is exponentially stabilizing with a sufficiently high exponent, then
it is also weakly stabilizing for the add-one cost.

Definition 3.7 (Uniform bounded moments).
The functional H satisfies the uniform bounded moments condition on W if

sup sup {E [A(Um,W)4]} < 90,
WeW:0eW me[A|W|4/2,3A|W|q/2]

where U, w denotes the point process consisting of m independent uniform vari-
ables in W.

Definition 3.8 (Poisson bounded moments).
The functional H satisfies the Poisson bounded moments condition on W if

sup {E[A(nn W)} < 0.

WeW:oeW

The Poisson bounded moments condition is weaker than the uniform bounded
moments condition.

Definition 3.9 (Polynomially bounded functional).
The functional H is polynomially bounded if there exists a constant (3, such that
for all finite sets x = R?, we have

[H (x)] < Bo(diam(x) + #(x))™,

where diam(x) is the diameter of x and #(x) stands for the cardinality of x.

The Poisson bounded moments condition is weaker than the uniform moments
condition in the sense of the following lemma.

Lemma 3.1 (Lemma 4.1 in Penrose and Yukich [2001]).
If H is polynomially bounded and satisfies the uniform bounded moments condi-
tion, then H satisfies the Poisson bounded moments condition.
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Definition 3.10 (Homogeneous functional).
We say H is homogeneous of order ~ if for all x € N and a € R,

H(ax) = a"H (x).

General results

The two following results for Poisson and binomial point processes are shown in
Penrose and Yukich [2001] (cf. Theorem 2.1, Corollary 2.1 and Theorem 3.1).

Theorem 3.1 (CLT for functionals of a Poisson point process).
Suppose that H is weakly stabilizing on W and satisfies the Poisson bounded
moments condition on WW. Then there exists 02 = 0 such that as n — 0,

n~'Var (H(n,)) — o

and
n"?(H(n,) —EH(n,)) = N(0,0%),

where by N(c,d) we denote a Gaussian random variable with mean value ¢ and
variance d.

Theorem 3.2 (CLT for functionals of a binomial point process).
Suppose that H is strongly stabilizing, satisfies the uniform bounded moments
condition on W, and is polynomially bounded. Then there exist constants 7> = 0
such that as n — o0,

n~'Var (H (u,)) — 72

and
n2(H (pn) — E H () 2 N(0,72).

Also, given X\, o* from Theorem 3.1 and 72 are independent of the choice of
(Wy)ns1 and 7 < o2,
If, moreover, A(o0) is non-degenerate, then 72 > 0, and hence also o > 0.

Theorem 3.3 (CLT for functionals of increasing sample size in a fixed
region).

Suppose H is strongly stabilizing, satisfies uniform bounded moments condition
on Wy, is polynomially bounded and homogeneous of order v. Then with 2 from
Theorem 3.2 corresponding to A =1, as n — o0,

n* 4 War (H(X,)) — 12

and
n4V2(H(X,) —EH(X,)) 2 N(0,72).

The main ingredient in the proof of Theorem 3.1 is a representation of H (1) —
E H(n,) as a sum of suitable martingale differences and then application of the
central limit theorem for such object (Theorem 2.3 in McLeish [1974]). Then, by
de-Poissonizing (see Section 2.5 in Penrose [2003]) the limits of Theorem 3.1 and
using coupling of 7, and u,, one can prove Theorem 3.2.
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Remark. 1. Theorem 3.1 is valid also the under weaker condition of conver-
gence in probability in the definition of the weakly stabilizing functionals
(Definition 3.6).

2. Theorem 3.1 and 3.2 were generalized to the setting of marked point pro-
cesses in Penrose and Yukich [2002].

Example 3.1 (k-th nearest neighbour graph).
Fix k € N and let H be the total edge length of the undirected k-th nearest
neighbour graph.

Lemma 3.2.

The statistics H is polynomially bounded with H(x) < kdiam(x)#(x) for any
x € N and it is strongly stabilizing. If, moreover, W is reqular, then H satisfies
the uniform bounded moments condition on V.

Theorem 3.4 (CLT and variance asymptotics for the k-th nearest neigh-
bour graph).

Fiz k € N and assume that n, is a unit intensity Poisson process on W,. For
x € N, let H(x) denote the total edge length of the undirected k-th nearest neigh-
bour graph on x. Provided W is reqular, there exists 0 > 0 such that as n — o0,

n~'Var (H(n,)) — o?

and
n2(H(n,) —E H(n,)) 2 N(0,0%).

Additionally, there exists 72 € (0, 02| such that as n — o0,
n~'Var (H(u,)) — 7°

and
V2 (H (1) — B H (1)) 2> N(0,72).

Moreover, if Wy is regular, then with n — oo,
n?4Var (H(X,)) — 72

and
n'*(H(X,) —EH(X,)) 2 N(0,7°).

We refer to Section 6 in Penrose and Yukich [2001] for more details and the
proofs of Lemma 3.2 and Theorem 3.4.

Other functionals of interest of the k-th nearest neighbour graph can be in-
vestigated based on Theorems 3.1, 3.2 and 3.3. Those include for instance the
number of components (i.e. subgraphs in which there is a path connecting each
two vertices and no connection to any other vertex from the rest of the graph)
with omitting the condition of the regularity of WW and W.
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3.2 Moment approach

Another way how to obtain Gaussian limits for functionals of Poisson and bino-
mial input in R? is based on the cumulant method described in detail in Chap-
ter 4. This approach, which takes into account stabilization of scores, has the
particular benefit of describing the limiting variance. Moreover, it admits the
non-homogeneous inputs.

Assumptions

Let W be the set of all compact, convex sets in R? with non-empty interior
together with R? itself. For W € W and s a probability density with support
on W, we denote by 1), the Poisson point process on W with intensity measure
Ak, A = 1, and p, the binomial point process on W with points distributed
according to s.

Let £(z,x) be a measurable real-valued function defined for all pairs (z,x),
where x is a finite point set in R? and z € x and we assume it is translation-
invariant (so that &(x + y,x +y) = &(z,x) for all finite x = R? and y,z € R?
where x + y = {z + y,x € x}). The authors in Baryshnikov and Yukich [2005]
considered random measures of the form

H = Z &(z,x)0,.

TEX

Note that the definition of H¢ in (3.1) corresponds to
H(x) = H(R?).

For A > 0, we denote &,(z,x) := £(A\Y4z, \Yx) the rescaled version of €.
Similarly, let &, (x,x) := (n~Y%2, n=Yx) for n € N. We define the corresponding
rescaled measures by

Ha= ) &lema)ds, A=1,

TE€N\k

resp.
H = Z En(T, )0z, meN.
TEUR
We show that H,, resp. H, converges weakly to a Gaussian field with a covariance
functional described in terms of the score function ¢ and the choice of k.

Recall that measures p,, converge to a Gaussian field as n — oo if their finite-
dimensional distributions converge to those of a Gaussian field. By the conver-
gence of finite-dimensional distributions we mean the convergence in distribution
of the integrals { fdp, to the corresponding normal random variables for all con-
tinuous functions f.

For 0 < a < b < oo we define the set of test functions F(a,b), i.e. the set of
f: R — R* with support in W and range in [a, b] U {0}.

Definition 3.11 (Stabilizing scores, radius of stabilization).

The score ¢ is said to be stabilizing if for all W e W, 0 < a <b < 0,A > 0
and all z € AW = {\w,w € W}, there exists an almost surely finite random
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variable R(z) := R(z, \,a,b,W) (a radius of stabilization for £ at x) such that
for all f € F(a,b) with suppf = AW, and all finite x © AW\ Bp(,)(x) we have

(w, (ny N Bra)(2)) v x) = &(2,n; N Br(2))

and, moreover, sup,.gs P(R(z, X\, a,b, W) >1t) — 0 as t — o0.

Definition 3.12 (Exponentially stabilizing scores).
We say the score £ is exponentially stabilizing if forall W e Wand 0 <a < b <
the tail probabilities 7(t) := r(t,a,b,WW) 1= sup,cga o P(R(z, A, 0,0, W) > 1)
decays exponentially in ¢.

We say £ is polynomially stabilizing if for all a,b and W € W we have

foc(r(t))l/%d—ldt < .

Definition 3.13 (p-moment condition 1).
We say that a score & satisfies a moment condition 1 of order p > 0 with respect
to k if
sup E[[&x(@, mae U A)P] < o0
A>0,2€[0,A\Y/4]4W, AcR9 finite
and for all A > 0
sup E[|&(x,ny v A)P] < 0.

zeR4, AcR4 finite

General results

Theorem 3.5 (Theorem 2.1 in Baryshnikov and Yukich [2005]).
If £ is polynomially stabilizing and satisfies the p-moment condition 1 for p = 4

then v "
e Fs [ PV st

where
V(1) == E€(o,m) (32)
[ B o) €l o o) ~ B&(omEE(. 1)y

and n, denotes an independent copy of n.

If, moreover, & is exponentially stabilizing and satisfies the moment condition
1 for allp > 0, then )\_1/2(7-[,\,{ —EH,.) converges as A — o to a Gaussian field
with covariance kernel . fi(x) f2(x)Vé(k(z))k(x)dz.

Theorem 3.5 can be reformulated for the binomial input under the assump-
tions of strong stability and uniform bounded moments condition similar to those
in Definitions 3.5 and 3.7. Recall that those conditions were defined for the func-
tional H(x) = >, . &(x,x) for the purposes of binomial input driven by the
uniform distribution. For the case of general density x, we update the definition
saying that H satisfies uniformly bounded moments condition for k if

sup sup sup  E[(D,H(Unn))'] < o0,

n genl/d A me[n/2,3n/2]
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where U, , is a point process consisting of m i.i.d. random variables of the
form nY?U on n'/?W, where U has density x. Further, we say that H is strongly
stabilizing for k if for all ¢ > 0 there exists an almost surely finite random variable
S and A(t) such that with probability 1,

A(t) = A((n: n Bg(0)) u A), (3.3)
for all finite A = R¥\ Bg(0). Recall the notation of Definition 3.5.

Theorem 3.6 (Theorem 2.2 in Baryshnikov and Yukich [2005]).

Assume that & is polynomially stabilizing, satisfies the p-moment condition 1 for
p =4 and H is a strongly stabilizing functional satisfying the uniform bounded
moments condition for k. Then for all continuous functions f with support on

w,

Var §, fdH!,

n

— fw Fa)VE(k(x))w(z)de — < JW F(2)E A(/i(l‘))fi@)df)g.

If £ is exponentially stabilizing, satisfies the p-moment condition 1 for all
p > 0 and H is a strongly stabilizing functional for r, then n=™Y*(H! — EH')
converges as n — o0 to a Gaussian field with covariance kernel

jw F1(2) Fo) VE (1 () () da
_ fw Fu(@) Ak (@) () dx fw o)A () ()

Remark. 1. Theorems 3.5 and 3.6 can be further generalized for score func-

tions that are not translation-invariant (see Section 2.3.2 in Baryshnikov
and Yukich [2005]).

2. If the distribution of A(k(U)), U being a random variable with density x,
is non-degenerate, then the limiting Gaussian field is non-degenerate.

3. Theorems 3.5 and 3.6 generalize Theorems 3.1 and 3.2 by showing the con-
vergence of measures induced by not necessarily homogeneous point sets to
Gaussian random field and they identify the limiting variance.

4. The evaluation of the limiting variances can be rather difficult, but simplify
under the additional assumption of homogeneity (see Definition 3.10). If £
is homogeneous of order ~y, then

V() = VS >4 and  A(t) = A(1)t 74,

Example 3.2 (k-nearest neighbour graph).
Let k be a fixed positive integer. For a point set X = R?, we denote by NG(X)
the undirected k-nearest neighbour graph induced by & and by £(z, NG(&X)) the
set of edges in NG(X) incident to z € X.

The application of the preceding results is demonstrated only on the binomial
input. Assume p, := {X1,..., X, } is a binomial sample in R? driven by density
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k. We define a random measure

n

'H;s,n = Z Z ¢(le])dx.,

i=1ecf(n1/dX;, NG (in))

where ¢ : RT — R is some weight function.

Theorem 3.7 (Theorem 3.1 in Baryshnikov and Yukich [2005]).
Suppose that ¢ has a polynomial growth, i.e. there exist C,a < oo such that
o(x) < C(1+x%) for all z € RT. Moreover, assume that k is bounded away from
infinity and zero on its support suppk = W € W. Then

Var §, fdH],
n

¢ [ e ([ s

for all continuous functions f with support on W, where Vi and Ay are given by
(3.2) and (3.3) when £(z,X) = X ez NG PUlED-

Moreover, as n — oo, n™"*(H), , —EH} ) converges to a Gaussian field with
covariance kernel

| #@ a@Varr(es
- | AR | @A)
for any f1, fo continuous with support on W.

Remark. If we set ¢(z) = /2 for x € R* then we obtain a central limit theorem
for the total edge length of the k-nearest neighbour graph. If ¢(z) is either 0 or 1
depending on whether x is less than some ¢ > 0 or not, then we obtain a central
limit theorem for the empirical distribution function of the rescaled lengths of
the edges.

3.3 Stabilization in the Malliavin—Stein bounds

Recently in Last et al. [2016], the Malliavin calculus combined with Stein’s
method of normal approximation (see Chapter 2 for the details) was proved to
yield rates of normal approximation for general Poisson functionals. Moreover,
the authors used their general results to deduce central limit theorems together
with rates of convergence in terms of Kolmogorov and Wasserstein distance for
Poisson functionals satisfying a type of stabilization.

Recall that the Malliavin—Stein rates of normal convergence are expressed
in terms of moments of the first- and second-order difference operators. Those
can be difficult to evaluate, yet if combined with the stabilization property, the
bounds remarkably simplify.

First, assume that (X, X) is a measurable space and 7, is a Poisson point pro-
cess with intensity measure ay = A\Q, where A > 1 and Q is a fixed finite measure
on X. Moreover, we let F) € L?7A be a Poisson functional with a representative fy
(recall the notation at the beginning of Section 2.2).
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Theorem 3.8 (Theorem 6.1 in Last et al. [2016]).
Let F' € domD (recall Definition 2.9) with Var F' > 0. Assume there are constants
C1,Co, 1, P2 > 0 such that

E|D,F|*" < ¢, for Q-a.e. x €X, (3.4)
E|D2 ., F|"" < ¢y, for Q%-a.e. (x1,35) € X? (3.5)

and denote ¢ := max{l,cy,co}. Then

F—-EF
dw (mz>
2
o J ( J IP’(D;MF;&0)p2/(16+4p2)(@(da:2)> Q(dxl)]
X X

1/2

<
Var F

&
" Var P32

f IP’(D;EF + O)(1+p1)/(4+p1)@(dx)
X
and
F—-EF
d — 7
K <\/VarF )

> 2 p2/(16+4p2) ’
Var I L(LP(DLELLEQF # 0) * Q(de)) Q(dxl)

1/2

<c

4
) 2 P VR ot 4 ory?
Var F~ (Var F)3/? (Var F')?

+ Vo + V3 UX P(D? F # 0)p2/<8+2p2><@2(d(w1,xg))]m} ,

Var F 1,72

where

Tpi= J P(D,F # 0)"/ &2 Q(dx)
X
and Z denotes the standard Gaussian random variable.

Proof. The proof of Theorem 3.8 consists of estimating the terms ag1,...,apg
in Theorems 2.13 and 2.14. To ease the notation, we denote by vr : X — [0, 1]
and wr : X2 — [0, 1] the functions

v(z) = P(D,F #0), w(z,y) :=P(D: ,F #0), zyeX
By Holder’s inequality, (3.4) and (3.5), we have that

E (DxF>4 < [’U(;U)]pl/(4+p1) [E |DIF|4+p1]4/(4+p1)

C‘ll/(4+P1) [U (I)]pl/(4+p1) :

E |DIF|3 < Ci/(4+p1)[U(x)](1+p1/(4+p1))

A
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for Q-a.e. x € X and

4/(4
E (D2, ,,)" < [w(xy, z) |7/ [E|DZ . F|*72] /(4+p2)
< C;‘L/(4+p2)[w(x17x2)]p2/(4+p2)
for Q*a.e. (w1,22) € X% By inserting the latter estimates in ap;,...,ars and

further application of Holder’s inequality, we obtain that

461/(4+P1)C;/(4+p2)

1/2
[J (w(iﬁl,$3)w($2,$3))p2/(16+4p2)@3((1(93175132,%3))] )
X3

<
ar1 Var F'
2/(44ps) 1/2
ars < T [ @l e, ) Qa0 2 25)
b VaI'F XB ) ) ) b )
3/(4+P1) )/ ()
+p1 +p1
ap3 < (VMF)MJ [o(z)]" VAP Q(de),
3/(4+p1)
apy < 4 [E (F — IEF)4] 1/4J [U(I)]Pl/(8+2pl)Q(dI)7
2(Var F')? %
C?/(4+p1) 1/2
ors < S | [ lop e |
\/gcl/(4+p1)cl/(4+p2) 1/2
ape < L Var F2 fx? [w(ﬂfl,372)]p2/(8+2p2)(@2(d(371,352))

\/§c2/(4+p2) 1/2
ot | [ e,

Let G € L} be such that EG = 0, Var G = 1 and G = g(7) a.s. Then
EG* = VarG? + (EG?)* = VarG® + 1 < f E (D,G*)*Q(dx) + 1
X

where we used the Poincaré inequality (see Corollary 2.1). Further,

D,G* = ¢*(n + 0z) — g*(n) + 29°(n) — 2¢°(n) + 29(n)g(n + 62) — 29(n)g(n + 6.)
= (9(n+0z) — g(m))> = 2¢°(n) + 29(n)g(n + 62)
= (D,G)* +2GD,G

and
((D.G)? + 2GD,G)* < 2(D,G)* + 8G*(D,G)?

almost surely. Combined with the Cauchy—-Schwarz inequality, we arrive at

EG* <8[EG4]1/2J
X

<max{16 [EGﬂlﬁf

X

[E (D,G)"]"* Q(dx) + 2 f E (D,G)*Q(dz) + 1

X

[E(D,G)"]"* Q(dx), 4 J

X

E (D,G)*Q(dx) + 2} :

Now, we substitute G = (F —E F)*/(Var F')? to see that

wps < C?/(4+p1) - Cil/(4+p1) y w
= (Var F)3/2 (Var F)2° % " (VarF)2™ F
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Combining the estimates for ap; ..., ap¢ concludes the proof.

]
Corollary 3.1 (Proposition 1.3 in Last et al. [2016]).
Let F} € L%t and assume there exist finite constants py,ps,c,v > 0 such that
E|D F|*"" <¢, forQ-ae zeX, t=1,
E|D2 ., F|"™ <c, for Q-ae. (z1,20) € X, t>1,
Var F,
ar >v, t=1
t
and
m:= sup f P(D2 F, # 0)P2/(16+4p2) oy (dy) < 0. (3.6)
zeX,t>1 Jx ’

Then there exists a finite constant C' depending uniquely on ¢, py, p2,v, Q(X) and
m such that

F,—EF F,—EF, B
dw | —=, 7)) di | ——20, 7)) b < ot V2
max{ W(«/VarFt’ )’ K<\/VarFt’ )} ¢

Remark. If we relax the assumptions on the generality of X, so that X is a com-
pact subset of R? and Q a restriction of the Lebesgue measure | - |4 on X, then
the assumption (3.6) in Corollary 3.1 can be replaced the following assumptions
concerning stabilization. The Poisson functionals F; are strongly stabilizing (in
the sense of Definition 3.5) if for each z € X there exists an almost surely finite
random variable R;(z,n;) (radius of stabilization) such that

Dmft(nt) = Da:ft(”t M B(ZE, Rt(xvnt))>7 a.s.

Moreover, we assume that

sup f tP(y € B(z, Ri(x,m)) or Ry(z,m + 9,) # Re(x,my))*dy < o0
X

zeXt>1
for some suitable a.

Now, let (X, X') be a measurable space equipped with a o-finite measure Q
and a semi-metric d : X x X — [0,0). By B*(x) we denote the ball of radius
r > 0 around x € X with respect to d. We assume that there are constants
v,k > 0 such that

i sup Q@) — QBF ()

e—0 €

< ryr?’h (3.7)

Apart from the Euclidean space R?, the condition holds also for m-dimensional
Riemannian manifolds, where m < d. More examples are listed in Lachieze-Rey
et al. [2019].

The approach of Last et al. [2016] was further revised in Lachie¢ze-Rey et al.
[2019] and extended in some directions. The authors established presumably
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optimal rates of normal convergence with respect to the Kolmogorov distance for
functionals of marked Poisson and binomial point processes.

In order to deal with marked point processes, let us first rewrite Definition 3.1
and 3.2 in an appropriate way. Let (M, M, Py) be a probability space (the mark
space) and denote X := XxM. We consider score functions £y, &, : XxN(X) — R,
A = 1,n € N to be measurable functions defined on pairs ((z,m),x), where
x € N(X) and (z,m) € x.

For A > 1, we consider 7, to be a marked Poisson point process on X with
intensity measure AQ. Alternatively, if Q is a probability measure, we let u,, to be
a marked binomial point process of n point distributed independently according
to Q. Then, we denote

H)x = Z 5)\(1‘777>\>7 A = 17

TEM\

= 2 &z, pin), n € N.

TEUR

Definition 3.14 (Stabilization scores of marked point processes)A
A score function &, is stabilizing if there is a measurable map Ry : X x N( )A—> R
(a radius of stabilization) such that for all 2 := (x,m,) € X,x € N(X) and A ¢ X

with #(A) < 7 we have

E@, %0 A) = 6(2, (R U A) A Bz, Ry(2,% U {2)))),
where B(y,r) := BX(y) x M for y € X and r > 0.

For a given point x € X we denote by M, the corresponding random mark,
which is distributed according to IPy; and is independent of everything else. More-
over, for a finite set A < X, we denote by (A, M 4) the set obtained by equipping
each point of A with a random mark distributed according to Py independently
of everything else.

Definition 3.15 (Exponentially stabilizing scores of marked Poisson and
binomial point processes).

We say that (€))as1 (resp. (&n)nen) are exponentially stabilizing if there are radii
of stabilization (Ry)a>1 (resp. (Rn)nen) and constants cgap, Asiap € (0,00) such
that forx e X;r = 0and A > 1

P(R)((z, M), mx v {(x, M,)}) = 71) < Cstap XD ( —— (A stab)

Cstab

resp. forzr e X;r>0and n > 9

P(RTL((xv Mm)7/vbnf8 v {(l’, Mz)}) = 7") < Cstab exp (—(nl/Wr)astab) ,

Cstab

where v is from (3.7).

Definition 3.16 ((4 + p)th moment condition).
Given p € [0,00), we say that (£3)i>1, resp. (&n)nen satisfy (4 + p)th moment
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condition if there is a constant C,, € (0, ) such that for all A < X with #(A) <7
we have

sup sup I [&x((z, M), my v {(2, Ma)} U (A, Ma)["? < G,

Xe[1,00) zeX

resp.

Sup SupE "Sn((xa Mx)7 Hn—8 Y {(xa Mx)} v <A7 MA))’4+p < CP'

neN,n>9 reX

Definition 3.17 (Exponentially fast decaying scores).

Let K < X be measurable. Denote by d(z, K) := infcx d(x,y) the distance
between a point z € X and the set K. We say that (£\)xs1, resp. (&n)nen decay
exponentially fast with the distance to K if there are constants ¢y, ax € (0,0)
such that for all A ¢ X with #(A) < 7 we have for z € X and A > 1,

P(gk((a"7 Mm)vlr])\ v {(CL’, Mx)} u (A7 MA)) 7 O) < Ck eXp (_C[_(l()‘l/ﬁyd(:l% K))QK) )
resp. for z e X and n > 9,

P(&a((2, Ma), pums U {(2, M)} U (A, Ma)) # 0) < cxc exp (—cic! (n'7d(x, K))**) .

Remark. Definition 3.17 describes scores whose variances exhibit surface area
order scaling. When dealing with volume order scaling, one can put K = X, cx =
1 and choose an arbitrary ag € (0, o0).

Theorem 3.9 (Theorem 2.1 in Lachiéze-Rey et al. [2019]).
Denote o := min{cqep, e} and

it | exp (_mm{c% (1, K )
X

36 - 401 ) Q(dz), teR. (3.8)

(a) Assume that the score functions (§x)xs1 are exponentially stabilizing, satisfy
the (4 + p)th moment condition for some p € (0,1] and decay exponentially
fast with distance to a measurable set K < X. Then there exists a constant
C € (0,00) only depending on the constants v in (3.7), «, Cstap, Cp and cx
from Definitions 3.15, 3.16 and 3.17 such that

B A L2
dy (HA EH}\) <C (\/[K,/\ N Ik KT 1 CAs 1

v/ Var H), Var Hy ~ (Var Hy)3/? " (Var H))?

(b) Assume that the score functions (&,)nen are exponentially stabilizing, satisfy
the (4 + p)th moment condition for some p € (0,1] and decay exponentially
fast with distance to a measurable set K < X. Then there exists a constant
C" € (0,00) only depending on the constants 7, a, Cstap, cxx and C, such that

H, —EH, NS Ixm I+ 132
d (”") <C’( K, K, K Kn)p>o.

A/ Var H!, Var H/, - (Var H! )3/2 - (Var HY,)?

Theorem 3.9 is a consequence of the general result given by Theorem 3.8 and
results from Lachiéze-Rey and Peccati [2017] giving Malliavin—Stein bounds for
functionals of the binomial point process.
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Remark. If K = X in Theorem 3.9, then

IX,t - t, t 2 1

Corollary 3.2 (Corollary 2.2 in Lachiéze-Rey et al. [2019]).

(a) Let the conditions of Theorem 3.9 (a) hold and assume that there is a constant
C € (0,00) such that sup,sq Ix/Var Hy < C. Then there is a constant
C € (0,00) only depending on C and the constants v, Cstap, Ostan; Cp, Cx and

o such that
Hy,—EH, C
dg | —/——==—,7 | € ——, A= 1.
K( VVar Hy '’ ) v/ Var H),

(b) Let the conditions of Theorem 3.9 (b) hold and assume that there is a constant
C" € (0,00) such that sup,ey [xn/Var H), < C'. Then there is a constant

' e (0,0) only depending on C' and the constants 7, Cstap, Astap, Cp, Cx and
o such that

H —EH ol
i ( Z) % Len

n/ Var H), ’ «/VarHT’Z’

Remark. Let Yi,...,Y, be i.i.d. random variables such that E|Y;|* < co. We
have for S, = X" | Y; the Berry-Esseen theorem saying that

J S, —ES, <C’E|Y1—]EY1|3 1 .
K\ Var S, A VarY; v/ Var S,,’

for some C' € (0,0). By considering special choices of Y7, ...,Y,, it can be shown

that the rate 1/4/Var .S, is optimal. One can deduce that the rates 1/4/Var H,,
resp. 1/4/Var H! occurring in Corollary 3.2 are as well presumably optimal.

e N,

Another simplification of Theorem 3.9 is applicable if we take X < R? yielding
rates of convergence for functionals with variances being proportional to A or n,
resp. Given an unbounded set I < (0,0), we say (a;)ies is proportional to (b;)ier
if a; = O(b;) and vice versa.

Theorem 3.10 (Theorem 2.3 in Lachiéze-Rey et al. [2019]).
Let X < R? be full-dimensional, let Q have a bounded density with respect to the
Lebesque measure and suppose the conditions of Theorem 5.9 hold with v = d.
Moreover, let K be a full-dimensional subset of X, whose boundary 0K satisfies

li |K'r|d

imsup —— < o,

r—0 2r

where K, := {y € R : d(y,0K) < r} denotes the r-parallel set of K. If Var Hy
is proportional to N, resp. Var H] is proportional to n, then there is a constant
c € (0,00) such that for A = 1, resp. n =9,

H,—-EH H —EH
dx (H Z) < - resp. dg ("” Z) <

&
JNVar i, N JVarH, | n
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Remark. The rates of convergence for Poisson input in Theorem 3.10 improve
upon the rates given by results in Barbour and Xia [2006] and Penrose and Yukich
[2005], which contain extra logarithmic factors.

Example 3.3 (k-th nearest neighbour graph).
We let ) be a homogeneous Poisson point process of intensity A in a compact
convex observation window W < R? with interior points. For a fixed k € N, we
consider the following functional of 7,
H,% = ; Z ]-{a: is a k-nearest neighbour of y of vice versa} H:C - yHa'
(y)ens

By taking a = 0, we obtain the number of edges, while for a = 1, the total
edge length. The first central limit theorem including rates of convergence for
the k-th nearest neighbour graph was shown in Avram and Bertsimas [1993] with
order (log \)'*3/4\~1/4, Later, it was improved in Penrose and Yukich [2005] with
rate (log A)?**A\~"2. Finally, the logarithmic factor was removed in Last et al.
[2016].

Theorem 3.11 (Theorem 7.1 in Last et al. [2016]).
There is a constant C, only depending on k,W and a such that

i (H—EH) O Ast

y/ Var HY

See Section 5.1 in Lachieze-Rey et al. [2019] for further generalizations of this
result concerning the underlying space and the binomial input.

Conclusion

The asymptotic analysis based on the add-one cost method and the moment
approach yield variance asymptotic, which is not addressed in the method based
on Malliavin—Stein bounds. The latter method on the other hand, yields error
bound providing useful information about the rate of convergence and without
requiring higher-order moment calculations.

The advantage of the add-one cost method over the moment approach and
the method based on the Malliavin—Stein bounds is that the add-one cost method
does not require bounds on the tail of the radius of stabilization (i.e., on the
range of the local effect of an inserted point). It requires only that this radius
be almost surely finite. Therefore, it can be applicable to some examples such as
those concerned with the minimal spanning tree. On the other hand, only the
homogeneous point process input on the Euclidean space is considered.

3.4 Stabilization of weighted Poisson—Voronoi
tessellations

A lot of attention was given to the stabilization of the random tessellations in the
literature since they play an important role in computational geometry. Many
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algorithms for solving some geometric problems are based on them. For example,
the Delaunay triangulation is important in finding the minimum spanning tree
because it is a subgraph of the Delaunay triangulation. The property of being de-
fined locally in the setting of Poisson—Voronoi tessellation and the corresponding
Delaunay triangulation is well known since Avram and Bertsimas [1993], where
the authors used dependency graphs technique. We shall be interested in de-
veloping the limit theory for unbiased and consistent estimators of statistics of
a typical cell in a generalized weighted Voronoi tessellation using the stabilization
method.

The estimators are constructed by observing the tessellation within a bounded
window. Unbiased estimators are constructed by considering only those cells
which lie within the bounded window. This technique, known as minus-sampling,
has a long history going back to Miles [1974] as well as Horvitz and Thompson;
see Baddeley [1999] for details.

The authors in Flimmel et al. [2020] used stabilization methods described in
the previous sections to develop expectation and variance asymptotics, as well as
central limit theorems, for unbiased and asymptotically consistent estimators of
geometric statistics of a typical cell. Under mild conditions on the weights of the
cells, they established variance asymptotics, weak consistency and the asymptotic
normality of the estimators as the observation window tends to the whole space.
The rest of this section consists of the results stated in the paper.

Assumptions

Let ji,, be a unit intensity stationary point process in R? where each point of
the process carry an independent mark in M := [0, a] for some fixed constant
a < . Let B(M) be the Borel o-field on M and let Qy be the mark distribution
(recall the definitions of Section 1.3). The elements of R? x M will be denoted by
z = (z,my).

For a weight function p : R x (R? x M) — R we consider the notion of the
typical cell of the weighted Voronoi tessellation defined by the weight p (see Ex-
ample 1.22). By the typical cell K£ := KF(u,,) we understand the cell generated
by the typical point of p,,. This can be formally introduced by considering the
Palm probability P° (recall Definition 1.14) which corresponds to P conditional
on the event that u,, has a point at the origin. Let Q) denote the distribution of
the typical cell. The expectation with respect to P? is denoted by E°.

Remark. In the case of Laguerre or Johnson—Mehl tessellations the typical cell
K? could satisfy K2 = #. This is different from the definition of the typical
cell described in e.g. Section 10.4 in Schneider and Weil [2008], where the typ-
ical cell is meant to be the typical non-empty cell. For a Voronoi tessellation
both approaches coincide. For weighted Voronoi tessellations in general, K¢ is
distributed as a mixture of the typical non-empty cell and the empty cell with
mixture weights 1—pg and pg, where pgy is the probability that the cell generated
by the typical point is empty.

Notation. Denote by F? the space of all closed subsets of R? equipped with
the Borel o-field B(F%) generated by the open sets from the Fell topology, see
Definition 2.1.1 in Schneider and Weil [2008].
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Moreover, let P?, respectively P%¥ denote the Palm probability measures
conditioned on P having an additional marked point Z, respectively, two addi-
tional marked points & and §. In particular, P°(-) = {  P™(-) Qu(dm). By E,
respectively E*Y, we denote expectation with respect to P*, respectively, P*Y.

Now, we introduce for z € R? and # € pi,,, the shifted cell
OO ) = CP (i 1) + (= — )

Specially, C*(Z, fim) = x+C?(Z, jt,,). Note that K2 = C?((0, My), ptm) PP-almost
surely, where M, is the typical mark distributed according to Q.

Let h : (F% B(F?)) — (R,B(R)) describe a geometric characteristic of ele-
ments of F¢ (e.g. diameter, volume) such that h(Z) = 0 and it is invariant with
respect to shifts, specially for all z € R? and m, e M

h(CP((z,ma), pm)) = Bz + CE((2,m0), pn)) = R(CE((2, Ma), fim))-
We have two goals:

(i) use minus-sampling to construct unbiased estimators of

B (K2) = [ () @(dK)

(ii) establish variance asymptotics and asymptotic normality of such estimators.
As a by-product, we also establish the limit theory for geometric statistics
of Laguerre and Johnson—Mehl tessellations, adding to the results of Pen-
rose [2007b] and Penrose and Yukich [2001] which are confined to Voronoi
tessellations.

Put W, := [—%/d, %/d]d and Wy := Wy xM, XA > 0. Given h and a tessellation

defined by the weight p, we define for all A > 0

. h(C?(Z, pim N
Hﬁ(/ubm N W)\) = Z ) |W>\(@C('p(;}i ,UJ)W)Z)M 1{Cf’(x,,um) - W)\}

TEUm W )

Here, for sets A and B, AOB := {z € R?: B+2 < A} denotes the erosion of A by
B. The statistic H (pt, n W) disregards cells contained in the window W) that
are generated by the points outside W). Such cells do not exist in the Voronoi
case but they could appear for weighted cells. Therefore, we also consider

, - h(CP(Z, pim))
Hy () = Z Wx© CP(Z, ttm)|d

TELUm

H{CP(Z, ) < Wi}

Unfortunately, controlling the moments of Hf(p,, n Wy) is problematic since
Wy © CP(Z, fiy,)|a may become arbitrarily small. It will therefore be convenient
to consider versions of H{(u, n W) and Hf(u,,) given by

]:Ii(:um N W)\)

_ hCP (&, pum)) H{CP(Z, i) = Wi}
' (Wx© CP(Z, tim)a

Do | >

1 {m & C(, i) a >

ieummwx
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and

A

HE ()
(&, o)) H{CP(Z, ) < Wi} { . /\}
= 1WA CP(Z, i) |la = = ¢ -
- 2 R S CE mla =5

Note that HY(P W), I:I';(IP’) and ﬁ['/o\(}P’ ~ W) are not unbiased. Under the
assumptions of Theorem 3.12, one instead has

W (W @Kc’i)!d)

o

W6 Kb|4

Wy (WO K8)la
Wy K84

E H (ft A W) = E° <h(Kp)

H{|Wye Kl =

o

DO >

E HY (jt 0 W) = E° (h(K”) }) ,

and

A A
B A (n) = B (ACKOLIWA O K2l > 5) )

The general form of the bias is given by Theorem 2.1 of Baddeley [1999].
We need some additional terminology. For every weight p and geometric

statistic h we define the score &7 : Réx N - R by
(2, A) := h(C?(%, A))1{C? (3, A) is bounded}, #eR?, AeN.  (3.9)

We use this representation to explicitly link our statistics with the stabilizing
statistics in the literature Baryshnikov and Yukich [2005], Blaszczyszyn et al.
[2019], Lachieze-Rey et al. [2019], Penrose [2007b,a], Penrose and Yukich [2001,
2003]. Translation invariance for h implies

gp(@’A) = fp((:p,mw),A) = f”((o,mm),A - :L“),

for every & € ]lid, z = (x,m,) and A € N, where A — z := {(a — z,m,) :
(a,m,) € A}, If CP(Z, ) is empty we have £°(Z, i) = ( ) 0. Write
CP(Z, pi) 1= CP(&, i v {2}) for T ¢ pyn and so EP(Z, i) 1= EP(Z, pm L {2}) for
T ¢ fn.

Definition 3.18 (p-moment condition 2).
The score £° is said to satisfy a p-moment condition 2, p € [1, ), if

sup E*V|EP (2, ) [P < o0. (3.10)

i,5eRd

In contrast to Definitions 3.13 and 3.16, here we assume the addition of just
two marked points into the process fi,,.

Definition 3.19 (Diameters with exponentially decaying tails).

We say that the cells of the tessellation defined by p and generated by u,, have
diameters with exponentially decaying tails if there is a constant cgiem € (0,0)
such that for all & := (x,m,) € p,, there exists an almost surely finite random
variable D; such that C*(%, u,,) < Bp,(z) and

1

P*(D; = t) < Cgiam €XP (— td) , t=0. (3.11)



Next, we make use of the concept of (exponentially) stabilizing scores of
marked point processes introduced in Section 3.3 (see Definitions 3.14 and 3.15).
Translated to our situation, we say that &7 is stabilizing with respect to p,, if

for all Z := (z,m,) € W, there exists an almost surely finite random variable
R; := Ri(pum) (radius of stabilization), such that
&(&, (jim U A) 0 Br,(2) = (3, jtm U A) (3.12)

for all A with #(A) < 7. We say that £” is ezponentially stabilizing with respect
to pun if there are constants cgqp, @ € (0, 00) such that

N 1
P*(R;z = t) < Cspap €XP (— ta) , t=0.
Cstab

In other words, £” is stabilizing with respect to ., if there is R; such that the
cell C*(Z, pu,,,) is not affected by changes in point configurations outside By, (z).

Main results

Our first main result has a proof which is short and illustrative. The result holds if
W), is replaced by any observation window. It is a special case of a more general
result given by Theorem 2.1 in Baddeley [1999] and formulated for stationary
germ-grain models and general sampling rules.

Theorem 3.12 (Theorem 2.1 in Flimmel et al. [2020]).

Let 1, be a stationary marked point process with unit intensity and mark dis-
tribution Q. Let h : F4 — R be translation-invariant as above. Then for all
A > 0, the statistic H{(p) is an unbiased estimator of E°h(K?).

Proof of Theorem 3.12. We have
h(CP(2, pm))

E Hf (ptm) = E m; 26 0ol Ty HC @) = Wi}
—E Zu: ‘Wk(gé‘”( “m)))‘d Lz + C2(&, ji) = Wy}
= f E? (le(@% 1{z + K c WA}>
=E0J (W’z(é%me W) @K”})
= E°h(K?),

where the second equality uses the translation invariance of h and translation
invariance of erosions, the third uses the refined Campbell theorem for stationary
marked point processes (a version of Theorem 1.8 for marked point processes, see
e.g. Theorem 3.5.3 in Schneider and Weil [2008]), while the fourth uses Fubini’s
theorem. Hence, we have shown the unbiasedness of HY (fi,,). O

By ns, s € (0,00), we denote a homogeneous marked Poisson point process
with values in RY x M and such that the unmarked process on R¢ has intensity
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s. We write i for n;. Our next results establish the limit theory for the above
estimators.

Theorem 3.13 (Theorem 2.2 in Flimmel et al. [2020]).
Let My be a random mark distributed according to Qyy.

(i) If £P satisfies the p-moment condition 2 (3.10) for some p € (1,0) and if the
cell C*((0, Mo),n) has a diameter with an exponentially decaying tail, then

HC (W), HY(n) and HY.(nAW ) are asymptotically unbiased estimators
of B°h(K5(n)).

(i) Under the conditions of (i) and assuming that £ stabilizes with respect to n
as at (3.12), the statistics HC(n), H (n n W), H'(n) and H5(n W) are
consistent estimators of ECh(KP(n)).

Given the score £ at (3.9), put
o*(€") := E(&"(om,n))? (3.13)
+ | [B€(oun 0 loarh)€(oarn o four)) ~ E€(oar, ) B (aar, )] da,

where oy := (0, M,), xp := (x, M,), and M, and M, are independent random
marks distributed according to Qu. Note that ECh(K2(n)) = Eh(C*(on,n)) =
E&P(onr,m) by the Slivinyak-Mecke theorem (Theorem 1.9). Here we use that,
given the Poisson process 7, the Palm distribution corresponds to the usual dis-
tribution with a point inserted at the origin.

Theorem 3.14 (Theorem 2.3 in Flimmel et al. [2020]).
Let h be translation-invariant and assume that £ is exponentially stabilizing with
respect to 1.

(i) If £ satisfies the p-moment condition 2 (3.10) for some p € (2,%0), then
lim AVar HY(pnWy) = lim AVar H(p) = 0%(€?) e [0,00).  (3.14)
—00 —00
(ii) If 0*(£r) € (0,90) and if the p-moment condition 2 (3.10) holds for some
p € (4,0), then
VA (S 0 W) = EHS(p 0 W) 2> N(0,0%("))
and -
VX (H{(n) — E°R(KE(m))) 2 N(0,0%(€")).
where N (0,0%(£P)) denotes a mean zero Gaussian random variable with vari-

ance o2(EP).

Remarks. (i) The assumption 02(£”) € (0, 0) is often satisfied by scores of inter-
est, as seen in the upcoming applications. According to Theorem 2.1 in Penrose
and Yukich [2001], where it has been shown that whenever we have

Lsenriiry @) “BE@ D) o 260,
\/Var Dsenaivy §°(&:m) | |
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then necessarily 02(£°) € (0,00) provided (a) there is a random variable S < oo
S

and a random variable A?(c0) such that for all finite A = Bg(0)¢ we have
AP(e0) = > £ (&, (n 0 Bs(0)) v A v {ou})
#€(nnBs(o))uAu{on}
- Z fp(ﬁ;7<77035<0>> UA)?
2e(nnBg(o))uA

and (b) A”(o0) is non-degenerate, that is to say it is not almost surely constant.
We will use this fact in showing positivity of 0?(£”) in the applications which
follow.

(ii) Theorems 3.13 and 3.14 hold for translation-invariant statistics h of Poisson—
Voronoi cells regardless of the mark distribution because £ stabilizes exponen-
tially fast and diameters of Voronoi cells have exponentially decaying tails as
shown in Penrose [2007a], Penrose and Yukich [2001]. In Proposition 3.1 we es-
tablish that the cells of the Laguerre and the Johnson—Mehl tessellations also
have diameters with exponentially decaying tails and that 74,7 = 2,3 are expo-
nentially stabilizing with respect to 7.

Applications. We provide some applications of our main results. Our first result
gives the limit theory for an unbiased estimator of the distribution function of
the volume of a typical cell in a weighted Poisson—Voronoi tessellation.

Theorem 3.15 (Theorem 2.4 in Flimmel et al. [2020]).
(i) For alli=1,2,3 and t € (0,0) the statistic

H{|CP (&, n)|a < t} n
~ 1{C*(z,n) < W.
xze;y (WA © CPi(2,n)]a (07 @m) = Wh

is an unbiased estimator of P°(|KFi(n)|qa < t).
(ii) For alli=1,2,3 and t € (0,00) we have that

(Z 1|é|Vf@ Cr k;é} H{CP(&,1) « Wi} = P KL (n)]a < t)) (3.15)

zen
tends to N(0,02(¢")) in distribution as A — o0, where
PP (E,m) = {|CP(Z,m)]a < t}

and where a*(pP") € (0,0) is given by (3.13).

Our next result gives the limit theory for an unbiased estimator of the (d —
1)-dimensional Hausdorff measure H? ! of the boundary of a typical cell in
a weighted Poisson—Voronoi tessellation.

Theorem 3.16 (Theorem 2.5 in Flimmel et al. [2020]).
(i) For all i = 1,2,3 we have that

d—1 Pi(g
e e = wi)

‘WA @Cpl('%an ’d
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is an unbiased estimator of EOHIY(0KPi(n)).
(ii) For all i =1,2,3 we have that

<Z r;VA Gag: ))Izl 1{CP (2,n) © Wi} — E"H (2K (n))>

zen

tends to N(0,02(£P1)) in distribution as X — oo, where
EPi(z,m) == HTHOCP (2,m)) 1{CP (z,n) is bounded)

and where o?(&P) € (0,0) is given by (3.13).

There are naturally other applications of the general theorems. By choosing
h appropriately, one could for example use the general results to deduce the limit
theory for an unbiased estimator of the distribution function of either the surface
area, inradius, or circumradius of a typical cell in a weighted Poisson—Voronoi
tessellation.

Stabilization of statistics of weighted Poisson—Voronoi tes-
sellations

We establish that

(i) the cells in the Voronoi, Laguerre and Johnson—-Mehl tessellations gener-
ated by Poisson input have diameters with exponentially decaying tails (see
Definition 3.19) and

(i) the scores &P i = 1,2, 3, as defined at (3.9) are exponentially stabilizing (see
Definition 3.15). These two conditions arise in the statements of Theorems
3.13 and 3.14.

Conditions (i) and (ii) have already been established in the case of the Poisson—
Voronoi tessellation (p;) in Penrose [2007a] and Penrose and Yukich [2001]. The
Voronoi cell is a special example of both the Laguerre and the Johnson—Mehl
cell when putting M = {0} (or any constant). Thus it will be enough to show
that these two conditions hold for the Laguerre (p2) and the Johnson—Mehl (ps)
tessellations.

By definition we have

C(a,pm) =[] HR).
zepm\{@}
where HZ(2) := {y € R? : p(y,2) < p(y,2)}. Note that HP(-) is a closed half-
space in the context of the Voronoi and Laguerre tessellations, whereas it has

a hyperbolic boundary for the Johnson—-Mehl tessellation. Tessellations generated

by p., are stationary and are examples of stationary particle processes (see Section
1.4).

Proposition 3.1 (Proposition 3.1 in Flimmel et al. [2020]).

The cells of the tessellation defined by p;,© = 1,2,3, and generated by Poisson
input n have diameters with exponentially decaying tails as at (3.11).
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Proof. We need to prove (3.11) for all 2 € . Without loss of generality, we may
assume that 7 is the origin 6 := (0, m,) and we denote D := Ds.

Let Kj, j = 1,...,J, be a collection of convex cones in R with u7_,K; = R?
and (x,y) = 3H:UH HyH/4 for any x and y from the same cone K;. Each cone has an
apex at the origin 0. Denote K; := K; x M. We take (xj, mj) € nnK;n By, (0)° 50
that x; is closer to o than any other point from 7~ K; N By, (0)¢. This condition
means that the balls B,,,(0) and B,,,(x;) do not overlap. Then

J
Cri(6 ﬂ (o my(0), i=1,2.3.

Thus, it is sufficient to find D such that for all « = 1,2,3 and j = 1,...,J we

have H{, ,,1(6) n K; = Bp(o), to obtain that C*(6,n7) = Bp(o). Consider

y € Hiz m)(0) 0 Kj. Then pi(y,0) < pily, (x;,m;)) and {y,2;) = 3|a;|]y]/4.
For the Laguerre cell (i.e. the case i = 2), the first condition necessarily means
that [ly|* —mg < ly — 25> = m3 = |y[* + |l=;[* — 2y, ;) — mj. Thus,

20y, xj) < |la;]* +mg —mi < ;| + p* < *H%HZ
and so [ly|| < |z;|. For the Johnson-Mehl cell (i = 3) we have
ly =il = [yl = mo +m; = y| -
which for |y|| > u gives
20y, ;) < 2plyl — 1 + 5.
Hence, using the assumptions {(z;,y) = 3|z;||y[/4 and |z;| > 24,

H H < 2(Hx]H2 _:U’2) < 2H$]||2 .
3| = 4p ;]

D =2 max _|xj]. (3.16)
j=1,...,J

77777

Then, for t € (4u,0) we have

P(2]x;] = 2 (10 (By2(0)\Bay(0)) K = )

M&

ZJ] P(=|(By2(0)\B2u(0)) N Kjla) < Caiam eXp( ! td)

Cdiam
for some cgigm = Caiam(d, 1) € (0,00) depending on d and p. This shows Propo-

sition 3.1 for ¢ = 2,3 and hence for ¢« = 1 as well.
O
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Proposition 3.2 (Proposition 3.2 in Flimmel et al. [2020]).
For all i = 1,2,3 the score &P defined at (3.9) is exponentially stabilizing with
respect to 1.

Proof. We will prove (3.12) when % is the origin and we denote R := Rs. For sim-
plicity of exposition, we prove (3.12) when A is the empty set, as the arguments
do not change otherwise. In other words if A is not empty, then the resulting
radius of stabilization will not be larger, as seen by the following arguments. By
(3.9), it is enough to show that there is an almost surely finite random variable
R such that

C?(6,n N Br(o)) = C*(6, (1 n Bg(o)) U {(z,m.)}),

almost surely whenever |z| € (R, ). To see this we put R := 2D + u, where D
is at (3.16). Given 2 := (z,m,), with [|z| € (R, ), we assert that

Bp(o) < HZ'(0).
To prove this, we take any point y € Bp(0) and show that

Note that y € Bp(o) implies |y—z|| € (D+p, 00). The proof of (3.17) is shown for
the Laguerre and Johnson—Mehl cases individually. First, assume that C*2(6,7)
is the cell in the Laguerre tessellation. Then

p2(y,0) = [y’ —mg < D* < (D+p)*—p® < |y—2[*—p* < |y—2|*—mZ = pa(y, 2),
showing that y € H.*(6). For the Johnson—Mehl case,
p3(y,0) =yl =mo < D = (D +p) —p<ly—=2|—p<ly—z]—m.=psy 2),

thus again y € H2*(6), which shows our assertion.
The radius D at (3.16) has a tail decaying exponentially fast, showing that
R also has the same property. Consequently, for all ¢+ = 1,2, 3, the score £ is
exponentially stabilizing with respect to 7.
O

Remark. (i) The assertion C? (6, u,,) < Bp(o) holds for a larger class of
marked point processes. We only need that the unmarked point process
has at least one point in each cone IC; n By,(0)¢, j = 1,...,J, with Palm
probability PV equal to 1. Consequently, scores £%,i = 1,2, 3, are stabilizing
with respect to such marked point processes.

(ii) Proposition 3.2 implies that the limit theory developed in McGivney and
Yukich [1999], Penrose and Yukich [2001, 2003] for the total edge length and
other stabilizing functionals of the Poisson—Voronoi tessellation extends to
Poisson tessellation models with weighted Voronoi cells. Thus Proposition
3.2 provides expectation and variance asymptotics, as well as normal con-
vergence, for such functionals of the Poisson tessellation.

(iii) Aside from weighted Poisson—Voronoi tessellations, Propositions 3.1 and
3.2 hold also for the Poisson-Delaunay triangulation. On the other hand,
Proposition 3.1 holds for Poisson-line tessellation, but Proposition 3.2 does
not.
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Proofs of the main results

Preliminary lemmas. In this section, we omit in the notation the dependence
on the weight p that defines the tessellation. For simplicity, we write

Hy\(nn W) := H{(n n W), Hi(n) := H{(n),

as well as A A Y A A )
Hx(nnWy) == Hy(nnWy), Hx(n):= H(n).

Let us start with some useful first order results.

Lemma 3.3 (Lemma 4.1 in Flimmel et al. [2020]).
Under the assumptions of Theorem 3.13(ii), we have

}ln’l AE ‘H)\(n M WA) - ]2[)\(,'7 N W)\) = 0.
—0

Proof. We denote by Q the product of the Lebesgue measure on R? and Q. By
the refined Campbell theorem and stationarity,

E ‘H)\ HHWA)—F[A(UGWA)‘

D g o,
<E ) \WAGC 5o, HC@Em € MW S C@mla < 3}

gennWy

s |MC(2,n))] .
J]E oo n)|d1{C’(x,77)cW>\}

Wi

WOl < 510()

:JJEW<|MW@WWW‘H¢Hm@ammmm

(W C((0,m),n)la

Wy

LW e C((o,m),n)la < ;\}) Qua(dm) da.

Changing the order of integration we get
E ’H,\(n AW, — Ha(nn VAV)\)‘

< JMEO’" (yh(C(om,n))ylﬂm@C(om,m!d < ;}

) J 1{[E € W)\ @C<Omun)}
wy  IWa©C(om,n)la

dx) Qum(dm),
(3.18)

where 0,, := (0,m). The inner integral over W, is bounded by one, showing that
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for all p € (1,00) we have

E ’H,\(n ) VAV)\) — f{)\(n ) WA)’

< [ & (1nCtomml 1 & Clomnla < 31) Qutam

p—1

1

< JM (Eom’h(0(0m7n))’p)p pom (’W)\@C(Om,ﬁ)’d < ;) ’ QM(dm)

The random variable D at (3.16) satisfies C'(6,7) < Bp(o) almost surely. Thus,

: ) A N A
P° <|W>\@C(O,77)|d < 2) <P (|W)\@BD(O)|d < 2) .

The volume of the erosion on the right-hand side equals (A\Y4 —2D)%. By condi-
tioning on Y := 1{\Y¢ > 2D}, we obtain

. A . A ;
P° ((Al/d —2D)? < 2) — p° ((Al/d —2D)? < 51V = 1> Po(Y =1)
Io) A O
+P <(A1/d—2D)i <3 | Y:o) P°(Y = 0)

< P° ((Al/d —2D)4 < ;) +P°(\Y? < 2D)
< 2P°(D > e())),

where e(A) := (AY? — (\/2)"/4)/2. Finally, recalling that D has exponentially
decaying tails as at (3.11), we obtain

R A 1
P° (W)\ ©C(6,n)]s < 2) < 2 Caiam €XP (— e(A)d) :

Cdiam

Using this bound we have

AE )H,\(U ) W,\) —ﬁ,\(nm W)\)‘

<[ @ CEn M} (2aamesp (~ - e)?)) T Qualam)

Now ¢ satisfies the p-moment condition 2 (3.10) for p € (1, 00) and thus the first
factor is bounded by a constant uniformly over all m € M. Lemma 3.3 follows.

[]

1

Cdiam

Lemma 3.4 (Lemma 4.2 in Flimmel et al. [2020]).
Under the assumptions of Theorem 3.13(i), we have

lim AE |H,(n) — Hx(n)| = 0.

A—00
Proof. We follow the proof of Lemma 3.3. In (3.18), we integrate over R? instead
of over W), yielding a value of one for the inner integral. Now follow the proof

of Lemma 3.3 verbatim.

]
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Lemma 3.5 (Lemma 4.3 in Flimmel et al. [2020]).
Under the assumptions of Theorem 3.13(1), we have

)}1111 E ﬁ]x(n M W)\> — It])\(n) = 0.
—0

Proof. Write

h(C(2,m)) 1{C(&,n) = Wi}
Wy C(2,n)la

A
< WA Ol mla = S} 1{D: = dla, W)}

UA(E,m) = (3.19)

where D; is the radius of the ball centered at z and containing C'(Z, ) and where
D; is equal in distribution to D, with D at (3.16). Here d(x, W)) denotes the
Euclidean distance between x and W,. We observe that

E |\ oWa) — B[ <E Y o).

ienr\Wi

From now on, we use the notation ¢ to denote a universal positive constant
whose value may change from line to line. By the Holder inequality, the p-moment
condition 2 on &, and the assumption that C(Z,n) has an exponentially decaying
tail, we have E |7,(Z,7)| < (¢/A) exp (—1d(z, Wy)?). Thus

C

C

N ~ N 1
E ‘H)\(Tl M W)\) — H)\(n)‘ < AJ exp <—C d(I,W}\)d> d.T
ws

Let Wy . be the set of points in WY at distance ¢ from W). The co-area formula
implies

N o N © 1
E [y 0 W)~ Han)| < L JW exp <_ng> HO (dy) de.

e

Since HH (W) < ¢ (A\V4(1 + €))L, we get

A

E |f\(n 0 W) = Ha(n)| = 0x9),

Proof of Theorem 3.13.
(i) The asymptotic unbiasedness of Hy(nnWy), Hx(nnW ) and H,(n) is a con-
sequence of Lemmas 3.3, 3.4 and 3.5. For example, concerning Hy(n n W), one
may write
[E Hy(n 0 W) = E°h(Ko(n))| < E|Ha(n 0 W) — Ha(n)|
<E|H\(nn W) — Hx(n o W))| + E|Hx(n 0 W) — H(n)|
+E|Hx(n) — Ha(n)l,
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which in view of Lemmas 3.3, 3.4 and 3.5 goes to zero as A — co. This gives the
asymptotic unbiasedness of /1 NGIs! w »). One may similarly show the asymptotic
unbiasedness for Hy(n n W) and H(n).

(ii) To show consistency, we introduce Ty(n n W) = A~ Yisenai, §(&,m). By
assumption, ¢ stabilizes and satisfies the p-moment condition for p € (1,00).
Thus, using Theorem 2.1 of Penrose and Yukich [2003], we get that Ty (W ,) is
a consistent estimator of E°h(K,(n)). To prove the consistency of the estimators
in Theorem 3.13(iii), it is enough to show for one of them that it has the same
Ly limit as Ty(n n W,). We choose Hx( n W) and write

E ‘f{,\(’f] A W) = Ta(n N WA)‘

I . (AHC@E ) c M Yo C@,n)a= 3}
SENT ) ﬂ%@( W26 Cl ), 1)

iennw,\

. L A{C(@n) = WAL Wa e C(d,n)]a = 3}
SVE 2 et W26 0 =
< f ATEC R (Ko (n))| 'M{x el ;/ngl(ﬁg)f il 22l g,
_ f E° (|h(Ko (1)) Y3 (u)) du,

5.4

where we substituted A/ for z in the last equality and defined random variables

ALYy + Ko(n) @ Wil H{{W, © Ko(n)|a = 5}
(W © Ko()la

Ya(u) = ‘ —1l.

We show that Yy (u) converges to zero in P° probability for any u € (—1/2,1/2)%
Write the inclusion K,(n) < Bp(o), where D has exponentially decaying tails by
assumption. We conclude that both \/|W\© K, (n)|q and 1{|W Ko (n)|q = A/2}
tend to one in P° probability. To prove the convergence of Yy(u) to zero in PY
probability, it remains to show that 1{\Y9u + K4(n) = Wy} converges to one

in P° probability. Equivalently, we show that the PV probability of the event
{AVdy + Ko(n) = Wy} goes to 1. Let u e (—1/2,1/2)? be fixed. Then

PO AV e Wy © Ko(n)) = P° (A% e Wy, © Bp(o))

1 D 1 D]
_ 0 _ = - - _ =

1 D 1 D]

1 D 1 D
+]P)0 U€|:—2+)\1/d,2—)\1/d ‘D>10g)\>POD>IOg)\
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92 A\d 9 B A\1/d

d
+ P (uel 1, D1 D] \D>log)\>]P’o(D>log)\).

d
>1{ue l—1+logA ! logA] }PO(D<log)\)

PRGN

Again, D has exponentially decaying tails, so the lower bound converges to
Po(u € (—1/2,1/2)%) = 1, showing that Y\(u) goes to zero in probability as
A — o. We proved that Y, (u) converge to zero in P? probability, but they are
also uniformly bounded by one, hence it follows from the moment condition 2 on
¢ that h(Ko(n))Ya(u) goes to zero in L'. Finally, by the dominated convergence
theorem, we get

/\hm E IA{A(T] M W)\) - T)\(n M W)\) = 0.
—0

Thus H,(n n W) converges to E°h(Ko(n)) in L' and also in probability. The
consistency of the remaining estimators in Theorem 3.13 follows from Lemmas
3.3, 3.4 and 3.5. This completes the proof of Theorem 3.13. O

Proof of Theorem 3.14 (i). We prove the variance asymptotics (3.14). The
proof is split into two lemmas (Lemma 3.7 and Lemma 3.8). We first show an
auxiliary result used in the proofs of both lemmas. Then we prove the variance
asymptotics for H A(an,\). This is easier, since, after scaling by A, the scores are
bounded by 2|£(Z, )| and thus, by assumption, satisfy a p-moment condition 2 for
some p € (2,0). Finally, we conclude the proof by showing that the asymptotic
variance of H(n) is the same as the asymptotic variance of Hy(n n Wy).

Lemma 3.6 (Lemma 4.4 in Flimmel et al. [2020]).

Let o : R x N — R be an exponentially stabilizing function with respect to n and
which satisfies the p-moment condition 2 for some p € (2,0). Then there exists

a constant c € (0,00) such that for all z,7 € RY

Ep(@,nuld))e@nui{t}) —Ep(@n)Eep(@,n)

s &

A A 1 le%
< ( sup B (2,1 0 {y})lp> ow(~tle-l). B
#,jeRd

where p(T,n) 1= p(T,n U {Z}) if T ¢ n.

Proof. We follow the proof of Lemma 5.2 in Baryshnikov and Yukich [2005] and

show that the constant A, ; there involves the moment (E |o(Z,nu {g}})|p)% Put
R := max(R;, R;), where R;, R; are the radii of stabilization as in Proposition
3.2 for & and §, respectively. Furthermore, put r := ||z — y|/3 and define the
event £ := {R < r}. Holder’s inequality gives

Eo(@,nu{g})enu{t)) —Ee(@nu{g}h)ednu{i}){E}

p=2
s¢ ( sup E|o(Z,n v {@})Ip) P(ES) . (3.21)
i,5eRd
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Notice that

E¢(.n U {3})e(i,n U {2})1{E)
= Eg(@, (1 {5}) 0 B.(2)e(i (n U {2})  B,(2))1{E}
= E(@, (1 {7}) 0 B.(2)e(i (n 0 {}) 0 B,(2))(1 — 1{E)).

A second application of Holder’s inequality gives

[Eo(2,m 0 {5})e(5,n U {2})1{E}
—Ep(@,(nu {§}) 0 B.(2)e(@, (n U {&}) 0 B.(D))]

2

<e ( sup E (U {@mp)p B(E)T . (3.22)

#,5eRd

Combining (3.21) and (3.22) and using independence of ¢(Z, (7 U {§}) N B,(#))
and ¢(g, (n v {&}) N B.(%)), we have
[E@(@,nv{9})e@,n v {Z})
—E (@, (n v {}) 0 Bo(2))E (@, (nv {2}) 0 B.(D))]
= (ASPR E p(2, 10 {:&})V”)p P(E)'T (3.23)

Likewise we may show

A

E (2, mE¢(@,1) —E@(z,n 0 B.(2)E @@, n B.(9))|

<c < sup E[o(2,m 0 {@})\”> p P(E)7 . (3.24)

#,jeRd

Combining (3.23) and (3.24) and using that P(E°) decreases exponentially in
|z — y||*, we thus obtain (3.20).
[

Lemma 3.7 (Lemma 4.5 in Flimmel et al. [2020]).
If € is exponentially stabilizing with respect to n then

lim AVar H(n 0 W) = 0°(€),
—00
where o*(§) is at (3.13).

Proof. Put for all & € R¢ and any marked point process [,

A o NE(T, pom)
A, pm) 2= (WA © C(%, ttm)]a

o >

LWy C(&, pm)la = 5}

and
VA('%7NM) = <A<£7MM) 1{C(i'7:um) - WA}

110



Note that (), is translation-invariant whereas v, is not translation-invariant. Then
>‘H>\(77 N W)\) = Z:?:ean,\ V/\(ﬁv 77)

Recall that Q is the product measure of Lebesgue measure on R? and Q. By
the Slivnyak—Mecke theorem (Theorem 1.9) we have

AVar Hy(n n Wy) = A7'E Z vi(&,m) + AT'E Z vA(Z, n)va(@,m)
zennWy Z,jennW ;249
2

e f E2(3,n) Q(d2)
W

A fw fw [Eva(2,m 0 {5H0a(0n U {2}) = Eva(@,n) Eva(,m)]

—: I;(A) + L(\).

Here we use the convention that vy(Z, i) := vaA(Z, pm U {Z}) if T ¢ .
Using stationarity and the transformation u := A\9x we rewrite I;()\) as

L) =Xt JW JMEzi(om,n,x) Qui(dm) dz = JW E Z%(0ar, 1, A\Y%) du,
A 1

where Z)((z,m.), tim, ) = (\((2,m2), pm) L{C((2,m.), ptrn) = Wy — z}. Simi-
larly, by translation invariance of ¢y, we have

BV =X | [ B 2w 00 (o) Zalemn o fom ) 2)
Wy JWy—zx M
—E Z\(om,,n, %) E Z\(2my, 1, )] Qu(dmy) Qu(dms) dz dx
= J J [E Zx(0oa, 1 U {20}, \%) Zy(2a0,m U {onr}, \Y%)
W1 JWy—AVdy
—E Z/\(OM7 U )‘l/du) E ZA(ZM7 U )‘l/du)] dz dU,,

where 0,,, := (0,m1), Zm, := (2,m2), oy := (0, My), zpr := (2, M,) and M,, M,
are random marks distributed according to Q.

Since |(\(Z,n)| < 2[&(Z,n)|, ¢\ satisfies a p-moment condition 2, p € (2, ).
Recall that [WW,\&C(&,7)|4/A tends in probability to 1 and notice that Wy — A4y
for u e (—1/2,1/2)¢ increases to R? as A\ — co. Thus, as A — o0, we have for any

6 :=(0,my,), 2 := (2,m.) e R" and u € (—1/2,1/2)%,
EZ}\<67777)‘1/d )—>E£(O, )’
E Z3(6,1, \""u) — E£*(8,7),

(3.25)
(3.2
E Z)(6,1 v {2}, AV"u) Z5(2,n U {6}, A )—>E£( no{ZhE(znu{o }&

6)

C.O

)-
3.27)

. Thesri* ingredients are already enough to establish variance asymptotics for
Hyx(nnW). Indeed, I;(\) converges to E&?(oyr,n) by (3.26). Concerning I5(\),
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for each u € (—1/2,1/2)¢ we have

lim [E Zx(oar,n v {zm}s Al/dU)ZA(ZM, nu {ou}, Al/du)
A—>00 Wiy —Al/dy

—E Zx(0p, 0, \Y) E Zy(220, 7, A )] dz

— | B (oun arh)g(ennsn 0 four)) ~ Eélow mEE s, )] d.

Here we use that for any o € R%, the function Zy(-,-,z) : R x N — R is exponen-
tially stabilizing with respect to n and satisfies the p-moment condition 2 for some
p € (2,00). Thus, from Lemma 3.6, the integrand is dominated by an exponen-
tially decaying function of |z|*. Applying the dominated convergence theorem,
together with (3.25) and (3.27), we obtain the desired variance asymptotics since
Whlg = 1.

O
The next lemma completes the proof of Theorem 3.14 (i).

Lemma 3.8 (Lemma 4.6 in Flimmel et al. [2020]).
If & is exponentially stabilizing with respect to n then

lim AVar H,(n) = lim AVar Hx(n n W) = o%(€).
A—00 A—00

Proof. Write
M) = Y, w@n)+ Y ().

iean)\ fneani

Now

AVar Hy(n) = A 'Var Z va(2,n) | + A" 'Var Z v (Z,m)

zennWy ieani

+ 2\ Cov Z v (Z,m), Z vA(Z,1m)

FennWy zennWy

It suffices to show Var (Z:%eanK vA(Z, 7))) = O(A\4=1/4) for then the Cauchy—

Schwarz inequality shows that the covariance term in the above expression is
negligible compared to A.

Now we show Var (ZiemW? V,\(i,n)> = O(A\4=D/d) as follows. Note that
Hy(n) = Disen UA(2,m), where Dy (2,7) is at (3.19). By the Slivnyak-Mecke theo-
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rem we have

AVar Z va(2,m) | = A'E 2 3 (z,m)

i’EnﬁW?\ ieani

+/\_1E Z 79)\(‘%777)]9)\(@777) _)‘_1 E Z ﬁ/\(‘%ﬂ?)
&,9ennW ;i) FennWS

A

S R EOLCE

e[ B0 o Do ) — B0 EoaG )]
WS Jw$

x Q(dz) Q(dg)
=:IT(\) + I5(N).

By the Holder inequality, the moment condition 2 on ¢ and the assumed
exponential decay of the tail of the diameter of C'(Z,n), we have E Dy (Z,n)P <
cexp (—% d(x, WA)d) for some positive constant c¢. Then, similarly as in Lemma
3.5, we may use the co-area formula to obtain I}(\) = O(A~"/4).

To bound I5(A\) we appeal to Lemma 3.6. Notice that |0x(Z,n)| < 2|£(Z,n)|.
Since 7y, A > 1, are exponentially stabilizing with respect to n and satisfy the
p-moment condition 2 for p € (2, 0), then by Lemma 3.6

Eox(Z,nu{d})oag,nu{}) —EdN(z,n)Eia(G,n)

2
A A ~ ' 1 o4
<c ( sup E [9A(2,n U {y})lp> exp (— |z =yl ) :
%,9eRd ¢
Using this estimate we compute
1
c

B0 <A [ @l e (<1 - i) )

o 2 1 « A/
cox [ @aal? [ e (<2l —ul) dyias)
Wi R4 C

1 1
<en-! f exp (—d(ﬂS,WA)d) dz J exp (— Iy“) dy.
we c Rd ¢

Since §y, exp(—|y[|*/c) dy < o0, we obtain

IF(\) < c)\_lf

W3

1
exp <— d(x, Wk)d> dz.
c

Arguing as we did for I#()\) we obtain I}(\) = O(A~Y9).
O

Proof of Theorem 3.14 (ii). Now we prove the central limit theorems for
Hy(n n Wy) and Hy(n). Let us first introduce some notation. Define for any
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stationary marked point process fi,,, on R?,

Y Al/dA’)\l/d "

1/ds 1/d
= W e ooz i, HEA [ Nhp,) < Wy},

~

R R R A
Ex(d i) = €0(0 o) 1 {10 COU 2 0 > 5

where A\V43 := (\Y42, m,) and AV, := {\Y9% - & € p,, ).

Put
Sim W)= > GlEm), SamoaWi) = > &(Em),
i‘E?])\f\Wl i‘e’r]AﬂVAV1
as well as

S\(m) = Y &(Em),  Salm) = Y] (@ m).

Zeny Zeny

Notice that
Sx(m A W) ZXHA(pn W), Sa(m) 2 X\ Ha(n)

and
Sx(m n W) EXHA\(p A W,) and  Sx(m) 2 X Ha(n)

due to the distributional identity \/%ny 24 71. The reason for expressing the
statistic A Hx(nn W) in terms of the scores &,(2, ) is that it puts us in a better
position to apply the normal approximation results of Theorem 3.10 to the sums
S A (77,\ M Wl)

In particular, we use the previous result to establish a central limit theorem
for S’,\(n,\ N Wl) We may put X to be R? and we let Q be Lebesgue measure
on R¢ so tAhat 7y has intensity measure AQ, and we put K = Wi. We may write
S 0 Wh) = i ani 0@ m) H{z € Wi}t Note that §(Z,m)1{z € Wi},
S X, are exponentially stabilizing with respect to the input n,, they satisfy
the p-moment condition 2 for some p € (4,0), they vanish for x € WY, and
they (trivially) decay exponentially fast with respect to the distance to K. (see
Definition 3.17), Since the distance to K is zero for x € K this condition is
trivially satisfied. This makes Ix\ = ©(\) where I ) is defined at (3.8). Thus
all conditions of Theorem 3.10 are fulfilled and we deduce a central limit theorem
for S’,\(n,\ N Wl) and hence for [A{A(n N W,\)

We may also apply Theorem 3.10 to show a central limit theorem for S\ (M)
For z € W we find the radius D, such that C(A\Y4%, \Yn,) = Bp, (A\Y4z). Then
the score &,(2,n,) vanishes if D, > d(AY?z, W,). As in Proposition 3.1, D, has
exponentially decaying tails and thus é y decays exponentially fast with respect
to the distance to K.

Let dg(X,Y) denote the Kolmogorov distance between random variables X
and Y. Applying Theorem 3.10 we obtain

SA(U,\K\Wl)—ES’)\(nAﬂWﬂ C

= = ,N(0,1) | <
\/V&I"S)\(UA M Wl)

dg < ) )
\/Var S)\(TD\ N Wl)
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and

Sx(m) — ES\(ny) N(©0,1) | < c

Var S, () Var S (1»)

drc

Combining this with (3.14) and using Var 5',\(17,\ N Wl) > ¢\, we obtain as A — o

SA(U,\GWQ—ES)\(UA(\WQ D 2
ey N(0,0%(¢))

and

Sx(m) —ESx(m) o >
iy — N(0,0°(¢)).

To show that

SA(n,\mVAVl)—ESA(mle) D 2
G — N(0,0°(¢)), (3.28)

as A — 0, it sufﬁceis to show limy o E ENGNG I/T{l) — S’,A\(m N Wl)‘ = (. Since
E[Sx(nx n W1) — Sx(ma 0 W1)| = AE |[Hx(nx 0 W) — Hy(ny 0 Wy)|, we may
use Lemma 3.3 to prove (3.28). Likewise, to obtain the central limit theorem for
Sx(ny), it suffices to show limy_,., E |Sx(ny) — S’A(n,\)| = 0, which is a consequence
of Lemma 3.4. Hence we deduce from the central limit theorem for S A(1x) that
as A\ — o

PRI ZBN) 2 5 (1131) — BN Kali) -2 N (0. 0%,

This completes the proof of Theorem 3.14 (ii). O

Proofs of Theorems 3.15 and 3.16

Before giving the proof of Theorem 3.15 we recall from Proposition 3.2 that
translation-invariant cell characteristics £7 are exponentially stabilizing with re-
spect to Poisson input 7. This allows us to apply Theorem 3.14 to cell character-
istics of tessellations defined by p;, i = 1,2,3. For example, we can take h(-) to
be either the volume or surface area of a cell or the radius of the circumscribed
or inscribed ball.

Proof of Theorem 3.15. (i) The assertion of unbiasedness follows from Theo-
rem 3.12. (ii) To prove the asymptotic normality, we write

hCP (&, n)) == H[CP (2, n)|a < t} =: " (2, 7).

To deduce (3.15) from Theorem 3.14(ii) we need only verify the p-moment con-
dition 2 for p € (4,0) and the positivity of a%(¢?). The moment condition holds
for all p € [1,0) since ¢ is bounded by 1. To verify the positivity of o2(p?), we
recall Remark (i) following Theorem 3.14. More precisely we may use Theorem
2.1 of Penrose and Yukich [2001] and show that there is an almost surely finite
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random variable S and a non-degenerate random variable Afi(c0) such that for
all finite A — Bg(0)¢ we have

AP (o) = > H|C? (&, (nn Bs(0)) v A u {oar})la < 1}

#e(nnBs(o))uAuf{on}

- )y 1{|C? (&, (n n Bs(0)) U A)la < t}.

#e(nnBg(o))uA

We first explain the argument for the Voronoi case and then indicate how to
extend it to treat the Laguerre and Johnson-Mehl tessellations.

Let t € (0,00) be arbitrary but fixed. Let N be the smallest integer of even
parity that is larger than 4v/d. The choice of this value will be explained later
in the proof. For L > 0 we consider a collection of N cubes Qr.1,. .. ,Qr Na
centered around z;,7 = 1,..., N¢, such that

(i) Qr, has side length £, and
(i) W{Qrui=1,..., N} =[-L L]o,

Put e, := L/100N and QM = Qr; x M. Define the event

Epn = {\77 ) @L’i N gq(xl)\ =1, |nn QL,@' ) BZL(xZ)] =0,Vi = 1,...,Nd}.

Elementary properties of the Poisson point process show that P(E, y) > 0 for all
L and N.

On Ej n the faces of the tessellation restricted to [Z~, £]¢ nearly coincide
with the union of the boundaries of Qr;,i = 1,..., N4 and the cell generated by
tenn[Z+£,L— £]7is determined only by n o (U{Qr,,j€ 1z )}), where
jeI(z) if and only if & € QLJ or QLJ- N QL’Z» # (& for i such that & e QLﬂ-. Thus
inserting a point at the origin will not affect the cells far from the origin. More
precisely, the cells around the points outside RL,N = [- 2]\?, 2]\?] x M are not
affected by inserting a point at the origin. For Sy, := L/2 we have R, y < Bg, (0)
due to our choice of the value N. Therefore,

C” (&, (1 0 Bs, (0)) v A v {oa}) = C7 (%, (n " B, (0)) U A)

for any finite A ¢ Bg, (0)° and 2 € (n n (Bs, (0)\R.y)) U A. Consequently, on
EL,N?

APt (e0) = > 1{|C? (&, (n " Bs, (0)) v AU four})la < t)

i'e(nmRL,N)U{OJW}

- >, HIC"(@ (10 Bs,(0)) v Ay <t}

:%EHHRL’N

Figure 3.1 illustrates the difference appearing in A*'(o0) on Ey y for d = 2. The

cells generated by the points outside the square [—%, %]2 are identical for both

point configurations whereas the cells generated by the points inside the square
may differ.
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Figure 3.1; Voronoi tessellations in [—%, £]? generated by (n N Bs, (0)) U A (left)
and (n n Bg,(0)) u. AU {oy} (right). The ball Bg, (o) shown in blue encloses
the red square [—2&, 2612 where here N has a value of 10.

On the event Ej, y, the cell generated by Z € (n n RL,N) U {0y} is contained
in U{Qr;,j € I(z)} and thus

A - 3L\°
sup |CP(Z,(nn Bg,(0)) uA)a< | = | -

iE(T}ﬁRL,N)U{OM} N

If L e (0, NtV?/3), then all cell volumes in Ry are at most ¢; thus A”*(c0) = 1
on the event £, y with Ly := %Ntl/d. Similarly,

d
00 B, 0) U A fodla > (5 )
se(nn iy, ) otonr) 3N

If L e (3Nt c0), then all the cell volumes in Ry, y exceed t and thus A”* (o0) = 0
on the event Ep, y with Ly := 6Nt/4. Taking S := Sp, 1{Fr, v} + Sr,1{EL, v},
we have found two disjoint events Er, v and Ep, n, each having positive prob-
ability, such that Ar'(co) takes different values on these events, and thus it is
non-degenerate. Hence, o(¢”') > 0 and we can apply Theorem 3.14(ii).

To prove the positivity of o2(¢”?) and o?(pP?) we shall consider a subset
of Epn. Assume there exists a parameter p* € [0,u] and a small interval
I(p*) < [0, 2] for some a = 0 such that Qu(I,(p*)) > 0. Define £, y to be the
intersection of E7 y and the event F, y, that the Poisson points in [—L/2, L/2]?
have marks in I, (p*). If o is small enough, then the Laguerre and Johnson—Mehl
cells nearly coincide with the Voronoi cells on the event E r,n- Consideration of
the events 7, y and E, y shows that A (c0) and A (c0) are non-degenerate,
implying that o2?(¢”?) > 0 and 02(¢”?) > 0. Thus Theorem 3.15 holds for the
Laguerre and Johnson—Mehl tessellations. O]

Remark. In the same way, one can establish that Theorem 3.15 holds for any A
taking the form

WK) = 1{g(K) <t} or h(K) = 1{g(K) > 1}
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for t € (0,00) fixed and g : (F?%, B(F?)) — (R,B(R)), a homogeneous function
of order ¢, i.e., g(aK) = adg(K) for all K € F and o € (0,0). Examples
of the function g include (a) g(K) := HY1(0K), (b) g(K) := diam(K), (c)
g(K) := radius of the circumscribed ball of K, and (d) ¢g(K) := radius of the
circumscribed ball of K.

Proof of Theorem 3.16. The unbiasedness is again a consequence of Theo-
rem 3.12. To prove the asymptotic normality, we need to check the p-moment
condition 2 for

i, n) = HTH(CP (2,1))1{C" (,n) is bounded}

and the positivity of 02(£7),1 = 1,2, 3.

First we verify the moment condition 2 with p = 5. Given any 2,9 € R,
we assert that E2¥HI1(0C? (2,n))° = EHYL(0CP (2,7 U {§}))® < ¢ < oo for
some constant ¢ that does not depend on # and . From Proposition 3.2 there is
a random variable R; such that

Cr (@, v {3}) = M H(2).

ze(nu{g}\{2})nBr, (z)

As in Proposition 3.1 we find D; such that C?(%,n u {§}) < Bp,(Z). Then

HITH0C (&, v {7})) < > ' (OH:(2) N Bp, (%))
s\ DB, (@)

< ¢iaDf'(Br, (2))

for some constant ¢; 4 that depends only on ¢ and d. Using the Cauchy-Schwarz
inequality we get

EH' (00 (@0 (9) < B D) A (E (B, (2))')"2.
By the property of the Poisson distribution we have
E1(Bg, (1)) = E(E (n(Br,(2))'° | R:)) = E P(|Bg, (x)]a),

where P(-) is a polynomial of degree 10. Both D; and R; have exponentially
decaying tails and the decay is not depending on Z. Therefore,

(E D DY2(E n( By, (2))9)Y2 is bounded and the moment condition 2 is sat-
isfied with p = 5.

The positivity of the asymptotic variance can be shown similarly as in the
proof of Theorem 3.15. We will show it only for the Voronoi case, as the La-
guerre and Johnson—Mehl tessellations can be treated similarly. We will again
find a random variable S and a A?'(o0) such that for all finite A ¢ Bg(0)® we
have

AP (a0) = > (&, (n 0 Bs(o)) u AU {ou})

2e(nnBg(o))uAL{on}

— Y @ Bse) v A)

i"e(nr\Bs(o))u.A
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and moreover AP(c0) assumes different values on two events having positive
probability and is thus non-degenerate. By Theorem 2.1 of Penrose and Yukich
[2001], this is enough to show the positivity of o(£°1).

Let L > 0 and let N € N have odd parity. Abusing notation, we construct
a collection of N cubes Qp 1, ... , Qp na centered around x; € R¢i=1,... N
such that

(i) Qr; has side length £, and
(i) V{Qrui=1,...,N} =[-L L],

There is a unique index iy € {1,..., N9} such that x;, = 0. We define ¢/, @Lﬂ»
and the event Ey n as in the proof of Theorem 3.15. Note that under Ej,

inf |z <ep.
(z,ma)EnnQr 4

Hence, on the event £y, y, the insertion of the origin into the point configu-
ration creates a new face of the tessellation whose surface area is bounded below
by Cmin(L/N)4~1 and bounded above by ¢naz(L/N)41. Thus

cun (£) 50 ( (;)“) <800 < ens (5) 0 ( (;)“) |

where O(e, (%)d_Q) is the change in the combined surface areas of the already
existing faces after inserting the origin. Events Er, v, Fr, v, L1 < L, both occur
with positive probability for any L, L,. Similarly as in the proof of Theorem
3.15 we can find N, S, Ly and Ly (L — Ly large enough) such that the value of
AP1(o0) differs on each event. Thus o?(£P1) is strictly positive.

To show that 02(£72) and 02(£°?) are strictly positive we argue as follows. The
Laguerre and Johnson-Mehl tessellations are close to the Voronoi tessellation on
the event F, n o, for o small. Arguing as we did in the proof of Theorem 3.15 and
considering the event E L.~ given in the proof of that theorem, we may conclude
that 02(£72) > 0 and o2(£7%) > 0. O
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4. Method of cumulants

4.1 Cumulants of random variables

In Section 1.1, we defined factorial cumulant measures of a point process p implic-
itly as the measures occurring in the Taylor series expansion of the logarithm of
the probability generating functional. Alternatively, it was defined using the rela-
tion (1.4) from the factorial moment measures of . This relation is an analogy to
the relation between moments and cumulants (also known as semi-invariants) of
a real-valued random variable X. We recall here the definition of cumulant, and
we present several of its properties. We refer to Brillinger [1975], Shiryayev [1984]
and Gnedenko and Kolmogorov [1954] for further detailed probabilistic aspects
of this topic.

Denote by s := E X* the k-th moment of a random variable X and assume
it is finite. Provided that it has a Taylor expansion about the origin, the moment
generating function equals

k

%. (4.1)

0
Mx(r):=Ee™ = Z [k
k=0

The k-th moment of X is then the k-th derivative of Mx at the origin. The
logarithm of the moment generating function is called the cumulant generating
function since its Taylor expansion about the origin

0 Tk
Kx(r) :=log Mx(r) = ,;0 ko (4.2)
contains the cumulants ki := Cumy(X) as the coefficients. Evidently po = 1

implies Ky = 0. By extracting coefficients from the expansion, one can further see
that k1 = 1, Ko is the variance and k3 = E (X — ,ul)?’. Higher-order cumulants are,
however, not the same as centered moments. Explicit relations between higher-
order cumulants and moments may be established by formal manipulations of
the series (4.1) and (4.2) (see e.g. Corollary 3.1 in Peccati and Taqqu [2008]). If
E|X|* < o0, we have

=YD= Y [ (4.3)

k14-+k=k;k;>1 1=1

and inversely,
!

k
Hoke :Z
=1k

Hence, the existence of the moment g, implies the existence of all cumulants up
to the order k.

While the moments of a random variable have a simpler interpretation than
the cumulants, the cumulants are often mathematically easier to handle. In par-
ticular, the advantage of working with cumulant generating function over the

Rk, -
14tk =k,k;=1 1=1
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ordinary moment generating function is the additivity for two independent ran-
dom variables X, Y, that is

Kx:y(r) = logE [¢"*]
= logE [e’”X] E [ery]
= logE [e’"X] + logE [eTY]
= Kx(r) + Ky (r).

Hence, each cumulant of a sum of independent random variables is the sum of
the corresponding cumulants. Similarly, for any constant ¢ € R,

Kx..(r) = Kx(r) + rec. (4.4)

Since the k-th cumulant of X is the k-th derivative of Kx at the origin, we get

immediately that the first cumulant of the random variable X + ¢ equals the first

cumulant of X plus ¢ and the higher-order cumulants are shift-invariant.
Moreover, for any n € N and any constant ¢ € R, we have

Cum,(cX) = "Cum,(X). (4.5)
This property can be seen directly from (4.3).

Example 4.1 (Cumulants of a Gaussian random variable).
The cumulant generating function of a Gaussian random variable Z ~ N(u, 0?)
is

Ky(r) = rp+r’c?/2.

Apart from what has been said generally for cumulants of the first and the second
order, all cumulants of order three and higher are zero.

It follows from a classical result of Marcinkiewicz (see Marcinkiewicz [1939] or
p. 213 in Lukacs [1970]) that if all but a finite number of cumulants of a random
variable are non-zero then the random variable must either have a Gaussian
distribution or be a constant. Either way we have k; = 0 for all k > 3.

By the moment convergence theorem formulated in terms of cumulants (see
e.g. Saulis and Statulevicius [1991]), the convergence of the cumulants of the
third and higher orders to zero is equivalent to the convergence in distribution to
a Gaussian random variable (assuming the degenerated case is also considered as
Gaussian). The latter statement forms the key idea of what is known under the
method of cumulants.

4.2 Cumulant expansion technique

To our knowledge, there is no unifying approach in the literature for the usage of
the method of cumulants in proving asymptotic properties of random geometric
objects. Usually, it appears in combination with one of the previously described
methods. We have already mentioned in Chapter 3 the moment approach in
stabilization introduced in Baryshnikov and Yukich [2005] using the method of
cumulants described in the previous section. Alternatively, it can be used directly
on a case by case basis for a given functional of a given random geometric object.
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Some ideas shall be demonstrated on the planar cylinder process = described in
Example 1.15. The content of this and the following section is mainly based on
papers Flimmel and Heinrich [2021+] and Heinrich and Spiess [2013].

Assume that K < R? is a fixed compact set that is star-shaped w.r.t. the
origin o being an inner point of K. The aim of this and the subsequent section
is to study the limit behaviour of the random variable |2 n pK|y as p — 0.
The set K is chosen so that pK " R? First, we shall link the cumulants of
|= N pK |2 with the characteristics of the unmarked point process W, namely with
its factorial moment measures and factorial cumulant measures.

We assume that the probability space [Q2, F,P] on which the underlying
marked point process W ; (recall Example 1.15) is defined can be chosen in such
a way that the mapping (z,w) — 1z, (z) € {0,1} for (z,w) € R* x Q is measur-
able w.r.t. the product o-field B(R?) ® F, see Appendix in Heinrich [2005]. This
enables us to apply Fubini’s theorem to the random field of indicator variables
{1=(z),z € R?} and implies that the k-th moment function

k
p(Ek)(xl, R ,.Tk) =FE <H 15(1’3)) = ]P’(:cl € E,, ..., X € E), T1,...,T € RZ,
j=1

(4.6)
are B(R?*")-measurable for any k € N.
By C®, we denoted the family of non-empty compact sets in R?. The Choquet
functional of = is defined by
T=(X) =PEnNX # &), XeC?. (4.7)

In particular, the k-th order moment functions p(Ekc) of the 0 — 1-random field
&(z) := 1z¢(x) can be expressed by (4.6) and (4.7) for any k > 1:

p(;c)(a:l, cooxE) =E (H f(l‘l))

=P({xy,...,2x} N E = &)
=1 —TE({l’l,...,l’k}).

The following lemma connects the Choquet functional of the random set =
with the probability generating functional Gy (recall Definition 1.11) of the un-
marked point process V.

Lemma 4.1 (Lemma 1 in Flimmel and Heinrich [2021+]).
For any X € C®, we have

T=(X) = 1 = Gy[1 = P((-) € [~ Ro, Ro] @ (v(®o), X)) ], (4.8)

where (v(®g), X) 1= J,ex{v(Po),x) with the scalar product {-,-) in R* and

v(Pg) = (cos Dy, sin D) is the normal vector.

Proof. To prove formula (4.8), we need the orthogonal matrix

O(p) = (COW Sm@), (4.9)

sinyp cosyp
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which represents an anti-clockwise rotation by the angle ¢ € [0,7) so that

O(—p)v(p) = (1,0)T and O(p)(1,0)T = v(p). Note that
O(—p) = 0" () = 0~ (¢).

By the definition of the probability generating functional of = and the indepen-
dence assumption in Definition 1.33, we obtain

T=(X)=1-P(En X = &)
=1-P ( ﬂ {(9(Pi, ;) @ blo, R;)) n X = ®}>

_1_E H 1({(g(P, @) ®b(o, R;)) n X = &F})

i:Pevw

=1- JE [ H (1 =P((g(pi, ®;) @ b(o, R;)) n X = &)V = ¢ = {p;} | Pu(d?)

i:pi €Y

_1_JH (1 —=P((g(ps, ®:) @ b0, R;)) n X = &)) Py (dy))

1:piEY

_1—JH (1 —P(p; € [~ Ro, Ro] ® (v(®g), X)) Py (de)). (4.10)

P:p; €Y

Obviously, (4.10) coincides with (4.8). The relation (4.10) is seen as follows:

{(9(p @0) ®b(0, o)) 0 X # | = {po(@0) € (— 9(0.20) ® V(0. o)) & X }
= {p(@0) & (900, 20) @ b(o. o)) ® X |

— {pO(=@0)u(®0) € (4(0,0) @ b(o, Ry)) ® O(~ @)X |

{p(1,0)" € (4(0,0) ®b(o, F)) ® O(~¥y) X |

= {p e [~Ro, Ro] @ (0(20), X) .

Hence, the proof of (4.8) is complete.

Corollary 4.1 (Corollary 1 in Flimmel and Heinrich [2021-+]).
For X = {xy,...,x} with distinct points z1 ...,z € R* we get the relation

1-P ((') e | J([—Ro, Ro] @<U(@0)a$i>))] :

i=1

Tgc({xl, c ,:Ck}) = G\y

123



Example 4.2.
For a stationary Poisson process n with intensity A, we have by (1.7) that

T(X) = 1- exp{ -2 | P((9(p,20) @ b0, Ro)) n X # 2) dp
—1- exp{ — \E |[~Ro, Ry @<v(c1>0),x>yl}

=1 {2 [ [l=r 1@ e). 0], 46 ()F ()

Y

In the special case X = {z1,...,z;} such that z; = (z = 52))

from Corollary 4.1 that

, it follows
TE({xb s Jxk}> =1- €xp {

1}
T 00
=1—exp —)\JJ
00

Next, we use Lemma 4.1 to link the cumulants of |Z n pK|y directly with the
probability generating function of ¥ and hence by Theorem 1.4 and Theorem 1.6
with its factorial moment and factorial cumulant measures, respectively. Using
the k-th moment function (4.6), one can express the k-th moment of |= N pK|y
as

EZnpK|f =E J Hl d(zy,...,28) = J p(Ek)(asl,...,xk)d(xl,...,:zrk).
(pK)*

Next, we define the k—th cumulant function by

@y, Z D= Y, Hp#K) crie Kj),  (4.11)

k
U —Ro, Ro] + ) cos Py + a:( ) sin D)

F(r)dG(p)

k
U cosgo—i—x( )Sin<p)

%

1

(=1 Kiu-uKy j=
Z{1 k)
for z1,...,x, € R% Note that the cumulant functions of the second and higher
orders satisfy the identity C(Ek) (x1,...,2x) = (— l)kc@ (x1,...,2,) and moreover,

Cumy (|2 N pKly) : = J B (ay,an)d(z, . o)
(pK)®
_(c1) J By ad@n ). (412)
(pK)k

Then, by applying Fubini’s theorem together with Corollary 4.1, we find that

E[E 0 pkls = E [ 1=(e)Luc(o)ds = | () = o [ To({pas

_ p2j(1 ~ Gu[1 — P(() € [~ Ro, Ro] @ plo(®o), 2))])de.  (4.13)
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Moreover, it is easily seen that

P (w1, 23) — p& (21)pY) (22) = p&) (1, 25) — &) (w1)pS! (x2). (4.14)

So, for the variance (the second cumulant), we get from (4.14) and Corollary 4.1
that

Var <|E M PK| J J ,Il, 1‘2 p(_c)(xl)p(ﬁc (-’L'Q))d.flfld.IQ

f f (()e Q([—RO,RO] @ (v(Po), 7:))) ]

_ H G []_ - ]P)(( ) € [—Ro, Ro] @ <U(q)0>, $Z>>])dl’1d1'2
i=1
(4.15)
Notation. Formula (4.15) can be generalized to higher-order cumulants. Before

that, to simplify the notation, we define for £ > 2 points z1,...,z, € R?, 5 =
[—Ro, Ro] and v(p) = (cos g, sin )T the functions

and

For k = 1 we put w,(p) := wy(p) = wg(p). Obviously, wy, ,,(p) = w,, (p) +
waQ (p) - wa?l,xg (p)

By Lemma 4.1, the k-th order moment functions p(Ekc) of the 0 — 1-random field
&(x) := 1zc(x) can be expressed for any k > 1 by:

p(Ekc)(l’l,..., <H§x3 ) {$1,...,xk}ﬂ::@)ZG\p[l—w; ,,,,, wk()]

Then, together with (4.11) and (4.12), we conclude that

Cumy(|Z n pK]ls)

f PG (RS VDY) HpSfKﬂ(xs;seKj)d(xl,...,xk)
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In order to treat the moments and cumulants of |= n pK|y, the following

relations are useful. Let ay,as, ... be real numbers in [0, 1]. Then we have
n n k—1 #
1—H(1—ai)= Z ai ... a; forn=1.

i=1 k=1 : 1<i1, ... ip<n

Moreover, for any odd number m < n (provided n > 2), the so-called Bonferroni
inequalities (see e.g. Galambos and Simonelli [1996]) hold:

7”2(— D, azk\1ﬁ1a¢)<m(_
) (4.17)

1<i1,...,0<n =1 k=1 ' 1<i1,...,0<n
As a consequence of (2.17) and (4.17) and the definition of the factorial moment
measures al¥l(-) of U ~ P, we get the following series expansion

E|ZnpK|y = f (1 - Go[l = w,(+)])dz = p? f (1 - Go[l = wy()])dz

pK K

2

(pj)at™(d(p1, - . ., px))de, (4.18)

Kre It

provided that the infinite sum on the right-hand side converges. From (4.17), we
obtain immediately the estimates

‘1_%[1_%(-)]— ) ()™ (dpy, ... p1))
<o |1 ﬁ wnp3)a A, ) (4.19)

RmM

for any m > 1. It is easily seen that the right-hand side of (4.18) is convergent if
and only if

J prx pi)a™(d(py, .. pm)) 7= 0. (4.20)

m—0o0
Rm 7=

At this place, we specify the point processes of interest. We deﬁne a stronger
version of Brillinger-mixing property (recall Definition 1.28). If de( ) possesses
a Lebesgue density cffz()i() on R*1 (called the k-th reduced cumulant density),

we define the canonical L,-norm HcffZ?in = (fpen |c£lzzi(x)\qu) Y for k > 2 and

, 1
the modified L*-norm HQ(»Z!HZ = {p ($pros \cﬁié(m,p)\qu) "dp for k > 3, where
1<qg<oo.

Definition 4.1 (Strongly (L,-, L}-)Brillinger-mixing point process).

A stationary point process ¥ on [R', B(R')] with intensity A = E¥([0,1]) > 0

satisfying E W*([0, 1]) < oo for all k > 2, is said to be strongly Brillinger-mixing

(strongly L,-Brillinger-mixing, resp. strongly L?- Brillinger mixing for some g >
1) if there are constants b > 0 and a > b~! such that H%ed”TV < ab®k! (if cﬁlzzl()

exists such that ||cred||1 < oo and Hcrequ < ag(by)*k! for k > 2 with constants

aq, by > 0 resp. HCEJZLHZ ak(bk)FE! for k = 3 with constants a, b > 0).
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Remark. For formal reason we put nydeTV = 1 and Hc,,equ :=1sothata > b7!

makes H%edHTV := 1 < ab. Further, note that the existence and integrability of

k
() imply that |coy|y = |72 |7y and [y = %[5 = |47y for all & = 3.

In Heinrich and Pawlas [2013] and Heinrich [2021+], the relations between
(strong) Brillinger-mixing and classical mixing conditions are studied. Strong
Brillinger-mixing property requires exponential moments of the number of points
in bounded sets. For any dimension d > 1, examples of such point processes are
DPP’s (Example 1.10), Poisson cluster processes (Example 1.7) if the number of
daughter points has an exponential moment and certain Cox processes (Example
1.6) as well as Gibbsian processes (Example 1.11) under suitable restrictions,
see Ruelle [1969]. For d = 1, renewal processes with an exponentially decaying
interrenewal density, see Heinrich and Schmidt [1985], among them the Erlang
process and the Macchi process, see Daley and Vere-Jones [2003] (p. 144), are
strongly Brillinger-mixing.

Now, one Way to show (4.20) consists of expressing al™(-) by factorial cumu-
lant measures v¥1(-),k = 1,...,m as in (1.5) and assuming that ¥ is strongly
Brillinger-mixing (strongly Lq Brillinger—mixing, resp. strongly L7-Brillinger-
mixing).

Lemma 4.2 (Lemma 3 in Flimmel and Heinrich [2021+]).
If the stationary point process W ~ P is strongly Brillinger-mizing with b <
and ERO < oo, then

1
2

b -
j [ [ p)al ) < 35 (explarE Zoh} 1), (421

Rm J=
which immediately implies (4.20). If U ~ P is strongly L,-Brillinger-mizing for
some q > 1 such that b, < %(]E|EO|)%71, then the estimate (4.21) remains valid
with a and b replaced by a,(E \EO|)%71 and by(E |Eo|)17%, respectively.

Proof. Using the representation (1.5), we obtain

m! f [ [wee(pi)ot™(d(ps, .. pm))

gm J=1
S H | TTomton® a2 1)
=1Kju- quj HK iEK]'
={1,...,m} R J
m! U] L (k)
:le N 2 kly...kzlljf :ZZ 2 H el (4.22)
1+ +ke=m j=1 =1 " ki1+-Fkg=mi=
ki=1,i=1...0 ki=1,i=1...0
where

= [Tl ™.

) [ Tl + priEhlpes . )

R1 RE—1 =2
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for k = 1,...,m. The equality (4.22) is justified by the invariance of y[*I(x*_ B;)
against permutations of the bounded sets By, ..., By € B(R!) for each k € N. We
proceed with

)] < Afwmpl) f (s, .., pi)dp

Rl Rk 1
= AE 2o, [y} |7
< a)\E ’\:0‘1b k!

Here, we have used Fubini’s theorem combined with w,,(p) < 1 for p € R! and
z € R? so that

prx(p)dp = JIP’(p € Zo + plv(Py), x>)dp = f]P)(p € Eo)dp =E|Z|;.
R! R1 R1
Hence, together with the combinatorial relations
m—1 o (m—1 1
S () w S0

ki+--+ko=m
ki=1,i=1....0

we arrive at

1 TIFG)] < (@AE [Zof)f (m—1
o, % 1w n e ()

< bm2mfl max (CL)\E|E()|1)E
= 1<0<m /!

< ;(exp{aAE S0} — 1)(25)™, (4.23)

By combining (4.22) and (4.23) with b < 1/2 the relation (4.21) follows immedi-
ately. Under the strong L,-Brillinger-mixing condition we may rewrite f(k) for
k = 2 as follows:

k
f(k) = Aprw(pl)E J 1”1+p<v( )1'>(pl +p1)c1(ﬂ]2l(p27 R 7pk’)d(p2a v 7pk)dp17

R1 Rk-1 i=2

where =; = [—R;, R;] and (Ra, ®s), ..., (R, Px) are i.i.d. random vectors with
same distribution as (Rp, ®g). Applying Holder’s inequality for ¢ > 1 and
p = q/(qg — 1), Lyapunov’s inequality E |EO|% < (E \EO|)% = (E|EO|)17% and the
condition ||c£lzzl|\q < agbfk!, we obtain that

k

1

()] < Ao 1Eih [ [EIZi];
=2
k

< el (B [Zol )+
< Aag(E [Z|1)7 (by(E [Zo|1)' ™) R,
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By repeating the foregoing steps with the latter bound the proof of Lemma 3 is
finished.
O

Further, we can use the representation of Cumyg(|Z n pKls) (4.16) together
with the expansion of the probability generating functional (4.19). Under the
assumption of the strong type of Brillinger-mixing property of ¥, we are ready to
determine the asymptotic variance of |= n pK |y and central limit theorem based
on Lemma 4.2.

4.3 Asymptotic properties of a planar cylinder
process

Asymptotic properties of cylinder processes in expanding domains using the cu-
mulant method were studied under the Poisson setting in Heinrich and Spiess
[2009], Heinrich and Spiess [2013]. Some of the results were then generalized for
cylinder processes constructed from a strong Brillinger-mixing point process in
Flimmel and Heinrich [2021+].

In order to prove the asymptotic normality of p=3%(|2 n pK|s — E|ZE n pK]>)
as p — oo one has to show that

p 3 2Cumy (|2 N pK|y) P 0, forany k > 3. (4.24)
Indeed, (4.24) is sufficient by the homogeneity (4.5) and shift invariance (4.4) of
the cumulants of the second or higher orders. Then by the method of cumulants
(see the text after Example 4.1), we have that

p (2N K, s —E[Zn K,]) B N(0,05(K, F,G)),

where Var [ "
(K. F.G) = lim SIE 0P

(4.25)

denotes the asymptotic variance, if the limit exists. Note that the order p?
of the growth of Var (|]Z n pK|y) is much faster than the growth of the area
|pK |y = p?| K|y which reveals a typical feature of long-range dependencies within
the random set =.

Poisson setting

First, we shall briefly mention the results under the Poisson setting as the starting
point for a more detailed analysis of cylinder processes driven by strong Brillinger-
mixing point processes.

The results are formulated in Heinrich and Spiess [2013] for a general dimen-
sion. The cylinder process in R? is constructed as a union of k-flats (0 < k < d—1)
which are dilated by an independent and identically distributed random compact
cylinder base taken from the corresponding (d — k)-dimensional orthogonal com-
plement. More precisely, it can be introduced as follows. By G(d, k) we denote
the Grassmannian of k-dimensional subspaces of R?, where k = 0,...,d — 1. For
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L € G(d, k) (direction space) and a set B in the orthogonal complement L+ (base),
we define the corresponding cylinder as L @ B.

Let {e1, ..., eq} be the usual orthonormal basis of R? and Ej:=span{ey, . .., e},
Eib := span{eq_pi1,...,eq} orthogonal subspaces, k € {0,...,d — 1}. Then for
a given L € G(d, k), there exists an equivalence class of orthogonal matrices
O € R¥>? with det O = 1 and OF,, = L. Further, each equivalence class can be
identified with a single representative Op. It follows from a fact from differential
geometry that the dimension dim(G(d, k)) = (d — k)k implies that there exists
a parametric representation of the matrices @, over some subset of R@*¥  In
particular, if d = 2 and k& = 1, a suitable representation is the one in (4.9). At
last, we denote by SO{ the family of all such Oy. In this way, each random
subspace L € G(d, k) corresponds with a unique random matrix ©(L) € SOf.

Assume that 1, = >, d[p, (e,z,)] is a stationary, independently marked Pois-
son point process on R? with intensity A > 0 and marks with values in S@z x C4=Fk,
where C7 denoted the space of all compact subsets of R?, j € N. Similarly as in
the Example 1.15, the cylinder process is defined as a stationary random set

EA,k = U @Z((EZ + B) X Rk) (426)

=1

Remark. When k = 0, the union set (4.26) coincides with the Boolean model
(see Example 1.14).

The following results give the asymptotic normality of the random variable
|Zxk N pK |4 with increasing p, where K is assumed to be a compact star-shaped
(w.r.t the origin o € R?) subset of R? such that B(o,cx) = K < B(o,1) for some
ek € (0,1].

Theorem 4.1 (Theorem 1 in Heinrich and Spiess [2013]).
Assume that the typical cylinder base Zq is a.s. compact and 0 < E|Z[3_, < oo.
Then

’Ek,k N pK|q— pd|K‘d(1 — @_)‘E‘Eo|d7k) >
\/V&r (12xk N pK|a) p—0

N(0,1).

Moreover, by Lemma 1 of Heinrich and Spiess [2009], the variance of |Z, ; N
pK |4 increases proportionally to the (d+ k)-th power of p, i.e. there are constants
c1, co not depending on p such that

apttt < Var (|25, N pKlg) < cop?t, for all p > 1.
The exact form of the asymptotic variance

. Var (|2 n pK|a)
o3k (K) = lim P

is given by the following theorem.

Theorem 4.2 (Theorem 2 in Heinrich and Spiess [2013]).
Let the assumptions of Theorem 4.1 hold. Then,
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(a) if O is discretely distributed on some at most countable set {6; € SO, i e I},

then
R ulE) = P 07 H) [ (0~ 1)y,

iel R~k

where f(y,0;) :==E (|20 N (Eg — y)|a—r 1{O¢ = 0;}) forie I and

I(0TK) = J 0K n (0TK — (0,2)")|qdz, 6 € SOY,

(b) if ©g is continuously distributed, then

o3k (K) = e PR (1,00 K)[Solis) -

Asymptotic variance in the strong Brillinger-mixing setting

This and the subsequent section is devoted to the application of the method
of cumulant in order to generalize Theorem 4.1 and Theorem 4.2 to cylinder
processes driven by strong Brillinger-mixing processes. In both sections we admit
only the planar case as it was described in Example 1.15.

Under comparatively strong conditions on the higher-order cumulant measures
of the unmarked (ground) point process we are able to prove first, a mean-square
limit of the relative part of the area of an expanding star-shaped window covered
by the union of cylinders, and second, we derive an explicit formula for the
asymptotic variance (4.25) of this area using the representations (4.13) and (4.15).
The latter is an important first step in proving the asymptotic normality of the
covered area which shall follow in the subsequent section.

The limit (4.25) is positive and finite (if E |Z|* = 4E R2 < o) and depends on
the shape of K, the first and second moment of F' and the distribution function
G which is assumed to be continuous (not necessarily absolutely continuous).

Lemma 4.3 (Lemma 4 in Flimmel and Heinrich [2021+]).

Let U ~ P be a stationary point process on R satisfying maxocp<m Hyl’jiﬂw <
for some fixed m = 2. If ERy < o0 and o ~ G has a continuous distribution

function G then, for m = 2 not necessarily distinct points 1, ..., r, € R*\{o},
JHW% pj)a d(pla--'apm ;?Amnprx )dp = (AR |Zo[1)™.
rRm J=
(4.27)

Remark. A purely discrete distribution function G yields different expressions
for the asymptotic variance o%(K, F,G) even if ¥ = 7 is a stationary Poisson
point process with intensity A > 0 (see Theorem 4.2). A distribution function
G without jumps implies that P(®q = ®;) = 0 if the angles &y, ®; ~ G are
independent.

Proof. We use the representation (1.5) for k& = m to rewrite the difference of
left-hand and right-hand sides of (4.27) as follows:
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DEDIRG f | [ @ (050 (@(ps - i € K)).

T s
Hence, the limit (4.27) is shown if and only if the finite sum in the latter line
disappears as p — o and this in turn follows by showing that, for &k = 2,... m,

k
k
= f Wpay (pl) prxi (pz + pl)’%[*e}i(d(p% s 7pk))dp1 0 0.

Bk i=2

In view of 0 < w,, (pi + p1) < 1fori=3,..., kit is sufficient to prove that

J fmpl & Zot pCo(@o), ) B(pr € Sotp0(®0), 2)—pa)dpn 1 (A, - ., )

RE—1R1

asymptotically disappears as p — 0. Since the total variation measure |7£’Z1l| (+)is
bounded on R¥~! and the inner integral over R! is less than or equal to E |2, we
have only to verify that the inner integral disappears as p — co. For this purpose,
we rewrite its integrand as expectation E1z, i po(@,),2:5(P1) 10+ p¢0(®2),29>—p2}(P1)
where Z; = [—R;, R;] and ®; for i = 1,2 have the same distribution as =y =
[—Ro, Ro] and @, respectively, and Ry, Ry, ®1, ®5 are independent of each other.
By Fubini’s theorem and the shift-invariance of the Lebesgue measure, we arrive
at

fp(pl € Zo + plv(Po), x1))P(p1 € Zo + plv(Po), x2) — p2)dpy

Rl

= f E Lz +pto(@1) 20} (P1) (224 pcu(@2) 2)-p2} (P1)dP1
Rl
= |El N (EZ — D2 + p(<’U(<I>2), I2> — <U<q)1), $1>)) }1 ;—oo_) 0.
The limit in the last line can verified as follows: Let us take two fixed points
z; = |z4]/(cos(c), sin(a;)) € R%, i = 1,2, and two points v(p;) = (cos(¢;),sin(y;)),
i = 1,2, on the unit circle line. It can be easily seen that the equality (v(¢1), 1) =
(w(pa), zay, i.e. ||x1] cos(pr — aq) = [|aa] cos(pe — agy) holds for at most a finite
number of pairs 1, o € [0, 7]. Hence, for two independent random angles &1, @,
with common atomless distribution function G(-) we have

P((o(®y), 1) # (v(Dy), 7)) = 1

for any two points x, 1o € R? with ||z1| + 22| > 0.
[

From Lemma 4.3 and (4.19) we obtain the behaviour of the expectation of
|= N pK]ly as p — .
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Corollary 4.2 (Corollary 2 in Flimmel and Heinrich [2021+]).
Let ¥ ~ P be a Brillinger-mixing point process on R'. If E Ry < o0 and &g ~ G
has a continuous distribution function G, then

E|=n pKls O (—1)k1 ~ i
\pK |2 p—0 Z k! (AE|Z0/1)* = 1 — exp{—AE |Z¢],}.
k=1 :

Proof. An application of (4.27) for z; = -+ = z,, = = # o to the inequality
(4.19) yields

. O (DR E)F) (AR [Zol)™
ph—go(l) (1 - Gull = wpa(- Z X < o (4.28)
for any m > 1. Combining this with (4.18) leads to
ElEnpKl, 1 f O (CDF TR [Zof1)
= 1—-Gyll —wy()])dz
’pr ’K‘QK ( ‘Ij[ P ()]) p—00 kz—ll k"
which immediately gives the assertion of Corollary 4.2.
O

The following result can be considered as a planar mean-square ergodic the-
orem which implies a weak law of large numbers for |= n pK| in the Euclidean
plane R2.

Theorem 4.3 (Theorem 1 in Flimmel and Heinrich [2021+]).
Assume that the stationary point process W on RY is Brillinger-mizing. Further

suppose that E Ry < o0 and ®y ~ G has a continuous distribution function G.
Then

= K i
E (W (1—exp{—AE[Zol, })) —— 0 with Zy:=[-Ro, Ro]. (4.29)
2

Proof. The expectation on the left-hand side of (4.29) can be expressed as follows:

Var (|2 n pK]|s) (]E|EmpK\2 < 2
+ - l—exp{—)\]E|EO|1}> .
|pK|3 |pK |2

In view of Corollary 4.2 it remains to prove that p~#Var (| n pK|s,) P 0.

Using the representation (4.15), we get

p~*Var (|2 n pKly) = p~* f J G\p wy ()] — lf[Gg,[l — wzi(.)Ddxlde

pK pK

ff Gq, W ()] = Gu1 = e, ()] Gu[1 - wpm(-)Ddzvlda:g.
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Thus, we just have to show that the integrand disappears as p — oo for distinct
points x1, 5 € K\{o}, that is,

Gu[l = wppy e, ()] = Gul1 = wpa, ()] Gu[1 = wpa, ()] — 0. (4.30)
We make use of the finite expansion (4.19) of the pgf Gy[1 — w,,(-)] with re-

mainder term, where w,, can be replaced by any Borel measurable function
w : R+ [0, 1]. For brevity, we put

Sli) i= 3, (1)} Tilw)
k=0
with .
Ty(w) = 1 and Ti(w) = oo [ [ Jwlm)ad,....n0)

for 1 < k < m e N. Hence, (4.19) reads as |Gy[1 — w(-)] — Sim(w)| < Ty (w)
which leads us to the following estimate for m > 2:

‘G‘I’ [1 B w;zl,ng(')] - G‘I’[ wpivl ] [ wpx?(')]
- (S (w;ml pmg) Sm (wpm)Sm(me))’
< |Gul1 = 05y )] = S (W05, )

pT1,pT2 PTL,pT2

G‘I’ [1 — Woz, ()]
S (W, )

< To(wy, )+ Tm(“’pm) + Tm(wpm) Tm(wmﬁ) (wm) (4.31)

PT1,pT2

+ ‘G\p[l — Wy, (- ] S (Wpay)

* ‘G‘I’ (1= wpar ()] = S (Wp,)

Here, we have additionally used that Gy[1 —w(-)] < 1 and [S,,(w)| < Gy[1 —
w()] + Tn(w).

We are now in a position to apply the limit (4.22) under the assumptions of
Lemma 4.3. This yields for : = 1,2 and m e N

(AE[Zg|1)™

Tm(wpxl) o0 il
and 1
Swy) —— S AEE)" s QEIS0l)™
m pPT; p—0 = k' m'
for some 6 € [—1, 1] in accordance with [e=* — 37! (*Iz)’“ <= for any me N
and = = 0.

Next, we have to find the limit of T,,(w},, ,.,) as p — co. Using the relation
Wy, 4, (D) = Wa, (P) + Way (p) —wG, ,,(p) and taking into account that the factorial

moment measure o™ is invariant under permutation of its m components, we
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may write

1 n m
Tm( pa:l pacg - ﬁ J 1_[ Wpgey p] + wp$2(pj) px1,px2(pj))a[ ](d(ph v 7pm))

= 7,1“ 1 (woes (05) + wpas (07)) o™ (A1, - ) (4.32)
1 m
EZ ( > fﬂwm pas (Pi) ]_[ (Woay (D) + Woy (p;)) ™ (A (D1, - . ., Pm))-

j=0+1

There is at least one term wf . (p;) = P(p; € (B0 + pv(Po),21)) N (B +
plv(®g), z2))) in each summand of the last line which will be integrated over
R! w.r.t. dp; so that after expressing al™ by cumulant measures, see (1.5), the
expectation E |2 n (Zg + plv(Py), z2 — x1))|1 emerges and disappears as p — ©
if x1 # x5. Thus, the last line disappears completely as p — o0, whereas the line
(4.32) converges to the limit (2AE |Zo|1)™/m! as p — o« by applying the limit
(4.23) once more. Therefore, we obtain for any m € N that T, (w}

(2AE |Zg|1)™/m! and

 —
Wpay, pxz) 0

m—1 =
y (—2)\IE|:0|1)]C
Sm(wpflihpfm) p—00 Z k)'
k=0 ’

6—2)\]E 201

+ 0y

20E |Zp)1)™
(‘|0|1) for some 6, € [—1,1].

The latter limit combined with above limits of S, (w,,,) for i = 1,2 leads to

H S (wu )_Sm(wpxl)sm(wpmz)

p—0 m PT1,PT2

20\E AE AE
_EEL" | OBEL" OB

m! m! (m!)?
For any given ¢ € (0,1], we find some m(e) such that W < ¢ for all

m = m(e).

Thus, the right-hand side of the last inequality does not exceed 2¢ + €2 for suf-
ficiently large m. The same bound can be obtained for the limit (as p — o0) of
the four summands in line (4.31).

Finally, after summarizing all e-bounds of the above limiting terms we arrive at
T [ Ga[1 = w5y (V] = Gu[1 = e, ()]G [1 = w0 (V]| < 2022 + £3) < 6e.

This implies (4.30) completing the proof of Theorem 4.3.
O

Next, we provide the exact asymptotic behaviour of the variance of the area of
the cylinder process (1.12) that is contained in a star-shaped set p K" which is grow-
ing unboundedly in all directions. For this purpose, in comparison with Theorem
4.3, we need a strengthening and quantification of the classical Brillinger-mixing
condition.

135



Theorem 4.4 (Theorem 2 in Flimmel and Heinrich [2021+]).
Assume that the stationary point process U on R is either strongly Brillinger-

mizing with b < 1/2 or strongly L,-Brillinger-mizing with (E |EO|1)1_%bq < 1/2
and strongly L}-Brillinger-mizing with (E|EO|1)1_%b; < 1/2 for some q > 1,
where Zy := [— Ry, Ro]. Further suppose that E R: < o0 and ®y ~ G has a con-
tinuous distribution function G. Then

OH(K, F,G) = Ae E=h (B|Zo]y) "2 (R)CTS + 2B |2 RC5),  (4.33)

where

Ci s [(Elgn20) 0 K1)Pdp

RI

and

7 T (p£7/2)

C5K = f J K n (K + sv(p + g)|2d3dG( ).

0 0

Remark. In the special case K = b(o, 1), one can show that ool = 13—6 and

CQG K= g are independent of the distribution function G. If ®y is uniformly

distributed on [0, 7], then we get

00 s
1
et = 5 | ([ oto.o) 0 Klude) an
™
-0 0
21 0
G,K 1
c5™ = o [ [ 15 o ¢ + et >>\2dsdw—f'“ K””?H [
00

_1ff dzdy
2m J ) |z =yl
K K

The latter double integral is known as second-order chord power integral of
K, see e.g. Heinrich and Spiess [2013], p. 327, and Schneider and Weil [2008],
Chapter 7, for integral geometric background.

In order to prove Theorem 4.4, the following two lemmas are essential. In-
terestingly, the assumptions to prove the following lemmas are rather mild in
comparison with the Brillinger-mixing-type conditions in Theorems 4.3 and 4.4.

Lemma 4.4 (Lemma 5 in Flimmel and Heinrich [2021+]).

Let W ~ P be a second-order stationary point process on R' with H%%HTV < .
Further, suppose that E Ry < o0 and ®y ~ G with a not necessarily continuous
distribution function G. Then

o [ [ [ om0 0212 0 )k (4.34)

K K R2?

AE [Z0)1) 2 (R j (E9(p, ®0) ~ K1) dp

Rl

=
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Proof. By the stationarity of ¥, we may write y2(d(py, p2)) = /\fyﬁ]d(de —p1)dp;
which gives

P J f J W (1) Wy (p2)dazdyy? (d(p1, p2))

R2 K K

— pA J f f Wo (1) Wy (3 + pr)dadyy 2 (dps)dpr.
R2 K K

To determine the limit of the right-hand side as p — o0, we rewrite the probabil-
ities wy,(p1) = P(p1 € {---}) and wpy(p2 + p1) = P(p2 + p1 € {---}) by means of
the expectation (as integral over the product of probability measures) over the
corresponding indicator function 1y..;. We fix Z; = & (compact sets in R') and
O, = ¢; (angles in [0,7]) for ¢ = 1,2 and omit the expectation which stands
in front of all other integrals due to Fubini’s theorem. The intensity A will be
suppressed. Further, we write x = (21, x2) and y = (y1,y2). Thus, we only treat
the integral

Jp(Ka 1,1, &2, 902) =p f J J 1§1+p(a¢1 cos p1+12 sinm)(pl)

R2 K K
2
X 1§2+ﬂ(y1 cos o+ sin 4,92)(}72 + p1)d(x1, x2)d<y17 yQ)%Eeli(dpQ)dpl
- pJ J f Lx (21, 22) 1 (Y15 Y2) Ley 4 p(ar cos o1 o sinor) (P1)
R2 R2 R2

X 1§2+p(y1 cos p2+y2 sin p2) (p2 + pl)d(x17 $2)d<y17 y2)7££1(dp2>dpl
(4.35)

Now, we substitute (z1,29)7 = O(p1)(ur, u2)?, (y1,92)7 = O(p2)(v1,v2)T |
where O(p1) and O(yy) are defined by (4.9). Then z; = wuj cosp; — ug sin ¢y,
To = U1 SiN Y1 + Uy cos 1 and y; = vy COS g — Vo SIN Yo, Yo = V1 SIN P + Vo COS P3.
Hence, since O(p;)~" = O(—¢;) for i = 1,2, the integral J,(K, &, ¢1,&2, p2) in
(4.35) takes on the form

P f f J 1(9(—501)K(u17 u2)10(—ﬂp2)K(vl’ U2)1§1+pU1 (p1)1§2+pv1 (p2 + pl)
R2 R2 R2

x d(uy, ug)d (v, v2) 72 (dps)dpy
—p f f f Loy (111, 12) Lo( gy (01, 02)Les (o —on) (01) s (92 + 1)
R2 R2 R2
x d(uy, uz)d(vr, v2)Yiey(dpz)dpy.

It is easy to see that the invariance properties of the one-dimensional Hausdorff
measure on R? (also denoted by | - |;) yield

Jlo(—m)K(UbW)duz = |g(u1,0) 0 O(—¢1) K|y
B

= 0(¢1)g(u1,0) n K|y
= [g(u1, 1) N Kls.
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and likewise | 1o(—p, i (v1,v2)dva = [g(v1, 2) N K.
R1

Therefore, the integral J,(K, &1, @1, &2, 2) is equal to

pJ f f 9(u, 01) A K1]g(v, 02) 0 K1 1ey 4 pu) (01)1ey (p2 + p1)dudoy 2 (dps)dpy

R2 R! R!
- pf J f l9(w +v,01) N Kl1lg(v, 02) 0 K11g4p0(p1)1e, (P2 + p1)dwdv
R2 R1 R1

x 2L (dp2)dpy
= JJ f lg(w/p +v,01) 0 K[1|g(v,02) N K|11¢, 10(p1)1e, (p2 + p1)dwdy

R2 R R?

x 2 (dpy)dpy

p—0 JJJ‘Q v, 1) N K|1|g(v, 2) N K|11_¢ 4p, (W) 1g,—p, (p1)dwdo

R2 R R?

x 7511((?1192)(1]91

2
= |&h /&l (R f Lietor K)o 001 (V190 01) O K1 e, 1), (0,50 (V)
Rl
x |g(v, p2) N Kidv,

where the interval [((p;, K),r(p;, K)] = {v e R : g(v,¢;) n K # &} coincides
with the orthogonal projection of O(—¢;)K on the v-axis for i = 1,2. To justify
the above limit we have used that |g(w/p + v,¢1) N K|; < diam(K) so that
Lebesgue’s dominated convergence theorem can be applied. Furthermore, it is
easily seen that

T, (K, €1, 01, &0, 02)| < diam(K)| K |2|€1]1|€a 1 [ 12, |2y (4.36)

Hence, the limit of (4.34), i.e. limit of AE J,(K,Z;, ®1, 2, ®3) as p — o0, exists
and can be expressed by using the independence assumptions as follows:

— 2
ME[Zal2) 2 24RY) [ (B Lo oo (0)lg(v, Bo) 0 KJr)do
RI
Note that the indicator function 1y e, x)r(@o,k)](-) can be omitted since the range
of integration w.r.t. v is well-defined.
O

Lemma 4.5 (Lemma 6 in Flimmel and Heinrich [2021+]).
Assume that E R < o0 and @y ~ G with a not necessarily continuous distribution
function G. Then

p J J J Wiy oy (P)dpdziday

K KR!

x Tk (pEF)
T
——>2E|HO|IJ J K 0 (K + sv(p £ 2))hdsdG(p)
0
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with r () == max{r = 0 : rv(¢) € K ® (—K)}. Obviously, it is true that
re(¥) = (Y £ 7).

Proof. With the abbreviation =y = [— Ry, Ro| we obtain that

K)i=p | [ [ upptpdpdeds

K KR!

JJ]P’(p € Zo N (S0 + plv(Po),y — 2))dpddy

~ f Lka—i/() K A (I = y) B |Zo 0 (Fo + pCo(@0), ) rdy

271 00

) j J Lo (s (50 (8))| K A (I — s0(@))E [Ep A (So + ps cos(@y — )] ysdsd,

where we have substituted y = sv(¢)) with v(¢) = (cos,siney)? and with
() = max{s = 0 : sv(¢)) € K ® (—K)}(= rx(¢ £ m) due to symmetry
reasons). Moreover, using the independence of ®; and Ry, the latter expression
equals

2 i (3

)
pJ J K N (K — sv(¥))E|Z0 0 (Zg + pscos(Py — 1)) ]1sdsdyp
0 0
2m—®g ri (Y+Po)
R J f K A (K = 500t + 80))E [Zo (S + ps cos(th))]rsdsd
~%, 0
2m T (Y+Po)

R J f K (K — 500 + B0)) o [So (S + ps cos(th))]rsdsde

0
=2pE f
0

TK(1/1+<I>0
where we additionally used first, S Ddy = SQW o, (7)Y due to v(y) =
v(¢ + 2m) and second, the shift-i invariance of |- |1, the motlon invariance of | - |5
and v(¢ + ) = —v(w).
By definition of rx (1)), we have that s > rx (1) if and only if sv(¢) ¢ K®(—K)

which happens if and only if K n (K + sv(¢)) = . Thus, the inner integral

ri (Y+Po) .
0

|K N (K + sv(y + ®))|2E |Z0 n (2o + pscos(¥))]sdsd,

o%

in the above double integral can be replaced by So showing that

QpEJ

0
1

= QpJE
1

|K " (K 4 sv(y) + @g))|2E |20 N (Zg + pscos(v))]1sdsdy

©—3

|K n (K + sv(arccos(y) + Do))|2E |20 N (o + psy)|lsd317_y2

S—3
o
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by substituting y = cos(¢)) € [—1,1] so that we obtain ¢ = arccos(y) and
! 1
(arccos(y))’ = i So, the latter equals

[CORNE]
z — — pdzds
E Kn (K - d E|= = —_
JJ| N ( +sv(arccos(5)+ o)) |2E|Z0 N (20 + p2)|1 =0

0 —s

by substituting z = sy € [—s,s] so that y = z/s and changing the order of
integration. Interchanging again the integration over z and s, we can proceed
with the abbreviation

h(s,z,®g) := sv(arccos( ) + @)
= (zcosq)o — /82 — 22sin Pg, zsin Dy + V2 — 22 cos@o),

where 0 < [|h(s, 2, @p)|| = s < rg = max{rg(p) : 0 < ¢ < 7} < diam(K),
leading to
J,(K) = 2E K~ (K + h(s, 2. ®))LE Sy (2 sdspdz
P( ) - ‘ ﬂ( + (8727 0))’2 ‘—'Om(\—40+pZ)‘l\/ﬁ
RY [2|
I dsd
- = sdsdu
_ ZEJ J K o (K + h(s,u/p, ) E [Zo ~ (Bo + )l oo
R ful/p

by substituting u = pz so that z = u/p. Thus,

rK
J,(K) — 2E f f K (K + 50(y + 7/2)bE [Zo 0 (So + u)|sdsdu.

p—>0
R! O

We could apply Lebesgue’s dominated convergence theorem since

T e
sds 1 dt
f K o (K + (s, u/p, %)) b < |Ko < | K|pdiam(K).
2 2 — (u/p) J NG

Further, we use the continuity of the function z — h(s, z, ¢), arccos(0) = 7/2
and h(s,0,¢) = sv(p+7/2) = s(—sinp,cos )T (= —sv(¢—7/2)) and the relation
$p1 [0 0 (0 + w)|idu = |Z0|f = 4R§ combined with a multiple application of
Fubini’s theorem. Finally, we arrive at

—pfff Wi oy (P)dpdz1dTs

K KR!
x TE(ptF)
w—w>2E|H0|1f f K o (K +so(p £ 0)],dsdGle).
0
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Proof of Theorem 4.4. Recall that
p~*Var (|2 N pK|,)

JJ G\p Wi o (¢ )] = Gl = wp, ()]G |1 - wpmz(-)Ddxlde.

(4.37)

Instead of using the factorial moment expansion of the pgf’s Gy[l — wy, .1,
Gp[l—w,, | and Gp[l—w,,, | asin (4.18) and (4.19), we first rewrite the integrand
of the right-hand side of the foregoing equality as follows:

'0<G‘I’[1 - w;xhpxz(')] - G‘I’[l - wﬂ»’ﬁl(')]G‘l’[l - wmz(')])
= 0Gu[1 — 100, ()]Co[1 — ey ()] (4.38)
% (exp{10g Gall =15, sy ()] =108 Gl = Wy, ()] ~10g Ga[1 = wpey ()]} ~1).

In order to evaluate the exponent in (4.38), We use an expansion of log Gy [1—w(")]
in terms of the factorial cumulant measures v¥! of ¥ ~ P, see Theorem 1.6, which
is as follows:

g Gt~ w0)] = ¥ 5 [TTwlp om0 (439

provided the sum in (4.39) is convergent. In what follows we will show that
T j j o8 Gal1— 5,0, ()]~ 108 G~ 0, ()] ~ 108 Ga[1L ~ 0, ()]|drsdiry

(4.40)
is finite. Before proving this, we note that the relation (4.28) implies that

)\E = AE [=5]1)™
hm Gyl —wy ()] = Z ’ Zoly)" +9( ’m?’l) — exp{—AE |Zo|1}

(4.41)
for some 6 € [—1, 1] uniformly for all x # o. Furthermore, it is rapidly seen that

the limit (4.30) (which has been proved under the assumptions of Theorem 4.3)
holds if and only if

lim <log Gu[l = wS,, 0. ()] = log Gy[1 = wp, ()] — log Gu[1 — wm(.)]) ~0

p—00
for distinct points z1,z9 € K\{0}. Finally, the latter limit combined with (4.40)
proves the equality

l}grogpff exp log Gull =Wy, e, ()] —log Gu[l — wyy, ()]

~log Gy[l — wpm(-)]} - 1>dx1dx2

ﬁ}l—{lolopff log Gy (1 pxl prz( )] —log Gy[l — wf’wl(')]
—log Gy[1 — wpm2(~)]>dx1dx2.
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z2 max(x,O)

The equality of both limits results from the inequality |[e* — 1 — 2| < %-e
and Lebesgue’s dominated convergence theorem.

Combining the latter equality with (4.38), (4.40), (4.41) and the integral rep-
resentation (4.37), we can state the relation

plij% p3Var (|E A pK|2) e~ 22 B[S0l Jip JJp(log Gyl —wy ()] (4.42)

p—>00

~10g Gu[1 = e, ()] ~ Tog Ga[1 = wpe, ()] ) dv1daa,

By using the expansion (4.39), the double integral on the right-hand side of (4.42)
takes the form

j f log Gall = 0, ()]~ 10g Ga[1 = wyu(()] —0g Gal1 = wp ()] ) dady

Y

o nTp) K
Z:: (=)"TP(K)

where 7, 7gp)(K ) for n € N is defined by
T(p)

o1t Fli o)

K kre 71

(4.43)

Since v (dp) = Adp and wY, ., (p) — Wpe(p) — wpy(p) = —wi, . (D), we get

~TP(K) = )\JJJPUJ"” py(P)dpdady = AJ,(K) —— 2AE 1Z02C57K,

K KR!

where the limit is just the assertion of Lemma 4.5. The above proof of Lemma
4.5 reveals that [T (K)| < AJ,(K) < 2AE |Z|2| K |pdiam(K). In the next step,

we derive a uniform bound of T2(p )(K ) as well as its limit as p — 0. For doing
this, we rewrite

H wpx Py (p;) H Wog (p;) 1_[ wpy(pj) = wpx(pl)wpy(p2) + wpy(pl)wpx (p2)
i—1

- wpx,py<p1) px,py(p2> - w;z,py(p1> (wpx(pQ) + wpy<p2))

and by regarding the symmetry in z,y and py, p, we get

= pfjf prx o (P5) ]_[w,m p;) ]_[wpy P ) (d(pr, p2))dwdy

K kre 7=
- JJ <2w’m (Pr) ey (p2)= (w;x,py(pz)+2w,,x(p2))w;mvpy(p1)>7[2](d(p1,p2))dxdy
K K R2
5 ()
- J f W (p1) w5y (P2 (d(p1, p2))drdy + T (K), (4.44)
K K R2
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~ (p)
Ts ’ (K 3)\PJJJ J’wpx oy (7 wpx(p? + pl)’%edePz)dpldxdy
K KRI 1
= 3ApJJ w;x,py(p1>E h/rgi‘ (EO + p<’U((I30), l.> o Pl)dpldxdy
K KR!

(4.45)

Clearly, we have oo > hi]d‘(Rl) > E ‘yz]d‘(EmLp@(@O), T)—p1) e 0 for z # o.
Together with the arguments used in the proof of Lemma 4.5, among them the
uniform estimate J,(K) < 2E|Z,|*| K |odiam(K), it follows that %2(/))([() — 0.
Finally, Lemma 4.4 and (4.44) show that ’

77 (K)

2 p—>00

A(E [Zol) 1 2L(RY) j (E|9(p. Bo) ~ K]1) dp

R1
(E|_‘0| ) /yred(Rl)C
In addition, we can derive a uniform bound of TQ(p )(K ). From (4.45) and the
above bound of T{”)(K) we get

~ (p) . —
T2 " (K)| < 3|72 rv [T (K)| < 6| K |adiam(K) 12, |7y E |Zo[2.

Hence, we see from (4.36) and (4.43) that, for two independent pairs (Z;, ®;),i =
1,2, with the same distribution as (=g, ®¢), the following estimate holds:

_ _ = (0)
T3 (K| < 201,(K, E1, 01, Z3, )| + T

< 8A|K |odiam(K)E |Zo[2| 72 v

(K)

Obviously, the limit (4.33) coincides with lim, ., (=T (K) + 173" (K)). Thus,
the proof of Theorem 4.4 is accomplished if we show that

TP (K
lim 7 (K) = 0 and SupM

C’K for n > 3 such that Z CK < 0.
n=3

(4.46)

This means that we have to find suitable upper bounds of the integrals (4.43)
for each n > 3 which are uniform w.r.t. p and disappear as p — . Using
the reduced factorial cumulant measures ”y?Eed defined (in differential notation)
by Y (d(py,...,pn)) = )\%ed((dpz p; o @ # j))dp; for any j = 1,...,n, the
boundedness of the total variation measure |77[7;]i| () on R™! and obvious relations

H Wy (Pi)
i1

n

H (wpz (pi) + wpy(pi)) -

=1

H:l:

?
L

J# 5y Zk
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and

—.

(wpx(pz) + Wpy (pz)) - w;x,py(pi)

T

1 n
U

wpa: py(pk’) wpcc,py(pi) 1_[ (wpx(pj) + wpy(pj)>

-
I
—
T
D= L+

x>
Il
—

w;x Py (Pk )

N
1=
1= T

(wpx (pj) + wpy (pj)) ’

o

Il

—_
el

#

S,

we obtain the following estimates

UJ ﬁ (w2 (pi) + 0y (1) prx (p:) pry (pi > (p1,...,pn))dxdy'

K kge 1

n—1 n

n

- Z (k‘) f prcc pz H wﬂy(pj)’y[n] (d(p17 S 7pn))dxdy‘

k=1 K K j=k+1
<T7§71)<K) 2 ( >JJJPUJP;E p1 J prx pl—i—pl) H wpy(pj_i,-pl)

k=1 K KR! _q 1=2 j=k+1
% [yey [ (d(pa, - .. pn))dprdady (4.47)

i =1

‘ JJ [T (woai) + wpy(0:)) = | [win pz) (d(pl,---,pn))dxdy‘
K KR =1

<)\nJ fpwpx oy (p1) f H Wy (Pj+P1) + W,y (Pj+P1) )h/red‘ (p2; - - - Pn))dprdady
K KR

Rn— 1-7
5 (n—1
k=1 Ri—1 1=2
x l_[ Woy (9 + 1) reea| (A(pa, -, pa))dprdaedy. (4.48)
j=k+1

Obviously, we have |7 (K)| < T,gf’l)(K) + TéfQ)(K) for n > 3. Let us first, rewrite
the integral terms in (4.47). For this purpose we introduce the abbreviation

n

fr(prz Jffpwpx pl J pra: Di +p1) 1_[ wpy(pj +p1>

K KR RA—1 =2 Jj=k+1
x [y (d(pa, - - pa))dprdady
for k =2,...,n—1. Asin (4.35) we substitute + = O(®;)u and y = O(P,,)w with
O(-) as defined in (4.9). Since O~(p) = O(—) and det(O(p)) = 1 it follows that

u=0(—P))z, w=0(—2,)y and (v(P;),x) = (W(P;), O(P1)uy = (v(P; — Py), u)
for i = 1,...,k and (v(®,),y) = w(®; — ®,),w) for j = k+1,...,n. Note
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that (v(®,),2) = u; and W(®,),y) = wy for u = (u1,uz)? and w = (w1, wy)7,
respectively.

Similarly as in the proof of Lemma 4.2, let (Ry, ®y),..., (R,, ®,) be inde-
pendent copies of the random vector (Ry, ®¢) and =y, ..., =, independent copies
of the random interval Zy = [~ Ry, Ro]. Then the product wp,(p) [r_, wpe(p; +
1) H?:kﬂ W,y (p; + p1) can be expressed as the expectation

k
E (Lzssptonn (o) [ [ 0+ 21) H Lz, ot (P5 + P1)).

=2 j=k+1

which, together with the above transformations of z, y € R? and Fubini’s theorem,
allows us to write I,(f )(K) in the form

k
Jff J E1+puy pl H 2i+pv(P;—P1) u>(pz +p1)

R2 R2 Rl Rn—1 1=2
x 1‘J+p<v(<1> —a,).wy(Pj + P1)1lz, (Pn + P1 — pwl))
j=k+1

‘%[12]1‘ (d(p2, -+, pn))dp1le( cpl) (W) Lo(ayx () (ug, ug)d(wy, ws)

= JJJ J 1:1+p (w1 = wl)(pl pwl) 1“1+P<v(<1> —®&1),u)—pw (pz +p1 — pwl)

R2 R2 Rl Rn—1
Jj=k+1

X [yl (A(pas -, pa))dD1 o0, () Lo(—a,) i (w)d (1, uz)d (wy, ws)

k
_E JJJ f H E+p<v(¢> (I’l)“> Pwl(pz +p1)

R? R2 Rl Rn~1
H 12, 4 p(o(®;— @) w)—pwr (P + P1) 121 4 pur —wn) (P1) 1=, (Pn + p1)>
j=k+1
‘%ﬂ’(d (P2s - -+ pn))dP1Lo(— 01y K () Lo(—0,) Kk (W) d (U, ug)d(wy, wa)

= JJJ J L2+ pCo(@i 1), (21-+w1,22))— pun (pi +p1)

R2 R2RI R?—1

X 1~]+p<v(<1> —®,),wH—pw; (pj + p1)lz4p 1(p)1=, (P -|-p)>
j=k+1

X ‘77[2(]1|(d(p2, v 7pn))dp1(9(—q>1)[{((21 + wy, 22))10(_(}”)K<w)
x d(z1, z2)d(w1, wo)
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k
J J J J (H Lz, 4 o(@—1), (21 +pw1 p22))—pun (pz + p1)

R2 R2 Rl Rn—1 -

X IIibﬁmm%f%m@me%+pﬂ1aQM+pﬂ>
j=k+1

n z
< real @p2s o)Lz, () dprLog-anyae (0 + 1, 2)
X 10(,%)K((w1, wg))d(zl, Zg)d(wl, wg). (449)

Replacing the two products of indicator functions in (4.49) by 1 leads to the
following bound of Iﬁf )(K) provided that |7£Z£‘(R"*1) < 0:

& JJJ J <1_51+p1(zl 1z, —pn pl))‘%[zgz‘(d(pm---,pn))dpl

R2 R2 Rl Rn—1

2
X lo—o )K(( + w1, 22))d(21, 22) Lo, ik (w1, we))d(wy, wa)

- JJJ J 17H1+p1 21 1:" “Pn pl))‘f%[:gl’(d(p%upn))dpl

RlRlRan 1
X ‘9( + wy, ®1) N Ki|g(ws, @) N K|idzdun

< diam (K f|9 wy, @) N Klrdw, f J 1z 4p (21)15,—p, (p1)dz1dpy

R! R
X ”Yred‘ (R™ 1
= diam(K)|K|,E rEmE [l real R
— diam (K)| K1 (E |Zo}1)? |7 bl v (4.50)

Here, we have used arguments that have already been applied to prove (4.36).
Also, the product of the indicator functions in the first line of (4.49) disappears
as p — o P-a.s. and for a.a. (wy,ws), (21, 22),p1,(p2, - .-, pn) € R™™ wor.t.
the corresponding product measure. Therefore, again by Lebesgue’s dominated
convergence theorem,

lim [Y)(K)=0 for k=2,...,n,n>3. (4.51)

p—>30

Next, we derive a further bound of I,(f ,1([( ) that depends more on the mean
thickness E |Zg|; of the typical cylinder. For this, we need the Radon—Nikodym
density | (pa, ... pa)| of [7L()| w.r.t. to Lebesgue measure on R™~!. Hence,
by using Fubini’s theorem, we replace the integral (4.50) over R"~! by two iter-
ated integrals. The first integral over (ps,...,pn_1) € R"2 can be estimated by

Holder’s inequality as follows:
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n—1

k
f 1_[ 2i+v(P;—P1),(21+pw1,p22))—pwi1—p1 (pl) 1“]+p<11(‘1) —®p),wy—pwi— Pl(pj)
Rn—2 =2 j=k+1

|c$,221 (P2y -+ s D1, Dn ‘d P2, -+ Pn1)

n—1

k
J H Ei+v(®i—®1),(21+pwi,pz2))—pwi—p1 (pi) Lz 4 po(@;— @) w)—pun —p (pj)
Rn—2 =2 j=k+1

=1 1
X d(p27"'7pn—1)> ’ ( f |C7("72l(p27~--apn—lapn)‘qd(p%'~‘7pn—1)>q
Rn—2

(H ) 7 1 pl (4.52)

for any ¢ > 1, where Hcred( Pn) |, coincides with the term before the equal sign in
(4.52). Combmmg the estimates (4.47) and (4.52) with |g(p, ) N K|; < diam(K)
for (p,¢) € R' x [0, 7], §4 [9(p. @) N K|1dp = |K]s, switching the order of inte-
gration and finally applying Lyapunov’s inequality we arrive at

n—1
LK J J J f le Hcred( P)lel—z,1p (21) 12, —p, (p1)dprdp,
1=2

R! Rl Rl R1

’9( + wy, 1) N K|i|g(wr, @) N K|1dziduwy

<diam(K) ||, H\HZ f | f I )l 5190 (1)1, o (1) 211 dpy

R! R! R!

_diam(K)|K; f 16, D)o dp(E [Eol1)

_1)

42
3

Applying the same arguments as above, the estimate (4.51) reveals that (4.51)
remains true if, instead of |y < o0, we assume that the Li-norm defined by

|\c§2]\; = {a 1™ (. p)[dp is finite for some ¢ > 1 and n > 3. Hence, we have

. n — n(Qq_l)_,’_% (n) %
< Mdiam(K)| K |2(2" — 2)(E [Zo),) lereals-

Together with the strong L?-Brillinger mixing condition with b} (IE[Z|; )177 <

1/2, we get

(p)
Tn (K> % —_ 2 .. " —
§>3 < Aag(E [Zo)y) s diam(K) K], §>3; (22 (E |Zo]1)

2 ..
< )\GZ(E|50’1)qdlam<K)|K’2
~ _l .
1 —QbZ(E‘th)l 4

(451) )n
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Next, we derive two different bounds for the sum T )(K) defined in (4.48).

For this purpose, in analogy to Ir(f %(K ), we need umform bounds of
k
Jép]‘)ﬂ J H p7'+p1 H w/’y p]+p ‘/yred‘ p27"'7pn))‘
=2 j=k+1

Rn

It is easily seen that
: [r]
1_[ Eit+p(u(®i),x)—p1 p’ H 1:J+P<v( ®;),y)—p1 (pj)’7r6d|d(p27 cee 7pn>
RA—1 =2 Jj=k+1

< h/red‘ Rn_l)

and, for any ¢ > 1 such that Hcred”q < w

n

k
JOp) = E J Lz, 4 pto(@.),2)-p(Pi) 1=, 4 plo(®,).>—p (D5) o (D2, - - )
1=2

Rr—1 Jj=k+1
x d(pa, ..., pn)
<E ﬁ @\?( P2y s pa)| d(pa, - .. ,pn));
=2 Rn—1
< (B [Zol) "V el
The foregoing estimates show that
lim J)(p) =0 for k=2,...,n,n=>3. (4.53)

p—0

Further, from the definition of T,(Lf;) (K), see (4.48), and the integral J,(K) intro-
duced and estimated in the proof of Lemma 4.5 with the uniform upper bound

2 diam(K)|K|oE |Zo|?, we see that

- —1
T,,Ef’Q)(K) < )\n (n ) fffpwpx oy(P1)dprdady Jnax sup Jnk( )
o Rl \k\’n pGRl

= )\n2"_1Jp(K) max supJ ( )

2<k<n peR1

< An2"diam(K)|K|5E |Zo|? max sup T (p)
2<k<npe ’

Under the assumption that W ~ P is either strongly Brillinger-mixing with
1
b < 1/2 or strongly L,-Brillinger-mixing with b,(E|Zo|;)" "7 < 1/2 we obtain the

inequalities

(p)
TN (K e
> na( )<2AabE\EO|§diam(K)yK\2Zn(zb) '
n=3 TL' n=3

2X\abE |Zo|2diam (K)| K|,
- (1 —2b)2
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and

Tr(LpQ)(K) — 12 7. —_ a=1l\n-1
> 2 < 2)a,b,E [So[{diam(K)| K] D n(2bg(B|Zo]1) )
n=3 n=3

2)\aqb E |Zo[2diam(K)| K|,
(1 20,(E[Zol)"7)”

Finally, summarizing the above-proved relations (4.51), (4.53) and the con-
vergence of the series )| T(p)( K)/n! for i = 1,2 shows the validity of (4.46)

n=3 "N,

which in turn implies (4.40). Thus, the proof of Theorem 4.4 is complete.
]

Remark. Note that in Theorems 4.3 and 4.4, the interval =y := [— Ry, Ry| with
[E RE < oo can be replaced by a finite union of random closed intervals =, < R!
satisfying inf =y < 0 < sup =g and E|Zg|} < oo for k = 1 or k = 2, respectively.
This restriction is based on the definition of a process of cylinders with non-
convex bases, see e.g. Spiess and Spodarev [2011]. In Lemma 4.4 and Lemma
4.5, the cross-section (or base) = of the typical cylinder can be chosen as random
compact set satisfying 0 < E|Z|; < o0 or E|Z|? < o0, respectively.

Central limit theorem in the strong Brillinger-mixing set-
ting

To obtain the asymptotic normality, we need much more strict assumptions, in
particular imposed on the reduced factorial cumulant measures of .

Theorem 4.5.
Assume that there are constants b > 0,a = b~! such that the reduced factorial
cumulant measures of ¥ satisfy ||7red||TV < abk for all k € N. Moreover, suppose

that ERE < oo for all k € N and that ®q has a continuous distribution function
G. Then

p (20 Kylo —E|E 0 K, |p) —2 N(0,03(K, F,Q)),
where 0% (K, F,G) > 0 is the asymptotic variance from Theorem 4.J.

The assumption a > b~! is required so that H%Ei]dHTV = 1 < ab. Theorem 4.5
generalizes some of the results obtained in Heinrich and Spiess [2013], in partic-
ular Theorem 4.1, for stationary Poisson cylinder processes, yet under significant
expenses of the generality of the dimension. We believe that the result can be
transferred to higher dimensions, but probably not by the approach used here
since it is very computationally demanding even for the planar case.

Our main tool in proving Theorem 4.5 is the application of the factorial mo-
ment measure expansion, i.e. Theorem 1.4 on the pfg’s Gy[1—wy, . |for ke N
and z1,..., 2, € R% Recall that

ot =l =1+ 3 S [t wpoatiaen.n) (450

RF
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for some function w : R — [0,1]. The condition ensuring the convergence of
(4.54) for w = wy, for some zy, ...,z € R? is verified by Lemma 4.2.

1. Step in proving Theorem 4.5: Expansion of p~%?Cums|Z n pK]|, into
an infinite sum of asymptotically vanishing terms:

Usmg the factorial moment measure expansion (4.54) of pgf’s G[1 —wy, ,, .1,
G[]' — Wy, zg] G[]' — Wy, 13] G[]' — Wy, xg] G[l wﬁ?l]? G[l w332]7 G[l wwS] and
applying the Cauchy product formula, we obtain

—9/QCum3\” N pK|y = JJJZ ] k ml,xg,xg)dazldxgdazg,

K KK
where
k
L (w1, 20, 03) 1= " f [ @5 s pus (i)™ (d(p1, - - i) (4.55)
L i=1
Zk: g Pﬁ (k1]
P2 l> J11 Wy (Pi)™ (d(pr, - -, p1)) J S e 0 (D1 pi))

Wpgo (1%)04[[] (d(pb s 7pl)) w;Jrl T3 (pi)a[kil] (d(pla s 7pkfl))

|
hd
R C—; R
SN—
- ]
T
|;:
&:l* T £:l?’“

R!
k k r 1
_Z l) wpdf:s(pi)a[l](d(pla s 7pl f 21,0T2 pz) [k l](d(pl, . 7pk—l))
1=0 ﬁl i=1 a3
k l k I m
22,2, (l> (m> Jprrl(pi)a[m](d(m,-'-;pm))
1=0m=0 Rm i=1
l—m
X wng (pi)a[l_m](d(ph <oy PDI— m HwPIB pl (d<pla <. 7pk’—l))
=1

Lemma 4.6.
Assume that E R3 < o0 and ®g has a continuous distribution function G. Then

lim fJJTl(p)(m, To, x3)dr1daedrs = 0.

p—0
KKK

Proof. We have that

1
X JJJTfP) (1’1, 9, ZL’3)dI1dZL’2dI3

_ J f J f P(p e ﬁ(zo T po(®), :)))dpdaydradas.

KKKR i=1

To determine the limit of the right-hand side as p — o0, we rewrite the probability
within the integral by means of the expectation over the corresponding indicator
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function leading to

pg/QEJ J J 1Eo+p<v(¢0),m1>m50+p<v(¢'o),x2>mEo+p<v(<I>0)7x3>(p)dpdxldedx?)
K KK

T J f f 1Z0n(Z + p(o(®o), 2 — 315)A (S0 + p(0(®o), 75 — o)) ndzrdzadas
K K K
P E f f|Kmm>mwwK—mu
K®(—K) Ko(—K)
x |20 N (2o + pv(Po), 1)) N (Zo + p{v(Po), y2))[1dyrdys

SPE | [ IR 0 G 0@ 90) A (B pCo(@o), )iy
K&(-K) Ko(-K)

after the substitution y; = xo — 21, Yo = x3 — 21, y3 = 21 and estimate |K n (K —

y1) 0 (K —y)]2 < [Klp. Further,we put y1 = O(®0)(u1, uz)", y2 = O(Pg) (01, v2)"

(recall (4.9)), so that the last line equals

22| K|,R f 150 (5o + pun)  (Zo + por) (s, us)d (v, v3)
[O(—=®0) KO(—K)]?

< pP?|K|.E J Z0l11j0,280] (|Pu]) Lo2R0) (| pv1])d (u, uz)d(vr, v2)
[O(=@0) K®(—K)]?

= 1/2‘[(‘2[@ 1Z01 J J 1@(,%)1@(71{)(;» U2)1O(7¢0)K®(*K)(;> v2)

R2 R2
x Ljo,2r0](|21]) Lo,2r0) (| 22])d (21, u2)d (22, v2),

where we put z; = puy, 2o = pvy. By integrating w.r.t us and vy, the latter
expression equals

;ﬂﬂMﬁEmffmj@@mK@eKmmf@amK@eKm
R R
x Lio.2r) (|21]) - 10,2801 (|22])d21d 22
< |K|p~ Y (diam(K @ (—K)))?32E R3.

Since E R3 was assumed to be finite, the later term converges to 0 as p — 0.
O

The integration steps used to prove Lemma 4.6 will be repeated several times
in the rest of the paper, so some details will be omitted. In particular, it can be
shown that, assuming [E |2/} < o0, we would have

mwﬁf%lwmw%mw> .....

p—0
Kk R
k
= lim P J flP’(p e[ (o + plv(@0o), z:)))dpd(z1, .. ., wx)
K+ R =1
= 0.
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Lemma 4.7.
If U ~ P is Brillinger-mizing, E Ry < o0 and ®y has a continuous distribution

function, then
lim fJJTQ(p)(ml, To, x3)dr1dasdrs = 0.

p—>0
KKK

Proof. From (4.55), we have for k = 2 that

T2(P) (l‘h T, x?})

2 2 3 2
f Hw £1,pw2,0m (Pi) = Z HwPIS»PM pi) Z Wpa, (1)
i=1

R2 1=1 s,re{1,2,3} =1 s=1

S#T
x ol (d(p1,p2))

3
L f Y o)) =23 e (000, etz (72)

2 s,re{1,2,3} s=1
R SF#T

alll (dpl)oc[l] (dps).

Using the inclusion-exclusion principle, the fact that al?! is invariant under per-
mutation of its components and the representations al'!(B) = A\|B|;, and ol (B; x
By) = 7By x By) + A\2|By|1|Ba|1, we arrive at

TQ(p) ('Tla Zo, :L‘g)

= p3/2 J (w;xl,pxg,pxg (p1>w;x1,pz2,px3 (p2> - 2wP$1 (pl)w;xz,pxg (pZ)

g

- 2wPI2 (pl)wpxl,pxg (p2) - meﬁs (p1>w;x1,px2 (p2> + prml ,PT2 (pl) Wy, prs (p2>
+2w,:m1 ,PT2 (p1>w;x1,px3 (p ) + 2wpx1 ,PT3 (pl) p:):g,pa:g (pQ)) 7[ ](d(p1>p2))

)\2 i J (wpm,pwz pz3 (pl) Wozy,paa,prs (pZ) + 2wﬂ$1 pz2 <p1) Woas,pas <p2)
R2

+2w;ac1,pa:2 (pl)w;an,pxg, (p2) + 2wpac1 ,PT3 (p1> Wi, pas (p2)) dplde
Thus,

J f JTQ(p) (LUl, T, xg)d$1d$2d$3

K K K

e JJJ J Pml’Pm»Pms pl) Woy,pza,pas (p2> - 6wpx1 (pl)w;‘mpxg (p2)
K K K

+6w;a:1,p:c2 (pl)w;xz,pxg (pQ)) 7[2] (d(pl ) pg))d$1d$2dx3

2 3/2
+ A p / JJJJ pI17pCC2,pCC3 pl) pxl,pr,pxg(pZ) + 6wp:c1 PT2 (p1> p$2,p$3(p2))
K KK

R2

X dpldpgdxldl’zdl’g
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The limit of {, §. . TP dz daedas will be evaluated term by term. First, it
is a direct consequence of Lemma 4.6 and the Brillinger-mixing property that

;}l—{rolo pg/szjfw;xl,pxz,px3 (pl)w;):cl,pxg,pxg(pQ)v[Q] (d(pbp?))da:ldx?de =0

K K K R2
and

pll_)Holo p JJJ f wPfE1 ,0T2,pT3 pl) ;thpwmpxs (p2)dp1dp2dx1dx2dx3 = 0.
K K K

R2

For the rest of integrals, we use the same integration procedure as in the
proof of Lemma 4.6, especially the substitutions. Hence, the details are omitted.
First, we assume that w7, . (p) = P(p € ni=12(Z1 + p{v(®1), 7)) and that
w;x27px3(p) P(p € niz13(E2 + plv(D2), x4))), where Z; := [—Ry, Ri], 2o =
[—R2, Ry], 1, P are mutually independent. Then we arrive at the estimate

2 J‘ J f f w;zl,ng (pl)w;rz,pmg (p2)7(2) (d(php?))dmldx?dx?)

K K K R2?

PN JJ f J W e (P Wy o, (1 + D2) P17 (dpa)day daadas

K K K R2

< \2E f J | K21z, A(z1+pu1) (P1)
O(—01)K®(—K) O(—02) KO(—K)

X Lz, (2 po) (D1 + o)A V2] (A, u2))d (01, v2)
Ao~ V2 K adiam(K @ (—K))EIEa 1 72 v f j 1021 (121 ) L0 270 (122 d a2

which tends to 0 as p — o0 having E R < co. Similarly,

pg/ZJJJJw;wI’pM (pl)wgﬂﬁhpm(p2>dp1dp2dx1dgj2d;p3

K K K R2

< p PKpdiam(K @ (—K))’E |Z1]1[Za)s ffl[o,le](21|)1[0,2R2](|22|)d21d22

(4.56)
and

p3/2 ijjwpml pl Pzz,pxg(p2)7[2](d(p17p2))dl’1dx2dx3

K K K R2
=\ 3/2 A d [2] d A diead

P wpm(pl)wpmz,pa:g(pl +p2> p1%«ed( pQ) r1dzodrs

K K K R?

< A 2K |ydiam (K )diam(K @ (—K))2E |24 |12 292L(R). (4.57)
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Hence, expressions (4.56) and (4.57) converge to 0 with p — oo and consequently,

fjfTép) (ZEl, T, Ig)dxldl'gdl'g p—oc) 0.

KKK
[l

Before stating a general result for arbitrary £ > 3, we need to introduce
some notation and other supplementary results. Denote by S the space of all
measurable functions e : R — R and define operators f, for, f®, ke N, S’ < S on
N x S, such that forne Nand S < S

f(n,S) = f(n,S)(p1, ..., pn) == Z Hez (i), (P1y---5pa) €RY,

f(k)(n, S) — f(k)<n’ S)(pl,...,pn) = Z He pl pl,.,,,pn) c Rn,

fsr(n,S) — for(n,S)(p1,-..,pn) = Z Hei(pi), (p1,---,pn) € R™
(€1,.myen)ESUS’ i=1
S'cue;

Note that f*)(n,S) = 0 whenever k > n and fg (n,S) = 0 whenever #S5' > n.
Moreover, we define functions g, gsr, g*) : Nx S — R,k € N, S’ S such that
forneNand Sc S

g(n,S) = ff(n»S)(pl, pa)Md(pr, ),

®)(n, §) = f F9 (0, ) (prs -+ p ) (pr, ),

gS’(na S) = st’(nv S)(pl» .. 7pn)/y[n]d(pla .. apn>
Rﬂ/
It is easy to see that for k,n e N and e, ... e € S,

f(n, {61,...,ek}) =

ngks

f(n,e;) + Zf@)(n, {eej}) + -+ fP(n,{er, ... ex})

1= i7#]
(4.58)
and
f(n, e+ -+ ek) = f(n, {61, “eey ek}) (459)

Similar relations hold for function g.
From now on, we will refer to a universal constant denoted by C¥)(zy, zy, z3)
such that

3/2ffJc(p)(x1,$2,$3)dx1dl'2d$3 — 0 (460)

KKK
as p — 0.

154



Lemma 4.8.
Letn,k e N and E, E' be any subsets of {w,, , w), w’ }rs=123. Then,

pTr,pTs? U pT1,pT2,pT3
under the assumptions of Lemma 4.7, we have that

-Z' gw?zl,pEQ,pz3 (n’ E) = C(p) (mlﬂ l‘27 x3)7
2. Gupn o (n, E)guw W pZt(k,E’) = O (2, 29,23), T #5,8#L,
3. GW0ger poa e pas (n,E) = CP)(x1,29,23), 1 #8,5#t,1r#t,

E

e G 0 oy (n,E) = CP) (a0, 29, 23), 1 #5,5#t71#t,
5. Gy pmy gy (15 ) = CP) (21, 29, 23),
6 ngzT YWpa g (n E) pz T <k7El) = C(p)(l’l,l'g,{]fg), r# S,S8 #* t.

Proof. 1. Tt is enough to show for n = 1. This case, however, was shown in
the proof of Lemma 4.6.

2.-3. For n = 1, it was shown in the proof of Lemma 4.7 (see (4.56)).

5. For n = 1,2 the term Gu,, wy.,wp., (M ) is equal to 0 by definition. We
will show the result for n = 3:

3/2 J prrl pl)wsz (p2>wpw3 (p3>’)/[ ](d(p17p27p3))d$1d$2dl‘3
K3 R3

3/2 J J E1+pu(P1 ,$1><p1)1:2+p<v(<1>2) z1>(p1 +p2)153+p<v(<1>3),$1>(p1 + pg)
K3 R3
x dpy [ (A(p2, ps) )y devaday
- EPB/Q J J 1= pu (pl)lEerpm (pl + p2)153+pw1 (])1 + p3)
x3_ O(—=®;)K R3
x dp1|7£§1|(d(p2,p3))d(u1,m)d(vl, vy)d (w1, w)
= EP3/2 f 151+P(U1*w1)(p1)152+p(v17w1)(p1 + p2)153 (pl + p3)
(—

x3_ O(—®;)K R3

% dp1 Pypeal (A(p2, p3)d(ur, uz)d(vr, v2)d (wn, wn)
< diam(K)’E p*/” J f lg(w1, @3) N K11z, 4 ptuy—w) (P1) 1ot p(or —wn) (P1 + P2)
RS R3
x 1z,(p1 + p3)dp1\%[?e’]d’(d(p2,p3))dU1dU1dw1
= diam(K)*E p—1/2 J J lg(z1/p + w1, P3) N K|11g,42, (p1) 15,42 (D1 + p2)
R3 R3

x 1z,(p1 + ps)dpl\%[i]d’(d(pmp3>)d2’1d22dw1
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< diam(KPEp " | | 1200 () 1210 1 + )
R2 R3
x 1z, (p1 + pa)dpi [1reh| (d(p2, ps))dz1d s
= p” P diam(K)*(E [Zoly)* | ped v = 0.
6. We will show it for n = 2,k = 1. By following the same steps as in the

proof of the previous point combined with the steps in the proof of Lemma
4.6, we arrive at

ijgwpzr,wpzs (2, E)gw;,“zs pay (1, E/)dx1d$2dx3
KKK

< p~V22)(diam(K)) diam (K @ (— K)) |V 2 |7y E [E4]1|Z2 )1 | Zs)

o0
ZF00.

The case of general n, k € N can be treated similarly for 1. — 6. Let us demon-

N n
strate on the case 5. for n > 3 and ey, ..., e, < {w,,,, W oo Wont pws ps brs=123

such that {w,z,, Wpzy, Wpas } < {€1,...,€,}. Since e;,i = 1,...,n are probabilities,
we come to the following estimate by following the exact steps as for n = 3:

2 f f er(pr) - en(pn)v[”] (d(p1,- .-, pn))dridasdas

K3 R

p*? f prxl (P1)Wpas (P2) Wy (p3)Y™ (A(pr, - - -, pn) ) da1 dodis

K3 R™
< p~ 2 2diam(K)*(E [Zol1) Y v

The latter expression goes to 0 with p — oo since we assumed |y |7y < oo.
[l

Lemma 4.9.
Under the assumptions of Lemma 4.7,

lim fJka(p)(.Tl,l‘g,xg)d.fb'ldxgd.’ﬂg = 0, k > 3.

p—0
KKK

Proof. By expressing the factorial moment measures al*, k € N in terms of fac-

torial cumulant measures v¥ as in (1.5), we have

p 3T (21, w9, 5)

Z Z H f 1_[ Woay, P$27P$3(p1),7[#Kj](d(pivieKj))

n=1Kiu---UK, j= €K
L T e
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ii( ) Zl: > ﬁ f [ | woer p)A#5) (A € K;))

r=11[=0 ni=1 KlU---UKnl jle#Kj iEKJ’

—{1,...1}

<5 X T T v * i< 56

no=1Kiu-- uKn2 7j=1 €K
#K
_{1? 7k l} R

2y (DS 3 [T | T et atni < 55

ni=1Kiu--uUKy, j= €K
ny ]R#K
_{17 *) }

Z Z H 1_[ Wpozy (pi)V[#Kj](d(piai € Kj))

nog=1Kyu-UK,, j=1 €K
ng R#K J
={1,...,l-m}

2 2 H 1_[ wpms(pi)')/[#Kj](d(pi,i € KJ))

n3=1Kiu-UKng j=1 €K
#K J
_{17 7k l} R

Next, we use the inclusion-exclusion principle to rewrite w, - p2.pe3 (p) = Wpay (P)+

W, (p) + wng(p) - w;:m,pxg (p) - wp;m,pxg (p) - w;&b‘z,pl‘g (p) + wpx1 PT2,pT3 (p) and

) _ N
Wy ope = Wo, + Wpe, —wh 7,8 € {1,2, 3}, Further, we denote

o a0 a0 a0 s
S T {wﬂl"l » Wozs s Woas s wpam,pxg’ wp:m,pxg? wp:rg,p:rg? wpxl,pxg,px3}7
/. a0 N e
S'i= {wpl‘l’wpl‘szpl‘:s’ wpxl,pxz’ wﬂxlaﬂﬂ%’ wﬂm,ﬂm}'

Then using the relations (4.58) and (4.59),

3
T (w1, 20,23) = p72 > (IF = DI+ 20 (w1, 20, 23),

uK;={1,....k} r=1
L={Ki,...}
where
]lL(xlﬁ T2, ZL’3) = H f H wz)zl,pzmprs (pl)’y[#K] (d(ph L€ K)) = H g(#Ka S)
KELR#K eK KeL
= H {Z #K Wog, ‘|’Z g #K {wpocra wpxs}) +9 3)(#K {wpxu Wpzs wpxs})
KeL \r r#s
+ Z g #K U}pxr,pxg + 2 g #K {wPIM _w;mr,prs})
r#Ss T#S
+ Z 9(2)<#K7 {wpa:r7 _w;xs,pxt}) + Z 9(2) (#K7 {_w;xT,px57 _w;xs,pxt})
r#8,8#t,r#t r#s,s#t,r#t
+Z g #K {wpzw wnga _w;z,«,pxs}) + Z 9(3)(#K7 {wpzw prs7 _w;zs,p:pt})
T#S r#s,s#t,r#t

3
+ 2 GV R AW~ s =W )
r#s,s#t,r#t

+ Z g(g)<#K7 {wPIs7 _w;xhpxS? _w;x57pxt}) + g(4)(#K7 S/)
r#s,8#t,r#t

+ Gur 4K, 5)}

pz1,pT2,pT3 (
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=f (#L, {90 Wps, =123, 9P {Wps,, Wo, Press G —Whe, Vet
9(2)( {wpe,, —w pxr,px9}>’f’¢$}) 9(3)("{wP$r7wP$s7_w;xr,pxs})r?ésﬁ
9D A1 Wpras Wy 1), 92 o AWy =0 Drsie}),
9 ( {Woys Wpa, _w;xs,pm}>T¢S,S7éT,T¢t7 9(2)('7 {w;xr,pzs? —w;xs,pxt})més,s#)a
9 ( {wpe,, —w ;xr,pxs7_w;xs,pxt}>T¢8,8¢t,T¢t7
9 ( {wpe,, — ;:cr,p:cs w;xs,pa:t})r?ﬁs,é‘#tm#t’g(4)('7S/)7

Gups o (- )}) (#K,K € L).

Similarly,

I£T($1,$2,$3) = Z H J prxr(pi)y[#l{](d(pi,i € K))

LluLQZL KELIR#K ieK

3 J [ T Wi sen ey # ¥ (d(pivi € K1)

K'eLa g 2y €K/

:f (#L7 {g(7 wpzs)s:l 2,3 9(7 _w;zs,pxt)s;ét SETEFET
g ( {wpzsy wpxt})s;ét SHETEET g ( {wpxsa *w;;cs,pgct}%#t#r}v

g( (s {Wpay s Wpary» _w;;xs,pzt})37ét757é7‘,t7é7'> (#K,K € L)

and

o)=Y ] j [T e e/ # 51 (Al i € K))

L1UL2UL3:L KELIR#K ieK

1 J [ | wows (p)Y#¥ N (d(ps, i € K7))

K'elay 2y €K/

11 J [T wpes )Y *5 N d(pi,i € K7))

K€Ly Syen 1€K"

= f(#LA{9(, wpe, )r=123}) (#K, K € L).

We shall fix a set L and study the expression I+ —>_, IF, + 2IF. Denote by
S the set of functions in the argument of the function f in the latter expression
for IF, i.e

S = {g( wpwr)r 1,2,35 9(2)('7 {wPCEM wpxs})ﬁésv g(” _w;xr,pxs)?"isv
{wpl“r? - ;xr,pxs})ﬁéa?}) 9(3)(, {wﬂxﬂ Wpzs _w;a:hpxs})ﬁé&
{wm?l y Wozs s U)pg;3}) ('7 {wpa?r> _w;zs7pxt})r¢5¢t})>

e
e
( {wlmﬂwlms?_wpacs,pxt})r?és,s#ﬁrsﬁt?g ( {wpa:“pa,’é w;xs,pxt})#as;ﬁt)a
@,
(.

w” o
{wpz7 y T Woa, prsr — Wz, pay })T‘#&S#tﬁ’#tv

N

g {wpxs7 Wz, pas> _w;$37p$t })T#S,s;ﬁt,r#h 9(4) ('a S,)7 Gwes pwa,0es ('7 S>}
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and, moreover,

Ti= {9(3)(‘ {wpxnwpxwwpx3}>vg(2)(‘v {wpe, , _w;zs,pxt}>r¢s¢t})v

9 ( {wp:vw Wpzs _w;ms,pa:t})T#S,S#hT#t’ 9(2) (‘7 {w;mr,pms7 _w;xs,pxt})T?&S,S#t)?
g ( {wpww _w;:BT,p:BS7 _w;xs,pzt})T'#S,s#t,T?’:t;
g

( {'Z,Up;ps7 _nghpxs, —w;xs,pxt}>r7&s,s¢t,7’7ét, 9(4)<, S/)’ gw;‘fllvpxg,pxg (-, S)}

Then, the remaining terms of I — 37’_, I, + 2I¥ can be estimated by

3
If =) Iy, + 21| <
r=1

Z fgwg:cr,pzs (.’S)’gw;\‘zs,pzt (as) (#L7 S) (#K7 K € L)

T#8,5#1

£ D S 6900, 9 HL S)HE K € L)

r#s,5#t

+ 3 f(#L,S)#K,K € L).

ges’

According to Lemma 4.8, the right-hand side consists of finitely many terms be-
ing equal to O¥)(x1, x5, x3), where this universal constant is defined by (4.60).
O

2. Step in proving Theorem 4.5: Expansion of p~**/2Cum;|Z n pK|, into
an infinite sum of asymptotically vanishing terms:

We will follow the exact strategy as for proving the convergence of the terms
of the third order cumulant. Henceforth, we will skip some of the details. First,
using the factorial moment measure expansion of pgf’s of the type Gy[1 — wg],
Q < {px1,...,prr} and Cauchy product of i infinite series, i = 2,..., k, we arrive
at the expression

_3k -
p 2 Cumy(|Z2 n pKly)

b JZ(—l)H(l—l)! S TGl - wg,lde .. day

=1 Qru-uQ i=1
KE :{plxl,...,p:vlk}j
_k & (D" S D1(—1 '« N2
S DI YIRS YD YD IR W (0 44 B G
K"Vm_1 =1 Qiru--uQ; n1=0n2=0 n;_1=0
={pz1,.. 7/?901@}
m—ni
B I | R T
oty i1
n1—nso
< [T watooat @, )
iy i1
nj_1
oo [ T eal 1, o e oy
i1
R™-1

159



DY Y SIS SRS YDy

m=1 T l=1 Qru-uQ; UK;={l,..m} Liu--ul;=L

KF ={pz1,.,prr} L={Ki,..}
!
X H we, (p)Y* K (d(ps,i € K)) |day ... day
7=1 KeL]R#K ieK
o0
—1)m
= Z ( ) Tslp)k(iﬂl,...,xk)dl'l...d‘fk,
m! '
Kk m=1
where
k

x>0 FHLAGCAEDFT 0 e i ) (HK € L),

Q1u--uQ
={pz1,...,pTx}

Lemma 4.10.
Let k = 2. Assume W ~ P is Brillinger-mizing, E R < oo and ®y has a contin-
uous distribution function G. Then

p]-LI% T,(np’)k(xl,...,xk)dxl...dxk=0, Vm > 1.

Kk

Proof. The strategy is to fix a given partition L in (4.61) and study which of the
summands cancel out. Denote by

S:z{g(”)(-, {(—1)#q1+1w;1, e (—1)#q"+1w;}),n eNq,....,qn{px1,... ,pxk}}

=4[ Eg (o0) (1 ug (pu),
R

nENJQ17"'7QTLC {px177pxk}}

the set of all possible terms that appear in the operators f in Tr(rﬁ )k Let us
take arbitrary functions ej,...,exr € S. We will study how many times the
term fFD(F#L, {ey, ..., exr}) (#K, K € L) appears in (4.61) and whether, under
certain conditions, cancels out. Before that, let us show the simplest example of
the choice e, ..., ey to give the reader better understanding about the ideas.

Example. Let ¢; € {g(,wp,),t = 1,...,k},j = 1,...,#L. The term
f(#L,{e1,..., exr})(#K € L) is present in all the summands (i.e. exist for
all partitions @y U --- U Q; = {px1,...,pxr},l = 1,... k). Hence, for fixed L,
T(P)

mk(T1, .., 7)) contains

M- > f(#Lfer, . epr)(#K e L),

=1 Q1u--uQy



This is equal to

FHLer o epn DK € D Y- 0= D Y1) a -

=1 1 j=0

Here, the part j 23 o(—1) (;)(l — j)* is the Stirling number of the second kind

(see Definition 1.10). Using the relation {k;rl} = l{];} + {lfl}, we can see that
f(#L,{e1,...,exr})(#K € L) cancels out, because

NS 1)!{k | 1} YT 1>”{];} YIRS 1)!{l ! 1}

=1 =1

I

g 1)~ 1l|{ }+(—1)k(k‘+1)!{ki1}+g(—1)ll!{l;}+{lg}

0.

Note that this phenomenon corresponds to what we have seen while studying the
third cumulant.

Going back to the general choice of eq, ..., exr, it is clear that we need to first,
find all partitions Q;u- - -UQ); that generate f#D) (#L, {ey, ... eur})(#K, K € L)
and second, see under which conditions on ey, ..., ey, it eventually cancels out.
For each i = 1,...,#L there exist n; € N and ¢, ..., ¢4, < {pr1,..., pr)} such
that v

e; = g(m)(.’ {(=1)#Fatiyn

G (CDFR g ).

For e; we denote R; := ¢} U --- U ¢}, . Moreover, denote X' := Ry U --- U Ry,
and X2 := {pxy,..., prp}\ X .

Step 1: Constructing the maximal partition of X'. Next, we present an algo-
rithm to find the largest m € N such that there is a partition Q; U--- U Q,, = X!
allowing to generate f#E)(#L, {ey,... exr})(#K, K € L). Then all its subpar-
titions (i.e. partitions created by making unions among @i, ...,Q,,) allow to
generate f#L (#L, {ey, ..., exr})(#K, K € L).

1. Set m = 1,@1 :Rl and R = {RQ,...,R#L}.

2. For each x € ), find all R € R such that z € R and make the following
updates: @1 = @1 u R and R = R\{R}.

3. Repeat step (2) until either (i) Q1 N Urer R = & or (ii) R = &. If (i) but
not (ii), then set m = 2, if (ii), then end the algorithm here.

4. Take any R € R and put ), = R. For each x € Q,,, find all R’ € R such that
x € R' and make the following updates: @Q,, = @, v R’ and R = R\{R'}.

5. Repeat step (4) until either (i) Q,, N Uper R = & or (ii) R = . If (i) but
not (ii), go to step (4) with m = m + 1, if (ii), then end the algorithm here.
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Since #L is finite, the algorithm always stops resulting in a disjoint partition
Qiu---UQ,, = X! and m being the maximal integer such that there is a partition
generating f#D(#L, {e1,...,ex})(#K,K € L). Moreover, this partition is
unique up to permutation and for n = 1,...,m there exist {’Z} subpartitions

Ao QP - X

Step 2: Adding the elements of X? into partition of X'. To track all the
partitions of {px1, ..., px)} that generate fF#L (FL, {ey, ... exr})(#K, K € L),
we need to add elements of X? to each partition of X' from Step 1. To do so,
denote p = #X?. The maximal partition of {pxi,...,px;} is of the size m + p
where m is the maximum size of partition of X! and p corresponds to a situation
where each x € X? belongs to an individual set. The minimal size of the partition
is obviously equal to 1.

Fix [ € {1,...,m + p} and partition of X! from Step 1 of the size n such
that n < min(m, ). The number of ways how to add elements of X? to create
a partition that generates f#L)(#L, {e1, ..., eur})(#K, K € L) is

e S o

=0

This can be shown by the inclusion-exclusion principle.

Step 3: The role of f#L (L, {er,... exr})#K, K € L) in Téﬁ)k. If we put
together Step 1, Step 2 and the expression (4.61), then for fixed L the term f#5)
(#L,{e1,...,exr})(#K, K € L) appears in Tr(rf}C exactly v(m, p) times, where

s = Sy S e

=1 n=max(1,l—p)

Our goal now is to study, for which parameters m,p is v(m,p) equal to 0 and
how the parameters m, p correspond to the choice of ey, ..., exr. It is easy to see
that

v(1,0) = 1.

Take m > 1 and p = 0, then
v(m,0) = E —1 l_ll—ll{m} =0

as was shown in the example within this proof. To see similar result also for
m > 1,p > 0 we first show a recurrence relation for [l fn]:

If p>0 and n e {max(1,l —p—1),...,min(m,l)}, then

l]l?ji]:{l—s—ﬂﬂllfn]- (4.62)

This relation can be seen similarly as the recurrence relation for the Stirling
number of the second kind. We extract a (p + 1)-th element and divide it into
two situations.
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(a) (p + 1)-th element from X? creates a singleton in the partition of the set
{px1,...,pzK}, i.e. a set in the partition where only this element belongs.
Hence, the set containing this element does not contain any element from
X2, but neither from X'. There are [, P ] of such partitions, because we
need to place the remaining p elements into [ — 1 sets where [ —n — 1 are
non-empty.

(b) (p + 1)-th element from X? does not create a singleton in the partition of
{px1,...,pxr}. Then we need to place the remaining p elements into [ sets
such that [ — n are non-empty and after that add the (p + 1)-th element in
any of the [ sets. There are l[l f’n] of such partitions.

Eventually, for m > 1,p > 0 using (4.62), we have

v(m,p+1) = mipH(—l)”U —1)! mirfﬁl) {TZ} ([1 —5— 1] i lll fn])

=1 n=max(1,l—p—1)
m+p min(m,l+1) m+p+1 min(m,l)
m P ’ m P

Fow g S

=0 n=max(1,l—p) n I—mn =1 n=max(1,l—p—1) n [—n

m—1 m D m+p m p
o T Rt B L PR {

e ceafl-1] T A, l—p—1f|p+1
(D™ o p+ | P =0,

(=1) (m+p+1) bl
because [p_’;l] =0 and [_pl] = 0.

We conclude that v(m,p) = 1 if and only if m = 1 and p = 0. In other
cases v(m,p) = 0. In the language of our algorithm above, the parameters

m = 1,p = 0 correspond to the situation when @1 = {pzy,...,pxr}. This
happens when Ry U --- U Ry = {px1,...,pxi} and Ry n--- N Ry # . In
fact, here the corresponding term fF#E)(#L, {e1, ..., exr})(#K, K € L) can be

generated only by the first term in Tr('i )k (i.e. when [ = 1). This class of terms
includes e.g.

. fg(n)(_7{(,1)#q1+1w(?1 ..... (,1)#qn+1w&-\n}) (#L, S)(#K, K € L), n € N, q1,---,9n <
{px1, ..., prg} such that VI ,q; = {pz1,..., pri},

° f{g(-,w&"l) ..... g(-,wgn)}<#L7 S)(#K7 K e L)7 n e N; q1s---,4n < {/)1717 v 7ka}
such that U ,q; = {pz1,..., prr} and NI q # .

Lemma 4.8 can be extended to see that for ey, ..., ey for whichm =1landp =0

pH? f FEDGLAer, . epr}) FK K € L)day ... day —— 0
Kk

if E|Zo|f < oo. The convergence does not depend on the choice of L. Hence,
f )

m,k

(x1,...,z)dxy ... day mO.

Kk
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Denote by Fj the set of all functions ey - ... - ¢;,l € N, such that e; is of the

form , .

i = 9" (s, (1P (<) g ), (4.63)
where n; € N, ¢i,...,q), < {px1,...,px} and Y}, n; = [ such that the algorithm
in the proof of Lemma 4.10 for ey, ..., ¢e; returns m = 1 and p = 0. Then

P2 J h(xy, ..., xp)dey ... doy 22250, for all h e Fy,
Kk

assuming E |Z|¥ < oo.

We say that the function h = e;-...-e; € Fy is of the basic form, if ey, ..., e are
pairwise different functions of the form (4.63) and for each i = 1,...,1, ¢i,..., .,
are pairwise different subsets of {px1,..., pxr}. Let the set of all functions of the

basic form be denoted by Fy posic. Note that #(Fj pasic) < 00 and the number of
elements depends only on k.

Lemma 4.11.
Let h = ey - ... e € Fy be such that each e; is of the form of (4.63). Then

P2 f h(zxy,...,z;)dzy ... deg

Kk
l
< OO KB [Sols, - [Sol) (max{ 1A (ol ) T i v
i=1
where C’,gp)()\,K,E 1Z0/1, ..., E|Z0|}) < o0 is a constant that does not depend on

h, hence 1, and C’,gp)(/\,K,IE|EO|1,...,E|Eo|’f) — 0 as p— 0 if E|Z|¥ < co.

Proof. The proof consists of a generalization of a step we made in the proof of
Lemma 4.8, point 5, when transitioning from n = 3 to general n € N. .

For each ¢ = 1,...,1, we find the greatest m; € N such that {¢'},...,¢, } <
{qi,...,q}} is a set of pairwise different subsets of {pz1, ..., prr}. Denote by €]
the function

¢ = ¢ (n,, {w;?{’ . ’w;%i})'
Then
P2 Jel cedry . dag| < pMP Je’l cooedry . day . (4.64)
Kk Kk
Now, we find I’ the greatest integer and ordering (e},..., ey, €, q,...,€;) such
that €],..., e}, are pairwise different functions. Then

P2 Je’l-...-e;dxl...dxk

Kk

< (AE [y 1_[ Iy o2 J e - ...oepdry .. dry|.  (4.65)

=l +1,m;22 P
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Here, we used that

Jw;“ (p)yM(dp) = Afw;‘ (p)dp < AE S|
R R

and
f wiy (p1) -+ g ()Y A(p, - p) < AE[Eo|i el
Rn
forall n e N, ¢,q1,...,q, < {pz1,...,pxr}. Define for ¢ = 1,... I’ functions e/
by
6;/ — g(m7)<mzy {w;zl, ,U);/:nl})
Then €] - ... €}, € Fy pasic. By following the procedure in the proof of Lemma 4.8,

we arrive at
pk/? f el ...-epdry ... day

Kk

ll
< Clgp)(elll et 62/’7 )" K’E |EU|17 s ’E |EO|11€) 1_[ HKVLZL;]HTVa
=1

where C,gp)(e’l’ e N K EZ1, -, ES]F) — 0 as p — 0. Since, Fypasic i8
finite, we define

CY N KE[Sohy, .. EIEolf) i= max O (A, A K.E|Solu..... E|Zlf) < 0.

k,basic

Then,
Je/l-...~e;,d:v1...dxk <SCPNKEE,. . EZf) [ Il
Kk i=1,...,I"'n; =2
(4.66)
Finally, combining (4.64), (4.65) and (4.66), we arrive at
Pk f h(xy,...,zp)dzy ... dag
Kk
]
< OE|Z0[)' " CP (N K E|Zoly, - EIZolf) [ [ led v
j=1
l [n;]
< (max{1, \E[Zo|:})'C{" (A, K, E|Zols, ... E[Zol§) [ [ Iyed v
j=1
O

Finally, we are ready to prove the main theorem.

Proof of Theorem 4.5. Take k > 3. Recall that

3k - o (—1)m
o2 Cumy (|2 n pK|s) = Z ( ? JTéf}c(xl,...,xk)dxl...dxk,
L
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where SKk T,Sﬁ)k(l‘h .., xp)dxy ... dxy — 0 as p — o0 according to Lemma 4.10.
We want to change the order of the summation and the limit.

Denote by s,(p) == > _, (=™ § e T(p}c(xl, ..., x)dzy . .. dxy the partial sum

m! m
and by s(p) := >0 _, (_Ti)!m § e Tr(rf’i(xl, ..., zg)dxy ... dzy the infinite series. The
goal is to show that s,(p) converges uniformly to s(p) on some interval [A, o).
Then from the Moore-Osgood theorem, the assertion holds.
The uniform convergence shall be proved using the Weierstrass criterion for
the absolute uniform convergence: Take m € N and denote by
Cr = sup O (\, K, E| =, ., E|Zo[h),

p>0

where C,i”’(/\, K, E|=Z|1,...,E|Z0|¥) is the constant from Lemma 4.11. Note that
Cr < oo, since O,ﬁ”)(,\, K, E|Z|y,...,E|Z|}) — 0 as p — o, provided that
E|Z|1,...,E|Z|} < oo. Moreover, we will use the fact that there exist constants
a,b > 0 such that ||7T[,’Z}1||TV < ab” for all k e N. Thus,

(1'1, Ce ,:Ck)dl'l .. dCEk

= (_ll)mpg Z Z fel-...-e#LdlL’l...dl’k

UK;={1,..;m} e1-..exr€Fk oy
L={K1,..}

<p§ii Z Jel'..ueldxl...dxk

=1 UVK;={1,....m} er-....e€Fg
‘ ni=#Kii—1,...,1 K*

m l
S DI N Crlmax{1,AE [Zo }) T ]Ik
’ i=1

=1 UK;={1,....,m} er-....e;€Fg
ni=#K;,i=1,...,l

1 - —
< Cp—b" Y (amax{1, AR ) 1})" ] o1
m: =1 UK;={1,....m} e1-...e€Fy
TLi:#Ki,i:L...,l

1 m S - l k\m
< Ci—b Dlamax{l,AE[So[:}) > (2Y)

=1 UK;={1,....m}

1 _ A (m
< Ck@bm(Qk)m(max{l,a)\]E 1Z0]1}) Z{ ] } = Q.
’ =1

We refer to B, := ", {’7} as the m-th Bell number. Finally

TV

)
Z Qm _ Ck eXp{Gkamax{l,akE\th} o 1} < 0.

m=1

Hence, s, converges uniformly absolutely to s. As a consequence, we have that
p~3*2Cumy(|Z N pK|y) — 0. That, together with Theorem 4.4, concludes the
proof.

O
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Conclusion

We have investigated three approaches to study the asymptotic behaviour of ge-
ometrical structures frequently used in stochastic geometry. Numerous examples
were presented to give the reader a rough idea on which situations are suitable
for each individual method. We have also seen that it is not unusual that the
methods are combined in order to achieve some asymptotic results.

In conclusion, the Malliavin-Stein approach is a very robust method that
can be applied to a large scale of examples allowing the researcher to work on
a general Polish space. It can be used for Poisson functionals as well as for func-
tionals of Gibbs processes, DPP’s or even for processes of particles. Especially,
the U-statistics form an important class of functionals suitable for this analysis.
The reason is that many interesting functionals can be expressed as U-statistics
(e.g. the intrinsic volumes) while the U-statistics can be viewed as finite sums of
multiple Wiener-It6 integrals. Hence, to study the asymptotic properties of a U-
statistic is equivalent to study the individual Wiener-Ito integrals. The Malliavin
operators in this case are usually easy to handle. However, an application of
the Malliavin-Stein method in general usually results in abstract bounds for the
normal approximation involving difference operators. To derive central limit the-
orems, one is sometimes obliged to use another technique such as the stabilization
method. Either way, these bounds give an opportunity to compute explicit rates
of convergence.

On the other hand, the stabilization method is a useful method for studying
the limit behaviour of geometric structures mainly in R evincing local form of
dependency. Those include random graphs, germ-grain models, weighted Voronoi
tessellation etc. In order to obtain some information about the limit behaviour
of these structures, we investigate a sum of spatially dependent terms called
scores. We make use of the property that we can control the range of interactions.
In other words, our score stabilizes if its behaviour at a given point is locally
determined by a certain finite, possibly random, neighbourhood of this point.
Those local effects appear mostly when the geometric structure is determined by
the Poisson or binomial point process.

At last, we have acquainted ourselves with the method of cumulants based on
a classical result from probability theory that normal distribution is the only one
having only a finite number of non-zero cumulants. By the moment convergence
theorem, the convergence of the higher-order cumulants to zero is equivalent to
the convergence in distribution to a Gaussian random variable. One can apply
the idea directly on a functional of a random structure in increasing observa-
tion window (e.g. the coverage volume). The advantage is that the geometrical
structure can evince long-range dependencies. On the other hand, a very limited
spectrum of geometrical structures is suitable for this analysis. Typically, those
are the structures based on Poisson point process in R? or very simple structures
defined by a type of Brillinger-mixing point processes. Application of the cumu-
lant method just by itself is accessible mainly if there exists a link between the
cumulants of the random variable defined by the random structure and cumulant
measures of the defining point process. In our experience, however, estimation of
the cumulants could lead to a calculus with extremely unpleasant terms.
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