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Introduction
Modelling of geometrical structures is of great interest within the scope of stochas-
tic geometry since the structures appear in profusion in the natural sciences like
geology, material sciences and astronomy as well as in technical sciences for ex-
ample when studying communication networks (including social, transportation
and wireless networks). Therefore, popular models include among others unions
of random sets (particles), random tessellations or random graphs. Frequently,
but it is not a rule, those structures are derived from a simple point process
making it easier to track.

Many questions arising in stochastic geometry may be understood in terms of
the behaviour of statistics of large random geometric structures. However, these
random structures tend to have a problematic finite size description. Therefore,
a natural way how to overcome this difficulty is to let the system size grow to
infinity and study its asymptotic behaviour. This thesis aims to give a survey
of selected limit techniques used in stochastic geometry as well as explore recent
development and collect results providing laws of large numbers and central limit
theorems for functionals of these random structures. The limiting regimes are
first, increasing intensity of the defining point process and second, unboundedly
growing observation window. It depends on the situation which approach is
more suitable. For instance, we prefer to let the observation window grow when
studying the volumes or lengths. On the other hand, for some scale-invariant
functionals, one could let the intensity increase.

The structure of the thesis goes as follows:

• The first chapter introduces standard notation and theory of point processes
in a general setting. Special situations are presented including spatial point
processes, processes of compact subsets (particles) in Rd and processes with
marks. Afterwards, further geometric structures are discussed such as ran-
dom tessellations and random graphs. The theory is supplemented by var-
ious examples. The thesis aims to be self-contained. Therefore, the first
chapter covers all the theory of point processes needed in the subsequent
parts.

• The following three chapters each cover one asymptotic method. Each
method is briefly explained. Proofs of the main results are included if they
are short or interesting for the theory. Some of the proofs had to be adjusted
to the setting of this thesis, some others were completed as they had only
hints in the literature. Many examples of application are then presented,
emphasizing the most recent ones and the author’s own. The reader can
also find references for further application. The methods are namely:

Malliavin–Stein’s method: The second chapter is devoted to the approach
to probabilistic approximations that combines Stein’s method with infinite-
dimensional integration by parts formulae based on the use of Malliavin-
type operators. The first stones of the method were built in a seminal
paper Nualart and Peccati [2005], where the authors established central
limit theorem called the fourth moment theorem for sequences of multiple
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stochastic integrals of a fixed order. Since this paper, a significant develop-
ment appeared in Nourdin and Peccati [2009a], where by bringing together
Stein’s method with the Malliavin calculus, the authors were able to asso-
ciate quantitative bounds to the fourth moment theorem. The basic idea
of the approach is that, in order to assess the discrepancy between some
Gaussian law and the distribution of a non-linear functional of a Gaussian
field, one can apply infinite-dimensional integration by parts formulae from
the Malliavin calculus of variations (see e.g. Malliavin [1997]) to the general
bounds associated with the so-called Stein’s method (see Stein [1972]) for
probabilistic approximations. In particular, the Malliavin–Stein approach
covers the ideas from Chatterjee [2009], where Stein’s method was combined
with finite-dimensional integration by parts formulae for Gaussian vectors,
in order to deduce second order Poincaré inequalities.
Within the framework of this thesis, however, we use a version of Malliavin
calculus for functionals of Poisson processes using the Fock space repre-
sentation as was introduced in Peccati and Reitzner [2016]. The method
then leads to central limit theorems as well as computing explicit rates of
convergence for models in stochastic geometry.
An interested reader is strongly recommended to visit this webpage gov-
erned by Professor Nourdin which provides a constantly updated list of all
existing papers written around the Malliavin–Stein method.

Method of stabilization: Another important tool of geometric limit theory
is the concept of stabilization presented in the third chapter. Roughly
speaking, a functional of some random structure stabilizes if its behaviour
at a given location depends only on the environment within a certain finite
but possibly random distance. This approach allows one to study statistics
which may be expressed as a sum of spatially dependent terms having short-
range interactions but complicated long-range dependence.
The motivation behind implementing this theory in the scope of stochas-
tic geometry originated in a desire to understand the asymptotics of the
classical Euclidean optimization problems including the traveling salesman
problem initiated in Beardwood et al. [1959] by showing the limit law of
the length of the shortest tour through n i.i.d points in the unit cube in
Rd. Independently, a similar result was shown in Miles [1970] for the total
edge length of some planar tessellations driven by a homogeneous Poisso-
nian input. The modern theory of stabilization used in stochastic geometry
was introduced in its present form in Penrose and Yukich [2001], Penrose
and Yukich [2002] and Penrose and Yukich [2003] based on previous work
of Kesten and Lee [1996].

Method of cumulants: We use the classical result from probability theory by
Marcinkiewicz [1939] stating that normal distribution is the only one with
finitely many non-zero cumulants (semi-invariants). In the fourth chapter,
we show that cumulants of a random variable derived from a random ge-
ometric structure can be expanded in terms of cumulant measures of the
defining point process. Under suitable restrictions on those measures, the
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cumulants of higher orders can be shown to tend to zero yielding central
limit theorems.
For a more thorough acquaintance with the cumulant method, the reader
is referred to Saulis and Statulevičius [1991].

As far as we know, the above described methods are the most frequent ones
when proving some asymptotic results in stochastic geometry. Nevertheless, the
list is still far from being exhaustive. It would probably take more than one thesis
to cover all available methods conscientiously. We shall at least mention limit
theorems for geometric functionals enjoying variants of subadditivity or superad-
ditivity properties (a detail survey of this subject is available in the monograph
Yukich [1998]), techniques dealing with associated random fields (e.g. Bulinski
and Shashkin [2007]) with the application on the volume of the excursion sets
in Bulinski et al. [2021] or ideas based on constructing a clan of ancestors for
Gibbsian inputs invented in Fernández et al. [1998].

At last, let us clear the connections between this thesis and author’s publica-
tions.

• D. Flimmel and V. Beneš. Gaussian approximation for functionals of Gibbs
particle processes. Kybernetika, 54:765-777, 2018.

The paper follows recent development in the limit theory of functionals of
Gibbs point processes in the Euclidean space in order to generalize results to
Gibbs processes of geometrical objects (particles). First, the authors verified
that the existence of a stationary Gibbs particle process is guaranteed under
analogous conditions as stated by Dereudre [2017] for Gibbs point processes.
Next, it was found that the methodology of Torrisi [2017] based on the
Malliavin–Stein method can be applied to Gibbs particle processes. Based
on these results, Gaussian approximation was derived for an innovation of
a stationary Gibbs planar segment process. Namely two functionals were
investigated: the normalized number of segments observed in a window and
normalized total length of segments hitting the window.
The results are presented here in order to demonstrate applications of
Malliavin–Stein’s method. However, we do not include all results or proofs
since they already appeared in the master thesis Flimmel [2017].

• D. Flimmel, Z. Pawlas, and J. E. Yukich. Limit theory for unbiased and
consistent estimators of statistics of random tessellations. Journal of Ap-
plied Probability, 57:679–702, 2020.

The paper focuses on stationary generalized weighted Voronoi tessellations
of Rd observed within a bounded observation window tending to the whole
space. Given a geometric characteristic of the typical cell, we use the minus-
sampling technique to construct an unbiased estimator of the average value
of this geometric characteristic. Under mild conditions on the weights of
the cells, we establish variance asymptotics and the asymptotic normality of
the unbiased estimator as the observation window tends to the whole space
using the stabilization properties of the generating point process. Moreover,
the weak consistency is shown for this estimator. Specially, apart from
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already known results for Voronoi tessellations, stabilization properties are
shown for Laguerre and Johnson–Mehl tessellations generated by a Poisson
point process.

• D. Flimmel and L. Heinrich. On the variance of the area of planar cylinder
processes driven by Brillinger-mixing point processes. Submitted to Elec-
tronic Journal of Probability.

We study some asymptotic properties of cylinder processes in the plane de-
fined as union sets of dilated straight lines (appearing as mutually overlap-
ping infinitely long strips) derived from a stationary independently marked
point process on the real line, where the marks describe thickness and ori-
entation of individual cylinders. We observe such cylinder process in a do-
main ρK unboundedly growing to the whole space with ρ Ñ 8. Provided
the unmarked point process satisfies a Brillinger-type mixing condition and
the thickness of the typical cylinder has a finite second moment we prove
a (weak) law of large numbers as well as a formula of the asymptotic vari-
ance for the area of the cylinder process in ρK. Due to the long-range
dependencies of the cylinder process, this variance increases proportionally
to ρ3. The main technique used in this paper is the expansion of the first
two cumulants of the studied random variable in order to connect it with
factorial cumulant measures of the defining point process.
This paper is a starting point for deriving a central limit theorem using the
cumulant method by showing that under similar assumptions, all the cumu-
lants of orders three and higher converge to zero with ρ Ñ 8. There have
been some attempts, but so far it has led to an inadequate strengthening of
the assumptions. Some results are demonstrated at the end of Chapter 4
to illustrate the application of the method. However, these results are not
published and the authors agreed to continue the cooperation in order to
obtain more promising results.

In conclusion, new results obtained during the authors PhD study are, namely:

Method of stabilization
• Theorem 3.12 and 3.13 proving the (asymptotic) unbiasedness and consis-

tency of some estimators of a geometric characteristic of the typical cell in
the weighted Voronoi tessellation,

• Theorem 3.14 showing the asymptotic variance and central limit theorem
for the estimators mentioned above. The result is valid if the weighted
Voronoi tessellation is generated by a stationary Poisson point process and
any general weight function,

• Theorem 3.15 and 3.16 providing applications of the above listed results
leading to limit theory for unbiased estimators of first, the distribution
function of the volume and second, the Hausdorff measure of the bound-
ary of the typical cell in a weighted Poisson–Voronoi tessellation, where
the weight function relates either to Voronoi, Laguerre or Johnson–Mehl
tessellation,
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• Proposition 3.1 and 3.2 showing the stabilization properties of scores and
cells of Voronoi, Laguerre and Johnson–Mehl tessellations generated by
a Poisson input. In fact, these results extend some older results in Mc-
Givney and Yukich [1999], Penrose and Yukich [2001, 2003],

• Lemmas 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 serve as auxiliary results in the proofs
of the above stated results.

Method of cumulants
• Lemma 4.1 connecting the Choquet functional of the cylinder process and

the probability generating functional of its generating point process. This
is a first important step to connect the cumulants of the area of the planar
cylinder process with the cumulant measures of its generating point process.
Special cases are presented in Corollary 4.1 and Example 4.2,

• Lemma 4.3 and Corollary 4.2 showing the convergence of the expected value
of the area of the cylinder process generated by a Brillinger-mixing point
process in R1. Theorem 4.3 then asserts a planar mean-square ergodic
theorem,

• Theorem 4.4 providing the exact asymptotic variance of the area of the
cylinder process generated by a point process with a strong version of
Brillinger-mixing property,

• Theorem 4.5 is a unpublished result giving a central limit theorem for the
area of the cylinder process driven by a point process satisfying much more
strict assumptions on the factorial cumulant measures than Theorem 4.4,

• Lemmas 4.2, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 are essential parts of
the proofs of the above stated results.
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1. Random geometric objects
The first chapter serves as an introduction to the theory of point processes as well
as a recapitulation of definitions and results used in the subsequent chapters. It
is mainly based on monographs Daley and Vere-Jones [2003] and Daley and Vere-
Jones [2008], Rataj [2006], Baddeley [2007], Schneider and Weil [2008], Chiu et al.
[2013] and Last and Penrose [2017].

1.1 Random measures and point processes in
general setting

The aim of this section is to introduce the concept of the point process in a general
way as a special type of random measure on a locally compact space. This
notion covers processes of points in Rd, compact sets, convex bodies, curves,
lines, etc. Special examples will be discussed in the subsequent sections. If not
stated otherwise, we assume that all random elements throughout this thesis are
defined on a common probability space pΩ,F ,Pq and by E , Var , resp. Cov we
denote the expectation, variance, resp. covariance w.r.t. P.

Locally finite measures
Let X be a locally compact, separable space equipped with a metric ρ. Without
loss of generality, we assume that every bounded closed set is compact with
respect to ρ. Further in the text, we will often use the following standard notation:

BpXq . . . Borel σ-field of subsets of X,
BbpXq . . . bounded Borel sets,
FpXq . . . closed sets,
CpXq . . . compact sets.

Definition 1.1 (Finite measure).
A measure µ on pX,BpXqq is finite, if µpXq ă 8.

Definition 1.2 (Locally finite measure).
A measure µ on pX,BpXqq is locally finite, if µpBq ă 8 for all B P BbpXq.

The notation for sets of measures will be used as follows:

MpXq . . . space of all locally finite measures on pX,BpXqq,
Mf pXq . . . space of all finite measures on pX,BpXqq,
NpXq . . . space of all locally finite integer-valued measures on pX,BpXqq,
Nf pXq . . . space of all finite integer-valued measures on pX,BpXqq.

If it does not lead to confusion, we use the simplified notation M,Mf ,N,Nf for
the latter spaces. The elements of N are often called counting measures.

Moreover, denote by M the smallest σ-field on M which makes all the pro-
jections µ ÞÑ µpBq measurable for all Borel sets B. Lemma 3.1.2 in Schneider
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and Weil [2008] shows that N P M. By N , we denote the trace σ-field of M on
N, i.e.

N “ tM X N : M P Mu.

For a measure µ P M, the support supppµq is the smallest closed set A in X
such that µpXzAq “ 0. Specially, if µ P N, then

supppµq “ tx P X : µptxuq ě 1u.

Example 1.1.
Take k P N Y t0,8u and x1, . . . , xk P X. Define a counting measure µ by

µ “

k
ÿ

i“1
δxi
,

where for x P X, δx is the Dirac measure, i.e. for A P BpXq

δxpAq :“
#

1, if x P A,

0, if x R A.

Remark. Since we assumed X to be locally compact and separable, all measures
in Mf pXq are regular (Štěpán [1987], Lemma I.7.1) and tight (Štěpán [1987],
Lemma I.7.3).

Random measures
Definition 1.3 (Random measure).
A random measure on X is a measurable mapping

Ψ : pΩ,F ,Pq Ñ pM,Mq.

The image measure PΨ “ PΨ´1 is the distribution of the random measure Ψ.

For Ψ a random measure and B P BpXq, we use the notation ΨpBq for the
mapping ω ÞÑ ΨpωqpBq.

Definition 1.4 (Intensity measure).
Let Ψ be a random measure on X. The measure on X defined by

αpBq “ E rΨpBqs, B P BpXq,

is called the intensity measure of the random measure Ψ.

Remark. Since ΨpBq ě 0, αpBq is always defined, but α does no longer need to
be locally finite. However, the intensity measures of random measures and point
processes in this text will always be assumed to be locally finite.

Theorem 1.1 (Campbell).
Let Ψ be a random measure on X with intensity measure α and let f : X Ñ R be
a non-negative, measurable function. Then

E
ż

X
fdΨ “

ż

X
fdα.
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The intensity measure is also known under the name first moment measure.
Let us now introduce the higher moment measures in a similar way.

Definition 1.5 (m-th moment measure).
Let Ψ be a random measure on X and let m P N. The m-th moment measure
αpmq of Ψ is the Borel measure on Xm for which

αpmq
pB1 ˆ ¨ ¨ ¨ ˆ Bmq :“ EΨm

pB1 ˆ ¨ ¨ ¨ ˆ Bmq “ EΨpB1q ¨ ¨ ¨ ΨpBmq,

where B1, . . . , Bm P BpXq.

Here, the product measure Ψm is a random measure on Xm and therefore,
αpmq is the intensity measure of Ψm in the sense of Definition 1.4.

For m P N, define the space

Xm
‰ :“ tpx1, . . . , xmq P Xm : xi are pairwise distinctu.

Definition 1.6 (m-th factorial moment measure).
Let m P N. For a random measure Ψ, we define the m-th factorial moment
measure as the Borel measure αrms on Xm for which

αrms
pB1 ˆ ¨ ¨ ¨ ˆ Bmq :“ EΨm

ppB1 ˆ ¨ ¨ ¨ ˆ Bmq X Xm
‰ q,

where B1, . . . , Bm P BpXq.

Theorem 1.2 (Campbell’s theorem for higher-order moment measures).
Let Ψ be a random measure and f : Xm Ñ R be a non-negative measurable
function. Then

E
ż

Xm

hpx1, . . . , xmqΨm
pdpx1, . . . , xmqq “

ż

Xm

fpx1, . . . , xmqαpmq
pdpx1, . . . , xmqq

and

E
ż

Xm
‰

hpx1, . . . , xmqΨrms
pdpx1, . . . , xmqq “

ż

Xm
‰

fpx1, . . . , xmqαrms
pdpx1, . . . , xmqq,

where Ψrms is the restriction of Ψm on Xm
‰ .

Point processes
A point process is a special example of a random measure. A simple point pro-
cess is a random measure that can be described by a locally finite sum of Dirac
measures, i.e. a random collection of isolated points producing no multiplicities
in X. It can also be defined as a random closed set in X which is almost surely
locally finite. Multiplicities in a process can also be treated using marks attached
to each point (see Section 1.3).

Definition 1.7 (Point process).
A point process on X is a measurable mapping

µ : pΩ,F ,Pq Ñ pN,N q.
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Remark. The measurable space pN,N q is often called the outcome space of
a point process on X.

Definition 1.8 (Simple point process).
A point process µ on X is called simple if

Ppµptxuq ď 1, @x P Xq “ 1.

Definition 1.9 (Distribution of a point process).
Let µ be a point process on X. By the distribution of the point process µ, we
understand the probability measure Pµ on the space pN,N q given by

PµpAq “ Ppµ P Aq “ Pptω P Ω : µpωq P Auq, A P N .

Notation. Point processes can be considered either as random measures or as
random sets of discrete points. Due to this interpretation, we will often treat
them accordingly and for µ P N write x P µ instead of x P supppµq. At the same
time, we denote by µpBq “ n the fact that the set B contains n points of µ.
Among other reasons, it allows us to simplify the notation for the mean values
and write

E
ÿ

xPµ

fpxq

instead of
ż

N

ż

Rd

fpxqϕpdxqPµpdϕq.

Moreover, if µ is simple, we will write µ “ tx1, x2, . . .u.

The characteristics of random measures can be defined in the same way for
point processes. However, some definitions and results have simpler interpreta-
tion. For example, if µ is a simple point process, then the intensity measure α
evaluated in some set B P BpXq is the mean number of points of µ lying in B.

Remark. If µ is a simple point process, then the Campbell’s theorem takes form

E
ÿ

xPµ

fpxq “

ż

X
fdα. (1.1)

The next theorem is a version of Campbell’s theorem for the m-th moment
measure αpmq and the m-th factorial moment measure αrms of a simple point
process µ and it is formulated in Schneider and Weil [2008].

Theorem 1.3 (Campbell’s theorem for a simple point process).
Let µ be a simple point process in X and let f : Xm Ñ R be a non-negative
measurable function. Then

E
ÿ

px1,...,xmqPµm

fpx1, . . . , xmq “

ż

Xm

fpx1, . . . , xmqαpmq
pdpx1, . . . , xmqq

and

E
ÿ

px1,...,xmqPµmXXm
‰

fpx1, . . . , xmq “

ż

Xm

fpx1, . . . , xmqαrms
pdpx1, . . . , xmqq.
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Using Theorem 1.3, we can see the relation between the measures αp2q and
αr2s. For a simple point process µ on X and B1, B2 P BpXq, we have

αp2q
pB1 ˆ B2q “ E

¨

˝

ÿ

px1,x2qPµ2XX2
‰

1B1ˆB2px1, x2q `
ÿ

xPµ

1B1pxq1B2pxq

˛

‚.

Hence,

αp2q
pB1 ˆ B2q “ αr2s

pB1 ˆ B2q ` αpB1 X B2q. (1.2)
A recurrent relation between higher-order moment measures and factorial mo-

ment measures can be found. Before stating it, we recall the notion of Stirling
number of the second kind. We follow the definition of Daley and Vere-Jones
[2003], Section 5.2. For any integer n and k, we define the factorial powers of n
by

nrks :“
#

npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q, for k “ 0, . . . , n,
0, for k ą n.

Definition 1.10 (Stirling number of the second kind).
The Stirling number of the second kind

␣

k
l

(

is defined by the relation

nk “

k
ÿ

l“1

"

k

l

*

nrls

whenever n ě k.

Alternatively, the Stirling number of the second kind can be defined using an
explicit formula

"

k

l

*

“

#

1
l!
řl
j“0p´1qj

`

l
j

˘

pl ´ jqk, if k ě l,

0, if k ă l.

Having the notion of Stirling numbers of the second kind, we can now describe
a connection between moment measures and factorial moment measures. For
A P BpXq and k P N we have

αpkq
pˆ

k
i“1Aq “

k
ÿ

l“1

"

k

l

*

αrls
pˆ

l
i“1Aq.

Definition 1.11 (Probability generating functional).
Denote by GpXq the class of Borel functions w : X Ñ r0, 1s with 1 ´ w vanishing
outside some bounded set. For a point process µ on X, we define the probability
generating functional Gµ by

Gµpwq “ E

˜

ź

xPµ

wpxq

¸

, w P GpXq.

As in the case of ordinary random variables, the probability generating func-
tional is associated with the moment structure of the point process.
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Theorem 1.4 (Proposition 9.5.VI in Daley and Vere-Jones [2008]).
Let Gµ be the probability generating functional of a point process µ on X whose
k-th moment measure exists for k P N. Then for 1 ´ w P GpXq and ρ Ñ 0,

Gµp1´ρwq “ 1`

k
ÿ

j“1

p´ρqj

j!

ż

Xj
‰

wpx1q . . . wpxjqα
rjs

pdx1 ˆ¨ ¨ ¨ˆdxjq`opρkq. (1.3)

Theorem 1.5 (Corollary 9.5.VII in Daley and Vere-Jones [2008]).
Under the conditions of Theorem 1.4, if the pk ` 1q-th moment measure of µ
exists, then the remainder in (1.3) is bounded by

ρk`1

pk ` 1q!

ż

Xk`1
‰

wpx1q ¨ ¨ ¨wpxk`1qαrk`1s
pdx1 ˆ ¨ ¨ ¨ ˆ dxk`1q.

Similar expression as in Theorem 1.4 leads to the definition of factorial cumu-
lant measures associated with a point process µ when expanding the logarithm of
the probability generating functional instead of the probability generating func-
tional itself.

Theorem 1.6 (Corollary 9.5.VIII in Daley and Vere-Jones [2008]).
Under the conditions of Theorem 1.4, the probability generating functional can be
expressed using the factorial cumulant measures γrjs for ρ Ñ 0, as

logGµp1 ´ ρwq “

k
ÿ

j“1

p´ρqj

j!

ż

Xj
‰

wpx1q ¨ ¨ ¨wpxjqγ
rjs

pdx1 ˆ ¨ ¨ ¨ ˆ dxjq ` opρkq.

Factorial cumulant measures form a useful tool in expressing and studying
dependencies among distant parts of a point pattern. The relation between fac-
torial moment measures and factorial cumulant measures is based on the general
relationship between mixed moments and mixed cumulants (see e.g. Chapter 4 in
Baccelli et al. [2020]) and can serve as an alternative definition for the measures.
For k P N, we have

γrks
pB1ˆ¨ ¨ ¨ˆBkq “

k
ÿ

j“1
p´1q

j´1
pj´1q!

ÿ

K1Y¨¨¨YKj“t1,...,ku

j
ź

r“1
αr|Kr|s

pˆsPKrBsq, (1.4)

αrks
pB1 ˆ ¨ ¨ ¨ ˆ Bkq “

k
ÿ

j“1

ÿ

K1Y¨¨¨YKj“t1,...,ku

j
ź

r“1
γr|Kr|s

pˆsPKrBsq, (1.5)

where B1, . . . , Bk P BpXq and the sum
ř

K1Y¨¨¨YKj“t1,...,ku
is taken over all parti-

tions of the set t1, . . . , ku into j non-empty sets K1, . . . , Kj and |Ki| denotes the
cardinality of the set Ki. Note that γrks is a locally finite, signed measure on
rRk,BpRkqs.

Example 1.2.
The first factorial cumulant measure coincides with the intensity measure (first
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moment measure), whereas the second factorial cumulant measure equals to
γr2s

pB1 ˆ B2q “ αr2s
pB1 ˆ B2q ´ αpB1qαpB2q

“ αp2q
pB1 ˆ B2q ´ αpB1 X B2q ´ αpB1qαpB2q

“ covpµpB1q, µpB2qq ´ αpB1 X B2q,

where in the second equality, we used relation (1.2).

Besides the probability generating functional, the most useful transform of
a random measure is the Laplace functional.

Definition 1.12 (Laplace functional).
Let Ψ be a random measure and f a non-negative measurable function of bounded
support on X. Then the Laplace functional is defined by

LΨpfq “ E
„

exp
ˆ

´

ż

X
fpxqΨpdxq

̇ȷ

.

Analogically, the k-th cumulant measures of the point process µ can be defined
either via expanding the Laplace functional or based on the relation with the
moment measures up to k-th order. The next theorem shows the Taylor series
expansion of the Laplace functional about f ” 0.

Theorem 1.7 (Proposition 4.2.2 in Baccelli et al. [2020]).
Let Ψ be a random measure on X and f : X Ñ R` be a measurable function such
that the mapping px1, . . . , xkq ÞÑ fpx1q ¨ ¨ ¨ fpxkq is integrable with respect to αpkq,
i.e.

ż

Xk

fpx1q ¨ ¨ ¨ fpxkqαpkq
pdx1 ˆ ¨ ¨ ¨ ˆ dxkq ă 8.

Then, for t P R`

LΨptfq “ 1 `

k
ÿ

j“1

p´tqj

j!

ż

Xj

fpx1q ¨ ¨ ¨ fpxjqα
pjq

pdx1 ˆ ¨ ¨ ¨ ˆ dxjq `
tk

k!ϵkptq,

where |ϵkptq| ď
ş

Xk fpx1q ¨ ¨ ¨ fpxkqαpkqpdx1ˆ¨ ¨ ¨ˆdxkq and limtÑ0 ϵkptq “ 0. More-
over, for t Ñ 0,

logLΨptfq “

k
ÿ

j“1

p´tqj

j!

ż

Xj

fpx1q ¨ ¨ ¨ fpxjqγ
pjq

pdx1 ˆ ¨ ¨ ¨ ˆ dxjq ` optkq,

where γpjq is the j-th cumulant measure of Ψ.

Take k P N. The cumulant measures and moment measures are related by
(cf. Baccelli et al. [2020], Chapter 4)

γpkq
pB1 ˆ ¨ ¨ ¨ ˆ Bkq “

k
ÿ

j“1
p´1q

j´1
pj ´ 1q!

ÿ

K1Y¨¨¨YKj“t1,...,ku

j
ź

r“1
αp|Kr|q

pˆsPKrBsq,

αpkq
pB1 ˆ ¨ ¨ ¨ ˆ Bkq “

k
ÿ

j“1

ÿ

K1Y¨¨¨YKj“t1,...,ku

j
ź

r“1
γp|Kr|q

pˆsPKrBsq,

where B1, . . . , Bk P BpXq.
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Example 1.3.
The first cumulant measure also coincides with the intensity measure, the second
cumulant measure is equal to the covariance measure

γp2q
pA ˆ Bq “ αp2q

pA ˆ Bq ´ αpAqαpBq “ covpµpAq, µpBqq.

Palm distributions
In this section we focus on a type of conditional distributions for random mea-
sures which are formally defined in terms of so-called Palm distributions, first
introduced in Palm [1943].

Definition 1.13 (Campbell measure).
Campbell measure of a random measure Ψ on X is defined as

CpB ˆ Uq “ E rΨpBq1tΨ P Uus, B P BpXq,U P M.

It represents a refinement of the intensity measure αpBq “ CpB ˆ Mq. By
Lemma 3.1.1 in Baccelli et al. [2020], the Campbell measure is a unique σ-finite
measure on X ˆ M. Moreover, assuming the intensity measure α of the random
measure Ψ is locally finite, then the measure disintegration theorem allows to
disintegrate the Campbell measure in a way that

CpB ˆ Uq “

ż

B

PxpUqαpdxq, B P BpXq,U P M, (1.6)

where P ¨p¨q is a probability kernel from X to M. Note that the family tPxp¨quxPX
is unique α-almost everywhere.

Definition 1.14 (Palm distribution).
If P¨p¨q is the probability kernel defined by (1.6), then Pxp¨q is called Palm dis-
tribution of Ψ at point x P X and tPxp¨quxPX is a family of Palm distributions of
Ψ.

In another words, P¨pUq is the Radon–Nikodym derivative of Cp¨ ˆ Uq with
respect to the intensity measure, i.e.

P¨
pUq “

dCp¨ ˆ Uq

dαp¨q
.

Heuristically speaking, if µ is a point process with intensity measure α, then PxpUq

interprets as a conditional probability that µ P U given that there is a point of
the process µ located at x. Note that for a point process without a fixed atom at
this particular location, the probability of the condition is null. Hence, the basic
discrete definition of the conditional probability does not apply. Moreover, we
would have that

Pxptν P N ; νptxuq ě 1uq “ 1, for α-a.a. x P X.

For a simple point process, we may define a modified version of the Campbell
measure and the Palm distribution by removing a point that may be present at
location x.
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Definition 1.15 (Reduced Palm distribution).
For a point process µ, we define the reduced Palm distribution at point x P X by

P!
xpUq :“ PxpU ` δxq, U P N ,

where U ` δx “ tν ` δx; ν P Uu.

Theorem 1.8 (Refined Campbell theorem).
For a simple point process µ with intensity measure α, it holds that

E
ÿ

xPµ

hpx, µq “

ż

XˆN
hpx, νqCpdpx, νqq “

ż

X

ż

N
hpx, νqPxpdνqαpdxq,

E
ÿ

xPµ

hpx, µztxuq “

ż

X

ż

N
hpx, νqP!

xpdνqαpdxq

for any non-negative measurable h : X ˆ N Ñ R.

An important tool, in particular in the analysis of spatial point process (see
Section 1.2), is the Papangelou conditional intensity, first introduced in Papan-
gelou [1974]. The definition relies on the so-called reduced Campbell measure.

Definition 1.16 (reduced Campbell measure).
The reduced Campbell measure C! of a point process µ is defined by

C!
pB ˆ Uq “ E rµpBq1tµ ´ δx P Uus, B P BpXq,U P N .

Definition 1.17 (Papangelou conditional intensity).
Let µ be a point process on X and suppose its reduced Campbell measure C!

is absolutely continuous with respect to the product measure ρ b Pµ. Then any
Radon–Nikodym density λ˚ of C! relative to ρ b Pµ is called the Papangelou
conditional intensity of µ.

For any non-negative measurable f : X ˆ NpXq Ñ R, we have

E

«

ÿ

xPµ

fpx, µztxuq

ff

“

ż

X
E rλ˚

px, µqfpx, µqsρpdxq.

The Papangelou conditional intensity λ˚px,xq ρpdxq for a point configuration x P

NpXq has an intuitive interpretation of the conditional probability of observing
one point in the infinitesimally small set conditional on that µ agrees with x
outside this set.

Examples
Example 1.4 (Binomial point process).
Let Q be a probability measure on X and let n P N. Assume that X1, . . . , Xn are
independent random elements on X following the same law Q. Then

µ “ δX1 ` ¨ ¨ ¨ ` δXn
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is a point process on X called the binomial point process with sample size n and
sampling distribution Q.

Having µ the binomial point process with sample size n and sampling distri-
bution Q, then, for B P BpXq, µpBq follows the binomial distribution, i.e.

PpµpBq “ kq “

ˆ

n

k

̇

QpBq
k
p1 ´ QpBqq

n´k, k “ 0, . . . , n.

The intensity measure of the process µ is then

αpBq “ E
n
ÿ

i“1
1tXi P Bu “

n
ÿ

i“1
PpXi P Bq “ nQpBq.

Example 1.5 (Poisson point process).
Let α be a locally finite non-atomic measure on X. The Poisson point process
on X with intensity measure α is a point process η on X satisfying the following
conditions

1. for every compact set B Ă X, ηpBq is a Poisson distributed random variable
with parameter αpBq;

2. if B1, . . . , Bn, n P N, are pairwise disjoint compact subsets of X, then
ηpB1q, . . . , ηpBnq are independent random variables.

Remark. For a Poisson point process η on X with intensity measure α and k P N,
the k-th factorial moment measure equals αk (cf. Corollary 3.2.4 in Schneider
and Weil [2008]). Moreover, as shown in Example 4.2 in Chiu et al. [2013], the
probability generating functional equals to

Gηpwq “ exp
ˆ

´

ż

X
p1 ´ wpxqqαpdxq

̇

. (1.7)

From the latter expression, we conclude that (cf. Baccelli et al. [2020], Example
4.1.13) the first factorial cumulant measure of η equals its intensity measure and
for k ě 2, the k-th factorial cumulant measure is null.

From now on, we will use the notation η exclusively for the Poisson point
process, the underlying space shall always be specified. For the fundamental
properties including the existence of a general Poisson process, see Last and
Penrose [2017].

Theorem 1.9 (Slivnyak–Mecke formula).
Let η be a Poisson point process on X with intensity measure α, take m P N and
let f : N ˆ Xm Ñ R be a non-negative measurable function. Then

E

»

–

ÿ

px1,...,xmqPXm
‰

fpη, pxiqi“1,...,mq

fi

fl

“

ż

X

¨ ¨ ¨

ż

X

E f

˜

η `

m
ÿ

i“1
δxi
, pxiqi“1,...,m

¸

αpdx1q ¨ ¨ ¨αpdxmq.
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Example 1.6 (Cox process).
Let Ψ be a random measure with a.s. no atoms. The Cox process (or the doubly
stochastic Poisson process) µ directed by Ψ is a Poisson process on X with random
intensity measure Ψ, i.e. the distribution of µ is given by

PpµpBq “ kq “

ż

MpXq

e´νpBqνpBqk

k! PΨpdνq, k P N Y t0u, B P BpXq.

The Cox process is indeed a well defined point process on X (see Section 6.2
in Daley and Vere-Jones [2003]). The intensity measure of a Cox process µ is

EµpBq “

ż

E ηαpBqPΨpdαq “

ż

αpBqPΨpdαq “ EΨpBq,

where ηα denotes the Poisson point process with intensity measure α.

Example 1.7 (Cluster point process).
Let µP be a point process on X (parent point process) and let tξx, x P Xu be
a collection of finite point processes (daughter point processes), i.e ξxpXq ă 8

a.s. for all x P X. Take B P BpXq and define a point process µ by

µpBq “

ż

X
ξxpBqµP pdxq.

If µpBq ă 8 a.s. for all B P BpXq, then µ is called a cluster point process.
A special example of a cluster point process is a Poisson cluster process, which

is a cluster process such that its daughter processes are mutually independent,
independent of the parent process, which is a Poisson point process. If we take
X “ Rd and assume, moreover, µP to be stationary with intensity λP (see Defini-
tions 1.18 and 1.19) and that the daughter processes have the number of points
distributed according to some law N0 that are placed around the origin with
respect to a common density f , then we talk about the Neyman–Scott process.
Depending on the choice of the distribution of the number of points and den-
sity f , we meet special examples such as Matérn cluster process (Matérn [1986]),
Gauss–Poisson process, etc.

Example 1.8 (Finite point process with density with respect to the
distribution of the Poisson point process).
A point process µ on X is called finite if

PpµpXq ă 8q “ 1.

Let η be a finite Poisson point process on X with intensity measure α and distri-
bution Pη. Consider a measurable mapping p : Nf Ñ R` satisfying

ż

Nf

ppxqdPηpxq “ 1.

A point process µ with distribution Pµ, such that

PµpAq “

ż

A

ppxqdPηpxq, A P N pXq,
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is called the point process with density p with respect to the distribution of the
Poisson point process η.

For a point process with density p with respect to the distribution of Poisson
point process η on Rd, the following representation of the Papangelou conditional
intensity (see Definition 1.17) holds true.

Theorem 1.10 (Theorem 4.1 in Baddeley [2007]).
Let µ be a finite point process in a bounded set Λ Ă Rd with density p with respect
to a finite Poisson process η. Assume that the density p is hereditary, i.e. satisfies

ppxq ą 0 ñ ppyq ą 0, x,y P Nf ,y Ă x.

Then the Papangelou conditional intensity of the point process µ exists and equals

λ˚
px,xq “

ppx Y txuq

ppxq
, x P Nf , x P Λ, x R x.

If ppxq “ 0, we set λ˚px,xq “ 0.

Theorem 1.11 (Lemma 4.2 in Baddeley [2007]).
Let µ be a finite point process in a bounded set Λ Ă Rd with density p with respect
to a finite Poisson process η and a Papangelou conditional intensity λ˚. Then p
is completely determined by λ˚.

For example, the Strauss point process on Rd is constructed as a finite point
process having density p with respect to the distribution of the Poisson point
process η with intensity measure αpBq “ |B|d (d-dimensional Lebesgue measure
of B) for all B Ă Λ with

ppxq “ Cβ#pxqγspxq,

where C is the normalising constant, β ą 0, 0 ď γ ď 1, r ą 0 are parameters,
#pxq denotes the number of points in x and

spxq “
ÿ

x,yPx
1t}x ´ y} ă ru

is the number of pairs in a configuration x in Λ being at most r units apart from
each other. By using γ “ 0, one obtains the hard-core process. The choice γ “ 1
returns back the Poisson point process. By applying Theorem 1.10, the Papan-
gelou conditional intensity of the Poisson point process with intensity measure
αpBq “ β|B|d, B Ă Λ, simplifies to λ˚px,xq “ β.

1.2 Spatial point processes
Most commonly in applications, we meet the case when X “ Rd (where usually
d “ 2 or d “ 3). Spatial point processes are useful as statistical models in the
analysis of observed patterns of points, where the points represent the locations
of some object of study (trees in a forest, disease cases, etc.). The linearity of the
Euclidean space allows defining stationary random measures and point processes.
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In the previous section, we defined the factorial moment measures of a random
measure (a point process, resp.). Assuming those measures are absolutely con-
tinuous with respect to the underlying Lebesgue measure, we can define product
densities of a point process.

Another frequent choice is X “ Sd, the d-dimensional unit sphere. The latter
case is not discussed here, but we refer the reader e.g. to Cuevas-Pacheco and
Møller [2018], Møller et al. [2018] or Møller and Rubak [2016]. For the Borel
σ-fields, we use the standard shorter notation Bd :“ BpRdq, B :“ BpRq. In the
rest of the thesis, we use the notation |B|d for the Lebesgue measure of B Ă Rd.

In this section, we extend the list of examples of point processes from the
previous section. The examples include cluster point processes, determinantal
point processes, Gibbs point processes and Brillinger-mixing point processes.

Definition 1.18 (Stationary random measure).
The random measure Ψ on Rd is stationary if Ψ D

“ Ψ ` x for all x P Rd.

Definition 1.19 (Intensity function, intensity).
Let µ be a point process on Rd with intensity measure α. If α is absolutely
continuous with respect to the Lebesgue measure on Rd, then we can write

αpBq “

ż

B

λpxqdx, B P Bd.

The function λ is called the intensity function of the point process µ. If λ is
constant, we talk about the intensity of the point process µ.

Remark. If the random measure Ψ is stationary, then its intensity measure α is
invariant under translation. The only translation-invariant, locally finite measure
on Rd is, up to the constant, the Lebesgue measure | ¨ |d. Hence, if we assume
that α is locally finite, then there is a constant λ P r0,8q such that αp¨q “ λ | ¨ |d.
The constant λ is called the intensity and it corresponds with Definition 1.19.

Remark. If the point process µ has the intensity function λ, then the Campbell
theorem (1.1) reduces to

E
ÿ

xPµ

fpxq “

ż

Rd

fpxqλpxqdx.

Definition 1.20 (Product density).
Let m P N and let µ be a point process with m-th factorial moment measure αrms.
If αrms is absolutely continuous with respect to the Lebesgue measure on Rmˆd,
then the corresponding density is called m-th order product density, i.e.

αrms
pB1 ˆ ¨ ¨ ¨ ˆ Bmq “

ż

Bm

¨ ¨ ¨

ż

B1

λrms
px1, . . . , xmq dx1 ¨ ¨ ¨ dxm,

where B1, . . . , Bm P Bd.

We interpret the m-th order product density λrmspx1, . . . , xmq as the proba-
bility that exactly one point of the process µ lays in the infinitesimally small ball
around xi, i “ 1, . . . ,m.
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Remark. If µ is stationary, then λr2s depends only on the difference of its argu-
ments, i.e. λr2spx1, x2q “ λspx1 ´ x2q, where λs is a suitable function.

Definition 1.21 (Pair correlation function).
Let µ be a point process on Rd with the product densities of the first two orders
λr1s “: λ and λr2s. Then the function g : R2d Ñ R defined by

gpx, yq :“
#

0, if λpxq “ 0 or λpyq “ 0,
λr2spx,yq

λpxqλpyq
, otherwise,

is called the pair correlation function of the point process µ.

Example 1.9 (m-th order product density of the Poisson point process).
If the Poisson point process η has the intensity function λ, then its m-th order
product density satisfies

λrms
px1, . . . , xmq “

m
ź

i“1
λpxiq.

Moreover, the pair correlation function is equal to 1 for any pair of points x, y
such that x ‰ y and λpxq ą 0, λpyq ą 0.

Examples
In the previous section, we presented the Poisson point process having the prop-
erty that there are no interactions among the points of the process. On the other
hand, cluster point processes can be viewed as point processes, where nearby
points attract each other. As the opposite, we present examples of point pro-
cesses usually used to model repelling data sets. Namely, Gibbs processes and
determinantal point processes (DPP’s). Briefly, the class of Gibbs point pro-
cesses is more flexible, although less tractable due to the uniqueness issues. On
the other hand, the biggest advantage of DPP is the knowledge of all its moment
measures. More involved comparison of these models as well as discussion over
their advantages and disadvantages can be seen in Lavancier et al. [2015] and
Lavancier et al. [2014]. The link between the models has been studied in Georgii
and Yoo [2005].

Example 1.10 (Determinantal point process).
Let µ be a simple point process on Rd and we assume that its product density
functions satisfy

λrns
px1, . . . , xnq “ det pCpxi, xjqq1ďi,jďn, n P N, px1, . . . , xnq P Rnd

for some function C : RdˆRd Ñ R. Then we call µ a determinantal point process
(DPP) with a kernel C.

Remark. Note that Poisson process is a special case of DPP, where Cpx, yq “ 0
whenever x ‰ y.
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The DPP’s were first introduced in Macchi [1975] to model fermions in quan-
tum mechanics, i.e. particles that repel one another. The existence of DPP’s is
discussed in the latter paper or in Soshnikov [2000].

In fact, it is possible to consider complex-valued function C. Then it would
lead to complex-valued joint densities, which is not consistent with the setting of
this thesis. We refer to Hough et al. [2009] for more details.

Example 1.11 (Gibbs point process).
The Gibbs point processes cover a wide class of point processes with interaction
among the points used largely in statistical physics for modelling systems with
a large number of interacting particles. The interaction can be attractive, repul-
sive or depending on geometrical features. A special case is the Poisson point
process showing no interactions. For a general presentation of Gibbs measures,
see Georgii [2011]. An intuitive introduction to Gibbs point processes in Rd can
be found in Dereudre [2017]. Another introductory text that also includes the
motivation from the statistical mechanics is in Friedli and Velenik [2017].

First, we recall the definition of the Gibbs point process on a bounded set
Λ Ă Rd. For this reason, denote by NΛ the space of finite point configurations
inside Λ and NΛ the corresponding trace σ-field. In finite volume, they are
defined, intuitively, as modifications of Poisson point processes involving inter-
actions among the points. To model the interactions, we deal with an energy
function as a measurable function

H : Nf Ñ R Y t8u

which will be assumed to be

• non-degenerate, if
HpHq ă 8,

• hereditary, if for any x P Nf and x P x

Hpxq ă `8 ùñ Hpxztxuq ă 8,

• stable, if there exists a constant A ě 0 such that for any x P Nf

Hpxq ě ´A#pxq,

• invariant under shifts (stationary), if for any x P Nf and x P Rd

Hpxq “ Hpx ` xq.

Definition 1.22 (Finite volume Gibbs point process).
Let Λ Ă Rd be such that 0 ă |Λ|d ă 8. The finite volume Gibbs point process
on Λ with activity z ą 0, inverse temperature β ě 0 and energy function H is
a point process µ having distribution P z,β

Λ on NΛ satisfying

P z,β
Λ pdxq “

1
Zz,β

Λ
e´βHpxqPηz

Λ
pdxq, x P NΛ, (1.8)

where Pηz
Λ

is the distribution of the Poisson point process ηzΛ in Λ with intensity
z and Zz,β

Λ , called the partition function, is the normalization constant.
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Due to non-degeneracy and stability of H, the partition function Zz,β
Λ is pos-

itive and finite. Hence, P z,β
Λ is well defined.

The finite volume Gibbs point process is an example of a point process having
density p with respect to the distribution of a Poisson point process, where

ppxq “
1

Zz,β
Λ
z#pxqe´βHpxq, x P NΛ.

Another option is to define the finite volume Gibbs point process using the Pa-
pangelou conditional intensity (recall Definition 1.17), which may be easier to
understand than the density. As the result of Theorem 1.10, using the conditional
intensity eliminates the normalizing constant Zz,β

Λ needed for the probability den-
sity. We then have a finite volume Gibbs process characterized by

λ˚
px,xq “ ze´βpHpxYtxuq´Hpxqq.

The expression in the exponent is called the local energy of x in x and is usually
denoted by hpx,xq. Note that if x P x, then hpx,xq “ 0.

Let us demonstrate some examples of frequent choices of the energy function.

• Ising model: The configuration of the Ising model in a finite discrete set
Λ Ă Zd are elements of the set ΩΛ :“ t´1, 1uΛ. Discrete variables represent
magnetic dipole moments of atomic “spins” that can be in one of two states
(positive or negative). The spins are arranged in a lattice, allowing each spin
to interact with its neighbours. The associated energy of a configuration
x “ txiuiPΛ is defined by

Hpxq “ ´
ÿ

pi,jqĂΛ:i„j
xixj ´ h

ÿ

iPΛ
xi,

where h P R is the magnetic field and i „ j denotes the fact that sites i and
j are neighbours. This simplest example does not allow the spins in Λ to
interact with other spins located outside Λ. For more options, see Chapter
3 in Friedli and Velenik [2017].

• Pairwise interaction model: Let g : Rd Ñ RYt8u be a Borel measurable
function, called the pair potential. We assume that gpxq “ gp´xq for any
x P Rd. The pairwise energy function is defined for any x P Nf by

Hpxq “
ÿ

tx,yuĂx
gpx ´ yq.

Often, it is assumed that the pair potential g is a function on R` and

Hpxq “
ÿ

tx,yuĂx
gp|x ´ y|q, x P Nf .

See Dereudre [2017] and the reference therein that such energy function H
is hereditary, non-degenerate and stable. The choice gpuq “ 1r0,rspuq, where
r is a given parameter, leads to the Strauss process.
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• Energy based on geometrical objects: The motivation is to provide
random configurations such that special geometrical features appear with
higher probability than in the case of the original Poisson point process.
Here, we show an example of the energy function based on Voronoi tessel-
lation (see the notation in Section 1.5). Let Cpx,xq be the Voronoi cell for
a configuration x P Nf and x P x. Then we define the energy function by

Hpxq “
ÿ

xPx
1rCpx,xq is boundedsφpCpx,xqq,

where φ is any function from the space of polytopes in Rd to R (e.g. volume,
pd´1q-dimensional Hausdorff measure of the boundary, number of vertices,
etc.).

Of course, the above examples could be freely combined. We can define pair
potential which takes into account pairs of Voronoi cells, higher-order interactions,
etc.

Theorem 1.12 (GNZ equations).
For any positive measurable function f : Rd ˆ Nf Ñ R,

ż

ÿ

xPx
fpx,xztxuqP z,β

Λ pdxq “

ż ż

Λ
fpx,xqλ˚

px,xqdxP z,β
Λ pdxq.

The GNZ equations have been first introduced by Georgii, Nguyen and Zessin
(cf. Georgii [1976], Nguyen and Zessin [1979]). Note that they generalize the
Slivnyak–Mecke formulas for Poisson point processes (Theorem 1.9).

The finite volume Gibbs model can be defined by writing down its probability
density which is no longer possible in the infinite volume case. Also to define the
energy of an infinite configuration x is meaningless. See Section 6.1 in Friedli
and Velenik [2017] for an explanation. The main idea is to define a sequence of
finite Gibbs point processes pP z,β

Λn
qně1 on Λn “ r´n, nsd and let n Ñ 8. Then

we extract a convergent subsequence and call its accumulation point the infinite
volume Gibbs point process.

Definition 1.23 (Local functions).
The function f : N Ñ R is said to be local if there exists a bounded set ∆ Ă Rd

such that for all x P N, fpxq “ fpx∆q. By x∆ we denote the configuration of x
inside ∆.

Definition 1.24 (Local convergence topology).
The local convergence topology on the space of probability measures on N is
the smallest topology such that for any local bounded function f : N Ñ R the
function P Ñ

ş

fdP is continuous.

Take the sequence Λn “ r´n, nsd, the finite volume Gibbs processes pP z,β
Λn

qně1
given by (1.8) for common parameters z ą 0, β ě 0 and energy function H

assumed to be stationary. We use a stationarization to define measures P̄ z,β

Λn
, n ě

1, i.e.
ż

fpxqP̄
z,β

Λn
pdxq “

1
p2nqd

ż

r´n,nsd

ż

fpx ´ uqP̄
z,β

Λn
pdxqdu, for all f : N Ñ R.
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We interpret P̄ z,β

Λn
as the Gibbs measure where the origin o is replaced by a random

point chosen uniformly in Λn.

Theorem 1.13 (Proposition 9 in Dereudre [2017]).
The sequence pP̄

z,β

Λn
qně1 is tight for the local convergence topology.

Definition 1.25 (Infinite volume Gibbs point process).
Let us denote by P z,β one of the accumulation points of the sequence pP̄

z,β

Λn
qně1.

We call the measure P z,β the infinite volume Gibbs point process.

For intuitive, yet more rigorous explanation of the transition between the finite
volume and infinite volume cases, see Chapter 6 in Friedli and Velenik [2017] or
Section 2 in Dereudre [2017]. It is possible to characterize the infinite volume
Gibbs point process using the GNZ equation similarly as in the finite volume
setting. We need a further assumption on the energy function H.

Definition 1.26 (Finite range energy function).
The energy function H has a finite range (or is finite range) with R ą 0 if for
every bounded set ∆ Ă Rd the local energy H∆p¨q :“ Hp¨q ´ Hp¨∆cq satisfies for
every finite configuration x P Nf

H∆pxq “ Hpx∆‘Bpo,Rqq ´ Hpx∆‘Bpo,Rqz∆cq.

By ‘, we denote the Minkowski sum.

Theorem 1.14 (GNZ equations in infinite volume case).
Let P be a probability measure on N . Let H be a finite range energy functions
and z ą 0, β ě 0 be two parameters. Then P is the infinite volume Gibbs measure
with the energy function H, activity z and inverse temperature β if and only if
for any positive measurable function f : Rd ˆ N Ñ R

ż

ÿ

xPx
fpx,xztxuqP pdxq “

ż ż

Rd

λ˚
px,xqfpx,xqdxP pdxq, (1.9)

where the function λ˚px,xq “ ze´βhpx,xq, x P Rd,x P N, is the Papangelou condi-
tional intensity of P .

For conditions ensuring that (1.9) holds, see Ruelle [1969]. It is important to
emphasize that (1.9) may not give a unique solution. The uniqueness and the
existence of the solution is still an open problem for a large spectrum of Gibbs
models. We refer to Dereudre et al. [2010] for several existence theorems. There
exist techniques in the literature used in order to obtain uniqueness of Gibbs
measures, namely the Dobrushin criterion (Dobruschin [1968]), cluster expansion
(Ruelle [1969] or Jansen [2019]), and disagreement percolation (Hofer-Temmel
and Houdebert [2019]).

Example 1.12 (Brillinger-mixing point process).
The assumption of stationarity allows us to disintegrate the moment measures
and cumulant measures of higher orders. This disintegration then leads to the
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definition of reduced versions of the measures associated to µ. For example, for
the k-th factorial cumulant measure, we have

γrks
pB1 ˆ ¨ ¨ ¨ ˆ Bkq “ λ

ż

B1

γ
rks

redppB2 ´ xq ˆ ¨ ¨ ¨ ˆ pBk ´ xqq dx, (1.10)

where B1, . . . , Bk P Bd and Bj ´ x is the translation of the set Bj by x P Rd.

Definition 1.27 (Reduced factorial cumulant measure).
The measure γ

rks

red on Rdpk´1q from the expression (1.10) is called reduced k-th
factorial moment measure.

Remark. The reduced cumulant measures of the second and higher orders are
signed measures, hence admit the Hahn–Jordan decomposition (Dudley [2002],
Theorem 5.6.1). Therefore, for any k ě 2, there exist two measures γrks

red,` and
γ

rks

red,´ uniquely determined by γrks

red such that

γ
rks

red “ γ
rks

red,` ´ γ
rks

red,´.

The total variation measure of γrks

red is then

|γ
rks

red| “ γ
rks

red,` ` γ
rks

red,´

and the total variation is }γ
rks

red}TV :“ |γ
rks

red|pRdpk´1qq.
Reduced factorial cumulant measures are the basis of the Brillinger-mixing

property.

Definition 1.28 (Brillinger-mixing process).
A stationary point process µ is Brillinger-mixing if, for k ě 2, we have

}γ
rks

red}TV ă 8. (1.11)

The condition (1.11) expresses some kind of weak correlatedness (or asymp-
totic uncorrelatedness) of the numbers of points lying in bounded sets having
a large (or unboundedly increasing) distance of one another. This type of weak
dependence does not necessarily imply ergodicity, see Heinrich [2018], but allows
to prove central limit theorems for various stochastic models related with point
processes, e.g. in stochastic geometry, statistical physics for d ě 1 or in queue-
ing theory for d “ 1, see e.g. Heinrich and Schmidt [1985]. Brillinger-mixing
processes cover a wide class of processes including e.g.

• Neyman–Scott process: if the distribution of the number of points in each
cluster have all moments finite, then it is Brillinger-mixing. It remains true
for any Poisson-cluster process (Example 4.1 in Heinrich [2013]),

• Cox process: Under some more involved assumptions, the Cox process is
also Brillinger-mixing (Heinrich [1988]).

• Determinantal point process: Recently in Biscio and Lavancier [2016], it
has been shown that also DPP’s are Brillinger-mixing if its kernel C is
symmetric continuous real-valued function in L2pRdq with Cp0q “ ρ and
the Fourier transform of C has values in r0, 1s. The latter assumption
guarantees the existence of such DPP.
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1.3 Marked point processes
In many applications, we observe a further random element Mi assigned to each
point xi of the point pattern. The mark Mi carries some additional information
and takes values in some mark space M. The class of processes considered in
this section includes processes of objects that are characterized by their location
and weight. Such processes are covered formally by the general theory, as they
can be viewed as point processes on a product space. Nevertheless, marked point
processes deserve attention on their own due to their importance in applications.

We will restrict this section to the case when the unmarked point process is
a process on Rd and leave the space M to be a complete separable locally compact
metric space equipped with a σ-field M.

Definition 1.29 (Marked point process).
By a marked point process we understand a point process µm on Rd ˆ M such
that

αmpB ˆ Mq :“ EµmpB ˆ Mq ă 8

for all B P Bd
b :“ BbpRdq. The point process µ given by µpBq “ µmpB ˆ Mq is

called the unmarked point process. The measure αm is the intensity measure of
the marked point process µm.

Definition 1.30 (Simple marked point process).
We say that a marked point process µm is simple if the unmarked point process
µ is simple.

The Campbell theorem (see expression 1.1) also holds:

E
ÿ

px,mqPµm

fpx,mq “

ż

fpx,mqαmpdpx,mqq

for any non-negative measurable function f on Rd ˆ M.
It is clear from Definition 1.29 that every marked point process is a point

process on the product space Rd ˆ M. Nevertheless, not every point process on
Rd ˆM can be viewed as a marked point process. For example, if M “ R and we
take a stationary Poisson point process on Rd ˆM “ Rd`1 with positive intensity
λ, then

αmpB ˆ Rq “ λ |B ˆ R|d`1 “ 8

for arbitrary B P Bd
b with |B|d ą 0.

Example 1.13 (Marked Poisson point process).
Let αm be a locally finite non-atomic measure on Rd ˆ M. The marked Poisson
point process on Rd with marks in M and intensity measure αm is the point
process ηm satisfying the following conditions:

1. ηmpB1 ˆ L1q, . . . , ηmpBk ˆ Lkq are mutually independent random variables
for pairwise disjoint Bj ˆ Lj P Bd

b ˆ BpMq and k P N,

2. ηmpBˆLq is Poisson distributed with mean αmpBˆLq for any B P Bd
b , L P

BpMq.
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Remark. A marked Poisson point process ηm with the intensity measure αm is
simple if and only if αmptxu ˆ Mq “ 0 for all x P Rd.

Definition 1.31 (Independently marked point process).
A marked point process µm “

ř

i δpxi,Miq is called independently marked if tMiu

are identically distributed, mutually independent and independent of the un-
marked point process µ “

ř

i δxi
.

Definition 1.32 (Stationary marked point process).
A marked point process µ on Rd with marks in M is stationary if its distribution
is invariant under shifts of Rd only, i.e. px,mq ÞÑ px ` v,mq for all v P Rd.

Theorem 1.15 (Theorem 2.3 in Baddeley [2007]).
Let µ be a stationary marked point process in Rd such that the corresponding un-
marked point process of unmarked points has finite intensity λ. Then the intensity
measure α of µ takes the form

αpA ˆ Bq “ λ |A|dQpBq

for all A P B, B P BpMq. The probability measure Q on M is called the distribu-
tion of the typical mark.

Remark. (Campbell’s theorem for a stationary marked point process) If µ is
a stationary marked point process on Rd with intensity λ, then

E
ÿ

px,mqPµ

fpx,mq “ λEQ
ż

Rd

fpx,Mq dx,

where M is a random variable distributed according to Q and EQ is the expecta-
tion w.r.t Q.

Example 1.14 (Germ-grain model, Boolean model).
A stationary independently marked point process µm “ tpxi,Ξiq, i ě 1u on Rd

with the mark space M “ Cpdq (the space of all non-empty compact sets in Rd

equipped with the Hausdorff metric, see Section 1.4) is called germ-grain process.
The associated random set

Ξ “
ď

iě1
pxi ` Ξiq

is called germ-grain model. If the unmarked point process is the Poisson point
process, we call the random set Ξ Boolean model.

Example 1.15 (Cylinder process in the plane).
Let gpp, φq :“ tpx, yq P R2 : x cosφ`y sinφ “ pu be a parametrized line (Hessian
normal form), where p P R1 stands for the signed distance of the line from the
origin o and φ P r0, πq is the angle (measured anti-clockwise) between the normal
vector vpφq “ pcosφ, sinφqT on the line (with direction in the half-plane not
containing o and the x1-axis).

We describe a cylinder process in R2 (see Figure 1.1) in terms of its generating
stationary, independently marked point process on R1. For doing this, let pΦ0, R0q

be the generic random vector taking value in the mark space r0, πs ˆ r0,8q that
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describes the orientation Φ0 and the cross-section (or base) Ξ0 :“ r´R0, R0s of
the typical cylinder. In addition, we assume that Φ0 and R0 are independent with
distribution functions G and F , respectively, i.e. PpR0 ď r,Φ0 ď φq “ F prqGpφq.

Now we introduce a stationary independently marked point process as locally
finite, simple counting measure ΨP

F,G :“
ř

iPZ δrPi,pΦi,Riqs defined on the Borel sets
of R1 ˆ r0, πs ˆ r0,8q , whose finite-dimensional distributions are shift-invariant
in the first component. The stationary unmarked (or ground) point process Ψ “
ř

iPZ δPi
„ P with finite and positive intensity λ “ EΨpr0, 1sq ą 0 is assumed

to be independent of the i.i.d. sequence tpΦi, Riq : i P Z :“ t0,˘1,˘2, . . .uu

of mark vectors. Each triplet rPi, pΦi, Riqs, i P Z, determines a random cylinder
gpPi,Φiq ‘ bpo, Riq , where bpo, rq “ tpx1, x2q P R2 : x2

1 ` x2
2 ď r2u is the circle in

R2 with radius r ě 0 and centre in the origin o and ‘ stands for Minkowski sum
of subsets of R2. The intensity measure ΛF,Gpp¨q ˆ r0, φs ˆ r0, rsq :“ EΨP

F,Gpp¨q ˆ

r0, φs ˆ r0, rsq can be expressed for r ě 0, 0 ď φ ď π as

ΛF,Gpp¨q ˆ r0, φs ˆ r0, rsq “ EΨp¨qPpΦ0 ď φ,R0 ď rq “ λ | ¨ |1 GpφqF prq.

Definition 1.33 (Cylinder process in R2).
By a cylinder process Ξ :“ ΞP

F,G in the Euclidean plane R2 derived from the
stationary independently marked point process ΨP

F,G, we understand the random
union set defined by

Ξ :“
ď

iPZ
pgpPi,Φiq ‘ bpo, Riqq . (1.12)

Note that Ξ forms a random set in R2 which in general is neither closed nor
stationary. Cylinder processes have numerous applications (mostly for d “ 2, 3)
among others in material sciences to model materials consisting of long thick fibres
or thick membranes, see e.g. Spiess and Spodarev [2011]. Generally, cylinder
processes in Rd are defined as countable unions of dilated affine subspaces of
Rk , k “ 1, . . . , d´1 see e.g. Weil [1987], Schneider and Weil [2008] or Molchanov
[2005].

(a) (b) (c)

Figure 1.1: Three realizations of the cylinder process in the planar unit window.
All three cases are generated by a marked point process with uniformly distributed
widths. On picture (a), the unmarked point process is a stationary Poisson
process with the orientations distributed uniformly in r0, πq. On picture (b), the
unmarked process is a stationary Poisson process and the orientations take three
different values with the same probability. On picture (c), the unmarked process
is a Thomas point process with the distributions being uniform in r0, π{4q.
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1.4 Particle processes
In this section, we present a special case of point processes, namely the particle
processes. Those are point processes in the space of all non-empty compact
subsets of Rd. The definitions and results listed in this section are mostly based
on Section 4.1 in Schneider and Weil [2008].

To work with particles, we use the following notation.

Notation. For a compact set K Ă Rd, we denote by BpKq the circumscribed
ball (circumball) of K and by cpKq the centre (circumcenter) of BpKq. We define
spaces of particles

Cd . . . set of all compact subsets (particles) in Rd,
Cpdq . . . set of all non-empty compact subsets in Rd,
Cpdq

o . . . tK P Cpdq : cpKq “ ou, where o is the origin in Rd,
Cpdq

Λ . . . tK P Cpdq : cpKq P Λu, where Λ Ă Rd.

Moreover, for K, L P Cpdq we denote by K ‘ L and Ǩ the operations

K ‘ L :“ tx ` y : x P K, y P Lu,

Ǩ :“ t´x : x P Ku.

We equip the space Cd with the Borel σ-field BpCdq generated by the Fell
topology on the space of closed subsets of Rd restricted to Cd. Moreover, let the
space Cpdq be equipped with the Hausdorff metric. Recall that the Hausdorff
metric ρH on Cpdq is defined for K,L P Cpdq by

ρHpK,Lq :“ max
"

sup
xPK

inf
yPL

||x ´ y||, sup
yPL

inf
xPK

||x ´ y||

*

,

where || ¨ || denotes the Euclidean distance. The corresponding Borel σ-field
BpCpdqq is a trace of BpCdq, (cf. Theorem 2.4.1 in Schneider and Weil [2008]). It
can be shown that Cpdq is a Polish space (cf. Theorem A.26 in Last and Penrose
[2017]).

In order to define the particle process, we need to specify the outcome space
(the space of all particle configurations). It is defined as follows:

• By Nd we denote the space of all locally finite subsets x on Cpdq, meaning
that the cardinality

#tL P x : L X K ‰ Hu ă 8

for all K P Cpdq. The space Nd is equipped with the σ-field

N d
“ σptx P Nd : #tK P x : K P Bu “ mu, B P BbpCpdq

q,m P Nq.

• For Λ Ă Rd denote by Nd
Λ the system of finite subsets of Cpdq

Λ equipped with
the trace σ-field N pCpdq

Λ q.

• By Nd
f , we denote the subsystem of Nd consisting of finite sets.
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Definition 1.34 (Particle process).
A particle process is a point process on Cpdq, i.e. a random element

ξ : pΩ,F ,Pq ÝÑ pNd, N d
q.

Its distribution is Pξ “ Pξ´1.

A particle process can also be viewed as a marked point process with mark
space Cpdq, where the points of the unmarked point process set the location of the
particle (using for example the circumcenter).

Definition 1.35 (Intensity measure of a particle process).
The intensity measure of a particle process ξ is a Borel measure α on Cpdq defined
by αpBq “ E ξpBq, B P BpCpdqq.

Recall that in Section 1.1, we assumed that all intensity measures are locally
finite. In the case of particle processes, this assumption transforms to bounded-
ness in the sense

αptK P Cpdq : K X B ‰ Huq ă 8, for all B P Cpdq. (1.13)

Definition 1.36 (Stationary particle process).
A particle process ξ is called stationary if Pξ`x “ Pξ for each x P Rd, where for
any x P NpCpdqq we set

x ` x “ tK ` x : K P xu, K ` x “ ty ` x : y P Ku.

If a particle process ξ is stationary and its intensity measure satisfies (1.13),
then it can be decomposed, so that there exist β ą 0 and a probability measure
Q on Cpdq

o such that for all non-negative measurable functions f on Cpdq it holds
ż

Cpdq

fpKqαpdKq “ β

ż

Rd

ż

Cpdq
o

fpz ` KqQpdKqdz.

See Lemma 11.5 in Rataj [2006] for the proof. The constant β is called the
intensity of the process ξ and Q is the reference particle distribution. A random
set with distribution Q is called the typical grain of ξ. Note that the reference
particle distribution satisfies

QptK P Cpdq : cpKq “ ouq “ 1,
where cpKq is the centre of the circumscribed ball BpKq of K.

A reference measure of a stationary particle process with reference distribution
Q is a measure λ on Cpdq defined by

λpBq “

ż

Cpdq

ż

Rd

1rK`xPBs dxQpdKq, B P BpCpdq
q, (1.14)

Note that the measure λ is invariant under shifts, i.e. λpBq “ λpB ` xq, x P Rd.

Example 1.16 (Gibbs particle process).
We construct the Gibbs particle process by the same procedure we used in Sec-
tion 1.2 starting from a finite volume Gibbs point process defined by probability
density. Then, by using the GNZ formula we define the infinite volume Gibbs
particle process.
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Finite volume Gibbs particle process

Let H : Nd
f Ñ R` Y t8u be the energy function, i.e. a measurable function that

is non-degenerate, hereditary, invariant under shifts and stable (see Section 1.2
for the notion).

In the following we consider a bounded set Λ Ă Rd with |Λ|d ą 0. Further, let

λΛpBq “

ż

Cpdq

ż

Λ
1rK`xPBsdxQpdKq, B P BpCpdq

Λ q

and ηΛ be the Poisson process on Cpdq

Λ with intensity measure λΛ and distribution
πΛ. We define a finite volume Gibbs particle process µΛ on Λ with activity z ą 0,
inverse temperature β ě 0 and energy function H as a particle process with
distribution P z,β

Λ on Nd
Λ given by the Radon–Nikodym density p with respect to

πΛ, where
ppxq “

1
Zz,β

Λ
zNΛpxq expp´βHpxqq, x P Nd

Λ,

NΛpxq is the number of particles K P x with cpKq P Λ and

Zz,β
Λ “

ż

Nd
Λ

zNΛpxq expp´βHpxqqπΛpdxq

is the normalizing constant.
The local energy h : Cpdq ˆ Nd

f Ñ R is defined as

hpK,xq “ Hpx Y tKuq ´ Hpxq.

The Georgii–Nguyen–Zessin (GNZ) equations follow for any measurable function
f : Cpdq ˆ Nd

f ÝÑ R`:

ż

Nd
f

ÿ

KPx
fpK,xztKuqP z,β

Λ pdxq “ z

ż

Nd
f

ż

Cpdq

Λ

fpK,xqe´βhpK,xqλΛpdKqP z,β
Λ pdxq. (1.15)

The GNZ equations characterize the finite volume Gibbs particle process, i.e.
if any probability measure on Nd

Λ satisfies (1.15) for any f as stated, then it is
equal to P z,β

Λ . The function

λ˚
pK,xq “ z expp´βhpK,xqq, K P Cpdq

Λ , x P Nd
Λ

is the Papangelou conditional intensity.

Infinite volume Gibbs particle process

Take a sequence of windows Λn “ r´n, nsd Ă Rd, spaces Cpdq

Λn
, intensity measures

λnp¨q “
ş ş

Λn
1rK`xP¨sdxQpdKq for a fixed probability measure Q on Cdo such that

there is some R ą 0 so that

QptK P Cpdq : BpKq Ă Bpo, Rquq “ 1. (1.16)

Further, take Poisson particle processes ηΛn with distributions πΛn , Gibbs particle
processes µΛn with distributions P z,β

Λn
, n P N.
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A measurable function f : Nd ÝÑ R is called local if there is a bounded set
∆ Ă Rd such that for all x P Nd we have fpxq “ fpx∆q. The local convergence
topology on the space of probability measures P on Nd is the smallest topology
such that for any local and bounded function f : Nd

ÝÑ R the map P ÞÑ
ş

fdP
is continuous.

Define a probability measure P̄ z,β

Λn
such that for any n ě 1 and any measurable

function f : Nd ÝÑ R it holds
ż

Nd

fpxqP̄
z,β

Λn
pdxq “ p2nq

´d

ż

Λn

ż

Nd

fpx ` uqP z,β
Λn

pdxqdu. (1.17)

It can be shown that the sequence pP̄
z,β

Λn
qně1 is tight for the local convergence

topology (cf. Chapter 15 in Georgii [2011]). We denote P z,β one of its cluster
points.

Due to the stationarization (1.17), P z,β is the distribution of a stationary
particle process, in order to show that it satisfies the GNZ equations one needs
to add an assumption on the energy function. The energy function H has a finite
range r ą 0 if for every bounded set ∆ Ă Rd the energy H∆ is a local function
on ∆ ‘ Bp0, rq. The finite range property allows extending of the domain of H∆
from the space Nd

f to Nd, since for x P Nd we put

H∆pxq “ H∆px∆‘Bp0,rqq.

Lemma 1.1 (Proposition 2.1 in Flimmel and Beneš [2018]).
If the energy function H is non-degenerate, hereditary, stable, invariant under
shifts and has a finite range property, then there exists an infinite volume sta-
tionary Gibbs particle process P z,β with the energy function H.

The stationary Gibbs particle process also satisfies GNZ equations for any
measurable function f : Cpdq ˆ Nd ÝÑ R` :

ż

Nd

ÿ

KPx
fpK,xztKuqP z,β

pdxq “

ż

Nd

ż

Cpdq

fpK,xqλ˚
pK,xqλpdKqP z,β

pdxq,

(1.18)
where λ comes from (1.14). Conversely, any measure P on Nd which satisfies
(1.18) is a distribution of a stationary Gibbs particle process.

Pairwise interactions

Assume that the energy function is of the form

Hpxq “

‰
ÿ

tK,LuĂx
gpK X Lq, x P Nd

f , (1.19)

where g : Cd ÝÑ R` is a measurable function, we assume that it is invariant
under shifts and gpHq “ 0. The expression gpK XLq in (1.19) plays a role of pair
potential. Such energy function is non-degenerate, hereditary, stationary and
stable. If we restrict ourselves to bounded particles K P Cpdq : BpKq Ă Bp0, Rq

for some R ą 0, then H has finite range r “ 2R.
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The corresponding conditional intensity is of the form

λ˚
pK,xq :“ z exp

#

´β
ÿ

LPx
gpK X Lq

+

, K P Cpdq, x P Nd, (1.20)

where z ą 0, β ě 0.
Specially, take Q being concentrated on the set SRo Ă Cp2q (the space of all

segments in R2 XBpo, Rq centered in the origin), which corresponds to Qϕ bQL,
where Qϕ, QL is the reference distribution of directions, lengths of segments,
respectively. Further, let g have a form

gpKq “ 1tK ‰ Hu, K P C2.

Then we call the corresponding stationary Gibbs process a Gibbs segment process.
The conditional intensity is

λ˚
pK,xq “ ze´βNxpKq, K P SRo ,x P N2,

where NxpKq denotes the number of intersections of K with the segments in x.
It has to be mentioned that the reference distribution Q need not coincide with
the observed joint length-direction distribution of the process, cf. Beneš et al.
[2019].

1.5 Random tessellations
Random tessellations are an important model in stochastic geometry (cf. Chiu
et al. [2013] or Schneider and Weil [2008]) and they have numerous applications
in engineering and the natural sciences (cf. Okabe et al. [2000]).

By a tessellation we understand a subdivision of the space Rd “
Ť

Ci into
d-dimensional sets Ci with no common interior points. Such geometrical patterns
can be observed in many natural situations, such as polycrystalline materials,
foam structures, etc. Hence, random tessellation models have been widely used
in physics, materials science and chemistry. Depending on the situation, the sets
Ci might be called cells, crystals, regions, etc.

Definition 1.37 (Tessellation).
A tessellation in Rd is a countable system T of subsets of Rd (cells) satisfying the
following conditions:

1. T is a locally finite system of non-empty closed sets meaning that
ÿ

CPT

1rCXB‰Hs ă 8, for all B P Bd
b .

2. The cells C P T are compact, convex and have interior points.

3. The sets of T cover the whole space, i.e.
ď

CPT

C “ Rd.
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4. If C,C 1 P T and C ‰ C 1, then int C X int C 1 “ H.

Remark. Since the cells of the tessellation are assumed to be compact and convex
then they are necessarily convex polytopes (Lemma 10.1.1. in Schneider and Weil
[2008]).

Definition 1.38 (Faces).
The intersection of a d-dimensional convex polytope P with its supporting hy-
perplane is called face. A face of dimension k P t0, . . . , d ´ 1u is called a k-face.
The 0-faces are the vertices, the 1-faces are edges and the pd´ 1q-faces are facets.

For k P t0, . . . , d ´ 1u, denote by FkpP q the set of all k-faces of a polytope P
and put

FpP q “

d´1
ď

k“0
FkpP q.

We are interested in such tessellations where the faces of neighbouring cells over-
lap.

Definition 1.39 (Face-to-face tessellation).
A tessellation T is called face-to-face

C X C 1
P rFpCq X FpC 1

qs Y tHu, @C,C 1
P T.

Similarly as for the individual cells, we define the sets of k-faces connected to
a tessellation T . If T is face-to-face, define for k P t0, . . . , d ´ 1u

FkpT q “
ď

CPT

FkpCq

and

FpT q “

d´1
ď

k“0
FkpT q.

Definition 1.40 (Normal tessellation).
A face-to-face tessellation T is called normal if every k-face of T (i.e. element of
FkpT qq is contained in precisely d ´ k ` 1 cells, k “ 0, . . . , d ´ 1.

Note that the condition stated in the latter definition always holds for k “ d´1
since we assumed T is face-to-face.

Definition 1.41 (Random tessellation).
Denote by T the set of all face-to-face tessellations of the space Rd. By a random
tessellation, we understand a particle process ξ on Rd such that ξ P T a.s.

A random tessellation is called face-to-face or normal, if all its realizations are
P-almost surely face-to-face or normal, respectively.

Random tessellations can be regarded either as point processes of convex
polytopes (special case of particle processes) or can be constructed from random
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processes of geometric objects (e.g., points, balls or hyperplanes) in space. A de-
tailed treatment of random tessellations can be found in Møller [1994] and in
Lautensack [2007]. It is often convenient to represent a random tessellation T as
a marked point process in Rd with an appropriate mark space. We can associate
various point processes with T , for example the point processes of vertices, edge
midpoints, etc. If these point processes are marked with suitable marks, then we
can identify T with the corresponding marked point process.

Examples
Example 1.17 (Hyperplane tessellation).
Denote by H a locally finite system of hyperplanes in Rd. The cells of a hyperplane
tessellation are constructed as closures of the connected components of

˜

ď

HPH
H

¸C

.

If we take an independently marked stationary Poisson point process ηm “

tpxi, θiq, i ě 1u on R with marks uniformly distributed in r0, πq, we can con-
struct a planar Poisson line process, where the points of the unmarked Poisson
point process stand for the signed distance from the origin and the marks for the
orientation of the lines (infinitely long cylinders). The corresponding hyperplane
tessellation is referred to as Poisson line tessellation (see Figure 1.2).

The hyperplane tessellation is face-to-face, yet it is not normal.

Figure 1.2: A tessellation of R2 induced by the Poisson line process.

Example 1.18 (Voronoi tessellation).
Let A ‰ H be a locally finite set in Rd. To each x P A, we define a set

Cpx,Aq :“ tz P Rd : }z ´ x} ď }z ´ y} for all y P Au.

Then Cpx,Aq represents a set of points in Rd such that x is their nearest point
among points in A. The set Cpx,Aq is in fact a closed convex set, since it can be
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written as an intersection of closed half-spaces defined for x ‰ y by

H`
y pxq :“

"

z P Rd : xz, x ´ yy ď
1
2p}y}

2
´ }x}

2
q

*

.

Then,
Cpx,Aq “

č

yPA,y‰x

H`
y pxq.

We call the set Cpx,Aq the Voronoi cell of x with respect to A and x is called
the nucleus of Cpx,Aq.

Theorem 1.16 (Theorem 10.2.1 in Schneider and Weil [2008]).
Let A Ă Rd be locally finite, non-empty and such that the corresponding Voronoi
cells Cpx,Aq, x P A, are bounded. Then the collection T :“ tCpx,Aq;x P Au is
a face-to-face tessellation.

Theorem 1.17 (Theorem 10.2.2 in Schneider and Weil [2008]).
Let µ be a stationary point process in Rd (assumed to satisfy µ ‰ H a.s.) and let
T :“ tCpx, µq;x P µu be the collection of the corresponding Voronoi cells. Then
T is a stationary face-to-face random tessellation, provided that µ has a locally
finite intensity measure.

The tessellation T :“ tCpx, µq;x P µu defined in Theorem 1.17 is called the
Voronoi tessellation generated by the point process µ. If µ is a Poisson point
process the set T is known as Poisson–Voronoi tessellation.

Theorem 1.18 (Theorem 10.2.3 in Schneider and Weil [2008]).
Every Poisson–Voronoi tessellation in Rd is normal.

Example 1.19 (Delaunay triangulation).
Delaunay triangulation can be viewed as dual to Voronoi tessellation (see Figure
1.3). Let A Ă Rd be a locally finite set such that the convex hull convpAq “ Rd.
Let T “ tCpx,Aq;x P Au be a corresponding Voronoi tessellation. Let e be
a vertex of T , i.e. e P F0pT q. Then we define the Delaunay cell Dpe, Aq by

Dpe, Aq :“ convtx P A; e P F0pCpx,Aqqu.

Theorem 1.19 (Theorem 10.2.6 in Schneider and Weil [2008]).
Let A Ă Rd be as above and T the corresponding collection of Voronoi cells. Then

D :“ tDpe, Aq; e P F0pT qu

is a face-to-face tessellation.

If we take a point process µ and let T be the corresponding Voronoi tessel-
lation, we call the collection D :“ tDpe, µq; e P F0pTqu from Theorem 1.19 the
Delaunay triangulation generated by µ. If µ is a Poisson point process, we speak
about Poisson–Delaunay triangulation.
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Figure 1.3: A realization of the Poisson–Voronoi tessellation of R2 (blue) to-
gether with the Poisson–Delaunay tessellation of R2 (red) induced by the same
realization of Poisson point process (black dots).

Example 1.20 (Laguerre tessellation).
Laguerre tessellations form a generalization of the Voronoi tessellations where
a weight is attached to each of the generating points. First, we define the power
of y P Rd with respect to a pair px,mxq P Rd ˆ R by

powpy, px,mxqq :“ }y ´ x}
2

´ m2
x.

Now, let A Ă Rd ˆ R be a countable set such that minpx,mxqPA powpy, px,mxqq

exists for each y P Rd. Then we define the Laguerre cell of px,mxq P A by

Cppx,mxq, Aq :“ ty P Rd : powpy, px,mxqq ď powpy, px1,mx1qq, @px1,mx1q P Au.

The point x is called the nucleus of the cell Cppx,mxq, Aq. The Laguerre tessel-
lation induced by the set A is the set of all non-empty Laguerre cells arising from
the points of A. By choosing the weights to be zero for all nuclei, we obtain the
Voronoi tessellation.

Note that some nuclei may generate an empty Laguerre cell which was not
the case for the Voronoi tessellation. Also, if not empty, the Laguerre cell not
necessarily contains its nucleus.

Theorem 1.20 (Theorem 2.2.8 in Lautensack [2007]).
Let A be the set as above satisfying moreover the following conditions:

• For every y P Rd and every t P R only finitely many elements px,mxq P A
satisfy

powpy, px,mxqq ď t,

• the convex hull convtx : px,mxq P Au “ Rd.

Then every Laguerre cell generated by A is compact and the Laguerre tessellation
is face-to-face.

If, moreover, the points of A are in general position, i.e.
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• No k ` 1 nuclei are contained in a pk ´ 1q-dimensional affine subspace of
Rd for k “ 2, . . . , d and

• no d ` 2 points have equal power with respect to some point in Rd,

then all Laguerre cells generated by A have dimension d and the Laguerre tessel-
lation is normal.

Again, we can replace the deterministic set A by a marked point process on
Rd with marks in R. If ηm is a stationary marked Poisson process in Rd with
marks in R, then the Laguerre tessellation induced by ηm almost surely exists
and it is referred to as the Poisson–Laguerre tessellation.

Let us also mention the possibility to construct the Delaunay–Laguerre tes-
sellation and refer to Section 2.3 in Lautensack [2007] for more details.

The importance of Laguerre tessellations can be shown by the following the-
orem.

Theorem 1.21 (Theorem 2.4.3 in Lautensack [2007]).
Every normal tessellation of Rd for d ě 3 is a Laguerre tessellation.

Example 1.21 (Johnson–Mehl tessellation).
Let A Ă Rd ˆ R` be locally finite. The idea behind Johnson–Mehl tessellations
is that the cell generated by a point px, txq P A starts to grow with common
speed in all directions immediately after being born which happens at time tx.
The tessellation is then created when the cells have no space to grow and fill the
whole space. More precisely, we say that a point y P Rd is reached by the point
x at the time T py, px, txqq, where

T py, px, txqq :“ }x ´ y} ´ tx.

The Johnson–Mehl cell generated by px, txq with respect to A is then defined by

Cppx, txq, Aq :“ ty P Rd : T py, px, txqq ď T py, px1, tx1qq, @px1, tx1q P Au.

The Johnson–Mehl tessellation induced by the set A is then a collection of non-
empty Johnson–Mehl cells.

Note that the Johnson–Mehl tessellation does not necessarily satisfy our defi-
nition of tessellation, since the cells may not be convex (see Figure 1.4 for a com-
parison). Hence, we do not assess the normality and face-to-face property. Also,
as in the case of Laguerre tessellation, here the Johnson–Mehl cells may not
contain their nuclei. Nevertheless, Johnson–Mehl tessellations form another im-
portant generalization of Voronoi tessellation and we recommend Møller [1992]
for more details.

The Voronoi, Laguerre and Johnson–Mehl tessellation can be covered by the
following concept.

Example 1.22 (Weighted Voronoi tessellation).
The cells of the generalized weighted Voronoi tessellations are defined as follows.
Let µm be a marked point process on Rd with marks in M Ă R`. We introduce
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(a) (b) (c)

Figure 1.4: Realization of Voronoi tessellation (a), Laguerre tessellation (b) and
Johnson–Mehl tessellation (c) generated based on the same point set. The circles
around points in pictures (b) and (c) represent the weights attached to each
point. We observe in (b) that the nucleus does not necessarily lie in the cell it is
generating. In (c), we see that some points generate an empty cell.

a weight function ρ : Rd ˆ pRd ˆ Mq Ñ R which for each px,mxq P µm generates
the weighted Voronoi cell

Cρ
ppx,mxq, µmq :“

␣

y P Rd : ρpy, px,mxqq ď ρpy, px1,mx1qq, @px1,mx1q P µm
(

.

Special choices of the weight function lead to the examples already presented
above,

(i) Voronoi cell: ρ1py, px,mxqq :“ }x ´ y},

(ii) Laguerre cell: ρ2py, px,mxqq :“ }x ´ y}2 ´ m2
x,

(iii) Johnson–Mehl cell: ρ3py, px,mxqq :“ }x ´ y} ´ mx.

Notice that larger values of mx generate larger cells Cppx,mxq, µmq. The weight
functions ρip¨, px,mxqq, i “ 1, 2, 3 are often called the power of the point x; see
Section 10.2 in Schneider and Weil [2008]. When µm is a marked Poisson point
process we shall refer to these tessellations as weighted Poisson–Voronoi tessella-
tions.

1.6 Random geometric graphs
In the previous section, we discussed that some random tessellations could be
generated by a deterministic rule and random configuration of points. A very
similar approach leads to another important class of geometric structures. Ran-
dom geometric graphs are random structures that can be easily described. A set
of points is randomly scattered according to some probability distribution, and
any two distinct points are connected by an edge if they satisfy some geomet-
ric construction rule (e.g. they are separated by a distance less than a certain
specified value). That being said, some of the models for random tessellations
can be interpreted as random graphs. These geometric structures form a nat-
ural model for systems in nature and society, telecommunication networks (see
Zuyev [2010]), pattern recognition (see Toussaint [1982]) and other applications
in computer science and optimization.

Classical random graph theory initiated in Erdös and Rényi [1959] defines
a random graph of n vertices and N edges as a graph chosen randomly among
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all possible N -edged graphs with n vertices. Another variant is to fix n vertices
and connect each pair of vertices at random, independently from other pairs.
These variants are both known under the notion of Erdös–Rényi model. Here we
concentrate on graphs with a random set of vertices induced by a point process
and some geometric rule.

Our notion of random geometric graphs goes as follows: A graph is a pair
G “ pV , Eq, where V Ă Rd is a non-empty set of vertices and E Ă V2

‰ is a set
of (un)directed edges, i.e. pairs of (un)ordered distinct points of V . If we allow
the set V to be a point process (typically Poisson point process), then we speak
about a random geometric graph. A path is a sequence of distinct vertices and
corresponding edges, each of which connects two consecutive vertices in the se-
quence. The length of a path is a sum of the Euclidean lengths of the edges in the
path. We recommend Penrose [2003] for a survey on random geometric graphs.

In the rest of this section, we present a list of classical examples of construction
rules of a random graph.

Example 1.23 (Gilbert graph).
Let x P N be a locally finite point set and let δ ą 0 be a fixed parameter. Two
distinct points x, y P x are connected by an edge if }x´y} ď δ. If x is a realization
of a Poisson point process, then the resulting graph is referred to as Gilbert graph.

One of the possible generalizations of Gilbert graph is to take a symmetric
function G : Rd Ñ r0, 1s and put an edge between any distinct points x, y P x
with probability Gpx ´ yq.

Example 1.24 (k-nearest neighbour graph).
Let k P N be a fixed positive integer. The k-th nearest neighbour graph on a locally
finite point configuration x P N is a directed graph where an edge is going from
x to y in x if y is one of the k nearest neighbours of x among all the points in
x. It can happen that the graph is not well defined due to the higher number
of points having exactly the same distance from x. In that case, an additional
rule has to be included (e.g. lexicographic ordering). Nevertheless, this event
has zero probability for x being a realization of a suitable point process (Poisson,
binomial, etc.)

An undirected version of the k-nearest neighbour graph is sometimes con-
sidered and is defined as the k-nearest neighbour graph where all the directions
are forgotten. In case, there is a double edge between two points, we take it as
a single one.

Example 1.25 (Sphere of influence graph).
The sphere of influence of a given point x in a point configuration x is the largest
ball in Rd centered in x not containing any other point of x. An edge of the
sphere of influence graph on x is present between two distinct points x, y P x if
their spheres of influence overlap. By definition, the sphere of influence graph is
undirected.

Some of the examples of random graphs are connected with combinatorial
optimization problems. In order to introduce them, let us fix a given vertex set
V “ tx1, . . . , xnu.
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Example 1.26 (Travelling salesman).
We say a path over a given vertex set V “ tx1, . . . , xnu is closed if it is traversing
each vertex exactly once. We chose such E among all the possible sets of edges
such that the corresponding path is closed has a minimal length among all closed
paths.

Example 1.27 (Minimum spanning tree).
A cycle in a graph is a non-empty path in which the only repeated vertices are
the first and last vertices. A spanning tree of V is an undirected connected graph,
such that it connects all the vertices in V without any cycles. Note that if there
are n vertices in the graph, then each spanning tree has exactly n ´ 1 edges.

The minimum spanning tree is a spanning tree with a minimal length of the
path among all the spanning trees of V .

Example 1.28 (Minimal matching).
Suppose that V is an even number. A matching of V is an undirected graph
requiring every vertex to be matched (i.e. to form an edge with another vertex)
and all the edges to have no common vertices. Hence, then there is exactly
#pVq{2 edges in the path.

A minimal matching of V is a matching with minimal length of the path
among all other matchings of V .

In any of the mentioned optimization problems, instead of the length of edges,
we can consider any weight associated to a given edge and minimize with respect
to the total weight of the path.
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2. Malliavin–Stein’s method
Stein’s method serves as a way to get explicit estimates in probability theory,
typically yielding a normal or Poisson approximation. By approximation in this
context, we mean providing estimates of a given distance between the laws of two
random variables. Examples of the probability distances include total variation
distance, Kolmogorov or Wasserstein distance.

The method was first introduced in Stein [1972] in order to give a convergence
speed for the central limit theorem for a sum of dependent random variables
satisfying a mixing condition. The main building block is Stein’s lemma, which
characterizes a normally distributed random variable Z. That is, the fact that
Z „ Np0, 1q if and only if

E rf 1
pZqs “ E rZfpZqs

for all continuous functions f : R Ñ R, for which the above expectations exist.
The approach was then extended to Poisson approximation in Chen [1975] leading
to the so-called Chen–Stein method. According to the Chen–Stein lemma, N has
Poisson law with parameter λ ą 0 if and only if for every bounded f : N Ñ N,

E rNfpNqs “ E rλfpN ` 1qs.

At this work, only the normal approximation is considered. For the Poisson
approximation by the Chen–Stein lemma, see e.g. Section 2.4 in Bourguin and
Peccati [2016].

The Malliavin calculus of variations was introduced in Malliavin [1978] as an
infinite-dimensional differential calculus with operators acting on functionals of
Gaussian processes. The theory is based on the infinite-dimensional integration
by parts formulae. It was shown recently in Nourdin and Peccati [2009a] and
Nourdin and Peccati [2009b] that one can combine Malliavin calculus on the
Gaussian space and Stein’s method in order to obtain bounds for the normal and
non-normal approximation of functionals of Gaussian fields. Later in Peccati et al.
[2010], this approach was extended to the normal approximation of functionals
of Poisson measures defined on abstract Borel spaces. The idea is to express the
estimates arising from Stein’s method in terms of Malliavin operators.

The application in stochastic geometry, however, profits from the version of
the Malliavin calculus build on the Poisson space. The typical aim is to approxi-
mate behaviour of certain functionals of point processes with the standard normal
or Poisson distribution. In this chapter, we show how the Malliavin calculus of
variations and Stein’s method of probability approximations may be combined
into a powerful and flexible tool, the Malliavin–Stein method, for proving cen-
tral limit theorems as well as computing explicit rates of convergence for models
in stochastic geometry. The application is illustrated on selected models from
stochastic geometry at the end of this chapter. For a nice presentation of very
recent developments in the theory of Malliavin–Stein’s method, we recommend
Azmoodeh et al. [2021].
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2.1 Stein’s method for normal approximation
The aim of this section is to introduce the idea behind Stein’s method in the
one-dimensional case. The standard modern reference concerning Stein’s method
for normal approximation is the monograph Chen et al. [2011]. This text is also
based on Nourdin and Peccati [2012], Barbour and Chen [2005a] and Barbour
and Chen [2005b]. The multi-dimensional case is not discussed here and we
recommend Chapter 4 in Nourdin and Peccati [2012] for the matter.

Distances between probability distributions
The goal of Stein’s method is to find an upper bound for the difference between
the expectations of all functions of a given family of test functions under two
given distributions. The choice of the test functions determines the associated
metric.

Definition 2.1 (Separating collection of functions).
Let H be a collection of measurable functions h : Rd Ñ C. We say that the
collection H is separating if the following holds true: If P,Q are probability
measures on Rd such that

ş

|h|dP,
ş

|h|dQ ă 8 and
ş

hdP “
ş

hdQ for all h P H,
then P “ Q.

Definition 2.2 (Distance between probability distributions).
Let H be a separating collection of functions and P,Q two probability measures
on Rd with

ş

|h|dP,
ş

|h|dQ ă 8 for all h P H. Then the distance between laws P
and Q induced by H is defined by

dHpP,Qq “ sup
hPH

ˇ

ˇ

ˇ

ˇ

ż

hdP ´

ż

hdQ
ˇ

ˇ

ˇ

ˇ

.

Remark. If H is a separating collection of functions, then the probability dis-
tance dH induced by H verifies the usual axioms of a distance (metric) on the
space of probability measures P on Rd such that

ż

Rd

|hpxq|dP pxq ă 8

for all h P H. Specifically, for probability measures P,Q, S:

• dHpP,Qq “ dHpQ,P q,

• dHpP,Qq “ 0 if and only if P “ Q,

• dHpP,Qq ď dHpP, Sq ` dHpS,Qq.

Now, we present a list of the typical choices of the separating collections H.
For simplicity, we assume the distributions P,Q in the following definitions to be
some probability measures on R. The extension to the higher dimensional case
is straightforward.
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Definition 2.3 (Total variation distance).
The total variation distance between two distributions P and Q is defined by

dTV pP,Qq :“ sup
hPH

ˇ

ˇ

ˇ

ˇ

ż

hdP ´

ż

hdQ
ˇ

ˇ

ˇ

ˇ

,

where H :“ t1A;A P BpRqu.

Definition 2.4 (Kolmogorov distance).
The Kolmogorov distance between two distributions P and Q is defined by

dKpP,Qq :“ sup
hPH

ˇ

ˇ

ˇ

ˇ

ż

hdP ´

ż

hdQ
ˇ

ˇ

ˇ

ˇ

,

where H :“ t1p´8,zs; z P Ru.

Remark. The total variation distance of distributions P,Q can be equivalently
defined as

dTV pP,Qq :“ supt|P pAq ´ QpAq|;A P BpRqu.

Analogically, the Kolmogorov distance of P,Q can be rewritten in the form

dKpP,Qq :“ supt|P p´8, zs ´ Qp´8, zs|; z P Ru.

Clearly, for two probability measures P,Q it holds that

0 ď dKpP,Qq ď dTV pP,Qq ď 1.

Definition 2.5 (Wasserstein distance).
The Wasserstein distance between two distributions P and Q is defined by

dW pP,Qq :“ sup
hPLipp1q

ˇ

ˇ

ˇ

ˇ

ż

hdP ´

ż

hdQ
ˇ

ˇ

ˇ

ˇ

,

where Lipp1q :“ th : R Ñ R; }h1} ď 1u denotes the class of real-valued Lipschitz
functions with Lipschitz constant less than or equal to 1. Here by }h}, we denote
supxPR |hpxq|.

The Wasserstein distance is also known as Kantorovich–Monge–Rubinstein
metric. Note that it ranges in r0,8s.

Notation. Let PX and PY be the distributions of random variables X and Y ,
respectively. We will use the notation dpX, Y q for dpPX , PY q whenever d is any
distance on the space of all probability measures on R.

Proposition 2.1 (Theorem 3.3 in Chen et al. [2011]).
If X is a real-valued random variable and Z the standard normally distributed
random variable, then

dKpX,Zq ď 2
a

dW pX,Zq.

The following result states that the convergence with respect to dTV , dK and
dW is stronger than weak convergence. Hence, dpXn, Xq Ñ 0 implies Xn

D
ÝÑ X

whenever X, tXn, n P Nu are random variables and d is either total variation,
Kolmogorov or Wasserstein distance.
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Proposition 2.2 (Proposition C.3.1 in Nourdin and Peccati [2012]).
The topologies induced by the three distances dTV , dK and dW on the set of prob-
ability measures on R are strictly stronger than the topology of the convergence
in distribution.

Moreover, the Kolmogorov distance metrizes the convergence in distribution
towards real-valued random variables whose distribution function is continuous.
However, this result can not be extended to the total variation nor Wasserstein
distance.

Proposition 2.3 (Proposition C.3.2 in Nourdin and Peccati [2012]).
Let X, tXnuně1 be random variables in R and let X have a continuous distribution
function. Then Xn

D
ÝÑ X if and only if dKpXn, Xq Ñ 0 as n Ñ 8.

Stein’s lemma
In this section, we always denote by Z the standard normally distributed random
variable. For a sequence of random variables Xn, the goal is to find uniform upper
bounds of the type dpXn, Zq ď ϕpnq, n ě 1 for d being one of the probability
distances defined above. The sequence tϕpnquně1 of positive numbers is referred
to as the rate of convergence if ϕpnq Ñ 0.

Let f : R Ñ R be a bounded measurable function with bounded derivative.
Then the following observation can be made:

E rf 1
pZq ´ ZfpZqs “ 0. (2.1)

It can be shown directly by integration by parts

E f 1
pZq “

1
?

2π

ż 8

´8

f 1
pxqe´x2{2dx

“

„

1
?

2π
fpxqe´x2{2

ȷ8

´8

`
1

?
2π

ż 8

´8

xfpxqe´x2{2dx

“
1

?
2π

ż 8

´8

xfpxqe´x2{2dx

“ EZfpZq.

Moreover, let Cbd be the set of continuous and piecewise continuously differ-
entiable functions f : R Ñ R such that E |f 1pZq| ă 8. Then the equality (2.1)
can be generalized into a characterization of the standard normal distribution
that forms a base of Stein’s method for normal approximation:

Theorem 2.1 (Stein’s lemma).
Let W be a real-valued random variable. Then W has a standard normal distri-
bution if and only if

E f 1
pW q “ EWfpW q (2.2)

for all f P Cbd.

Proof. We revise the proofs of Lemma 2.1 and Lemma 2.2 in Chen and Shao
[2005].
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1. Necessity: Take f P Cbd and suppose W has a standard normal distribution.
Then

E f 1
pW q “

1
?

2π

ż 8

´8

f 1
pwqe´w2{2dw

“
1

?
2π

ż 0

´8

f 1
pwq

ˆ
ż w

´8

p´xqe´x2{2dx
̇

dw

`
1

?
2π

ż 8

0
f 1

pwq

ˆ
ż 8

w

xe´x2{2dx
̇

dw.

Using Fubini’s theorem, we arrive at

E f 1
pW q “

1
?

2π

ż 0

´8

ˆ
ż 0

x

f 1
pwqdw

̇

p´xqe´x2{2dx

`
1

?
2π

ż 8

0

ˆ
ż x

0
f 1

pwqdw
̇

xe´x2{2dx

“
1

?
2π

ż 8

´8

|fpxq ´ fp0q|xe´x2{2dx

“ EWfpW q.

2. Sufficiency: For a fixed z P R, we are interested in the ordinary differential
equation

f 1
pwq ´ wfpwq “ 1´p8,zspwq ´ Φpzq, (2.3)

where Φ is a distribution function of the standard Gaussian random vari-
able. Multiplying both sides of (2.3) by ´e´w2{2 leads to

´

e´w2{2fpwq

¯1

“ ´e´w2{2
p1´p8,zs ´ Φpzqq.

Hence, the solution fz of (2.3) is given by

fzpwq “ ew
2{2

ż w

´8

r1p´8,zspxq ´ Φpzqse´x2{2dx

“ ´ew
2{2

ż 8

w

r1p´8,zspxq ´ Φpzqse´x2{2dx

“

#?
2πew2{2Φpwqr1 ´ Φpzqs, if w ď z,

?
2πew2{2Φpzqr1 ´ Φpwqs, if w ą z.

Clearly, fz is continuous and piecewise continuously differentiable for all z P R.
We shall prove that E |f 1

zpZq| ă 8. By (2.3), we have

f 1
zpwq “ wfzpwq ` 1p´8,zspwq ´ Φpzq

“

#

wfzpwq ` 1 ´ Φpzq, if w ă z,

wfzpwq ´ Φpzq, for w ą z.

(2.4)

The function wfzpwq is increasing. To see that, take z ě 0. The other case is
similar, since f´zp´wq “ fzpwq. For w ă z, it is clear, since

pwfzpwqq
1

“
?

2πp1 ´ Φpzqq

ˆ

p1 ` w2
qew

2{2Φpwq `
w

?
2π

̇

ě 0.
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On the other hand, for w ą 0, note that
ż 8

w

e´x2{2dx ď

ż 8

w

x

w
e´x2{2dx “

e´w2{2

w
. (2.5)

Moreover,

1 ´ Φpwq ě
we´w2{2

p1 ` w2q
?

2π
. (2.6)

To show (2.6), denote g1pwq :“ p1 ` w2q
ş8

w
e´x2{2dx and g2pwq :“ we´w2{2. We

can observe that
g1p0q “

a

π{2 ą 0 “ g2p0q. (2.7)
At the same time

lim
wÑ8

g1pwq ě 0 “ lim
wÑ8

g2pwq. (2.8)

Further, for w ě 0,

g1
1pwq ´ g1

2pwq “ 2w
ż 8

w

e´x2{2dx ´ p1 ` w2
qe´w2{2

´ p1 ´ w2
qe´w2{2

“ 2w
ż 8

w

e´x2{2dx ´ 2e´w2{2

ď 0.

In the third inequality, we used (2.5). Since the difference of the derivatives is
always non-positive, the graphs of g1 and g2 never cross each other. Otherwise,
it would contradict the observations (2.7) and (2.8). Thus, g1pwq ě g2pwq for all
w ě 0, from which (2.6) follows immediately.

Now, we use (2.6) to estimate the derivative of wfzpwq for w ě z:

pwfzpwqq
1

“
?

2πΦpzq

ˆ

p1 ` w2
qew

2{2
p1 ´ Φpwqq ´

w
?

2π

̇

ě 0.

Indeed, the function wfzpwq is increasing with limits

lim
wÑ´8

wfzpwq “ lim
wÑ´8

?
2πwew2{2Φpwqr1 ´ Φpzqs “ Φpzq ´ 1 (2.9)

and
lim
wÑ8

wfzpwq “ lim
wÑ8

?
2πwew2{2Φpzqr1 ´ Φpwqs “ Φpzq. (2.10)

By plugging (2.9) and (2.10) into (2.4), we obtain for w ď z

0 ă f 1
zpwq “ wfzpwq ` 1 ´ Φpzq ď lim

xÑ8
xfzpxq ` 1 ´ Φpzq “ 1,

and for w ą z

´1 “ lim
xÑ´8

xfzpxq ´ Φpzq ď wfzpwq ´ Φpzq “ f 1
zpwq ă 0.

Finally, E |f 1
zpZq| ď 1 and therefore, fz P Cbd. Suppose that (2.2) holds for all

f P Cbd. Then it is also satisfied by fz and hence, by (2.3), we have

0 “ E rf 1
zpW q ´ WfzpW qs “ E r1p´8,zspW q ´ Φpzqs “ PpW ď zq ´ Φpzq.

Thus, W has a standard normal distribution.
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Stein’s equation
Based on Stein’s lemma, if X is a random variable for which E rXfpXq ´ f 1pXqs

is close to zero for some large class of smooth functions f , is it possible to con-
clude that X is close (with respect to some distance) to the standard normal
distribution? To answer the question, we need to introduce the notion of Stein’s
equation associated with a given function h such that E |hpZq| ă 8.

Definition 2.6 (Stein’s equation).
Let h : R Ñ R be a Borel function such that E |hpZq| ă 8. Then Stein’s equation
associated with h is the ordinary differential equation

f 1
pxq ´ xfpxq “ hpxq ´ EhpZq. (2.11)

A solution to (2.11) is a function f that is absolutely continuous and such that
there exists a version of the derivative f 1 satisfying (2.11) for all x P R.

Proposition 2.4 (Proposition 3.2.2 in Nourdin and Peccati [2012]).
Every solution to (2.11) has the form

fpxq “ cex
2{2

` ex
2{2

ż x

´8

rhpyq ´ EhpZqse´y2{2dy, x P R,

where c P R.

Notation. Denote by fh the unique solution f to the Stein’s equation associated
with a function h that satisfies

lim
xÑ˘8

e´x2{2fpxq “ 0.

Note that fh is given by

fhpxq “ ex
2{2

ż x

´8

rhpyq ´ EhpZqse´y2{2dy

“ ´ex
2{2

ż 8

x

rhpyq ´ EhpZqse´y2{2dy.
(2.12)

Lemma 2.1 (Lemma 2.3 in Chen and Shao [2005]).
For any absolutely continuous function h : R Ñ R, the solution fh given in (2.12)
satisfies

}fh} ď minp

c

π

2 }hp¨q ´ EhpZq}, 2}h1
}q,

}f 1
h} ď minp2}hp¨q ´ EhpZq}, 4}h1

}q

and
}f2
h} ď 2}h1

}.

Normal approximation with respect to dTV , dK and dW

For a given random variable X, the goal now is to bound

sup
hPH

|EhpXq ´ EhpZq|,
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where H is some separating collection of functions h : R Ñ R with E |hpXq| ă 8

and E |hpZq| ă 8. The trick of Stein’s method consists of finding another class
of functions H1 such that

sup
hPH

|EhpW q ´ EhpZq| ď sup
fPH1

|E rf 1
pXq ´ XfpXqs|.

First, by taking expectation on both sides of (2.11), we arrive at

EhpXq ´ EhpZq “ E rf 1
hpXq ´ XfhpXqs.

Hence,
dHpX,Zq “ sup

hPH
|E rf 1

hpXq ´ XfhpXqs| .

Let us now focus on the examples of H associated with total variation, Kol-
mogorov and Wasserstein distances. The following three theorems can be found
in Nourdin and Peccati [2012] (cf. Sections 3.3 - 3.5). We took hints from there
to complete the proofs.

Theorem 2.2 (Normal approximation w.r.t dTV ).
Let h : R Ñ r0, 1s be a Borel function. Then, the solution fh to Stein’s equation
(2.11) satisfies

}fh} ď

c

π

2 and }f 1
h} ď 2.

In particular, for any integrable random variable X

dTV pX,Zq ď sup
fPFT V

|E f 1
pXq ´ EXfpXq|,

where FTV “ tf : R Ñ R absolutely continuous ; }f} ď
a

π{2, }f 1} ď 2u.

Proof. Take any h : R Ñ r0, 1s Borel. Then obviously, |hpxq ´EhpZq| ď 1 for all
x P R. The statement then follows directly from Lemma 2.1.

The bounds from Theorem 2.2 can be applied for the Kolmogorov distance as well
since the relationship dK ď dTV holds. However, they can be further improved.

Theorem 2.3 (Normal approximation w.r.t. dK).
Let z P R. Then the solution fz satisfies

}fz} ď

?
2π
4 and }f 1

z} ď 1.

In particular, for any integrable random variable X,

dKpX,Zq ď sup
fPFK

|E f 1
pXq ´ EXfpXq|,

where FK “ tf : R Ñ R absolutely continuous; }f} ď
?

2π{4, }f 1} ď 1u.
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Proof. Recall that the Kolmogorov distance is induced by the set of functions
H “ t1p´8,zs; z P Ru. For a special choice h “ 1p´8,zs, z P R, we denote by fz the
solution f1p´8,zs

given by (2.12). Then, for x ď z, we have

fzpxq “ ex
2{2

ż x

´8

“

1p´8,zspyq ´ E1p´8,zspZq
‰

e´y2{2dy

“ ex
2{2

ż x

´8

p1 ´ Φpzqqe´y2{2dy

“
?

2πex2{2Φpxqp1 ´ Φpzqq

ď
?

2πez2{2Φpzqp1 ´ Φpzqq.

It is easy to check that the function gpzq :“
?

2πez2{2Φpzqp1 ´ Φpzqq attains its
maximum in z “ 0, therefore

fzpxq ď

?
2π
4 .

Analogically, having x ą z,

fzpxq “ ex
2{2

ˆ
ż z

´8

e´y2{2dy ´

ż x

´8

Φpzqe´y2{2dy
̇

“
?

2πex2{2Φpzqp1 ´ Φpxqq

ď
?

2πex2{2Φpxqp1 ´ Φpxqq

ď

?
2π
4 .

Moreover, by f 1
z we denote the corresponding version of the derivative of fz sat-

isfying the Stein’s equation

f 1
zpxq “ xfzpxq ` 1p´8,zspxq ´ Φpzq.

The estimate }f 1
z} ď 1 was already shown in the proof of Theorem 2.1.

Theorem 2.4 (Normal approximation w.r.t. dW ).
Let X be a square-integrable random variable. Then

dW pX,Zq ď sup
fPFW

|E f 1
pXq ´ EXfpXq|,

where FW :“ tf : R Ñ R continuously differentiable; }f 1} ď
a

2{πu.

Proof. Let h be any Lipschitz function with the Lipschitz constant 1. Then
the solution fh of Stein’s equation (2.11) is continuously differentiable directly
from the explicit expression (2.12). Further, by Proposition 3.5.1 in Nourdin and
Peccati [2012], fh admits the representation

fhpxq “ ´

ż 8

0

e´t

?
1 ´ e´2tE

”

hpe´tx `
?

1 ´ e´2tZqZ
ı

dt
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and }f 1
h} ď

a

2{π. The statement of Theorem 2.4 is then a direct consequence of
this result.

Remark. 1. In the definition of FTV and FK , we assume that for f P FTV ,
f P FK resp., there exists a version of f 1 satisfying the prescribed conditions.

2. The supremum supfPF |E f 1pXq ´EXfpXq|, where F is either FTV or FK ,
stands for supfPF supt|E gpXq ´ EXfpXq|, g a version of f 1u.

3. The requirement that X is integrable is needed so that E |XfpXq| exists
for every f P FTV or f P FK . The assumption of square-integrability
guarantees the existence of E |XfpXq| for all f P FW .

Example 2.1 (Berry–Esseen bounds and CLT).
The Stein’s method can be applied to provide a proof of the classical Berry–
Esseen theorem. Let tXk; k ě 1u be a sequence of i.i.d. random variables such
that EX1 “ 0 and EX2

1 “ 1. Define for n P N,

Sn :“ 1
?
n

n
ÿ

k“1
Xk.

Then by the Stein’s method

dKpSn, Zq ď
CE |X1|3

?
n

, n P N,

where C ą 0 is some universal constant depending neither on n nor Xk, k P N
(as shown lately in Tyurin [2009], it holds for C “ 0.4785). As a consequence, if
E |X1|3 ă 8,

Sn
D
ÝÑ Z.

2.2 Malliavin calculus on the Poisson space
Malliavin calculus (also known as stochastic calculus of variations) extends the
calculus of variations from deterministic functions to stochastic processes. In
particular, it allows the computation of derivatives of random variables and in-
tegration by parts with random variables which is needed in order to explicitly
assess the bounds arising from Stein’s method.

The aim of this section is to briefly explain the basic elements of Malliavin
calculus on the Poisson space and demonstrate how the bounds in the previous
section based on Stein’s method can be combined with Malliavin operators on
abstract Poisson spaces defined via the Fock space representation. This section is
mainly based on Peccati and Reitzner [2016] and Last and Penrose [2017].

For an introduction to the theory of Malliavin calculus on the Wiener space,
we recommend Nualart [2006] or Nourdin and Peccati [2009a].
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Malliavin operators
Here and throughout the whole section, we will assume that pX,X q is some fixed
measurable space and η is a Poisson point process on X (see Example 1.5) with
σ-finite intensity measure λ and distribution Pη. By the Poisson space, we mean
the space L2pNpXq, Pηq of all measurable functions f : NpXq Ñ R satisfying
E fpηq2 ă 8. A measurable function of a Poisson process is called Poisson
functional.

Moreover, for a space X equipped with a measure ρ, we will shorten the
notation and write Lqpρq for LqpX, ρq whenever q ą 0 and it is clear what is the
underlying space. Throughout this chapter, we will moreover use the following
notation.
Notation.

L0
ηpPq :“ tF ;F “ fpηq P-a.s. for some measurable f : NpXq Ñ Ru,

LqηpPq :“ tF P L0
ηpPq; F P LqpPqu, q ą 0.

Similarly, denote

L0
ηpPbλq :“ tG;G “ gpη, xq Pbλ-a.s. for some measurable h : NpXq ˆX Ñ Ru,

LqηpP b λq :“ tG P L0
ηpP b λq;G P LqpP b λqu, q ą 0.

The functions f , resp. g such that F “ fpηq for some F P L0
ηpPq and G “ gpη, xq

for some G P L0
ηpPbλq are called the representatives of the functionals F and G,

resp.

Next, for f, g P L2pλnq, we denote the inner product of f and g by

xf, gyn “

ż

Xn

fg dλn.

The associated norm is denoted by

}f}n “

b

xf, fyn.

For n “ 0, we put xa, by0 “ ab for a, b P R. For n “ 1, to emphasize that
f, g P Lqpλq, we write xf, gyLqpλq, resp. }f}Lqpλq.

Definition 2.7 (Difference operator).
Let F : NpXq Ñ R be a measurable function. For y P X, we define the difference
operator (or add-one cost operator) as a function DyF : NpXq Ñ R satisfying

DyF pxq “ F px ` δyq ´ F pxq, x P NpXq.

Iterating this definition, we get for n P N, n ě 2, the difference operator of
the n-th order Dn

y1,...,yn
F : NpXq Ñ R defined by

Dn
y1,...,yn

F “ D1
y1D

n´1
y2,...,yn

F,

where D1 “ D and D0F “ F.
For F P L2

ηpPq and x P X define the random variable DxF :“ Dxfpηq and for
n P N and x1, . . . , xn P X define Dn

x1,...,xn
F :“ Dn

x1,...,xn
fpηq. Moreover, denote by

DnF the mapping pω, x1, . . . , xnq ÞÑ pDn
x1,...,xn

F qpωq.
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By the Slivnyak–Mecke equation (see (1.9)), the definitions of DF and DnF
are P b λ-a.s. independent of the choice of the representative f .
Remark. The n-th order difference operator can be expressed by

Dn
y1,...,yn

F pxq “
ÿ

JĂt1,...,nu

p´1q
n´#pJqF

˜

x `
ÿ

jPJ

δyj

¸

, (2.13)

where #pJq denotes the number of elements in J . It shows that Dn
y1,...,yn

F is
a symmetric mapping in y1 . . . , yn P X and that px, y1, . . . , ynq ÞÑ Dn

y1,...,yn
F pxq is

measurable.
Notation. For all F : NpXq Ñ R and n P N, we define the expectation of the
n-th order difference operator of F as a function TnF on Xn, where

TnF py1, . . . , ynq “ ErDn
y1,...,yn

F pηqs

and set T0F “ ErF pηqs, whenever these expectations exist. Otherwise, we put
TnF py1, . . . , ynq “ 0. Note that the mapping TnF : Xn Ñ R is again symmetric
and measurable.

Definition 2.8 (Wiener–Itô integral).
For n ě 1 and g P L2pλnq, we define the n-th order Wiener–Itô integral of g as
a random variable Inpgq defined by

Inpgq :“
ÿ

JĂt1,...,nu

p´1q
n´#pJq

ż ż

gpx1, . . . , xnqηp#pJqq
pdxJqλn´#pJq

pdxJcq,

where xJ :“ pxjqjPJ and J c :“ t1, . . . , nuzJ .

Remark. The Slivnyak–Mecke equation (1.9) combined with Fubini’s theorem
implies that the integrals in Definition 2.8 are finite and E Inpgq “ 0.

If g is, moreover, symmetric (i.e. invariant towards any permutation of the
variables), then

Inpgq “

n
ÿ

k“0
p´1q

n´k

ˆ

n

k

̇
ż

gdηpkq
b λn´k.

See Chapter 12 in Last and Penrose [2017] for further properties of Inpgq.

The following result based on Itô [1956] and Wiener [1938] is an analogy to an
orthogonal expansion into series of polynomials for a square-integrable function
of a real variable. It was proved in this form for Poisson functionals in Last and
Penrose [2011], Theorem 1.3.

Theorem 2.5 (Wiener–Itô chaos expansion).
Let f P L2pPηq. Then for all n P N, Tnf P L2pλnq and

fpηq “

8
ÿ

n“0

1
n!InpTnfq,

where the series converges in L2pPq. Moreover, if for n P N, gn P L2pλnq is
a symmetric function such that fpηq “

ř8

n“0
1
n!Inpgnq with convergence in L2pPq,

then g0 “ E fpηq and gn “ Tnf λ
n-a.e. on X and for all n P N.
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For F P L2
ηpPq denote fn :“ 1

n!ED
nF . Then by Theorem 2.5, F can be written

as
F “ EF `

8
ÿ

n“1
Inpfnq. (2.14)

For many models in stochastic geometry, the Wiener–Itô chaotic expansion
and associated operators from Malliavin calculus could be further analysed be-
cause the expressions usually consist of terms with a natural geometric interpre-
tation.

Example 2.2 (Poisson U-statistic).
Let n P N and f P L1pλnq symmetric. Then we define the Poisson U-statistic of
order n with kernel function f by

Upf, ηq :“
ż

fpx1, . . . , xnqηpnq
pdpx1, . . . , xnqq “

‰
ÿ

x1,...,xnPη

fpx1, . . . , xnq,

where in the last expression, we sum over all mutually different points x1, . . . , xn
of η.

For k P t0, . . . , nu define symmetric functions fk P L1pλkq by

fkpx1, . . . , xkq :“
ˆ

n

k

̇
ż

fpx1, . . . , xk, y1, . . . , yn´kqλn´k
pdpy1, . . . , yn´kqq.

Then the U -statistic with kernel function f admits the following representation
(Proposition 12.11 in Last and Penrose [2017]):

U “ E rU s `

n
ÿ

k“1
Ikpfkq, P ´ a.s. (2.15)

The next definition introduces three Malliavin-type operators defined in terms
of the chaotic expansions that are involved in the estimates of the distances
between Poisson functionals and standard normal distribution (recall Theorems
2.2, 2.3 and 2.4).

Definition 2.9 (Malliavin operators).
We define the operators D, δ, L on L2

ηpPq as follows:

1. Derivative operator D: Define the domain of D by domD as the set of
all F P L2

ηpPq admitting a chaotic decomposition (2.14) such that

8
ÿ

n“1
nn!}fn}

2
n ă 8. (2.16)

Then for F P domD, the random function x ÞÑ DxF is given by

DxF “

8
ÿ

n“1
nIn´1pfpx, ¨qq, x P X,

where for symmetric function f P L2pλnq, fpx, ¨q indicates the function on
Xn´1 given by px1, . . . , xn´1q ÞÑ fpx, x1, . . . , xn´1q.
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2. Skorohod integral δ: For a function G P L2
ηpPbλq, we have that Gpxq :“

Gp¨, xq P L2pPq and hence, from Theorem 2.5

Gpxq “

8
ÿ

n“0
Inpgnpx, ¨qq, P ´ a.s.,

where gnpx, x1, . . . , xnq :“ 1
n!ED

n
x1,...,xn

Gpxq. The Skorohod integral of G is
defined by

δpGq :“
8
ÿ

n“0
In`1pgnq.

The domain domδ of δ is defined as the set of functions G P L2
ηpP b λq

satisfying
8
ÿ

n“0
pn ` 1q!

ż

g̃2
ndλn`1

ă 8,

where g̃n is the symmetrization of gn, i.e.

g̃npx1, . . . , xn`1q :“ 1
pn ` 1q!

n`1
ÿ

i“1
EDn

x1,...,xi´1,xi`1,...,xn`1Gpxiq.

3. Ornstein–Uhlenbeck generator L: The domain of L, domL, is defined
as the set of functions F P L2

ηpPq with the chaotic decomposition (2.14)
satisfying

8
ÿ

n“1
n2n!}fn}

2
n ă 8.

For F P domL, we define the Ornstein–Uhlenbeck generator of L by

LF :“ ´

8
ÿ

n“1
nInpfnq.

The inverse of L is given by

L´1F :“ ´

8
ÿ

n“0

1
n
Inpfnq.

Let us mention several properties of the Malliavin operators:

1. Note that the derivative operator D transforms random variables into ran-
dom functions. The condition (2.16) guarantees that the Malliavin deriva-
tive of F coincides with the difference operator DF (see e.g. Theorem 6.2
in Nualart and Vives [1990] for the proof).

2. The operator δ is the adjoint of the difference operator D and the following
formula holds.

Theorem 2.6 (Integration by parts formula).
Let F P domD and G P domδ. Then,

E
ż

pDxF qGpxqλpdxq “ EFδpGq.
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See Theorem 4 in Last [2016] for the proof or Proposition 4.2 in Nualart
and Vives [1990] for more general result.

3. The random variable L´1F is well defined for all F P L2
ηpPq, L´1F P domL

and if EF “ 0, then LL´1F “ F.

4. The operators D, δ and L are connected by the following identity.

Theorem 2.7 (Proposition 3 in Last [2016]).
Let F P domL. Then F P domD,DF P domδ and

δpDF q “ ´LF.

Fock space representation
Definition 2.10 (Fock space).
Let Hn denote the space of all λn-a.e. symmetric functions f P L2pλnq equipped
with the inner product x¨, ¨yn and the corresponding norm ||f ||n. We define the
Fock space H as the space of all sequences f “ pfnqně0, fn P Hn, i.e. as the direct
product of the spaces Hn, i.e.

H “

8
ą

n“0
Hn.

with the scalar product defined by

xf, gyH “

8
ÿ

i“0

1
n!xfn, gnyn, f, g P H.

Note that H is a Hilbert space, i.e. a complete metric space with respect to
the metric ppunqně0, pvnqně0q ÞÑ

a

xpun ´ vnqně0, pun ´ vnqně0yH. An extensive
treatment of the stochastic calculus on H can be found in Meyer [1995]. Our goal
is to prove that the linear mapping f ÞÑ pTnpfqqně0 is an isometry from L2pλnq

into the Fock space H. Then it follows from Theorem 2.5 and isometry properties
of stochastic integrals that the mapping is in fact a bijection from L2pPηq to the
Fock space.

Theorem 2.8 (Fock space representation).
Let f, g P L2pPηq. Then Tf :“ pTnfqně0 P H and

Erfpηqgpηqs “ xTf, TgyH.

Remark. In other words, Theorem 2.8 says that

E rfpηqgpηqs “ pE rfpηqsq pE rgpηqsq `

8
ÿ

n“1

1
n! xTnf, Tngyn . (2.17)

In particular,

E rfpηq
2
s “ pE rfpηqsq

2
`

8
ÿ

n“1

1
n! ||Tnf ||

2
n. (2.18)
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Proof. We will follow the proofs of Lemma 18.3, Lemma 18.4, Lemma 18.5 and
Theorem 18.6 of Last and Penrose [2017]. The proof consists of four individual
steps. In prior to show that the equality holds for arbitrary f, g P L2pPηq, we
will prove it for special space of bounded and measurable functions, which will
be proved to be dense in L2pPηq. Then we apply some approximation arguments
to prove the theorem.

Step 1 Let X0 be the system of all measurable sets B P BpXq for which λpBq ă 8.
Denote by R0pXq the space of all bounded functions v : X Ñ R` vanishing
outside some B P X0. Furthermore, denote by G the space of all (bounded and
measurable) functions g : NpXq Ñ R of the form

gpµq “ a1e
´µpv1q

` . . . ` ane
´µpvnq,

where n P N, a1, . . . , an P R, v1, . . . , vn P R0pXq and µpvq denotes the integral
ş

vdµ for µ P NpXq and v P R0pXq. Let us show that equality (2.17) holds for
f, g P G.

By linearity, it is sufficient to consider functions f and g of the form

fpµq “ expr´µpvqs, gpµq “ expr´µpwqs

for v, w P R0pXq. First, we will calculate Tnf and Tng for n P N. For each
µ P NpXq and x P X, we have

fpµ ` δxq “ exp

»

–´

ż

X

vpyqpµ ` δxqpdyq

fi

fl “ expr´µpvqs expr´vpxqs,

and therefore,
Dxfpµq “ expr´µpvqspexpr´vpxqs ´ 1q.

Iterating this identity, we can get for all n P N and all x1, . . . , xn P X that

Dn
x1,...,xn

fpµq “ expr´µpvqs

n
ź

i“1
pexpr´vpxiqs ´ 1q. (2.19)

Recall that for the Poisson point process η with intensity measure λ, the
Laplace functional (see Definition 1.12) takes form

Lηpuq “ exp
“

´λp1 ´ e´u
q
‰

, u : X Ñ R`. (2.20)

From (2.19) and (2.20), we obtain that

Tnf “ expr´λp1 ´ e´v
qs

n
ź

i“1
pexpr´vpxiqs ´ 1q.

Analogously for g. Since v, w P R0pXq it follows that Tnf, Tng P Hn, n ě 0. Using
again equality (2.20), we obtain that

E rfpηqgpηqs “ expr´λp1 ´ e´pv`wq
qs.

Now, we can compute the right-hand side of (2.17)
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8
ÿ

n“1

1
n! xTnf, Tngyn

“ expr´λp1 ´ e´v
qs expr´λp1 ´ e´w

qs

8
ÿ

n“1

1
n!λ

n
pppe´v

´ 1qpe´w
´ 1qq

bn
q

“ expr´λp2 ´ e´v
´ e´w

qs exprλppe´v
´ 1qpe´w

´ 1qqs

“ expr´λp1 ´ e´pv`wq
qs

and hence the assertion holds true for f, g P G.

Step 2 We need to prove that the set G is dense in L2pPηq. Let W be the space
of all bounded measurable g : NpXq Ñ R that can be approximated in L2pPηq
by functions in G. We want to use the functional version of the monotone class
theorem (see Theorem 2.12.9 in Bogachev [2007]). We can see that space G
is closed under uniformly bounded convergence. It also contains the constant
functions and it is closed under multiplication. If we denote by N 1 the smallest
σ-field on NpXq such that µ ÞÑ hpµq is measurable for all h P G, then according
to Theorem 2.12.9 in Bogachev [2007], W contains any bounded N 1-measurable
g.

On the other hand we can write for every C P X0 that

µpCq “ lim
tÑ0`

t´1
p1 ´ e´tµpCq

q, µ P NpXq,

such that µ ÞÑ µpCq is N 1-measurable. Since λ is σ-finite, for any C P X there
exists a monotone sequence Ck P X0, k P N such that C “ YCk, so that µ ÞÑ µpCq

is N 1-measurable. Thus, N 1

“ N and it follows that W contains all bounded
measurable functions. Hence W is dense in L2pPηq.

Step 3 For further purposes we will show that f, f 1, f 2, . . . P L2pPηq satisfying
fk Ñ f in L2pPηq as k Ñ 8 implies

lim
kÑ8

ż

Cn

E r|Dn
x1,...,xn

fpηq ´ Dn
x1...,xn

fkpηq|sλnpdpx1, . . . , xnqq “ 0 (2.21)

for all n P N and C P X0. According to (2.13), it is sufficient to prove

lim
kÑ8

ż

Cn

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

f

˜

η `

m
ÿ

i“1
δxi

¸

´ fk

˜

η `

m
ÿ

i“1
δxi

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ff

λnpdpx1, . . . , xnqq “ 0 (2.22)

for all m P t0, . . . , nu. The case of m “ 0 is obvious. Assuming m P t0, . . . , nu,
we apply on the integral inside the limit in (2.21) the Slivnyak–Mecke equation
(see (1.9)). Thus,
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ż

Cn

E

«
ˇ

ˇ

ˇ

ˇ

ˇ

f

˜

η `

m
ÿ

i“1
δxi

¸

´ fk

˜

η `

m
ÿ

i“1
δxi

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ff

λnpdpx1, . . . , xnqq

“ λpCq
n´m

ż

Cm

E

«ˇ

ˇ

ˇ

ˇ

ˇ

f

˜

η `

m
ÿ

i“1
δxi

¸

´ fk

˜

η `

m
ÿ

i“1
δxi

¸ˇ

ˇ

ˇ

ˇ

ˇ

ff

λmpdpx1, . . . , xmqq

“ λpCq
n´mE

»

–

ż

Cm

ˇ

ˇfpηq ´ fkpηq
ˇ

ˇ ηmpdpx1, . . . , xmqq

fi

fl

ď λpCq
n´mE

“
ˇ

ˇfpηq ´ fkpηq
ˇ

ˇ ηpmq
pCm

q
‰

ď λpCq
n´m

pE rpfpηq ´ fkpηqq
2
sq

1
2 pE rpηpmq

pCm
qq

2
sq

1
2 ,

where by ηmpCmq, we denote the number of m-tuples of points of η in C while
ηpmqpCmq restricts on m-tuples with mutually distinct points.

The last bound follows from the Cauchy–Schwarz inequality. Since all mo-
ments of the Poisson distribution exist, we obtain (2.22) and hence (2.21).

Step 4 Recall the polarization identity of the scalar product

4xf, gyH “ xf ` g, f ` gyH ´ xf ´ g, f ´ gyH.

Because of the linearity of the scalar product, it is sufficient to show that (2.18)
holds to prove the theorem.

Since the system G is dense in L2pPηq, for every f P L2pPηq there is a sequence
fk P G such that fk Ñ f in L2pPηq as k Ñ 8. In step 3, we proved that
Tfk, k P N, is a Cauchy sequence in H, hence has a limit f̃ “ pf̃nq P H, meaning
that

lim
kÑ8

8
ÿ

n“0

1
n! ||Tnf

k
´ f̃n||

2
n “ 0. (2.23)

Taking the limit in the identity Erfkpηq2s “ xTfk, T fkyH yields

Erfpηq
2
s “ xf̃ , f̃yH.

Equation (2.23) immediately implies that f̃ 0 “ Erfpηqs “ T0f . It remains to
show that for any n ě 1, we have

f̃n “ Tnf, λn-a.e. (2.24)

Let C P X0 and let B :“ Cn. Denote by pλnqB the restriction of the mea-
sure λn to B. By (2.23) Tnfk converges to f in L2pB, pλnqBq and hence also in
L1pB, pλnqBq. Meanwhile, by the definition of Tn and the equality (2.21), Tnfk
converges in L1pB, pλnqBq to Tnf . Hence the uniqueness of these limits yields
f̃n “ Tnfλ

n-a.e. on B. Since λ is assumed to be σ-finite, this implies (2.24) and
hence the theorem.
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Covariance identity
The covariance identity is a direct consequence of the Fock space representation
theorem. It will be further used to obtain bounds on the Wasserstein distance
between the standard normal distribution and distribution of a Poisson functional.

Assume that we have a square integrable Poisson functional F (i.e. F P L2
ηpPq)

and t P r0, 1s. To obtain the covariance identity, we need to introduce an operator
PtF defined by a combination of t-thinning and independent superposition. Then
we will be able to rewrite the Fock space series representation as an integral
equation involving only the first order difference operator and the operator Pt.

Definition 2.11 (Operator Pt).
Let for F P L1

ηpPq with a representative f define

PtF :“ E

»

—

–

ż

NpXq

fpηt ` µqΠp1´tqλpdµq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

η

fi

ffi

fl

, t P r0, 1s,

where ηt is a t-thinning of η and Πλ1 denotes the distribution of a Poisson process
with intensity measure λ1.

Lemma 2.2.
For F P L1

ηpPq, the definition of PtF almost surely does not depend on the choice
of the representative f and

EPtF “ EF. (2.25)
Consequently, PtF P L1

ηpPq, whenever F P L1
ηpPq.

Proof. The first statement follows directly from the application of the superpo-
sition and thinning theorems (see Theorem 3.3 and Corollary 5.9 in Last and
Penrose [2017]), since

Πλ “ E

»

—

–

ż

NpXq

1tηt ` µ P ¨uΠp1´tqλpdµq

fi

ffi

fl

.

Due to Lemma B.16 in Last and Penrose [2017], which is based on the monotone
convergence theorem, there exists a measurable version of E rfpηt ` µq|ηs such
that

PtF “ E

»

—

–

ż

NpXq

fpηt ` µqΠp1´tqλpdµq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

η

fi

ffi

fl

“

ż

NpXq

E rfpηt ` µq|ηsΠp1´tqλpdµq,

P-a.s. for all t P r0, 1s. We can also see that

PtF “ E rfpηt ` η1
1´tq|ηs (2.26)

where η1
1´t is a Poisson process with intensity measure p1 ´ tqλ, independent of

the pair pη, ηtq. The equality (2.25) follows from (2.26).
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Using the conditional version of the Jensen inequality (Proposition B.1 in Last
and Penrose [2017]) and equality (2.25), we can determine an estimate for the
p-th absolute moment of PtF .

Lemma 2.3 (Contractivity property).
For any p ě 1, F P LpηpPq and t P r0, 1s, we have

E r|PtF |
p
s ď E r|F |

p
s.

Proof. Let f be a representative of F and denote g “ |f |p, G “ gpηq. Then,

E r|PtF |
p
s “ E

ˇ

ˇE rfpηt ` η1
1´tq|ηs

ˇ

ˇ

p
ď E

“

E r|fpηt ` η1
1´tq|

p
|ηs

‰

“ E
“

E rgpηt ` η1
1´tq|ηs

‰

“ E rPtGs “ E rGs “ E r|F |
p
s.

Lemma 2.4 (Mehler’s formula).
Let F P L2

ηpPq, n P N and t P r0, 1s. Then

Dn
x1,...,xn

pPtF q “ tnPtD
n
x1,...,xn

F, λn-a.a. px1, . . . , xnq P Xn, P ´ a.s.

In particular,

E rDn
x1,...,xn

PtF s “ tnE rDn
x1,...,xn

F s, λn-a.a. px1, . . . , xnq P Xn.

For the proof of Lemma 2.4, see Lemma 20.1 in Last and Penrose [2017].

Notation. Let for F P L2
ηpPq denote by DF the mapping pω, xq ÞÑ pDxF qpωq.

The next theorem will additionally require DF P L2pΩ ˆ X,P b λq, i.e.

E

»

–

ż

X

pDxF q
2λpdxq

fi

fl ă 8.

Theorem 2.9 (Covariance Identity).
For any F,G P L2

ηpPq such that DF,DG P L2pΩ ˆ X,P b λq, we have

E rFGs ´ E rF sE rGs “ E

»

–

ż

X

1
ż

0

pDxF qpPtDxGqdtλpdxq

fi

fl . (2.27)

Proof. We follow the proof of Theorem 20.2 in Last and Penrose [2017]. Using
first the Cauchy–Schwarz inequality and then the contractivity property (Lemma
2.3) we can estimate
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¨

˝E

»

–

ż

X

1
ż

0

|DxF ||PtDxG|dtλpdxq

fi

fl

˛

‚

2

ď E

»

–

ż

X

pDxF q
2λpdxq

fi

flE

»

–

ż

X

1
ż

0

pPtDxGq
2dtλpdxq

fi

fl

ď E

»

–

ż

X

pDxF q
2λpdxq

fi

flE

»

–

ż

X

pDxGq
2λpdxq

fi

fl ,

which is finite by the assumption. Therefore, using Fubini’s theorem and Mehler’s
formula (Lemma 2.4), we obtain that the right-hand side of (2.27) equals

ż

X

1
ż

0

t´1E rpDxF qpPtDxGqsdtλpdxq. (2.28)

We can now apply the Fock space representation (Theorem 2.8) to the expectation
inside the integral. For t P r0, 1s and taking into account also Lemma 2.4, we
obtain
E rpDxF qpDxPtGqs “ tE rDxF sE rDxGs

`

8
ÿ

i“1

tn`1

n!

ż

Xn

E rDn`1
x1,...,xn,xF sE rDn`1

x1,...,xn,xGsλnpdpx1, . . . , xnqq.

We want to insert this expression into formula (2.28) and use Fubini’s theorem
(to be justified below). Compute (2.28) as
ż

X

1
ż

0

E rDxF sE rDxGsdtλpdxq

`

8
ÿ

n“1

1
ż

0

tn

n!dt
ż

X

ż

Xn

E rDn`1
x1,...,xn,xF sE rDn`1

x1,...,xn,xGsλnpdpx1, . . . , xnqqλpdxq

“

ż

X

E rDxF sE rDxGsλpdxq

`

8
ÿ

n“1

1
pn ` 1q!

ż

X

ż

Xn

E rDn`1
x1,...,xn,xF sE rDn`1

x1,...,xn,xGsλnpdpx1, . . . , xnqqλpdxq

“

8
ÿ

n“1

1
n!

ż

Xn

E rDn
x1,...,xn

F sE rDn
x1,...,xn

Gsλnpdpx1, . . . , xnqq.

Eventually, by Theorem 2.8, this equals to E rFGs ´E rF sE rGs, which yields
the asserted formula (2.27). The use of Fubini’s theorem is justified by identity
(2.18) and the Cauchy–Schwarz inequality.
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A direct consequence of Theorem 2.9 is the following upper bound for the
variance. More general variance inequalities were developed in Last and Penrose
[2011].

Corollary 2.1 (Poincaré inequality).
Let F P L2pPqη and DF P L2pΩ ˆ X,P b λq, then

VarF ď E
ż

pDxF q
2λpdxq.

Remark. Corollary 2.1 forms a Poisson version of the famous Chernoff–Nash–
Poincaré inequality formulated in the framework of Gaussian analysis stating that
for X “ pX1, . . . , Xdq an i.i.d. standard Gaussian vector and f being a smooth
function on Rd, we have that

Var fpXq ď E }∇fpXq}
2,

where ∇f is the gradient of f .

2.3 Normal approximation of Poisson function-
als

In this section, we will demonstrate how the bounds of Theorems 2.2, 2.3 and 2.4
can be combined with the Malliavin operators (see Definition 2.9). The connec-
tion of Stein’s method and Malliavin calculus was first mentioned in Nourdin and
Peccati [2009a] in order to derive explicit bounds in the Gaussian and Gamma
approximations of random variables in a fixed Wiener chaos of a general Gaus-
sian process. Later in Peccati et al. [2010], the theory was first formulated in the
framework of point measures.

Recall that η is assumed to be a Poisson point process with locally finite
intensity measure λ and distribution Pη and Z stands for the standard Gaussian
random variable.

Theorem 7 and Theorem 8 in Bourguin and Peccati [2016] give bounds on the
Wasserstein and Kolmogorov distances in the language of the Malliavin operators
D and L´1:

Theorem 2.10 (Bounds on the Wasserstein distance).
Let F P domD be such that EF “ 0. Then

dW pF ,Zq ď

c

2
π
E
ˇ

ˇ

ˇ
1 ´

@

DF,´DL´1F
D

L2pλq

ˇ

ˇ

ˇ
`

ż

E
“

|DxF |
2
|DxL

´1F |
‰

λpdxq.

Theorem 2.11 (Bounds on the Kolmogorov distance).
Let F P domD be such that EF “ 0. Then

dKpF,Zq ď E
ˇ

ˇ1 ´ xDF,´DL´1F yL2pλq

ˇ

ˇ `

?
2π
8 E

“

x|DF |
2, |DL´1F |y

‰

`
1
2E

“

x|DF |
2, |F ˆ DL´1F |y

‰

` sup
zPR

E
“

xpDF qD1rFązs, |DL
´1F |yL2pλq

‰

,
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where Dx1rFązs “ 1rFxązs ´ 1rFązs, x P X.

Working with the operator L´1 can be rather difficult. One option is to use
the chaotic expansion (2.14) of L´1F . It was illustrated in Lachièze-Rey and
Reitzner [2016] and Schulte and Thäle [2016] for the case where F is a Poisson
U -statistic. In particular, it was stated that such F lives in a finite sum of Wiener
chaoses.

Another possibility is to use the following representation of L´1F in terms of
the operator Pt (see Definition 2.11): For F P L2

ηpPq, we have

L´1F “ ´

ż 1

0

1
s
PsFds.

In combination with the covariance identity (Theorem 2.9), one can obtain the
following bounds for the Wasserstein distance.

Theorem 2.12 (Theorem 21.2 in Last and Penrose [2017]).
Let F P L2

ηpPq satisfy DF P L2pΩ ˆ X,P b λq and E rF s “ 0. Then

dW pF,Zq ďE

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´

ż

X

1
ż

0

pPtDxF qpDxF qdtλpdxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

` E

»

–

ż

X

1
ż

0

|PtDxF |pDxF q
2dtλpdxq

fi

fl .

Nevertheless, the operator Pt might still be difficult to manage. One can
again use the covariance identity (Theorem 2.9) and the contractivity property
(Lemma 2.3) and determine a bound depending only on the random functions
DF and D2F , which could be evaluated directly for some simple choices of the
Poisson functionals (see Example 2.3). The following result was shown in Last
et al. [2016].

Theorem 2.13 (Second order Poincaré inequality).
Suppose that F P L2

ηpPq satisfies DF P L2pΩˆX,Pbλq, E rF s “ 0 and moreover,
Var rF s “ 1. Denote

αF,1 :“ 2

»

–

ż

X3

pE rpDx1F q
2
pDx2F q

2
sq

1{2
pE r∆x1,x2,x3pF qsq

1{2λ3
pdpx1, x2, x3qq

fi

fl

1{2

,

αF,2 :“

»

–

ż

X3

E r∆x1,x2,x3pF qsλ3
pdpx1, x2, x3qq

fi

fl

1{2

,

αF,3 :“
ż

X

E r|DxF |
3
sλpdxq,

where ∆x1,x2,x3pF q “ pD2
x1,x3F q2pD2

x2,x3F q2. Then the upper bound on the Wasser-
stein distance can be expressed in terms of the constants αF,1, αF,2, αF,3 as

dW pF,Zq ď αF,1 ` αF,2 ` αF,3.
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Theorem 2.14 (Theorem 1.2 in Last et al. [2016]).
Assume the assumptions of Theorem 2.13 hold and denote, moreover,

αF,4 :“ 1
2
“

EF 4‰1{4
ż

X

“

E pDxF q
4‰3{4

λpdxq,

αF,5 :“

»

–

ż

X

E pDxF q
4λpdxq

fi

fl

1{2

,

αF,6 :“

»

–

ż

X2

6
“

E pDx1F q
4‰1{2 “E pD2

x1,x2F q
4‰1{2

` 3E pD2
x1,x2F q

4λ2
pdpx1, x2qq

fi

fl

1{2

.

Then
dKpF,Zq ď αF,1 ` αF,2 ` αF,3 ` αF,4 ` αF,5 ` αF,6.

Remark. The contents of Theorem 2.13 and Theorem 2.14 form a starting point
of the method of stabilization presented in the subsequent chapter.

Example 2.3 (CLT for non-homogeneous Poisson processes).
Let η be a Poisson point process on R`, whose intensity measure λ satisfies
0 ă λpr0, tsq ă 8 for all sufficiently large t and λpr0,8qq “ 8.

We will define Poisson functionals Ft, t ą 0 as the normalized difference
between the actual number of points of point process η in the interval r0, ts and
the expected number of points in this interval, i.e.

Ftpηq “
ηpr0, tsq ´ λpr0, tsq

a

λpr0, tsq
.

We want to use Theorem 2.13 to prove the central limit theorem. First, we
have to verify its assumptions. We can observe that all moments of Ft exist, since
Poisson distribution has all moments finite. Furthermore, since

E rηpr0, tsqs “ Var rηpr0, tsqs “ λpr0, tsq,
the assumptions on the variance and the expectation are evidently satisfied.

Take an arbitrary point x P R`. Then for the difference operator of the
functional Ft, it holds from the definition that

DxFtpηq “
pη ` δxqpr0, tsq ´ ηpr0, tsq

a

λpr0, tsq
“

1rx P r0, tss
a

λpr0, tsq
.

The difference operator of Ft is no longer random, which implies that the assump-
tion of square integrability of DF holds and moreover, the difference operators
of the higher orders are zero.

It remains to plug the difference operator of Ft into the formulae for the
constants αF,1, αF,2, αF,3 in Theorem 2.13, i.e.

αF,1 “ 0,
αF,2 “ 0,

αF,3 “

ż

Er|DxF |
3
sλpdxq “

1
pλpr0, tsqq

3
2

ż

1rx P r0, tssλpdxq “
1

a

λpr0, tsq
.
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Thus,
dW pF ptq, Zq ď

1
a

λpr0, tsq
. (2.29)

The right-hand side of (2.29) tends to zero as t goes to infinity, hence F ptq
D
ÝÑ Z

as t Ñ 8.

2.4 Selected asymptotic results in stochastic ge-
ometry

In this section, we present several asymptotic results from the literature that are
based on Malliavin–Stein’s method which was discussed in the previous sections.

Example 1: Normal approximation and CLT in the Boolean
model
Recall that the Boolean model (Example 1.14) is a random set

Ξ “
ď

iě1
pxi ` Ξiq,

where ηm “ tpxi,Ξiq, i ě 1u is a stationary independently marked Poisson point
process on Rd with marks in the space Cpdq of non-empty compact sets in Rd and
the mark distribution Q. Let λ P p0,8q be the intensity of the unmarked Poisson
point process η on Rd and αm “ λ| ¨ |d b Q the intensity measure of ηm.

Moreover, we assume that Q satisfies the integrability condition
ż

|K ‘ Brpoq|dQpdKq ă 8, @r ě 0. (2.30)

Condition (2.30) guarantees that Ξ is a random element of the space Fd of closed
subsets of Rd (Proposition 17.5 in Last and Penrose [2017]).

Let W be a fixed observation window with |W |d P p0,8q. If Q is concentrated
on convex sets, then by observing Ξ in W , we see a finite union of convex sets.
Hence, Ξ XW is amendable to additive translation-invariant functionals φ, such
as intrinsic volumes (Example 2.4 below).

The aim is to study random variables of the type

φpΞ X rW q,

where φ is a suitable geometric function defined on compact sets and r ą 0 is
large. First, let φ “ | ¨ |d. Then FW :“ |Ξ X W |d is a Poisson functional with
EFW “ p|W |d, where

p “ Ppo P Ξq ă 1

is the volume fraction of Ξ. The following Lemma gives the asymptotic variance
of FrW when r Ñ 8.

66



Lemma 2.5 (Proposition 22.1 in Last and Penrose [2017]).
We have that

Var rFW s “ p1 ´ pq
2
ż

|W X pW ` xq|dpe
λβdpxq

´ 1qdx,

where βdpxq “
ş

|K X pK ` xq|dQpdKq. Moreover, if the boundary of W denoted
by BW satisfies |BW |d “ 0, then

lim
rÑ8

1
|rW |d

Var rFrW s “ p1 ´ pq
2
ż

peλβdpxq
´ 1qdx.

The following bound on the Wasserstein distance between a suitably normal-
ized version of FW and the standard normal random variable Z can be proved.
For this purpose, we use the following notation:

ϕd,k :“
ż

p|K|dq
kQpdKq, k P N,

and
cW :“ |W |d

p1 ´ pq2

„
ż

|W X pW ` xq|dpe
λβdpxq

´ 1qdx
ȷ´1

.

Theorem 2.15 (Theorem 22.2 in Last and Penrose [2017]).
Let F̂w :“ pVar rFW sq´1{2pFW ´ EFW q and assume that ϕd,3 ă 8 and ϕd,1 ą 0.
Then

dW pF̂W , Zq ď p|W |dq
´1{2

r2pλϕd,2q
3{2cW ` λ3{2ϕd,2cW ` λϕd,3c

3{2
W s.

Remark. The assumption ϕd,1 ą 0 guarantees that Var rFW s ą 0 (see Exercise
22.2 in Last and Penrose [2017]).

Corollary 2.2 (Corollary 22.3 in Last and Penrose [2017]).
Assume that |BW |d “ 0, ϕd,1 ą 0 and ϕd,3 ă 8. Then

F̂ r1{dW
D
ÝÑ Z, as r Ñ 8.

Remark. The rate of convergence in Corollary 2.2 is r´1{2.

Under additional assumptions of W being convex and Q being concentrated
on the system Kpdq of compact convex sets with positive Lebesgue measure one
can extend Theorem 2.15 and Corollary 2.2 for the class of geometric functions.

Definition 2.12 (Geometric function).
A function φ : Cd Ñ R is geometric if it is translation-invariant (meaning that
φpK ` xq “ φpKq for all x P Rd and K P Cd), additive and satisfies

Mpφq :“ supt|φpKq| : K P Kpdq, K Ă r´1{2, 1{2s
d
u ă 8.

Example 2.4 (Intrinsic volumes).
Define the Minkowski sum of K,L Ă Rd by K ‘ L :“ tx ` y;x P K, y P Lu. The

67



Steiner formula states that for K Ă Rd convex, the volume of the set K ‘Brpoq

(the parallel set of K) can be expressed as a polynomial of degree d:

|K ‘ Brpoq|d “

d
ÿ

j“0
rd´jκd´jVjpKq,

where κk is the volume of the k-dimensional unit ball and Vk is the k-th intrinsic
volume.

For example, if K ‰ H, then V0pKq “ 1 and VdpKq “ |K|d. Moreover, if K
has a non-empty interior, then

Vd´1pKq “
1
2Hd´1pBKq,

the pd ´ 1q-dimensional Hausdorff measure of the boundary of K.

Remark. The intrinsic volumes V0, . . . , Vd are geometric functions on Cd.

Given a geometric function φ, in Last and Penrose [2017], Theorem 2.13 was
applied to the Poisson functional FW,φ :“ φpΞ X W q.

Theorem 2.16 (Theorem 22.7 in Last and Penrose [2017]).
Suppose φ is a geometric function such that σW,φ :“ pVar rFW,φsq1{2 ą 0. Denote
V̄ pKq :“ |K ‘ B1poq|d and assume that

ż

V̄ pKq
3QpdKq ă 8.

Let F̂W,φ :“ σ´1
W,φpFW,φ ´ EFW,φq. Then

dW pF̂W,φ, Zq ď c1σ
´2
W,φrV̄ pW qs

1{2
` c2σ

´3
W,φV̄ pW q,

where c1, c2 do not depend on W .

Corollary 2.3 (Theorem 22.8 in Last and Penrose [2017]).
Assume that the conditions of Theorem 2.16 hold and moreover,

lim inf
rÑ8

σ2
W,φ

r
ą 0.

Then there exists c ą 0 such that

dW pF̂W,φq ď cr´1{2.

In particular, F̂W,φ
D
ÝÑ Z.

Example 2: Normal approximation and CLT for geometric
U-statistics
Recall that a Poisson U-statistic of order k with kernel function f : Xk Ñ R is
defined by

Upf, ηq “

ż

fpx1, . . . , xkqηpkq
pdpx1, . . . , xkqq,
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where η is a Poisson point process on X with non-atomic locally finite intensity
measure λ. U -statistics play an important role in stochastic geometry since many
interesting functionals can be expressed as U -statistics, for instance the intrin-
sic volumes. In Example 2.2, it was shown that a U -statistics can be expressed
as a finite sum of multiple Wiener–Itô integrals (see the chaotic representation
(2.15)). Therefore, to study the asymptotic properties of a U -statistic is equiv-
alent to study the individual Wiener–Itô integrals. The Malliavin operators in
this case are usually easy to handle. For instance, if F “ Ikpfq is a multiple
Wiener–Itô integral of order k ě 1 and f P L2pλkq, then

DxF “ kIk´1pfpx, ¨qq, x P X

and
LF “ ´kIkpfq, L´1F “ ´k´1Ikpfq.

Directly from the chaotic representation (2.15) and Slivnyak–Mecke equation
(1.9), one can show the following result.

Proposition 2.5 (Proposition 1 in Lachièze-Rey and Reitzner [2016]).
Let Upf, ηq be a Poisson U-statistic of order k with symmetric kernel function
f P L1pλkq. Then E |Upf, ηq| ă 8 and

EUpf, ηq “

ż

fpx1, . . . , xkqλkpdpx1, . . . , xkqq.

If, moreover, Upf, ηq P L2pPηq, then

Var rUpf, ηqs “

k
ÿ

n“1
n!}fn}

2
n,

where fn are given in (2.15).

To study the asymptotic behaviour of U -statistics, we denote by ηt the Poisson
point process on X with intensity measure λt “ tλ and put Ft “ Upf, ηtq where
f P L1pλq is some fixed symmetric function such that F1 has a finite variance.
Then Ft ´ EFt admits the chaotic representation

Ft ´ EFt “

k
ÿ

n“1
Inpgn,tq,

where the stochastic integrations are with respect to λnt and

gn,tpx1, . . . , xnq “ tk´n

ˆ

k

n

̇
ż

fpx1, . . . xn, y1, . . . , yk´nqλk´n
pdpy1, . . . , yk´nqq.

Define a constant n1 by

n1 :“ inftn; }gn,t}n ‰ 0u.

In fact, n1 is the so-called Hoeffding rank of the U -statistic Upf, ηtq (see e.g. Vitale
[1992] for the theory of Hoeffding decomposition). The following asymptotic
result can be proved using the Malliavin–Stein’s method.
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Theorem 2.17 (Theorem 7.3 in Lachièze-Rey and Peccati [2013]).
Let F̂ t :“ pVar rFtsq

´1{2pFt ´ EFtq. Then there exist constants c1, c2, c3 not de-
pending on t such that

c1t
2k´n1 ď Var pFtq ď c2t

2k´n1 .

If n1 “ 1, then Upf, ηtq follows a central limit theorem and

dW pF̂ t, Zq ď c3t
´1{2,

dKpF̂ t, Zq ď c3t
´1{2.

Remark. If n1 ą 1, then Upf, ηtq does not follow a central limit theorem. See
Section 2.1 in Lachièze-Rey and Reitzner [2016] for the discussion over the speed
of the convergence depending on the choice of the kernel function f .

Next, we present one example of U -statistic counting the intrinsic volumes
of the intersections in the flat process. For more examples, see Chapter 4 in
Lachièze-Rey and Reitzner [2016].

Example 2.5 (Intersection process).
Denote by Apd, iq the affine Grassmanian (the space of all i-dimensional spaces
in Rd, endowed with the usual hit-and-miss topology and Borel σ-field).

Let ηt be a Poisson point process on Apd, iq with intensity measure λt “ tλ
for some locally finite and non-atomic measure λ on Apd, iq. Then we call ηt the
Poisson flat process.

Take a compact, convex observation window W Ă Rd with interior points.
Suppose we observe only what is happening inside W , i.e. we understand ηt as
a point process on rW s :“ tL P Apd, iq;L X W ‰ Hu.

Denote by npkq

t the process of the intersections of k flats of ηt for k ď d{pd´ iq
and define the U -statistic Φt by

Φt “ ΦtpW, i, k, jq “
1
k!

ÿ

pL1,...,LkqPηk
t,‰

VjpL1 X ¨ ¨ ¨ X Lk X W q

for j “ 0, . . . , d ´ kpd ´ iq, i “ 0, . . . d ´ 1 and k “ 1, . . . ,m, where m is the
greatest integer with m ď d{pd ´ iq.

Theorem 2.18 (Theorem 10 in Lachièze-Rey and Reitzner [2016]).
There is a constant c “ cpW, i, k, jq such that for t ě 1,

dW pΦ̂t, Zq ď ct´1{2 and dKpΦ̂t, Zq ď ct´1{2.

Example 3: Normal approximation for point processes with
Papangelou conditional intensity
The Malliavin–Stein’s method can work successfully also for functionals of point
processes having a Papangelou conditional intensity (Definition 1.17). In Torrisi
[2017], bounds on the Wasserstein distance between the standard normal distri-
bution and distribution of so-called innovations are proved using the techniques
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from Malliavin–Stein’s method for point processes having Papangelou conditional
intensity. Consequently, these bounds are derived for Gibbs point processes in
Rd, d P N.

Definition 2.13 (Innovation of a point process).
Let µ be a point process on X with Papangelou conditional intensity λ˚ and
intensity measure λ. Then we define the innovation of the point process µ as
a random variable

Iµpφq :“
ÿ

xPµ

φpx, µ ´ δxq ´

ż

X

φpx, µqλ˚
px, µqλpdxq

for any measurable φ : X ˆ N Ñ R, for which |Ixpφq| ă 8 for µ-a.a. x P N.

Remark. It follows from the Georgii–Nguyen–Zessin formula (Theorem 1.12)
that ErIµpφqs “ 0 for any innovation defined above.

Theorem 2.19 (Theorem 3.1 in Torrisi [2017]).
Let φ : X ˆ N Ñ R be a measurable function satisfying

E

»

–

ż

X

|φpx, µq|λ˚
px, µqλpdxq

fi

fl ă 8 and E

»

–

ż

X

|φpx, µq|
2λ˚

px, µqλpdxq

fi

fl ă 8.

Then,

dW pIµpφq, Zq ď

c

2
π
E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´

ż

X

φpx, µqDxIµpφqλ˚
px, µqλpdxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

`E

»

–

ż

X

|φpx, µq||DxIµpφq|
2λ˚

px, µqλpdxq

fi

fl .

Remark. An advantage of Theorem 2.19 is that it allows the function φ to
depend also on a given realization of the point process µ. That gives us an op-
portunity to study important functionals as the volume of intersections between
particles in this realisation, etc. However, the terms are usually difficult to eval-
uate.

The following result simplifies considerably the bound in Theorem 2.19, but
with the price that the function φ no longer depends on a given realization, hence
it is only function on X.

Theorem 2.20 (Corollary 3.5 in Torrisi [2017]).
Let φ : X Ñ R be a measurable function such that

ż

X

|φpxq|E rλ˚
px, µqsλpdxq ă 8 and

ż

X

|φpxq|
2E rλ˚

px, µqsλpdxq ă 8.
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Then,

dW pIµpφq, Zq ď
c

2
π

g

f

f

e
1 ´ 2

ż

X

|φpxq|2E rλ˚px, µqsλpdxq `

ż

X2

|φpxqφpyq|2α2px, y, µqλpdxqλpdyq

`

ż

X

|φpxq|
3E rλ˚

px, µqsλpdxq

`

c

2
π

ż

X2

|φpxqφpyq|E r|Dxλ
˚
py, µq|λ˚

px, µqsλpdxqλpdyq

` 2
ż

X2

|φpxq|
2φpyq|E r|Dxλ

˚
py, µq|λ˚

px, µqsλpdxqλpdyq

`

ż

X3

|φpxqφpyqφpzq|E r|Dxλ
˚
py, µqDxλ

˚
pz, µq|λ˚

px, µqsλpdxqλpdyqλpdzq.

Moreover, if we add the assumption of repulsivity of the point process µ, we
can express the bound of Theorem 2.20 using the product densities (Definition
1.9) up to the third order.

Definition 2.14 (Repulsive point process).
The point process µ on X with the Papangelou conditional intensity λ˚ is said to
be repulsive if

λ˚
px,xq ě λ˚

px,yq for x,y P NpXq,x Ă y, x P X.

Notation. In what follows we use the following notation. Define functions α2 :
X2 ˆ N Ñ R and α3 : X3 ˆ N Ñ R by

α2px, y, µq :“ Erλ˚
px, µqλ˚

py, µqs,

α3px, y, z, µq :“ Erλ˚
px, µqλ˚

py, µqλ˚
pz, µqs,

for x, y, z P X and the point process µ on X.

Corollary 2.4 (Corollary 3.7 in Torrisi [2017]).
Let φ : X Ñ R be a measurable function such that

ż

X

|φpxq|E rλ˚
px, µqsλpdxq ă 8 and

ż

X

|φpxq|
2E rλ˚

px, µqsλpdxq ă 8.
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If, moreover, µ is repulsive, we have

dW pIµpφq, Zq ď
c

2
π

g

f

f

e
1 ´ 2

ż

X

|φpxq|2λr1spxqλpdxq `

ż

X2

|φpxqφpyq|2α2px, y, µqλpdxqλpdyq

`

ż

X

|φpxq|
3λr1s

pxqλpdxq `

c

2
π

ż

X2

|φpxqφpyq|pα2px, y, µq ´ λr2s
px, yqqλpdxqλpdyq

` 2
ż

X2

|φpxq|
2φpyq|pα2px, y, µq ´ λr2s

px, yqqλpdxqλpdyq

`

ż

X3

|φpxqφpyqφpzq|pα3px, y, z, µq ´ λr3s
px, y, zqqλpdxqλpdyqλpdzq.

Corollary 2.4 may be useful to provide explicit bounds in the normal approx-
imation of innovations of repulsive point processes for which the first three corre-
lation functions are explicitly known. This is the imminent case of determinantal
point processes (recall Example 1.10 or see Section 7 in Torrisi [2017]).

Example 4: Normal approximation and CLT in the Gibbs
setting
The general bound of Theorem 2.20 can be used in the normal approximation
of the innovation of a Gibbs point process on Rd with pair potential where the
exact form of the conditional intensity is known.

Recall that a pair potential is a Borel measurable function ϕ : Rd Ñ RYt`8u

such that ϕpxq “ ϕp´xq. For x P N and u P Rd, we define the relative energy of
interaction between the point u and the configuration x by

Epu,xq “

$

&

%

ř

yPx
ϕpu ´ yq, if

ř

yPx
|ϕpu ´ yq| ă 8,

`8, otherwise.

A point process µ on Rd is called the Gibbs point process with activity τ ą 0
and pair potential ϕ if its Papangelou conditional intensity takes form

λ˚
pu,xq “ τ expt´Epu,xqu, u P Rd, x P N.

Moreover, it will be assumed that µ is stationary, inhibitory, i.e. ϕ ě 0 and finite
range meaning that 1 ´ e´ϕ has compact support.

Theorem 2.21 (Theorem 5.3 in Torrisi [2017]).
Let µ be a stationary Gibbs point process with activity τ ą 0 and pair potential
ϕ : Rd Ñ r0,`8s, and suppose

φ P L1
pRd, | ¨ |dq X L2

pRd, | ¨ |dq.

If, moreover, µ has finite range, then for any p, q, p1, q1 ą 1 such that 1
p

` 1
q

“
1
p1 ` 1

q1 “ 1,
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dW pIµpφq, Zq ď

c

2
π

b

1 ´ 2c1}φ}2
L2pRd,|¨|dq

` τc2}φ}4
L2pRd,|¨|dq

` c2A,

where

A :“}φ}
3
L3pRd,|¨|dq `

c

2
π
τ}φ}

2
L2pRd,|¨|dq}1 ´ e´ϕ

}L1pRd,|¨|dq

` 2τ}φ}
2
LqpRd,|¨|dq}1 ´ e´ϕ

}L1pRd,|¨|dq

` τ 2
}φ}Lpp1

pRd,|¨|dq}φ}Lpq1
pRd,|¨|dq}φ}LqpRd,|¨|dq}1 ´ e´ϕ

}
2
L1pRd,|¨|dq

and

c1 :“ τ

1 ` τ}1 ´ e´ϕ}L1pRd,|¨|dq

, c2 :“ τ

2 ´ expt´τ}1 ´ e´ϕ}L1pRd,|¨|dqu
.

Example 2.6 (Hard-core process).
Take r ą 0 fixed and let ϕ : Rd Ñ R Y t8u be a real function defined by

ϕpxq “

#

0, if }x} ą r,

`8, if }x} ď r.

Set the relative energy between point u P Rd and system of points x P N as

Epu,xq“

$

&

%

ř

yPx
ϕpu ´ yq, if

ř

yPx
|ϕpu ´ yq| ă 8,

`8, otherwise

“

#

0, if }u ´ y} ą r, @y P x,
`,8 otherwise.

.

Then we define the hard-core point process with pair potential by its Papangelou
conditional intensity

λ˚
pu,xq “ τ expt´Epu,xqu “ τ1r}u´y}ąr, @yPxs, u P Rd,x P N.

Theorem 2.22 (Theorem 4.8 in Flimmel [2017]).
Consider for each n P N a stationary hard-core point process µpnq in Rd with
activity τn ą 0 such that τn Ñ τ as n Ñ 8, and with pair potential

ϕnpyq “

#

0, if }x} ą rn,

`8, if }x} ď rn,

where rn ě 0, rn Ñ 0 as n Ñ 8. Let Kn, n P N, be bounded Borel sets in Rd

such that |Kn|d Ñ 8 as n Ñ 8. Define functions

φnpxq “
1

a

τn|Kn|d
¨ 1Knpxq, n P N, x P Rd.

Then,
dW pIµpnqpφnq, Zq Ñ 0

as n Ñ 8.
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Proof. It is clear that the point processes µpnq have finite ranges. Also, for every
n P N

ż

Rd

|φnpxq|dx “

ż

Rd

ˇ

ˇ

ˇ

ˇ

ˇ

1
a

τn|Kn|d
¨ 1Knpxq

ˇ

ˇ

ˇ

ˇ

ˇ

dx “

d

|Kn|d

τn
ă 8

and
ż

Rd

|φnpxq|
2dx “

ż

Rd

ˇ

ˇ

ˇ

ˇ

ˇ

1
a

τn|Kn|d
¨ 1Knpxq

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx “
1
τn

ă 8.

Hence, the assumptions of Theorem 2.21 are satisfied and so we can compute
bounds on the Wasserstein distance between the standard normal distribution Z
and the innovation Iµpnqpφnq for each n P N.

First, we need to compute the L1 norm of the function 1 ´ e´ϕn :

}1 ´ e´ϕn}L1pRd,|¨|dq “

ż

Rd

|1 ´ e´ϕnpxq
|dx “

ż

Brn poq

1dx “ |Brnpoq|d.

Set p “ q “ p1 “ q1 “ 2 and compute for given n P N the constants Apnq, c
pnq

1
and c

pnq

2 from Theorem 2.21:

c
pnq

1 “
τn

1 ` τn}1 ´ e´ϕn}L1pRd,|¨|dq

“
τn

1 ` τn|Brnpoq|d
,

c
pnq

2 “
τn

2 ´ expt´τn}1 ´ e´ϕn}L1pRd,|¨|dqu
“

τn
2 ´ exp t´τn|Brnpoq|du

and

Apnq
“ }φn}

3
L3pRd,|¨|dq `

c

2
π
τn}φn}

2
L2pRd,|¨|dq}1 ´ e´ϕn}L1pRd,|¨|dq

` 2τn}φn}
2
L2pRd,|¨|dq}1 ´ e´ϕn}L1pRd,|¨|dq

` τ 2
n}φn}

2
L4pRd,|¨|dq}φn}L2pRd,|¨|dq}1 ´ e´ϕn}

2
L1pRd,|¨|dq

“
1

τ
3{2
n

a

|Kn|
`

c

2
π

|Brnpoq| ` 2|Brnpoq|d

`

?
τn

a

|Kn|d
p|Brnpoq|dq

2.

We can see that
c

pnq

1 Ñ τ, c
pnq

2 Ñ τ, Apnq
Ñ 0

as n Ñ 8. Altogether, using bound from Theorem 2.21, we arrive at

dW pIµpnqpφnq, Zq ď

c

2
π

b

1 ´ 2cpnq

1 }φn}2
L2pRd,|¨|dq

` τnc
pnq

2 }φn}4
L2pRd,|¨|dq

` c
pnq

2 Apnq

“

c

2
π

c

1 ´ 2cpnq

1
1
τn

` c
pnq

2
1
τn

` c
pnq

2 Apnq,

which tends to 0 as n approaches `8.
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Example 2.7 (Strauss process).
The Strauss process is a Gibbs point process µ with activity τ and range of
interaction r ą 0 with the pair potential

ϕpxq :“ p´ log uq1r}x}ďrs, u P r0, 1s, x P Rd.

Then ϕ satisfies the assumptions of Theorem 2.21 and

}1 ´ e´ϕ
}L1pRd,|¨|dq “ p1 ´ uqκdr

d,

where κd is the volume of the unit ball in Rd.

The result of Theorem 5.3 in Torrisi [2017] was later extended in Flimmel and
Beneš [2018] to the case X “ Cpdq, d P N (recall the notation of Section 1.4).

Assume µ is a stationary Gibbs particle process with the energy of the form
(1.19). The explicit form of the Papangelou conditional intensity is given by
(1.20).

The innovation of a Gibbs particle process µ is of the form

Iµpφq “
ÿ

KPµ

φpK,µztKuq ´

ż

Cpdq

φpK,µqλ˚
pK,µqλpdKq

for any measurable φ : Cpdq ˆ Nd
Ñ R, for which Ixpφq is defined and finite

µ-a.e. on Nd.

Theorem 2.23 (Theorem 3.3 in Flimmel and Beneš [2018]).
Let µ be a stationary Gibbs particle process given by the conditional intensity of
the form (1.20) with activity τ ą 0, inverse temperature β ě 0, reference particle
distribution Q satisfying (1.16), and with pair potential g which is bounded from
above by some positive constant a. Let φ : Cpdq Ñ R be a measurable function
that does not depend on x P Nd and

φ P L1
pCpdq, λq X L2

pCpdq, λq.

Then

dW pIµpφq, Zq ď

c

2
π

b

1 ´ 2τp1 ´ βbq}φ}2
L2pCpdq,λq

` τ 2}φ}4
L2pCpdq,λq

` τ}φ}
3
L3pCpdq,λq `

c

2
π
τ 2

}φ}
2
L1pCpdq,λq|1 ´ e´βa

|

` 2τ 2
}φ}

2
L2pCpdq,λq}φ}L1pCpdq,λq|1 ´ e´βa

|

` τ 3
}φ}

3
L1pCpdq,λq|1 ´ e´βa

|
2.

Example 2.8 (Gibbs planar segment process).
Take Q being concentrated on the set SRo Ă Cp2q (the space of all segments in
R2XBRpoq centered in the origin). Theorem 2.23 can be applied to the special case
of planar segment process to derive central limit theorems for two functionals: the
normalized number of segments observed in a window and normalized total length
of segments hitting the window. We take windows forming a convex averaging
sequence (cf. Daley and Vere-Jones [2003]), i.e. monotone increasing sequence of
convex bounded Borel sets converging to R2.
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Theorem 2.24 (Theorem 3.4 in Flimmel and Beneš [2018]).
Consider for each n P N a stationary Gibbs planar segment process ξpnq with the
conditional intensity

λ˚
npK,xq “ τn exp

#

´βn
ÿ

LPx
1tK X L ‰ Hu

+

, K P S,x P N2,

where τn ą 0 and βn ě 0. Moreover, suppose that βn Ñ 0 and 0 ă c1 ă

τn ă c2 ă 8, n P N, for some constants c1, c2 and that the common reference
particle distribution Q for all ξpnq has the uniform directional distribution. Let
tWn, n P Nu be a convex averaging sequence in R2 such that |Wn|d “ opβ´1

n q (i.e.
|Wn|dβn tends to zero with growing n). For n P N and K P S, define

φnpKq “
1

a

τn|Wn|d
¨ 1tK X Wn ‰ Hu.

Further
ψnpKq “

lpKq
?
ELl2

φnpKq,

where lpKq denotes the length of the segment K, l is a random variable that
follows the law of QL and EL denotes the expectation with respect to QL. Then

dW pIξpnqpφnq, Zq Ñ 0, dW pIξpnqpψnq, Zq Ñ 0

as n Ñ 8.
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3. Method of stabilization
In this chapter, we present a recent method for studying the limit behaviour of
geometric structures evincing local form of dependency. Typical examples of ap-
plication include random graphs (Section 1.6), germ-grain models (Example 1.14)
and other geometric structures based on marked point processes such as weighted
Voronoi tessellations (Example 1.22) or Delaunay triangulation (Example 1.19),
where the unmarked point process displays only local dependencies.

The asymptotic properties are usually investigated via geometric functionals
called scores or score functions of the type

ξpx,xq,

where ξ is a real-valued function defined on pairs px,xq of x P x and a locally
finite point configuration x in Rd (or some more general space).

We shall write Hpxqp:“ Hξpxqq for the total sum over all x P x, i.e.

Hpxq :“
ÿ

xPx
ξpx,xq. (3.1)

The statistic Hpxq typically describes a global property of a geometric structure
generated by x and the value ξpx,xq represents the interaction of x with respect
to x.

For a general point process µ, Hpµq is a sum of mutually dependent terms.
A lot of functionals in stochastic geometry are in the form (3.1), e.g. the total
edge length of a random graph, statistics of Voronoi set approximation, etc. The
object of our interest is then the asymptotic behaviour of Hpµ X Wλq, where
Wλ is a suitable observation window tending to Rd. Alternatively, we let the
observation window be fixed and let the intensity of a stationary point process µ
tend to infinity. Often, the values of ξpx,xq and ξpy,xq, x ‰ y, are not unrelated
but, loosely speaking, become more related as the distance between x and y
becomes smaller. This dependency cause problems when developing the limit
theory for H on random point sets.

The stabilization method is a tool that allows one to study statistics of this
type, which may be expressed as a sum of spatially dependent terms, where
the short-range interactions can be controlled. Roughly speaking, a geometric
functional stabilizes if its behaviour at a given point is locally determined by
a certain finite, possibly random, neighbourhood of this point. Or, in another
words, any local modification (e.g. insertion of a point into the underlying point
process) has only a local effect.

The notion of stabilization comes from Lee [1997, 1999] and Avram and Bert-
simas [1993]. The modern theory of stabilization in the context of central limit
theorems in stochastic geometry was introduced in Penrose and Yukich [2001,
2002] and Baryshnikov and Yukich [2005]. The laws of large numbers for stabiliz-
ing functionals of point processes on Rd are investigated in Penrose and Yukich
[2003]. For a survey on limit theorems in stochastic geometry with a particular
focus on stabilization we refer to Schreiber [2010].

Notation. For a score function ξ we will write ξpx,xq for ξpx,x Y txuq whenever
x P N and x P Rd.
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The most commonly understood definition of a stabilizing functional goes as
follows:

Definition 3.1 (Stabilizing score function, radius of stabilization).
A score function ξ is said to be stabilizing with respect to a point process µ if and
only if for each x P Rd there exists an a.s. finite random variable Rx :“ Rξ

xpµq

such that
ξpx, µq “ ξpx, pµ X BRxpxqq Y Aq, a.s.

for all finite A Ă RdzBRxpxq, where as usual Brpxq is a ball in Rd with radius r
around x. The random variable Rx is called the radius of stabilization.

Definition 3.1 says that the value of ξpx, µq is almost surely fully determined
by the configuration of µ inside BRxpxq. Naturally, the concept of stabilization
plays the most significant role in the study of Poisson functionals, since the con-
figuration of a Poisson point process η inside BRpxq does not depend on the
configuration outside BRpxq for any x P η and R ą 0. Nevertheless, also the
cases of binomial and Gibbsian inputs are considered in the literature (see Pen-
rose and Yukich [2001] for the binomial case and Schreiber and Yukich [2013] for
the Gibbsian case).

The strength of the stabilization is characterized by the tail distribution of
the radii of stabilization, i.e. the probabilities PpRx ą rq, r ą 0.

Definition 3.2 (Exponentially stabilizing score functions).
We say that ξ is exponentially stabilizing if there exist constants cstab, αstab P

p0,8q such that for all x P Rd and r ą 0,

PpRx ą rq ď cstab exp
ˆ

´
1
cstab

rαstab

̇

.

Yet, there are several different variations available for proving central limit
theorems based on stabilization, all having slightly different notions of the stabi-
lization property. We shall mention at least three approaches and briefly compare
their assumptions and results. Namely, it is

1. add-one cost stabilization: an approach based on martingale differences
presented in Penrose and Yukich [2001],

2. moment approach: a combination of cumulant method (see Chapter 4) and
stabilization introduced in Baryshnikov and Yukich [2005],

3. Stein’s method: a combination of the Malliavin–Stein bounds (see Chapter
2) and stabilization presented in Last et al. [2016].

Even though every approach generates a large scale of applications, especially
in the random graphs theory, we will demonstrate the usage on the nearest neigh-
bour graph as it is the most frequently discussed example in the literature. The
rest of the chapter is organized as follows: Sections 3.1-3.3 each discusses an in-
dividual approach. Section 3.4 is devoted to the stabilization property of random
tessellations, where the results of the previous sections are used.
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3.1 Add-one cost stabilization
The add-one cost version of stabilization is based on the martingale method
developed in Kesten and Lee [1996] and Lee [1997], where the authors studied
random Euclidean minimal spanning trees. The main idea of the method is that
the value of ξpx,xq is unaffected by the external configuration of x (i.e. by points
beyond some stabilization distance from x) and moreover, the value of ξ for the
points outside the stabilization region of x is not affected by the presence of
x. Therefore, this version of stabilization is sometimes referred to as external
stabilization.

The presentation below is mostly based on Penrose and Yukich [2001], where
the authors derived a general central limit theorem for functionals of random
graphs as defined in Section 1.6. The functionals of interest include the total edge
length, the total number of any type of component, etc. The limit behaviour of
these functionals is investigated in two regimes:

1. increasing non-random number of random points being distributed uni-
formly in a fixed region or

2. increasing observation window in Rd.

Definition 3.3 (Add-one cost).
The add-one cost Dxpxq of a point configuration x S x with respect to geometric
functional ξ is given as the increment caused by inserting a point x P Rd into x,
i.e.

DxHpxq :“ Hpx Y txuq ´ Hpxq.

Note that the add-one cost is exactly the difference operator of the first order
(see Definition 2.7) and itself is a geometric statistic. It will be assumed that H
is translation-invariant, so that

Hpx ` yq “ Hpxq

for all x Ă Rd and y P Rd. Then it is enough to investigate the case when a point
is inserted in the origin. Thus, we denote

∆pxq :“ DopHqpxq “ Hpx Y touq ´ Hpxq

for a point set x P Rd.

Remark. The add-one cost method does not require the functional H to be in
the form (3.1). Nevertheless, most of the examples in Penrose and Yukich [2001]
have such form and the add-one cost then equals

DxHpxq “
ÿ

yPxYtxu

ξpy,x Y txuq ´
ÿ

yPx
ξpy,xq.

Assumptions
Notation. In what follows, we denote for r ą 0 and x P Rd the d-cube centered
in x by Qrpxq :“ r´r, rsd `x. Moreover, for F Ă Rd, let BF denote the boundary
of F , i.e. the intersection of the closure of F with the closure of its complement
and set BrF :“ YxPBFQrpxq.
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Let us fix d ě 1 and λ ą 0. We suppose that pWnqně1 is a sequence of bounded
observation windows in Rd satisfying the following conditions:

• |Wn|d “ n{λ for all n P N,

• Wn Õ Rd,

• the vanishing relative boundary condition:

lim
nÑ8

|BrWn|d

n
“ 0, for all r ą 0,

• the polynomial boundedness condition: There exists a constant β1 such that
the diameter of Wn satisfies diampWnq ď β1n

β1 for all n P N.

Denote by W the collection of all regions A Ă Rd having the form A “ tWn ` x :
x P Rd, n P Nu. Moreover, let W0 be a fixed bounded Borel set in Rd satisfying
|W0|d “ 1 and |BW0|d “ 0 and denote by W0 the collection of all regions of the
form A “ aW0 ` x with a ě 1, x P Rd.

Definition 3.4 (Regularity condition).
We say that a collection of sets B is regular if there exists δ ą 0 such that for all
r P r1,8q, whenever B P B and x, y P W with }x ´ y} “ r, we have

|Br{4pxq X B| ě δrδ.

For example, the collection of all boxes B Ă Rd of the form
śd

i“1rai, bis
with bi ě ai ` 1 for each i is regular. Similarly, the collection of all balls or
ellipsoids is regular. As for W0, the sufficient condition for being regular is that
r´d|BrpxqXW0|d is bounded away from zero, uniformly over x P W0 and r P p0, 1s

meaning that W0 has a reasonably smooth boundary.
We will take into consideration the following types of underlying point pro-

cesses for our random structures:

• Let Xn “ δX1 ` ¨ ¨ ¨ ` δXn , where X1, X2, . . . are i.i.d. random variables
uniformly distributed in W0,

• let µn “ δY1 ` ¨ ¨ ¨ ` δYn denote the binomial point process on Wn, where
Y1, . . . , Yn are i.i.d. random variables uniformly distributed in Wn,

• let ηn be a homogeneous Poisson process on Wn with intensity λ. By η we
denote the Poisson process with intensity λ on Rd .

The point process Xn corresponds to the first scenario of the increasing non-
random number of points in a fixed region while µn and ηn represent the second
scenario of the increasing observation window.

Definition 3.5 (Strongly stabilizing functional, radius of stabilization).
The functional H is strongly stabilizing if there exists a.s. finite random variable
S (a radius of stabilization of H) and ∆p8q such that with probability 1,

∆ppη X BSpoqq Y Aq “ ∆p8q, for all finite A Ă Rd
zBSpoq.
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Hence S is a radius of stabilization if the add-one cost is almost surely not
affected by inserting points into η outside the ball BSpoq. In other words, the
functional H is strongly stabilizing for the add-one cost method if and only if its
add-one cost stabilizes in the sense of Definition 3.1.

Definition 3.6 (Weakly stabilizing functional).
The functional H is weakly stabilizing on W if there is a random variable ∆p8q

such that
∆pη X Anq

a.s.
ÝÝÝÑ
nÑ8

∆p8q

as An Ñ Rd, An P W .

Roughly speaking, strong or weak stabilization says that the first order dif-
ference operator has a behaviour which is determined by local data.

Clearly, the strong stabilization implies weak stabilization on W . Neverthe-
less, there is no general result comparing the strong stabilization or the weak
stabilization with the point stabilization of Definition 3.1. For the Poisson input,
however, if ξ is exponentially stabilizing with a sufficiently high exponent, then
it is also weakly stabilizing for the add-one cost.

Definition 3.7 (Uniform bounded moments).
The functional H satisfies the uniform bounded moments condition on W if

sup
WPW:oPW

sup
mPrλ|W |d{2,3λ|W |d{2s

tE r∆pUm,W q
4
su ă 8,

where Um,W denotes the point process consisting of m independent uniform vari-
ables in W .

Definition 3.8 (Poisson bounded moments).
The functional H satisfies the Poisson bounded moments condition on W if

sup
WPW:oPW

tE r∆pη X W q
4
su ă 8.

The Poisson bounded moments condition is weaker than the uniform bounded
moments condition.

Definition 3.9 (Polynomially bounded functional).
The functional H is polynomially bounded if there exists a constant β2 such that
for all finite sets x Ă Rd, we have

|Hpxq| ď β2pdiampxq ` #pxqq
β2 ,

where diampxq is the diameter of x and #pxq stands for the cardinality of x.

The Poisson bounded moments condition is weaker than the uniform moments
condition in the sense of the following lemma.

Lemma 3.1 (Lemma 4.1 in Penrose and Yukich [2001]).
If H is polynomially bounded and satisfies the uniform bounded moments condi-
tion, then H satisfies the Poisson bounded moments condition.

82



Definition 3.10 (Homogeneous functional).
We say H is homogeneous of order γ if for all x P N and a P R,

Hpaxq “ aγHpxq.

General results
The two following results for Poisson and binomial point processes are shown in
Penrose and Yukich [2001] (cf. Theorem 2.1, Corollary 2.1 and Theorem 3.1).

Theorem 3.1 (CLT for functionals of a Poisson point process).
Suppose that H is weakly stabilizing on W and satisfies the Poisson bounded
moments condition on W. Then there exists σ2 ě 0 such that as n Ñ 8,

n´1Var pHpηnqq Ñ σ2

and
n´1{2

pHpηnq ´ EHpηnqq
D
ÝÑ Np0, σ2

q,

where by Npc, dq we denote a Gaussian random variable with mean value c and
variance d.

Theorem 3.2 (CLT for functionals of a binomial point process).
Suppose that H is strongly stabilizing, satisfies the uniform bounded moments
condition on W, and is polynomially bounded. Then there exist constants τ 2 ě 0
such that as n Ñ 8,

n´1Var pHpµnqq Ñ τ 2

and
n´1{2

pHpµnq ´ EHpµnqq
D
ÝÑ Np0, τ 2

q.

Also, given λ, σ2 from Theorem 3.1 and τ 2 are independent of the choice of
pWnqně1 and τ 2 ď σ2.

If, moreover, ∆p8q is non-degenerate, then τ 2 ą 0, and hence also σ2 ą 0.

Theorem 3.3 (CLT for functionals of increasing sample size in a fixed
region).
Suppose H is strongly stabilizing, satisfies uniform bounded moments condition
on W0, is polynomially bounded and homogeneous of order γ. Then with τ 2 from
Theorem 3.2 corresponding to λ “ 1, as n Ñ 8,

n2γ{d´1Var pHpXnqq Ñ τ 2

and
nγ{d´1{2

pHpXnq ´ EHpXnqq
D
ÝÑ Np0, τ 2

q.

The main ingredient in the proof of Theorem 3.1 is a representation of Hpηnq´

EHpηnq as a sum of suitable martingale differences and then application of the
central limit theorem for such object (Theorem 2.3 in McLeish [1974]). Then, by
de-Poissonizing (see Section 2.5 in Penrose [2003]) the limits of Theorem 3.1 and
using coupling of ηn and µn, one can prove Theorem 3.2.
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Remark. 1. Theorem 3.1 is valid also the under weaker condition of conver-
gence in probability in the definition of the weakly stabilizing functionals
(Definition 3.6).

2. Theorem 3.1 and 3.2 were generalized to the setting of marked point pro-
cesses in Penrose and Yukich [2002].

Example 3.1 (k-th nearest neighbour graph).
Fix k P N and let H be the total edge length of the undirected k-th nearest
neighbour graph.

Lemma 3.2.
The statistics H is polynomially bounded with Hpxq ď k diampxq#pxq for any
x P N and it is strongly stabilizing. If, moreover, W is regular, then H satisfies
the uniform bounded moments condition on W.

Theorem 3.4 (CLT and variance asymptotics for the k-th nearest neigh-
bour graph).
Fix k P N and assume that ηn is a unit intensity Poisson process on Wn. For
x P N, let Hpxq denote the total edge length of the undirected k-th nearest neigh-
bour graph on x. Provided W is regular, there exists σ2 ą 0 such that as n Ñ 8,

n´1Var pHpηnqq Ñ σ2

and
n´1{2

pHpηnq ´ EHpηnqq
D
ÝÑ Np0, σ2

q.

Additionally, there exists τ 2 P p0, σ2s such that as n Ñ 8,

n´1Var pHpµnqq Ñ τ 2

and
n´1{2

pHpµnq ´ EHpµnqq
D
ÝÑ Np0, τ 2

q.

Moreover, if W0 is regular, then with n Ñ 8,

n2{d´1Var pHpXnqq Ñ τ 2

and
n1{d´1{2

pHpXnq ´ EHpXnqq
D
ÝÑ Np0, τ 2

q.

We refer to Section 6 in Penrose and Yukich [2001] for more details and the
proofs of Lemma 3.2 and Theorem 3.4.

Other functionals of interest of the k-th nearest neighbour graph can be in-
vestigated based on Theorems 3.1, 3.2 and 3.3. Those include for instance the
number of components (i.e. subgraphs in which there is a path connecting each
two vertices and no connection to any other vertex from the rest of the graph)
with omitting the condition of the regularity of W and W0.
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3.2 Moment approach
Another way how to obtain Gaussian limits for functionals of Poisson and bino-
mial input in Rd is based on the cumulant method described in detail in Chap-
ter 4. This approach, which takes into account stabilization of scores, has the
particular benefit of describing the limiting variance. Moreover, it admits the
non-homogeneous inputs.

Assumptions
Let W be the set of all compact, convex sets in Rd with non-empty interior
together with Rd itself. For W P W and κ a probability density with support
on W , we denote by ηλκ the Poisson point process on W with intensity measure
λκ, λ ě 1, and µn the binomial point process on W with points distributed
according to κ.

Let ξpx,xq be a measurable real-valued function defined for all pairs px,xq,
where x is a finite point set in Rd and x P x and we assume it is translation-
invariant (so that ξpx ` y,x ` yq “ ξpx,xq for all finite x Ă Rd and y, x P Rd

where x ` y “ tx ` y, x P xu). The authors in Baryshnikov and Yukich [2005]
considered random measures of the form

H :“
ÿ

xPx
ξpx,xqδx.

Note that the definition of Hξ in (3.1) corresponds to

Hpxq “ HpRd
q.

For λ ą 0, we denote ξλpx,xq :“ ξpλ1{dx, λ1{dxq the rescaled version of ξ.
Similarly, let ξnpx,xq :“ ξpn´1{dx, n´1{dxq for n P N. We define the corresponding
rescaled measures by

Hλ :“
ÿ

xPηλκ

ξλpx, ηλκqδx, λ ě 1,

resp.
H1
n :“

ÿ

xPµn

ξnpx, µnqδx, n P N.

We show that Hλ, resp. H1
n converges weakly to a Gaussian field with a covariance

functional described in terms of the score function ξ and the choice of κ.
Recall that measures ρn converge to a Gaussian field as n Ñ 8 if their finite-

dimensional distributions converge to those of a Gaussian field. By the conver-
gence of finite-dimensional distributions we mean the convergence in distribution
of the integrals

ş

fdρn to the corresponding normal random variables for all con-
tinuous functions f .

For 0 ď a ă b ă 8 we define the set of test functions Fpa, bq, i.e. the set of
f : Rd Ñ R` with support in W and range in ra, bs Y t0u.

Definition 3.11 (Stabilizing scores, radius of stabilization).
The score ξ is said to be stabilizing if for all W P W , 0 ď a ă b ă 8, λ ą 0
and all x P λW :“ tλw,w P W u, there exists an almost surely finite random
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variable Rpxq :“ Rpx, λ, a, b,W q (a radius of stabilization for ξ at x) such that
for all f P Fpa, bq with suppf “ λW , and all finite x Ă λW zBRpxqpxq we have

ξpx, pηf X BRpxqpxqq Y xq “ ξpx, ηf X BRpxqpxqq

and, moreover, supxPRd PpRpx, λ, a, b,W q ą tq Ñ 0 as t Ñ 8.

Definition 3.12 (Exponentially stabilizing scores).
We say the score ξ is exponentially stabilizing if for all W P W and 0 ď a ă b ă 8

the tail probabilities rptq :“ rpt, a, b,Wq :“ supxPRd,λą0 PpRpx, λ, a, b,W q ě tq
decays exponentially in t.

We say ξ is polynomially stabilizing if for all a, b and W P W we have
ż 8

0
prptqq

1{2td´1dt ă 8.

Definition 3.13 (p-moment condition 1).
We say that a score ξ satisfies a moment condition 1 of order p ą 0 with respect
to κ if

sup
λą0,xPr0,λ1{dsdW,AĂRd finite

E r|ξλpx, ηλκ Y Aq|
p
s ă 8

and for all λ ą 0
sup

xPRd,AĂRd finite
E r|ξpx, ηλ Y Aq|

p
s ă 8.

General results
Theorem 3.5 (Theorem 2.1 in Baryshnikov and Yukich [2005]).
If ξ is polynomially stabilizing and satisfies the p-moment condition 1 for p “ 4
then

Var
ş

W
fdHλκ

λ
ÝÝÝÑ
λÑ8

ż

W

f 2
pxqV ξ

pκpxqqκpxqdx,

where

V ξ
ptq :“ E ξ2

po, ηtq (3.2)

`

ż

Rd

tpE ξpo, ηt Y tyuq ¨ ξpy, ηt Y touq ´ E ξpo, ηtqE ξpy, η1
tqqdy

and η1
t denotes an independent copy of ηt.

If, moreover, ξ is exponentially stabilizing and satisfies the moment condition
1 for all p ą 0, then λ´1{2pHλκ ´EHλκq converges as λ Ñ 8 to a Gaussian field
with covariance kernel

ş

W
f1pxqf2pxqV ξpκpxqqκpxqdx.

Theorem 3.5 can be reformulated for the binomial input under the assump-
tions of strong stability and uniform bounded moments condition similar to those
in Definitions 3.5 and 3.7. Recall that those conditions were defined for the func-
tional Hpxq “

ř

xPx ξpx,xq for the purposes of binomial input driven by the
uniform distribution. For the case of general density κ, we update the definition
saying that H satisfies uniformly bounded moments condition for κ if

sup
n

sup
xPn1{dA

sup
mPrn{2,3n{2s

E rpDxHpUm,nqq
4
s ă 8,
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where Um,n is a point process consisting of m i.i.d. random variables of the
form n1{dU on n1{dW , where U has density κ. Further, we say that H is strongly
stabilizing for κ if for all t ą 0 there exists an almost surely finite random variable
S and ∆ptq such that with probability 1,

∆ptq “ ∆ppηt X BSpoqq Y Aq, (3.3)

for all finite A Ă RdzBSpoq. Recall the notation of Definition 3.5.

Theorem 3.6 (Theorem 2.2 in Baryshnikov and Yukich [2005]).
Assume that ξ is polynomially stabilizing, satisfies the p-moment condition 1 for
p “ 4 and H is a strongly stabilizing functional satisfying the uniform bounded
moments condition for κ. Then for all continuous functions f with support on
W ,

Var
ş

W
fdH1

n

n
ÝÝÝÑ
nÑ8

ż

W

f 2
pxqV ξ

pκpxqqκpxqdx ´

ˆ
ż

W

fpxqE∆pκpxqqκpxqdx
̇2

.

If ξ is exponentially stabilizing, satisfies the p-moment condition 1 for all
p ą 0 and H is a strongly stabilizing functional for κ, then n´1{2pH1

n ´ EH1
nq

converges as n Ñ 8 to a Gaussian field with covariance kernel
ż

W

f1pxqf2pxqV ξ
pκpxqqκpxqdx

´

ż

W

f1pxq∆pκpxqqκpxqdx
ż

W

f2pxq∆pκpxqqκpxqdx.

Remark. 1. Theorems 3.5 and 3.6 can be further generalized for score func-
tions that are not translation-invariant (see Section 2.3.2 in Baryshnikov
and Yukich [2005]).

2. If the distribution of ∆pκpUqq, U being a random variable with density κ,
is non-degenerate, then the limiting Gaussian field is non-degenerate.

3. Theorems 3.5 and 3.6 generalize Theorems 3.1 and 3.2 by showing the con-
vergence of measures induced by not necessarily homogeneous point sets to
Gaussian random field and they identify the limiting variance.

4. The evaluation of the limiting variances can be rather difficult, but simplify
under the additional assumption of homogeneity (see Definition 3.10). If ξ
is homogeneous of order γ, then

V ξ
ptq “ V ξ

p1qt´2γ{d and ∆ptq “ ∆p1qt´γ{d.

Example 3.2 (k-nearest neighbour graph).
Let k be a fixed positive integer. For a point set X Ă Rd, we denote by NGpX q

the undirected k-nearest neighbour graph induced by X and by Epx,NGpX qq the
set of edges in NGpX q incident to x P X .

The application of the preceding results is demonstrated only on the binomial
input. Assume µn :“ tX1, . . . , Xnu is a binomial sample in Rd driven by density
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κ. We define a random measure

H1
ϕ,n :“

n
ÿ

i“1

ÿ

ePEpn1{dXi,NGpµnqq

ϕp|e|qδXi
,

where ϕ : R` Ñ R` is some weight function.

Theorem 3.7 (Theorem 3.1 in Baryshnikov and Yukich [2005]).
Suppose that ϕ has a polynomial growth, i.e. there exist C, a ă 8 such that
ϕpxq ď Cp1 ` xaq for all x P R`. Moreover, assume that κ is bounded away from
infinity and zero on its support suppκ “ W P W. Then

Var
ş

W
fdH 1

ϕ,n

n
ÝÝÝÑ
nÑ8

ż

W

f 2
pxqVϕpκpxqqκpxqdx ´

ˆ
ż

W

fpxq∆ϕpκpxqqκpxqdx
̇2

for all continuous functions f with support on W , where Vϕ and ∆ϕ are given by
(3.2) and (3.3) when ξpx,xq “

ř

ePEpx,NGpxqq
ϕp|e|q.

Moreover, as n Ñ 8, n´1{2pH1
ϕ,n ´EH1

ϕ,nq converges to a Gaussian field with
covariance kernel

ż

W

f1pxqf2pxqVϕpκpxqqκpxqdx

´

ż

W

f1pxq∆ϕpκpxqqκpxqdx
ż

W

f2pxq∆ϕpκpxqqκpxqdx

for any f1, f2 continuous with support on W .

Remark. If we set ϕpxq “ x{2 for x P R` then we obtain a central limit theorem
for the total edge length of the k-nearest neighbour graph. If ϕpxq is either 0 or 1
depending on whether x is less than some t ě 0 or not, then we obtain a central
limit theorem for the empirical distribution function of the rescaled lengths of
the edges.

3.3 Stabilization in the Malliavin–Stein bounds
Recently in Last et al. [2016], the Malliavin calculus combined with Stein’s
method of normal approximation (see Chapter 2 for the details) was proved to
yield rates of normal approximation for general Poisson functionals. Moreover,
the authors used their general results to deduce central limit theorems together
with rates of convergence in terms of Kolmogorov and Wasserstein distance for
Poisson functionals satisfying a type of stabilization.

Recall that the Malliavin–Stein rates of normal convergence are expressed
in terms of moments of the first- and second-order difference operators. Those
can be difficult to evaluate, yet if combined with the stabilization property, the
bounds remarkably simplify.

First, assume that pX,X q is a measurable space and ηλ is a Poisson point pro-
cess with intensity measure αλ “ λQ, where λ ě 1 and Q is a fixed finite measure
on X. Moreover, we let Fλ P L0

ηλ
be a Poisson functional with a representative fλ

(recall the notation at the beginning of Section 2.2).
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Theorem 3.8 (Theorem 6.1 in Last et al. [2016]).
Let F P domD (recall Definition 2.9) with VarF ą 0. Assume there are constants
c1, c2, p1, p2 ą 0 such that

E |DxF |
4`p1 ď c1, for Q-a.e. x P X, (3.4)

E |D2
x1,x2F |

4`p2 ď c2, for Q2-a.e. px1, x2q P X2 (3.5)

and denote c :“ maxt1, c1, c2u. Then

dW

ˆ

F ´ EF
?

VarF
,Z

̇

ď
5c

VarF

«

ż

X

ˆ
ż

X
PpD2

x1,x2F ‰ 0q
p2{p16`4p2qQpdx2q

̇2

Qpdx1q

ff1{2

`
c

pVarF q3{2

ż

X
PpDxF ‰ 0q

p1`p1q{p4`p1qQpdxq

and

dK

ˆ

F ´ EF
?

VarF
,Z

̇

ď c

$

&

%

5
VarF

«

ż

X

ˆ
ż

X
PpD2

x1,x2F ‰ 0q
p2{p16`4p2qQpdx2q

̇2

Qpdx1q

ff1{2

`
Γ1{2
F

VarF `
2ΓF

pVarF q3{2 `
Γ5{4
F ` 2Γ3{2

F

pVarF q2

`

?
6 `

?
3

VarF

„
ż

X
PpD2

x1,x2F ‰ 0q
p2{p8`2p2qQ2

pdpx1, x2qq

ȷ1{2
+

,

where
ΓF :“

ż

X
PpDxF ‰ 0q

p1{p8`2p1qQpdxq

and Z denotes the standard Gaussian random variable.

Proof. The proof of Theorem 3.8 consists of estimating the terms αF,1, . . . , αF,6
in Theorems 2.13 and 2.14. To ease the notation, we denote by vF : X Ñ r0, 1s

and wF : X2 Ñ r0, 1s the functions

vpxq :“ PpDxF ‰ 0q, wpx, yq :“ PpD2
x,yF ‰ 0q, x, y P X.

By Hölder’s inequality, (3.4) and (3.5), we have that

E pDxF q
4

ď rvpxqs
p1{p4`p1q

“

E |DxF |
4`p1

‰4{p4`p1q

ď c
4{p4`p1q

1 rvpxqs
p1{p4`p1q,

E |DxF |
3

ď c
3{p4`p1q

1 rvpxqs
p1`p1{p4`p1qq
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for Q-a.e. x P X and

E pD2
x1,x2q

4
ď rwpx1, x2qs

p2{p4`p2q
“

E |D2
x1,x2F |

4`p2
‰4{p4`p2q

ď c
4{p4`p2q

2 rwpx1, x2qs
p2{p4`p2q

for Q2-a.e. px1, x2q P X2. By inserting the latter estimates in αF,1, . . . , αF,6 and
further application of Hölder’s inequality, we obtain that

αF,1 ď
4c1{p4`p1q

1 c
1{p4`p2q

2
VarF

„
ż

X3
pwpx1, x3qwpx2, x3qq

p2{p16`4p2q Q3
pdpx1, x2, x3qq

ȷ1{2

,

αF,2 ď
c

2{p4`p2q

2
VarF

„
ż

X3
pwpx1, x3qwpx2, x3qq

p2{p8`2p2q Qpdpx1, x2, x3qq

ȷ1{2

,

αF,3 ď
c

3{p4`p1q

1
pVarF q3{2

ż

X
rvpxqs

p1`p1q{p4`p1qQpdxq,

αF,4 ď
c

3{p4`p1q

1
2pVarF q2

“

E pF ´ EF q
4‰1{4

ż

X
rvpxqs

p1{p8`2p1qQpdxq,

αF,5 ď
c

2{p4`p1q

1
VarF

„
ż

X
rvpxqs

p1{p4`p1qQpdxq

ȷ1{2

,

αF,6 ď

?
6c1{p4`p1q

1 c
1{p4`p2q

2
VarF

„
ż

X2
rwpx1, x2qs

p2{p8`2p2qQ2
pdpx1, x2qq

ȷ1{2

`

?
3c2{p4`p2q

2
VarF

„
ż

X2
rwpx1, x2qs

p2{p4`p2qQ2
pdpx1, x2qq

ȷ1{2

.

Let G P L2
η be such that EG “ 0,VarG “ 1 and G “ gpηq a.s. Then

EG4
“ VarG2

` pEG2
q

2
“ VarG2

` 1 ď

ż

X
E pDxG

2
q

2Qpdxq ` 1,

where we used the Poincaré inequality (see Corollary 2.1). Further,

DxG
2

“ g2
pη ` δxq ´ g2

pηq ` 2g2
pηq ´ 2g2

pηq ` 2gpηqgpη ` δxq ´ 2gpηqgpη ` δxq

“ pgpη ` δxq ´ gpηqq
2

´ 2g2
pηq ` 2gpηqgpη ` δxq

“ pDxGq
2

` 2GDxG

and

ppDxGq
2

` 2GDxGq
2

ď 2pDxGq
4

` 8G2
pDxGq

2

almost surely. Combined with the Cauchy–Schwarz inequality, we arrive at

EG4
ď 8

“

EG4‰1{2
ż

X

“

E pDxGq
4‰1{2 Qpdxq ` 2

ż

X
E pDxGq

4Qpdxq ` 1

ď max
"

16
“

EG4‰1{2
ż

X

“

E pDxGq
4‰1{2 Qpdxq, 4

ż

X
E pDxGq

4Qpdxq ` 2
*

.

Now, we substitute G “ pF ´ EF q4{pVarF q2 to see that

αF,4 ď
c

3{p4`p1q

1
pVarF q3{2 ΓF `

c
4{p4`p1q

1
pVarF q2 Γ5{4

F `
2c4{p4`p1q

1
pVarF q2 Γ3{2

F .
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Combining the estimates for αF,1 . . . , αF,6 concludes the proof.

Corollary 3.1 (Proposition 1.3 in Last et al. [2016]).
Let Ft P L2

ηt
and assume there exist finite constants p1, p2, c, v ą 0 such that

E |DxFt|
4`p1 ď c, for Q-a.e. x P X, t ě 1,

E |D2
x1,x2Ft|

4`p2 ď c, for Q2-a.e. px1, x2q P X2, t ě 1,
VarFt
t

ą v, t ě 1

and
m :“ sup

xPX,tě1

ż

X
PpD2

x,yFt ‰ 0q
p2{p16`4p2qαλpdyq ă 8. (3.6)

Then there exists a finite constant C depending uniquely on c, p1, p2, v,QpXq and
m such that

max
"

dW

ˆ

Ft ´ EFt
?

VarFt
, Z

̇

, dK

ˆ

Ft ´ EFt
?

VarFt
, Z

̇*

ď Ct´1{2.

Remark. If we relax the assumptions on the generality of X, so that X is a com-
pact subset of Rd and Q a restriction of the Lebesgue measure | ¨ |d on X, then
the assumption (3.6) in Corollary 3.1 can be replaced the following assumptions
concerning stabilization. The Poisson functionals Ft are strongly stabilizing (in
the sense of Definition 3.5) if for each x P X there exists an almost surely finite
random variable Rtpx, ηtq (radius of stabilization) such that

Dxftpηtq “ Dxftpηt X Bpx,Rtpx, ηtqqq, a.s.

Moreover, we assume that

sup
xPX,tě1

ż

X
tPpy P Bpx,Rtpx, ηtqq or Rtpx, ηt ` δyq ‰ Rtpx, ηtqq

αdy ă 8

for some suitable α.

Now, let pX,X q be a measurable space equipped with a σ-finite measure Q
and a semi-metric d : X ˆ X Ñ r0,8q. By BX

r pxq we denote the ball of radius
r ą 0 around x P X with respect to d. We assume that there are constants
γ, κ ą 0 such that

lim sup
ϵÑ0

QpBX
r`ϵpxqq ´ QpBX

r pxqq

ϵ
ď κγrγ´1. (3.7)

Apart from the Euclidean space Rd, the condition holds also for m-dimensional
Riemannian manifolds, where m ď d. More examples are listed in Lachièze-Rey
et al. [2019].

The approach of Last et al. [2016] was further revised in Lachièze-Rey et al.
[2019] and extended in some directions. The authors established presumably
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optimal rates of normal convergence with respect to the Kolmogorov distance for
functionals of marked Poisson and binomial point processes.

In order to deal with marked point processes, let us first rewrite Definition 3.1
and 3.2 in an appropriate way. Let pM,M,PMq be a probability space (the mark
space) and denote X̂ :“ XˆM. We consider score functions ξλ, ξn : X̂ˆNpX̂q Ñ R,
λ ě 1, n P N to be measurable functions defined on pairs ppx,mq,xq, where
x P NpX̂q and px,mq P x.

For λ ě 1, we consider ηλ to be a marked Poisson point process on X with
intensity measure λQ. Alternatively, if Q is a probability measure, we let µn to be
a marked binomial point process of n point distributed independently according
to Q. Then, we denote

Hλ :“
ÿ

xPηλ

ξλpx, ηλq, λ ě 1,

H 1
n :“

ÿ

xPµn

ξnpx, µnq, n P N.

Definition 3.14 (Stabilization scores of marked point processes).
A score function ξλ is stabilizing if there is a measurable map Rλ : X̂ˆNpX̂q Ñ R
(a radius of stabilization) such that for all x̂ :“ px,mxq P X̂, x̂ P NpX̂q and Â Ă X̂
with #pÂq ď 7 we have

ξλpx̂, x̂ Y Âq “ ξλpx̂, px̂ Y Âq X B̂px,Rλpx̂, x̂ Y tx̂uqqq,

where B̂py, rq :“ BX
r pyq ˆ M for y P X and r ą 0.

For a given point x P X we denote by Mx the corresponding random mark,
which is distributed according to PM and is independent of everything else. More-
over, for a finite set A Ă X, we denote by pA,MAq the set obtained by equipping
each point of A with a random mark distributed according to PM independently
of everything else.

Definition 3.15 (Exponentially stabilizing scores of marked Poisson and
binomial point processes).
We say that pξλqλě1 (resp. pξnqnPN) are exponentially stabilizing if there are radii
of stabilization pRλqλě1 (resp. pRnqnPN) and constants cstab, αstab P p0,8q such
that for x P X, r ě 0 and λ ě 1

PpRλppx,Mxq, ηλ Y tpx,Mxquq ě rq ď cstab exp
ˆ

´
1
cstab

pλ1{γrqαstab

̇

,

resp. for x P X, r ě 0 and n ě 9

PpRnppx,Mxq, µn´8 Y tpx,Mxquq ě rq ď cstab exp
ˆ

´
1
cstab

pn1{γrqαstab

̇

,

where γ is from (3.7).

Definition 3.16 (p4 ` pqth moment condition).
Given p P r0,8q, we say that pξλqλě1, resp. pξnqnPN satisfy p4 ` pqth moment
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condition if there is a constant Cp P p0,8q such that for all A Ă X with #pAq ď 7
we have

sup
λPr1,8q

sup
xPX

E |ξλppx,Mxq, ηλ Y tpx,Mxqu Y pA,MAqq|
4`p

ď Cp,

resp.

sup
nPN,ně9

sup
xPX

E |ξnppx,Mxq, µn´8 Y tpx,Mxqu Y pA,MAqq|
4`p

ď Cp.

Definition 3.17 (Exponentially fast decaying scores).
Let K Ă X be measurable. Denote by dpx,Kq :“ infyPK dpx, yq the distance
between a point x P X and the set K. We say that pξλqλě1, resp. pξnqnPN decay
exponentially fast with the distance to K if there are constants cK , αK P p0,8q

such that for all A Ă X with #pAq ď 7 we have for x P X and λ ě 1,

Ppξλppx,Mxq, ηλ Y tpx,Mxqu Y pA,MAqq ‰ 0q ď cK exp
`

´c´1
K pλ1{γdpx,Kqq

αK
˘

,

resp. for x P X and n ě 9,

Ppξnppx,Mxq, µn´8 Ytpx,MxquYpA,MAqq ‰ 0q ď cK exp
`

´c´1
K pn1{γdpx,Kqq

αK
˘

.

Remark. Definition 3.17 describes scores whose variances exhibit surface area
order scaling. When dealing with volume order scaling, one can put K “ X, cK “

1 and choose an arbitrary αK P p0,8q.

Theorem 3.9 (Theorem 2.1 in Lachièze-Rey et al. [2019]).
Denote α :“ mintαstab, αKu and

IK,t :“ t

ż

X
exp

ˆ

´
mintcstab, cKuppt1{γdpx,Kqqα

36 ¨ 4α`1

̇

Qpdxq, t P R. (3.8)

(a) Assume that the score functions pξλqλě1 are exponentially stabilizing, satisfy
the p4 ` pqth moment condition for some p P p0, 1s and decay exponentially
fast with distance to a measurable set K Ă X. Then there exists a constant
C P p0,8q only depending on the constants γ in (3.7), α, cstab, Cp and cK
from Definitions 3.15, 3.16 and 3.17 such that

dK

ˆ

Hλ ´ EHλ
?

VarHλ

̇

ď C

˜

a

IK,λ

VarHλ

`
IK,λ

pVarHλq3{2 `
I

5{4
K,λ ` I

3{2
K,λ

pVarHλq2

¸

, λ ě 1.

(b) Assume that the score functions pξnqnPN are exponentially stabilizing, satisfy
the p4 ` pqth moment condition for some p P p0, 1s and decay exponentially
fast with distance to a measurable set K Ă X. Then there exists a constant
C 1 P p0,8q only depending on the constants γ, α, cstab, cK and Cp such that

dK

˜

H 1
n ´ EH 1

n
a

VarH 1
n

¸

ď C 1

˜

a

IK,n

VarH 1
n

`
IK,n

pVarH 1
nq3{2 `

IK,n ` I
3{2
K,n

pVarH 1
nq2

¸

, n ě 9.

Theorem 3.9 is a consequence of the general result given by Theorem 3.8 and
results from Lachièze-Rey and Peccati [2017] giving Malliavin–Stein bounds for
functionals of the binomial point process.
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Remark. If K “ X in Theorem 3.9, then

IX,t “ t, t ě 1.

Corollary 3.2 (Corollary 2.2 in Lachièze-Rey et al. [2019]).

(a) Let the conditions of Theorem 3.9 (a) hold and assume that there is a constant
C P p0,8q such that supλě1 IK,λ{VarHλ ď C. Then there is a constant
C̃ P p0,8q only depending on C and the constants γ, cstab, αstab, Cp, cK and
αK such that

dK

ˆ

Hλ ´ EHλ
?

VarHλ

, Z

̇

ď
C̃

?
VarHλ

, λ ě 1.

(b) Let the conditions of Theorem 3.9 (b) hold and assume that there is a constant
C 1 P p0,8q such that supnPN IK,n{VarH 1

n ď C 1. Then there is a constant
C̃

1
P p0,8q only depending on C 1 and the constants γ, cstab, αstab, Cp, cK and

αK such that

dK

˜

H 1
n ´ EH 1

n
a

VarH 1
n

, Z

¸

ď
C̃

1

a

VarH 1
n

, n P N.

Remark. Let Y1, . . . , Yn be i.i.d. random variables such that E |Y1|3 ă 8. We
have for Sn “

řn
i“1 Yi the Berry–Esseen theorem saying that

dK

ˆ

Sn ´ ESn
?

VarSn
, Z

̇

ď
CE |Y1 ´ EY1|3

VarY1

1
?

VarSn
, n P N,

for some C P p0,8q. By considering special choices of Y1, . . . , Yn, it can be shown
that the rate 1{

?
VarSn is optimal. One can deduce that the rates 1{

?
VarHλ,

resp. 1{
a

VarH 1
n occurring in Corollary 3.2 are as well presumably optimal.

Another simplification of Theorem 3.9 is applicable if we take X Ă Rd yielding
rates of convergence for functionals with variances being proportional to λ or n,
resp. Given an unbounded set I Ă p0,8q, we say paiqiPI is proportional to pbiqiPI
if ai “ Opbiq and vice versa.

Theorem 3.10 (Theorem 2.3 in Lachièze-Rey et al. [2019]).
Let X Ă Rd be full-dimensional, let Q have a bounded density with respect to the
Lebesgue measure and suppose the conditions of Theorem 3.9 hold with γ “ d.
Moreover, let K be a full-dimensional subset of X, whose boundary BK satisfies

lim sup
rÑ0

|Kr|d

2r ă 8,

where Kr :“ ty P Rd : dpy, BKq ď ru denotes the r-parallel set of K. If VarHλ

is proportional to λ, resp. VarH 1
n is proportional to n, then there is a constant

c P p0,8q such that for λ ě 1, resp. n ě 9,

dK

ˆ

Hλ ´ EHλ
?

VarHλ

, Z

̇

ď
c

?
λ
, resp. dK

˜

H 1
n ´ EH 1

n
a

VarH 1
n

, Z

¸

ď
c

?
n
.
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Remark. The rates of convergence for Poisson input in Theorem 3.10 improve
upon the rates given by results in Barbour and Xia [2006] and Penrose and Yukich
[2005], which contain extra logarithmic factors.

Example 3.3 (k-th nearest neighbour graph).
We let ηλ be a homogeneous Poisson point process of intensity λ in a compact
convex observation window W Ă Rd with interior points. For a fixed k P N, we
consider the following functional of ηλ

Hα
λ “

1
2

ÿ

px,yqPη2
λ,‰

1tx is a k-nearest neighbour of y of vice versau}x ´ y}
α.

By taking α “ 0, we obtain the number of edges, while for α “ 1, the total
edge length. The first central limit theorem including rates of convergence for
the k-th nearest neighbour graph was shown in Avram and Bertsimas [1993] with
order plog λq1`3{4λ´1{4. Later, it was improved in Penrose and Yukich [2005] with
rate plog λq3dλ´1{2. Finally, the logarithmic factor was removed in Last et al.
[2016].

Theorem 3.11 (Theorem 7.1 in Last et al. [2016]).
There is a constant Cα only depending on k,W and α such that

dK

˜

Hα
λ ´ EHα

λ
a

VarHα
λ

¸

ď Cαλ
´1{2, λ ě 1.

See Section 5.1 in Lachièze-Rey et al. [2019] for further generalizations of this
result concerning the underlying space and the binomial input.

Conclusion
The asymptotic analysis based on the add-one cost method and the moment
approach yield variance asymptotic, which is not addressed in the method based
on Malliavin–Stein bounds. The latter method on the other hand, yields error
bound providing useful information about the rate of convergence and without
requiring higher-order moment calculations.

The advantage of the add-one cost method over the moment approach and
the method based on the Malliavin–Stein bounds is that the add-one cost method
does not require bounds on the tail of the radius of stabilization (i.e., on the
range of the local effect of an inserted point). It requires only that this radius
be almost surely finite. Therefore, it can be applicable to some examples such as
those concerned with the minimal spanning tree. On the other hand, only the
homogeneous point process input on the Euclidean space is considered.

3.4 Stabilization of weighted Poisson–Voronoi
tessellations

A lot of attention was given to the stabilization of the random tessellations in the
literature since they play an important role in computational geometry. Many
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algorithms for solving some geometric problems are based on them. For example,
the Delaunay triangulation is important in finding the minimum spanning tree
because it is a subgraph of the Delaunay triangulation. The property of being de-
fined locally in the setting of Poisson–Voronoi tessellation and the corresponding
Delaunay triangulation is well known since Avram and Bertsimas [1993], where
the authors used dependency graphs technique. We shall be interested in de-
veloping the limit theory for unbiased and consistent estimators of statistics of
a typical cell in a generalized weighted Voronoi tessellation using the stabilization
method.

The estimators are constructed by observing the tessellation within a bounded
window. Unbiased estimators are constructed by considering only those cells
which lie within the bounded window. This technique, known as minus-sampling,
has a long history going back to Miles [1974] as well as Horvitz and Thompson;
see Baddeley [1999] for details.

The authors in Flimmel et al. [2020] used stabilization methods described in
the previous sections to develop expectation and variance asymptotics, as well as
central limit theorems, for unbiased and asymptotically consistent estimators of
geometric statistics of a typical cell. Under mild conditions on the weights of the
cells, they established variance asymptotics, weak consistency and the asymptotic
normality of the estimators as the observation window tends to the whole space.
The rest of this section consists of the results stated in the paper.

Assumptions
Let µm be a unit intensity stationary point process in Rd where each point of
the process carry an independent mark in M :“ r0, as for some fixed constant
a ă 8. Let BpMq be the Borel σ-field on M and let QM be the mark distribution
(recall the definitions of Section 1.3). The elements of Rd ˆM will be denoted by
x̂ :“ px,mxq.

For a weight function ρ : Rd ˆ pRd ˆ Mq Ñ R we consider the notion of the
typical cell of the weighted Voronoi tessellation defined by the weight ρ (see Ex-
ample 1.22). By the typical cell Kρ

o :“ Kρ
opµmq we understand the cell generated

by the typical point of µm. This can be formally introduced by considering the
Palm probability P0 (recall Definition 1.14) which corresponds to P conditional
on the event that µm has a point at the origin. Let Qρ denote the distribution of
the typical cell. The expectation with respect to P0 is denoted by E0.

Remark. In the case of Laguerre or Johnson–Mehl tessellations the typical cell
Kρ

o could satisfy Kρ
o “ H. This is different from the definition of the typical

cell described in e.g. Section 10.4 in Schneider and Weil [2008], where the typ-
ical cell is meant to be the typical non-empty cell. For a Voronoi tessellation
both approaches coincide. For weighted Voronoi tessellations in general, Kρ

o is
distributed as a mixture of the typical non-empty cell and the empty cell with
mixture weights 1´pH and pH, where pH is the probability that the cell generated
by the typical point is empty.

Notation. Denote by Fd the space of all closed subsets of Rd equipped with
the Borel σ-field BpFdq generated by the open sets from the Fell topology, see
Definition 2.1.1 in Schneider and Weil [2008].
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Moreover, let Px̂, respectively Px̂,ŷ, denote the Palm probability measures
conditioned on P having an additional marked point x̂, respectively, two addi-
tional marked points x̂ and ŷ. In particular, P0p¨q “

ş

M Ppo,mqp¨qQMpdmq. By Ex̂,
respectively Ex̂,ŷ, we denote expectation with respect to Px̂, respectively, Px̂,ŷ.

Now, we introduce for z P Rd and x̂ P µm, the shifted cell

Cρ
z px̂, µmq :“ Cρ

px̂, µmq ` pz ´ xq.

Specially, Cρpx̂, µmq “ x`Cρ
opx̂, µmq. Note that Kρ

o “ Cρ
oppo,Moq, µmq P0-almost

surely, where Mo is the typical mark distributed according to QM.
Let h : pFd,BpFdqq Ñ pR,BpRqq describe a geometric characteristic of ele-

ments of Fd (e.g. diameter, volume) such that hpHq “ 0 and it is invariant with
respect to shifts, specially for all x P Rd and mx P M

hpCρ
ppx,mxq, µmqq “ hpx ` Cρ

oppx,mxq, µmqq “ hpCρ
oppx,mxq, µmqq.

We have two goals:

(i) use minus-sampling to construct unbiased estimators of

E0hpKρ
oq “

ż

hpKqQρ
pdKq

(ii) establish variance asymptotics and asymptotic normality of such estimators.
As a by-product, we also establish the limit theory for geometric statistics
of Laguerre and Johnson–Mehl tessellations, adding to the results of Pen-
rose [2007b] and Penrose and Yukich [2001] which are confined to Voronoi
tessellations.

Put Wλ :“ r´λ1{d

2 , λ
1{d

2 sd and Ŵ λ :“ WλˆM, λ ą 0. Given h and a tessellation
defined by the weight ρ, we define for all λ ą 0

Hρ
λpµm X Ŵ λq :“

ÿ

x̂PµmXŴλ

hpCρpx̂, µmqq

|Wλ a Cρpx̂, µmq|d
1tCρ

px̂, µmq Ă Wλu.

Here, for sets A and B, AaB :“ tx P Rd : B`x Ă Au denotes the erosion of A by
B. The statistic Hρ

λpµm X Ŵ λq disregards cells contained in the window Wλ that
are generated by the points outside Wλ. Such cells do not exist in the Voronoi
case but they could appear for weighted cells. Therefore, we also consider

Hρ
λpµmq :“

ÿ

x̂Pµm

hpCρpx̂, µmqq

|Wλ a Cρpx̂, µmq|d
1tCρ

px̂, µmq Ă Wλu.

Unfortunately, controlling the moments of Hρ
λpµm X Ŵ λq is problematic since

|Wλ a Cρpx̂, µmq|d may become arbitrarily small. It will therefore be convenient
to consider versions of Hρ

λpµm X Ŵ λq and Hρ
λpµmq given by

Ĥρ
λpµm X Ŵ λq

:“
ÿ

x̂PµmXŴλ

hpCρpx̂, µmqq 1tCρpx̂, µmq Ă Wλu

|Wλ a Cρpx̂, µmq|d
1
"

|Wλ a Cρ
px̂, µmq|d ě

λ

2

*
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and

Ĥρ
λpµmq

:“
ÿ

x̂Pµm

hpCρpx̂, µmqq 1tCρpx̂, µmq Ă Wλu

|Wλ a Cρpx̂, µmq|d
1
"

|Wλ a Cρ
px̂, µmq|d ě

λ

2

*

.

Note that Hρ
λpPX Ŵ λq, Ĥ

ρ

λpPq and Ĥρ

λpPX Ŵ λq are not unbiased. Under the
assumptions of Theorem 3.12, one instead has

EHρ
λpµm X Ŵ λq “ E0

ˆ

hpKρ
oq

|Wλ X pWλ a Kρ
oq|d

|Wλ a Kρ
o|d

̇

,

E Ĥ
ρ

λpµm X Ŵ λq “ E0
ˆ

hpKρ
oq

|Wλ X pWλ a Kρ
oq|d

|Wλ a Kρ
o|d

1t|Wλ a Kρ
o|d ě

λ

2 u

̇

,

and
E Ĥ

ρ

λpµmq “ E0
ˆ

hpKρ
oq1t|Wλ a Kρ

o|d ě
λ

2 u

̇

.

The general form of the bias is given by Theorem 2.1 of Baddeley [1999].
We need some additional terminology. For every weight ρ and geometric

statistic h we define the score ξρ : Rd̂ ˆ N Ñ R by

ξρpx̂,Aq :“ hpCρ
px̂,Aqq1tCρ

px̂,Aq is boundedu, x̂ P Rd̂, A P N. (3.9)

We use this representation to explicitly link our statistics with the stabilizing
statistics in the literature Baryshnikov and Yukich [2005], Błaszczyszyn et al.
[2019], Lachièze-Rey et al. [2019], Penrose [2007b,a], Penrose and Yukich [2001,
2003]. Translation invariance for h implies

ξρpx̂,Aq “ ξρppx,mxq,Aq “ ξρppo,mxq,A ´ xq,

for every x̂ P Rd̂, x̂ :“ px,mxq and A P N, where A ´ x :“ tpa ´ x,maq :
pa,maq P Au. If Cρpx̂, µmq is empty we have ξρpx̂, µmq “ hpHq “ 0. Write
Cρpx̂, µmq :“ Cρpx̂, µm Y tx̂uq for x̂ R µm and so ξρpx̂, µmq :“ ξρpx̂, µm Y tx̂uq for
x̂ R µm.

Definition 3.18 (p-moment condition 2).
The score ξρ is said to satisfy a p-moment condition 2, p P r1,8q, if

sup
x̂,ŷPRd̂

Ex̂,ŷ|ξρpx̂, µmq|
p

ă 8. (3.10)

In contrast to Definitions 3.13 and 3.16, here we assume the addition of just
two marked points into the process µm.

Definition 3.19 (Diameters with exponentially decaying tails).
We say that the cells of the tessellation defined by ρ and generated by µm have
diameters with exponentially decaying tails if there is a constant cdiam P p0,8q

such that for all x̂ :“ px,mxq P µm there exists an almost surely finite random
variable Dx̂ such that Cρpx̂, µmq Ă BDx̂

pxq and

Px̂pDx̂ ě tq ď cdiam exp
ˆ

´
1

cdiam
td
̇

, t ě 0. (3.11)
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Next, we make use of the concept of (exponentially) stabilizing scores of
marked point processes introduced in Section 3.3 (see Definitions 3.14 and 3.15).
Translated to our situation, we say that ξρ is stabilizing with respect to µm if
for all x̂ :“ px,mxq P µm there exists an almost surely finite random variable
Rx̂ :“ Rx̂pµmq (radius of stabilization), such that

ξρpx̂, pµm Y Aq X B̂Rx̂
pxqq “ ξρpx̂, µm Y Aq (3.12)

for all A with #pAq ď 7. We say that ξρ is exponentially stabilizing with respect
to µm if there are constants cstab, α P p0,8q such that

Px̂pRx̂ ě tq ď cstab exp
ˆ

´
1
cstab

tα
̇

, t ě 0.

In other words, ξρ is stabilizing with respect to µm if there is Rx̂ such that the
cell Cρpx̂, µmq is not affected by changes in point configurations outside B̂Rx̂

pxq.

Main results
Our first main result has a proof which is short and illustrative. The result holds if
Wλ is replaced by any observation window. It is a special case of a more general
result given by Theorem 2.1 in Baddeley [1999] and formulated for stationary
germ-grain models and general sampling rules.

Theorem 3.12 (Theorem 2.1 in Flimmel et al. [2020]).
Let µm be a stationary marked point process with unit intensity and mark dis-
tribution QM. Let h : Fd Ñ R be translation-invariant as above. Then for all
λ ą 0, the statistic Hρ

λpµmq is an unbiased estimator of E0hpKρ
oq.

Proof of Theorem 3.12. We have

EHρ
λpµmq “ E

ÿ

x̂Pµm

hpCρpx̂, µmqq

|Wλ a Cρpx̂, µmq|d
1tCρ

px̂, µmq Ă Wλu

“ E
ÿ

x̂Pµm

hpCρ
opx̂, µmqq

|Wλ a Cρ
opx̂, µmq|d

1tx ` Cρ
opx̂, µmq Ă Wλu

“

ż

Rd

E0
ˆ

hpKρ
oq

|Wλ a Kρ
o|d

1tx ` Kρ
o Ă Wλu

̇

dx

“ E0
ż

Rd

ˆ

hpKρ
oq

|Wλ a Kρ
o|d

1tx P Wλ a Kρ
ou

̇

dx

“ E0hpKρ
oq,

where the second equality uses the translation invariance of h and translation
invariance of erosions, the third uses the refined Campbell theorem for stationary
marked point processes (a version of Theorem 1.8 for marked point processes, see
e.g. Theorem 3.5.3 in Schneider and Weil [2008]), while the fourth uses Fubini’s
theorem. Hence, we have shown the unbiasedness of Hρ

λpµmq.

By ηs, s P p0,8q, we denote a homogeneous marked Poisson point process
with values in Rd ˆ M and such that the unmarked process on Rd has intensity
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s. We write η for η1. Our next results establish the limit theory for the above
estimators.

Theorem 3.13 (Theorem 2.2 in Flimmel et al. [2020]).
Let Mo be a random mark distributed according to QM.

(i) If ξρ satisfies the p-moment condition 2 (3.10) for some p P p1,8q and if the
cell Cρppo,Moq, ηq has a diameter with an exponentially decaying tail, then
Hρ
λpηXŴ λq, Ĥ

ρ

λpηq and Ĥρ

λpηXŴ λq are asymptotically unbiased estimators
of E0hpKρ

opηqq.

(ii) Under the conditions of piq and assuming that ξρ stabilizes with respect to η
as at (3.12), the statistics Hρ

λpηq, Hρ
λpηX Ŵ λq, Ĥ

ρ

λpηq and Ĥρ

λpηX Ŵ λq are
consistent estimators of E0hpKρ

opηqq.

Given the score ξρ at (3.9), put

σ2
pξρq :“ E pξρpoM , ηqq

2 (3.13)

`

ż

Rd

rE ξρpoM , η Y txMuqξρpxM , η Y toMuq ´ E ξρpoM , ηqE ξρpxM , ηqs dx,

where oM :“ po,Moq, xM :“ px,Mxq, and Mo and Mx are independent random
marks distributed according to QM. Note that E0hpKρ

opηqq “ EhpCρpoM , ηqq “

E ξρpoM , ηq by the Slivnyak–Mecke theorem (Theorem 1.9). Here we use that,
given the Poisson process η, the Palm distribution corresponds to the usual dis-
tribution with a point inserted at the origin.

Theorem 3.14 (Theorem 2.3 in Flimmel et al. [2020]).
Let h be translation-invariant and assume that ξρ is exponentially stabilizing with
respect to η.

(i) If ξρ satisfies the p-moment condition 2 (3.10) for some p P p2,8q, then

lim
λÑ8

λVar Ĥρ

λpη X Ŵ λq “ lim
λÑ8

λVar Ĥρ

λpηq “ σ2
pξρq P r0,8q. (3.14)

(ii) If σ2pξρq P p0,8q and if the p-moment condition 2 (3.10) holds for some
p P p4,8q, then

?
λ
´

Hρ
λpη X Ŵ λq ´ EHρ

λpη X Ŵ λq

¯

D
ÝÑ
λÑ8

Np0, σ2
pξρqq

and ?
λ
`

Hρ
λpηq ´ E0hpKρ

opηqq
˘ D

ÝÑ
λÑ8

Np0, σ2
pξρqq,

where Np0, σ2pξρqq denotes a mean zero Gaussian random variable with vari-
ance σ2pξρq.

Remarks. (i) The assumption σ2pξρq P p0,8q is often satisfied by scores of inter-
est, as seen in the upcoming applications. According to Theorem 2.1 in Penrose
and Yukich [2001], where it has been shown that whenever we have

ř

x̂PηXŴλ
pξρpx̂, ηq ´ E ξρpx̂, ηqq

b

Var
ř

x̂PηXŴλ
ξρpx̂, ηq

D
ÝÑ Np0, σ2

pξρqq,
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then necessarily σ2pξρq P p0,8q provided (a) there is a random variable S ă 8

and a random variable ∆ρp8q such that for all finite A Ă B̂Spoqc we have

∆ρ
p8q “

ÿ

x̂PpηXB̂SpoqqYAYtoM u

ξρpx̂, pη X B̂Spoqq Y A Y toMuq

´
ÿ

x̂PpηXB̂SpoqqYA

ξρpx̂, pη X B̂Spoqq Y Aq,

and (b) ∆ρp8q is non-degenerate, that is to say it is not almost surely constant.
We will use this fact in showing positivity of σ2pξρq in the applications which
follow.
(ii) Theorems 3.13 and 3.14 hold for translation-invariant statistics h of Poisson–
Voronoi cells regardless of the mark distribution because ξρ1 stabilizes exponen-
tially fast and diameters of Voronoi cells have exponentially decaying tails as
shown in Penrose [2007a], Penrose and Yukich [2001]. In Proposition 3.1 we es-
tablish that the cells of the Laguerre and the Johnson–Mehl tessellations also
have diameters with exponentially decaying tails and that ξρi , i “ 2, 3 are expo-
nentially stabilizing with respect to η.

Applications. We provide some applications of our main results. Our first result
gives the limit theory for an unbiased estimator of the distribution function of
the volume of a typical cell in a weighted Poisson–Voronoi tessellation.

Theorem 3.15 (Theorem 2.4 in Flimmel et al. [2020]).
(i) For all i “ 1, 2, 3 and t P p0,8q the statistic

ÿ

x̂Pη

1t|Cρipx̂, ηq|d ď tu

|Wλ a Cρipx̂, ηq|d
1tCρipx̂, ηq Ă Wλu

is an unbiased estimator of P0p|Kρi
o pηq|d ď tq.

(ii) For all i “ 1, 2, 3 and t P p0,8q we have that

?
λ

˜

ÿ

x̂Pη

1t|Cρipx̂, ηq|d ď tu

|Wλ a Cρipx̂, ηq|d
1tCρipx̂, ηq Ă Wλu ´ P0

p|Kρi
o pηq|d ď tq

¸

(3.15)

tends to Np0, σ2pφρiqq in distribution as λ Ñ 8, where

φρipx̂, ηq :“ 1t|Cρipx̂, ηq|d ď tu

and where σ2pφρiq P p0,8q is given by (3.13).

Our next result gives the limit theory for an unbiased estimator of the pd ´

1q-dimensional Hausdorff measure Hd´1 of the boundary of a typical cell in
a weighted Poisson–Voronoi tessellation.

Theorem 3.16 (Theorem 2.5 in Flimmel et al. [2020]).
(i) For all i “ 1, 2, 3 we have that

ÿ

x̂Pη

Hd´1pBCρipx̂, ηqq

|Wλ a Cρipx̂, ηq|d
1tCρipx̂, ηq Ă Wλu
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is an unbiased estimator of E0Hd´1pBKρi
o pηqq.

(ii) For all i “ 1, 2, 3 we have that

?
λ

˜

ÿ

x̂Pη

Hd´1pBCρipx̂, ηqq

|Wλ a Cρipx̂, ηq|d
1tCρipx̂, ηq Ă Wλu ´ E0Hd´1

pBKρi
o pηqq

¸

tends to Np0, σ2pξρiqq in distribution as λ Ñ 8, where

ξρipx̂, ηq :“ Hd´1
pBCρipx̂, ηqq1tCρipx̂, ηq is boundedu

and where σ2pξρiq P p0,8q is given by (3.13).

There are naturally other applications of the general theorems. By choosing
h appropriately, one could for example use the general results to deduce the limit
theory for an unbiased estimator of the distribution function of either the surface
area, inradius, or circumradius of a typical cell in a weighted Poisson–Voronoi
tessellation.

Stabilization of statistics of weighted Poisson–Voronoi tes-
sellations
We establish that

(i) the cells in the Voronoi, Laguerre and Johnson–Mehl tessellations gener-
ated by Poisson input have diameters with exponentially decaying tails (see
Definition 3.19) and

(ii) the scores ξρi , i “ 1, 2, 3, as defined at (3.9) are exponentially stabilizing (see
Definition 3.15). These two conditions arise in the statements of Theorems
3.13 and 3.14.

Conditions (i) and (ii) have already been established in the case of the Poisson–
Voronoi tessellation (ρ1) in Penrose [2007a] and Penrose and Yukich [2001]. The
Voronoi cell is a special example of both the Laguerre and the Johnson–Mehl
cell when putting M “ t0u (or any constant). Thus it will be enough to show
that these two conditions hold for the Laguerre (ρ2) and the Johnson–Mehl (ρ3)
tessellations.

By definition we have

Cρ
px̂, µmq “

č

ẑPµmztx̂u

Hρ
ẑpx̂q,

where Hρ
ẑpx̂q :“ ty P Rd : ρpy, x̂q ď ρpy, ẑqu. Note that Hρ

¨ p¨q is a closed half-
space in the context of the Voronoi and Laguerre tessellations, whereas it has
a hyperbolic boundary for the Johnson–Mehl tessellation. Tessellations generated
by µm are stationary and are examples of stationary particle processes (see Section
1.4).

Proposition 3.1 (Proposition 3.1 in Flimmel et al. [2020]).
The cells of the tessellation defined by ρi, i “ 1, 2, 3, and generated by Poisson
input η have diameters with exponentially decaying tails as at (3.11).
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Proof. We need to prove (3.11) for all x̂ P η. Without loss of generality, we may
assume that x̂ is the origin ô :“ po,moq and we denote D :“ Dô.

Let Kj, j “ 1, . . . , J , be a collection of convex cones in Rd with YJ
j“1Kj “ Rd

and xx, yy ě 3}x}}y}{4 for any x and y from the same cone Kj. Each cone has an
apex at the origin o. Denote K̂j :“ KjˆM. We take pxj,mjq P ηXK̂jXB̂2µpoqc so
that xj is closer to o than any other point from ηX K̂j X B̂2µpoqc. This condition
means that the balls Bmopoq and Bmj

pxjq do not overlap. Then

Cρipô, ηq Ă

J
č

j“1
Hρi

pxj ,mjq
pôq, i “ 1, 2, 3.

Thus, it is sufficient to find D such that for all i “ 1, 2, 3 and j “ 1, . . . , J we
have Hρi

pxj ,mjq
pôq X Kj Ă BDpoq, to obtain that Cρipô, ηq Ă BDpoq. Consider

y P Hρi

pxj ,mjq
pôq X Kj. Then ρipy, ôq ď ρipy, pxj,mjqq and xy, xjy ě 3}xj}}y}{4.

For the Laguerre cell (i.e. the case i “ 2), the first condition necessarily means
that }y}2 ´ m2

o ď }y ´ xj}
2 ´ m2

j “ }y}2 ` }xj}
2 ´ 2xy, xjy ´ m2

j . Thus,

2xy, xjy ď }xj}
2

` m2
o ´ m2

j ď }xj}
2

` µ2
ă

3
2}xj}

2

and so }y} ă }xj}. For the Johnson–Mehl cell (i “ 3) we have

}y ´ xj} ě }y} ´ mo ` mj ě }y} ´ µ,

which for }y} ą µ gives

2xy, xjy ď 2µ}y} ´ µ2
` }xj}

2.

Hence, using the assumptions xxj, yy ě 3}xj}}y}{4 and }xj} ą 2µ,

}y} ď
2p}xj}

2 ´ µ2q

3}xj} ´ 4µ ă
2}xj}

2

}xj}
“ 2}xj}.

Consequently, for either the Laguerre or Johnson–Mehl cells, we can take

D “ 2 max
j“1,...,J

}xj}. (3.16)

Then, for t P p4µ,8q we have

Pô
pD ě tq ď

J
ÿ

j“1
Pp2}xj} ě tq “

J
ÿ

j“1
Ppη X pB̂t{2poqzB̂2µpoqq X K̂j “ Hq

“

J
ÿ

j“1
expp´|pBt{2poqzB2µpoqq X Kj|dq ď cdiam exp

ˆ

´
1

cdiam
td
̇

for some cdiam :“ cdiampd, µq P p0,8q depending on d and µ. This shows Propo-
sition 3.1 for i “ 2, 3 and hence for i “ 1 as well.
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Proposition 3.2 (Proposition 3.2 in Flimmel et al. [2020]).
For all i “ 1, 2, 3 the score ξρi defined at (3.9) is exponentially stabilizing with
respect to η.

Proof. We will prove (3.12) when x̂ is the origin and we denote R :“ Rô. For sim-
plicity of exposition, we prove (3.12) when A is the empty set, as the arguments
do not change otherwise. In other words if A is not empty, then the resulting
radius of stabilization will not be larger, as seen by the following arguments. By
(3.9), it is enough to show that there is an almost surely finite random variable
R such that

Cρipô, η X B̂Rpoqq “ Cρipô, pη X B̂Rpoqq Y tpz,mzquq,

almost surely whenever }z} P pR,8q. To see this we put R :“ 2D ` µ, where D
is at (3.16). Given ẑ :“ pz,mzq, with }z} P pR,8q, we assert that

BDpoq Ă Hρi
ẑ pôq.

To prove this, we take any point y P BDpoq and show that
ρipy, ôq ď ρipy, ẑq, i “ 1, 2, 3. (3.17)

Note that y P BDpoq implies }y´z} P pD`µ,8q. The proof of (3.17) is shown for
the Laguerre and Johnson–Mehl cases individually. First, assume that Cρ2pô, ηq

is the cell in the Laguerre tessellation. Then
ρ2py, ôq “ }y}

2
´m2

o ď D2
ă pD`µq

2
´µ2

ă }y´z}
2
´µ2

ď }y´z}
2
´m2

z “ ρ2py, ẑq,

showing that y P Hρ2
ẑ pôq. For the Johnson–Mehl case,

ρ3py, ôq “ }y} ´mo ď D “ pD ` µq ´ µ ă }y ´ z} ´ µ ď }y ´ z} ´mz “ ρ3py, ẑq,

thus again y P Hρ3
ẑ pôq, which shows our assertion.

The radius D at (3.16) has a tail decaying exponentially fast, showing that
R also has the same property. Consequently, for all i “ 1, 2, 3, the score ξρi is
exponentially stabilizing with respect to η.

Remark. (i) The assertion Cρipô, µmq Ă BDpoq holds for a larger class of
marked point processes. We only need that the unmarked point process
has at least one point in each cone Kj X B2µpoqc, j “ 1, . . . , J , with Palm
probability P0 equal to 1. Consequently, scores ξρi , i “ 1, 2, 3, are stabilizing
with respect to such marked point processes.

(ii) Proposition 3.2 implies that the limit theory developed in McGivney and
Yukich [1999], Penrose and Yukich [2001, 2003] for the total edge length and
other stabilizing functionals of the Poisson–Voronoi tessellation extends to
Poisson tessellation models with weighted Voronoi cells. Thus Proposition
3.2 provides expectation and variance asymptotics, as well as normal con-
vergence, for such functionals of the Poisson tessellation.

(iii) Aside from weighted Poisson–Voronoi tessellations, Propositions 3.1 and
3.2 hold also for the Poisson–Delaunay triangulation. On the other hand,
Proposition 3.1 holds for Poisson-line tessellation, but Proposition 3.2 does
not.
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Proofs of the main results
Preliminary lemmas. In this section, we omit in the notation the dependence
on the weight ρ that defines the tessellation. For simplicity, we write

Hλpη X Ŵ λq :“ Hρ
λpη X Ŵ λq, Hλpηq :“ Hρ

λpηq,

as well as
Ĥλpη X Ŵ λq :“ Ĥ

ρ

λpη X Ŵ λq, Ĥλpηq :“ Ĥ
ρ

λpηq.

Let us start with some useful first order results.

Lemma 3.3 (Lemma 4.1 in Flimmel et al. [2020]).
Under the assumptions of Theorem 3.13(ii), we have

lim
λÑ8

λE
ˇ

ˇ

ˇ
Hλpη X Ŵ λq ´ Ĥλpη X Ŵ λq

ˇ

ˇ

ˇ
“ 0.

Proof. We denote by Q̂ the product of the Lebesgue measure on Rd and QM. By
the refined Campbell theorem and stationarity,

E
ˇ

ˇ

ˇ
Hλpη X Ŵ λq ´ Ĥλpη X Ŵ λq

ˇ

ˇ

ˇ

ď E
ÿ

x̂PηXŴλ

|hpCpx̂, ηqq|

|Wλ a Cpx̂, ηq|d
1tCpx̂, ηq Ă Wλu 1t|Wλ a Cpx̂, ηq|d ă

λ

2 u

“

ż

Ŵλ

Ex̂
|hpCpx̂, ηqq|

|Wλ a Cpx̂, ηq|d
1tCpx̂, ηq Ă Wλu

¨ 1t|Wλ a Cpx̂, ηq|d ă
λ

2 uQ̂pdx̂q

“

ż

Wλ

ż

M

Epo,mq

˜

|hpCppo,mq, ηqq|

|Wλ a Cppo,mq, ηq|d
1tx P Wλ a Cppo,mq, ηqu

¨ 1t|Wλ a Cppo,mq, ηq|d ă
λ

2 u

¸

QMpdmq dx.

Changing the order of integration we get

E
ˇ

ˇ

ˇ
Hλpη X Ŵ λq ´ Ĥλpη X Ŵ λq

ˇ

ˇ

ˇ

ď

ż

M
Eom

ˆ

|hpCpom, ηqq|1t|Wλ a Cpom, ηq|d ă
λ

2 u

¨

ż

Wλ

1tx P Wλ a Cpom, ηqu

|Wλ a Cpom, ηq|d
dx

̇

QMpdmq,

(3.18)

where om :“ po,mq. The inner integral over Wλ is bounded by one, showing that
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for all p P p1,8q we have

E
ˇ

ˇ

ˇ
Hλpη X Ŵ λq ´ Ĥλpη X Ŵ λq

ˇ

ˇ

ˇ

ď

ż

M
Eom

ˆ

|hpCpom, ηqq| 1t|Wλ a Cpom, ηq|d ă
λ

2 u

̇

QMpdmq

ď

ż

M
pEom |hpCpom, ηqq|

p
q

1
p Pom

ˆ

|Wλ a Cpom, ηq|d ă
λ

2

̇

p´1
p

QMpdmq.

The random variable D at (3.16) satisfies Cpô, ηq Ă BDpoq almost surely. Thus,

Pô
ˆ

|Wλ a Cpô, ηq|d ă
λ

2

̇

ď Pô
ˆ

|Wλ a BDpoq|d ă
λ

2

̇

.

The volume of the erosion on the right-hand side equals pλ1{d ´ 2Dqd`. By condi-
tioning on Y :“ 1tλ1{d ě 2Du, we obtain

Pô
ˆ

pλ1{d
´ 2Dq

d
` ă

λ

2

̇

“ Pô
ˆ

pλ1{d
´ 2Dq

d
` ă

λ

2 | Y “ 1
̇

Pô
pY “ 1q

` Pô
ˆ

pλ1{d
´ 2Dq

d
` ă

λ

2 | Y “ 0
̇

Pô
pY “ 0q

ď Pô
ˆ

pλ1{d
´ 2Dq

d
ă
λ

2

̇

` Pô
pλ1{d

ă 2Dq

ď 2Pô
pD ą epλqq,

where epλq :“ pλ1{d ´ pλ{2q1{dq{2. Finally, recalling that D has exponentially
decaying tails as at (3.11), we obtain

Pô
ˆ

|Wλ a Cpô, ηq|d ă
λ

2

̇

ď 2 cdiam exp
ˆ

´
1

cdiam
epλq

d

̇

.

Using this bound we have

λE
ˇ

ˇ

ˇ
Hλpη X Ŵ λq ´ Ĥλpη X Ŵ λq

ˇ

ˇ

ˇ

ď λ

ż

M
pEom |hpCpom, ηqq|

p
q

1
p

ˆ

2 cdiam exp
ˆ

´
1

cdiam
epλq

d

̇̇

p´1
p

QMpdmq.

Now ξ satisfies the p-moment condition 2 (3.10) for p P p1,8q and thus the first
factor is bounded by a constant uniformly over all m P M. Lemma 3.3 follows.

Lemma 3.4 (Lemma 4.2 in Flimmel et al. [2020]).
Under the assumptions of Theorem 3.13(i), we have

lim
λÑ8

λE
ˇ

ˇ

ˇ
Hλpηq ´ Ĥλpηq

ˇ

ˇ

ˇ
“ 0.

Proof. We follow the proof of Lemma 3.3. In (3.18), we integrate over Rd instead
of over Wλ, yielding a value of one for the inner integral. Now follow the proof
of Lemma 3.3 verbatim.
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Lemma 3.5 (Lemma 4.3 in Flimmel et al. [2020]).
Under the assumptions of Theorem 3.13(i), we have

lim
λÑ8

E
ˇ

ˇ

ˇ
Ĥλpη X Ŵ λq ´ Ĥλpηq

ˇ

ˇ

ˇ
“ 0.

Proof. Write

ν̂λpx̂, ηq :“ hpCpx̂, ηqq 1tCpx̂, ηq Ă Wλu

|Wλ a Cpx̂, ηq|d
(3.19)

ˆ 1t|Wλ a Cpx̂, ηq|d ě
λ

2 u 1tDx̂ ě dpx,Wλqu,

where Dx̂ is the radius of the ball centered at x and containing Cpx̂, ηq and where
Dx̂ is equal in distribution to D, with D at (3.16). Here dpx,Wλq denotes the
Euclidean distance between x and Wλ. We observe that

E
ˇ

ˇ

ˇ
Ĥλpη X Ŵ λq ´ Ĥλpηq

ˇ

ˇ

ˇ
ď E

ÿ

x̂PηXŴ
c
λ

|ν̂λpx̂, ηq| .

From now on, we use the notation c to denote a universal positive constant
whose value may change from line to line. By the Hölder inequality, the p-moment
condition 2 on ξ, and the assumption that Cpx̂, ηq has an exponentially decaying
tail, we have E |ν̂λpx̂, ηq| ď pc{λq exp

`

´1
c
dpx,Wλqd

˘

. Thus

E
ˇ

ˇ

ˇ
Ĥλpη X Ŵ λq ´ Ĥλpηq

ˇ

ˇ

ˇ
ď
c

λ

ż

W c
λ

exp
ˆ

´
1
c
dpx,Wλq

d

̇

dx.

Let Wλ,ε be the set of points in W c
λ at distance ε from Wλ. The co-area formula

implies

E
ˇ

ˇ

ˇ
Ĥλpη X Ŵ λq ´ Ĥλpηq

ˇ

ˇ

ˇ
ď
c

λ

ż 8

0

ż

Wλ,ε

exp
ˆ

´
1
c
εd
̇

Hd´1
pdyq dε.

Since Hd´1pWλ,εq ď c pλ1{dp1 ` εqqd´1, we get

E
ˇ

ˇ

ˇ
Ĥλpη X Ŵ λq ´ Ĥλpηq

ˇ

ˇ

ˇ
“ Opλ´1{d

q.

Proof of Theorem 3.13.
(i) The asymptotic unbiasedness of HλpηXŴ λq, ĤλpηXŴ λq and Ĥλpηq is a con-
sequence of Lemmas 3.3, 3.4 and 3.5. For example, concerning Hλpη X Ŵ λq, one
may write

|EHλpη X Ŵ λq ´ E0hpKopηqq| ď E |Hλpη X Ŵ λq ´ Hλpηq|

ď E |Hλpη X Ŵ λq ´ Ĥλpη X Ŵ λq| ` E |Ĥλpη X Ŵ λq ´ Ĥλpηq|

` E |Ĥλpηq ´ Hλpηq|,
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which in view of Lemmas 3.3, 3.4 and 3.5 goes to zero as λ Ñ 8. This gives the
asymptotic unbiasedness of HλpηXŴ λq. One may similarly show the asymptotic
unbiasedness for Ĥλpη X Ŵ λq and Ĥλpηq.

(ii) To show consistency, we introduce Tλpη X Ŵ λq “ λ´1 ř
x̂PηXŴλ

ξpx̂, ηq. By
assumption, ξ stabilizes and satisfies the p-moment condition for p P p1,8q.
Thus, using Theorem 2.1 of Penrose and Yukich [2003], we get that TλpηXŴ λq is
a consistent estimator of E0hpKopηqq. To prove the consistency of the estimators
in Theorem 3.13(iii), it is enough to show for one of them that it has the same
L1 limit as Tλpη X Ŵ λq. We choose Ĥλpη X Ŵ λq and write

E
ˇ

ˇ

ˇ
Ĥλpη X Ŵ λq ´ Tλpη X Ŵ λq

ˇ

ˇ

ˇ

“ E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ´1
ÿ

x̂PηXŴλ

ξpx̂, ηq

ˆ

λ1tCpx̂, ηq Ă Wλu 1t|Wλ a Cpx̂, ηq|d ě λ
2 u

|Wλ a Cpx̂, ηq|d
´ 1

̇

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď λ´1E
ÿ

x̂PηXŴλ

|ξpx̂, ηq|

ˇ

ˇ

ˇ

ˇ

λ1tCpx̂, ηq Ă Wλu 1t|Wλ a Cpx̂, ηq|d ě λ
2 u

|Wλ a Cpx̂, ηq|d
´ 1

ˇ

ˇ

ˇ

ˇ

ď

ż

Wλ

λ´1E0
|hpKopηqq|

ˇ

ˇ

ˇ

ˇ

λ1tx ` Kopηq Ă Wλu 1t|Wλ a Kopηq|d ě λ
2 u

|Wλ a Kopηq|d
´ 1

ˇ

ˇ

ˇ

ˇ

dx

“

ż

r´ 1
2 ,

1
2 sd

E0`
|hpKopηqq|Yλpuq

˘

du,

where we substituted λ1{du for x in the last equality and defined random variables

Yλpuq :“
ˇ

ˇ

ˇ

ˇ

λ1tλ1{du ` Kopηq Ă Wλu 1t|Wλ a Kopηq|d ě λ
2 u

|Wλ a Kopηq|d
´ 1

ˇ

ˇ

ˇ

ˇ

.

We show that Yλpuq converges to zero in P0 probability for any u P p´1{2, 1{2qd.
Write the inclusion Kopηq Ă BDpoq, where D has exponentially decaying tails by
assumption. We conclude that both λ{|WλaKopηq|d and 1t|WλaKopηq|d ě λ{2u

tend to one in P0 probability. To prove the convergence of Yλpuq to zero in P0

probability, it remains to show that 1tλ1{du ` Kopηq Ă Wλu converges to one
in P0 probability. Equivalently, we show that the P0 probability of the event
tλ1{du ` Kopηq Ă Wλu goes to 1. Let u P p´1{2, 1{2qd be fixed. Then

P0
pλ1{du P Wλ a Kopηqq ě P0

pλ1{du P Wλ a BDpoqq

“ P0

˜

u P

„

´
1
2 `

D

λ1{d
,
1
2 ´

D

λ1{d

ȷd
¸

“ P0

˜

u P

„

´
1
2 `

D

λ1{d
,
1
2 ´

D

λ1{d

ȷd

| D ď log λ
¸

P0
pD ď log λq

` P0

˜

u P

„

´
1
2 `

D

λ1{d
,
1
2 ´

D

λ1{d

ȷd

| D ą log λ
¸

P0
pD ą log λq
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ě 1

#

u P

„

´
1
2 `

log λ
λ1{d

,
1
2 ´

log λ
λ1{d

ȷd
+

P0
pD ď log λq

` P0

˜

u P

„

´
1
2 `

D

λ1{d
,
1
2 ´

D

λ1{d

ȷd

| D ą log λ
¸

P0
pD ą log λq.

Again, D has exponentially decaying tails, so the lower bound converges to
P0pu P p´1{2, 1{2qdq “ 1, showing that Yλpuq goes to zero in probability as
λ Ñ 8. We proved that Yλpuq converge to zero in P0 probability, but they are
also uniformly bounded by one, hence it follows from the moment condition 2 on
ξ that hpKopηqqYλpuq goes to zero in L1. Finally, by the dominated convergence
theorem, we get

lim
λÑ8

E
ˇ

ˇ

ˇ
Ĥλpη X Ŵ λq ´ Tλpη X Ŵ λq

ˇ

ˇ

ˇ
“ 0.

Thus Ĥλpη X Ŵ λq converges to E0hpKopηqq in L1 and also in probability. The
consistency of the remaining estimators in Theorem 3.13 follows from Lemmas
3.3, 3.4 and 3.5. This completes the proof of Theorem 3.13.

Proof of Theorem 3.14 (i). We prove the variance asymptotics (3.14). The
proof is split into two lemmas (Lemma 3.7 and Lemma 3.8). We first show an
auxiliary result used in the proofs of both lemmas. Then we prove the variance
asymptotics for ĤλpηXŴ λq. This is easier, since, after scaling by λ, the scores are
bounded by 2|ξpx̂, ηq| and thus, by assumption, satisfy a p-moment condition 2 for
some p P p2,8q. Finally, we conclude the proof by showing that the asymptotic
variance of Ĥλpηq is the same as the asymptotic variance of Ĥλpη X Ŵ λq.

Lemma 3.6 (Lemma 4.4 in Flimmel et al. [2020]).
Let φ : Rd̂ ˆ N Ñ R be an exponentially stabilizing function with respect to η and
which satisfies the p-moment condition 2 for some p P p2,8q. Then there exists
a constant c P p0,8q such that for all x̂, ŷ P Rd̂

|Eφpx̂, η Y tŷuqφpŷ, η Y tx̂uq ´ Eφpx̂, ηqEφpŷ, ηq|

ď c

˜

sup
x̂,ŷPRd̂

E |φpx̂, η Y tŷuq|
p

¸
2
p

exp
ˆ

´
1
c

}x ´ y}
α

̇

, (3.20)

where φpx̂, ηq :“ φpx̂, η Y tx̂uq if x̂ R η.

Proof. We follow the proof of Lemma 5.2 in Baryshnikov and Yukich [2005] and
show that the constant A1,1 there involves the moment pE |φpx̂, ηY tŷuq|pq

2
p . Put

R :“ maxpRx̂, Rŷq, where Rx̂, Rŷ are the radii of stabilization as in Proposition
3.2 for x̂ and ŷ, respectively. Furthermore, put r :“ }x ´ y}{3 and define the
event E :“ tR ď ru. Hölder’s inequality gives

|Eφpx̂, η Y tŷuqφpŷ, η Y tx̂uq ´ Eφpx̂, η Y tŷuqφpŷ, η Y tx̂uq1tEu|

ď c

˜

sup
x̂,ŷPRd̂

E |φpx̂, η Y tŷuq|
p

¸
2
p

PpEc
q

p´2
p . (3.21)
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Notice that

Eφpx̂, η Y tŷuqφpŷ, η Y tx̂uq1tEu

“ Eφpx̂, pη Y tŷuq X B̂rpx̂qqφpŷ, pη Y tx̂uq X B̂rpx̂qq1tEu

“ Eφpx̂, pη Y tŷuq X B̂rpx̂qqφpŷ, pη Y tx̂uq X B̂rpx̂qqp1 ´ 1tEc
uq.

A second application of Hölder’s inequality gives

|Eφpx̂, η Y tŷuqφpŷ, η Y tx̂uq1tEu

´ Eφpx̂, pη Y tŷuq X B̂rpx̂qqφpŷ, pη Y tx̂uq X B̂rpŷqq|

ď c

˜

sup
x̂,ŷPRd̂

E |φpx̂, η Y tŷuq|
p

¸
2
p

PpEc
q

p´2
p . (3.22)

Combining (3.21) and (3.22) and using independence of φpx̂, pη Y tŷuq X B̂rpx̂qq

and φpŷ, pη Y tx̂uq X B̂rpŷqq, we have

|Eφpx̂, η Y tŷuqφpŷ, η Y tx̂uq

´ Eφpx̂, pη Y tŷuq X B̂rpx̂qqEφpŷ, pη Y tx̂uq X B̂rpŷqq|

ď c

˜

sup
x̂,ŷPRd̂

E |φpx̂, η Y tŷuq|
p

¸
2
p

PpEc
q

p´2
p . (3.23)

Likewise we may show

|Eφpx̂, ηqEφpŷ, ηq ´ Eφpx̂, η X B̂rpx̂qqEφpŷ, η X B̂rpŷqq|

ď c

˜

sup
x̂,ŷPRd̂

E |φpx̂, η Y tŷuq|
p

¸
2
p

PpEc
q

p´2
p . (3.24)

Combining (3.23) and (3.24) and using that PpEcq decreases exponentially in
}x ´ y}α, we thus obtain (3.20).

Lemma 3.7 (Lemma 4.5 in Flimmel et al. [2020]).
If ξ is exponentially stabilizing with respect to η then

lim
λÑ8

λVar Ĥλpη X Ŵ λq “ σ2
pξq,

where σ2pξq is at (3.13).

Proof. Put for all x̂ P Rd̂ and any marked point process µm,

ζλpx̂, µmq :“ λ ξpx̂, µmq

|Wλ a Cpx̂, µmq|d
1t|Wλ a Cpx̂, µmq|d ě

λ

2 u

and
νλpx̂, µmq :“ ζλpx̂, µmq 1tCpx̂, µmq Ă Wλu.
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Note that ζλ is translation-invariant whereas νλ is not translation-invariant. Then
λ Ĥλpη X Ŵ λq “

ř

x̂PηXŴλ
νλpx̂, ηq.

Recall that Q̂ is the product measure of Lebesgue measure on Rd and QM. By
the Slivnyak–Mecke theorem (Theorem 1.9) we have

λVar Ĥλpη X Ŵ λq “ λ´1E
ÿ

x̂PηXŴλ

ν2
λpx̂, ηq ` λ´1E

ÿ

x̂,ŷPηXŴλ;x̂‰ŷ

νλpx̂, ηqνλpŷ, ηq

´ λ´1

¨

˝E
ÿ

x̂PηXŴλ

νλpx̂, ηq

˛

‚

2

“ λ´1
ż

Ŵλ

E ν2
λpx̂, ηq Q̂pdx̂q

` λ´1
ż

Ŵλ

ż

Ŵλ

rE νλpx̂, η Y tŷuqνλpŷ, η Y tx̂uq ´ E νλpx̂, ηqE νλpŷ, ηqs

ˆ Q̂pdŷq Q̂pdx̂q

“: I1pλq ` I2pλq.

Here we use the convention that νλpx̂, µmq :“ νλpx̂, µm Y tx̂uq if x̂ R µm.
Using stationarity and the transformation u :“ λ1{dx we rewrite I1pλq as

I1pλq “ λ´1
ż

Wλ

ż

M
EZ2

λpom, η, xqQMpdmq dx “

ż

W1

EZ2
λpoM , η, λ1{duq du,

where Zλppz,mzq, µm, xq :“ ζλppz,mzq, µmq 1tCppz,mzq, µmq Ă Wλ ´ xu. Simi-
larly, by translation invariance of ζλ, we have

I2pλq “ λ´1
ż

Wλ

ż

Wλ´x

ż

M

ż

M
rEZλpom1 , η Y tzm2u, xqZλpzm2 , η Y tom1u, xq

´ EZλpom1 , η, xqEZλpzm2 , η, xqsQMpdm1qQMpdm2q dz dx

“

ż

W1

ż

Wλ´λ1{du

rEZλpoM , η Y tzMu, λ1{duqZλpzM , η Y toMu, λ1{duq

´ EZλpoM , η, λ1{duqEZλpzM , η, λ
1{duqs dz du,

where om1 :“ po,m1q, zm2 :“ pz,m2q, oM :“ po,Moq, zM :“ pz,Mzq and Mo, Mz

are random marks distributed according to QM.
Since |ζλpx̂, ηq| ď 2|ξpx̂, ηq|, ζλ satisfies a p-moment condition 2, p P p2,8q.

Recall that |WλaCpx̂, ηq|d{λ tends in probability to 1 and notice that Wλ´λ1{du
for u P p´1{2, 1{2qd increases to Rd as λ Ñ 8. Thus, as λ Ñ 8, we have for any
ô :“ po,moq, ẑ :“ pz,mzq P Rd̂ and u P p´1{2, 1{2qd,

EZλpô, η, λ1{duq Ñ E ξpô, ηq, (3.25)
EZ2

λpô, η, λ1{duq Ñ E ξ2
pô, ηq, (3.26)

EZλpô, η Y tẑu, λ1{duqZλpẑ, η Y tôu, λ1{duq Ñ E ξpô, η Y tẑuqξpẑ, η Y tôuq.
(3.27)

These ingredients are already enough to establish variance asymptotics for
ĤλpηXŴ λq. Indeed, I1pλq converges to E ξ2poM , ηq by (3.26). Concerning I2pλq,
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for each u P p´1{2, 1{2qd we have

lim
λÑ8

ż

Wλ´λ1{du

rEZλpoM , η Y tzMu, λ1{duqZλpzM , η Y toMu, λ1{duq

´ EZλpoM , η, λ1{duqEZλpzM , η, λ
1{duqs dz

“

ż

Rd

rE ξpoM , η Y tzMuqξpzM , η Y toMuq ´ E ξpoM , ηqE ξpzM , ηqs dz.

Here we use that for any x P Rd, the function Zλp¨, ¨, xq : Rd̂ˆN Ñ R is exponen-
tially stabilizing with respect to η and satisfies the p-moment condition 2 for some
p P p2,8q. Thus, from Lemma 3.6, the integrand is dominated by an exponen-
tially decaying function of }z}α. Applying the dominated convergence theorem,
together with (3.25) and (3.27), we obtain the desired variance asymptotics since
|W1|d “ 1.

The next lemma completes the proof of Theorem 3.14 (i).

Lemma 3.8 (Lemma 4.6 in Flimmel et al. [2020]).
If ξ is exponentially stabilizing with respect to η then

lim
λÑ8

λVar Ĥλpηq “ lim
λÑ8

λVar Ĥλpη X Ŵ λq “ σ2
pξq.

Proof. Write
λ Ĥλpηq “

ÿ

x̂PηXŴλ

νλpx̂, ηq `
ÿ

x̂PηXŴ
c
λ

νλpx̂, ηq.

Now

λVar Ĥλpηq “ λ´1Var

¨

˝

ÿ

x̂PηXŴλ

νλpx̂, ηq

˛

‚` λ´1Var

¨

˝

ÿ

x̂PηXŴ
c
λ

νλpx̂, ηq

˛

‚

` 2λ´1Cov

¨

˝

ÿ

x̂PηXŴλ

νλpx̂, ηq,
ÿ

x̂PηXŴ
c
λ

νλpx̂, ηq

˛

‚.

It suffices to show Var
´

ř

x̂PηXŴ
c
λ
νλpx̂, ηq

¯

“ Opλpd´1q{dq, for then the Cauchy–
Schwarz inequality shows that the covariance term in the above expression is
negligible compared to λ.

Now we show Var
´

ř

x̂PηXŴ
c
λ
νλpx̂, ηq

¯

“ Opλpd´1q{dq as follows. Note that
Ĥλpηq “

ř

x̂Pη ν̂λpx̂, ηq, where ν̂λpx̂, ηq is at (3.19). By the Slivnyak–Mecke theo-
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rem we have

λVar

¨

˝

ÿ

x̂PηXŴ
c
λ

νλpx̂, ηq

˛

‚“ λ´1E
ÿ

x̂PηXŴ
c
λ

ν̂2
λpx̂, ηq

` λ´1E
ÿ

x̂,ŷPηXŴ
c
λ;x̂‰ŷ

ν̂λpx̂, ηqν̂λpŷ, ηq ´ λ´1

¨

˝E
ÿ

x̂PηXŴ
c
λ

ν̂λpx̂, ηq

˛

‚

2

“ λ´1
ż

Ŵ
c
λ

E ν̂2
λpx̂, ηq Q̂pdx̂q

` λ´1
ż

Ŵ
c
λ

ż

Ŵ
c
λ

rE ν̂λpx̂, η Y tŷuqν̂λpŷ, η Y tx̂uq ´ E ν̂λpx̂, ηqE ν̂λpŷ, ηqs

ˆ Q̂pdx̂q Q̂pdŷq

“: I˚
1 pλq ` I˚

2 pλq.

By the Hölder inequality, the moment condition 2 on ξ and the assumed
exponential decay of the tail of the diameter of Cpx̂, ηq, we have E ν̂λpx̂, ηqp ď

c exp
`

´1
c
dpx,Wλqd

˘

for some positive constant c. Then, similarly as in Lemma
3.5, we may use the co-area formula to obtain I˚

1 pλq “ Opλ´1{dq.
To bound I˚

2 pλq we appeal to Lemma 3.6. Notice that |ν̂λpx̂, ηq| ď 2|ξpx̂, ηq|.
Since ν̂λ, λ ě 1, are exponentially stabilizing with respect to η and satisfy the
p-moment condition 2 for p P p2,8q, then by Lemma 3.6

|E ν̂λpx̂, η Y tŷuqν̂λpŷ, η Y tx̂uq ´ E ν̂λpx̂, ηqE ν̂λpŷ, ηq|

ď c

˜

sup
x̂,ŷPRd̂

E |ν̂λpx̂, η Y tŷuq|
p

¸
2
p

exp
ˆ

´
1
c

}x ´ y}
α

̇

.

Using this estimate we compute

I˚
2 pλq ď λ´1

ż

Ŵ
c
λ

ż

W c
λ

c pE |ν̂λpx̂, ηq|
p
q

2
p exp

ˆ

´
1
c

}x ´ y}
α

̇

dy Q̂pdx̂q

ď c λ´1
ż

Ŵ
c
λ

pE |ν̂λpx̂, ηq|
p
q

2
p

ż

Rd

exp
ˆ

´
1
c

}x ´ y}
α

̇

dy Q̂pdx̂q

ď c λ´1
ż

W c
λ

exp
ˆ

´
1
c
dpx,Wλq

d

̇

dx
ż

Rd

exp
ˆ

´
1
c

}y}
α

̇

dy.

Since
ş

Rd expp´}y}α{cq dy ă 8, we obtain

I˚
2 pλq ď c λ´1

ż

W c
λ

exp
ˆ

´
1
c
dpx,Wλq

d

̇

dx.

Arguing as we did for I˚
1 pλq we obtain I˚

2 pλq “ Opλ´1{dq.

Proof of Theorem 3.14 (ii). Now we prove the central limit theorems for
Hλpη X Ŵ λq and Hλpηq. Let us first introduce some notation. Define for any
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stationary marked point process µm on Rd̂,

ξλpx̂, µmq :“ λ ξpλ1{dx̂, λ1{dµmq

|Wλ a Cpλ1{dx̂, λ1{dµmq|d
1tCpλ1{dx̂, λ1{dµmq Ă Wλu,

ξ̂λpx̂, µmq :“ ξλpx̂, µmq 1
"

|Wλ a Cpλ1{dx̂, λ1{dµmq|d ě
λ

2

*

,

where λ1{dx̂ :“ pλ1{dx,mxq and λ1{dµm :“ tλ1{dx̂ : x̂ P µmu.
Put

Sλpηλ X Ŵ 1q :“
ÿ

x̂PηλXŴ 1

ξλpx̂, ηλq, Ŝλpηλ X Ŵ 1q :“
ÿ

x̂PηλXŴ 1

ξ̂λpx̂, ηλq,

as well as

Sλpηλq :“
ÿ

x̂Pηλ

ξλpx̂, ηλq, Ŝλpηλq :“
ÿ

x̂Pηλ

ξ̂λpx̂, ηλq.

Notice that

Sλpηλ X Ŵ 1q
D
“ λHλpη X Ŵ λq, Sλpηλq

D
“ λHλpηq

and
Ŝλpηλ X Ŵ 1q

D
“ λ Ĥλpη X Ŵ λq and Ŝλpηλq

D
“ λ Ĥλpηq

due to the distributional identity λ1{dηλ
D
“ η1. The reason for expressing the

statistic λHλpηXŴ λq in terms of the scores ξλpx̂, ηλq is that it puts us in a better
position to apply the normal approximation results of Theorem 3.10 to the sums
Sλpηλ X Ŵ 1q.

In particular, we use the previous result to establish a central limit theorem
for Ŝλpηλ X Ŵ 1q. We may put X to be Rd and we let Q be Lebesgue measure
on Rd so that ηλ has intensity measure λQ, and we put K “ W1. We may write
Ŝλpηλ X Ŵ 1q “

ř

x̂PηλXŴ 1
ξ̂λpx̂, ηλq 1tx P W1u. Note that ξ̂λpx̂, ηλq1tx P W1u,

x̂ P X̂, are exponentially stabilizing with respect to the input ηλ, they satisfy
the p-moment condition 2 for some p P p4,8q, they vanish for x P W c

1 , and
they (trivially) decay exponentially fast with respect to the distance to K. (see
Definition 3.17), Since the distance to K is zero for x P K this condition is
trivially satisfied. This makes IK,λ “ Θpλq where IK,λ is defined at (3.8). Thus
all conditions of Theorem 3.10 are fulfilled and we deduce a central limit theorem
for Ŝλpηλ X Ŵ 1q and hence for Ĥλpη X Ŵ λq.

We may also apply Theorem 3.10 to show a central limit theorem for Ŝλpηλq.
For x P W c

1 we find the radius Dx such that Cpλ1{dx̂, λ1{dηλq Ă BDxpλ1{dxq. Then
the score ξ̂λpx̂, ηλq vanishes if Dx ą dpλ1{dx,Wλq. As in Proposition 3.1, Dx has
exponentially decaying tails and thus ξ̂λ decays exponentially fast with respect
to the distance to K.

Let dKpX, Y q denote the Kolmogorov distance between random variables X
and Y . Applying Theorem 3.10 we obtain

dK

¨

˝

Ŝλpηλ X Ŵ 1q ´ E Ŝλpηλ X Ŵ 1q
b

Var Ŝλpηλ X Ŵ 1q

, Np0, 1q

˛

‚ď
c

b

Var Ŝλpηλ X Ŵ 1q
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and

dK

¨

˝

Ŝλpηλq ´ E Ŝλpηλq
b

Var Ŝλpηλq

, Np0, 1q

˛

‚ď
c

b

Var Ŝλpηλq

.

Combining this with (3.14) and using Var ŜλpηλXŴ 1q ě c λ, we obtain as λ Ñ 8

Ŝλpηλ X Ŵ 1q ´ E Ŝλpηλ X Ŵ 1q
?
λ

D
ÝÑ Np0, σ2

pξqq

and
Ŝλpηλq ´ E Ŝλpηλq

?
λ

D
ÝÑ Np0, σ2

pξqq.

To show that

Sλpηλ X Ŵ 1q ´ ESλpηλ X Ŵ 1q
?
λ

D
ÝÑ Np0, σ2

pξqq, (3.28)

as λ Ñ 8, it suffices to show limλÑ8 E |Sλpηλ X Ŵ 1q ´ Ŝλpηλ X Ŵ 1q| “ 0. Since
E |Sλpηλ X Ŵ 1q ´ Ŝλpηλ X Ŵ 1q| “ λE |Hλpηλ X Ŵ λq ´ Ĥλpηλ X Ŵ λq|, we may
use Lemma 3.3 to prove (3.28). Likewise, to obtain the central limit theorem for
Sλpηλq, it suffices to show limλÑ8 E |Sλpηλq ´ Ŝλpηλq| “ 0, which is a consequence
of Lemma 3.4. Hence we deduce from the central limit theorem for Ŝλpηλq that
as λ Ñ 8

Sλpηλq ´ ESλpηλq
?
λ

D
“

?
λ
`

Hλpηq ´ E0hpKopηqq
˘ D

ÝÑ Np0, σ2
pξqq.

This completes the proof of Theorem 3.14 (ii).

Proofs of Theorems 3.15 and 3.16
Before giving the proof of Theorem 3.15 we recall from Proposition 3.2 that
translation-invariant cell characteristics ξρi are exponentially stabilizing with re-
spect to Poisson input η. This allows us to apply Theorem 3.14 to cell character-
istics of tessellations defined by ρi, i “ 1, 2, 3. For example, we can take hp¨q to
be either the volume or surface area of a cell or the radius of the circumscribed
or inscribed ball.

Proof of Theorem 3.15. (i) The assertion of unbiasedness follows from Theo-
rem 3.12. (ii) To prove the asymptotic normality, we write

hpCρipx̂, ηqq :“ 1t|Cρipx̂, ηq|d ď tu “: φρipx̂, ηq.

To deduce (3.15) from Theorem 3.14(ii) we need only verify the p-moment con-
dition 2 for p P p4,8q and the positivity of σ2pφρiq. The moment condition holds
for all p P r1,8q since φ is bounded by 1. To verify the positivity of σ2pφρiq, we
recall Remark (i) following Theorem 3.14. More precisely we may use Theorem
2.1 of Penrose and Yukich [2001] and show that there is an almost surely finite
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random variable S and a non-degenerate random variable ∆ρip8q such that for
all finite A Ă B̂Spoqc we have

∆ρip8q “
ÿ

x̂PpηXB̂SpoqqYAYtoM u

1t|Cρipx̂, pη X B̂Spoqq Y A Y toMuq|d ď tu

´
ÿ

x̂PpηXB̂SpoqqYA

1t|Cρipx̂, pη X B̂Spoqq Y Aq|d ď tu.

We first explain the argument for the Voronoi case and then indicate how to
extend it to treat the Laguerre and Johnson–Mehl tessellations.

Let t P p0,8q be arbitrary but fixed. Let N be the smallest integer of even
parity that is larger than 4

?
d. The choice of this value will be explained later

in the proof. For L ą 0 we consider a collection of Nd cubes QL,1, . . . , QL,Nd

centered around xi, i “ 1, . . . , Nd, such that

(i) QL,i has side length L
N

, and

(ii) YtQL,i, i “ 1, . . . , Ndu “ r´L
2 ,

L
2 sd.

Put εL :“ L{100N and Q̂L,i :“ QL,i ˆ M. Define the event

EL,N :“
!

|η X Q̂L,i X B̂εL
pxiq| “ 1, |η X Q̂L,i X B̂

c

εL
pxiq| “ 0, @i “ 1, . . . , Nd

)

.

Elementary properties of the Poisson point process show that PpEL,Nq ą 0 for all
L and N.

On EL,N the faces of the tessellation restricted to r´L
2 ,

L
2 sd nearly coincide

with the union of the boundaries of QL,i, i “ 1, . . . , Nd and the cell generated by
x̂ P η X r´L

2 ` L
N
, L2 ´ L

N
sd is determined only by η X pYtQL,j, j P Ipx̂quq, where

j P Ipx̂q if and only if x̂ P Q̂L,j or Q̂L,j X Q̂L,i ‰ H for i such that x̂ P Q̂L,i. Thus
inserting a point at the origin will not affect the cells far from the origin. More
precisely, the cells around the points outside R̂L,N :“ r´2L

N
, 2L
N

sd ˆ M are not
affected by inserting a point at the origin. For SL :“ L{2 we have R̂L,N Ă B̂SL

poq

due to our choice of the value N . Therefore,

Cρ1px̂, pη X B̂SL
poqq Y A Y toMuq “ Cρ1px̂, pη X B̂SL

poqq Y Aq

for any finite A Ă B̂SL
poqc and x̂ P pη X pB̂SL

poqzR̂L,Nqq Y A. Consequently, on
EL,N ,

∆ρ1p8q “
ÿ

x̂PpηXR̂L,N qYtoM u

1t|Cρ1px̂, pη X B̂SL
poqq Y A Y toMuq|d ď tu

´
ÿ

x̂PηXR̂L,N

1t|Cρ1px̂, pη X B̂SL
poqq Y Aq|d ď tu.

Figure 3.1 illustrates the difference appearing in ∆ρ1p8q on EL,N for d “ 2. The
cells generated by the points outside the square r´2L

N
, 2L
N

s2 are identical for both
point configurations whereas the cells generated by the points inside the square
may differ.
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Figure 3.1: Voronoi tessellations in r´L
2 ,

L
2 s2 generated by pηX B̂SL

poqq Y A (left)
and pη X B̂SL

poqq Y A Y toMu (right). The ball BSL
poq shown in blue encloses

the red square r´2L
N
, 2L
N

s2 where here N has a value of 10.

On the event EL,N , the cell generated by x̂ P pη X R̂L,Nq Y toMu is contained
in YtQL,j, j P Ipx̂qu and thus

sup
x̂PpηXR̂L,N qYtoM u

|Cρ1px̂, pη X B̂SL
poqq Y Aq|d ď

ˆ

3L
N

̇d

.

If L P p0, Nt1{d{3q, then all cell volumes in R̂L,N are at most t; thus ∆ρ1p8q “ 1
on the event EL1,N with L1 :“ 1

6Nt
1{d. Similarly,

inf
x̂PpηXR̂L,N qYtoM u

|Cρ1px̂, pη X B̂SL
poqq Y A Y toMuq|d ě

ˆ

L

3N

̇d

.

If L P p3Nt1{d,8q, then all the cell volumes in R̂L,N exceed t and thus ∆ρ1p8q “ 0
on the event EL2,N with L2 :“ 6Nt1{d. Taking S :“ SL11tEL1,Nu ` SL21tEL2,Nu,
we have found two disjoint events EL1,N and EL2,N , each having positive prob-
ability, such that ∆ρ1p8q takes different values on these events, and thus it is
non-degenerate. Hence, σ2pφρ1q ą 0 and we can apply Theorem 3.14(ii).

To prove the positivity of σ2pφρ2q and σ2pφρ3q we shall consider a subset
of EL,N . Assume there exists a parameter µ˚ P r0, µs and a small interval
Iαpµ˚q Ă r0, µs for some α ě 0 such that QMpIαpµ˚qq ą 0. Define ÊL,N to be the
intersection of EL,N and the event FL,N,α that the Poisson points in r´L{2, L{2sd

have marks in Iαpµ˚q. If α is small enough, then the Laguerre and Johnson–Mehl
cells nearly coincide with the Voronoi cells on the event ÊL,N . Consideration of
the events ÊL1,N and ÊL2,N shows that ∆ρ2p8q and ∆ρ3p8q are non-degenerate,
implying that σ2pφρ2q ą 0 and σ2pφρ3q ą 0. Thus Theorem 3.15 holds for the
Laguerre and Johnson–Mehl tessellations.
Remark. In the same way, one can establish that Theorem 3.15 holds for any h
taking the form

hpKq “ 1tgpKq ď tu or hpKq “ 1tgpKq ą tu
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for t P p0,8q fixed and g : pFd,BpFdqq Ñ pR,BpRqq, a homogeneous function
of order q, i.e., gpαKq “ αqgpKq for all K P Fd and α P p0,8q. Examples
of the function g include (a) gpKq :“ Hd´1pBKq, (b) gpKq :“ diampKq, (c)
gpKq :“ radius of the circumscribed ball of K, and (d) gpKq :“ radius of the
circumscribed ball of K.

Proof of Theorem 3.16. The unbiasedness is again a consequence of Theo-
rem 3.12. To prove the asymptotic normality, we need to check the p-moment
condition 2 for

ξρipx̂, ηq :“ Hd´1
pBCρipx̂, ηqq1tCρipx̂, ηq is boundedu

and the positivity of σ2pξρiq, i “ 1, 2, 3.
First we verify the moment condition 2 with p “ 5. Given any x̂, ŷ P Rd̂,

we assert that Ex̂,ŷHd´1pBCρipx̂, ηqq5 “ EHd´1pBCρipx̂, η Y tŷuqq5 ď c ă 8 for
some constant c that does not depend on x̂ and ŷ. From Proposition 3.2 there is
a random variable Rx̂ such that

Cρipx̂, η Y tŷuq “
č

ẑPpηYtŷuztx̂uqXB̂Rx̂
pxq

Hẑpx̂q.

As in Proposition 3.1 we find Dx̂ such that Cρipx̂, η Y tŷuq Ă BDx̂
px̂q. Then

Hd´1
pBCρipx̂, η Y tŷuqq ď

ÿ

ẑPpηYtŷuztx̂uqXB̂Rx̂
pxq

Hd´1
pBHẑpx̂q X BDx̂

px̂qq

ď ci,dD
d´1
x̂ ηpB̂Rx̂

pxqq

for some constant ci,d that depends only on i and d. Using the Cauchy–Schwarz
inequality we get

EHd´1
pBCρipx̂, η Y tŷuqq

5
ď c5

i,dpED
10pd´1q

x̂ q
1{2

pE ηpB̂Rx̂
pxqq

10
q

1{2.

By the property of the Poisson distribution we have

E ηpB̂Rx̂
pxqq

10
“ E pE pηpB̂Rx̂

pxqq
10

| Rx̂qq “ EP p|BRx̂
pxq|dq,

where P p¨q is a polynomial of degree 10. Both Dx̂ and Rx̂ have exponentially
decaying tails and the decay is not depending on x̂. Therefore,
pED10pd´1q

x̂ q1{2pE ηpB̂Rx̂
pxqq10q1{2 is bounded and the moment condition 2 is sat-

isfied with p “ 5.
The positivity of the asymptotic variance can be shown similarly as in the

proof of Theorem 3.15. We will show it only for the Voronoi case, as the La-
guerre and Johnson–Mehl tessellations can be treated similarly. We will again
find a random variable S and a ∆ρ1p8q such that for all finite A Ă B̂Spoqc we
have

∆ρ1p8q “
ÿ

x̂PpηXB̂SpoqqYAYtoM u

ξρ1px̂, pη X B̂Spoqq Y A Y toMuq

´
ÿ

x̂PpηXB̂SpoqqYA

ξρ1px̂, pη X B̂Spoqq Y Aq
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and moreover ∆ρ1p8q assumes different values on two events having positive
probability and is thus non-degenerate. By Theorem 2.1 of Penrose and Yukich
[2001], this is enough to show the positivity of σ2pξρ1q.

Let L ą 0 and let N P N have odd parity. Abusing notation, we construct
a collection of Nd cubes QL,1, . . . , QL,Nd centered around xi P Rd, i “ 1, . . . , Nd

such that

(i) QL,i has side length L
N

, and

(ii) YtQL,i, i “ 1, . . . , Ndu “ r´L
2 ,

L
2 sd.

There is a unique index i0 P t1, . . . , Ndu such that xi0 “ o. We define εL, Q̂L,i

and the event EL,N as in the proof of Theorem 3.15. Note that under EL,N

inf
px,mxqPηXQ̂L,i0

}x} ď εL.

Hence, on the event EL,N , the insertion of the origin into the point configu-
ration creates a new face of the tessellation whose surface area is bounded below
by cminpL{Nqd´1 and bounded above by cmaxpL{Nqd´1. Thus

cmin

ˆ

L

N

̇d´1

`O

˜

εL

ˆ

L

N

̇d´2
¸

ď ∆ρ1p8q ď cmax

ˆ

L

N

̇d´1

´O

˜

εL

ˆ

L

N

̇d´2
¸

,

where OpεL
`

L
N

˘d´2
q is the change in the combined surface areas of the already

existing faces after inserting the origin. Events EL1,N , EL2,N , L1 ă L2, both occur
with positive probability for any L1, L2. Similarly as in the proof of Theorem
3.15 we can find N , S, L1 and L2 (L2 ´ L1 large enough) such that the value of
∆ρ1p8q differs on each event. Thus σ2pξρ1q is strictly positive.

To show that σ2pξρ2q and σ2pξρ3q are strictly positive we argue as follows. The
Laguerre and Johnson–Mehl tessellations are close to the Voronoi tessellation on
the event FL,N,α, for α small. Arguing as we did in the proof of Theorem 3.15 and
considering the event ÊL,N given in the proof of that theorem, we may conclude
that σ2pξρ2q ą 0 and σ2pξρ3q ą 0.
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4. Method of cumulants

4.1 Cumulants of random variables
In Section 1.1, we defined factorial cumulant measures of a point process µ implic-
itly as the measures occurring in the Taylor series expansion of the logarithm of
the probability generating functional. Alternatively, it was defined using the rela-
tion (1.4) from the factorial moment measures of µ. This relation is an analogy to
the relation between moments and cumulants (also known as semi-invariants) of
a real-valued random variable X. We recall here the definition of cumulant, and
we present several of its properties. We refer to Brillinger [1975], Shiryayev [1984]
and Gnedenko and Kolmogorov [1954] for further detailed probabilistic aspects
of this topic.

Denote by µk :“ EXk the k-th moment of a random variable X and assume
it is finite. Provided that it has a Taylor expansion about the origin, the moment
generating function equals

MXprq :“ E erX “

8
ÿ

k“0
µk
rk

k! . (4.1)

The k-th moment of X is then the k-th derivative of MX at the origin. The
logarithm of the moment generating function is called the cumulant generating
function since its Taylor expansion about the origin

KXprq :“ logMXprq “

8
ÿ

k“0
κk
rk

k! (4.2)

contains the cumulants κk :“ CumkpXq as the coefficients. Evidently µ0 “ 1
implies κ0 “ 0. By extracting coefficients from the expansion, one can further see
that κ1 “ µ1, κ2 is the variance and κ3 “ E pX´µ1q3. Higher-order cumulants are,
however, not the same as centered moments. Explicit relations between higher-
order cumulants and moments may be established by formal manipulations of
the series (4.1) and (4.2) (see e.g. Corollary 3.1 in Peccati and Taqqu [2008]). If
E |X|k ă 8, we have

κk “

k
ÿ

l“1
p´1q

l´1
pl ´ 1q!

ÿ

k1`¨¨¨`kl“k;kiě1

l
ź

i“1
µki

(4.3)

and inversely,

µk “

k
ÿ

l“1

ÿ

k1`¨¨¨`kl“k,kiě1

l
ź

i“1
κki
.

Hence, the existence of the moment µk implies the existence of all cumulants up
to the order k.

While the moments of a random variable have a simpler interpretation than
the cumulants, the cumulants are often mathematically easier to handle. In par-
ticular, the advantage of working with cumulant generating function over the
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ordinary moment generating function is the additivity for two independent ran-
dom variables X, Y , that is

KX`Y prq “ logE
“

erpX`Y q
‰

“ logE
“

erX
‰

E
“

erY
‰

“ logE
“

erX
‰

` logE
“

erY
‰

“ KXprq ` KY prq.

Hence, each cumulant of a sum of independent random variables is the sum of
the corresponding cumulants. Similarly, for any constant c P R,

KX`cprq “ KXprq ` rc. (4.4)

Since the k-th cumulant of X is the k-th derivative of KX at the origin, we get
immediately that the first cumulant of the random variable X ` c equals the first
cumulant of X plus c and the higher-order cumulants are shift-invariant.

Moreover, for any n P N and any constant c P R, we have

CumnpcXq “ cnCumnpXq. (4.5)

This property can be seen directly from (4.3).

Example 4.1 (Cumulants of a Gaussian random variable).
The cumulant generating function of a Gaussian random variable Z „ Npµ, σ2q

is
KZprq “ rµ ` r2σ2

{2.
Apart from what has been said generally for cumulants of the first and the second
order, all cumulants of order three and higher are zero.

It follows from a classical result of Marcinkiewicz (see Marcinkiewicz [1939] or
p. 213 in Lukacs [1970]) that if all but a finite number of cumulants of a random
variable are non-zero then the random variable must either have a Gaussian
distribution or be a constant. Either way we have κk “ 0 for all k ě 3.

By the moment convergence theorem formulated in terms of cumulants (see
e.g. Saulis and Statulevičius [1991]), the convergence of the cumulants of the
third and higher orders to zero is equivalent to the convergence in distribution to
a Gaussian random variable (assuming the degenerated case is also considered as
Gaussian). The latter statement forms the key idea of what is known under the
method of cumulants.

4.2 Cumulant expansion technique
To our knowledge, there is no unifying approach in the literature for the usage of
the method of cumulants in proving asymptotic properties of random geometric
objects. Usually, it appears in combination with one of the previously described
methods. We have already mentioned in Chapter 3 the moment approach in
stabilization introduced in Baryshnikov and Yukich [2005] using the method of
cumulants described in the previous section. Alternatively, it can be used directly
on a case by case basis for a given functional of a given random geometric object.
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Some ideas shall be demonstrated on the planar cylinder process Ξ described in
Example 1.15. The content of this and the following section is mainly based on
papers Flimmel and Heinrich [2021+] and Heinrich and Spiess [2013].

Assume that K Ă R2 is a fixed compact set that is star-shaped w.r.t. the
origin o being an inner point of K. The aim of this and the subsequent section
is to study the limit behaviour of the random variable |Ξ X ρK|2 as ρ Ñ 8.
The set K is chosen so that ρK Õ R2. First, we shall link the cumulants of
|Ξ X ρK|2 with the characteristics of the unmarked point process Ψ, namely with
its factorial moment measures and factorial cumulant measures.

We assume that the probability space rΩ,F ,Ps on which the underlying
marked point process ΨP

F,G (recall Example 1.15) is defined can be chosen in such
a way that the mapping px, ωq ÞÑ 1Ξpωqpxq P t0, 1u for px, ωq P R2 ˆ Ω is measur-
able w.r.t. the product σ-field BpR2q b F , see Appendix in Heinrich [2005]. This
enables us to apply Fubini’s theorem to the random field of indicator variables
t1Ξpxq, x P R2u and implies that the k-th moment function

p
pkq

Ξ px1, . . . , xkq :“ E

˜

k
ź

j“1
1Ξpxjq

¸

“ Ppx1 P Ξ, . . . , xk P Ξq, x1, . . . , xk P R2,

(4.6)
are BpR2kq-measurable for any k P N.

By Cp2q, we denoted the family of non-empty compact sets in R2. The Choquet
functional of Ξ is defined by

TΞpXq :“ PpΞ X X ‰ Hq, X P Cp2q. (4.7)

In particular, the k-th order moment functions ppkq

Ξc of the 0 ´ 1-random field
ξpxq :“ 1Ξcpxq can be expressed by (4.6) and (4.7) for any k ě 1:

p
pkq

Ξc px1, . . . , xkq “ E

˜

k
ź

i“1
ξpxiq

¸

“ Pptx1, . . . , xku X Ξ “ Hq

“ 1 ´ TΞptx1, . . . , xkuq.

The following lemma connects the Choquet functional of the random set Ξ
with the probability generating functional GΨ (recall Definition 1.11) of the un-
marked point process Ψ.

Lemma 4.1 (Lemma 1 in Flimmel and Heinrich [2021+]).
For any X P Cp2q, we have

TΞpXq “ 1 ´ GΨ
“

1 ´ P
`

p¨q P r´R0, R0s ‘ xvpΦ0q, Xy
˘‰

, (4.8)

where xvpΦ0q, Xy :“
Ť

xPXxvpΦ0q, xy with the scalar product x¨, ¨y in R2 and
vpΦ0q “ pcos Φ0, sin Φ0q is the normal vector.

Proof. To prove formula (4.8), we need the orthogonal matrix

Opφq “

ˆ

cosφ ´ sinφ
sinφ cosφ

̇

, (4.9)
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which represents an anti-clockwise rotation by the angle φ P r0, πq so that
Op´φqvpφq “ p1, 0qT and Opφqp1, 0qT “ vpφq. Note that

Op´φq “ OT
pφq “ O´1

pφq.

By the definition of the probability generating functional of Ξ and the indepen-
dence assumption in Definition 1.33, we obtain

TΞpXq “ 1 ´ P
`

Ξ X X “ H
˘

“ 1 ´ P

˜

č

i:PiPΨ
tpgpPi,Φiq ‘ bpo, Riqq X X “ Hu

¸

“ 1 ´ E
ź

i:PiPΨ
1
`

tpgpPi,Φiq ‘ bpo, Riqq X X “ Hu
˘

“ 1 ´

ż

N

E

«

ź

i:piPψ

p1 ´ Pppgppi,Φiq ‘ bpo, Riqq X X “ Hqq|Ψ “ ψ “ tpiu

ff

PΨpdψq

“ 1 ´

ż

N

ź

i:piPψ

`

1 ´ P
`

pgppi,Φiq ‘ bpo, Riqq X X “ H
˘˘

PΨpdψq

“ 1 ´

ż

N

ź

i:piPψ

`

1 ´ P
`

pi P r´R0, R0s ‘ xvpΦ0q, Xy
˘˘

PΨpdψq. (4.10)

Obviously, (4.10) coincides with (4.8). The relation (4.10) is seen as follows:
!

pgpp,Φ0q ‘ bpo, R0qq X X ‰ H

)

“

!

pvpΦ0q P
`

´ gp0,Φ0q ‘ bpo, R0q
˘

‘ X
)

“

!

pvpΦ0q P
`

gp0,Φ0q ‘ bpo, R0q
˘

‘ X
)

“

!

pOp´Φ0qvpΦ0q P
`

gp0, 0q ‘ bpo, R0q
˘

‘ Op´Φ0qX
)

“

!

pp1, 0q
T

P
`

gp0, 0q ‘ bpo, R0q
˘

‘ Op´Φ0qX
)

“

!

p P r´R0, R0s ‘ xvpΦ0q, Xy

)

.

Hence, the proof of (4.8) is complete.

Corollary 4.1 (Corollary 1 in Flimmel and Heinrich [2021+]).
For X “ tx1, . . . , xku with distinct points x1 . . . , xk P R2, we get the relation

TΞcptx1, . . . , xkuq “ GΨ

«

1 ´ P

˜

p¨q P

k
ď

i“1
pr´R0, R0s ‘ xvpΦ0q, xiyq

¸ff

.
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Example 4.2.
For a stationary Poisson process η with intensity λ, we have by (1.7) that

TΞpXq “ 1 ´ exp

$

&

%

´λ

ż

R

P ppgpp,Φ0q ‘ bpo, R0qq X X ‰ Hq dp

,

.

-

“ 1 ´ exp
!

´ λE
ˇ

ˇr´R0, R0s ‘ xvpΦ0q, Xy
ˇ

ˇ

1

)

“ 1 ´ exp

$

&

%

´λ

8
ż

0

π
ż

0

ˇ

ˇr´r, rs ‘ xvpφq, Xy
ˇ

ˇ

1dGpφqdF prq

,

.

-

.

In the special case X “ tx1, . . . , xku such that xi “ px
p1q

i , x
p2q

i qT , it follows
from Corollary 4.1 that

TΞptx1, . . . , xkuq “ 1 ´ exp
#

´λE

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

i“1
pr´R0, R0s ` x

p1q

i cos Φ0 ` x
p2q

i sin Φ0q

ˇ

ˇ

ˇ

ˇ

ˇ

1

+

“ 1 ´ exp

$

&

%

´λ

π
ż

0

8
ż

0

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

i“1
pr´r, rs ` x

p1q

i cosφ ` x
p2q

i sinφq

ˇ

ˇ

ˇ

ˇ

ˇ

1

dF prqdGpφq

,

.

-

.

Next, we use Lemma 4.1 to link the cumulants of |Ξ X ρK|2 directly with the
probability generating function of Ψ and hence by Theorem 1.4 and Theorem 1.6
with its factorial moment and factorial cumulant measures, respectively. Using
the k-th moment function (4.6), one can express the k-th moment of |Ξ X ρK|2
as

E |Ξ XρK|
k
2 “ E

ż

pρKqk

k
ź

i“1
1Ξpxiqdpx1, . . . , xkq “

ż

pρKqk

p
pkq

Ξ px1, . . . , xkqdpx1, . . . , xkq.

Next, we define the k-th cumulant function by

c
pkq

Ξ px1, . . . , xkq :“
k
ÿ

ℓ“1
p´1q

ℓ´1
pℓ ´ 1q!

ÿ

K1Y¨¨¨YKℓ
“t1,...,ku

ℓ
ź

j“1
p

p#Kjq

Ξ pxi : i P Kjq, (4.11)

for x1, . . . , xk P R2. Note that the cumulant functions of the second and higher
orders satisfy the identity cpkq

Ξ px1, . . . , xkq “ p´1qkc
pkq

Ξc px1, . . . , xkq and moreover,

Cumkp|Ξ X ρK|2q : “

ż

pρKqk

c
pkq

Ξ px1, . . . , xkqdpx1, . . . , xkq

“ p´1q
k

ż

pρKqk

c
pkq

Ξc px1, . . . , xkqdpx1, . . . , xkq. (4.12)

Then, by applying Fubini’s theorem together with Corollary 4.1, we find that

E |Ξ X ρK|2 “ E
ż

R2

1Ξpxq1ρKpxqdx “

ż

ρK

p
p1q

Ξ pxqdx “ ρ2
ż

K

TΞptρxuqdx

“ ρ2
ż

K

`

1 ´ GΨ
“

1 ´ P
`

p¨q P r´R0, R0s ‘ ρxvpΦ0q, xy
˘‰˘

dx. (4.13)
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Moreover, it is easily seen that

p
p2q

Ξ px1, x2q ´ p
p1q

Ξ px1qp
p1q

Ξ px2q “ p
p2q

Ξc px1, x2q ´ p
p1q

Ξc px1qp
p1q

Ξc px2q. (4.14)

So, for the variance (the second cumulant), we get from (4.14) and Corollary 4.1
that

Var
`

|Ξ X ρK|2
˘

“

ż

Kρ

ż

Kρ

`

p
p2q

Ξc px1, x2q ´ p
p1q

Ξc px1qp
p1q

Ξc px2q
˘

dx1dx2

“

ż

Kρ

ż

Kρ

´

GΨ
“

1 ´ P
`

p¨q P

2
ď

i“1
pr´R0, R0s ‘ xvpΦ0q, xiyq

˘‰

´

2
ź

i“1
GΨ

“

1 ´ P
`

p¨q P r´R0, R0s ‘ xvpΦ0q, xiy
˘‰

¯

dx1dx2.

(4.15)

Notation. Formula (4.15) can be generalized to higher-order cumulants. Before
that, to simplify the notation, we define for k ě 2 points x1, . . . , xk P R2, Ξ0 “

r´R0, R0s and vpφq “ pcosφ, sinφqT the functions

wY
x1,...,xk

ppq :“ P
´

p P

k
ď

i“1
pΞ0 ` xvpΦ0q, xiyq

¯

and

wX
x1,...,xk

ppq :“ P
´

p P

k
č

i“1
pΞ0 ` xvpΦ0q, xiyq

¯

.

For k “ 1 we put wxppq :“ wY
x ppq “ wX

x ppq. Obviously, wY
x1,x2ppq “ wx1ppq `

wx2ppq ´ wX
x1,x2ppq.

By Lemma 4.1, the k-th order moment functions ppkq

Ξc of the 0´1-random field
ξpxq :“ 1Ξcpxq can be expressed for any k ě 1 by:

p
pkq

Ξc px1, . . . , xkq “ E
´

k
ź

j“1
ξpxjq

¯

“ Pptx1, . . . , xkuXΞ “ Hq “ GΨ
“

1´wY
x1,...,xk

p¨q
‰

.

Then, together with (4.11) and (4.12), we conclude that

Cumkp|Ξ X ρK|2q

“ p´1q
k

ż

pρKqk

k
ÿ

l“1
p´1q

l´1
pl ´ 1q!

ÿ

K1Y¨¨¨YKℓ
“t1,...,ku

l
ź

j“1
p

p#Kjq

Ξc pxs; s P Kjqdpx1, . . . , xkq

“ p´1q
k

k
ÿ

l“1
p´1q

l´1
pl ´ 1q!

ÿ

K1Y¨¨¨YKℓ
“t1,...,ku

ż

pρKqk

l
ź

j“1
GΨp1 ´ wY

pxs;sPKjqp¨qqdpx1, . . . , xkq.

(4.16)
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In order to treat the moments and cumulants of |Ξ X ρK|2, the following
relations are useful. Let a1, a2, . . . be real numbers in r0, 1s. Then we have

1 ´

n
ź

i“1
p1 ´ aiq “

n
ÿ

k“1

p´1qk´1

k!

‰
ÿ

1ďi1,...,ikďn

ai1 ¨ . . . ¨ aik for n ě 1.

Moreover, for any odd number m ă n (provided n ě 2), the so-called Bonferroni
inequalities (see e.g. Galambos and Simonelli [1996]) hold:
m`1
ÿ

k“1

p´1qk´1

k!

‰
ÿ

1ďi1,...,ikďn

ai1 ¨. . .¨aik ď 1´

n
ź

i“1
p1´aiq ď

m
ÿ

k“1

p´1qk´1

k!

‰
ÿ

1ďi1,...,ikďn

ai1 ¨. . .¨aik .

(4.17)
As a consequence of (2.17) and (4.17) and the definition of the factorial moment
measures αrksp¨q of Ψ „ P , we get the following series expansion

E |Ξ X ρK|2 “

ż

ρK

`

1 ´ GΨ
“

1 ´ wxp¨q
‰˘

dx “ ρ2
ż

K

`

1 ´ GΨ
“

1 ´ wρxp¨q
‰˘

dx

“ρ2
8
ÿ

k“1

p´1qk´1

k!

ż

K

ż

Rk

k
ź

j“1
wρxppjqα

rks
pdpp1, . . . , pkqqdx, (4.18)

provided that the infinite sum on the right-hand side converges. From (4.17), we
obtain immediately the estimates

ˇ

ˇ

ˇ

ˇ

1 ´ GΨr1 ´ wρxp¨qs´

m´1
ÿ

k“1

p´1qk´1

k!

ż

Rk

k
ź

j“1
wρxppjqα

rks
pdpp1, . . . , pkqq

ˇ

ˇ

ˇ

ˇ

ď
1
m!

ż

Rm

m
ź

j“1
wρxppjqα

rms
pdpp1, . . . , pmqq (4.19)

for any m ě 1. It is easily seen that the right-hand side of (4.18) is convergent if
and only if

1
m!

ż

Rm

m
ź

j“1
wρxppjqα

rms
pdpp1, . . . , pmqq ÝÝÝÑ

mÑ8
0. (4.20)

At this place, we specify the point processes of interest. We define a stronger
version of Brillinger-mixing property (recall Definition 1.28). If γrks

redp¨q possesses
a Lebesgue density c

pkq

redp¨q on Rk´1 (called the k-th reduced cumulant density),
we define the canonical Lq-norm }c

pkq

red}q :“
` ş

Rk´1 |c
pkq

redpxq|qdx
˘1{q for k ě 2 and

the modified L˚
q -norm }c

pkq

red}
˚
q :“

ş

R1

` ş

Rk´2 |c
pkq

redpx, pq|qdx
˘1{qdp for k ě 3, where

1 ď q ă 8.

Definition 4.1 (Strongly (Lq-, L˚
q -)Brillinger-mixing point process).

A stationary point process Ψ on rR1,BpR1qs with intensity λ “ EΨpr0, 1sq ą 0
satisfying EΨkpr0, 1sq ă 8 for all k ě 2, is said to be strongly Brillinger-mixing
(strongly Lq-Brillinger-mixing, resp. strongly L˚

q -Brillinger-mixing for some q ě

1q if there are constants b ą 0 and a ě b´1 such that }γ
rks

red}TV ď abkk! (if cpkq

redp¨q

exists such that }c
p2q

red}1 ă 8 and }c
pkq

red}q ď aqpbqq
kk! for k ě 2 with constants

aq, bq ą 0 resp. }c
pkq

red}
˚
q ď a˚

q pb˚
q qkk! for k ě 3 with constants a˚

q , b
˚
q ą 0q.
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Remark. For formal reason we put }γ
r1s

red}TV :“ 1 and }c
p1q

red}q :“ 1 so that a ě b´1

makes }γ
r1s

red}TV :“ 1 ď ab. Further, note that the existence and integrability of
c

pkq

redp¨q imply that }c
p2q

red}1 “ }γ
r2s

red}TV and }c
pkq

red}1 “ }c
pkq

red}
˚
1 “ }γ

rks

red}TV for all k ě 3.
In Heinrich and Pawlas [2013] and Heinrich [2021+], the relations between

(strong) Brillinger-mixing and classical mixing conditions are studied. Strong
Brillinger-mixing property requires exponential moments of the number of points
in bounded sets. For any dimension d ě 1, examples of such point processes are
DPP’s (Example 1.10), Poisson cluster processes (Example 1.7) if the number of
daughter points has an exponential moment and certain Cox processes (Example
1.6) as well as Gibbsian processes (Example 1.11) under suitable restrictions,
see Ruelle [1969]. For d “ 1, renewal processes with an exponentially decaying
interrenewal density, see Heinrich and Schmidt [1985], among them the Erlang
process and the Macchi process, see Daley and Vere-Jones [2003] (p. 144), are
strongly Brillinger-mixing.

Now, one way to show (4.20) consists of expressing αrmsp¨q by factorial cumu-
lant measures γrksp¨q, k “ 1, . . . ,m as in (1.5) and assuming that Ψ is strongly
Brillinger-mixing (strongly Lq-Brillinger-mixing, resp. strongly L˚

q -Brillinger-
mixing).

Lemma 4.2 (Lemma 3 in Flimmel and Heinrich [2021+]).
If the stationary point process Ψ „ P is strongly Brillinger-mixing with b ă 1

2
and ER0 ă 8, then

8
ÿ

m“1

1
m!

ż

Rm

m
ź

j“1
wρxppjqα

rms
pdpp1, . . . , pmqq ď

b

1 ´ 2b
`

exptaλE |Ξ0|1u ´ 1
˘

, (4.21)

which immediately implies (4.20). If Ψ „ P is strongly Lq-Brillinger-mixing for
some q ą 1 such that bq ă 1

2pE |Ξ0|q
1
q

´1, then the estimate (4.21) remains valid
with a and b replaced by aqpE |Ξ0|q

1
q

´1 and bqpE |Ξ0|q
1´ 1

q , respectively.

Proof. Using the representation (1.5), we obtain
1
m!

ż

Rm

m
ź

j“1
wρxppjqα

rms
pdpp1, . . . , pmqq

“
1
m!

m
ÿ

ℓ“1

ÿ

K1Y¨¨¨YKℓ
“t1,...,mu

ℓ
ź

j“1

ż

R#Kj

ź

iPKj

wρxppiqγ
r#Kjs

pdppi : i P Kjqq

“
1
m!

m
ÿ

ℓ“1

1
ℓ!

ÿ

k1`¨¨¨`kℓ“m
kiě1,i“1...,ℓ

m!
k1! ¨ ¨ ¨ kℓ!

ℓ
ź

j“1
fpkjq “

m
ÿ

ℓ“1

1
ℓ!

ÿ

k1`¨¨¨`kℓ“m
kiě1,i“1...,ℓ

ℓ
ź

i“1

fpkiq

ki!
, (4.22)

where

fpkq :“
ż

Rk

k
ź

i“1
wρxppiqγ

rks
pdpp1, . . . , pkqq

“ λ

ż

R1

wρxpp1q

ż

Rk´1

k
ź

i“2
wρxppi ` p1qγ

rks

redpdpp2, . . . , pkqqdp1
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for k “ 1, . . . ,m. The equality (4.22) is justified by the invariance of γrkspˆk
i“1Biq

against permutations of the bounded sets B1, . . . , Bk P BpR1q for each k P N. We
proceed with

|fpkq| ď λ

ż

R1

wρxpp1q

ż

Rk´1

ˇ

ˇγ
rks

red

ˇ

ˇpdpp2, . . . , pkqqdp1

“ λE |Ξ0|1}γ
rks

red}TV

ď aλE |Ξ0|1b
kk!.

Here, we have used Fubini’s theorem combined with wρxppq ď 1 for p P R1 and
x P R2 so that

ż

R1

wρxppqdp “

ż

R1

P
`

p P Ξ0 ` ρxvpΦ0q, xy
˘

dp “

ż

R1

P
`

p P Ξ0
˘

dp “ E |Ξ0|1.

Hence, together with the combinatorial relations

ÿ

k1`¨¨¨`kℓ“m
kiě1,i“1...,ℓ

1 “

ˆ

m ´ 1
ℓ ´ 1

̇

and
m
ÿ

ℓ“1

ˆ

m ´ 1
ℓ ´ 1

̇

“ 2m´1

we arrive at
m
ÿ

ℓ“1

1
ℓ!

ÿ

k1`¨¨¨`kℓ“m
kiě1,i“1...,ℓ

ℓ
ź

i“1

|fpkiq|

ki!
ď bm

m
ÿ

ℓ“1

paλE |Ξ0|1qℓ

ℓ!

ˆ

m ´ 1
ℓ ´ 1

̇

ď bm2m´1 max
1ďℓďm

paλE |Ξ0|1qℓ

ℓ!
ď

1
2
`

exptaλE |Ξ0|1u ´ 1
˘

p2bqm. (4.23)

By combining (4.22) and (4.23) with b ă 1{2 the relation (4.21) follows immedi-
ately. Under the strong Lq-Brillinger-mixing condition we may rewrite fpkq for
k ě 2 as follows:

fpkq “ λ

ż

R1

wρxpp1qE
ż

Rk´1

k
ź

i“2
1Ξi`ρxvpΦiq,xyppi ` p1qc

pkq

redpp2, . . . , pkqdpp2, . . . , pkqdp1,

where Ξi “ r´Ri, Ris and pR2,Φ2q, . . . , pRk,Φkq are i.i.d. random vectors with
same distribution as pR0,Φ0q. Applying Hölder’s inequality for q ą 1 and
p “ q{pq ´ 1q, Lyapunov’s inequality E |Ξ0|

1
p ď pE |Ξ0|q

1
p “ pE |Ξ0|q

1´ 1
q and the

condition }c
pkq

red}q ď aqb
k
qk!, we obtain that

|fpkq| ď λ}c
pkq

red}qE |Ξ1|1

k
ź

i“2
E |Ξi|

1
p

1

ď λ}c
pkq

red}qpE |Ξ0|1q
1`

k´1
p

ď λaqpE |Ξ0|1q
1
q pbppE |Ξ0|1q

1´ 1
q q
kk!.
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By repeating the foregoing steps with the latter bound the proof of Lemma 3 is
finished.

Further, we can use the representation of Cumkp|Ξ X ρK|2q (4.16) together
with the expansion of the probability generating functional (4.19). Under the
assumption of the strong type of Brillinger-mixing property of Ψ, we are ready to
determine the asymptotic variance of |Ξ X ρK|2 and central limit theorem based
on Lemma 4.2.

4.3 Asymptotic properties of a planar cylinder
process

Asymptotic properties of cylinder processes in expanding domains using the cu-
mulant method were studied under the Poisson setting in Heinrich and Spiess
[2009], Heinrich and Spiess [2013]. Some of the results were then generalized for
cylinder processes constructed from a strong Brillinger-mixing point process in
Flimmel and Heinrich [2021+].

In order to prove the asymptotic normality of ρ´3{2`|Ξ X ρK|2 ´E |Ξ X ρK|2
˘

as ρ Ñ 8 one has to show that

ρ´3k{2Cumkp|Ξ X ρK|2q ÝÝÝÑ
ρÑ8

0, for any k ě 3. (4.24)

Indeed, (4.24) is sufficient by the homogeneity (4.5) and shift invariance (4.4) of
the cumulants of the second or higher orders. Then by the method of cumulants
(see the text after Example 4.1), we have that

ρ´3{2`
|Ξ X Kρ|2 ´ E |Ξ X Kρ|2

˘ D
ÝÑ Np0, σ2

P pK,F,Gqq,

where
σ2
P pK,F,Gq :“ lim

ρÑ8

Var |Ξ X ρK|2

ρ3 . (4.25)

denotes the asymptotic variance, if the limit exists. Note that the order ρ3

of the growth of Var p|Ξ X ρK|2q is much faster than the growth of the area
|ρK|2 “ ρ2|K|2 which reveals a typical feature of long-range dependencies within
the random set Ξ.

Poisson setting
First, we shall briefly mention the results under the Poisson setting as the starting
point for a more detailed analysis of cylinder processes driven by strong Brillinger-
mixing point processes.

The results are formulated in Heinrich and Spiess [2013] for a general dimen-
sion. The cylinder process in Rd is constructed as a union of k-flats (0 ď k ď d´1)
which are dilated by an independent and identically distributed random compact
cylinder base taken from the corresponding pd´ kq-dimensional orthogonal com-
plement. More precisely, it can be introduced as follows. By Gpd, kq we denote
the Grassmannian of k-dimensional subspaces of Rd, where k “ 0, . . . , d´ 1. For
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L P Gpd, kq (direction space) and a set B in the orthogonal complement LK (base),
we define the corresponding cylinder as L ‘ B.

Let te1, . . . , edu be the usual orthonormal basis of Rd and Ek :“spante1, . . . ,eku,
EK
k :“ spanted´k`1, . . . , edu orthogonal subspaces, k P t0, . . . , d ´ 1u. Then for

a given L P Gpd, kq, there exists an equivalence class of orthogonal matrices
O P Rdˆd with det O “ 1 and OEk “ L. Further, each equivalence class can be
identified with a single representative OL. It follows from a fact from differential
geometry that the dimension dimpGpd, kqq “ pd ´ kqk implies that there exists
a parametric representation of the matrices OL over some subset of Rpd´kqk. In
particular, if d “ 2 and k “ 1, a suitable representation is the one in (4.9). At
last, we denote by SOd

k the family of all such OL. In this way, each random
subspace L P Gpd, kq corresponds with a unique random matrix ΘpLq P SOd

k.
Assume that ηm “

ř

iě1 δrPi,pΘi,Ξiqs is a stationary, independently marked Pois-
son point process on Rd with intensity λ ą 0 and marks with values in SOd

kˆCd´k,
where Cj denoted the space of all compact subsets of Rj, j P N. Similarly as in
the Example 1.15, the cylinder process is defined as a stationary random set

Ξλ,k “
ď

iě1
ΘippΞi ` Piq ˆ Rk

q. (4.26)

Remark. When k “ 0, the union set (4.26) coincides with the Boolean model
(see Example 1.14).

The following results give the asymptotic normality of the random variable
|Ξλ,k X ρK|d with increasing ρ, where K is assumed to be a compact star-shaped
(w.r.t the origin o P Rd) subset of Rd such that Bpo, εKq Ă K Ă Bpo, 1q for some
εK P p0, 1s.

Theorem 4.1 (Theorem 1 in Heinrich and Spiess [2013]).
Assume that the typical cylinder base Ξ0 is a.s. compact and 0 ă E |Ξ0|2d´k ă 8.
Then

|Ξλ,k X ρK|d ´ ρd|K|dp1 ´ e´λE |Ξ0|d´kq
a

Var p|Ξλ,k X ρK|dq

D
ÝÝÝÑ
ρÑ8

Np0, 1q.

Moreover, by Lemma 1 of Heinrich and Spiess [2009], the variance of |Ξλ,k X

ρK|d increases proportionally to the pd`kq-th power of ρ, i.e. there are constants
c1, c2 not depending on ρ such that

c1ρ
d`k

ď Var p|Ξλ,k X ρK|dq ď c2ρ
d`k, for all ρ ě 1.

The exact form of the asymptotic variance

σ2
λ,kpKq :“ lim

ρÑ8

Var p|Ξλ,k X ρK|dq

ρd`k

is given by the following theorem.

Theorem 4.2 (Theorem 2 in Heinrich and Spiess [2013]).
Let the assumptions of Theorem 4.1 hold. Then,
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(a) if Θ0 is discretely distributed on some at most countable set tθi P SOd
k, i P Iu,

then
σ2
λ,kpKq “ e´2λE |Ξ0|d´k

ÿ

iPI

IkpθJ
i Kq

ż

Rd´k

`

eλfpy,θiq
´ 1

˘

dy,

where fpy, θiq :“ E p|Ξ0 X pΞ0 ´ yq|d´k1tΘ0 “ θiuq for i P I and

IkpθJKq :“
ż

Rk

|θJK X pθJK ´ po, xq
J

q|ddx, θ P SOd
k,

(b) if Θ0 is continuously distributed, then

σ2
λ,kpKq “ λe´2λE |Ξ|d´kE

`

IkpΘJ
0 Kq|Ξ0|

2
d´k

˘

.

Asymptotic variance in the strong Brillinger-mixing setting
This and the subsequent section is devoted to the application of the method
of cumulant in order to generalize Theorem 4.1 and Theorem 4.2 to cylinder
processes driven by strong Brillinger-mixing processes. In both sections we admit
only the planar case as it was described in Example 1.15.

Under comparatively strong conditions on the higher-order cumulant measures
of the unmarked (ground) point process we are able to prove first, a mean-square
limit of the relative part of the area of an expanding star-shaped window covered
by the union of cylinders, and second, we derive an explicit formula for the
asymptotic variance (4.25) of this area using the representations (4.13) and (4.15).
The latter is an important first step in proving the asymptotic normality of the
covered area which shall follow in the subsequent section.

The limit (4.25) is positive and finite (if E |Ξ0|2 “ 4ER2
0 ă 8) and depends on

the shape of K, the first and second moment of F and the distribution function
G which is assumed to be continuous (not necessarily absolutely continuous).

Lemma 4.3 (Lemma 4 in Flimmel and Heinrich [2021+]).
Let Ψ „ P be a stationary point process on R1 satisfying max2ďkďm }γ

rks

red}TV ă 8

for some fixed m ě 2. If ER0 ă 8 and Φ0 „ G has a continuous distribution
function G then, for m ě 2 not necessarily distinct points x1, . . . , xm P R2ztou,

ż

Rm

m
ź

j“1
wρxj

ppjqα
rms

pdpp1, . . . , pmqq ÝÝÝÑ
ρÑ8

λm
m
ź

j“1

ż

R1

wρxj
ppqdp “ pλE |Ξ0|1q

m.

(4.27)

Remark. A purely discrete distribution function G yields different expressions
for the asymptotic variance σ2

P pK,F,Gq even if Ψ “ η is a stationary Poisson
point process with intensity λ ą 0 (see Theorem 4.2). A distribution function
G without jumps implies that PpΦ0 “ Φ1q “ 0 if the angles Φ0,Φ1 „ G are
independent.

Proof. We use the representation (1.5) for k “ m to rewrite the difference of
left-hand and right-hand sides of (4.27) as follows:

131



m´1
ÿ

ℓ“1

ÿ

K1Y¨¨¨YKℓ
“t1,...,mu

ℓ
ź

j“1

ż

R#Kj

ź

iPKj

wρxi
ppiqγ

r#Kjs
pdppi : i P Kjqq.

Hence, the limit (4.27) is shown if and only if the finite sum in the latter line
disappears as ρ Ñ 8 and this in turn follows by showing that, for k “ 2, . . . ,m,

ż

Rk

k
ź

i“1
wρxi

ppiqγ
rks

pdpp1, . . . , pkqq

“ λ

ż

Rk

wρx1pp1q

k
ź

i“2
wρxi

ppi ` p1qγ
rks

redpdpp2, . . . , pkqqdp1 ÝÝÝÑ
ρÑ8

0.

In view of 0 ď wρxi
ppi ` p1q ď 1 for i “ 3, . . . , k it is sufficient to prove that

ż

Rk´1

ż

R1

Ppp1 P Ξ0`ρxvpΦ0q, x1yqPpp1 P Ξ0`ρxvpΦ0q, x2y´p2qdp1|γ
rks

red|pdpp2, . . . , pkqq

asymptotically disappears as ρ Ñ 8. Since the total variation measure |γ
rks

red|p¨q is
bounded on Rk´1 and the inner integral over R1 is less than or equal to E |Ξ0|1, we
have only to verify that the inner integral disappears as ρ Ñ 8. For this purpose,
we rewrite its integrand as expectation E1tΞ1`ρxvpΦ1q,x1yupp1q1tΞ2`ρxvpΦ2q,x2y´p2upp1q,
where Ξi “ r´Ri, Ris and Φi for i “ 1, 2 have the same distribution as Ξ0 “

r´R0, R0s and Φ0, respectively, and R1, R2,Φ1,Φ2 are independent of each other.
By Fubini’s theorem and the shift-invariance of the Lebesgue measure, we arrive
at

ż

R1

Ppp1 P Ξ0 ` ρxvpΦ0q, x1yqPpp1 P Ξ0 ` ρxvpΦ0q, x2y ´ p2qdp1

“

ż

R1

E1tΞ1`ρxvpΦ1q,x1yupp1q1tΞ2`ρxvpΦ2q,x2y´p2upp1qdp1

“E
ˇ

ˇΞ1 X
`

Ξ2 ´ p2 ` ρpxvpΦ2q, x2y ´ xvpΦ1q, x1yq
˘
ˇ

ˇ

1 ÝÝÝÑ
ρÑ8

0.

The limit in the last line can verified as follows: Let us take two fixed points
xi “ }xi}pcospαiq, sinpαiqq P R2, i “ 1, 2, and two points vpφiq “ pcospφiq, sinpφiqq,
i “ 1, 2, on the unit circle line. It can be easily seen that the equality xvpφ1q, x1y “

xvpφ2q, x2y, i.e. }x1} cospφ1 ´ α1q “ }x2} cospφ2 ´ α2q holds for at most a finite
number of pairs φ1, φ2 P r0, πs. Hence, for two independent random angles Φ1,Φ2
with common atomless distribution function Gp¨q we have

PpxvpΦ1q, x1y ‰ xvpΦ2q, x2yq “ 1

for any two points x1, x2 P R2 with }x1} ` }x2} ą 0.

From Lemma 4.3 and (4.19) we obtain the behaviour of the expectation of
|Ξ X ρK|2 as ρ Ñ 8.
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Corollary 4.2 (Corollary 2 in Flimmel and Heinrich [2021+]).
Let Ψ „ P be a Brillinger-mixing point process on R1. If ER0 ă 8 and Φ0 „ G
has a continuous distribution function G, then

E |Ξ X ρK|2

|ρK|2
ÝÝÝÑ
ρÑ8

8
ÿ

k“1

p´1qk´1

k! pλE |Ξ0|1q
k

“ 1 ´ expt´λE |Ξ0|1u.

Proof. An application of (4.27) for x1 “ ¨ ¨ ¨ “ xm “ x ‰ o to the inequality
(4.19) yields

ˇ

ˇ

ˇ

ˇ

lim
ρÑ8

`

1 ´ GΨr1 ´ wρxp¨qs
˘

´

m´1
ÿ

k“1

p´1qk´1pλE |Ξ0|1qk

k!

ˇ

ˇ

ˇ

ˇ

ď
pλE |Ξ0|1qm

m! (4.28)

for any m ě 1. Combining this with (4.18) leads to

E |Ξ X ρK|2

|ρK|2
“

1
|K|2

ż

K

`

1 ´ GΨr1 ´ wρxp¨qs
˘

dx ÝÝÝÑ
ρÑ8

8
ÿ

k“1

p´1qk´1pλE |Ξ0|1qk

k!

which immediately gives the assertion of Corollary 4.2.

The following result can be considered as a planar mean-square ergodic the-
orem which implies a weak law of large numbers for |Ξ X ρK| in the Euclidean
plane R2.

Theorem 4.3 (Theorem 1 in Flimmel and Heinrich [2021+]).
Assume that the stationary point process Ψ on R1 is Brillinger-mixing. Further
suppose that ER0 ă 8 and Φ0 „ G has a continuous distribution function G.
Then

E
ˆ

|Ξ X ρK|2

|ρK|2
´
`

1´expt´λE |Ξ0|1u
˘

̇2

ÝÝÝÑ
ρÑ8

0 with Ξ0 :“ r´R0, R0s. (4.29)

Proof. The expectation on the left-hand side of (4.29) can be expressed as follows:

Var p|Ξ X ρK|2q

|ρK|22
`

ˆ

E |Ξ X ρK|2

|ρK|2
´

´

1 ´ expt´λE |Ξ0|1u

¯

̇2

.

In view of Corollary 4.2 it remains to prove that ρ´4Var p|Ξ X ρK|2q ÝÝÝÑ
ρÑ8

0.
Using the representation (4.15), we get

ρ´4Var p|Ξ X ρK|2q “ ρ´4
ż

ρK

ż

ρK

´

GΨ
“

1 ´ wY
x1,x2p¨q

‰

´

2
ź

i“1
GΨ

“

1 ´ wxi
p¨q
‰

¯

dx1dx2

“

ż

K

ż

K

´

GΨ
“

1 ´ wY
ρx1,ρx2p¨q

‰

´ GΨ
“

1 ´ wρx1p¨q
‰

GΨ
“

1 ´ wρx2p¨q
‰

¯

dx1dx2.

133



Thus, we just have to show that the integrand disappears as ρ Ñ 8 for distinct
points x1, x2 P Kztou, that is,

GΨ
“

1 ´ wY
ρx1,ρx2p¨q

‰

´ GΨ
“

1 ´ wρx1p¨q
‰

GΨ
“

1 ´ wρx2p¨q
‰

ÝÝÝÑ
ρÑ8

0. (4.30)

We make use of the finite expansion (4.19) of the pgf GΨ
“

1 ´ wρxp¨q
‰

with re-
mainder term, where wρx can be replaced by any Borel measurable function
w : R1 ÞÑ r0, 1s. For brevity, we put

Smpwq :“
m´1
ÿ

k“0
p´1q

kTkpwq

with

T0pwq :“ 1 and Tkpwq :“ 1
k!

ż

Rk

k
ź

j“1
wppjqα

rks
pdpp1, . . . , pkqq

for 1 ď k ď m P N. Hence, (4.19) reads as
ˇ

ˇGΨ
“

1 ´ wp¨q
‰

´ Smpwq
ˇ

ˇ ď Tmpwq

which leads us to the following estimate for m ě 2:
ˇ

ˇ

ˇ
GΨ

“

1 ´ wY
ρx1,ρx2p¨q

‰

´ GΨ
“

1 ´ wρx1p¨q
‰

GΨ
“

1 ´ wρx2p¨q
‰

´

´

SmpwY
ρx1,ρx2q ´ Smpwρx1qSmpwρx2q

¯
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
GΨ

“

1 ´ wY
ρx1,ρx2p¨q

‰

´ SmpwY
ρx1,ρx2q

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
GΨ

“

1 ´ wρx1p¨q
‰

´ Smpwρx1q

ˇ

ˇ

ˇ
GΨ

“

1 ´ wρx2p¨q
‰

`

ˇ

ˇ

ˇ
GΨ

“

1 ´ wρx2p¨q
‰

´ Smpwρx2q

ˇ

ˇ

ˇ
Smpwρx1q

ď TmpwY
ρx1,ρx2q ` Tmpwρx1q ` Tmpwρx2q ` Tmpwρx1qTmpwρx2q. (4.31)

Here, we have additionally used that GΨ
“

1 ´ wp¨q
‰

ď 1 and
ˇ

ˇSmpwq
ˇ

ˇ ď GΨ
“

1 ´

wp¨q
‰

` Tmpwq.
We are now in a position to apply the limit (4.22) under the assumptions of
Lemma 4.3. This yields for i “ 1, 2 and m P N

Tmpwρxi
q ÝÝÝÑ
ρÑ8

pλE |Ξ0|1qm

m!

and

Smpwρxi
q ÝÝÝÑ
ρÑ8

m´1
ÿ

k“0

p´λE |Ξ0|1qk

k! “ e´λE |Ξ0|1 ` θ1
pλE |Ξ0|1qm

m!

for some θ1 P r´1, 1s in accordance with
ˇ

ˇ

ˇ
e´x ´

řm´1
k“0

p´xqk

k!

ˇ

ˇ

ˇ
ď xm

m! for any m P N
and x ě 0.
Next, we have to find the limit of TmpwY

ρx1,ρx2q as ρ Ñ 8. Using the relation
wY
x1,x2ppq “ wx1ppq `wx2ppq ´wX

x1,x2ppq and taking into account that the factorial
moment measure αrms is invariant under permutation of its m components, we
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may write

TmpwY
ρx1,ρx2q “

1
m!

ż

Rm

m
ź

j“1

`

wρx1ppjq ` wρx2ppjq ´ wX
ρx1,ρx2ppjq

˘

αrms
pdpp1, . . . , pmqq

“
1
m!

ż

Rm

m
ź

j“1

`

wρx1ppjq ` wρx2ppjq
˘

αrms
pdpp1, . . . , pmqq (4.32)

`
1
m!

m
ÿ

ℓ“1

ˆ

m

ℓ

̇
ż

Rm

ℓ
ź

i“1
wX
ρx1,ρx2ppiq

m
ź

j“ℓ`1
pwρx1ppjq ` wρx2ppjqqαrms

pdpp1, . . . , pmqq.

There is at least one term wX
ρx1,ρx2ppiq “ P

`

pi P pΞ0 ` ρxvpΦ0q, x1yq X pΞ0 `

ρxvpΦ0q, x2yq
˘

in each summand of the last line which will be integrated over
R1 w.r.t. dpi so that after expressing αrms by cumulant measures, see (1.5), the
expectation E |Ξ0 X pΞ0 ` ρxvpΦ0q, x2 ´ x1yq|1 emerges and disappears as ρ Ñ 8

if x1 ‰ x2. Thus, the last line disappears completely as ρ Ñ 8, whereas the line
(4.32) converges to the limit p2λE |Ξ0|1qm{m! as ρ Ñ 8 by applying the limit
(4.23) once more. Therefore, we obtain for any m P N that TmpwY

ρx1,ρx2q ÝÝÝÑ
ρÑ8

p2λE |Ξ0|1qm{m! and

SmpwY
ρx1,ρx2q ÝÝÝÑ

ρÑ8

m´1
ÿ

k“0

p´2λE |Ξ0|1qk

k!

“ e´2λE |Ξ0|1 ` θ2
p2λE |Ξ0|1qm

m! for some θ2 P r´1, 1s.

The latter limit combined with above limits of Smpwρxi
q for i “ 1, 2 leads to

lim
ρÑ8

ˇ

ˇ

ˇ
SmpwY

ρx1,ρx2q´Smpwρx1qSmpwρx2q

ˇ

ˇ

ˇ

ď
p2λE |Ξ0|1qm

m! ` 2pλE |Ξ0|1qm

m! `
pλE |Ξ0|1q2m

pm!q2 .

For any given ε P p0, 1s, we find some mpεq such that p2λE |Ξ0|1qm

m! ď ε for all
m ě mpεq.
Thus, the right-hand side of the last inequality does not exceed 2ε ` ε2 for suf-
ficiently large m. The same bound can be obtained for the limit (as ρ Ñ 8) of
the four summands in line (4.31).
Finally, after summarizing all ε-bounds of the above limiting terms we arrive at

lim
ρÑ8

ˇ

ˇ

ˇ
GΨ

“

1 ´ wY
ρx1,ρx2p¨q

‰

´ GΨ
“

1 ´ wρx1p¨q
‰

GΨ
“

1 ´ wρx2p¨q
‰

ˇ

ˇ

ˇ
ď 2p2ε ` ε2

q ď 6ε.

This implies (4.30) completing the proof of Theorem 4.3.

Next, we provide the exact asymptotic behaviour of the variance of the area of
the cylinder process (1.12) that is contained in a star-shaped set ρK which is grow-
ing unboundedly in all directions. For this purpose, in comparison with Theorem
4.3, we need a strengthening and quantification of the classical Brillinger-mixing
condition.

135



Theorem 4.4 (Theorem 2 in Flimmel and Heinrich [2021+]).
Assume that the stationary point process Ψ on R1 is either strongly Brillinger-
mixing with b ă 1{2 or strongly Lq-Brillinger-mixing with pE |Ξ0|1q

1´ 1
q bq ă 1{2

and strongly L˚
q -Brillinger-mixing with pE |Ξ0|1q

1´ 1
q b˚
q ă 1{2 for some q ą 1,

where Ξ0 :“ r´R0, R0s. Further suppose that ER2
0 ă 8 and Φ0 „ G has a con-

tinuous distribution function G. Then

σ2
P pK,F,Gq “ λe´2λE |Ξ0|1

´

pE |Ξ0|1q
2γ

r2s

redpR1
qCG,K

1 ` 2E |Ξ0|
2
1C

G,K
2

¯

, (4.33)

where
CG,K

1 :“
ż

R1

pE |gpp,Φ0q X K|1q
2dp

and

CG,K
2 :“

π
ż

0

rKpφ˘π{2q
ż

0

|K X pK ` svpφ ˘
π

2 q|2dsdGpφq.

Remark. In the special case K “ bpo, 1q, one can show that CG,K
1 “ 16

3 and
CG,K

2 “ 8
3 are independent of the distribution function G. If Φ0 is uniformly

distributed on r0, πs, then we get

CG,K
1 “

1
π2

8
ż

´8

´

π
ż

0

|gpp, φq X K|1dφ
¯2

dp,

CG,K
2 “

1
2π

2π
ż

0

8
ż

0

|K X pK ` svpφqq|2dsdφ “
1

2π

ż

R2

|K X pK ` xq|2
dx
}x}

“
1

2π

ż

K

ż

K

dxdy
}x ´ y}

.

The latter double integral is known as second-order chord power integral of
K, see e.g. Heinrich and Spiess [2013], p. 327, and Schneider and Weil [2008],
Chapter 7, for integral geometric background.

In order to prove Theorem 4.4, the following two lemmas are essential. In-
terestingly, the assumptions to prove the following lemmas are rather mild in
comparison with the Brillinger-mixing-type conditions in Theorems 4.3 and 4.4.

Lemma 4.4 (Lemma 5 in Flimmel and Heinrich [2021+]).
Let Ψ „ P be a second-order stationary point process on R1 with }γ

r2s

red}TV ă 8.
Further, suppose that ER0 ă 8 and Φ0 „ G with a not necessarily continuous
distribution function G. Then

ρ

ż

K

ż

K

ż

R2

wρx1pp1qwρx2pp2qγr2s
pdpp1, p2qqdx1dx2 (4.34)

ÝÝÝÑ
ρÑ8

λpE |Ξ0|1q
2γ

r2s

redpR1
q

ż

R1

`

E |gpp,Φ0q X K|1
˘2dp.
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Proof. By the stationarity of Ψ, we may write γr2spdpp1, p2qq “ λγ
r2s

redpdp2 ´p1qdp1
which gives

ρ

ż

R2

ż

K

ż

K

wρxpp1qwρypp2qdxdyγr2s
pdpp1, p2qq

“ ρλ

ż

R2

ż

K

ż

K

wρxpp1qwρypp2 ` p1qdxdyγr2s

redpdp2qdp1.

To determine the limit of the right-hand side as ρ Ñ 8, we rewrite the probabil-
ities wρxpp1q “ Ppp1 P t¨ ¨ ¨ uq and wρypp2 ` p1q “ Ppp2 ` p1 P t¨ ¨ ¨ uq by means of
the expectation (as integral over the product of probability measures) over the
corresponding indicator function 1t¨¨¨ u. We fix Ξi “ ξi (compact sets in R1) and
Φi “ φi (angles in r0, πs) for i “ 1, 2 and omit the expectation which stands
in front of all other integrals due to Fubini’s theorem. The intensity λ will be
suppressed. Further, we write x “ px1, x2q and y “ py1, y2q. Thus, we only treat
the integral

JρpK, ξ1, φ1, ξ2, φ2q :“ ρ

ż

R2

ż

K

ż

K

1ξ1`ρpx1 cosφ1`x2 sinφ1qpp1q

ˆ 1ξ2`ρpy1 cosφ2`y2 sinφ2qpp2 ` p1qdpx1, x2qdpy1, y2qγ
r2s

redpdp2qdp1

“ ρ

ż

R2

ż

R2

ż

R2

1Kpx1, x2q1Kpy1, y2q1ξ1`ρpx1 cosφ1`x2 sinφ1qpp1q

ˆ 1ξ2`ρpy1 cosφ2`y2 sinφ2qpp2 ` p1qdpx1, x2qdpy1, y2qγ
r2s

redpdp2qdp1.
(4.35)

Now, we substitute px1, x2qT “ Opφ1qpu1, u2qT , py1, y2qT “ Opφ2qpv1, v2qT ,
where Opφ1q and Opφ2q are defined by (4.9). Then x1 “ u1 cosφ1 ´ u2 sinφ1,
x2 “ u1 sinφ1 ` u2 cosφ1 and y1 “ v1 cosφ2 ´ v2 sinφ2, y2 “ v1 sinφ2 ` v2 cosφ2.
Hence, since Opφiq

´1 “ Op´φiq for i “ 1, 2, the integral JρpK, ξ1, φ1, ξ2, φ2q in
(4.35) takes on the form

ρ

ż

R2

ż

R2

ż

R2

1Op´φ1qKpu1, u2q1Op´φ2qKpv1, v2q1ξ1`ρu1pp1q1ξ2`ρv1pp2 ` p1q

ˆ dpu1, u2qdpv1, v2qγ
r2s

redpdp2qdp1

“ ρ

ż

R2

ż

R2

ż

R2

1Op´φ1qKpu1, u2q1Op´φ2qKpv1, v2q1ξ1`ρpu1´v1qpp1q1ξ2pp2 ` p1q

ˆ dpu1, u2qdpv1, v2qγ
r2s

redpdp2qdp1.

It is easy to see that the invariance properties of the one-dimensional Hausdorff
measure on R2 (also denoted by | ¨ |1) yield

ż

R1

1Op´φ1qKpu1, u2qdu2 “ |gpu1, 0q X Op´φ1qK|1

“ |Opφ1qgpu1, 0q X K|1

“ |gpu1, φ1q X K|1.

137



and likewise
ş

R1
1Op´φ2qKpv1, v2qdv2 “ |gpv1, φ2q X K|1.

Therefore, the integral JρpK, ξ1, φ1, ξ2, φ2q is equal to

ρ

ż

R2

ż

R1

ż

R1

|gpu, φ1q X K|1|gpv, φ2q X K|11ξ1`ρpu´vqpp1q1ξ2pp2 ` p1qdudvγr2s

redpdp2qdp1

“ ρ

ż

R2

ż

R1

ż

R1

|gpw ` v, φ1q X K|1|gpv, φ2q X K|11ξ1`ρwpp1q1ξ2pp2 ` p1qdwdv

ˆ γ
r2s

redpdp2qdp1

“

ż

R2

ż

R1

ż

R1

|gpw{ρ ` v, φ1q X K|1|gpv, φ2q X K|11ξ1`wpp1q1ξ2pp2 ` p1qdwdv

ˆ γ
r2s

redpdp2qdp1

ÝÝÝÑ
ρÑ8

ż

R2

ż

R1

ż

R1

|gpv, φ1q X K|1|gpv, φ2q X K|11´ξ1`p1pwq1ξ2´p2pp1qdwdv

ˆ γ
r2s

redpdp2qdp1

“ |ξ1|1|ξ2|1γ
r2s

redpR1
q

ż

R1

1rℓpφ1,Kq,rpφ1,Kqspvq|gpv, φ1q X K|11rℓpφ2,Kq,rpφ2,Kqspvq

ˆ |gpv, φ2q X K|1dv,
where the interval rℓpφi, Kq, rpφi, Kqs “ tv P R1 : gpv, φiq X K ‰ Hu coincides
with the orthogonal projection of Op´φiqK on the v-axis for i “ 1, 2. To justify
the above limit we have used that |gpw{ρ ` v, φ1q X K|1 ď diampKq so that
Lebesgue’s dominated convergence theorem can be applied. Furthermore, it is
easily seen that

|JρpK, ξ1, φ1, ξ2, φ2q| ď diampKq|K|2|ξ1|1|ξ2|1}γ
r2s

red}TV . (4.36)
Hence, the limit of (4.34), i.e. limit of λE JρpK,Ξ1,Φ1,Ξ2,Φ2q as ρ Ñ 8, exists
and can be expressed by using the independence assumptions as follows:

λpE |Ξ0|1q
2γ

r2s

redpR1
q

ż

R1

`

E1rℓpΦ0,Kq,rpΦ0,Kqspvq|gpv,Φ0q X K|1
˘2dv.

Note that the indicator function 1rℓpΦ0,Kq,rpΦ0,Kqsp¨q can be omitted since the range
of integration w.r.t. v is well-defined.

Lemma 4.5 (Lemma 6 in Flimmel and Heinrich [2021+]).
Assume that ER2

0 ă 8 and Φ0 „ G with a not necessarily continuous distribution
function G. Then

ρ

ż

K

ż

K

ż

R1

wX
ρx1,ρx2ppqdpdx1dx2

ÝÝÝÑ
ρÑ8

2E |Ξ0|
2
1

π
ż

0

rKpφ˘ π
2 q

ż

0

|K X pK ` svpφ ˘
π

2 qq|2dsdGpφq
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with rKpψq :“ maxtr ě 0 : rvpψq P K ‘ p´Kqu. Obviously, it is true that
rKpψq “ rKpψ ˘ πq.

Proof. With the abbreviation Ξ0 “ r´R0, R0s we obtain that

JρpKq :“ ρ

ż

K

ż

K

ż

R1

wX
ρx,ρyppqdpdxdx

“ρ

ż

K

ż

K

ż

R1

P
`

p P Ξ0 X pΞ0 ` ρxvpΦ0q, y ´ xyq
˘

dpdxdy

“ρ

ż

R2

1K‘p´Kqpyq|K X pK ´ yq|2E |Ξ0 X pΞ0 ` ρxvpΦ0q, yyq|1dy

“ρ

2π
ż

0

8
ż

0

1K‘p´Kqpsvpψqq|KXpK ´ svpψqq|2E |Ξ0 X pΞ0 ` ρs cospΦ0 ´ ψqq|1sdsdψ,

where we have substituted y “ svpψq with vpψq “ pcosψ, sinψqT and with
rKpψq “ maxts ě 0 : svpψq P K ‘ p´Kqup“ rKpψ ˘ πq due to symmetry
reasons). Moreover, using the independence of Φ0 and R0, the latter expression
equals

ρ

2π
ż

0

rKpψq
ż

0

|K X pK ´ svpψqq|2E |Ξ0 X pΞ0 ` ρs cospΦ0 ´ ψqq|1sdsdψ

“ρE
2π´Φ0
ż

´Φ0

rKpψ`Φ0q
ż

0

|K X pK ´ svpψ ` Φ0qq|2E |Ξ0 X pΞ0 ` ρs cospψqq|1sdsdψ

“ρE
2π
ż

0

rKpψ`Φ0q
ż

0

|K X pK ´ svpψ ` Φ0qq|2E |Ξ0 X pΞ0 ` ρs cospψqq|1sdsdψ

“2ρE
π
ż

0

rKpψ`Φ0q
ż

0

|K X pK ` svpψ ` Φ0qq|2E |Ξ0 X pΞ0 ` ρs cospψqq|1sdsdψ,

where we additionally used first,
ş0

´Φ0
p¨ ¨ ¨ qdψ “

ş2π
2π´Φ0

p¨ ¨ ¨ qdψ due to vpψq “

vpψ ` 2πq and second, the shift-invariance of | ¨ |1, the motion-invariance of | ¨ |2
and vpψ ` πq “ ´vpψq.

By definition of rKpψq, we have that s ą rKpψq if and only if svpψq R K‘p´Kq

which happens if and only if K X pK ` svpψqq “ H. Thus, the inner integral
şrKpψ`Φ0q

0 in the above double integral can be replaced by
ş8

0 showing that

JρpKq “ 2ρE
π
ż

0

8
ż

0

|K X pK ` svpψ ` Φ0qq|2E |Ξ0 X pΞ0 ` ρs cospψqq|1sdsdψ

“ 2ρ
1
ż

´1

E
8
ż

0

|K X pK ` svparccospyq ` Φ0qq|2E |Ξ0 X pΞ0 ` ρsyq|1sds
dy

?
1 ´ y2
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by substituting y “ cospψq P r´1, 1s so that we obtain ψ “ arccospyq and
parccospyqq1 “ ´ 1?

1´y2
. So, the latter equals

2E
8
ż

0

s
ż

´s

|K X pK ` svparccosp
z

s
q ` Φ0qq|2E |Ξ0 X pΞ0 ` ρzq|1

ρdzds
?
s2 ´ z2

by substituting z “ sy P r´s, ss so that y “ z{s and changing the order of
integration. Interchanging again the integration over z and s, we can proceed
with the abbreviation

hps, z,Φ0q :“ svparccos
`z

s

˘

` Φ0q

“
`

z cos Φ0 ´
?
s2 ´ z2 sin Φ0, z sin Φ0 `

?
s2 ´ z2 cos Φ0

˘

,

where 0 ď }hps, z,Φ0q} “ s ď rK :“ maxtrKpφq : 0 ď φ ď πu ď diampKq,
leading to

JρpKq “ 2E
ż

R1

rK
ż

|z|

|K X pK ` hps, z,Φ0qq|2E |Ξ0 X pΞ0 ` ρzq|1
sdsρdz

?
s2 ´ z2

“ 2E
ż

R1

rK
ż

|u|{ρ

|K X pK ` hps, u{ρ,Φ0qq|2E |Ξ0 X pΞ0 ` uq|1
sdsdu

a

s2 ´ pu{ρq2

by substituting u “ ρz so that z “ u{ρ. Thus,

JρpKq ÝÝÝÑ
ρÑ8

2E
ż

R1

rK
ż

0

|K X pK ` svpΦ0 ` π{2qq|2E |Ξ0 X pΞ0 ` uq|1dsdu.

We could apply Lebesgue’s dominated convergence theorem since

rK
ż

|u|{ρ

|K X pK ` hps, u{ρ,Φ0qq|2
sds

a

s2 ´ pu{ρq2
ď |K|2

1
2

r2
K´ u2

ρ2
ż

0

dt
?
t

ď |K|2diampKq.

Further, we use the continuity of the function z ÞÑ hps, z, φq, arccosp0q “ π{2
and hps, 0, φq “ svpφ`π{2q “ sp´ sinφ, cosφqT p“ ´svpφ´π{2qq and the relation
ş

R1 |Ξ0 X pΞ0 ` uq|1du “ |Ξ0|21 “ 4R2
0 combined with a multiple application of

Fubini’s theorem. Finally, we arrive at

JρpKq “ ρ

ż

K

ż

K

ż

R1

wX
ρx1,ρx2ppqdpdx1dx2

ÝÝÝÑ
ρÑ8

2E |Ξ0|
2
1

π
ż

0

rKpφ˘ π
2 q

ż

0

ˇ

ˇK X
`

K ` sv
`

φ ˘
π

2
˘˘ˇ

ˇ

2dsdGpφq.
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Proof of Theorem 4.4. Recall that
ρ´3Var

`

|Ξ X ρK|2
˘

“

ż

K

ż

K

ρ
´

GΨ
“

1 ´ wY
ρx1,ρx2p¨q

‰

´ GΨ
“

1 ´ wρx1p¨q
‰

GΨ
“

1 ´ wρx2p¨q
‰

¯

dx1dx2.

(4.37)
Instead of using the factorial moment expansion of the pgf’s GΨr1 ´ wY

ρx1,ρx2s,
GP r1´wρx1s andGP r1´wρx2s as in (4.18) and (4.19), we first rewrite the integrand
of the right-hand side of the foregoing equality as follows:

ρ
´

GΨ
“

1 ´ wY
ρx1,ρx2p¨q

‰

´ GΨ
“

1 ´ wρx1p¨q
‰

GΨ
“

1 ´ wρx2p¨q
‰

¯

“ ρGΨ
“

1 ´ wρx1p¨q
‰

GΨ
“

1 ´ wρx2p¨q
‰

(4.38)

ˆ

´

exp
!

logGΨr1 ´ wY
ρx1,ρx2p¨qs´ logGΨr1 ´ wρx1p¨qs´ logGΨr1 ´ wρx2p¨qs

)

´1
¯

.

In order to evaluate the exponent in (4.38), we use an expansion of logGΨ
“

1´wp¨q
‰

in terms of the factorial cumulant measures γrks of Ψ „ P , see Theorem 1.6, which
is as follows:

logGΨ
“

1 ´ wp¨q
‰

“

8
ÿ

k“1

p´1qk

k!

ż

Rk

k
ź

j“1
wppjqγ

rks
pdpp1, . . . , pkqq, (4.39)

provided the sum in (4.39) is convergent. In what follows we will show that

lim
ρÑ8

ρ

ż

K

ż

K

ˇ

ˇ

ˇ
logGΨr1´wY

ρx1,ρx2p¨qs´ logGΨr1´wρx1p¨qs´ logGΨr1´wρx2p¨qs

ˇ

ˇ

ˇ
dx1dx2

(4.40)
is finite. Before proving this, we note that the relation (4.28) implies that

lim
ρÑ8

GΨr1 ´wρxp¨qs “

m´1
ÿ

k“0

p´1qkpλE |Ξ0|1qk

k! ` θ
pλE |Ξ0|1qm

m! ÝÝÝÑ
mÑ8

expt´λE |Ξ0|1u

(4.41)
for some θ P r´1, 1s uniformly for all x ‰ o. Furthermore, it is rapidly seen that
the limit (4.30) (which has been proved under the assumptions of Theorem 4.3)
holds if and only if

lim
ρÑ8

´

logGΨr1 ´ wY
ρx1,ρx2p¨qs ´ logGΨr1 ´ wρx1p¨qs ´ logGΨr1 ´ wρx2p¨qs

¯

“ 0

for distinct points x1, x2 P Kztou. Finally, the latter limit combined with (4.40)
proves the equality

lim
ρÑ8

ρ

ż

K

ż

K

´

exp
!

logGΨr1 ´ wY
ρx1,ρx2p¨qs ´ logGΨr1 ´ wρx1p¨qs

´ logGΨr1 ´ wρx2p¨qs

)

´ 1
¯

dx1dx2

“ lim
ρÑ8

ρ

ż

K

ż

K

´

logGΨr1 ´ wY
ρx1,ρx2p¨qs ´ logGΨr1 ´ wρx1p¨qs

´ logGΨr1 ´ wρx2p¨qs

¯

dx1dx2.
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The equality of both limits results from the inequality |ex ´ 1 ´ x| ď x2

2 e
maxpx,0q

and Lebesgue’s dominated convergence theorem.
Combining the latter equality with (4.38), (4.40), (4.41) and the integral rep-

resentation (4.37), we can state the relation

lim
ρÑ8

ρ´3Var
`

|Ξ X ρK|2
˘

“e´2λE |Ξ0|1 lim
ρÑ8

ż

K

ż

K

ρ
´

logGΨr1 ´ wY
ρx1,ρx2p¨qs (4.42)

´ logGΨr1 ´ wρx1p¨qs ´ logGΨr1 ´ wρx2p¨qs

¯

dx1dx2.

By using the expansion (4.39), the double integral on the right-hand side of (4.42)
takes the form
ż

K

ż

K

ρ
´

logGΨr1 ´ wY
ρx,ρyp¨qs ´ logGΨr1 ´ wρxp¨qs ´ logGΨr1 ´ wρyp¨qs

¯

dxdy

“

8
ÿ

n“1

p´1qnT pρq
n pKq

n! ,

where T pρq
n pKq for n P N is defined by

T pρq
n pKq

:“
ż

K

ż

K

ż

Rn

ρ

ˆ n
ź

j“1
wY
ρx,ρyppjq ´

n
ź

j“1
wρxppjq ´

n
ź

j“1
wρyppjq

̇

γrns
pdpp1, . . . , pnqqdxdy.

(4.43)

Since γr1spdpq “ λdp and wY
ρx,ρyppq ´ wρxppq ´ wρyppq “ ´wX

ρx,ρyppq, we get

´T
pρq

1 pKq “ λ

ż

K

ż

K

ż

R1

ρwX
ρx,ρyppqdpdxdy “ λJρpKq ÝÝÝÑ

mÑ8
2λE |Ξ0|

2
1C

G,K
2 ,

where the limit is just the assertion of Lemma 4.5. The above proof of Lemma
4.5 reveals that |T

pρq

1 pKq| ď λJρpKq ď 2λE |Ξ0|21|K|2diampKq. In the next step,
we derive a uniform bound of T pρq

2 pKq as well as its limit as ρ Ñ 8. For doing
this, we rewrite

2
ź

j“1
wY
ρx,ρyppjq ´

2
ź

j“1
wρxppjq ´

2
ź

j“1
wρyppjq “ wρxpp1qwρypp2q ` wρypp1qwρxpp2q

´ wY
ρx,ρypp1qwX

ρx,ρypp2q ´ wX
ρx,ρypp1q

`

wρxpp2q ` wρypp2q
˘

and by regarding the symmetry in x, y and p1, p2 we get

T
pρq

2 pKq “ ρ

ż

K

ż

K

ż

R2

´
2
ź

j“1
wY
ρx,ρyppjq´

2
ź

j“1
wρxppjq´

2
ź

j“1
wρyppjq

¯

γr2s
pdpp1, p2qqdxdy

“ρ

ż

K

ż

K

ż

R2

´

2wρxpp1qwρypp2q́
`

wY
ρx,ρypp2q`2wρxpp2q

˘

wX
ρx,ρypp1q

¯

γr2s
pdpp1, p2qqdxdy

“2ρ
ż

K

ż

K

ż

R2

wρxpp1qwρypp2qγr2s
pdpp1, p2qqdxdy ` Tr2

pρq

pKq, (4.44)
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where

|Tr2
pρq

pKq| ď 3λρ
ż

K

ż

K

ż

R1

ż

R1

wX
ρx,ρypp1qwρxpp2 ` p1q|γ

r2s

red|pdp2qdp1dxdy

“ 3λρ
ż

K

ż

K

ż

R1

wX
ρx,ρypp1qE

ˇ

ˇγ
r2s

red

ˇ

ˇ

`

Ξ0 ` ρxvpΦ0q, xy ´ p1
˘

dp1dxdy.

(4.45)

Clearly, we have 8 ą
ˇ

ˇγ
r2s

red

ˇ

ˇpR1q ě E
ˇ

ˇγ
r2s

red

ˇ

ˇ

`

Ξ0`ρxvpΦ0q, xy´p1
˘

ÝÝÝÑ
ρÑ8

0 for x ‰ o.
Together with the arguments used in the proof of Lemma 4.5, among them the
uniform estimate JρpKq ď 2E |Ξ0|2|K|2diampKq, it follows that Tr2

pρq

pKq ÝÝÝÑ
ρÑ8

0.
Finally, Lemma 4.4 and (4.44) show that

T
pρq

2 pKq

2 ÝÝÝÑ
ρÑ8

λpE |Ξ0|1q
2γ

r2s

redpR1
q

ż

R1

`

E |gpp,Φ0q X K|1
˘2dp

“ λpE |Ξ0|1q
2γ

r2s

redpR1
qCG,K

1 .

In addition, we can derive a uniform bound of T pρq

2 pKq. From (4.45) and the
above bound of T pρq

1 pKq we get

|Tr2
pρq

pKq| ď 3}γ
r2s

red}TV |T
pρq

1 pKq| ď 6λ|K|2diampKq}γ
r2s

red}TVE |Ξ0|
2
1.

Hence, we see from (4.36) and (4.43) that, for two independent pairs pΞi,Φiq, i “

1, 2, with the same distribution as pΞ0,Φ0q, the following estimate holds:

|T
pρq

2 pKq| ď 2λ|JρpK,Ξ1,Φ1,Ξ2,Φ2q| ` Tr2
pρq

pKq

ď 8λ|K|2diampKqE |Ξ0|
2
1}γ

r2s

red}TV .

Obviously, the limit (4.33) coincides with limρÑ8p´T
pρq

1 pKq ` 1
2T

pρq

2 pKqq. Thus,
the proof of Theorem 4.4 is accomplished if we show that

lim
ρÑ8

T pρq
n pKq “ 0 and sup

ρě1

|T pρq
n pKq|

n! ď CK
n for n ě 3 such that

ÿ

ně3
CK
n ă 8.

(4.46)
This means that we have to find suitable upper bounds of the integrals (4.43)
for each n ě 3 which are uniform w.r.t. ρ and disappear as ρ Ñ 8. Using
the reduced factorial cumulant measures γrns

red defined (in differential notation)
by γrnspdpp1, . . . , pnqq “ λγ

rns

redppdpi ´ pj : i ‰ jqqdpj for any j “ 1, . . . , n, the
boundedness of the total variation measure |γ

rns

red|p¨q on Rn´1 and obvious relations
n
ź

i“1

`

wρxppiq ` wρyppiq
˘

´

n
ź

i“1
wρxppiq ´

n
ź

i“1
wρyppiq

“

n´1
ÿ

k“1

ÿ

1ďi1ă¨¨¨ăikďn

k
ź

ℓ“1
wρxppiℓq

n
ź

j“1
j‰i1,...,ik

wρyppjq
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and
n
ź

i“1

`

wρxppiq ` wρyppiq
˘

´

n
ź

i“1
wY
ρx,ρyppiq

“

n
ÿ

k“1
wX
ρx,ρyppkq

k´1
ź

i“1
wY
ρx,ρyppiq

n
ź

j“k`1

`

wρxppjq ` wρyppjq
˘

ď

n
ÿ

k“1
wX
ρx,ρyppkq

n
ź

j“1
j‰k

`

wρxppjq ` wρyppjq
˘

,

we obtain the following estimates
ˇ

ˇ

ˇ

ˇ

ż

K

ż

K

ż

Rn

ρ
´

n
ź

i“1

`

wρxppiq`wρyppiq
˘

´

n
ź

i“1
wρxppiq´

n
ź

i“1
wρyppiq

¯

γrns
pdpp1, . . . , pnqqdxdy

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“1

ˆ

n

k

̇
ż

K

ż

K

ż

Rn

ρ
k
ź

i“1
wρxppiq

n
ź

j“k`1
wρyppjqγ

rns
pdpp1, . . . , pnqqdxdy

ˇ

ˇ

ˇ

ˇ

ď T
pρq

n,1 pKq :“ λ
n´1
ÿ

k“1

ˆ

n

k

̇
ż

K

ż

K

ż

R1

ρwρxpp1q

ż

Rn´1

k
ź

i“2
wρxppi ` p1q

n
ź

j“k`1
wρyppj ` p1q

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp1dxdy (4.47)

and
ˇ

ˇ

ˇ

ˇ

ż

K

ż

K

ż

Rn

ρ
´

n
ź

i“1

`

wρxppiq ` wρyppiq
˘

´

n
ź

i“1
wY
ρx,ρyppiq

¯

γrns
pdpp1, . . . , pnqqdxdy

ˇ

ˇ

ˇ

ˇ

ďλn

ż

K

ż

K

ż

R1

ρwX
ρx,ρypp1q

ż

Rn´1

n
ź

j“2

`

wρxppj`p1q`wρyppj`p1q
˘ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp1dxdy

ďT
pρq

n,2 pKq :“ λn
n
ÿ

k“1

ˆ

n ´ 1
k ´ 1

̇
ż

K

ż

K

ż

R1

ρwX
ρx,ρypp1q

ż

Rn´1

k
ź

i“2
wρxppi ` p1q

ˆ

n
ź

j“k`1
wρyppj ` p1q

ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp1dxdy. (4.48)

Obviously, we have |T pρq
n pKq| ď T

pρq

n,1 pKq `T
pρq

n,2 pKq for n ě 3. Let us first, rewrite
the integral terms in (4.47). For this purpose we introduce the abbreviation

I
pρq

n,kpKq :“
ż

K

ż

K

ż

R1

ρwρxpp1q

ż

Rn´1

k
ź

i“2
wρxppi ` p1q

n
ź

j“k`1
wρyppj ` p1q

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp1dxdy

for k “ 2, . . . , n´1. As in (4.35) we substitute x “ OpΦ1qu and y “ OpΦnqw with
Op¨q as defined in (4.9). Since O´1pφq “ Op´φq and detpOpφqq “ 1 it follows that
u “ Op´Φ1qx, w “ Op´Φnqy and xvpΦiq, xy “ xvpΦiq,OpΦ1quy “ xvpΦi ´ Φ1q, uy

for i “ 1, . . . , k and xvpΦjq, yy “ xvpΦj ´ Φnq, wy for j “ k ` 1, . . . , n. Note
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that xvpΦ1q, xy “ u1 and xvpΦnq, yy “ w1 for u “ pu1, u2qT and w “ pw1, w2qT ,
respectively.

Similarly as in the proof of Lemma 4.2, let pR1,Φ1q, . . . , pRn,Φnq be inde-
pendent copies of the random vector pR0,Φ0q and Ξ1, . . . ,Ξn independent copies
of the random interval Ξ0 “ r´R0, R0s. Then the product wρxppq

śk
i“2 wρxppi `

p1q
śn

j“k`1 wρyppj ` p1q can be expressed as the expectation

E
´

1Ξ1`ρxΦ1,xypp1q

k
ź

i“2
1Ξi`ρxvpΦiq,xyppi ` p1q

n
ź

j“k`1
1Ξj`ρxvpΦjq,yyppj ` p1q

¯

,

which, together with the above transformations of x, y P R2 and Fubini’s theorem,
allows us to write Ipρq

n,kpKq in the form

E
ż

R2

ż

R2

ż

R1

ż

Rn´1

ρ
´

1Ξ1`ρu1pp1q

k
ź

i“2
1Ξi`ρxvpΦi´Φ1q,uyppi ` p1q

ˆ

n´1
ź

j“k`1
1Ξj`ρxvpΦj´Φnq,wyppj ` p1q1Ξnppn ` p1 ´ ρw1q

¯

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp11Op´Φ1qKpuq1Op´ΦnqKpwqdpu1, u2qdpw1, w2q

“E
ż

R2

ż

R2

ż

R1

ż

Rn´1

ρ
´

1Ξ1`ρpu1´w1qpp1 ´ ρw1q

k
ź

i“2
1Ξi`ρxvpΦi´Φ1q,uy´ρw1ppi ` p1 ´ ρw1q

ˆ

n´1
ź

j“k`1
1Ξj`ρxvpΦj´Φnq,wy´ρw1ppj ` p1 ´ ρw1q1Ξnppn ` p1 ´ ρw1q

¯

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp11Op´Φ1qKpuq1Op´ΦnqKpwqdpu1, u2qdpw1, w2q

“E
ż

R2

ż

R2

ż

R1

ż

Rn´1

ρ
´

k
ź

i“2
1Ξi`ρxvpΦi´Φ1q,uy´ρw1ppi ` p1q

ˆ

n´1
ź

j“k`1
1Ξj`ρxvpΦj´Φnq,wy´ρw1ppj ` p1q1Ξ1`ρpu1´w1qpp1q1Ξnppn ` p1q

¯

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp11Op´Φ1qKpuq1Op´ΦnqKpwqdpu1, u2qdpw1, w2q

“E
ż

R2

ż

R2

ż

R1

ż

Rn´1

ρ
´

k
ź

i“2
1Ξi`ρxvpΦi´Φ1q,pz1`w1,z2qy´ρw1ppi ` p1q

ˆ

n´1
ź

j“k`1
1Ξj`ρxvpΦj´Φnq,wy´ρw1ppj ` p1q1Ξ1`ρ_1ppq1Ξnppn ` pq

¯

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp1Op´Φ1qKppz1 ` w1, z2qq1Op´ΦnqKpwq

ˆ dpz1, z2qdpw1, w2q
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“E
ż

R2

ż

R2

ż

R1

ż

Rn´1

´
k
ź

i“2
1Ξi`xvpΦi´Φ1q,pz1`ρw1,ρz2qy´ρw1ppi ` p1q

ˆ

n´1
ź

j“k`1
1Ξj`ρxvpΦj´Φnq,wy´ρw1ppj ` p1q1Ξnppn ` p1q

¯

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqq1Ξ1`z1pp1qdp11Op´Φ1qKpp
z1

ρ
` w1, z2qq

ˆ 1Op´ΦnqKppw1, w2qqdpz1, z2qdpw1, w2q. (4.49)

Replacing the two products of indicator functions in (4.49) by 1 leads to the
following bound of Ipρq

n,kpKq provided that
ˇ

ˇγ
rns

red

ˇ

ˇpRn´1q ă 8:

I
pρq

n,kpKq ď E
ż

R2

ż

R2

ż

R1

ż

Rn´1

´

1´Ξ1`p1pz1q1Ξn´pnpp1q

¯

ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp1

ˆ 1Op´Φ1qKpp
z1

ρ
` w1, z2qqdpz1, z2q1Op´ΦnqKppw1, w2qqdpw1, w2q

“ E
ż

R1

ż

R1

ż

R1

ż

Rn´1

´

1´Ξ1`p1pz1q1Ξn´pnpp1q

¯

ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqqdp1

ˆ |gp
z1

ρ
` w1,Φ1q X K|1|gpw1,Φnq X K|1dz1dw1

ď diampKqE
ż

R1

|gpw1,Φnq X K|1dw1

ż

R1

ż

R1

1´Ξ1`p1pz1q1Ξn´pnpp1qdz1dp1

ˆ
ˇ

ˇγ
rns

red

ˇ

ˇpRn´1
q

“ diampKq|K|2E |Ξ1|1E |Ξn|1
ˇ

ˇγ
rns

red

ˇ

ˇpRn´1
q

“ diampKq|K|2pE |Ξ0|1q
2
}γ

rns

red}TV . (4.50)

Here, we have used arguments that have already been applied to prove (4.36).
Also, the product of the indicator functions in the first line of (4.49) disappears
as ρ Ñ 8 P-a.s. and for a.a. pw1, w2q, pz1, z2q, p1,pp2, . . . , pnq P Rn`4 w.r.t.
the corresponding product measure. Therefore, again by Lebesgue’s dominated
convergence theorem,

lim
ρÑ8

I
pρq

n,kpKq “ 0 for k “ 2, . . . , n, n ě 3. (4.51)

Next, we derive a further bound of Ipρq

n,kpKq that depends more on the mean
thickness E |Ξ0|1 of the typical cylinder. For this, we need the Radon–Nikodym
density |c

pnq

redpp2, . . . , pnq| of |γ
rns

redp¨q| w.r.t. to Lebesgue measure on Rn´1. Hence,
by using Fubini’s theorem, we replace the integral (4.50) over Rn´1 by two iter-
ated integrals. The first integral over pp2, . . . , pn´1q P Rn´2 can be estimated by
Hölder’s inequality as follows:

146



ż

Rn´2

k
ź

i“2
1Ξi`xvpΦi´Φ1q,pz1`ρw1,ρz2qy´ρw1´p1ppiq

n´1
ź

j“k`1
1Ξj`ρxvpΦj´Φnq,wy´ρw1´p1ppjq

ˆ
ˇ

ˇc
pnq

redpp2, . . . , pn´1, pnq
ˇ

ˇdpp2, . . . , pn´1q

ď

´

ż

Rn´2

k
ź

i“2
1Ξi`xvpΦi´Φ1q,pz1`ρw1,ρz2qy´ρw1´p1ppiq

n´1
ź

j“k`1
1Ξj`ρxvpΦj´Φnq,wy´ρw1´p1ppjq

ˆ dpp2, . . . , pn´1q

¯

q´1
q
´

ż

Rn´2

ˇ

ˇc
pnq

redpp2, . . . , pn´1, pnq
ˇ

ˇ

qdpp2, . . . , pn´1q

¯
1
q

“

´
n´1
ź

i“2
|Ξi|1

¯

q´1
q

}c
pnq

redp¨, pnq}q (4.52)

for any q ą 1, where }c
pnq

redp¨, pnq}q coincides with the term before the equal sign in
(4.52). Combining the estimates (4.47) and (4.52) with |gpp, φqXK|1 ď diampKq

for pp, φq P R1 ˆ r0, πs,
ş

R1 |gpp, φq X K|1dp “ |K|2, switching the order of inte-
gration and finally applying Lyapunov’s inequality we arrive at

I
pρq

n,kpKq ď E
ż

R1

ż

R1

ż

R1

ż

R1

´
n´1
ź

i“2
|Ξi|1

¯

q´1
q

}c
pnq

redp¨, pnq}q1´Ξ1`p1pz1q1Ξn´pnpp1qdp1dpn

ˆ |gp
z1

ρ
` w1,Φ1q X K|1|gpw1,Φnq X K|1dz1dw1

ďdiampKq|K|2E
´
n´1
ź

i“2
|Ξi|1

¯

q´1
q

ż

R1

ż

R1

ż

R1

}c
pnq

redp¨, pnq}q1´Ξ1`p1pz1q1Ξn´pnpp1qdz1dp1dpn

“diampKq|K|2

ż

R1

}c
pnq

redp¨, pq}qdp
`

E |Ξ0|1
˘

npq´1q

q
` 2

q .

Applying the same arguments as above, the estimate (4.51) reveals that (4.51)
remains true if, instead of }γ

rns

red}TV ă 8, we assume that the L˚
q -norm defined by

}c
pnq

red}
˚
q :“

ş

R1 }c
pnq

redp¨, pq}qdp is finite for some q ą 1 and n ě 3. Hence, we have

T
pρq

n,1 pKq “ λ
n´1
ÿ

k“1

ˆ

n

k

̇

I
pρq

n,kpKq

ď λdiampKq|K|2p2n ´ 2q
`

E |Ξ0|1
˘

npq´1q

q
` 2

q }c
pnq

red}
˚
q .

Together with the strong L˚
q -Brillinger mixing condition with b˚

q pE |Ξ0|1q
1´ 1

q ă

1{2, we get

ÿ

ně3

T
pρq

n,1 pKq

n! ď λa˚
q pE |Ξ0|1q

2
q diampKq|K|2

ÿ

ně3

`

2b˚
q pE |Ξ0|1q

pq´1q

q
˘n

ď
λa˚

q pE |Ξ0|1q
2
q diampKq|K|2

1 ´ 2b˚
q pE |Ξ0|1q

1´ 1
q

.
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Next, we derive two different bounds for the sum T
pρq

n,2 pKq defined in (4.48).
For this purpose, in analogy to Ipρq

n,kpKq, we need uniform bounds of

J
pρq

n,kppq :“
ż

Rn´1

k
ź

i“2
wρxppi ` p1q

n
ź

j“k`1
wρyppj ` pq

ˇ

ˇγ
rns

red

ˇ

ˇpdpp2, . . . , pnqq.

It is easily seen that

J
pρq

n,kppq “ E
ż

Rn´1

k
ź

i“2
1Ξi`ρxvpΦiq,xy´p1ppiq

n
ź

j“k`1
1Ξj`ρxvpΦjq,yy´p1ppjq

ˇ

ˇγ
rns

red

ˇ

ˇdpp2, . . . , pnq

ď
ˇ

ˇγ
rns

red

ˇ

ˇpRn´1
q

and, for any q ą 1 such that }c
pnq

red}q ă 8

J
pρq

n,kppq “ E
ż

Rn´1

k
ź

i“2
1Ξi`ρxvpΦiq,xy´pppiq

n
ź

j“k`1
1Ξj`ρxvpΦjq,yy´pppjqc

pnq

redpp2, . . . , pnq

ˆ dpp2, . . . , pnq

ď E
n
ź

i“2

ˇ

ˇΞi

ˇ

ˇ

q´1
q

1

´

ż

Rn´1

ˇ

ˇc
pnq

redpp2, . . . , pnq
ˇ

ˇ

qdpp2, . . . , pnq

¯
1
q

ď pE |Ξ0|1q
pn´1q

q´1
q }c

pnq

red}q.

The foregoing estimates show that

lim
ρÑ8

J
pρq

n,kppq “ 0 for k “ 2, . . . , n, n ě 3. (4.53)

Further, from the definition of T pρq

n,2 pKq, see (4.48), and the integral JρpKq intro-
duced and estimated in the proof of Lemma 4.5 with the uniform upper bound
2 diampKq|K|2E |Ξ0|21, we see that

T
pρq

n,2 pKq ď λn
n
ÿ

k“1

ˆ

n ´ 1
k ´ 1

̇
ż

K

ż

K

ż

R1

ρwX
ρx,ρypp1qdp1dxdy max

2ďkďn
sup
pPR1

J
pρq

n,kppq

“ λn2n´1JρpKq max
2ďkďn

sup
pPR1

J
pρq

n,kppq

ď λn2ndiampKq|K|2E |Ξ0|
2
1 max

2ďkďn
sup
pPR1

J
pρq

n,kppq

Under the assumption that Ψ „ P is either strongly Brillinger-mixing with
b ă 1{2 or strongly Lq-Brillinger-mixing with bqpE |Ξ0|1q

1´ 1
q ă 1{2 we obtain the

inequalities

ÿ

ně3

T
pρq

n,2 pKq

n! ď 2λabE |Ξ0|
2
1diampKq|K|2

ÿ

ně3
n
`

2b
˘n´1

ď
2λabE |Ξ0|21diampKq|K|2

p1 ´ 2bq2
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and
ÿ

ně3

T
pρq

n,2 pKq

n! ď 2λaqbqE |Ξ0|
2
1diampKq|K|2

ÿ

ně3
n
`

2bqpE |Ξ0|1q
q´1

q
˘n´1

ď
2λaqbqE |Ξ0|21diampKq|K|2
`

1 ´ 2bqpE |Ξ0|1q
1´ 1

q
˘2 .

Finally, summarizing the above-proved relations (4.51), (4.53) and the con-
vergence of the series

ř

ně3 T
pρq

n,i pKq{n! for i “ 1, 2 shows the validity of (4.46)
which in turn implies (4.40). Thus, the proof of Theorem 4.4 is complete.

Remark. Note that in Theorems 4.3 and 4.4, the interval Ξ0 :“ r´R0, R0s with
ERk

0 ă 8 can be replaced by a finite union of random closed intervals Ξ0 Ă R1

satisfying inf Ξ0 ď 0 ď sup Ξ0 and E |Ξ0|k1 ă 8 for k “ 1 or k “ 2, respectively.
This restriction is based on the definition of a process of cylinders with non-
convex bases, see e.g. Spiess and Spodarev [2011]. In Lemma 4.4 and Lemma
4.5, the cross-section (or base) Ξ0 of the typical cylinder can be chosen as random
compact set satisfying 0 ă E |Ξ0|1 ă 8 or E |Ξ0|21 ă 8, respectively.

Central limit theorem in the strong Brillinger-mixing set-
ting
To obtain the asymptotic normality, we need much more strict assumptions, in
particular imposed on the reduced factorial cumulant measures of Ψ.

Theorem 4.5.
Assume that there are constants b ą 0, a ě b´1 such that the reduced factorial
cumulant measures of Ψ satisfy }γ

rks

red}TV ď abk for all k P N. Moreover, suppose
that ERk

0 ă 8 for all k P N and that Φ0 has a continuous distribution function
G. Then

ρ´ 3
2 p|Ξ X Kρ|2 ´ E |Ξ X Kρ|2q

D
ÝÝÝÑ
ρÑ8

Np0, σ2
P pK,F,Gqq,

where σ2
P pK,F,Gq ą 0 is the asymptotic variance from Theorem 4.4.

The assumption a ě b´1 is required so that }γ
r1s

red}TV :“ 1 ď ab. Theorem 4.5
generalizes some of the results obtained in Heinrich and Spiess [2013], in partic-
ular Theorem 4.1, for stationary Poisson cylinder processes, yet under significant
expenses of the generality of the dimension. We believe that the result can be
transferred to higher dimensions, but probably not by the approach used here
since it is very computationally demanding even for the planar case.

Our main tool in proving Theorem 4.5 is the application of the factorial mo-
ment measure expansion, i.e. Theorem 1.4 on the pfg’s GΨr1´wY

x1,...,xk
s for k P N

and x1, . . . , xk P R2. Recall that

GΨr1 ´ ws “ 1 `

8
ÿ

k“1

p´1qk

k!

ż

Rk

wpp1q ¨ ¨ ¨wppkqαrks
pdpp1, . . . , pkqq (4.54)
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for some function w : R Ñ r0, 1s. The condition ensuring the convergence of
(4.54) for w “ wY

x1,...,xk
for some x1, . . . , xk P R2 is verified by Lemma 4.2.

1. Step in proving Theorem 4.5: Expansion of ρ´9{2Cum3|Ξ X ρK|2 into
an infinite sum of asymptotically vanishing terms:

Using the factorial moment measure expansion (4.54) of pgf’s Gr1´wY
x1,x2,x3s,

Gr1 ´wY
x1,x2s, Gr1 ´wY

x1,x3s, Gr1 ´wY
x2,x3s, Gr1 ´wx1s, Gr1 ´wx2s, Gr1 ´wx3s and

applying the Cauchy product formula, we obtain

ρ´9{2Cum3|Ξ X ρK|2 “

ż

K

ż

K

ż

K

8
ÿ

k“1

p´1qk

k! T
pρq

k px1, x2, x3qdx1dx2dx3,

where

T
pρq

k px1, x2, x3q :“ ρ3{2

¨

˝

ż

Rk

k
ź

i“1
wY
ρx1,ρx2,ρx3ppiqα

rks
pdpp1, . . . , pkqq (4.55)

´

k
ÿ

l“0

ˆ

k

l

̇
ż

Rl

l
ź

i“1
wρx1ppiqα

rls
pdpp1, . . . , plqq

ż

Rk´l

k´l
ź

i“1
wY
ρx2,ρx3ppiqα

rk´ls
pdpp1, . . . , pk´lqq

´

k
ÿ

l“0

ˆ

k

l

̇
ż

Rl

l
ź

i“1
wρx2ppiqα

rls
pdpp1, . . . , plqq

ż

Rk´l

k´l
ź

i“1
wY
ρx1,ρx3ppiqα

rk´ls
pdpp1, . . . , pk´lqq

´

k
ÿ

l“0

ˆ

k

l

̇
ż

Rl

l
ź

i“1
wρx3ppiqα

rls
pdpp1, . . . , plqq

ż

Rk´l

k´l
ź

i“1
wY
ρx1,ρx2ppiqα

rk´ls
pdpp1, . . . , pk´lqq

`2
k
ÿ

l“0

l
ÿ

m“0

ˆ

k

l

̇ˆ

l

m

̇
ż

Rm

m
ź

i“1
wρx1ppiqα

rms
pdpp1, . . . , pmqq

ˆ

ż

Rl´m

l´m
ź

i“1
wρx2ppiqα

rl´ms
pdpp1, . . . , pl´mqq

ż

Rk´l

k´l
ź

i“1
wρx3ppiqα

rk´ls
pdpp1, . . . , pk´lqq

˛

‚.

Lemma 4.6.
Assume that ER3

0 ă 8 and Φ0 has a continuous distribution function G. Then

lim
ρÑ8

ż

K

ż

K

ż

K

T
pρq

1 px1, x2, x3qdx1dx2dx3 “ 0.

Proof. We have that

1
λ

ż

K

ż

K

ż

K

T
pρq

1 px1, x2, x3qdx1dx2dx3

“ ρ3{2
ż

K

ż

K

ż

K

ż

R

Ppp P

3
č

i“1
pΞ0 ` ρxvpΦ0q, xiyqqdpdx1dx2dx3.

To determine the limit of the right-hand side as ρ Ñ 8, we rewrite the probability
within the integral by means of the expectation over the corresponding indicator
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function leading to

ρ3{2E
ż

K

ż

K

ż

K

1Ξ0`ρxvpΦ0q,x1yXΞ0`ρxvpΦ0q,x2yXΞ0`ρxvpΦ0q,x3yppqdpdx1dx2dx3

“ρ3{2E
ż

K

ż

K

ż

K

|Ξ0XpΞ0 ` ρxvpΦ0q, x2 ´ x1yqXpΞ0 ` ρxvpΦ0q, x3 ´ x1yq|1dx1dx2dx3

“ρ3{2E
ż

K‘p´Kq

ż

K‘p´Kq

|K X pK ´ y1q X pK ´ y2q|2

ˆ |Ξ0 X pΞ0 ` ρxvpΦ0q, y1yq X pΞ0 ` ρxvpΦ0q, y2yq|1dy1dy2

ďρ3{2E
ż

K‘p´Kq

ż

K‘p´Kq

|K|2|Ξ0 X pΞ0 ` ρxvpΦ0q, y1yq X pΞ0 ` ρxvpΦ0q, y2yq|1dy1dy2

after the substitution y1 “ x2 ´ x1, y2 “ x3 ´ x1, y3 “ x1 and estimate |K X pK ´

y1q X pK´y2q|2 ď |K|2. Further,we put y1 “ OpΦ0qpu1, u2qT , y2 “ OpΦ0qpv1, v2qT

(recall (4.9)), so that the last line equals

ρ3{2
|K|2E

ż

rOp´Φ0qK‘p´Kqs2

|Ξ0 X pΞ0 ` ρu1q X pΞ0 ` ρv1q|1dpu1, u2qdpv1, v2q

ď ρ3{2
|K|2E

ż

rOp´Φ0qK‘p´Kqs2

|Ξ0|11r0,2R0sp|ρu1|q1r0,2R0sp|ρv1|qdpu1, u2qdpv1, v2q

“ ρ´1{2
|K|2E |Ξ0|1

ż

R2

ż

R2

1Op´Φ0qK‘p´Kqp
z1

ρ
, u2q1Op´Φ0qK‘p´Kqp

z2

ρ
, v2q

ˆ 1r0,2R0sp|z1|q1r0,2R0sp|z2|qdpz1, u2qdpz2, v2q,

where we put z1 “ ρu1, z2 “ ρv1. By integrating w.r.t u2 and v2, the latter
expression equals

ρ´1{2
|K|2E |Ξ0|1

ż

R

ż

R

|gp
z1

ρ
,Φ0q X K ‘ p´Kq|1|gp

z2

ρ
,Φ0q X K ‘ p´Kq|1

ˆ 1r0,2R0sp|z1|q ¨ 1r0,2R0sp|z2|qdz1dz2

ď |K|2ρ
´1{2

pdiampK ‘ p´Kqqq
232ER3

0.

Since ER3
0 was assumed to be finite, the later term converges to 0 as ρ Ñ 8.

The integration steps used to prove Lemma 4.6 will be repeated several times
in the rest of the paper, so some details will be omitted. In particular, it can be
shown that, assuming E |Ξ0|k1 ă 8, we would have

lim
ρÑ8

ρk{2
ż

Kk

ż

R

wX
ρx1,...,ρxk

ppqdpdpx1, . . . , xkq

“ lim
ρÑ8

ρk{2
ż

Kk

ż

R

Ppp P

k
č

i“1
pΞ0 ` ρxvpΦ0q, xiyqqdpdpx1, . . . , xkq

“ 0.
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Lemma 4.7.
If Ψ „ P is Brillinger-mixing, ER3

0 ă 8 and Φ0 has a continuous distribution
function, then

lim
ρÑ8

ż

K

ż

K

ż

K

T
pρq

2 px1, x2, x3qdx1dx2dx3 “ 0.

Proof. From (4.55), we have for k “ 2 that

T
pρq

2 px1, x2, x3q

“ ρ3{2
ż

R2

¨

˚

˝

2
ź

i“1
wY
ρx1,ρx2,ρx3ppiq ´

ÿ

s,rPt1,2,3u
s‰r

2
ź

i“1
wY
ρxs,ρxr

ppiq `

3
ÿ

s“1

2
ź

i“1
wρxsppiq

˛

‹

‚

ˆ αr2s
pdpp1, p2qq

` ρ3{2
ż

R2

¨

˚

˝

4
ÿ

s,rPt1,2,3u
s‰r

wspp1qwrpp2q ´ 2
3
ÿ

s“1
wρxspp1qwY

tρxr,rPt1,2,3uzsupp2q

˛

‹

‚

ˆ αr1s
pdp1qαr1s

pdp2q.

Using the inclusion-exclusion principle, the fact that αr2s is invariant under per-
mutation of its components and the representations αr1spBq “ λ|B|1 and αr2spB1ˆ

B2q “ γr2spB1 ˆ B2q ` λ2|B1|1|B2|1, we arrive at

T
pρq

2 px1, x2, x3q

“ ρ3{2
ż

R2

`

wX
ρx1,ρx2,ρx3pp1qwY

ρx1,ρx2,ρx3pp2q ´ 2wρx1pp1qwX
ρx2,ρx3pp2q

´ 2wρx2pp1qwX
ρx1,ρx3pp2q ´ 2wρx3pp1qwX

ρx1,ρx2pp2q ` 2wX
ρx1,ρx2pp1qwX

ρx2,ρx3pp2q

`2wX
ρx1,ρx2pp1qwX

ρx1,ρx3pp2q ` 2wX
ρx1,ρx3pp1qwX

ρx2,ρx3pp2q
˘

γr2s
pdpp1, p2qq

` λ2ρ3{2
ż

R2

`

wX
ρx1,ρx2,ρx3pp1qwY

ρx1,ρx2,ρx3pp2q ` 2wX
ρx1,ρx2pp1qwX

ρx2,ρx3pp2q

`2wX
ρx1,ρx2pp1qwX

ρx1,ρx3pp2q ` 2wX
ρx1,ρx3pp1qwX

ρx2,ρx3pp2q
˘

dp1dp2.

Thus,
ż

K

ż

K

ż

K

T
pρq

2 px1, x2, x3qdx1dx2dx3

“ ρ3{2
ż

K

ż

K

ż

K

ż

R2

`

wX
ρx1,ρx2,ρx3pp1qwY

ρx1,ρx2,ρx3pp2q ´ 6wρx1pp1qwX
ρx2,ρx3pp2q

`6wX
ρx1,ρx2pp1qwX

ρx2,ρx3pp2q
˘

γr2s
pdpp1, p2qqdx1dx2dx3

` λ2ρ3{2
ż

K

ż

K

ż

K

ż

R2

`

wX
ρx1,ρx2,ρx3pp1qwY

ρx1,ρx2,ρx3pp2q ` 6wX
ρx1,ρx2pp1qwX

ρx2,ρx3pp2q
˘

ˆ dp1dp2dx1dx2dx3
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The limit of
ş

K

ş

K

ş

K
T

pρq

2 dx1dx2dx3 will be evaluated term by term. First, it
is a direct consequence of Lemma 4.6 and the Brillinger-mixing property that

lim
ρÑ8

ρ3{2
ż

K

ż

K

ż

K

ż

R2

wX
ρx1,ρx2,ρx3pp1qwY

ρx1,ρx2,ρx3pp2qγr2s
pdpp1, p2qqdx1dx2dx3 “ 0

and

lim
ρÑ8

ρ3{2
ż

K

ż

K

ż

K

ż

R2

wX
ρx1,ρx2,ρx3pp1qwY

ρx1,ρx2,ρx3pp2qdp1dp2dx1dx2dx3 “ 0.

For the rest of integrals, we use the same integration procedure as in the
proof of Lemma 4.6, especially the substitutions. Hence, the details are omitted.
First, we assume that wX

ρx1,ρx2ppq “ Ppp P Xi“1,2pΞ1 ` ρxvpΦ1q, xiyqq and that
wX
ρx2,ρx3ppq “ Ppp P Xi“1,3pΞ2 ` ρxvpΦ2q, xiyqq, where Ξ1 :“ r´R1, R1s, Ξ2 :“

r´R2, R2s,Φ1,Φ2 are mutually independent. Then we arrive at the estimate

ρ3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K

ż

K

ż

K

ż

R2

wX
ρx1,ρx2pp1qwX

ρx2,ρx3pp2qγp2q
pdpp1, p2qqdx1dx2dx3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ρ3{2λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K

ż

K

ż

K

ż

R2

wX
ρx1,ρx2pp1qwX

ρx2,ρx3pp1 ` p2qdp1γ
r2s

redpdp2qdx1dx2dx3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď λρ3{2E
ż

Op´Φ1qK‘p´Kq

ż

Op´Φ2qK‘p´Kq

|K|21Ξ1XpΞ1`ρu1qpp1q

ˆ 1Ξ2XpΞ2`ρv1qpp1 ` p2qdp1|γ
r2s

red|pdpu1, u2qqdpv1, v2q

ď λρ´1{2
|K|2diampK ‘ p´Kqq

2E|Ξ1|1}γ
r2s

red}TV

ż

R

ż

R

1r0,2R1sp|z1|q1r0,2R2sp|z2|qdz1dz2

which tends to 0 as ρ Ñ 8 having ER2
0 ă 8. Similarly,

ρ3{2
ż

K

ż

K

ż

K

ż

R2

wX
ρx1,ρx2pp1qwX

ρx1,ρx3pp2qdp1dp2dx1dx2dx3

ď ρ´1{2
|K|2diampK ‘ p´Kqq

2E |Ξ1|1|Ξ2|1

ż

R

ż

R

1r0,2R1sp|z1|q1r0,2R2sp|z2|qdz1dz2

(4.56)

and

ρ3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K

ż

K

ż

K

ż

R2

wρx1pp1qwX
ρx2,ρx3pp2qγr2s

pdpp1, p2qqdx1dx2dx3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ λρ3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K

ż

K

ż

K

ż

R2

wρx1pp1qwX
ρx2,ρx3pp1 ` p2qdp1γ

r2s

redpdp2qdx1dx2dx3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď λρ´1{2
|K|2diampKqdiampK ‘ p´Kqq2E |Ξ1|1|Ξ2|

2
1γ

r2s

redpRq. (4.57)

153



Hence, expressions (4.56) and (4.57) converge to 0 with ρ Ñ 8 and consequently,
ż

K

ż

K

ż

K

T
pρq

2 px1, x2, x3qdx1dx2dx3 ÝÝÝÑ
ρÑ8

0.

Before stating a general result for arbitrary k ě 3, we need to introduce
some notation and other supplementary results. Denote by S the space of all
measurable functions e : R Ñ R and define operators f, fS1 , f pkq, k P N, S1 Ă S on
N ˆ S, such that for n P N and S Ă S

fpn, Sq ÞÑ fpn, Sqpp1, . . . , pnq :“
ÿ

pe1,...,enqPS

n
ź

i“1
eippiq, pp1, . . . , pnq P Rn,

f pkq
pn, Sq ÞÑ f pkq

pn, Sqpp1, . . . , pnq :“
ÿ

pe1,...,enqPS
Dei1 ‰¨¨¨‰eik

n
ź

i“1
eippiq, pp1, . . . , pnq P Rn,

fS1pn, Sq ÞÑ fS1pn, Sqpp1, . . . , pnq :“
ÿ

pe1,...,enqPSYS1

S1ĂYei

n
ź

i“1
eippiq, pp1, . . . , pnq P Rn.

Note that f pkqpn, Sq ” 0 whenever k ą n and fS1pn, Sq ” 0 whenever #S 1 ą n.
Moreover, we define functions g, gS1 , gpkq : Nˆ S Ñ R, k P N, S1 Ă S such that

for n P N and S Ă S

gpn, Sq “

ż

Rn

fpn, Sqpp1, . . . , pnqγrnsdpp1, . . . , pnq,

gpkq
pn, Sq “

ż

Rn

f pkq
pn, Sqpp1, . . . , pnqγrnsdpp1, . . . , pnq,

gS1pn, Sq “

ż

Rn

fS1pn, Sqpp1, . . . , pnqγrnsdpp1, . . . , pnq.

It is easy to see that for k, n P N and e1, . . . , ek P S,

fpn, te1, . . . , ekuq “

k
ÿ

i“1
fpn, eiq `

ÿ

i‰j

f p2q
pn, tei, ejuq ` ¨ ¨ ¨ ` f pkq

pn, te1, . . . , ekuq

(4.58)
and

fpn, e1 ` ¨ ¨ ¨ ` ekq “ fpn, te1, . . . , ekuq. (4.59)
Similar relations hold for function g.

From now on, we will refer to a universal constant denoted by Cpρqpx1, x2, x3q

such that
ρ3{2

ż

K

ż

K

ż

K

Cpρq
px1, x2, x3qdx1dx2dx3 Ñ 0 (4.60)

as ρ Ñ 8.
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Lemma 4.8.
Let n, k P N and E,E 1 be any subsets of twρxr , w

X
ρxr,ρxs

, wX
ρx1,ρx2,ρx3ur,s“1,2,3. Then,

under the assumptions of Lemma 4.7, we have that

1. gwX
ρx1,ρx2,ρx3

pn,Eq “ Cpρqpx1, x2, x3q,

2. gwX
ρxr,ρxs

pn,EqgwX
ρxs,ρxt

pk,E 1q “ Cpρqpx1, x2, x3q, r ‰ s, s ‰ t,

3. gwX
ρxr,ρxs ,w

X
ρxs,ρxt

pn,Eq “ Cpρqpx1, x2, x3q, r ‰ s, s ‰ t, r ‰ t,

4. gwρxr ,w
X
ρxs,ρxt

pn,Eq “ Cpρqpx1, x2, x3q, r ‰ s, s ‰ t, r ‰ t,

5. gwρx1 ,wρx2 ,wρx3
pn,Eq “ Cpρqpx1, x2, x3q,

6. gwρxr ,wρxs
pn,EqgwX

ρxs,ρxt
pk,E 1q “ Cpρqpx1, x2, x3q, r ‰ s, s ‰ t.

Proof. 1. It is enough to show for n “ 1. This case, however, was shown in
the proof of Lemma 4.6.

2.-3. For n “ 1, it was shown in the proof of Lemma 4.7 (see (4.56)).

5. For n “ 1, 2 the term gwρx1 ,wρx2 ,wρx3
pn,Eq is equal to 0 by definition. We

will show the result for n “ 3:

ρ3{2 1
λ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K3

ż

R3

wρx1pp1qwρx2pp2qwρx3pp3qγr3s
pdpp1, p2, p3qqdx1dx2dx3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď E ρ3{2
ż

K3

ż

R3

1Ξ1`ρxvpΦ1q,x1ypp1q1Ξ2`ρxvpΦ2q,x1ypp1 ` p2q1Ξ3`ρxvpΦ3q,x1ypp1 ` p3q

ˆ dp1|γ
r3s

red|pdpp2, p3qqdx1dx2dx3

“ E ρ3{2
ż

ˆ3
i“1Op´ΦiqK

ż

R3

1Ξ1`ρu1pp1q1Ξ2`ρv1pp1 ` p2q1Ξ3`ρw1pp1 ` p3q

ˆ dp1|γ
r3s

red|pdpp2, p3qqdpu1, u2qdpv1, v2qdpw1, w2q

“ E ρ3{2
ż

ˆ3
i“1Op´ΦiqK

ż

R3

1Ξ1`ρpu1´w1qpp1q1Ξ2`ρpv1´w1qpp1 ` p2q1Ξ3pp1 ` p3q

ˆ dp1|γ
r3s

red|pdpp2, p3qqdpu1, u2qdpv1, v2qdpw1, w2q

ď diampKq
2E ρ3{2

ż

R3

ż

R3

|gpw1,Φ3q X K|11Ξ1`ρpu1´w1qpp1q1Ξ2`ρpv1´w1qpp1 ` p2q

ˆ 1Ξ3pp1 ` p3qdp1|γ
r3s

red|pdpp2, p3qqdu1dv1dw1

“ diampKq
2E ρ´1{2

ż

R3

ż

R3

|gpz1{ρ ` w1,Φ3q X K|11Ξ1`z1pp1q1Ξ2`z2pp1 ` p2q

ˆ 1Ξ3pp1 ` p3qdp1|γ
r3s

red|pdpp2, p3qqdz1dz2dw1
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ď diampKq
3E ρ´1{2

ż

R2

ż

R3

1Ξ1`z1pp1q1Ξ2`z2pp1 ` p2q

ˆ 1Ξ3pp1 ` p3qdp1|γ
r3s

red|pdpp2, p3qqdz1dz2

“ ρ´1{2diampKq
3
pE |Ξ0|1q

3
}γ

r3sq

red }TV
ρÑ8
ÝÝÝÑ 0.

6. We will show it for n “ 2, k “ 1. By following the same steps as in the
proof of the previous point combined with the steps in the proof of Lemma
4.6, we arrive at

ż

K

ż

K

ż

K

gwρxr ,wρxs
p2, EqgwX

ρxs,ρxt
p1, E 1

qdx1dx2dx3

ď ρ´1{22λpdiampKqq
2diampK ‘ p´Kqq}γ

r2s

red}TVE |Ξ1|1|Ξ2|1|Ξ3|1
ρÑ8
ÝÝÝÑ 0.

The case of general n, k P N can be treated similarly for 1.´ 6. Let us demon-
strate on the case 5. for n ě 3 and e1, . . . , en Ă twρxr , w

X
ρxr,ρxs

, wX
ρx1,ρx2,ρx3ur,s“1,2,3

such that twρx1 , wρx2 , wρx3u Ă te1, . . . , enu. Since ei, i “ 1, . . . , n are probabilities,
we come to the following estimate by following the exact steps as for n “ 3:

ρ3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K3

ż

Rn

e1pp1q ¨ ¨ ¨ enppnqγrns
pdpp1, . . . , pnqqdx1dx2dx3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ρ3{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

K3

ż

Rn

wρx1pp1qwρx2pp2qwρx3pp3qγrns
pdpp1, . . . , pnqqdx1dx2dx3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ρ´1{2λdiampKq
4
pE |Ξ0|1q

3
}γ

rns

red}TV .

The latter expression goes to 0 with ρ Ñ 8 since we assumed }γ
rns

red}TV ă 8.

Lemma 4.9.
Under the assumptions of Lemma 4.7,

lim
ρÑ8

ż

K

ż

K

ż

K

T
pρq

k px1, x2, x3qdx1dx2dx3 “ 0, k ě 3.

Proof. By expressing the factorial moment measures αrks, k P N in terms of fac-
torial cumulant measures γrks as in (1.5), we have

ρ´3{2T
pρq

k px1, x2, x3q

“

k
ÿ

n“1

ÿ

K1Y¨¨¨YKn
“t1,...,ku

n
ź

j“1

ż

R#Kj

ź

iPKj

wY
ρx1,ρx2,ρx3ppiqγ

r#Kjs
pdppi, i P Kjqq
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´

3
ÿ

r“1

k
ÿ

l“0

ˆ

k

l

̇ l
ÿ

n1“1

ÿ

K1Y¨¨¨YKn1
“t1,...,lu

n1
ź

j“1

ż

R#Kj

ź

iPKj

wρxr ppiqγ
r#Kjs

pdppi, i P Kjqq

ˆ

k´l
ÿ

n2“1

ÿ

K1Y¨¨¨YKn2
“t1,...,k´lu

n2
ź

j“1

ż

R#Kj

ź

iPKj

wY
tρxs,s‰ruppiqγ

r#Kjs
pdppi, i P Kjqq

` 2
k
ÿ

l“0

l
ÿ

m“0

ˆ

k

l

̇ˆ

l

m

̇ m
ÿ

n1“1

ÿ

K1Y¨¨¨YKn1
“t1,...,mu

n1
ź

j“1

ż

R#Kj

ź

iPKj

wρx1ppiqγ
r#Kjs

pdppi, i P Kjqq

ˆ

l´m
ÿ

n2“1

ÿ

K1Y¨¨¨YKn2
“t1,...,l´mu

n2
ź

j“1

ż

R#Kj

ź

iPKj

wρx2ppiqγ
r#Kjs

pdppi, i P Kjqq

ˆ

k´l
ÿ

n3“1

ÿ

K1Y¨¨¨YKn3
“t1,...,k´lu

n3
ź

j“1

ż

R#Kj

ź

iPKj

wρx3ppiqγ
r#Kjs

pdppi, i P Kjqq.

Next, we use the inclusion-exclusion principle to rewrite wY
ρx1,ρx2,ρx3ppq “ wρx1ppq`

wρx2ppq ` wρx3ppq ´ wX
ρx1,ρx2ppq ´ wX

ρx1,ρx3ppq ´ wX
ρx2,ρx3ppq ` wX

ρx1,ρx2,ρx3ppq and
wY
ρxr,ρxs

“ wρxr ` wρxs ´ wX
ρxr,ρxs

, r, s P t1, 2, 3u. Further, we denote

S :“ twρx1 , wρx2 , wρx3 ,´w
X
ρx1,ρx2 ,´w

X
ρx1,ρx3 ,´w

X
ρx2,ρx3 , w

X
ρx1,ρx2,ρx3u,

S 1 :“ twρx1 , wρx2 , wρx3 ,´w
X
ρx1,ρx2 ,´w

X
ρx1,ρx3 ,´w

X
ρx2,ρx3u.

Then using the relations (4.58) and (4.59),

T
pρq

k px1, x2, x3q “ ρ3{2
ÿ

YKi“t1,...,ku

L“tK1,... u

pIL1 ´

3
ÿ

r“1
IL2,r ` 2IL3 qpx1, x2, x3q,

where

IL1 px1, x2, x3q :“
ź

KPL

ż

R#K

ź

iPK

wY
ρx1,ρx2,ρx3ppiqγ

r#Ks
pdppi, i P Kqq “

ź

KPL

gp#K,Sq

“
ź

KPL

#

3
ÿ

r“1
gp#K,wρxr q`

ÿ

r‰s

gp2q
p#K, twρxr , wρxsuq`gp3q

p#K, twρx1 , wρx2 , wρx3uq

`
ÿ

r‰s

gp#K,´wX
ρxr,ρxs

q `
ÿ

r‰s

gp2q
p#K, twρxr ,´w

X
ρxr,ρxs

uq

`
ÿ

r‰s,s‰t,r‰t

gp2q
p#K, twρxr ,´w

X
ρxs,ρxt

uq`
ÿ

r‰s,s‰t,r‰t

gp2q
p#K, t´wX

ρxr,ρxs
,´wX

ρxs,ρxt
uq

`
ÿ

r‰s

gp3q
p#K, twρxr , wρxs ,´w

X
ρxr,ρxs

uq`
ÿ

r‰s,s‰t,r‰t

gp3q
p#K, twρxr , wρxs ,´w

X
ρxs,ρxt

uq

`
ÿ

r‰s,s‰t,r‰t

gp3q
p#K, twρxr ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uq

`
ÿ

r‰s,s‰t,r‰t

gp3q
p#K, twρxs ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uq ` gp4q
p#K,S 1

q

` gwX
ρx1,ρx2,ρx3

p#K,Sq

)
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“f
`

#L, tgp¨, wρxr qr“1,2,3, g
p2q

p¨, twρxr , wρxsuqr‰s, gp¨,´wX
ρxr,ρxs

qr‰s,

gp2q
p¨, twρxr ,´w

X
ρxr,ρxs

uqr‰suq, gp3q
p¨, twρxr , wρxs ,´w

X
ρxr,ρxs

uqr‰s,

gp3q
p¨, twρx1 , wρx2 , wρx3uq, gp2q

p¨, twρxr ,´w
X
ρxs,ρxt

uqr‰s‰tuq,

gp3q
p¨, twρxr , wρxs ,´w

X
ρxs,ρxt

uqr‰s,s‰r,r‰t, g
p2q

p¨, twX
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰tq,

gp3q
p¨, twρxr ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰t,r‰t,

gp3q
p¨, twρxs ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰t,r‰t, g
p4q

p¨, S1
q,

gwX
ρx1,ρx2,ρx3

p¨, Squ

¯

p#K,K P Lq.

Similarly,

IL2,rpx1, x2, x3q :“
ÿ

L1YL2“L

ź

KPL1

ż

R#K

ź

iPK

wρxr ppiqγ
r#Ks

pdppi, i P Kqq

ˆ
ź

K1PL2

ż

R#K1

ź

iPK1

wY
tρxs,s‰ruppiqγ

r#K1s
pdppi, i P K 1

qq

“f
´

#L, tgp¨, wρxsqs“1,2,3, gp¨,´wX
ρxs,ρxt

qs‰t,s‰r,t‰r,

gp2q
p¨, twρxs , wρxtuqs‰t,s‰r,t‰r, g

p2q
p¨, twρxs ,´w

X
ρxs,ρxt

uqs‰t‰ru,

gp3q
p¨, twρxs , wρxt ,´w

X
ρxs,ρxt

uqs‰t,s‰r,t‰r

¯

p#K,K P Lq

and

IL3 px1, x2, x3q :“
ÿ

L1YL2YL3“L

ź

KPL1

ż

R#K

ź

iPK

wρx1ppiqγ
r#Ks

pdppi, i P Kqq

¨
ź

K1PL2

ż

R#K1

ź

iPK1

wρx2ppiqγ
r#K1s

pdppi, i P K 1
qq

¨
ź

K2PL3

ż

R#K2

ź

iPK2

wρx3ppiqγ
r#K2s

pdppi, i P K2
qq

“ fp#L, tgp¨, wρxr qr“1,2,3uqp#K,K P Lq.

We shall fix a set L and study the expression IL1 ´
ř3
r“1 I

L
2,r ` 2IL3 . Denote by

S the set of functions in the argument of the function f in the latter expression
for IL1 , i.e

S :“ tgp¨, wρxr qr“1,2,3, g
p2q

p¨, twρxr , wρxsuqr‰s, gp¨,´wX
ρxr,ρxs

qr‰s,

gp2q
p¨, twρxr ,´w

X
ρxr,ρxs

uqr‰suq, gp3q
p¨, twρxr , wρxs ,´w

X
ρxr,ρxs

uqr‰s,

gp3q
p¨, twρx1 , wρx2 , wρx3uq, gp2q

p¨, twρxr ,´w
X
ρxs,ρxt

uqr‰s‰tuq,

gp3q
p¨, twρxr , wρxs ,´w

X
ρxs,ρxt

uqr‰s,s‰r,r‰t, g
p2q

p¨, twX
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰tq,

gp3q
p¨, twρxr ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰t,r‰t,

gp3q
p¨, twρxs ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰t,r‰t, g
p4q

p¨, S1
q, gwX

ρx1,ρx2,ρx3
p¨, Squ
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and, moreover,

S 1 :“ tgp3q
p¨, twρx1 , wρx2 , wρx3uq, gp2q

p¨, twρxr ,´w
X
ρxs,ρxt

uqr‰s‰tuq,

gp3q
p¨, twρxr , wρxs ,´w

X
ρxs,ρxt

uqr‰s,s‰r,r‰t, g
p2q

p¨, twX
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰tq,

gp3q
p¨, twρxr ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰t,r‰t,

gp3q
p¨, twρxs ,´w

X
ρxr,ρxs

,´wX
ρxs,ρxt

uqr‰s,s‰t,r‰t, g
p4q

p¨, S1
q, gwX

ρx1,ρx2,ρx3
p¨, Squ.

Then, the remaining terms of IL1 ´
ř3
r“1 I

L
2,r ` 2IL3 can be estimated by

ˇ

ˇ

ˇ

ˇ

ˇ

IL1 ´

3
ÿ

r“1
IL2,r ` 2IL3

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

r‰s,s‰t

fgwX
ρxr,ρxs

p¨,Sq,gwX
ρxs,ρxt

p¨,Sqp#L,Sqp#K,K P Lq

`
ÿ

r‰s,s‰t

fgwρxr ,wρxs
p¨,Sq,gwX

ρxs,ρxt
p¨,Sqp#L,Sqp#K,K P Lq

`
ÿ

gPS1

fgp#L,Sqp#K,K P Lq.

According to Lemma 4.8, the right-hand side consists of finitely many terms be-
ing equal to Cpρqpx1, x2, x3q, where this universal constant is defined by (4.60).

2. Step in proving Theorem 4.5: Expansion of ρ´3k{2Cumk|Ξ XρK|2 into
an infinite sum of asymptotically vanishing terms:

We will follow the exact strategy as for proving the convergence of the terms
of the third order cumulant. Henceforth, we will skip some of the details. First,
using the factorial moment measure expansion of pgf’s of the type GΨr1 ´ wY

Qs,
Q Ă tρx1, . . . , ρxku and Cauchy product of i infinite series, i “ 2, . . . , k, we arrive
at the expression

ρ´ 3k
2 Cumkp|Ξ X ρK|2q

“ρ
k
2

ż

Kk

k
ÿ

l“1
p´1q

l´1
pl ´ 1q!

ÿ

Q1Y¨¨¨YQl
“tρx1,...,ρxku

l
ź

j“1
GP r1 ´ wY

Qj
sdx1 . . . dxk

“ρ
k
2

ż

Kk

8
ÿ

m“1

p´1qm

m!

k
ÿ

l“1
p´1q

l´1
pl´1q!

ÿ

Q1Y¨¨¨YQl
“tρx1,...,ρxku

m
ÿ

n1“0

n1
ÿ

n2“0
¨ ¨ ¨

nl´2
ÿ

nl´1“0

ˆ

m

n1

̇̂

n1

n2

̇

¨ ¨ ¨

ˆ

nl´2

nl´1

̇

ˆ

ż

Rm´n1

m´n1
ź

i“1
wY
Q1ppiqα

rm´n1s
pdpp1, . . . , pm´n1qq

ˆ

ż

Rn1´n2

n1´n2
ź

i“1
wY
Q2ppiqα

rn1´n2s
pdpp1, . . . , pn1´n2qq

ˆ . . . ˆ

ż

Rnl´1

nl´1
ź

i“1
wY
Ql

ppiqα
rnl´1s

pdpp1, . . . , pnl´1qqdx1 . . . dxk
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“ρ
k
2

ż

Kk

8
ÿ

m“1

p´1qm

m!

k
ÿ

l“1
p´1q

l´1
pl ´ 1q!

ÿ

Q1Y¨¨¨YQl
“tρx1,...,ρxku

ÿ

YKi“t1,...,mu

L“tK1,... u

ÿ

L1Y¨¨¨YLl“L

ˆ

l
ź

j“1

¨

˝

ź

KPLj

ż

R#K

ź

iPK

wY
Ql

ppiqγ
r#Ks

pdppi, i P Kqq

˛

‚dx1 . . . dxk

“

ż

Kk

8
ÿ

m“1

p´1qm

m! T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk,

where

T
pρq

m,kpx1, . . . , xkq :“ ρ
k
2

ÿ

YKi“t1,...,mu

L“tK1,... u

k
ÿ

l“1
p´1q

l´1
pl ´ 1q!

ˆ
ÿ

Q1Y¨¨¨YQl
“tρx1,...,ρxku

fp#L, tgp¨, tp´1q
#q`1wX

q uqĂQi
qui“1,...,lqp#K P Lq.

(4.61)

Lemma 4.10.
Let k ě 2. Assume Ψ „ P is Brillinger-mixing, ERk

0 ă 8 and Φ0 has a contin-
uous distribution function G. Then

lim
ρÑ8

ż

Kk

T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk “ 0, @m ě 1.

Proof. The strategy is to fix a given partition L in (4.61) and study which of the
summands cancel out. Denote by
S :“

␣

gpnq
p¨, tp´1q

#q1`1wX
q1 , . . . , p´1q

#qn`1wX
qn

uq, n P N, q1, . . . , qnĂtρx1, . . . , ρxku
(

“

$

&

%

ż

Rn

p´1q
#q1`1wX

q1pp1q ¨ ¨ ¨ p´1q
#qn`1wX

qn
ppnqγ

rns

redpdpp1, . . . , pnqq,

n P N, q1, . . . , qn Ă tρx1, . . . , ρxku

*

the set of all possible terms that appear in the operators f in T
pρq

m,k. Let us
take arbitrary functions e1, . . . , e#L P S. We will study how many times the
term f p#Lqp#L, te1, . . . , e#Luq p#K,K P Lq appears in (4.61) and whether, under
certain conditions, cancels out. Before that, let us show the simplest example of
the choice e1, . . . , e#L to give the reader better understanding about the ideas.

Example. Let ej P tgp¨, wρxi
q, i “ 1, . . . , ku, j “ 1, . . . ,#L. The term

fp#L, te1, . . . , e#Luqp#K P Lq is present in all the summands (i.e. exist for
all partitions Q1 Y ¨ ¨ ¨ Y Ql “ tρx1, . . . , ρxku, l “ 1, . . . , k). Hence, for fixed L,
T

pρq

m,kpx1, . . . , xkq contains

k
ÿ

l“1
p´1q

l´1
pl ´ 1q!

ÿ

Q1Y¨¨¨YQl
“tρx1,...,ρxku

fp#L, te1, . . . , e#Luqp#K P Lq.

160



This is equal to

fp#L, te1, . . . , e#Luqp#K P Lq

k
ÿ

l“1
p´1q

l´1
pl ´ 1q! 1

l!

l
ÿ

j“0
p´1q

j

ˆ

l

j

̇

pl ´ jqk.

Here, the part 1
l!
řl
j“0p´1qj

`

l
j

˘

pl ´ jqk is the Stirling number of the second kind
(see Definition 1.10). Using the relation

␣

k`1
l

(

“ l
␣

k
l

(

`
␣

k
l´1

(

, we can see that
fp#L, te1, . . . , e#Luqp#K P Lq cancels out, because

k`1
ÿ

l“1
p´1q

l´1
pl ´ 1q!

"

k ` 1
l

*

“

k`1
ÿ

l“1
p´1q

l´1
pl ´ 1q!l

"

k

l

*

`

k`1
ÿ

l“1
p´1q

l´1
pl ´ 1q!

"

k

l ´ 1

*

“

k`1
ÿ

l“1
p´1q

l´1l!
"

k

l

*

`

k
ÿ

l“0
p´1q

ll!
"

k

l

*

“

k
ÿ

l“1
p´1q

l´1l!
"

k

l

*

` p´1q
k
pk ` 1q!

"

k

k ` 1

*

`

k
ÿ

l“1
p´1q

ll!
"

k

l

*

`

"

k

0

*

“ 0.

Note that this phenomenon corresponds to what we have seen while studying the
third cumulant.

Going back to the general choice of e1, . . . , e#L, it is clear that we need to first,
find all partitionsQ1Y¨ ¨ ¨YQl that generate f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq

and second, see under which conditions on e1, . . . , e#L it eventually cancels out.
For each i “ 1, . . . ,#L there exist ni P N and qi1, . . . , q

i
#L Ă tρx1, . . . , ρxku such

that
ei “ gpniq

p¨, tp´1q
#qi

1`1wX
qi

1
, . . . , p´1q

#qi
ni

`1wX
qi

ni
uq.

For ei we denote Ri :“ qi1 Y ¨ ¨ ¨ Y qini
. Moreover, denote X1 :“ R1 Y ¨ ¨ ¨ Y R#L

and X2 :“ tρx1, . . . , ρxkuzX1.
Step 1: Constructing the maximal partition of X1. Next, we present an algo-

rithm to find the largest m P N such that there is a partition Q1 Y ¨ ¨ ¨ YQm “ X1

allowing to generate f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq. Then all its subpar-
titions (i.e. partitions created by making unions among Q1, . . . , Qm) allow to
generate f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq.

1. Set m “ 1, Q1 “ R1 and R “ tR2, . . . , R#Lu.

2. For each x P Q1 find all R P R such that x P R and make the following
updates: Q1 “ Q1 Y R and R “ RztRu.

3. Repeat step (2) until either (i) Q1 X YRPRR “ H or (ii) R “ H. If (i) but
not (ii), then set m “ 2, if (ii), then end the algorithm here.

4. Take any R P R and put Qm “ R. For each x P Qm find all R1 P R such that
x P R1 and make the following updates: Qm “ Qm Y R1 and R “ RztR1u.

5. Repeat step (4) until either (i) Qm X YRPRR “ H or (ii) R “ H. If (i) but
not (ii), go to step (4) with m “ m` 1, if (ii), then end the algorithm here.
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Since #L is finite, the algorithm always stops resulting in a disjoint partition
Q1Y¨ ¨ ¨YQm “ X1 and m being the maximal integer such that there is a partition
generating f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq. Moreover, this partition is
unique up to permutation and for n “ 1, . . . ,m there exist

␣

m
n

(

subpartitions
Q

pnq

1 Y ¨ ¨ ¨ Y Qpnq
n “ X1.

Step 2: Adding the elements of X2 into partition of X1. To track all the
partitions of tρx1, . . . , ρxku that generate f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq,
we need to add elements of X2 to each partition of X1 from Step 1. To do so,
denote p “ #X2. The maximal partition of tρx1, . . . , ρxku is of the size m ` p
where m is the maximum size of partition of X1 and p corresponds to a situation
where each x P X2 belongs to an individual set. The minimal size of the partition
is obviously equal to 1.

Fix l P t1, . . . ,m ` pu and partition of X1 from Step 1 of the size n such
that n ď minpm, lq. The number of ways how to add elements of X2 to create
a partition that generates f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq is

„

p

l ´ n

ȷ

:“ 1
pl ´ nq!

l´n
ÿ

i“0
p´1q

i

ˆ

l ´ n

i

̇

pl ´ iqp.

This can be shown by the inclusion-exclusion principle.
Step 3: The role of f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq in T

pρq

m,k. If we put
together Step 1, Step 2 and the expression (4.61), then for fixed L the term f p#Lq

p#L, te1, . . . , e#Luqp#K,K P Lq appears in T
pρq

m,k exactly νpm, pq times, where

νpm, pq :“
m`p
ÿ

l“1
p´1q

l´1
pl ´ 1q!

minpm,lq
ÿ

n“maxp1,l´pq

"

m

n

*„

p

l ´ n

ȷ

.

Our goal now is to study, for which parameters m, p is νpm, pq equal to 0 and
how the parameters m, p correspond to the choice of e1, . . . , e#L. It is easy to see
that

νp1, 0q “ 1.

Take m ą 1 and p “ 0, then

νpm, 0q “

m
ÿ

l“1
p´1q

l´1
pl ´ 1q!

"

m

l

*

“ 0

as was shown in the example within this proof. To see similar result also for
m ą 1, p ą 0 we first show a recurrence relation for

“

p
l´n

‰

:

If p ą 0 and n P tmaxp1, l ´ p ´ 1q, . . . ,minpm, lqu, then
„

p ` 1
l ´ n

ȷ

“

„

p

l ´ n ´ 1

ȷ

` l

„

p

l ´ n

ȷ

. (4.62)

This relation can be seen similarly as the recurrence relation for the Stirling
number of the second kind. We extract a pp ` 1q-th element and divide it into
two situations.

162



(a) pp ` 1q-th element from X2 creates a singleton in the partition of the set
tρx1, . . . , ρxku, i.e. a set in the partition where only this element belongs.
Hence, the set containing this element does not contain any element from
X2, but neither from X1. There are

“

p
l´n´1

‰

of such partitions, because we
need to place the remaining p elements into l ´ 1 sets where l ´ n ´ 1 are
non-empty.

(b) pp ` 1q-th element from X2 does not create a singleton in the partition of
tρx1, . . . , ρxku. Then we need to place the remaining p elements into l sets
such that l ´ n are non-empty and after that add the pp ` 1q-th element in
any of the l sets. There are l

“

p
l´n

‰

of such partitions.

Eventually, for m ą 1, p ą 0 using (4.62), we have

νpm, p ` 1q “

m`p`1
ÿ

l“1
p´1q

l´1
pl ´ 1q!

minpm,lq
ÿ

n“maxp1,l´p´1q

"

m

n

*ˆ„

p

l ´ n ´ 1

ȷ

` l

„

p

l ´ n

ȷ̇

“

m`p
ÿ

l“0
p´1q

ll!
minpm,l`1q

ÿ

n“maxp1,l´pq

"

m

n

*„

p

l ´ n

ȷ

´

m`p`1
ÿ

l“1
p´1q

ll!
minpm,lq
ÿ

n“maxp1,l´p´1q

"

m

n

*„

p

l ´ n

ȷ

“

m´1
ÿ

l“1
p´1q

ll!
"

m

l ` 1

*„

p

´1

ȷ

´

m`p
ÿ

l“p`2
p´1q

ll!
"

m

l ´ p ´ 1

*„

p

p ` 1

ȷ

´ p´1q
m`p`1

pm ` p ` 1q!
„

p

p ` 1

ȷ

“ 0,

because
“

p
p`1

‰

“ 0 and
“

p
´1

‰

“ 0.
We conclude that νpm, pq “ 1 if and only if m “ 1 and p “ 0. In other

cases νpm, pq “ 0. In the language of our algorithm above, the parameters
m “ 1, p “ 0 correspond to the situation when Q1 “ tρx1, . . . , ρxku. This
happens when R1 Y ¨ ¨ ¨ Y R#L “ tρx1, . . . , ρxku and R1 X ¨ ¨ ¨ X R#L ‰ H. In
fact, here the corresponding term f p#Lqp#L, te1, . . . , e#Luqp#K,K P Lq can be
generated only by the first term in T

pρq

m,k (i.e. when l “ 1). This class of terms
includes e.g.

• fgpnqp¨,tp´1q#q1`1wX
q1 ,...,p´1q#qn`1wX

qn
uqp#L, Sqp#K,K P Lq, n P N, q1, . . . , qn Ă

tρx1, . . . , ρxku such that Yn
i“1qi “ tρx1, . . . , ρxku,

• ftgp¨,wX
q1 q,...,gp¨,wX

qn
qup#L, Sqp#K,K P Lq, n P N, q1, . . . , qn Ă tρx1, . . . , ρxku

such that Yn
i“1qi “ tρx1, . . . , ρxku and Xn

i“1qi ‰ H.

Lemma 4.8 can be extended to see that for e1, . . . , e#L for which m “ 1 and p “ 0

ρk{2
ż

Kk

f p#Lq
p#L, te1, . . . , e#Luqp#K,K P Lqdx1 . . . dxk ÝÝÝÑ

ρÑ8
0

if E |Ξ0|k1 ă 8. The convergence does not depend on the choice of L. Hence,
ż

Kk

T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk ÝÝÝÑ
ρÑ8

0.
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Denote by Fk the set of all functions e1 ¨ . . . ¨ el, l P N, such that ei is of the
form

ei “ gpniq
pni, tp´1q

#qi
1`1wX

qi
1
, . . . , p´1q

#qi
ni

`1wX
qi

ni
uq, (4.63)

where ni P N, qi1, . . . , qini
Ă tρx1, . . . , ρxku and

ř

i ni “ l such that the algorithm
in the proof of Lemma 4.10 for e1, . . . , el returns m “ 1 and p “ 0. Then

ρk{2
ż

Kk

hpx1, . . . , xkqdx1 . . . dxk
ρÑ8
ÝÝÝÑ 0, for all h P Fk,

assuming E |Ξ|k1 ă 8.
We say that the function h “ e1 ¨. . .¨el P Fk is of the basic form, if e1, . . . , el are

pairwise different functions of the form (4.63) and for each i “ 1, . . . , l, qi1, . . . , qini

are pairwise different subsets of tρx1, . . . , ρxku. Let the set of all functions of the
basic form be denoted by Fk,basic. Note that #pFk,basicq ă 8 and the number of
elements depends only on k.

Lemma 4.11.
Let h “ e1 ¨ . . . ¨ el P Fk be such that each ei is of the form of (4.63). Then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρk{2
ż

Kk

hpx1, . . . , xkqdx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
pρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1qpmaxt1, λE |Ξ0|1uq

l
l

ź

i“1
}γ

rnis

red }TV ,

where Cpρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|k1q ă 8 is a constant that does not depend on
h, hence l, and Cpρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|k1q Ñ 0 as ρ Ñ 8 if E |Ξ|k1 ă 8.

Proof. The proof consists of a generalization of a step we made in the proof of
Lemma 4.8, point 5, when transitioning from n “ 3 to general n P N.

For each i “ 1, . . . , l, we find the greatest mi P N such that tq1i
1, . . . , q

1i
mi

u Ă

tqi1, . . . , q
i
ni

u is a set of pairwise different subsets of tρx1, . . . , ρxku. Denote by e1
i

the function
e1
i “ gpmiq

pni, tw
X

q1i
1
, . . . , wX

q1i
mi

uq.

Then

ρk{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kk

e1 ¨ . . . ¨ eldx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ρk{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kk

e1
1 ¨ . . . ¨ e1

ldx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (4.64)

Now, we find l1 the greatest integer and ordering pe1
1, . . . , e

1
l1 , e

1
l1`1, . . . , e

1
lq such

that e1
1, . . . , e

1
l1 are pairwise different functions. Then

ρk{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kk

e1
1 ¨ . . . ¨ e1

ldx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď pλE |Ξ0|1q
l´l1

ź

jěl1`1,njě2
}γ

rnjs

red }TV ρ
k{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kk

e1
1 ¨ . . . ¨ e1

l1dx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (4.65)
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Here, we used that
ż

R

wX
q ppqγr1s

pdpq “ λ

ż

R

wX
q ppqdp ď λE |Ξ0|1

and
ż

Rn

wX
q1pp1q ¨ ¨ ¨ ¨ ¨ wX

qn
ppnqγrns

pdpp1, . . . , pnqq ď λE |Ξ0|1}γ
rns

red}TV

for all n P N, q, q1, . . . , qn Ă tρx1, . . . , ρxku. Define for i “ 1, . . . , l1 functions e2
i

by
e2
i “ gpmiq

pmi, tw
X

q1i
1
, . . . , wX

q1i
mi

uq.

Then e2
1 ¨ . . . ¨ e2

l1 P Fk,basic. By following the procedure in the proof of Lemma 4.8,
we arrive at

ρk{2
ż

Kk

e2
1 ¨ . . . ¨ e2

l1dx1 . . . dxk

ď C
pρq

k pe2
1 ¨ . . . ¨ e2

l1 , λ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1q

l1
ź

i“1
}γ

rmis

red }TV ,

where Cpρq

k pe2
1 ¨ . . . ¨ e2

l1 , λ,K,E |Ξ0|1, . . . ,E |Ξ0|k1q Ñ 0 as ρ Ñ 8. Since, Fk,basic is
finite, we define

C
pρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1q :“ max

hPFk,basic

C
pρq

k ph, λ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1q ă 8.

Then,
ż

Kk

e1
1 ¨ . . . ¨ e1

l1dx1 . . . dxk ď C
pρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1q

ź

i“1,...,l1:niě2
}γ

rnis

red }TV .

(4.66)
Finally, combining (4.64), (4.65) and (4.66), we arrive at

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρk{2
ż

Kk

hpx1, . . . , xkqdx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď pλE |Ξ0|1q
l´l1C

pρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1q

l
ź

j“1
}γ

rnjs

red }TV

ď pmaxt1, λE |Ξ0|1uq
lC

pρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1q

l
ź

j“1
}γ

rnjs

red }TV .

Finally, we are ready to prove the main theorem.

Proof of Theorem 4.5. Take k ě 3. Recall that

ρ´ 3k
2 Cumkp|Ξ X ρK|2q “

8
ÿ

m“1

p´1qm

m!

ż

Kk

T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk,
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where
ş

Kk T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk Ñ 0 as ρ Ñ 8 according to Lemma 4.10.
We want to change the order of the summation and the limit.

Denote by snpρq :“
řn
m“1

p´1qm

m!

ş

Kk T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk the partial sum
and by spρq :“

ř8

m“1
p´1qm

m!

ş

Kk T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk the infinite series. The
goal is to show that snpρq converges uniformly to spρq on some interval rA,8q.
Then from the Moore–Osgood theorem, the assertion holds.

The uniform convergence shall be proved using the Weierstrass criterion for
the absolute uniform convergence: Take m P N and denote by

Ck :“ sup
ρą0

C
pρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|
k
1q,

where Cpρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|k1q is the constant from Lemma 4.11. Note that
Ck ă 8, since C

pρq

k pλ,K,E |Ξ0|1, . . . ,E |Ξ0|k1q Ñ 0 as ρ Ñ 8, provided that
E |Ξ0|1, . . . ,E |Ξ0|k1 ă 8. Moreover, we will use the fact that there exist constants
a, b ą 0 such that }γ

rks

red}TV ď abk for all k P N. Thus,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1qm

m!

ż

Kk

T
pρq

m,kpx1, . . . , xkqdx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p´1qm

m! ρ
k
2

ÿ

YKi“t1,...,mu

L“tK1,... u

ÿ

e1¨...¨e#LPFk

ż

Kk

e1 ¨ . . . ¨ e#Ldx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ρ
k
2

1
m!

m
ÿ

l“1

ÿ

YKi“t1,...,mu

ÿ

e1¨...¨elPFk
ni“#Ki,i“1,...,l

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kk

e1 ¨ . . . ¨ eldx1 . . . dxk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1
m!

m
ÿ

l“1

ÿ

YKi“t1,...,mu

ÿ

e1¨...¨elPFk
ni“#Ki,i“1,...,l

Ckpmaxt1, λE |Ξ0|1uq
l

l
ź

i“1
}γ

rnis

red }TV

ď Ck
1
m!b

m
m
ÿ

l“1
pamaxt1, λE |Ξ0|1uq

l
ÿ

YKi“t1,...,mu

ÿ

e1¨...¨elPFk
ni“#Ki,i“1,...,l

1

ď Ck
1
m!b

m
m
ÿ

l“1
pamaxt1, λE |Ξ0|1uq

l
ÿ

YKi“t1,...,mu

p2kq
m

ď Ck
1
m!b

m
p2kq

m
pmaxt1, aλE |Ξ0|1uq

m
m
ÿ

l“1

"

m

l

*

:“ Qm.

We refer to Bm :“
řm
l“1

␣

m
l

(

as the m-th Bell number. Finally
8
ÿ

m“1
Qm “ Ck expte2kbmaxt1,aλE |Ξ0|1u

´ 1u ă 8.

Hence, sn converges uniformly absolutely to s. As a consequence, we have that
ρ´3k{2Cumkp|Ξ X ρK|2q Ñ 0. That, together with Theorem 4.4, concludes the
proof.
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Conclusion
We have investigated three approaches to study the asymptotic behaviour of ge-
ometrical structures frequently used in stochastic geometry. Numerous examples
were presented to give the reader a rough idea on which situations are suitable
for each individual method. We have also seen that it is not unusual that the
methods are combined in order to achieve some asymptotic results.

In conclusion, the Malliavin-Stein approach is a very robust method that
can be applied to a large scale of examples allowing the researcher to work on
a general Polish space. It can be used for Poisson functionals as well as for func-
tionals of Gibbs processes, DPP’s or even for processes of particles. Especially,
the U -statistics form an important class of functionals suitable for this analysis.
The reason is that many interesting functionals can be expressed as U -statistics
(e.g. the intrinsic volumes) while the U -statistics can be viewed as finite sums of
multiple Wiener-Itô integrals. Hence, to study the asymptotic properties of a U -
statistic is equivalent to study the individual Wiener-Itô integrals. The Malliavin
operators in this case are usually easy to handle. However, an application of
the Malliavin-Stein method in general usually results in abstract bounds for the
normal approximation involving difference operators. To derive central limit the-
orems, one is sometimes obliged to use another technique such as the stabilization
method. Either way, these bounds give an opportunity to compute explicit rates
of convergence.

On the other hand, the stabilization method is a useful method for studying
the limit behaviour of geometric structures mainly in Rd evincing local form of
dependency. Those include random graphs, germ-grain models, weighted Voronoi
tessellation etc. In order to obtain some information about the limit behaviour
of these structures, we investigate a sum of spatially dependent terms called
scores. We make use of the property that we can control the range of interactions.
In other words, our score stabilizes if its behaviour at a given point is locally
determined by a certain finite, possibly random, neighbourhood of this point.
Those local effects appear mostly when the geometric structure is determined by
the Poisson or binomial point process.

At last, we have acquainted ourselves with the method of cumulants based on
a classical result from probability theory that normal distribution is the only one
having only a finite number of non-zero cumulants. By the moment convergence
theorem, the convergence of the higher-order cumulants to zero is equivalent to
the convergence in distribution to a Gaussian random variable. One can apply
the idea directly on a functional of a random structure in increasing observa-
tion window (e.g. the coverage volume). The advantage is that the geometrical
structure can evince long-range dependencies. On the other hand, a very limited
spectrum of geometrical structures is suitable for this analysis. Typically, those
are the structures based on Poisson point process in Rd or very simple structures
defined by a type of Brillinger-mixing point processes. Application of the cumu-
lant method just by itself is accessible mainly if there exists a link between the
cumulants of the random variable defined by the random structure and cumulant
measures of the defining point process. In our experience, however, estimation of
the cumulants could lead to a calculus with extremely unpleasant terms.
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