FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

DOCTORAL THESIS

Petr Lukéas

Numerical Solution of
Convection-dominated Problems

Department of Numerical Mathematics

Supervisor of the doctoral thesis: doc. Mgr. Petr Knobloch, Dr., DSc.
Study programme: Mathematics

Study branch: Computational mathematics

Prague 2021

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of

this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ... date signature of the author

This Thesis summarizes our research that took us already more than the
last ten years. I would like to sincerely thank Petr Knobloch, without whom I
would not have been able to complete the research, and without whom I would
not have written it through all the scientific articles and this thesis. You are a
wonderful supervisor, your insight and knowledge into the subject matter steered
me through these years!

I am grateful for the support from my family. My mother encouraged me
especially in earlier years of doctoral studies whereas my father is currently a
great friend of mine, supporting me always and in all of my endeavors.

My colleagues at our Faculty also need to be mentioned here, they have sup-
ported me and provided me with much important feedback. It has been a great
pleasure to be part of our STAM Student chapter in Prague for ten years and to
serve as an officer there for seven years, I am thankful for that opportunity.

I would like to express my sincere gratitude to Mrs. Urbankova, the represen-
tative of Karel Urbanek fund, who supported me during my stay in the USA at
the University of Nevada, Reno in 2018.

i

Title: Numerical Solution of Convection-dominated Problems
Author: Petr Lukés
Department: Department of Numerical Mathematics

Supervisor: doc. Mgr. Petr Knobloch, Dr., DSc., Department of Numerical
Mathematics

Abstract: Numerical solution of the scalar convection—diffusion-reaction prob-
lems often possesses spurious oscillations which appear in the discrete solution
when convection dominates diffusion and standard non-adaptive discretizations
are used.

Numerical solution of convection-dominated problems requires special techniques
to suppress these oscillations. Often stabilized methods are applied which in-
volve free parameters. These parameters significantly influence the quality of the
solution but their optimal choice is usually not known. We define them in an
adaptive way by minimizing an error indicator characterizing the quality of the
approximate solution. We consider new nonlinear limited-memory optimization
methods.

A nontrivial requirement on the error indicator is that its minimization with re-
spect to the stabilization parameters should suppress spurious oscillations with-

out smearing layers. In this thesis novel error indicators are introduced and their
suitability is considered on different benchmarks.

Keywords: FEM optimization SUPG SDFEM SOLD Error indicator

1il

Contents

Introduction

1 Fundamental definitions
1.1 Sobolev spaces
1.2 Problem definition
1.3 Weak formulation

2 Discretization

2.1 Galerkin discretization
2.2 SUPGmethod
2.2.1 Approximation and local inverse inequality

2.2.2 Stability and a priori error estimates
2.2.3 Choice of 7, parameter in one dimension
2.2.4 Choice of 7, parameter in more dimensions
Galerkin Least Squares FEM
SOLD methods
2.4.1 SOLD terms adding isotropic artificial diffusion

2.4.2 SOLD terms adding crosswind artificial diffusion
2.4.3 Edge stabilization methods
2.4.4 Iteration

2.3
2.4

3 Optimization of parameters
3.1 Adjoint approach for computing derivatives
3.1.1 Adjoint approach in general
3.1.2 General duality formulation
3.1.3 Duality formulation in FEM adaptive methods

4 FError estimators and indicators

4.1 Residual based error indicator
4.2 Crosswind derivative control term
4.3 Indicator with reduced residuals
4.4 Application to the SUPG method
4.5 Application to SOLD methods

5 Numerical methods of minimizing error indicators
5.1 Line search algorithms
5.1.1 Search direction
5.1.2 Step length
Trust region methods
Steepest descent methods
Nonlinear conjugate gradient methods
Limited-memory quasi-Newton methods
5.5.1 Limited-memory BFGS method
5.5.2 Limited-memory SR1 method
5.5.3 Restarting, termination criterion, and remarks on
Newton methods

5.2
5.3
5.4
5.9

5.6 On tuning of the parameters

6 Numerical results

6.1 Examples
6.2 Numerical methods of minimizing error indicators

6.2.1 Evaluating tests

6.2.2 Results of numerical tests
6.3 Results on anisotropic meshes
6.4 Higher degree FE spaces
6.5 Behavior of indicators £ and I}'™
6.6 Indicator with reduced residuals and SOLD method
6.7 Isotropic diffusion term and higher order FE spaces

Conclusion
Bibliography

List of Figures

List of Tables

List of Abbreviations

List of publications

44
44
47
48
49
52
54
o8
60
65

67

70

73

74

75

76

Introduction

In this thesis we consider numerical solution of the standard scalar convection—
diffusion-reaction problem

—Au+b-Vu+cu=f in Q, (1)

more details will be added later in Section 1.2. A very important aspect of
any numerical solution of (1) are spurious oscillations that appear in the dis-
crete solution when convection dominates diffusion and standard non-adaptive
discretizations are used. Problem (1) is considered in many different areas of
science, it describes physical phenomena where particles, energy, temperature, or
other physical quantities are transferred inside a physical system due to diffusion
and convection.

As an example, we can imagine that the quantity u is the concentration of
a chemical. When concentration is low somewhere compared to the surround-
ing areas, the substance will tend to diffuse in from the surroundings, so the
concentration will increase and conversely, if concentration is high compared to
the surroundings, then the substance will diffuse out and the concentration will
decrease. This is the effect of the diffusion term —e Au.

The second term, b - Vu, describes convection (or advection) of the quantity
u due to the flow b. The reaction term cu describes the effect of the quantity
u on itself, if ¢ is positive then the quantity w will have a positive effect on its
value, if ¢ is negative it will have a negative one. The source term f describes
the creation or destruction of the quantity wu.

There are many complicated multiphysics simulations that are comprised of
convection—diffusion-reaction subproblems. Equations of this form are important
parts of many complex models but problem (1) is also important on its own.

To be able to numerically solve (1) we need to discretize it first. As dis-
cussed in John et al. [2018], an ideal discretization of a convection-dominated
convection—diffusion-reaction equation should satisfy the following properties:

1. The numerical solution should possess sharp layers.
2. The numerical solution must not exhibit spurious oscillations.
3. There should be an efficient way for computing the numerical solution.

The first two properties are connected with the accuracy of the discretization
and usually correlate with results from the finite element error analysis in suf-
ficiently strong norms. Since the layer width is usually smaller than the mesh
width, it follows from Property 1 that it is desirable that the layer of the numerical
solution is not much wider than the mesh width.

Property 2 is connected also with the physical fidelity of the numerical so-
lution. Of course, spurious oscillations are erroneous, thus they diminish the
accuracy. But even more important, they represent nonphysical situations, like
negative concentrations.

Numerical solution of convection-dominated problems requires special tech-
niques to suppress spurious oscillations in approximate solutions. Often sta-
bilized methods are applied which involve user-chosen free parameters. These

parameters significantly influence the quality of the solution. The optimal val-
ues of these parameters are not known in general. Various stabilized methods
have been proposed which often depend on the free parameters. Optimal choice
of these parameters is usually not known. Theoretical bounds for the values of
these parameters are derived in most cases. In this thesis we explore more differ-
ent stabilized methods than just the streamline upwind/Petrov-Galerkin (SUPG)
method which is the most widely used stabilized method. We explore other spu-
rious oscillations at layers diminishing (SOLD) methods, those that add other
terms to the SUPG method formulation.

There is a possibility to define the stabilization parameters in an adaptive
way by minimizing an error indicator characterizing the quality of the approxi-
mate solution, this approach was introduced in John et al. [2011]. A nontrivial
requirement on the error indicator is that its minimization with respect to the
stabilization parameters should suppress spurious oscillations without smearing
layers. In this thesis new error indicators are introduced and their suitability
is tested on newly proposed benchmark problems for which previously proposed
indicators do not provide satisfactory results.

The aim of the thesis is to present and to compare stabilization techniques
based on an adaptive choice of parameters in the finite element method. These
parameters are chosen so that they minimize a functional called error indicator, it
is a nonlinear constraint optimization problem. The proposed methods are used
to obtain better qualitative results than those of stabilized methods with a priori
given parameters.

Since the number of variables of such an indicator is typically very large, there
typically occur more local minima near the global minimum. We need a nonlinear
optimization method to be able to not only minimize the error indicator but also
to find a minimum that provides a physically meaningful solution. It is also
important to perform these tasks in a robust way. In the thesis we study and
further develop nonlinear optimization methods considered by the author in his
diploma thesis, we use the standard Python—based optimization modules. A new
limited-memory method based on rank-one updates of the hessian was developed
and compared to the standard L-BFGS method.

One novelty of our approach consists in combining an error indicator with
crosswind derivative control term and indicator with reduced residuals with non-
linear SOLD methods. Considered SOLD methods are adding an artificial diffu-
sion either in all directions or only in the crosswind direction. We demonstrate
that this approach can lead to more physically meaningful solutions than tech-
niques considered before.

The indicator with reduced residuals is introduced as a new way for optimiz-
ing parameters in stabilized methods for the numerical solution of convection-
dominated problems. Numerical results showed that the new indicator behaves
better than indicators applied so far when, in regions away from layers, the exact
solution is not constant in the crosswind direction. In contrast with the indicator
adding the crosswind derivative control term, the new indicator is consistent with
the approximated problem.

We show that the SOLD method with artificial diffusion in crosswind direction
is a suitable candidate for optimization of parameters using the error indicator
with reduced residuals and that the impact of the parameter optimization itself

is often crucial for this SOLD method.

The numerical experiments also comprise investigations of various initializa-
tion strategies for the SOLD parameter and revealed that initialization of the
SOLD parameter by 0 leads to lower values of optimized free parameters and a
less smeared solution.

We will show that using an optimization together with a stabilized method
with a carefully chosen mesh can lead to a substantial increase of accuracy. For
a setup on an isotropic mesh and layers aligned with the mesh, SUPG method
with optimized free parameters can give us the rate of convergence of the SUPG
method improved by the order of 1.

A SOLD method that adds diffusion isotropically is considered and it allows
us to see where regions that need stabilization typically appear and how these
regions behave in case of higher order FE spaces for both solution and the free
parameters of this method.

An important question is how computationally expensive is our approach as
the method is inherently nonlinear and we need multiple evaluations of a linear
algebraic system corresponding to a discretization of (1) to obtain the result. It
may seem as a huge overhead in comparison with linear stabilized methods but
one should take into account that some very successful methods for solving (1)
are also nonlinear since the artificial diffusion is added based on the computed
solution.

As Godunov’s theorem says (Godunov [1959]), linear numerical schemes for
solving some linear partial differential equations, having the property of not gen-
erating new extrema (monotone scheme), can be at most first-order accurate.
That is why nonlinear methods are important and used to get a higher-order
method with a higher accuracy. In practice, the models we are solving are al-
ready nonlinear so the overhead, in general, may be relatively less important.

1. Fundamental definitions

1.1 Sobolev spaces

Let Q be a bounded domain in R?, d = 2,3. We say that 0f is a Lipschitz
boundary and €2 is called a Lipschitz domain, if for each point s = (s1, ..., s4) € 002
there exists a ball B,(s) of radius r > 0 centered at s and a Lipschitz function
v : R — R such that we have

QN B,(s) = {z € B.(s);za > v(x1, ..., Ta—1)}

in a local coordinate system. For 1 < p < oo, let

1/p
lallse = ([fulrdz)

for the special case of p = o0, let

l|w|| oo () = esssuplu| = inf {C €]R;/ ds O} :
Q {&lu(©I>C}
We define the Lebesgue space LP(Q2), 1 < p < o0, as
LP(Q) = {u : Q — R measurable; ||ul| 1r(q) < oo} .

Let o = (o, ...,), o € Ny, 1 < i < d be a multiindex and |a] = >4 a;. By
C(Q2) we denote the space of infinitely differentiable functions with compact
support in Q. For ¢ € Cl*(Q) we define the "strong” multiindex derivative

olelg

= (e 5] Qg
Oxi* - - - Oxy

D%
We then define the space of locally integrable functions L},.(Q) as
L,.(Q) = {u :Q — Ryu € L'(K) ¥ compact K C Q}

We also have LP(Q) C L}, .(Q), 1 < p < co. For u € L},.() we define the weak

loc
derivative v = D%u such that

/Qws dr = (—1)'al/ﬂum¢ dr Yo e C=(Q).

Then according to Evans [1998], Section 5.2.1, the weak derivative, if it exists, is
uniquely determined. We define the Sobolev space W*P(Q), k€ N, 1 <p < o0

WkP(Q) = {u € LP(Q), D*u € LP(Q)Va; |a| < k}
with the norm

lullkpo = > 1D%Ullzr() -

laf<k

For p = 2, W*2(Q) is a Hilbert space that is usually denoted by
H*(Q) = WH(Q)

6

with the norm ||ul|x.o = ||ul|k2.0. We define the seminorm |ulxo by

ulkpo = D 1Dl ooy -
|a|=F

According to this notation, we denote by H°(Q) the Hilbert space L*(Q) and its
norm ||ullo.0 = |Jullz2@)-

If Q is a domain with Lipschitz boundary we can define the space Hj () as
functions from H'(Q) whose trace is zero on 9.

1.2 Problem definition

We study the numerical solution of the scalar convection—diffusion-reaction equa-
tion

—eAu+b-Vut+cu=finQ, w=u,onl?, eg—z:gonFN, (1.1)
where Q C R? d = 2,3 is a bounded domain with a polygonal (or polyhedral
in case d = 3) Lipschitz-continuous boundary 9. T'P and T'V are relatively
open subsets of 9Q, TP NT'N = 0, and TP UTN = 90. Furthermore, ¢ > 0
is a constant diffusivity, b € W= (Q)? is a convective field, ¢ € L>®(Q) is a
reaction coefficient, f € L?(Q) is an outer source of u, u, € HY?(T'P) is the
Dirichlet boundary condition (less regular u, can be considered as well), and
g € L*(T'N) is a function prescribing the Neumann boundary condition. We
further assume that inflow boundary parts will only be subsets of I'”, more
precisely {x € 9Q, (b - n)(z) < 0} C I'”, where n is the unit outward normal
vector.

Let us introduce the usual assumption

1

which guarantees that (1.1) admits a unique weak solution for all ¢ > 0 (Roos
et al. [2008]). In our examples we usually have divb = 0.

Numerical solution of (1.1) is still a challenge when convection is strongly
dominant (¢ < |b|). The exact solution then typically possesses interior and
boundary layers, where the derivatives of the solution are very large. These layers
are often narrower than the mesh size and hence cannot be resolved properly. This
leads to unwanted spurious (nonphysical) oscillations in the numerical solution.
Multiple possible remedies to this problem are in scope of our work.

1.3 Weak formulation

Weak formulation of (1.1) is obtained by multiplying the partial differential equa-
tion by a test function and integrating over the domain €2 and applying integra-
tion by parts. The formulation of the problem is to find u € H*(£2) such that
u—1 € {ve HY(Q);v=0onTP} and

a(u,v) = (f,v) + {g,v)rny You € {v € H(Q);v = 0on I'P}, (1.3)

7

where (-, -) is the inner product in L2(Q2) (in L*(Q), respectively), (-, -)r~ is the
standard scalar product in L*(T'V),

a(u,v) = e(Vu, Vo) + (b - Vu,v) + (cu, v), (1.4)

and @, € H'(2) is an extension of u;, from H'/2(I'P) to the space H'(Q).

At the outflow parts of the boundary it is possible to consider the natural
boundary condition. We will provide results for such situations in our numerical
tests.

2. Discretization

To be able to compute the solution of (1.1) on a computer we need to move
from a continuous problem to a discretized one. In the later parts of this chap-
ter, we will treat problems which arise from the discretization by introducing
methods which suppress spurious oscillations without extensively smearing layers
originating from boundary conditions.

2.1 Galerkin discretization

Let {75}x be a family of triangulations of Q parametrized by positive parameters
h whose only accumulation point is zero. The triangulations 7j are assumed to
consist of a finite number of open simplices T of Q such that Q = UreT, T and
the closures of any two different sets in 7, are either disjoint or possess either
a common vertex, common edge or common face (if d = 3). This means the
triangulation 7; complies with usual compatibility conditions and no hanging
nodes are present. We assume that there exists a constant v which satisfies

hr <v VT eUT, (2.1)
1%
where hr is the diameter of the element, and pr is the diameter of the largest
inscribed ball in the element T
For each h, we introduce a finite element space W), C H'(Q) defined on Ty,
and approximating the space H'() in the sense described in Ciarlet [1978]. The
function , is approximated by @, € Wy, We define the space V, as V,, =
WiN{v e HY(Q);v =0 on I'’}. We then say that u, € W}, is a discrete solution
of (1.1) if up — upn, € Vi and

a(up,vp) = (f,vn) + (g, vn)rN (2.2)

for all v, € V},, where a is the bilinear form from (1.4).
In the following, we particularly let W) be a conforming finite element space
that consists of piecewise polynomials of degree k, i.e.,

Wi = {v, € HY(Q) s valr € Pi(T) forall T €T} (2.3)

2.2 SUPG method

According to Roos et al. [2008], the Galerkin discretization is inappropriate if con-
vection dominates diffusion, since then the discrete solution is globally polluted
by spurious oscillations. An improvement can be achieved by adding stabiliza-
tion terms to the Galerkin discretization. One of the most efficient procedures of
this type is the streamline upwind/Petrov-Galerkin (SUPG) method developed
by Brooks and Hughes [1982]. This method combines global stability properties
with high accuracy in subdomains excluding boundary layers.

Since we are using piecewise polynomial approximations the second order
derivatives are defined only element-wise in general (Aup, ¢ L*(2)). As an exam-
ple of this, let us take a piecewise linear finite element space. There are jumps of

9

the first derivative across the element’s sides, so the second order derivatives are
not defined there in general. First, we define the residue Rj(u):

Ry(u) = —eApu+b-Vu+cu — f, (2.4)

where Apuy, € LQ(T) for each element 7', so we calculate Apuy element by ele-
ment.

In the formulation of the SUPG method we are adding a stabilization term
(Rp(up), b - Vuy,) to the left-hand side of the Galerkin discretization. We will
now seek u, € W, such that up, — ap, € Vi, and

a(uh,vh) + (Rh(uh), b - V’Uh) = (f, ’Uh) + <g,’l)h>FN \V/’Uh < Vh, (25)

where 7 is a nonnegative stabilization parameter. We assume that all admissible
stabilization parameters form a set Y}, C L*°(€2). When the parameter 7 is chosen
from a discrete finite element space we will denote it as 7,. From now on we will
use the discrete bilinear form ay,

an(up,vp) = alup,vp) + (—eApu+b - Vu + cu, 7b - Vuy,) (2.6)

for all up, € Wy, and vy, € Vj,.

Since the residue of the exact solution is zero, the method is automatically
consistent in the finite element sense - i.e., the solution of the original boundary
value problem also satisfies the discrete variational system of equations (2.5).

Combining the consistency of the SUPG method with (1.3) yields the projec-
tion property

ap(u — up,vp) =0 Yo, € Vj, (2.7)

if the solution of (1.3) satisfies u € H?(2) , this identity is known as Galerkin
orthogonality.

2.2.1 Approximation and local inverse inequality

Let u € H*1(Q) with k > 1 so that u € C(Q). Then we can define an interpolant
u! in W), and according to Grossmann et al. [2007] it enjoys an approximation

property
lu — u1|m7T < Ohlr§1+1_m|u|k+17’f form=20,1,2 (2.8)

for all T" € T, where the constant C' does not depend on mesh size hy and the
polynomial degree k.

Using a scaling argument and the equivalence of norms in finite-dimensional
spaces, we can prove the following local inverse inequality, see Ciarlet [1978§],
where (i, is independent of T" and h:

|Avs|lor < pinvhz [nlir ¥V vn € Vi (2.9)

2.2.2 Stability and a priori error estimates

We will assume a slightly stronger condition than (1.2) in the following. Let us
alter the condition from (1.2) by introducing an auxiliary constant oy:

1
c— Edivb > g9 > 0. (2.10)

10

We will measure the stability and derive the error estimates in the following
norm which is naturally related to the bilinear for a,. We define 71 as the value
of the parameter 75, on a given element 17" € Ty, for 75, from the piecewise constant
finite element space.

1/2

1

olllsp == (€Ivlig + > mrllb - Vol[§ 7+ oollv]l5q + 5ilb- nf, vy |
TeT,

(2.11)

Now, let us introduce two integration formulas which we will use later in the

proof of Theorem 1:

/Q(b -Vo)vde = %/ﬂb -V (v?) da, (2.12)

/b V(v dx—/ v2b-ndS—/(V-b)v2dx, (2.13)
Q

where (2.12) holds for all v € H'(2), whereas (2.13) holds only for all v € H'(Q)

with v = 0 on I'P.

Theorem 1 (Coercivity of ay). Let the parameter 1, of (2.5) satisfy the following
inequality for all T € Ty:

1 . (o9 h
0<mr < —mm{—QO,—g ,
2 CT Eliny

where ¢ = ||c||ocor- Then the discrete bilinear form is coercive, which means
that it holds

an (v, vn) > |||Uh|||5D Yo € V.

Proof. For each v, € V}, we obtain using the two integration formulas (2.12) and
(2.13)

1 1
an(vn, vp) = /Q»E|Vvh|2dx +/chi - E(V -b) v} dx + 3 /rN vib-ndS

+ Z (_gAh'Uh + b- V'Uh + C’Uh,Thb . V’Uh)T.

TeTh
From the last equation we get the initial estimate
1
an(vn; vn) Z elunlig + oollvnllon + 5 (b~ nl,view + > b Vunllgrr
TeTh

+ Z TT(—€Ah'Uh + cup, b - V'Uh)T.
TeTh

We see that the first part of the right-hand side of the last inequality is directly
||vr|]|3p. Let us estimate the remaining term from above. The Young’s inequal-
ity, local inverse inequality (2.9), and the hypothesis on 7, give us

‘ Z TT(—€Ah’Uh + CUp, b - V'Uh)T‘

TeT,
1
< > ErmllAv|ir+ DY Grrlluller + 5 > mrllb - Vuul§ 1
TeTh Te’/’h TeTL
13
< §|Uh|ig ||Uh||09+ 5 > rllb - Vuu|[§r < |||Uh|||5D

TeT,

11

This yields the desired coercivity result of the lemma.
]

To get an error estimate we will first focus on the error between u; and the
interpolant u! from (2.8). From now on we will need to consider iy, chosen in
such a way so that u! —u;, € Vj,. Theorem 1 and the Galerkin orthogonality (2.7)
provide the following estimate for all u € H?(()

1

1
§|||u1 — uh|||§D < ah(ul —up, ul — up) = ah(ul —u,u’ —up) . (2.14)

We will continue by estimating the right-hand side of (2.14) term by term. By
invoking the interpolation properties from (2.8) we obtain for u € H*(Q):

1 1
e(V(u'—u), V(u'—up)) < ezu’—uly gl l|u'—wl||sp < Cezh*|ulprolllu’—ul||sp,

(b V(u' —u) +c(u’ —u),u’ —up)
_ ((C—V-b)(ul—u),ul—uh) _(I_u7b-V(uI—Uh))

+ (b n|(w' —u),u’ —un)ry

1
2 2
<|C (Z IIUI—Ullﬁ,T) + (Z TT‘1|IUI—UII3,T) 1w’ = unlllsp

TeTh TeTh

1

2
> hp(1+ TT_1)|U|i+1,T] | = uplllsp ,
TeTh

< ChF

‘ > T (—eA(uI —u)+b-V(! —u)+cw —u),b- (u - uh))

/|
TeTh

1 1
<C Y TR 4 R+ R) ks e T2 - V(" = up)|lor
TeT,

<C

2
Do (e+ TT)hQT’“IUﬁH,T] llw’ = unlllsp
TeT

where the inequality et < Ch3 was used (from Theorem 1). Combining the
upper results we get

N

llu" = unlllsp < C | D (e + 7 + 77 b + W) luli p| (2.15)

TeT,

To extract the best possible convergence rate from (2.15) we need to balance
the terms while respecting the definition of constraints on 7o from Theorem 1.
Let us set the parameter 77 in the following manner:

B {TohT/HbHo,oo,T if Per > 1 (convection dominated case), (2.16)

T1h% /e if Pep <1 (diffusion dominated case),

12

with appropriate positive constants 79 and 71, where the local mesh Péclet number
Per is defined as

Ibllo,co,rhr
Pep := ——— — | 2.1
er 2e (7>

Theorem 2 (Global error estimate). Let the hypotheses of Theorem 1 be satisfied.
Choose the parameter 7 according to (2.16). Then the solution uy, of the SDFEM
satisfies the global error estimate

llu = wnlllsp < Ce* +h2) R ulisrs
Proof. From (2.15) and (2.16) follows
lla = unlllsp < C(e? + h#)h|ulis o
By employing the interpolation properties (2.8) we get
llu—urlllsp < C(e2 + h2)hF|ulisr .
Triangle inequality then completes the proof. O

If convection dominates diffusion we have € < ||b||o7oo7Th7T and 7 = 7'0||13||}:)7TT'
So on meshes satisfying h < C'hp one obtains the global estimate

1 1 1
[= wnllog +h(32 b~ V(u—un)l3)? < CH*Hlules 0
TeTh

We see from the approximation properties (2.8) that the L? error of the derivative
in the streamline direction (second term) is optimal, but the bound on ||u—wuy,||o.q
is of the order 3 less than optimal.

2.2.3 Choice of 7, parameter in one dimension

Theorem 1 provides bounds for 7 for which the SUPG method is stable and leads
to a quasi-optimal convergence of the discrete solution u;. Although the bounds
for 7 are known, the accuracy can be dramatically influenced by the choice of the
parameter inside these bounds.

It has been shown in Brooks and Hughes [1982] that for a one-dimensional
case of (1.1) with constant data (in one dimension the convection is a scalar so let
us denote it by b instead of b), Dirichlet boundary conditions, equidistant mesh,

and P; finite elements the nodally exact solution is obtained if and only if 7 is
defined as

__h B 1 ok
T = 2|b|§o(Pe), where (o) = cotha — o Pe = 5 (2.18)

where h is the element length and Pe is the local Péclet number defined in (2.17)
in one dimension.

13

2.2.4 Choice of 7, parameter in more dimensions

To find a suitable generalization of (2.18) for multidimensional cases is not as
easy as one might expect. Heuristic generalization suggests:
hy [[bllhr

= ——&(Per), where Pep = ———, 2.19
TP .

Tlp =1 9

where 7" is an element of Ty, hy is a characteristic length of 7', ||b|| . is a suitable
norm of b, £ is an upwind function, such that {(«)/a is bounded for o — 0+.

How to choose the optimal norm |||, hr and £ is not known. The corre-
spondence between one-dimensional and d-dimensional case is not at all straight-
forward and universally optimal choice of these parameters does not exist, for
further discussions about the choice of the parameter in multidimensional cases
see John and Knobloch [2007]. Knobloch [2009] also discussed the choice of the
SUPG parameter at outflow boundary layers. In the following we will choose hp
as the element diameter in the direction of the convection vector b and |/b||; is
the Euclidean norm of vector b.

As can be seen from (2.5), adding the stabilization term to the equation has
an effect of adding a diffusion in the streamline direction, see the second term
on the right-hand side of (2.4). However, Brooks and Hughes [1982] showed on
one-dimensional example, that the standard Galerkin discretization is in general
underdiffuse. So it is not entirely correct to speak about just adding a diffusion,
but rather about creating a better finite element scheme, particularly more ac-
curate. Recalling that the residual for the exact solution is zero, we immediately
obtain its consistency. Moreover, according to Roos et al. [2008], this method has
good stability properties and an “extra accuracy” of half of the power of A in the
streamline direction in comparison with the Galerkin method.

2.3 Galerkin Least Squares FEM

In the SUPG method (2.5) the standard Galerkin method is augmented by the
addition of terms that are proportional to the residual of the original differen-
tial equation. Since the residual of the exact solution is zero, the method is
automatically consistent, unlike some other upwind methods.

We will now look at this consistency-preserving feature in a more general
framework of Galerkin least squares method (GLSFEM). The classical Galerkin
method has the projection property and needs elements from C°(f2), whereas
GLSFEM method can be applied to a larger class of problems.

Let us show the application of the classical least squares method to solve the
problem

Lu=fin §Q, ulsq =0, (2.20)

where L is defined as
L=—-cA+b-V+c, (2.21)

and f,b and c are considered to be from the same spaces as in Section 1.2. Let
us choose a space W, C H%(Q)), where vj,|sq = 0. Then we are seeking a solution
up, € Wy, of the minimization problem

[1Lup, — fllgq = min [[Lup — fllgq - (2.22)
VR EVY

14

It can be easily shown that the problem (2.22) is equivalent to the problem
of finding uy € Wy, such that for all v, € W}, one has

(Euh — f, ,C’Uh) =0. (223)

In comparison with the standard Galerkin finite element method, the assumption
that W), C H?*(Q) requires the use of C' elements, which is quite important
constraint. Other problem is, that the condition number of the matrix associated
with the discrete problem (2.23) is larger than the condition number encountered
in the standard Galerkin approach.

Among the benefits of the least squares method is that it does not have
bad stability properties like the standard Galerkin finite element method in the
singularly perturbed case and that the matrix associated with (2.23) is symmetric
and positive definite.

Galerkin least squares finite element method (GLSFEM) aims to combine
the best features of the Galerkin and least squares methods. Let us introduce a
weighted residual

Z (5T(£uh — f, ,C'Uh)T (2.24)
TeTh
of the equation (2.20). As this is evaluated on a per-element basis it allows use
of C° elements from any space V;, C H (). The basic idea is to add the term
(2.24) to Galerkin formulation, which leads to the discrete formulation

a(uh,vh) + Z (5T(£uh, ,C'Uh)T = (f, 'Uh) + Z (ST(f, ,C'Uh)T , (2.25)

TeTh TeTh

where a was defined in (1.4). Initial proposal of this GLSFEM method and further
discussion about the value of §r is in Hughes et al. [1989]. The procedure used
to get the value of dr is analogous to the one used to derive the parameter 7 for
SUPG method, the resulting definition is similar, too.

More generally, we can consider, instead of (2.24), the term

Z or(Lup, — f,0(vn))r (2.26)

TeT,

where 1 is some user-chosen operator. We will call then this method Generalized
GLSFEM as by choosing ¢ (vs) = Luvp, we recover the GLSFEM method. By
choosing ¥ (v,) = b - Vo, we get SUPG. There are other possible choices, e.g.,
Y (vp) = b - Vuy, + eAwvy, for problems with ¢ = 0, see Franca et al. [1992].

2.4 SOLD methods

Since SUPG method (2.5) is not monotone, discrete SUPG solution generally still
contains spurious oscillations localized in narrow regions along sharp layers. A
possible remedy is to add an artificial diffusion term to the SUPG method to
obtain the monotonicity at least in some model cases. According to Godunov
[1959] linear monotone methods can be at most first order accurate, this means it
is natural to look for terms which depend on the discrete solution in a nonlinear
way. Such approach is often used in methods called in a general way as spurious
oscillations at layers diminishing (SOLD) methods. Sometimes other names and

15

more detailed names for these methods are used, such as discontinuity capturing
methods or shock capturing methods, many of them are compared in John and
Knobloch [2007].

The artificial diffusion added by SOLD methods almost always depends on
an unknown discrete solution of a given problem. This fact implies that these
methods are nonlinear in nature. Recently, these methods were subject of a
great interest, see John and Knobloch [2008]. It turned out that oscillation-
free discrete solutions with sufficiently sharp layers can be generally obtained
only using SOLD methods with free parameters, which can be further optimized.
However, in general, it is not known how these parameters should be defined and
according to which criterion should they be optimized.

A general parameter-dependent SOLD method for problem (1.1) based on the
SUPG method can be written in the variational form: Find w, € W), such that
up, — Upy, € V3, and

a(un, vn) + (Rn(un), b - Vur) + 2n(yn; un, vn) = (f,vn) + (g, vn)rn Yop € Vi,
(2.27)
where the new stabilization term zj,(yn; un, vs) depends on wuy, and the new pa-
rameter y;, in a nonlinear way, in general, the dependence on vy, is linear. Usually,
we choose gy, from the same space as the SUPG parameter 7, so y, € Y.

2.4.1 SOLD terms adding isotropic artificial diffusion

Hughes et al. [1986] came with the idea to change the upwind direction in the
SUPG term of (2.5) by adding a multiple of the function

(b-Vuy)Vu .

‘ (2.28)
0 if Vuh = 0,

which corresponds to the direction in which oscillations in SUPG solutions are
observed. This leads to the term zj, from (2.27) in the form

Zh(O'h; Up,, ’Uh) = (Rh(uh), Op b|i|z . V’Uh) (229)

where R, was defined in (2.4). Here oy, is a non negative stabilization parameter.
This term controls the derivatives in the direction of the solution gradient and
so increases the robustness of the SUPG method in the vicinity of sharp layers.
Since b|}|l depends on the unknown discrete solution uy the resulting method is
nonlinear.

But how to choose 0,7 Various SOLD methods were proposed but there is
just a small amount of theoretical research on them. Often the definition oy, is
related to the choice of 7 in the SUPG stabilization. One could think of using
just the value T(b';'l) but this would necessarily lead to a doubling of the SUPG

stabilization if b|}|l = b. Therefore, Hughes et al. [1986] proposed to set
o, = max{0, T(b';ll) —7(b)}. (2.30)
As (2.30) is just an ad hoc correction, Tezduyar and Park [1986] proposed to

redefine T(b';'l)I
[[
hr by,
oh = n| 28 2.31
" ol (Ibl) (231)

16

where
bl = diam(T,bl), nla) =2a(1 —), (2.32)

where diam(7, b|}|l) is the length of the element 7" in the direction given by vector

b|}|l. This definition assures that the SUPG effect is not doubled if b|}|l = b and
hence an ad hoc correction like (2.30) is not needed.

2.4.2 SOLD terms adding crosswind artificial diffusion

Since the SUPG method adds the diffusion in the streamline direction there is
natural need to consider a method which adds diffusion only in the crosswind
direction. A typical example of a term added to the SUPG method (2.5) is
(EPVuy, PVuy,) with the orthogonal projection P onto the plane orthogonal to
b. In that case of two dimensions it means the projection P can be defined as

(=ba,b1)

(EPVuy, PVvy,) = (éb* - Vuy,, bt - Vo), wherebt = BT

(2.33)
From the definition (2.33) of the projection P we can see the term z is this

case
Zh(é; Uh,’l)h) = (éPVuh,PVvh) . (234)

The parameter ¢ usually depends on the unknown solution u;, and hence the
resulting formulation is nonlinear. In John and Knobloch [2007] and John and
Knobloch [2008] many proposals for the value of parameter ¢ can be found. One
of the most successful formulas according to John and Knobloch [2013] is

diam (7)) | Ry (up)|
2|Vuh|

where 7 is a free parameter, which we will not consider in the framework of
parameter optimization later. The value we choose as a default one is n = 0.7

for P, finite element space. See the details of the choice of the value of 1 in John
and Knobloch [2008].

Elr =1 VT € Th, (2.35)

2.4.3 Edge stabilization methods

This stabilization strategy for simplicial finite elements was introduced by Bur-
man and Hansbo [2004]. The SOLD term z(yn; un,vp) is added to the left-hand
side of (2.27). In the 2D case it will be:

2n (Yns un, vn) = Z/ yrsign(tor - V(up|r))tor - V(vs|r)do, (2.36)
rer, Jor

where tyr is a tangent vector to the boundary 0T of T', and y;, can be defined as

yn(up) = diam(7T)(Cie + Codiam(T)) max I[lng - Vup|lgl, (2.37)

where ng are normal vectors to edges E of T', [|v|| g denotes the jump of a function
v across the edge E and Cy, Cy are appropriate constants (Cy is proportional to
|b|). One can see that this method adds diffusion in the direction of the edges.
Amount of the diffusion added is directly proportional to the maximum jump of
the gradient of the discrete solution across all edges of the respective element K.
See Burman and Hansbo [2004] for more details.

17

2.4.4 Iteration

Since the SOLD methods are nonlinear, their solutions have to be computed itera-
tively. The iterations are stopped if the residue is sufficiently small. The simplest
and often most efficient way is to apply fixed-point iterations in which the SOLD
parameters are computed using the previous iterate. The initial approximation is
computed using the SUPG method. Thus, the iteration procedure is as follows:

1. Use a previous solution u, to calculate parameters of the chosen SOLD
method. For the case of SOLD terms adding isotropic artificial diffusion
it means to first calculate b|}|l and then o. In case of SOLD terms adding
crosswind artificial diffusion the calculation of b is trivial (we use constant
data in our test scenarios) so only the calculation ¢ is carried out. We will
not consider other free parameters in the numerical results section 6.

2. Compute residue R, of the SOLD method we are working with. As we
already denoted the term specific for each of SOLD method as z, we can
define the R;, by just one general relation

Ry (Th, Yn; un, vn) = a(up, vp) + (Rp(up), b - Vo)
+ Zh(thUmUh) - (f> Uh) - <9,Uh>rN (2-38)

3. Check the value of the norm of R, (take into account that R}, is in the
FE space) and end with the current solution w, and the current SOLD
parameter y;, if the value of R}, is sufficiently small. Particularly, we consider
the decrease of the L? norm of R}, each iteration. If the decrease of the value
of Ry/(Rh)oewa is lower than 0.001 we stop the iteration.

4. Compute the solution u; with newest SOLD parameter yj,.

Note that as we use the initial value of a SOLD parameter y;, only as an upper
bound for optimization procedures we do not need to compute it to any higher
degree of precision. More details and results are provided in the Numerical results
chapter.

18

3. Optimization of parameters

To improve the solutions obtained with the methods containing some free param-
eters in an automatic way we need an indicator which can tell us how good is the
discrete solution computed with the given set of free parameters. In our work
we focus on optimization of not only one the stabilization parameter 7, from the
SUPG method (2.5), but also on optimization of a parameter in different SOLD
methods introduced in the previous chapter. The optimization in our case is for-
mulated as minimization of a functional representing an error indicator. Concrete
formulations will appear later in this chapter.

Suppose now that we have already some error indicator. Usually we have the
free parameter defined on each triangle in our triangulation separately. So in
fact we have to minimize function of very high number of variables. We will use
nonlinear minimization methods which are based on computing gradients. To
compute the gradient of a function of many variables can be the most important
component in an algorithm from the point of view of time efficiency. That is
why we start this chapter with a description of adjoint approach and duality
formulation.

3.1 Adjoint approach for computing derivatives

3.1.1 Adjoint approach in general

Adjoint approach to design is very widely used in practice. In this subsection we
show why this approach can be very effective in some cases.

Suppose we wish to evaluate the quantity g”u, where g is a given vector and
u is a solution of the linear system of algebraic equations

Au = f. (3.1)

In addition suppose we want to evaluate g”« for many different right-hand sides
f. Let us consider solving the following system of linear algebraic equations

Ay =g. (3.2)

Since
v f =0T Au = (ATv)Tu = g'u (3.3)

we can obtain the desired quantity ¢’ v simply by
glu=1o"f. (3.4)

Thus, instead of solving the linear system many times, it suffices to solve
(3.2) only once. The corresponding variables in equations (3.1) and (3.2) are
called adjoint variables and the problem (3.2) is called dual or adjoint to problem
(3.1). In the next sections we will further develop the framework based on these
relations.

19

3.1.2 General duality formulation

Our aim is to minimize a scalar objective function J(a) = I(U(a),a). For a
nonlinear minimization method we need to compute the derivative %. The min-
imization problem is subject to a constraint which U and « have to satisty. This
fact can be expressed in the most general implicit way as:

N(U,a) = 0. (3.5)

Equation (3.5) can be interpreted as for any given «, U has to satisfy equation
(3.5). For small changes in a we get

dJ oI dU 0I
@ - w@‘l-% (36)

We must not forget that % is subject to the constraint (3.5). We can compute
the derivative of N(U(«),), which is identically zero, to obtain

ON dU N ON
oUu da da
Let us see the correspondence between the current quantities and the framework

with quantities u, A, g7, and f introduced in Section 3.1.1:

ON dU ON ol
oA T e Y T
Now we can use what we have learned in Subsection 3.1.1 to cope with this
constrained problem. We will view problem (3.6), (3.7) with (3.8) in mind, to get

0. (3.7)

(3.8)

oI dU
T e —
g u 50 da (3.9)
where for the constraint we see
ON dU ON

If we had only a single variable «, it would not be sensible to use the adjoint
approach. But often we have much more variables (let us identify them as a;,i =
1,...,d), so using adjoint approach will decrease dramatically computational cost.
To be more specific, we first solve

ON ol
Alv=9g ~ = 3.11
for v and then for every ¢ = 1,...,d we can simply evaluate C% by
dJ ON ol
= —0,; . 3.12
dOél' Y <8ai>j * 80@ ()

At each step we have to solve only one linear system of equations (3.11) and
not d linear systems of equations (3.10) which we would have to solve if we used
a direct approach instead of the adjoint approach. The additional inner product
v” f; is much less resource-consuming to compute than solving a system of linear
equations.

20

3.1.3 Duality formulation in FEM adaptive methods

The text in this subsection follows on Section 2.2 and the notation also follows
that. We will optimize the parameters 73, oy, and &, from both the SUPG method
and SOLD method from Chapter 1.

All free parameters from SUPG and SOLD methods (2.5) and (2.27) will be
denoted not as 7, o, and &y, but rather as yp, y7, and y;, respectively. This
comes from the fact, that we do not use the original definitions of 7 from (2.18),
the same holds for other free parameters. Instead we have these ones as free
parameters for minimizing the error indicator. For a non-specified SOLD method
we will use the notation ;P instead of particular notations y and ;.

Let D, C Y, be an open set such that, for any y, € D, (y;°LP € D),
the SUPG (SOLD, respectively) method has a unique solution u, € Wj. To
emphasize various dependencies we shall use parenthesis. If I, : W, — R is an
error indicator, we define

(ph(ymy}fOLD) = Ih(uh(yfny}fOLD))) (313>

where always the dependency of u; on y; P naturally holds for SOLD methods
only. Given parameters y, and y; P, the function ®, represents the error of

the discrete solution uy(yn, ¥y °LP). It is worth noting that ®, depends on yj, or

YL only through wuy,. This dependency will be important further when taking
the derivative of ®,,.

So, our objective is to minimize ®, with respect to y, or y;°*P. For this
optimization we need to be able to effectively compute the Fréchet derivative

D®y,.

Computing derivatives in an efficient way

We do not have to consider the space W), but can work only with the space
Vi, because we have up(y;) = an(y;°tP) + tipn, with @y : Dy x Dy, — V.
Similarly, we define I (wy) = In(wy +). Now we can rewrite (3.13) in the
following manner:

(I)h(yfny}fOLD) = jh(,ah(yh?y}fOLD))‘ (314>

Furthermore, we will alter the basic residue defined in (2.4) and define the
residual operator Ry, : Vi, X Yj, x Y, — V) which is for a SOLD method from
Subsection 2.4.2 defined by

(Br(Wh, Yns Yn)s V) = a(wn + o, V) — (f, vn) — (g, Un)rN
+ ((—eAp + bV +) (wp, + n), ynb - Vup,)
— (f,ynb - V)
+ (y; PVuy, PVuy),

(3.15)

where the term (y; PVuy, PVuy) is not present in case of SUPG method.

Because @y, (yn, y; 1P + i, is the exact solution for any y; 9P, we have

R (@n(yns "), yns i O*P) = 0. (3.16)

21

For the following we will assume, that the mappings Ry, = Rp(yn, y;, L2, wy,),

I, = fh(wh) and @y, = Up(yn, y; L) are Fréchet-differentiable. We denote these
derivatives as 0, Ry, Oy Ry, DI, and Diy,.

For the sake of simplicity we will assume only dependency on y;, in the rest
of this chapter. We can express the Fréchet derivative of ®; explicitly as

D&, (yn) = DIy (@n(yn))Din(yn)- (3.17)

However, the computation of Dy (yn) requires the solution of dim Y}, systems
of dim V}, linear equations (for every component of (y); we have to compute
solution @y, ((ys);)). If we take into account that in our case the dimension of Y,
is comparable with the dimension of V},, we easily conclude that solving so many
systems would be unacceptable even for smaller meshes.

We can circumvent this difficulty by using the adjoint approach as described
in Subsection 3.1.2. It is not difficult to see the correspondence with a general
adjoint approach. Instead of design variables denoted as a we now have yp,, J(«)
corresponds to @5, (y), U(a) corresponds to iy (yp), &2 corresponds to DI, and the
constraint N (U, «) corresponds to residue Ry (un,yn). The last correspondence
comes from the fact that the residue of the exact solution is identically equal to
Z€ero.

We will now use exactly the same procedure as in Subsection 3.1.2. We define
an auxiliary mapping vy, : D, — V}, which solves the adjoint problem

(OwBn) (n(yn), yn)Un(yn) = DIn(in(yn)), (3.18)

where (0, Rp) (tn(yn), yn) is defined as the transposed operator and the behaviour
of this operator is represented by

{(OwRp) (why yn)Vh,) = ((OwRnp)(Wh, Yr) Ok, V) YUn, O € Vi (3.19)
Analogously, we denote by (9yRr) (ws, yn) the operator acting as
((OyR) (wh, yn)vn, Gn) = ((OyRn)(Whs Yn)Tns vn) Yon, € Vi, Vi € Yy, (3.20)
Similarly as in (3.7) with N we can differentiate Rj, around (an(ys), yn):
0= DRy = (OuwBn)(n(yn), yn)Dtin(yn) + (9y L) (tn(yn), yn)- (3.21)
We can further rewrite (3.21) to obtain

(0w B) (Tn(yn), yn)Din(yn) = — (0, Bn)(@n(yn), yn)
(0w Bn)(tn(yn), yn)Dtn(yn)yn, 0n) = —((OyBn)(@n(Yn), Yn)Un, Un) (3.22)
Vf)h S Vh,‘v’gjh cyv,.

Because Duy,(yn)yn € Vi, we can denote it v, for now. Then we can transpose
both sides of (3.22) to obtain step-wise

((OwBn)(Un(Yn), Yn)vn, Tn) = —{(Oy Bn) (tn(yn); Yn)Jn, On), (3.23)

((OwRR) (@n(yn), yn)on, va) = —((OyRn)" (an(yn), Yn)On, Un)- (3.24)

22

Changing now the test function v, with the solution 1, of adjoint problem (3.18),
we immediately obtain from (3.18)

((OwRn) (an(yn), yn)n, vn) = —((OyRn)" (@n(yn), Yn)Un,)
(DI (n(yn)), Dan(yn)gn) = —((OyRp) (@n(yn), Yn)¥n, In)
DI (tn(yn))Dan(yn) = —(9yRa) (@n(yn), yn)n

Yy € Y.

(3.25)

The whole process we have done in this subsection corresponds to the procedure
described in Subsection 3.1.2. In the next chapter, the general relations derived
above will be applied to the SUPG and SOLD methods formulated in Chapter 2.

23

4. Error estimators and
indicators

Adaptive strategies are often used in practice. We can for example refine the grid
in regions, where some local error estimator or error indicator is large, this we
call h-adaptivity, see the original work of Babuska and Guo [1992]. Another pos-
sibility is p-adaptivity, which increases elements’ polynomial degree, see Babuska
et al. [1981]. There are also successful and well-known techniques which merge
these two approaches together, for hp-FEM results see, e.g., Solin et al. [2003]
Much more adaptive techniques are known.

Although we focus neither on refining grids nor on polynomial degree tuning,
we will repeat probably all error indicators and estimators often used in other
adaptive methods for the sake of completeness. We list them now briefly according
to Roos et al. [2008]:

» estimators that are based on the solution of some local auxiliary problem
for the discretization error.

 residual based error estimators or indicators
 estimators that use superconvergent approximations

» estimators that are based on an error representation formula involving the
computed solution and the solution of an associated dual problem

» estimators that use complementary variational problems
 estimators based on hierarchical bases

In this work we use the second from the above list of possible error indicators
and estimators, the residual based error indicators.

4.1 Residual based error indicator

We will follow the notation used throughout Chapter 3. In (3.13) we defined the
function @, gyh) = I (un(yp)). If not explicitly defined otherwise, we will use the
indicator I~ in the form

If(wh) = > Wl — eAw, +b - Vw, + cwp — fllgr Ywn € Wy (4.1)

Tefl—h 7TOF_D:®

Based on general definitions from Subsection 3.1.3 I, (wy) = In(wp, + g), We
can easily obtain the differential

(DIF (@n(y)) o) =2 Y W3(Cun(yn) — f.Loa)r Yon € Vi, (4.2)

Tefl—h 7TOF_D:®

where the linear operator £ is defined in (2.21).
As we can see in (4.1) and (4.2), we exclude elements of 7, lying at the
Dirichlet boundary, since there large errors of the discrete solution may occur

24

due to the approximation of a boundary layer on a coarse mesh. These errors
cannot be significantly reduced by optimizing the stabilization parameter, but
they dominate the errors on elements of 7j, lying in the interior of €. This fact
can deteriorate the overall minimization process.

4.2 Crosswind derivative control term

Oscillations that appear in a SUPG discrete solution can be characterized by
large derivatives of a computed solution in crosswind direction. Possible remedy
is to add a new term to the residual based error indicator (4.1) which should
control overall crosswind derivative. For this reason, the following indicator was
proposed in John et al. [2011]:

I}Clmss(wh) _ Z (” —eAwy, +b -V, + cwy, — f”g,T
TeT, TNTD=((4'3>

+ ||¢5(|bl : th|)||o,1,T) Yw, € Wh,

where bt is a unit vector in the crosswind direction defined by
(b2(2),=b1(2)) ;¢ 1, 0
bl)={ B LP@FEL g (4.4)
0 if b(z) =0,
and ¢ is a square root-like function defined by

¢(t>:{\/i ift>1,

4.5
0.5(5t% — 3t3) if t < 1. (4.5)

We will call the term ||¢(|bt - Vws|)|lo.1.7 in (4.3) crosswind derivative control
term. The choice of the function ¢(t) ensures that the function is Fréchet dif-
ferentiable. We can show that ¢(|t|) is differentiable by defining a new function

»(t) = o(|t]) so that

/Tq5(|bl -Vwy|) de = /Ti/J(bJ' -Vwy,) dz . (4.6)

We know already that for the original function ¢(t) it holds that ¢ € C*(R),
¢'(0) =0, ¢ € C*((—o0,1]), ¢ € C*([1,00)). By the definition of ¢ we get

_Jet) t>0 s &) t>0) ,
w(t>—{¢(_t> fco’ w(t>—{_¢,(_t) tgo}—qs(ltI)sgn(t) (4.7)

We immediately get ¢ € C*(R). From the second equation in (4.7) we infer

0"(t) = (¢/(It]) sgn(t)) = ¢"(t]) - sen(t) - sen(t) (4.8)
s0 ¥ € C?*((—o0, —1]), ¥ € C?*([-1,—1]), and ¥ € C*([1,0)) .

25

Again, based on general definitions of the error indicators from Subsection

3.1.3, If7°%(wp) = 157 (wp+Upp), we can easily obtain the derivative of Indicator
(4.3):

(Dfﬁmss(ﬂh(Th))>Uh> = Z (2(£Uh(7'h) — f, Lop)r

TET,, TN D=0
+ [sen(bt - Van(m)g/(b* - Tun(m)]) b* - Vo dx)
(4.9)

for all vy, € V},. In the above equation (4.9) we use the standard definition of £
from (2.21).

4.3 Indicator with reduced residuals

Minimization of the error indicator I;"*** leads to solutions with a small cross-
wind derivative. Thus, it is particularly suited for problems possessing solutions
which, in regions away from layers, are nearly constant in the crosswind direc-
tion. In fact, this is the case for many of the test problems used for assessing
numerical methods for convection—diffusion equations. For more general prob-
lems, however, the quality of the approximation may be then poor. Therefore,
we introduce another indicator here. Let us start from the error indicator IX°. If
the approximate solution possesses an interior layer, the largest residuals appear
in the layer region and the minimization process tries to reduce them, causing a
smearing of that layer. Thus, the idea is to reduce the influence of large residuals
on the values of the error indicator. This can be achieved by setting

nmw) = Y. o(l—edwn+b- Vwy +cwn — fI3) . (4.10)
TeT, TNID=(

where 1) € C1(Ry) is increasing and concave on [0, %] and satisfies 1(¢) = 1 for
t > tg. For example, one may set

%x4—x3—%x2—|—2x if v <1,
1 if x> 1.

v =¢(5) with @) = {

Of course, a crucial question is how to choose the value ty. It is obvious that
if ¢y is large, then I'™ will behave analogously as I fz and hence will lead to a
smearing of layers. On the other hand, if ¢(is very small, then v will remain equal
1 in large parts of {2 and the approximate solution after parameter optimization
will be similar as the non-optimized one. In practice, the value of t; has to be
chosen according to the magnitude of residuals in layer regions. We can obtain

the derivative of Indicator (4.10), for all v, € Vj:

(DI (@ (m) o) = % (1//(”—€Auh(Th)—|—b-Vuh(Th)

TET,, TN =0

+ cun(mn) = £II3.7)
-2 (Lun(m) — f, Evh)T> RENVRTY

26

4.4 Application to the SUPG method

Let us first define the linear operator £ in a similar way as in (2.21)
Ly, =—eA,+b-V+ec. (4.12)
For the SUPG method (2.5) we obtain using definition (3.15) of the residual
operator the following formula for the Fréchet derivatives 0, Ry and 0y Rp:
((OwRp)(Wh, yn)On, vr) = a(Vn, vp) + (LnOk, yub - Vuy)
((OyBr)(why yn)Tn, vn) = (Ln(wn + on), Gnb - Vup) (4.13)
— (f,Gnb - Vup)

for all yp, yn € Yy and vy, O, wy, € Vi According to (3.18) and (3.19), we obtain
the relation for the auxiliary function ¥y (yn) € Vi:

a(vn, Yn(yn)) + (Lron, ynb - Vebn(yn)) = (DIn(an(yn)), vn) Yon € Vi (4.14)
For the Fréchet derivative of ®;, we obtain using (3.25) the following:

<D(I>h(yh>> ?jh> = (_Ehuh(yh) + f,unb - th(yh)) Yy, € Y. (415)

4.5 Application to SOLD methods

We will use again the linear operator £, from (4.12). One should take into
account that for the sake of simplicity we use the same finite element spaces for
all free parameters (yn, v, Jn, Jn € Yz). For SOLD method with the isotropic
diffusion from (2.29) we obtain for the Fréchet derivatives 0, Ry and 0, R, the

following relations, assuming b|}|l is taken as a constant:

((OwRn) (Why Yns Y7) On, v) = a(Op, V) + (LaOn, ynb - Vo) + (L1 0p, yZb','l - Vo)
((Oy Br)(wh, yn, Y7,)Un, vn) = (La(wn + Ton), Jub - Vo)

— (f,9nb - Vup,)
(Oyo B) (Wh, Yns Y)Tns vn) = (Ln(wn + ﬂbh);?jhbyl -Vuy)

—(f, ?jhb|}|z - Vup,)
(4.16)

for all yn,y7,0n € Y, and vp, Op, wp € Vi According to (3.18) and (3.19), we
obtain the relation for the auxiliary function ¥ (yn, y5) € Va:

G(Um?/fh(yh;yig)) + (‘Chvfnyhb . th(y}hyg)) + (»Ch'inyzb'i'l . th(y}hyf;))

= (DI (in(yn. y7)): vn)
(4.17)

for all v, € Vj. For the Fréchet derivative of ®;, we obtain using (3.25) the
following:

<D(I>h(yh>y71)7 (Igfh '!jh)> = (—,ChUh('yh, ?/Z) + f7 ghb . th(yfhyg))
+ (= Loun(yn, y5) + £, 5mb) - Von(yn, 7))

for all §n,yn € Y. We can easily get similar results for SOLD method with the
crosswind diffusion term from Subsection (2.4.2).

(4.18)

27

5. Numerical methods of
minimizing error indicators

Error indicators introduced in Section 4 are in fact functions dependent on many
variables. Therefore, we have to cope with a minimization problem in R¢, where
d is typically proportional to the number of finite elements. For example, if we
use the piecewise constant discontinuous finite element space for the parameter
Yn, then d is the number of elements of 7, (it can be a very large number).

As the number of variables is large, we solve problem, whose Hessian matrix
cannot be computed at a reasonable cost. This fact affects the choice of meth-
ods we can use for the minimization of our error indicators. Particularly this
means that we cannot use Newton’s method, which needs a full Hessian. This
computation would be too expensive.

In this section we introduce algorithms we used for minimizing error indicators
from Section 4. We begin with the description of line search algorithms, which
are used throughout many other algorithms. Then we turn our attention to four
algorithms we used in our numerical tests. All used algorithms must not store
the full Hessian. This fact prevents us from using other algorithms than those
from the following sets of algorithms: steepest descent algorithms, conjugate gra-
dient algorithms and quasi-Newton algorithms. Quasi-Newton algorithms then
comprise particularly L-BFGS and L-SR1 algorithms.

The function which we are supposed to minimize will be denoted by f through-
out this chapter. The gradient of f is defined as Vf = (%7 e ,;—L), where d is
the number of variables (dimension).

5.1 Line search algorithms

Each iteration of a line search method computes a search direction p, and then
decides how far to move along that direction. The iteration is given by
Tkt1 = Tk + QkDk, (5.1)

where ay > 0 is called step length.

5.1.1 Search direction

Most line search algorithms require p, to be a descent direction, which means
piV fi <0, where Vi, = V f(x,). This property guarantees that the function f
can be reduced along p.

In most algorithms the search direction has the following form

o= —B. 'V, (5.2)

where By, is a symmetric nonsingular matrix. In the steepest descent method
By, is the identity matrix I, in Newton’s method B is the exact Hessian V2 f;
and in quasi-Newton methods By is an approximation to the Hessian. If By is in
addition positive definite, we have

PV = -V B 'V <0,

28

which proves that px is a descent direction.

5.1.2 Step length

In the process of minimizing some function, choosing right step length is just
as important as choosing right direction. To choose a quasi-optimal step length
many different types of so called “line search algorithms” are used. The word
“line” stands there because we search in only one direction p, which is for any line
search method given as a parameter. We suppose that p; is a descent direction, so
that pf V. < 0 holds. The desired step length a; > 0 would then be a minimizer
of:

dlow) = f(zr + awpr)- (5.3)

The line search is often done in two stages: A bracketing phase finds an
interval containing desirable step lengths and a bisection or interpolation phase
computes a good step length within this interval.

A simplest possible condition we could impose on a step length oy is to require
a reduction of the function value for the given ay:

flar + arpr) < f(xn). (5.4)

See Algorithm 1 which uses the simple condition (5.4). In some special cases
this simple method can behave better than some more sophisticated algorithms.
Nevertheless, as shown by Nocedal and Wright [2006], this requirement is usually
not enough to produce an effective convergence to a local minimum.

Algorithm 1 Simple Line Search

Choose a starting point xg, initial step length « and search direction p
[+0
loop
X1 < To + ap
if f(z1) < f(xo) then
if [=1 then
o, + « and stop
end if
a2«
else
a3
[+1
end if
if |a| is too small then
oy < 0 and stop
end if
end loop
return optimal step length a,

More effective algorithms than the simple line search (means more effective in
most cases, not always) typically use more conditions imposed on the line search
procedure. These conditions must be fulfilled to accept a step length «a. If all

29

conditions are fulfilled, the algorithm stops with a desired step length, that is why
these conditions are known as “termination conditions” for line search methods.
Frequently used termination conditions for line search algorithms are the strong
Wolfe conditions:

fl@ + aupr) < flae) + 1oV £l p, (5.5a)
IV f(zx + cnpr) " pr| < 2| VAL Drl, (5.5b)
where the adjective “strong” comes from the presence of absolute values in the

equation (5.5b). An enhanced method finding a step length satisfying the strong
Wolfe conditions (5.5) is described in Algorithm 2.

Algorithm 2 Enhanced Line Search

Choose a starting point o, maximal step length apax > 0, a3 € (0, Apayx) and
search direction p. In addition we define ¢ as ¢(«) = f(xo + ap) to simplify
the notation.
ap +— 0
loop
if ¢(a;) > ¢(0) + c1a;¢'(0) or [p(a;) > Pp(ai—1) and i > 1] then
a, < zoom(«a;_1, ;) and stop
end if
if [¢'(a;)| < —c2¢/(0) then
o, < «; and stop
end if
if ¢'(a;) > 0 then
a, < zoom(q;, a; — 1) and stop
end if
Choose a;+1 € (@, Omax)
1—1+1
end loop
return optimal step length a,

Enhanced line search (Algorithm 2) has two stages. This first stage begins
with a trial estimate a; and keeps increasing it until it finds either an acceptable
step length or an interval that brackets the desired step lengths. In the latter
case, the second stage is invoked by calling a function called Zoom. This function
is described in Algorithm 3. The Zoom function successively decreases the size
of the interval until an acceptable step length is identified.

5.2 Trust region methods

Trust region algorithms also generate steps with the help of a quadratic model of
the objective function in a neighborhood of a point, but they use this model in
different ways than line search algorithms. Line search methods use it to generate
a search direction and then focus their efforts on finding a suitable step length
a along this direction. Trust region methods define a region around the current
point, within which they trust the model to be an adequately precise represen-
tation of the objective function. Afterwards trust region algorithms choose the
step to be the approximate minimizer of the model in this region.

30

Algorithm 3 Zoom(ai, ani)

loop
Interpolate (using quadratic, cubic, or bisection) to find a trial step length
a; between oy, and api. Again we define ¢ as ¢(a) = f(zo + ap).
if ¢(a;) > ¢(0) + c10;¢'(0) or ¢(arj) > P(ay,) then
Qpi < O
else
if |¢'(j)] < —c2¢(0) then
ay < «a; and stop
end if
if ¢'(a;)(ani — ay) > 0 then
Qpi < Qo
end if
Q1o < O
end if
end loop
return optimal step length a,

Assume the quadratic model function my of f near some point x; is a Taylor
series expansion of f near this point. Then we can write

1
mi(p) = fi + (Vfi)p" + E;DTka, (5.6)
where the index -, means we evaluate a given quantity at the point x;, and Bj, is
some symmetric matrix which stands for the Hessian. So we seek for the solution
of the following subproblem:

win mi(p) = fi + (VOr' + 30" B subjectto ol <A, (57)
where A, > 0 is trust region radius.

When By, is positive definite and ||B; 'V fi| < Ay, the solution of (5.7) is
the unconstrained minimum p, = —B; 'V f;. In this case, we call p; the full
step. The solution is not so obvious in other cases of By, but we only need an
approximate solution to obtain a good convergence.

One of the key ingredients in a trust region algorithm is the strategy for
choosing the trust region radius Ay at each iteration. This choice is usually based
on the agreement between the quadratic model m, and the objective function f
at previous iterations. Given a step p, we can define the ratio

~ flxw) — flor +pr) ared

The numerator is called the actual reduction and the denominator is called pre-
dicted reduction. We will use this later in this chapter. The algorithm which use
equation (5.8) for adjusting Ay is used later in the L-SR1 algorithm (Algorithm
10).

We now turn our attention to the solution of the minimization subproblem
(5.7). We will describe the so-called Cauchy point algorithm. The “Cauchy point”

31

is simply the minimizer of my; along the steepest descent direction —V fr. We
will minimize my(7px) as a function of 7, where we choose the size of the vector
pr to be Ay, so we can write

Pr = 7||ka||ka' (5.9)

To obtain 73 in an explicit form we consider the cases of VI B,V f. < 0 and
VfEByV fi. > 0 separately. For the former case, the function my(7px) decreases
monotonically so 75 is simply the largest value that satisfies the trust region
bound, 7, = 1.

For the case VfI B,V f. > 0, m(rpe) is a convex quadratic in 7, so 73 is
either the unconstrained minimizer of this quadratic or the boundary value 1,
whichever comes first. For the constrained minimizer we compute 75 as solution

of % = 0. In summary we have
1 if VIBV fi <0,
= 5.10
Tk min (%’ 1> otherwise. ()

The Cauchy point algorithm is inexpensive to calculate, because no matrix
factorizations are required. However, a better convergence speed might be ob-
tained if By is used not only to compute the step length but also to identify a
better search direction py.

5.3 Steepest descent methods

The most simplest implementation of the steepest descent method is represented
in Algorithm 4. In the steepest descent algorithm we use the line search method
defined in Algorithm 1 or 2. The choice of the line search method does not have
a fundamental effect on obtained results. In general an enhanced line search
method should be faster but in some cases it returns a worse minimum than a
simple line search method.

Algorithm 4 Steepest descent algorithm

Choose a starting point x and initial step length «
k<« 0
ddoia <= =V T (20)V f (20)
while value of |V f(zy)| is sufficiently high do
p+ =V f(zx)
do « VT (z)p

o — ad¢old

Computcgba using Algorithm 1 or Algorithm 2 with initial step length «
Tiy1 < T+ ap

dgoa < do

k+—k+1

end while

32

5.4 Nonlinear conjugate gradient methods

Fletcher and Reeves [1964] showed how to extend the classical linear conjugate
gradient method, which is used to solve a linear system of equations Az = b (or
equivalently minimizing ¢(z) = s27 Az — b z), where A is a positive semidefinite
matrix, to nonlinear functions by making two simple changes.

First, in the formula for the step length cy, (which minimizes ¢ along the search
direction py), we need to perform a line search that identifies an approximate
minimum of the nonlinear function f along p,. Second, the residual Ax—b, which
corresponds to the gradient of ¢ in the linear conjugate gradient algorithm, must
be replaced by the gradient of the nonlinear function V f. These changes give
rise to the conjugate gradient Algorithm 5 for nonlinear optimization.

Algorithm 5 Nonlinear conjugate gradient algorithm

Choose a starting point zg

k <+ 0, Po < —Vf(l'o)

while |V f(z;)| > 0 do
Compute a4 using line search method
Th+1 < Tk + Dk

VT (k1) (V f(2rs1) — V(ar))

- 5.11
K NI (5.11)
P+t & =V (Tri1) + Brv1pr (5.12)

k—Fk+1

end while

Algorithm 5 is appealing for large nonlinear optimization problems since each
iteration requires only the evaluation of the objective function and its gradient.
No matrix operations are required for the step computation and just a few vectors
of storage are required.

To make the specification of Algorithm 5 complete, we need to be more precise
about the choice of the line search parameter ai. Because of the second term
in (5.12), the search direction p, may fail to be a descent direction unless ay
satisfies certain conditions. It can be simply shown (see Nocedal and Wright
[2006]) that if «y, satisfies strong Wolfe conditions (5.5) with 0 < ¢; < ¢3 < 3,
then all directions p, are descent directions.

It is possible to use another definition of (5.11). The definition we use is
known as the Polak—Ribiére formula for 5. Other possible formulas for S are the
Fletcher-Reeves formula and the Hestenes—Stiefel formula. However, according
to Nocedal and Wright [2006], the Polak—Ribiére formula performs slightly better
than other formulas for £ in most cases. According to our tests, the differences in
performance among these formulas are negligible so we do not list tests for every
single formula for [as a standalone test.

33

As explained in Nocedal and Wright [2006], restarting can be added to obtain
a better performance when we have a modest dimension d (say d ~ 50). Then,
we restart every d iterations our algorithm by setting fr.1 = 0 in (5.11). Since
we have much larger dimension, no restarting strategy is applied.

5.5 Limited-memory quasi-Newton methods

Quasi-Newton methods are also known as variable metric methods. They are
based on Newton’s method to find the stationary point of a function. Newton’s
method assumes that the function can be locally approximated as a quadratic in
the region around the optimum and uses gradient and Hessian (matrix of second
derivatives) to find the stationary point.

We need to solve a problem whose Hessian matrix cannot be computed at a
reasonable cost. In Newton’s method, By, is the exact Hessian V2 f(z). In quasi-
Newton methods, By, is an approximation to the Hessian that is updated at every
iteration by means of a low-rank formula. A possible simplistic interpretation is
that they determine the descent direction by preconditioning the gradient with a
curvature information.

The most common quasi-Newton algorithms are currently the SR1 formula
(symmetric rank one), the widespread BFGS method (suggested in 1970 indepen-
dently by Broyden, Fletcher, Goldfarb, and Shanno), then described in a more
complete way in Fletcher [1987] together with some limited-memory extensions.

According to Nocedal and Wright [2006], limited-memory quasi-Newton meth-
ods are most effective to solve large problems. These methods maintain simple
and compact approximations of Hessian matrices: Instead of storing fully dense
d x d approximations, they save only a few vectors of length d that represent the
approximations implicitly. Despite of low storage requirements, they often yield
an acceptable (albeit linear) rate of convergence.

Various limited-memory methods have been proposed, but we focused on the
algorithm known as the L-BFGS algorithm and our proposed L-SR1 algorithm.
The “L” stands in the name, because of limited memory cost of the method. The
main idea of both methods is to use curvature information from only the most
recent iterations to construct the Hessian approximation. Curvature information
from earlier iterations, which is less likely to be relevant to the behavior of the
Hessian at the current iteration, is discarded in the interest of saving storage.

So instead of computing By, at every iteration, we update it in a simple manner
to account for the curvature measured during the most recent step. Suppose that
we have somehow generated a new iterate xp,; and wish to construct a new
quadratic model of f of the form

1
Mi41(p) = frr1 + kaTHP + EPTBICHP- (5.13)
We now want that m;,; matches gradient of f at the latest two iterates xy

and xjy1. Since Vmy41(0) is precisely V fi41, the second of these conditions is
satisfied automatically. The first condition can be written as

V1 (—oawpr) = V frp1 — i Brsipe = V fi. (5.14)

34

By rearranging we obtain

Bk_HOékpk = ka_H — ka (515)

To simplify the notation we will use the following abbreviations

Sk = Tr1 — T = WPk, Ye = Vi1 — Vi (5.16)
We can now rewrite (5.15) as

Bk+1sk = Yk- (517)

We will refer to equation (5.17) as the secant equation.

5.5.1 Limited-memory BFGS method

We begin our description of the L-BFGS method by a description of the BFGS
method. Then we will explain how to avoid assembling of the full Hessian. Fach
step of the BFGS method has the following form

Tet+1 — Tk — Oékaka, (518)

where ay, is the step length and the inverse Hessian approximation Hj, is updated
every step using the following formula

Hyy = VI HLV + prsesi (5.19)

where Vi, pr, and si are defined by

Sk = Thi1 — Tky Y= VIey1 — Vi, pp= ﬁ, Vi =1 — peyess . (5.20)
Since the inverse Hessian approximation Hj will be dense, the cost of storing
and manipulating it is prohibitive when we have large dimensions. Optimizing
parameters in FEM takes place in large dimensions, so we have to circumvent
somehow this problem.

We will store a modified version of H; only implicitly, by storing a certain
number m of the vector pairs {s;, y;} used in formula (5.19). The Hessian Hj, is
generally used only through the product HpV fi. The product can be obtained
by performing a sequence of inner products and vector summations involving fx
and the pairs {s;, y;}.

After the new iterate is computed, if there are already stored m pairs {s;, y;},
the oldest vector pair in the set of pairs is replaced by the new pair {sg,yi} ob-
tained from the current step. This means that the set of vector pairs includes
curvature information only from the m most recent iterations. Practical experi-
ence has shown that lower values of m (lower than 100) produce good results. At
this place it is necessary to remember that we in fact collect curvature informa-
tion from more different points in the multidimensional space, so larger values of
m really have no relevance to reproduce a good approximation of the Hessian at
a given point.

Suppose that we did k iterations, so we have the vector pair {sg, yx}. Further
suppose that we already have vector pairs {s;,y;} for i = k —m,....k — 1.

35

For computing H;V fi, we choose some initial inverse Hessian approximation Hp.
Then we apply formula (5.19) repeatedly, so that the L-BFGS approximation
of H, satisfies the following formula, where we used the notation introduced in
(5.20)

He=Vily - Vil)V HY (Vi -+ - Vi)
+ pk-m (Vs Vi) SkemSh (Viemer -+ Vi) (5.21)
+ ph-m1(Viiy - Vi o) Skema18h i1 (Viemaz -+ - Vie1) '

T
+ ot Pk—1Sk-1Sk_1-

From the formula (5.21) we can derive an algorithm for computing the product
HiV fr. According to Nocedal and Wright [2006], the most effective version of
such an algorithm is that in Algorithm 6.

The Algorithm 6 needs only 4mn +n multiplications. And because the multi-
plication by HY is isolated from other multiplications, we can use a different H}
in each iteration.

36

Algorithm 6 L-BFGS two-loop recursion algorithm to compute H;V fi

q < Vfk

fori=k—1,--- ,k—mdo
a; < pis; q

q < q—oy;

end for

r < Hlq
fori=k—m,--- J/k—1do
B piylr
r<r+s;(a; — B)

end for

return 7 (in r is now the value of HyV f;)

According to Nocedal and Wright [2006], we choose H}, as the diagonal matrix
H) = I, where
Sho1Uk—1
Vi T (5.22)
A full algorithm of the L-BFGS method is now quite straightforward to write.
We can see it in Algorithm 7. In every iteration we use some line search method
to obtain the step length aj. We can choose from both line search methods
introduced in Section 5.1, although only the enhanced line search method guar-
antees the linear rate of convergence, according to Nocedal and Wright [2006].
In our tests we use the simple line search method, which proved to be more ro-
bust in practice than the enhanced line search method, although, according to
Nocedal and Wright [2006], the theoretical convergence results are only for the
enhanced line search method (the enhanced line search method guarantees Hy, is
positive-definite).

Algorithm 7 L-BFGS algorithm

1: Choose a starting point xq , integer m > 0
2: k<« 0
3: repeat
4: Choose H}
Compute py, < —HV f. using two-loop recursion (Algorithm 6)
Compute xp 1 < T + appr with o given by Algorithm 1
if £ > m then
Discard the pair {Sg_m, Yr—m }
end if
10: Compute s < Tpi1 — T, Y < V fee1 — Vi
11: k+k+1
12: until convergence

5.5.2 Limited-memory SR1 method

In the BFGS updating formula (5.19), the matrix By differs from its predeces-
sor B by a rank-2 matrix. We now show that there is a simpler rank-1 update

37

that maintains symmetry of the matrix and allows it to satisfy the secant equa-
tion. Unlike the rank-2 update formula, this symmetric-rank-1, or SR1, update
does not guarantee that the updated matrix maintains positive definiteness. The
symmetric rank-1 update has the general form

Biy1 = By + ovv”, (5.23)

where ¢ is either 41 or —1 and ¢ and v are chosen so that By, satisfies the
secant equation (5.17), that is yp = Byi1Sk. By substituting (5.23) into the
secant equation, we obtain

yr = Bisi + [ov” si]v. (5.24)

From (5.24) we deduce, because the term in the brackets is scalar, that v is a
multiple of (yp — Bgsk). By substituting v = §(yx — Bgsk) into (5.24), we obtain
the following equation

Yr — Brsp = 062[s£(yk — Bisi)](yr — Brsk). (5.25)
Equation (5.25) tells us how § and ¢ should be defined:
o =sgns! (yx — Brsi)], 0 = =x|st (yx — Brsi)| V2 (5.26)
Now we can rewrite (5.23) to obtain an explicit update relation for B

(yx — Brsi)(yx — Brsi)T

(yk - Bk5k>TSk

By =By + , (5.27)
from which we can see possible errors connected with the fact that the denomi-
nator of (5.27) may happen to be zero or close to zero.

It is easy to see that even if By, is positive definite, B, may not have the same
property. This observation was considered a major drawback in the early days
of nonlinear optimization when only line search iterations were used. However,
with the advent of trust region methods, the SR1 updating formula has proved
to be useful and its ability to generate indefinite Hessian approximations, which
are indeed better approximations to the true Hessian than those from the BFGS
method, can actually be regarded as one of its chief advantages.

At first glance we may see a possible drawback of the SR1 updating. The
denominator in (5.27) can vanish. We see that there are three possible cases:

1. (yr — Brsr)Tsp # 0 — there is a unique rank-1 updating formula satisfying
the secant equation (5.17), we can use (5.27).

2. yr = Bgsy — only updating formula satisfying (5.17) is Byy1 = Bk.

3. yr # Bisk and (yx — Brsk)? sk = 0 — there is no symmetric rank-1 updating
formula satisfying (5.17). As we shall see later, this case can be relatively
simply fixed.

The last case suggests that rank-1 updating does not provide enough freedom to
develop a matrix with all the desired characteristics.
Nevertheless, we are interested in the SR1 method for the following reasons:

38

1. A simple safeguard can adequately prevent SR1 from breakdown.

2. The matrices generated by the SR1 are in general better approximations to
true Hessian than the BFGS approximations.

3. In quasi-Newton methods for constrained problems, it may not be possi-
ble to impose the curvature condition yis, > 0 and thus BFGS updating
is not recommended. Indeed, in these two settings, indefinite Hessian ap-
proximations are desirable insofar as they reflect indefiniteness in the true
Hessian.

A possible strategy to prevent the SR1 method from breaking down is skipping
the update if the denominator in (5.27) is small. More specifically, the update
(5.27) is applied only if

|si (yk — Brsi)| = rllsellllyr — Brsill, (5.28)

where r € (0,1) is a small number (e.g., r = 107°). If (5.28) does not hold, we
set Byryi1 = Byg.

In Algorithms 8, 9, and 10 we can see the L-SR1 trust region method we
used in our computations, the first two algorithms are used in Algorithm 10. We
prefer the trust region framework over a line search framework, because it can
accommodate an indefinite Hessian much more easily (although making L-SR1
method with line searching is possible). In the trust region framework we use the
notation from Section 5.2.

Algorithm 8 Update of B in the L-SR1 algorithm
Uk < gSk
fori=k—m,k—m+1,....k—1do
q < Jisfvi
v — qulvy,
end for
Vg <= Yk — Uk
5+ —=

VALY

Vi < 6’Uk

if sTvp > 0 then
o +— 1

else if slv, < 0 then
o +— —1

else
o, + 0

end if

return o and v

5.5.3 Restarting, termination criterion, and remarks on
quasi-Newton methods

Since the function that we minimize not only depends on many variables, but it
is also locally rugged, it is difficult to resolve its minimum properly. The strategy

39

Algorithm 9 Computation of Byz in the L-SR1 algorithm
W gz
fori=k—m,k—m+1,....k—1do
q < O'iZ;-T'Ui
W <4— qvl-T + w
end for
return w is the resulting matrix-vector product we want (w = Byz)

Algorithm 10 L-SR1 algorithm

1: Choose a starting point xg, initial Hessian approximation By, trust region ra-
dius A, number of stored vectors m, convergence tolerance € > 0, parameters
n € (0,107%) and r € (0,1)

2: k<« 0

3: while ||V fi|]| > € do

4: Compute s; by solving the minimization subproblem
min (kaTs + %STB]CS> subject to ||s]| < Ag (5.29)

using Cauchy point trust region method, (5.9), (5.10) and using Algorithm
9 with m as the parameter

5. yk 4 Vf(xr+sk) — Vi

6: ared < fr — f(zr +sk) (actual reduction)

7. pred + — (kaTsk + %s{Bksk) (predicted reduction)

8 pr 21;2‘3 (from (5.8))

9: if pr > n then

10: Tp+1 < Tk + Sk

11: else

12: Thk+1 < Tk

13: end if

14: if pr > 0.75 then

15: if ”Sk” < O8Ak then

16: Api1 = Ay

17: else

18: Ak—i—l =2/

19: end if

20: else if 0.1 < p,. < 0.75 then
21: Ak—i—l = Ak

22: else

23: Api1 = 0.5A;

24: end if

25: if (5.28) holds then

26: Use Algorithm 8 and m to compute By (do that even if zj,1 = xy)
27 else

28: Bk—i—l +— By

20: end if

30: end while

40

we propose is often used in many numerical algorithms. When the decrease of
the function is not sufficient, then restart comes on. The restarting is used in a
slightly different way in the L-BFGS method and in the L-SR1 method.

In our case of the L-BFGS method, restarting occurs when decrease of function
is lower than some constant during the last ten iterations. This constant is close
to zero (e.g., 107*) and does not have any important impact on performance. If
this happens consecutively, the algorithm terminates.

The L-SR1 method restarts itself in co-operation with the parameter p, =

ared from (5.8), which is equivalent to the likelihood of the model function my

pred
from (5.6) to the function f. If this parameter is two times consecutively lower

than some constant and at least three iterations were performed, we restart the
algorithm. In effect this means to alter the IF statement in Algorithm 10 on
the line 22, where we add this simple conditional statement for restarting. The
parameter Ag decreases during each restart, too.

Termination criterion in L-SR1 method is based on decrease in last bm iter-
ations, where m is number of stored vectors from Algorithm 10. If any decrease
has occurred, the algorithm continues, otherwise the algorithm terminates and
returns the point with the lowest obtained value of the function f. This strategy
is the best one particularly for the L-SR1 method, since after the L-SR1 method
reaches a local minimum a restart occurs, which almost always deteriorates the
solution in a few following iterations.

In all tested algorithms including L-BFGS and L-SR1 algorithms a bound for
parameter y, was imposed in order to prevent algorithm from reaching another
local minimum far from the global minimum. In case of the SUPG method this
bound was defined as a multiple of 7, from initial SUPG method. We use the
bound

0 < Jynl < 10/7, (5.30)

where 73, is defined in (2.19). This bound also allows us to use theoretical results
for the SUPG method. For SOLD methods we use a richer range of values, but
unless said otherwise, for any SOLD parameter g, we use a similar bound

0 < || < 10]y, 7, (5.31)

where ;7 9LP is the value of the definition of a SOLD parameter from Section 2.4.

5.6 On tuning of the parameters

In this section we will briefly discuss how we tuned some parameters of mentioned
methods. In the L-SR1 method there are many constants which can be treated
separately and fine-tuned to obtain the best possible results in the best possible
time in our tests. The following work stems from the diploma thesis of the author.

In other methods we do not have so many possibilities. This can be used
to optimize our L-SR1 method for any given example, but also could lead to
lower robustness of the method if we tuned the L-SR1 algorithm exactly for some
particular test and used that setup to other ones. We tried to find a setup of the
constants performing well in large variety of tests.

41

In Subsection 5.5.3 we introduced
a strategy for restarting. Constants
used here are number of stored vectors
m, upper bound for the parameter y,
5.30, initial trust region radius Ao, and
k defined as

Ay
=)
AO,olcl

K (5.32)

Figure 5.1: Example of improper upper
safety bound for parameter y; (particu-
larly yn, < 3|m]|) for Example 1 from Sub-
section 6.1 when optimizing according to
indicator (4.9).

where Ag g is the initial trust region
radius in the last restart-loop and Aq
is the radius in the current loop. Our
numerical tests suggest there is a rela-
tion among these constants.

One relation of this type is already
mentioned in Subsection 5.5.3. It is the termination strategy, where the algorithm
ends when there is no decrease in the last 5m iterations. The fact that this number
depends on m is natural as the algorithm simply needs more than m iterations
to establish a new good rank-1 approximation of the Hessian with m vectors and
in addition reduce the trust region radius. This heuristic direct proportionality
was tested successfully on our examples.

Similar but weaker heuristics can
be done when seeking for optimal s € 2500 |
(0,1). It is natural that there must
be a relation between the initial trust
region radius Ag and the constant k.
Particularly, when we have a large
initial Ay then we can decrease in
each restart-loop the trust region more
rapidly. In Figure 5.2 a graph of typ- 0 o o o o 1
ical dependence of achieved minimum kappa
by the L-SR1 algorithm on the con-
stant x is depicted. This suggests that
we should choose x lower than 0.9. For
our tests we use k = 0.5.

The most important among all parameters for the speed of convergence of the
L-SR1 algorithm is the proper choice of the initial trust region Ag. In fact, when
we have good safety bound (5.30), it is possible to choose any sensible initial trust
region. From our tests it comes out that larger values produce faster convergence.
The safety bound must be set up properly when using larger values, otherwise
this can lead to deterioration of the solution as we can see in Figure 5.1, where
a lower “upper bound” for y;, than in (5.30) was used, but not sufficiently small
to obtain a good result. It was possible to solve a few problems which occurred
during some tests of the L-SR1 algorithm by lowering the safety bound or by a
change of the initial trust region Ag, we can choose to change one or the other.

How the obtained minimum depends on the choice of the initial trust region
Ag in two different tests is shown in graph in Figure 5.3. In the first case, the
safety bound was properly chosen while in the second case, the safety bound

2000

1500 -

residue_in_L_2_norm

1000 -

500

Figure 5.2: Graph of achieved minimum
by the L-SR1 algorithm on & from (5.32).

42

was too large. In the latter case the L-SR1 algorithm converges somewhere far
from the global minimum if in addition a too large initial trust region is set.

This graph also allows us the conclu-
sion that the upper safety bound for
the latter test should be somewhat
lower. If the upper safety bound was
sufficiently small we could use large
initial trust region radius.

If we already have a good solution,
our tests suggest that an improvement
may be achieved by slightly increasing
the safety bound (5.30) for the param-
eter y,. If we increase it too much,
a deterioration of the solution in a
way similar to what we described in
the previous paragraph occurs. This
process can be done also for the L-
BFGS algorithm. However, increas-
ing of the safety bound has generally
only a negligible positive effect on the
overall obtained solution. Even a no-
ticeable speedup of algorithms cannot

-
o
o

residue-in-L-2-norm
N
o
N

103 -4 ‘—3 ‘—2 ‘-1 ‘O ‘1 ‘2 ‘3
10 10 10 10 10 10 10 10
DO

Figure 5.3: Comparison between compu-
tations with proper and improper upper
safety bound for parameter y;, DO stands
for Ay. Computations with proper safety
bound are visualized using a dashed line
and those with improper safety bound
with a solid line.

overcome stability issues connected with a large safety bound.

The number of parameters that need to be tweaked in order to have a quality
of obtained discrete solution similar to that from the L-BFGS method is large
and the uncertainty leads us to the conclusion of using the L-BFGS method in a
general case. It is clearly a more robust solution which is more documented and

applicable to larger set of test cases.

43

6. Numerical results

6.1 Examples

The following examples were used in our tests. Projection of the exact solution
to the 30x30 rectangular isotropic mesh is always next to the definition of each
example.

Example 1

We consider the convection—diffusion—
reaction equation (1.1) in Q = (0,1)?
with TP = 0Q, ¢ = 1075, b =
(1,0)X, ¢ =0, f = 1, and up = 0.
The solution u(x,y) of this problem
is depicted in Figure 6.1. The solu-
tion possesses an exponential bound-
ary layer at x = 1 and parabolic
boundary layers at y = 0 and y = 1.
In the interior grid points, the solu-
tion is close to u(z,y) = x. Péclet Figure 6.1: Solution of Example 1
number from (2.17) in this example is

approximately 2.6 - 10°. This example

is well known and it was used by Mizukami and Hughes [1985].

Example 2

The convection-diffusion-reaction equation (1.1) is considered in = (0, 1)? with
P =0Q,e=10"% b = (cos(—n/3),sin(—7/3))T, c=0, f =0, and

0 forx=1ory<0.7,

(2, 9) {1 otherwise.
The solution u(z,y) of this example
is depicted in Figure 6.2. The solu-
tion possesses an interior characteris-
tic layer in the direction of the con-
vection starting at (0,0.7) and ex-
ponential boundary layers at x = 1
and y = 0. The Péclet number
from (2.17) in this example is approx-
imately 2.6 - 10°. This example ap-
peared in Hughes et al. [1986]. Figure 6.2: Solution of Example 2

44

Example 3

The convection—diffusion-reaction equation (1.1) is considered in Q = (0,1)? with
'V ={0} x (0,1), T? =90\ ({0} x (0,1)), e = 107%, b(z,y) = (—y,z)", ¢ =0,
f=0,9g=0,ie., Neumann condition g—z =0onx =0, and

1 if1/3<x<2/3andy=0,

] (6.2)
0 otherwise.

Ub(x>y> = {

The solution u(zx,y) of this problem is
depicted in Figure 6.3. The solution
possesses two interior characteristic
layers in the direction of the convec-
tion starting at (1/3,0) and (2/3,0).
One can see that the initial bound-
ary condition is transferred towards
the outflow boundary at x = 0. The
Péclet number from (2.17) in this ex-
ample is in the interval from 8.6 - 10°
to 1.74 - 10%. This example was used, Figure 6.3: Solution of Example 3
e.g., by Knopp et al. [2002].

Example 4

The convection—diffusion-reaction equation (1.1) is considered in Q = (0,1)? with
I'P=0Q,e=10"% b= (1,0)T, c =0,

0 if |z — 0.5] > 0.25 or |y — 0.5 > 0.25,

: (6.3)
—32(x — 0.5) otherwise,

f(x,y) = {

and u, = 0. The solution wu(zx,y) of
this problem is depicted in Figure 6.4.
The solution possesses two interior
characteristic layers in the direction of
the convection starting at (0.25,0.25)
and (0.25,0.75). The Péclet number
from (2.17) in this example is approx-
imately 2.6 - 10°. This example was
first considered in John and Knobloch
[2008]. Then, it was subsequently
used, e.g., in Lukas and Knobloch Figure 6.4: Solution of Example 4
2018].

45

Example 5

We consider the problem (1.1) with Q = (0,1)%, TV = {0} x (0, 1), TP = 9Q\T¥,
€= 10_87 b(l‘,y) = (_y> x>T> c=[f=0,9=0,

T if
up(2,0) = 45+ if
1—2o if

who wik O
IAN A A
8 8 8

x € [0,1],

— Wl Wl

IAN A A

and u, = 0 elsewhere on I'P. This example was inspired by Example 3 but it
has a different boundary condition which has three parts which are not piecewise
constant. One can see it in Figure 6.5a.

7
HAH

s
777

HHHFE
7=

P
s
T2,
HH 225
0.8 I \
—
=<
00)
0.4 ////
7 ‘
Z
0.2 7
’/

(a) Solution of Example 5

’ﬁ’ ﬁ’"m,
i,
e
A ’////(«\\\\\\«// 0

N

A

<
ST

ANEEAN
7~

S

-

\

0.6

08
(b) Solution of Example 6

Figure 6.5: Solutions of Examples 5 and 6

Example 6

This example is similar to Examples 3 and 5. In this case we slightly change the
boundary condition at y = 0 which now reads:

6x
2—6z
—24+6x
4—6x
—44+6x
6—6x

up(x,0) =

ot W VI- Wik o= O

x € [0,1].

— oot W N= Wl S

IAIA A A IA A
8 8 8 8 8 &8
IAIA A A IA A

In this example, there are no layers in the solution, one can see it in Figure 6.5b.
An accurate approximation of the solution to this example is challenging for all

the methods.

46

Example 7

We consider the problem (1.1) with (0,1) x TV = {0}, T'? := 9Q \ I'V. In this
case the boundary condition at y = 0:

0 if 0<z<4t,
u(,0) =\ /—a2+dx— L if 1<a<2, ze[01]. (64
0 if §<x§1,

Diffusion € = 107®, convection is directed in the y-axis direction b(z,y) = (0,1)7,
c=f =0,¢9 =0, In this example a smooth boundary condition which is not
piecewise linear is considered. There is one steep layer in the exact solution which
can be seen in Figure 6.6.

12

1
0.8
0.6

Figure 6.6: Solution of Example 7

Let us note that in Examples 2, 3, 5, and 7, the function u;, does not satisfy
the assumption u, € HY?(I'P) but it can be regularized in such a way that the
assumption holds and the numerical results presented here do not change.

6.2 Numerical methods of minimizing error in-
dicators

In this section we try to compare numerical methods of minimizing error indi-
cators introduced in Section 4 on four basic examples introduced in Section 6.1,
these are in the two-dimensional domain and are discretized by conforming piece-
wise linear finite elements. We will optimize the parameter 75, from the SUPG
method in this section. Abbreviations of used methods are listed in Table 6.1 and
will be used in the following figures and tables. The criterion for the evaluation
of compared methods will be introduced later in Subsection 6.2.1.

For maximum efficiency of vector and matrix operations we used the UMF-
PACK library, which is part of the SuiteSparse library, see Davis [2006]. All tasks
in this section were carried out on the netbook Asus eee 901 with a single Intel
Atom N270 processor and 1GB of DDR2 memory. This computer has a low per-
formance, from our experience the computation on a common notebook is more
than twice faster. We used the operating system Ubuntu 11.04, which is a Linux
distribution based on the kernel 2.6.38-8. No other applications were in use on
the computer during the testing and the computer was in no saving mode.

47

Name Method description Related algorithms
SD Steepest descent method 4,1

NCG Nonlinear conjugate gradient | 5, 1

L-BFGS | Limited-memory BFGS 7,6, 1

L-SR1 Limited-memory SR1 10, 8, 9

Table 6.1: List of methods used to optimization of parameter yj

In all numerical algorithms a global bound for iteration count was imposed
but in fact never reached in practice by the L-BFGS or L-SR1 algorithms. Only
the steepest descent algorithm and the conjugate gradient algorithm reached this
bound which was 3000 iterations in the case of the steepest descent algorithm
and 1000 iterations in the case of the conjugate gradient algorithm. However,
the runtime of both of these algorithms was more than ten times longer than the
runtime of both the L-BFGS algorithm and the L-SR1 algorithm in any of our
examples.

So when we will talk about the best minimum reached by a given method we
mean the uncut minimum in the case of quasi-Newton methods and the result
after the large number of iterations in the case of the steepest descent method or
the nonlinear conjugate gradient method.

The safety bound from (5.30) was used in all methods, in this section we only
considered SUPG method. While the safety bound in the presented tests is left
constant among all used tasks, the initial trust region in the L-SR1 method Aq
was in two tests (tests 1 and 2) reduced from 100 to 0.5. This prevents the L-SR1
algorithm from converging to some local minimum far from the global minimum.
In this way, the L-SR1 method can be in fact used to identify whether the safety
bound for the given example is not chosen unproperly. As it is shown later, the
L-BFGS method performs always well unless the safety bound is very large, which
is not our case.

6.2.1 Evaluating tests

In this subsection we will introduce the testing methodology we use for evaluating
the numerical tests. The best obtained minimum ®;.;; among all minimization
methods from Table 6.1 for the given minimization task is selected as the origin
for the given task and then we calculate the quantities

Atot((p) = log o — log (Dbest s (65)
where ® is the value obtained by a given minimization method, and
Agps(P) = log Poos — log Ppest 205 (6.6)

where ®peqr 205 is the best minimum among all minimization methods for the given
minimization task obtained in the first 20 seconds and ®4, is the value obtained
by a given minimization method in the first 20 seconds.

Quantities Ay and Agps are motivated by the fact that we have very differ-
ent order of magnitude of ® for different tasks and relations (6.5) and (6.6) for

48

evaluating the tests are robust enough to cope with this. So the quantities Ay
and Ay have the same meaning in all examples and tasks and we can compare
them directly among all the tasks.

6.2.2 Results of numerical tests

In this subsection we present the results from the point of view of minimization
of functions of many variables. A graph of such a minimization in time is given
in Figure 6.7

10°

104 L J

0.1 1 10

Figure 6.7: Process of minimization according to indicator (4.1) on isotropic mesh
for investigated Example 2. On the vertical axis there is L? residue and on the
horizontal axis there is time in seconds.

In the graph of minimization according to time in Figure 6.7 we do not display
the best minimum obtained by a method to that time but the value in an actual
iteration. This can be nicely seen particularly in the case of the L-SR1 method,
where a run off the global minimum can occur by successive restarts.

Calculations of Ay in the case of SD method lasted more than ten times
longer than similar calculations in the case of L-SR1 or L-BFGS algorithms.
Almost always the L-SR1 algorithm ended a few seconds before the L-BFGS al-
gorithm, NCG algorithm ran much longer but not as long as SD method. Calcula-
tions show that different nonlinear minimization methods are suited for different
minimization tasks.

One of the crucial parts of theoretical research is the proper choice of the
upper bound for y;, from (5.30). Whether it is theoretically possible to find an
optimal upper bound dependent on a given example, which would guarantee a
“correct” result, is not known. We see an example of an improper (too large)
upper safety bound for y;, in Figure 6.8, where the L-BFGS method found an
overdiffuse solution. This is an important issue in the case of all minimization
methods.

The initial choice of the parameter y, is “correct” in the sense that it is the
parameter from the SUPG method (2.5), for which we have theoretical results.
When too large upper bound for g, is applied, a solution with a lower value of

49

SD NCG L-BFGS L-SR1

Task to solve AQOS ‘ Atot A205 ‘ Atot AQOS ‘ AtOt AQOS ‘ Awt

Example 1 0.46 | 0.36 | 0.28 | 0.16 0 0 0.41 | 0.42
Example 2 0.21 | 0.01 | 0.20 | 0.04 0 0 0.28 | 0.30
Example 3 0.44 |1 044 | 045 | 044 | 045 | 0.45 0 0
Example 4 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 0 0

Example 1 A 1.60 | 0.96 | 1.50 | 1.36 0 0 0.95 | 1.40
Example 2 A 0.66 | 0.20 | 0.58 | 0.36 0 0 0.43 | 0.55
Example 3 A 0.39 { 0.39 | 0.39 | 0.39 | 0.41 | 0.40 0 0
Example 4 A 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 0 0
Example 1 C 059 | 03410521024 O 0 0.55 | 0.99
Example 2 C 0.09 { 0.02 | 0.09 | 004 O 0 0.09 | 0.10
Example 3 C 0.01 0 | 0.02]0.01 0 0.01 | 0.01 | 0.02
Example 4 C 0.14 | 0.14 | 0.15 | 0.15 | 0.12 | 0.15 0 0
Example 1 AC | 1.24 | 0.81 | 1.22 | 1.13 0 0 0.87 | 1.20
Example 2 AC | 0.25 | 0.10 | 0.19 | 0.15 0 0 0.18 1 0.13
Example 3 AC | 0.02 | 0 | 0.02 | 0.01 0 0.01 | 0.02 | 0.01
Example 4 AC | 0.05 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 0 0

Y 1.14 | 0.83 | 0.95 | 0.65 | 0.47 | 0.47 | 0.69 | 0.73
24 2.68 | 1.57 | 2.50 | 2.15 | 0.43 | 0.42 | 1.38 | 1.96
Yo 0.83 | 0.50 | 0.77 | 0.44 | 0.12 | 0.15 | 0.65 | 0.69
Yac 1.53 1095|145 |1.32]0.04|0.04 | 1.06 | 1.34

Table 6.2: Comparison of used methods. “C” means we minimize according to
the indicator I;7°** (4.3), otherwise we minimize according to the indicator I,
(4.1). “A” means anisotropic mesh is used, otherwise isotropic mesh is used.
Agps and Ay are defined in (6.6) and (6.5), respectively. The symbol ¥ stands
for the sum of either Ay or Ay for Examples 1-4 with indicator 5, on isotropic
mesh. Analogously, ¥ 4 is the sum of either Agy, or A for Examples 1-4 with
indicator I;, on anisotropic mesh, ¥ is the sum with indicator /;7°* on isotropic
mesh and ¥ 4¢ is the sum of results obtained with indicator I;"°** on anisotropic

mesh. The best results for any given row in this table are emphasized by using
the bold face.

20

i
'l

il

(a) I77°%% = 0.28, upper bound y;, < 5007, (b) If"°%° = 0.44, upper bound y; < 57,

Figure 6.8: An overdiffuse solution according to the indicator with crosswind
derivative control term (4.3) when too large upper bound for y, is used. In
Figure 6.8a we can see the solution with a lower value of the error indicator ;%
than in Figure 6.8b. However, the solution with the higher value of the error

indicator is better due to correctly chosen upper safety bound. L-BFGS method
was used to get the minimum.

the error indicator I, can be worse from the physical point of view, even worse
than the solution of the SUPG method with the parameter from (2.19). Such
a nonphysical solution found by the L-BFGS method is depicted in Figure 6.8,
where we can compare it with the solution with a “correct” upper bound.

51

6.3 Results on anisotropic meshes

In this section we will present numerical results for Example 3 on anisotropic
meshes. These numerical results come mostly from Lukas [2012]. Anisotropic
meshes were generated by ANGENER numerical software written by Dolejsi
[1998].

We use linear conforming (P;) type of finite elements. This defines the space
Wh. The solution possesses two interior characteristic layers in the direction of
the convection starting at (1,0) and (2,0). We provide results on an unstructured
mesh with 858 elements. We use Indicator (4.3) in the following.

We use three different finite element spaces for the optimized parameter 7, in
this section. The first one is the space of discontinuous piecewise constant func-
tions Pgsc. The second one is the space of discontinuous piecewise linear functions
P3¢ and the last one is the space of continuous piecewise linear functions PF.

The Lagrange interpolation in W), of the exact solution wu(z,y) of this prob-
lem is depicted in Figure 6.9a. In Figure 6.9b we can see the solution of the
SUPG method (2.5). In Figure 6.9c we show the discrete solution obtained by
minimization of 73, from P{. The discrete solutions obtained by minimization of
parameter 75, from P3¢ and P3¢ are very similar. Therefore, we provide only
the figure of discrete solution with piecewise linear discontinuous parameter 7
(1, € P3s¢)) see Figure 6.9d.

i)

(c) Minimizing with 7, € P (d) Minimizing with 7, € Pglis

Figure 6.9: In (a), (b), (c), and (d), there is a comparison of different discrete
solutions of Example 3 on anisotrop meshes.

In Figure 6.10a there is the gray-scale graph of values of the parameter 7
from the SUPG method (2.5), 7, € B defined in (2.19), which is also the

52

0.1

0.08

0.06

0.04

0.02

0 0.2 0.4 0.6 0.8 1
(a) SUPG - 73, € Pgis¢ from (2.19)

0.1

0.08
0.06
0.04

0.02

0 0.2 04 0.6 0.8 1

(c) 7, € Pflisc optimized

Figure 6.10: Gray-scale maps of values of 7, for various spaces of 73

initial setup for the L-BFGS minimization method. The fact that the results
with piecewise linear discontinuous and piecewise constant parameters are very
similar can be seen also in Figure 6.10b and 6.10c, where the values of parameter
7, for these spaces are shown. We provide in Figure 6.10d also the values of 7

0

0.2

(b) 7, € Ps¢ optimized

04

0.6

0.8

0.2

(d) 7, € PC optimized

0.8

0.1

0.08

0.06

0.04

0.02

0.1

0.08

0.06

0.04

0.02

after the minimization process with piecewise linear continuous parameter 7.

In Figure 6.11a are depicted the cross-sections of resulting discrete solutions
for all spaces of parameter 7,. In Figure 6.11b, we can see the fact that even the
minimization speed is almost equivalent for piecewise linear discontinuous and

piecewise constant parameters 7y.

93

0.8

0.6

0.4

0.2

0 1 1 1 1 L
0.5 0.55 0.6 0.65 0.7 0.75 0.8 1 10

(a) Cross-sections at z =0 (b) Process of minimizing

Figure 6.11: In (a) there are the cross-sections of Example 3 at x = 0. (b)
Minimizing process according to Indicator (4.1) for various spaces of 7, on the
vertical axis there is the L? residue according to Indicator (4.1) and on the hor-
izontal axis there is time in seconds. CG1 stands for PP, DGO stands for B,
and DG1 stands for Pc

6.4 Higher degree FE spaces

We consider piecewise polynomial spaces up to degree 5 which are globally contin-
uous (Lagrange finite elements) for the discrete solution. In the following text, we
use abbreviations for these spaces derived from the FEniCS Alnaes et al. [2012]
software CG1 — CG5. We denoted the space CG1 as PC in the previous section.

Based on our former observations in numerical experiments, we have chosen
the spaces Y) for the parameter 7, as piecewise discontinuous, to name these
spaces we use again the abbreviations from the FEniCS software DGO — DG5. We
denoted the spaces DGO and DG1 as P8¢, and P3¢, respectively. So in addition
to the classical choice for the space of parameter 7, with Py(K) for all K € T,
(which is the space DGO in our notation), we consider spaces of discontinuous
piecewise P, functions, k=1,...,5.

r iy e
|

04 06 05) 0 08 0

(a) Example 3 - SUPG solution (b) Example 4 - SUPG solution

Figure 6.12: Solutions of the SUPG method, 7, not optimized.
The SUPG solution of Example 3 in the CG1 space is depicted in Figure 6.12a.
The approximate solution of Example 4 in the CG1 space is in Figure 6.12b. The

Lagrange interpolation in W), of the exact solution wu(z,y) of a problem under
consideration is denoted as u. where necessary.

o4

The solution of Example 3 possesses two interior characteristic layers in the
direction of the convection starting at (3,0) and (%,0). These interior layers are
generally not aligned with the direction of elements’ sides.

The solution of Example 4 possesses two interior characteristic layers in the
direction of the convection starting at (0.25,0.25) and (0.25,0.75). This also
means that the resulting discrete solution can be strongly influenced by the choice
of the mesh, particularly by alignment of elements’ sides.

If not said otherwise we provide results on a
structured mesh of Friedrichs—Keller type with
34 nodes in each direction.

In both examples we consider in this sec-
tion the Péclet number from (2.18) is of the
order 10° We use Indicator (4.3) in all of the
following numerical tests.

In Figures 6.12a and 6.12b we show solu-
tions of the SUPG method for the CG1 FE
space where the parameter 7, is defined in
(2.19) and in this case we choose 7, from the
space DGO.

The parameter 7, is optimized by the L-
BFGS-B nonlinear minimization method de-
scribed in chapter 5 using the default setup
from scipy library with gtol: 1le-14 and
ftol: 1le-14. The method starts with the
values given by (2.19).

We do not provide any figure which would
show just the values of the parameter 7, from
(2.19), which is the starting point of the min-
imization procedure. Such an image would be
not interesting as the values of 7, for both ex-
amples we use are (almost) constant on the
whole domain. The quality of discrete solu-
tions after the minimization procedure is so
good that images of such a discrete solution
would be very similar to images 6.3 and 6.4 so
we do not involve them right now. The qual-
ity of discrete solutions after the minimization
procedure with Indicator (4.3) has been stud-
ied in John et al. [2011] and Lukas [2012].

The values of the parameter 7, after the
whole minimization procedure are in Figures
6.13 and 6.14. In Figure 6.13 we fix the FE
space for the parameter 7, and change the FE
space of the discrete solution. On the other
hand we fix the FE space of the discrete solu-

1

0.8

0.6

04

0.2

0 0.2 0.4 0.6 0.8 1

(a) FE space CG1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

(b) FE space CG2

0 0.2 0.4 0.6 0.8 1

(c) FE space CG3

0 0.2 0.4 0.6 0.8 1

(d) FE space CG4

Figure 6.13: Optimized parame-
ter 13, for different FE spaces, 7,
is from the space DG1, Ex. 3

tion in Figure 6.14 and change the FE space of the parameter 7,. We can see that
higher values of the parameter 7, are at places where oscillations in the SUPG

method with 7, from (2.19) appear.

95

0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

(a) 7, from DGO (b) 73, from DG1 (c) 15, from DG2 (d) 75, from DG3

Figure 6.14: Changing the space for the parameter 7, and preserving the finite
element space CG3 for the discrete solution of Example 3.

We provide in Figure 6.15a the value of the Indicator (4.3) after the 30 seconds
run of the minimization procedure and at the end of the whole minimization
procedure. We can see from the image that using finer FE spaces is not efficient
in this case, and we do not obtain a lower value of the indicator by applying this
time constraint.

18E-4 - 0.01

fit of min i
min Se

1.6E-4 fit of SUPG e
SUPG 1

1.4E-4

1.2E-4

DG5
1.0E-4

CG1

0.001

(a) - Minimization after 30s and at the end On the
vertical axis there is the value of Indicator (4.3), on the front S :

axis there is the number of degrees of freedom of the Lagrange 0.01 0.1

FE space (data points marked by the CG space) of up, and on (b) - Convergence rate Logarithmic scale,
the last axis there is the number of DOFs of the DG space of on the vert. axis there is the value of the error
parameter 75, (again, denoted by the space name). Results ||up — ue||H1(Q), on the horiz. axis there is the
after 30 seconds (dashed line) and at the end of the program mesh par. h, compare with SUPG (73, from
run (full line) are provided. (2.19)).

Figure 6.15: Minimization after 30s and at the end (a) and convergence results
(b) for Example 3

We provide numerical convergence results in Figure 6.15b where we changed
the mesh step by step from 8 elements in each direction to 100 elements in each
direction and run every time the whole optimization process. We see that in this
case the convergence rate of optimized solutions (labeled min) is approximately
the same as of the SUPG method with parameter from (2.19) (labeled SUPG).

To obtain precisely the convergence rates we use a different technique than
it is usual among the community of the numerical mathematicians. We use here
a technique of curve fitting which is well known to physicists. This approach
is justified by having a lot of data for such a ”physical” fitting. The objective
function f(a,b), whose parameters a and b are fitted, has the form

f(a,b) =a-h". (6.7)

Python scipy library uses the Levenberg-Marquardt algorithm in curve fit

26

function of scipy module. Paper Moré [1978] describes how this algorithm is
implemented in the python library. An important fact about this approach is that
we obtain also a rigorous uncertainty or standard deviation of fitted coefficients.

fit of SDFEM ——— 4k series fit ——
SDFEM points all points
0.01 0.01
0.001 0.001
0.0001 | o 0.0001 |
Xx><><>>;»<)°<><>Z°<>o< xxxxx »(x{o(
1e-05 | Lo 1e-05
0.01 0.1 0.01 0.1

(a) On the vertical axis there is the value of (b) On the vertical axis there is the value of
the error [|up — e ||g1(q), un solution of SUPG the error ||us — el g1 (), un is the solution of
with 7, from (2.19). the minimization problem.

Figure 6.16: Comparison of the results from the SUPG method with parameter
7, from (2.19) and the adaptive method. On the horizontal axis there is the mesh
parameter h. On the right hand side the fit is only for the points corresponding
to the 4k mesh. Results are for Example 4.

In Figure 6.16a we can see the convergence results of the SUPG method for
Example 4 and in Figure 6.16b we can see the convergence results obtained by
minimizing according to the Indicator (4.3). As we see, if the meshes are chosen
properly we are able to obtain a higher order convergence using our technique.
A properly chosen mesh in Example 4 is apparently, regarding the exact solution
or regarding the convergence graphs, a structured square mesh which has 2 + 4k
edges (or equivalently 3 + 4k nodes), k € N at x = 0. We will refer to such a
mesh as 4k mesh. The 4k mesh has the inner layers well resolved by an element’s
side.

The resulting coefficients of fitted function for the SUPG method with 7
defined in (2.19) are, together with their standard deviation: f(h) = (0.5+0.3)-
h(25£01) The values of the coefficient a naturally differ slightly among the types
of meshes with different numbers of elements, the alignment of elements’ sides
with the direction of the convection is better than in case of Example 3. The
values of parameter b were (2.5 + 0.1). So we have h*® convergence rate for the
SUPG method for Example 4 on our structured grid.

But how do the solutions of our adaptive method behave? The Figure 6.16
suggests a higher rate of convergence than the SUPG method has for a spe-
cial mesh (every fourth point in the graph has apparently a different order of
convergence). After all, for the 4k mesh defined earlier the fitted function is
f(R) = (7.0 £0.3) - RG5+%1) This means that the convergence rate is h*°. The
gain in convergence rate in this setting is 1 in comparison with SUPG method.
It is a substantial improvement in this setup and shows us the potential of our
adaptive techniques.

o7

6.5 Behavior of indicators [{** and I/

0.8 08 r
0.7
06
05
04
03
02
01

0

0 0.2 0.4 0.6 0.8 1

(a) the discrete solution wuy, after optimization (b) profile at y = 1 after optimization using
using I579%¢. I77°%% and nodally exact solution (dotted).

Figure 6.17: Optimized discrete solution u; of Example 7 using the indicator
I}CLT‘OSS‘

We are going to present one numerical example now to show how indicators
influence the quality of the numerical solution. We are going to show the typical
drawbacks of Indicator I;7°** on Example 7, optimizing the parameter 7, from
the SUPG method (2.19). Let us remind that the initial condition is transferred
in the direction of the convection (see the definition of Example 7 definition for
further details). The solution possesses an exponential boundary layer at y = 1
and an inner layer at x = % Péclet number from (2.18) in this illustration is
approximately 2.6 - 10°.

One can see in Figure 6.17 the tendency of the indicator I;7°*° (4.3) to arti-
ficially create steep layers and to flatten the solution. It comes from its nature
to favour one steep layer over smooth ones. The presence of the exponential
boundary layer along the penultimate row of nodes (y = %) depicted with the
red color in Figure 6.17 is crucial. If the outflow Dirichlet boundary condition
was not prescribed the behavior would be the same for all indicators and the
discrete solution would be a "physical”, or "correct”, one.

Based on our former observations in numerical experiments (Lukas [2015]), we
have chosen the space Y}, for the parameter 73, to be the space of piecewise constant
functions (space DGO in our notation based on Alnaes et al. [2012]). This choice
of the FE space for the parameter 75, led always to a satisfactory optimization
result (the choice of the actual discrete solution space has no significant impact
on the quality and result of the optimization process).

We will now consider two other examples, Example 5 and Example 6. We will
optimize still the parameter 73, from the SUPG method (2.19). The solutions of
both examples possess layers or steep parts which are not aligned with the mesh.
Later on, outflow profiles at * = 0 will enable an easy evaluation of various
approaches for the numerical solution of (1.1).

We consider a structured triangulation 7, of € of Friedrichs—Keller type con-
taining 31 x 31 vertices which means 30 triangular cells along each side. For
both examples, the Péclet number defined in (2.17) is then of the order 10°. The
space W), consists of continuous piecewise linear functions (space CG1 in our no-
tation based on Alnaes et al. [2012]). Lagrange interpolations in W}, of the exact
solutions of Examples 5 and 6 are depicted in Figures 6.18a and 6.18b.

Parameter 75, is optimized by the L-BFGS-B nonlinear minimization method

o8

T
! Sosessasas : 4 '\\w&&a’,ﬂwﬂ.‘qnﬂlﬂll
o A e

- o 2 A

PSS
TR
| wii‘*l*w&"w WV

s
N —~,||1||l
I

AT

. N
LA
[\\Q\Z/’W ‘ |

TNV 4'.\“5
e w'wws&sk.v’“‘!
N
GBI

0 - 038 06 o4 . Vo

- . lim ’)
(g) Example 5 - 7, optimized according to Iy (h) Example 6 - 7, optimized according to I fb”"

Figure 6.18: Interpolations of exact solutions and results after optimization ac-
cording to I, I¢7% and I\"™.

described in chapter 5, the scipy scientific library is used, with gtol: 1e-16,
ftol: 1le-16, maximum number of iterations is 300. The method starts with
the values given by (2.19). We use the FEniCS finite element library for all FE
computations Alnaes et al. [2012]. The value of parameter ¢, in the definition of
I is 0.03 for both test cases but values up to approximately o = 1 still provide
qualitatively better results than those obtained by minimizing the error indicator
with added crosswind derivative control term (4.3).

Approximate solutions obtained after parameter optimization can be seen in
Fig. 6.18. In addition, Fig. 6.20 shows the outflow profiles corresponding to all
three error indicators and the exact solution. It can be clearly seen that the error
indicator 1™ leads to the best results. In particular, we see that the indicator 1™
helps to prevent flattening and creation of cube-like patterns in the approximate
solution in some sub-regions observed with the error indicator I;"°** and does not
introduce any significant smearing.

If we compare the quality of actual approximate solutions in Fig. 6.18, and

99

0.08 0.8 44444 0.08
L4 4 |4
| 'IV
|4
0.06 0.6 g4 0.06
(4
|4 |4
| | 4
0.04 0.4 .;r': 0.04
4 | 444
r 4
0.02 0.2 4 0.02
0 0 0

0 0.2 0.4 0.6 0.8 1

(a) 75, after optimization using I57%*. (b) 7 after optimization using I}™.

Figure 6.19: Comparison of the values of computed parameters 75, for Example 6
after the optimization procedure using the indicators I"°** and "™, respectively.

exact

exact

. ind ----- indL2 -----
indCross —-—-- indCross —-—--
indLim -~ indLim -
12 12 -
1 - 1
08 Y e 08 /Y =
T AN = A
0.6 - | f ‘\g\ 0.6 - /,;7— \\ / by / \
i \ 3 / kY 7
L) \ L N \ ?
04 ,{.'/ 04 e/ v \
02 - /,1 z \ 0.2 ?f \\-:;,/ \
0 l 0 [V V \
1 0,0 1 0,0
y [0,0] v [0.0]
(a) Example 5, outflow profile at = = 0. (b) Example 6, outflow profile at z = 0.

Figure 6.20: Outflow profiles of the optimized solutions obtained using all three
indicators, comparison with the interpolation of the exact solution (ind/indL2

stands for optimization using / ,%2, indCross stands for /;7°**, and indLim stands
for I}™). The value of ¢, for Example 5 is 0.03, for Example 6 the value is 1.0 in

this case.

move on to see values of parameter 73, in the whole domain (Figure 6.19), we can
say that the lower values of 75, produced by I}™ can lead to a more satisfactory
(physical) approximate solution.

6.6 Indicator with reduced residuals and SOLD
method

In this section we present numerical results obtained using the above-described
approaches for Examples 5 and 6. In Example 5 interior layers are present.

The numerical results presented in this section were computed using FEniCS
Alnaes et al. [2012] software. In contrast to some of our papers, we considered only
piecewise polynomial spaces of degree one for the discrete solution. Based on our
former observations in numerical experiments, the set Y}, for the parameter 7, and
also & from Subsection 2.4.2 was defined using piecewise constant functions. If
not said otherwise, the results were computed on structured meshes of Friedrichs—
Keller type. We used Indicator 1™ (4.10) with ¢, = 0.02.

60

1.2
! Rttt 1
\\\‘\HHM W 00 oul,
os - A M 0’0”0’0’0 ':000 '3”3 il i ‘Z"""’""“‘ o8 T,
06 /;l;:\\\\\\\ \\\\“‘v\\\\‘\\‘\\\“\’!ﬁ 000.0,0'00, "Il.m /I,,III,I/III\\%\\ 06 g I'l" N
N \\ ek \\H/\\ ‘»mm 4/\“" I, l, AR (f ' ' "I I ,' il
o4 5”"”"‘1"%33‘83“5%"{§3\‘8\‘3‘:&%‘3“&:&0“:"”‘“’3:03':4;':’5’\\§§§\'l::,l%’.&%§%§§ o4 \\‘”;;m\\\‘\t\ il ,.37"‘“9'0:'l/”‘“\%':";;l:%{&%%%%\
! IIIIIIIII /i) A AN AR ! T
o2y IR \\\‘8\:!/% “\:.'3%:031‘ i i',;:f%\\xxxxxxxx(zaz' ‘gggg\\“\ 0z [,,,{z,‘{\\ \\\/iz';:,t\\:“:o o\:t“\:g,:;m,,a\;xxxxxxxz:%f's&\;m“
e ““h’%:wfz“\\\\‘fﬂ”"' “‘o:ot"" R i 1. L A ..:,z .v‘““': A
0.21 vt ””/II/Q 0“‘:0 ‘\‘:\\\\\\ ll my } 0 ‘ 7‘//”:,,' ‘ ‘ “‘\“

00
(b) Non-optimized SOLD method.

(a) Exact solution.

Figure 6.21: Exact and approximate solutions of Example 6.

It turns out that preventing smearing in the numerical solution of the con-
sidered Example 6 is challenging for most SOLD methods. This is illustrated
by Fig. 6.21b where the discrete solution obtained using the SOLD method from
Section 2.4.2 with n = 0.7 is shown. In this case, a Friedrichs-Keller mesh with
34 nodes in each direction was used so that the Péclet number is of the order 10°.
The corresponding outflow profile is shown in Fig. 6.22a and compared with the
outflow profile of the solution of the SUPG method with 7, defined by (2.19).
It can be observed that the solution of the SOLD method is significantly more
smeared than the SUPG solution. Fig. 6.22b shows the outflow profiles after
parameter optimization. The solutions of both methods are now comparable and
significantly better than for non-optimized stabilization parameters.

SUPG - SUPG -
SOLD ——— SOLD ———
12 ¢ 12 ¢
1k 1
s £ ~ A P
08 % N AN 08 foA /\ /\
P N / /A VA /\
06 / \] 06 /A /o P
\ / \ y)\ / \ / \ / \
04 + / N \) \ 04 - / \ / \ /
/ N B AN ,’ V‘\ / \ / \ /
02t/ L S \ 02/ \ / \ /
/ v A \ / V V A
0 E 0 L \
1 0.8 0.6 04 0.2 [0,0] 1 0.8 0.6 04 02 [0,0]
(a) Outflow profile at = 0 for SUPG and SOLD (b) Profile after optimization of SUPG and SOLD
methods.

methods.

Figure 6.22: Outflow profiles of non-optimized (left) and optimized (right) ap-
proximate solutions of Example 6.

61

0.1 1 0.1
0.08 0.8 0.08
0.06 0.6 0.06
0.04 04 0.04
0.02 0.2 0.02
0 0 0

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

(a) SUPG: 7, after optimization (b) SOLD: 7, after optimization

Figure 6.23: Values of free param-
eters after the optimization ac-
cording to the Indicator (4.10).

0.1
For SUPG method we optimize
the 7, parameter and for SOLD 08 0.08
method we optimize both 7 and &,
parameters. We bound both pa- o 0.08
rameter values by 10-7 and 10- ¢, os ood
respectively, where 7 is defined by
(2.19) and € is defined in (2.35). 02 0.02
In (d) and (e) we show how the L-

0 0.2 0.4 0.6 0.8 1 ’

BFGS minimization proceeds. On 0
the horizontal axis there is compu-

tational time and on the vertical

axis there is value of Ind. (4.10).

(c) SOLD: &, after optimization

0 0
10 " CcGIDG0 —— 10 " CGIDG0 ——

\

1 10 100 1 10 100

(d) SUPG: Minimization procedure (e) SOLD: Minimization procedure

62

We performed analogous computations also on both coarser and finer meshes
of Friedrichs—Keller type leading to similar observations. On finer meshes, the
results for methods with optimized parameters were more accurate and the dif-
ference to the non-optimized case was even larger than shown above. On coarser
meshes, the differences were not so significant but the non-optimized SOLD so-
lution was always clearly worse than the optimized one. This was also observed
for unstructured meshes, see Fig. 6.24 for results obtained on a mesh with 1054
elements.

non-optimized SOLD - - - --

inflow profile L
1.2 outflow profile - - - optimized SOLD
1.2
’
08 - 1
0.6 - . 08
04 + 7,
0.6
0.2 H) \ / ! \
ot 04/ \ \
021 e 02/
e 04 0r
R 1 08 06 04 02 0
(a) Non-optimized SOLD method. (b) Outflow profiles at « = 0.

Figure 6.24: Approximate solutions of Example 6 computed on an unstructured
mesh: non-optimized SOLD method (left) and comparison of its outflow profile
with the optimized SOLD method (right).

We also tested the methods for other values of the diffusion parameter ¢ and
observed analogous properties of the methods as for ¢ = 1078, Of course, for
large values of €, the outflow profile of the exact solution is smeared and hence
the differences among the various approximate solutions are less pronounced. In
all these computations it was also observed that a parameter optimization for
a SOLD method led to a lower value of the error indicator than a parameter
optimization in the SUPG method.

Our results show that in cases, when the application of a SOLD method is
needed to suppress spurious oscillations in layer regions, the parameter optimiza-
tion is able to eliminate the negative influence of the SOLD term in regions where
the solution is varying but no layers occur.

The parameters 7, and &, were optimized by the L-BFGS-B nonlinear mini-
mization method from Chapter 5 using the default setup from scipy library with
gtol: 1le-14 and ftol: 1e-14. We restrict the number of iterations to 500
but this restriction has virtually no effect as the method uses less iterations be-
fore reaching a minimum. Like in our other computations, the SUPG parameter
7, was initialized by (2.19) and the SOLD parameter £, by 0. Other ways to
initialize the SOLD parameter led to worse results of the optimization process.
Bounds on both parameters were given as:

e 74 : 0 <7, <10% 7, where 7 is the value from (2.19)
o & 0< &y <10x*€, where € is the value from (2.35)

By comparing values of the parameter 7, for SUPG and SOLD methods in
Figure 6.23 we see that significantly lower values of 7, are used in case of the SOLD
method. Of course, there is a second part in case of SOLD, the &, parameter

63

non-optimized SOLD -- - - -
12 optimized SOLD

1 0.8 06 04 0.2 0
(b) Outflow profiles at = 0.

(a) Non-optimized SOLD method.

Figure 6.25: Approximate solutions of Example 6 computed on a Friedrichs—
Keller mesh with 25 nodes in each direction: non-optimized SOLD method (left)
and comparison of its outflow profile with the optimized SOLD method (right).

that needs to be taken into account. The calculated values of &, are much lower
than those of the SUPG part. We can interpret the lower values of parameters
as a lower impact on the original formulation of the discrete problem. It is an
illustration of how optimization helps in the SOLD method which may remove
spurious oscillations but produces a smeared solution without the optimization.

We obtained slightly better minima of the error indicator for the SOLD
method in our tests in comparison with the SUPG method. This lower mini-
mum is naturally always obtained if we use 0 as the starting value for the SOLD
parameter (on all elements). For presented Example 6 the obtained minima of
Ifm from (4.10) were within 5% of each other (SUPG-only and SOLD) and the
domain clearly contains many different local minima. To be more specific, the
highest difference in the value of I!"™ between results computed by SUPG and
SOLD optimization was in case of the unstructured mesh in Example 6 where
the SOLD method led to 10% lower value of 7™ than the SUPG method.

In earlier papers we have already shown examples where a minimum which is
further from the SUPG solution (but has a lower value of an indicator) can be a
non-physical one. This solution is then practically worse than a solution which is
closer to the SUPG solution, see, e.g., Lukas [2015]. Bounds on the parameters
are crucial and need to be set carefully.

Both examples were tested in Knobloch et al. [2019], for a slightly different
value of ¢ = 107®, the SUPG method, and various error indicators. It turns
out that the SUPG method optimized using I}™ already successfully removes
spurious oscillations without smearing the layers and that the optimized SOLD
method leads to very similar results. Since we want to develop further the results
of Knobloch et al. [2019] here, we consider a different setting: £ = 10™* instead
of e = 107®. We use also a coarser mesh than in Knobloch et al. [2019]. In this
case, the solutions are more smeared but Figure 6.25 shows that the optimized
SOLD method again leads to better results than the non-optimized one.

We tested also residual-based error indicator I/ from (4.1) in Knobloch et al.
[2019]. For uniform meshes, it is equivalent to I™ with +(¢) = ¢. This indicator
does not prevent smearing and is not considered as a suitable one for neither
Example 5, nor Example 6, one can see the solutions in Figure 6.18.

64

6.7 Isotropic diffusion term and higher order FE
spaces

As the stability of SOLD methods adding isotropic diffusion is high we were
able to employ the SOLD method form Section 2.4, particularly (2.29) to get
results for even higher-order FE spaces where a lot of instabilities usually appear
during the optimization procedure. We not only tested higher order spaces for
the discrete solution itself but also for the space from which the free parameters
are chosen. In the following we present results for Example 3.

In our tests the SOLD method adding isotropic diffusion (2.29) has discrete
solutions for higher order finite element spaces very similar qualitatively to the
interpolations of nodally exact ones depicted in Figure 6.3. Also, the reason
why we incorporated this Section is rather to show how the values of optimized
parameter 7, and SOLD parameter o, look like. The graphs of the optimized oy,
parameter from the SOLD method with isotropic diffusion are compared to the
values of parameter 7, too.

Particularly, we provide in Figure 6.26 the table with all the parameter value
maps of 7, and o, after optimization according to Indicator with crosswind deriva-
tive control term (4.3) (4.3). Discrete solution uy, under which all the important
parameter optimizations ran, is always from CG3. The same spaces are always
used for both 7, and o, parameters, the results provided here are for finite element
spaces DGO - DG3.

We see how higher-degree FE spaces influence the size and shape of regions
with higher value of optimized o}, we also see the results for different FE spaces
used for the parameters 7, and o,. The starting value to compute o, in this
case is given by the equation (2.28). We set the bound on the values of both
parameters to be tenfold the value of 7, and o}, defined in Section 2.4.1.

One can observe a problem that typically appears for a choice of a higher
order FE space for the free parameters in the last image (h) of Figure 6.26.
The problem lies in the fact that number of degrees of freedom is too high for
the optimization procedure to choose a physically meaningful minimum, for other
SOLD methods we encountered this instability in lower dimension spaces already.
You see that some values of the parameter o, are too large in comparison with
the predecessors. This problematic behavior appears especially in places with
steep layers or just near to such places. Usually this means near the region with
prescribed inflow boundary conditions.

As the optimized discrete solutions in these test cases are always similar to
a nodally exact solution, which means almost perfect, we can tell from the com-
puted values of free parameters in Figure 6.26 how an optimal choice of a free
parameter should look, based, e.g., on the position of steep layers and other arti-
facts. We can further inspect this in the future. Parameters like, e.g., vicinity of
a layer, distance from an inflow boundary condition, etc., may easily be defined,
incorporated into a future theoretical research, and then their influence can be
examined.

65

1 0.1 1 0.1
0.8 0.08 0.8 0.08
0.6 0.06 06 0.06
(a) (b)
0.4 0.04 04 0.04
0.2 0.02 0.2 0.02
0 0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0.1 0.1
0.8 0.08 0.8 0.08
0.6 0.06 0.6 0.06
(c) (d)
0.4 0.04 04 0.04
0.2 0.02 0.2 0.02
0 0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0.1 1 0.1
0.8 0.08 0.8 0.08
0.6 0.06 0.6 0.06
(e))
0.4 0.04 04 0.04
0.2 0.02 0.2 0.02
0 - 0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1 0.1 1 0.1
0.8 0.08 0.8 0.08
0.6 0.06 06 0.06
(&) (h)
0.4 0.04 04 0.04
0.2 0.02 0.2 0.02
0 0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 6.26: SOLD method with isotropic diffusion term (2.29), values of 7, and
o, after optimization according to Indicator with crosswind derivative control
term (4.3). Discr. sol. wy is always from CG3. The same space is always used

for 7, and op,, DGO - DG3 from top to bottom, 75, on the left (a, c, e, g), o5, on
the right (b, d, f, h).

66

Conclusion

We considered the standard scalar convection-diffusion-reaction problem (1.1) in
the thesis. A very important aspect of the numerical solution of (1.1) are spuri-
ous oscillations that appear in the discrete solution when convection dominates
diffusion and standard non-adaptive discretizations are used. Various stabilized
methods have been proposed in the literature which often depend on free pa-
rameters. Optimal choice of these parameters is usually not known. Theoretical
bounds for the values of these parameters are derived in most cases. In this
thesis we introduced and explored also other stabilized methods than only the
streamline upwind/Petrov—-Galerkin (SUPG) method.

Among the goals we have accomplished were: The introduction of the L-SR1
method and comparison of methods of minimizing functions with large number
of variables, the introduction and comparison of adaptive methods which are
based on minimizing error indicators, the introduction and testing of new types
of error indicators, and study of higher-order degree finite element spaces for
discrete solution and free parameters. We also provided many interesting insights,
including experimental convergence rates for specially chosen meshes.

Although a nodally exact solution of the convection—diffusion-reaction equa-
tion (1.1) is piecewise flat and the interior layer follows a smooth curve, the os-
cillations in the SUPG solution still appear along the sharp layers of the solution
of (1.1) if we use the standard SUPG stabilized method (2.5).

The optimization method chooses the stabilization parameter 7, so that it
minimizes an error indicator. It is natural that the parameter itself is not smooth
anymore as it can change even inside one element quite rapidly. To get an insight
into this behaviour is not easy as the value of the parameter 7, is a product of the
process of a nonlinear optimization. On the other hand, we observed in Figures
6.13 and 6.14 that higher values of optimized parameter 7, appear where the
oscillations initially appeared, which means in the vicinity of sharp layers. We
observed this fact holds for higher-order finite elements in Figure 6.26.

We introduced a new error indicator (4.10) for optimizing parameters in sta-
bilization methods for the numerical solution of convection-dominated problems.
Numerical results showed that this new indicator behaves better than indicators
applied so far when, in regions away from layers, the exact solution is not con-
stant in the crosswind direction. In addition, in contrast with the indicator adding
crosswind derivative control term (4.3), the new indicator is consistent with the
approximated problem. We tested this new Indicator (4.10) on both anisotropic
and isotropic meshes, the results were presented especially in Knobloch et al.
2021].

We showed in Section 3.1 how to effectively minimize a general function with
many variables, particularly how to compute the gradient of such a function
effectively. This is an important algebraic part as all nonlinear minimization
methods work with the gradient and its evaluation is the most time-consuming
part of these algorithms.

We introduced the L-SR1 method and tuned its constants, most of which play
a role in an SR1 method. The most important constants in L-SR1 method are
the upper safety bound for parameter y, and the initial trust region radius Ao.

67

We also explored a relation between these constants. We presented the constant
r defined in (5.32).

As we can see in Algorithm 10, the L-SR1 method now uses the limited-
memory Hessian approximation only to compute the optimal step length. A
better convergence speed of the L-SR1 method might theoretically be obtained
if we used By not only to compute the step length but also to identify a better
search direction py.

We then used the nonlinear minimization methods, including the steepest de-
scent method, the nonlinear conjugate gradient method, the L-BFGS method,
and the L-SR1 method in our computations. We showed the process of min-
imization in the graph in Figure 6.11. The L-BFGS method behaved best in
total. However, the L-SR1 method was better in 12 of 32 test cases. All results
are in Table 6.2.

From the investigated examples we found out that all error indicators (4.1),
(4.3), and (4.10) allow us to obtain a high-quality solution of the scalar convection-
diffusion equation with dominant convection even on a relatively coarse mesh.
The reason that it works is that the spurious oscillations in the crosswind direction
remaining from the SUPG method (2.5) are cured by employing an adaptive
method based on an error indicator.

The indicator with the best results according to our tests was the indicator
with the crosswind derivative control term (4.3) for examples with piecewise con-
stant function as the boundary condition, and the indicator (4.10) for a broader
range of examples with non-piecewise constant data. The crosswind derivative
control term favours a steep layer with no spurious oscillations over more gentle
layers or oscillations.

One of the other crucial parts of parameter optimization is the proper choice
of the upper bounds for the free parameters. For the parameter 75, this is pro-
posed in (5.30). Whether it is theoretically possible to find an optimal upper
bound dependent on a given example, which would guarantee a “correct” result,
is not known. We have already seen an example of improper (too large) upper
safety bound for 73, in Figure 6.8, where the L-SR1 method found a narrow local
minimum which resulted in a nonphysical solution.

This is an important issue in general, all minimization methods suffer more or
less from finding a local nonphysical minimum. The initial choice of the parameter
75, is “correct” in the sense that it is the parameter from the SUPG method (2.5),
for which we have theoretical results. When a too large upper bound for 7,
is applied, a solution with a lower value of the error indicator I, can be worse
from the physical point of view than the solution of the SUPG method with the
parameter defined by 2.19. Such a nonphysical solution found by the L-BFGS
method is depicted in Figure 6.8, where we can compare it with the solution with
a lower upper bound set for 7y,.

From the numerical tests we have done so far it comes out that using higher
order finite elements or higher order discontinuous finite element spaces for the
parameter 7, has almost no positive effect on the resulting discrete solution of the
proposed adaptive technique. By a higher order finite element is meant an element
with the polynomial degree higher than 3. This holds also for all indicators we
have tested in our adaptive framework. From the actual computed values of free
parameters in Figure 6.26 we see how an optimal choice of the values of free

68

parameters should be.

It seems to be to useful to consider the adaptive method together with a care-
fully chosen mesh. In such a setup the adaptive method can give us satisfactory
results since the rate of convergence of the SUPG method can be improved by
the order of 1.

We can tell from the computed values of free parameters, e.g. in Figure 6.26
how an optimal choice of a free parameter should be, based, e.g., on the posi-
tion of steep layers and other artifacts. We suggest to further inspect this in the
future. Parameters like, e.g., vicinity of a layer, distance from an inflow bound-
ary condition, etc., may easily be defined, considered into a future theoretical
research, and then their influence can be examined.

Further theoretical research needs to be done to explain the gain of order one
which we observed by using a mesh which is aligned with the layers in a specific
way, one can see the results in Section 6.4.

We believe that the global optimization of free parameters can be beneficial in
different ways. As Godunov’s theorem (Godunov [1959]) holds, nonlinear meth-
ods are important and used to get a higher-order method with a higher accuracy.
This natural need for nonlinear methods means that the models we are solving
are often already nonlinear. So the computational overhead of using a global
optimization, in general, may be relatively less important.

69

Bibliography

M.S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richard-
son, J. Ring, M.E. Rognes, and G.N. Wells. The FEniCS Project Version 1.5,
Automated Solution of Differential Equations by the Finite Element Method.
Archive of Numerical Software, 3, 2012.

I. Babuska and B.Q. Guo. The h, p and h-p version of the finite element method:
basis theory and applications. Advances in Engineering Software, Issue 3-4,
15, 1992.

[. Babuska, B.A. Szabd, and I.N. Katz. The p-version of the finite element
method. Journal on Numerical Analysis, 18:515-545, 1981.

Alexander N. Brooks and Thomas J. R. Hughes. Streamline upwind/Petrov-
Galerkin formulations for convection dominated flows with particular emphasis
on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech.
Engrg., 32(1-3):199-259, 1982. ISSN 0045-7825.

Erik Burman and Peter Hansbo. Edge stabilization for Galerkin approximations
of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. En-
grg., 193(15-16):1437-1453, 2004. ISSN 0045-7825.

P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland,
NY, 1978.

T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia,
2006.

V. Dolejsi. Anisotropic mesh adaptation for finite volume and finite element
methods on triangular meshes. Computing and Visualisation in Science, 1:
165-178, 1998.

L. Evans. Partial Differential Equations. Graduate studies in mathematics. Amer-
ican Mathematical Society, 1998.

R. Fletcher. Practical Methods of Optimization (2nd ed.). John Wiley & Sons,
New York, 1987. ISBN 978-0-471-91547-8.

R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. The
Computer Journal, 7:149-154, 1964.

L.P. Franca, S.R. Frey, and T.J.R. Hughes. Stabilized finite element methods:
I. application to the advective-diffusive model. Comput. Methods Appl. Mech.
Engrg., 95:253-276, 1992.

Sergei Konstantinovich Godunov. A difference method for numerical calculation
of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.),
47 (89):271-306, 1959.

C. Grossmann, H.-G. Roos, and M. Stynes. Numerical treatment of partial dif-
ferential equations. Springer-Verlag Berlin, Heidelberg, 2007.

70

T.J.R. Hughes, M. Mallet, and A. Mizukami. A new finite element formulation
for computational fluid dynamics: Ii. Beyond SUPG. Comput. Methods Appl.
Mech. Engrg., 54:341-355, 1986.

T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new finite element formulation
for computational fluid dynamics: Viii the Galerkin/least-squares method for
advective-diffusive equations. Comput. Methods Appl. Mech. Engrg., 73:173—
189, 1989.

V. John, P. Knobloch, and J. Novo. Finite elements for scalar convection-
dominated equations and incompressible flow problems: a never ending story?
Computing and Visualization in Science, 19:47-63, 2018. doi: 10.1007/
s00791-018-0290-5. URL https://doi.org/10.1007/s00791-018-0290-5.

Volker John and Petr Knobloch. On spurious oscillations at layers diminish-
ing (SOLD) methods for convection-diffusion equations. I. A review. Comput.
Methods Appl. Mech. Engrg., 196(17-20):2197-2215, 2007. ISSN 0045-7825.

Volker John and Petr Knobloch. On spurious oscillations at layers diminishing
(SOLD) methods for convection-diffusion equations. II. Analysis for P, and ¢
finite elements. Comput. Methods Appl. Mech. Engrg., 197(21-24):1997-2014,
2008. ISSN 0045-7825.

Volker John and Petr Knobloch. Adaptive computation of parameters in stabi-
lized methods for convection-diffusion problems. Computer Methods in Applied
Mechanics and Engineering 2011, pages 275283, 2013.

Volker John, Petr Knobloch, and Simona B. Savescu. A posteriori optimization
of parameters in stabilized methods for convection-diffusion problems — part i.
Comput. Methods Appl. Mech. Engrg., 200:2916-2929, 2011. ISSN 0045-7825.
doi: 10.1016/j.cma.2011.04.016.

P. Knobloch, P. Lukas, and P. Solin. On error indicators for optimizing param-
eters in stabilized methods. Adv. Comput. Math., pages 24-30, 2019. doi:
10.1007/s10444-019-09662-4.

P. Knobloch, P. Lukas, and P. Solin. Importance of parameter optimization in a
nonlinear stabilized method adding a crosswind diffusion. Journal of Computa-
tional and Applied Mathematics, 393:—, 2021. doi: 10.1016/j.cam.2021.113527.

Petr Knobloch. On the choice of the supg parameter at outflow boundary layers.
Adv. Comput. Math., 31:369-389, 2009.

T. Knopp, G. Lube, and G. Rapin. Stabilized finite element methods with shock
capturing for advection-diffusion problems. Comput. Methods Appl. Mech. En-
grg., 191(27-28):2997-3013, 2002. ISSN 0045-7825.

P. Lukads. Adaptive Choice of Parameters in Stabilization Methods for
Convection-Diffusion Equations. WDS 2012, pages 54-59, 2012.

P. Luk&s. Optimization of parameters in SDFEM for different spaces of parame-
ters. Appl. Math. and Comp., 267:711-715, 2015.

71

https://doi.org/10.1007/s00791-018-0290-5

P. Lukés and P. Knobloch. Adaptive techniques in SOLD methods. Appl. Math.
and Comp., 319:24-30, 2018.

Akira Mizukami and Thomas J. R. Hughes. A Petrov-Galerkin finite element
method for convection-dominated flows: an accurate upwinding technique for
satisfying the maximum principle. Comput. Methods Appl. Mech. Engrg., 50
(2):181-193, 1985. ISSN 0045-7825. doi: 10.1016/0045-7825(85)90089-1. URL
http://dx.doi.org/10.1016/0045-7825(85)90089-1.

J.J. Moré. The Levenberg—Marquardt algorithm: implementation and theory.
Numerical analysis, 630:105-116, 1978.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer, NY, 2006.

Hans-Gorg Roos, Martin Stynes, and Lutz Tobiska. Robust numerical methods for
singularly perturbed differential equations. Convection-diffusion-reaction and
flow problems, volume 24 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, second edition, 2008. ISBN 978-3-540-34466-7.

P. Solin, K. Segeth, and I. Dolezel. Higher-Order Finite Element Methods. Chap-
man & Hall/CRC Press, 2003.

T.E. Tezduyar and Y.J. Park. Discontinuity-capturing finite element formulations
for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl.
Mech. Engrg., 59:307-325, 1986.

72

http://dx.doi.org/10.1016/0045-7825(85)90089-1

List of Figures

5.1
5.2
9.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

6.17
6.18
6.20
6.21
6.22
6.23

6.24
6.25
6.26

Example of improper upper safety bound for g4, 42
Graph of achieved minimum by the L-SR1 algorithm on x 42
Comparison of proper and improper safety bound for 3, 43
Solution of Example 1 44
Solution of Example 2 0L 44
Solution of Example 3 0L 45
Solution of Example 4 oL 45
Solutions of Examplesband 6 46
Solution of Example 7 47
Process of minimization according to indicator (4.1) on isotropic

mesh for investigated Example 2. On the vertical axis there is L?

residue and on the horizontal axis there is time in seconds. 49
Nonphysical solution of indicator (4.3) 51
Comparison of discrete solutions of Example 3 on anisotrop meshes 52
Gray-scale maps of values of 75, for various spaces of 7, 53
Cross-sections of Ex. 3 at # = 0, Indicator (4.1) optimization . . . 54
Non-optimized solutions of the SUPG method 54
Optimized parameter 7, for different FE spaces 55
Changing the FE space for 75, and constant FE space CG3 for u, . 56
Minimization after 30s and at the end, convergence results 56
SUPG method with parameter 7, from (2.19) and 4k mesh opti-

mization L. 57
Optimized discrete solution wy, I;7°%° illustration 58
Interpolations of solutions according IF°, I and I 59
Outflow profiles of the optimized solutions 60
Exact and approximate solutions of Example 6 61
Outflow profiles of non-optimized and optimized solutions 61
Values of free parameters after the optimization according to the

Indicator (4.10) 62
SOLD method outflow profiles for Example 6. 63
Example 6 computed on a Friedrichs—Keller mesh 64
SOLD method with isotropic diffusion term (2.29), values of 7,

and oy after optimization. 66

73

List of Tables

6.1 List of optimization methods
6.2 Comparison of methods used to minimization of indicators

74

List of Abbreviations

« BFGS - Broyden-Fletcher-Goldfarb-Shanno algorithm for nonlinear opti-
mization

e CG - Conjugate gradient method

e« CG1-CG3 - Continuous Galerkin FE spaces, from piecewise linear to poly-
nomials of degree 3

o DGO-DGS3 - Discontinuous Galerkin FE spaces, from piecewise constant to
polynomials of degree 3

e DOF - Degree of freedom, usually used in plural
e FE - Finite Element

e FEniCS - FE representing finite element, CS representing computational
software, a software used in this Thesis (fenicsproject.org)

o« GLSFEM - Galerkin least squares finite element method

o L-BFGS - limited-memory versions of BFGS or SR1 gradient methods
o SDFEM - Streamline-diffusion finite element method

e SOLD - Spurious oscillations at layers diminishing methods

e SR1 - Symmetric Rank 1 method is a quasi-Newton method for nonlinear
optimization

e SUPG - Streamline upwind Petrov-Galerkin method

75

List of publications

o P. Lukas, Adaptive Choice of Parameters in Stabilization Methods for
Convection-Diffusion Equations, Week of Doctoral Students 2012 (2012),
54-59, ISBN = 978-80-7378-224-5.

o P. Lukas, Optimization of parameters in SDFEM for different spaces of
parameters, Applied Mathematics and Computation 267 (2015), 711-715.

o P. Lukas, A Posteriori Optimization of Parameters in the SUPG Method
for Higher Degree FE Spaces, Lecture Notes in Computational Science and
Engineering 108 (2015), 171-182.

o P. Lukas, P. Knobloch, Adaptive techniques in SOLD methods, Applied
Mathematics and Computation 319 (2018), 24-30.

« P. Knobloch, P. Lukas, P. Solin, On error indicators for optimizing
parameters in stabilized methods, Advances in Computational Mathematics
(2019), 24-30, doi = 10.1007/s10444-019-09662-4.

o P. Knobloch, P. Lukas, P. Solin, Importance of parameter optimiza-
tion in a nonlinear stabilized method adding a crosswind diffusion, Jour-
nal of Computational and Applied Mathematics 393 (2021), 113527, doi =
10.1007/s10444-019-09662-4.

76

	Introduction
	Fundamental definitions
	Sobolev spaces
	Problem definition
	Weak formulation

	Discretization
	Galerkin discretization
	SUPG method
	Approximation and local inverse inequality
	Stability and a priori error estimates
	Choice of tau parameter in one dimension
	Choice of tau parameter in more dimensions

	Galerkin Least Squares FEM
	SOLD methods
	SOLD terms adding isotropic artificial diffusion
	SOLD terms adding crosswind artificial diffusion
	Edge stabilization methods
	Iteration

	Optimization of parameters
	Adjoint approach for computing derivatives
	Adjoint approach in general
	General duality formulation
	Duality formulation in FEM adaptive methods

	Error estimators and indicators
	Residual based error indicator
	Crosswind derivative control term
	Indicator with reduced residuals
	Application to the SUPG method
	Application to SOLD methods

	Numerical methods of minimizing error indicators
	Line search algorithms
	Search direction
	Step length

	Trust region methods
	Steepest descent methods
	Nonlinear conjugate gradient methods
	Limited-memory quasi-Newton methods
	Limited-memory BFGS method
	Limited-memory SR1 method
	Restarting, termination criterion, and remarks on quasi-Newton methods

	On tuning of the parameters

	Numerical results
	Examples
	Numerical methods of minimizing error indicators
	Evaluating tests
	Results of numerical tests

	Results on anisotropic meshes
	Higher degree FE spaces
	Behavior of indicators
	Indicator with reduced residuals and SOLD method
	Isotropic diffusion term and higher order FE spaces

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of publications

